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2007; Lin et al. 2015). Maintaining diverse arthropod com-
munities may be necessary for reliable pollination (Iuliano 
et al. 2017) and pest control ecosystem services (Bianchi et 
al. 2006) for an increasingly urban human population.

Anthropogenic land use often has negative effects on 
arthropod biodiversity. For instance, highly urbanized and 
economically disadvantaged areas tend to have fewer and 
lower-quality floral resources and nesting sites for pollina-
tors (Zhao et al. 2019; Ferrari and Polidori 2022). Cities 
are also covered with impervious surfaces, which reduce 
habitat for most arthropods and may produce a “heat island 
effect,” which can strongly impact their ectothermic physi-
ology (Hamblin et al. 2018; Fenoglio et al. 2021). Previous 
studies have also shown that urban greenspaces host fewer 
arthropod natural enemy predators and more herbivorous 
pests than non-urban natural areas (McIntyre 2000; Pickett 
et al. 2001; Korányi et al. 2022). Managing insect pests is a 
top concern among community garden site users (Gregory 

Introduction

Community gardens serve multiple ecological and societal 
roles in cities (Pearson and Hodgkin 2010; Cabral et al. 
2017; Clarke et al. 2019). They provide agricultural prod-
ucts that may be especially valuable in low-income areas 
deemed “food deserts,” where residents have limited access 
to fresh fruits and vegetables (Krishnan et al. 2016). These 
gardens also serve as habitat patches for arthropods (Clucas 
et al. 2018; Baldock et al. 2019), which then impact food 
production through pollination, herbivory, pest control, and 
soil nutrient cycling services (Altieri 1999; Zhang et al. 
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Abstract
As the number of humans living in cities has grown, interest in the value of community gardens to provide agricultural 
products has increased. However, neighborhoods with different land cover patterns and socioeconomic characteristics 
often differ in their ecological attributes, leading to potential differences in biodiversity-mediated ecosystem services 
(e.g., pollination and pest control). Here we ask, how do impervious surface and socioeconomic features of the urban 
matrix around community gardens impact arthropod biodiversity and pollination and pest control services? We collected 
arthropods (insects, arachnids, myriapods, and isopods) across community gardens in Boulder Co., CO, and used experi-
mental jalapeño pepper plants as a sentinel crop to measure herbivory damage and pollination services. We categorized 
arthropods into functional guilds to see how impervious surface and neighborhood wealth in the urban matrix surrounding 
a site impacts the abundance of three focal groups – pollinators, herbivorous pests, and predators. We also looked at how 
bee Hill-Simpson diversity responded to these variables. Through structural equation modeling, we found that fruit size 
increased as bee biodiversity increased, and bee biodiversity and overall pollinator abundance were negatively related to 
neighborhood wealth. Additionally, pollinator abundance was lower in gardens surrounded by higher amounts of impervi-
ous surfaces. Neighborhood wealth and impervious surfaces were positively correlated with herbivore and predator abun-
dances, but these abundances had no relationship with herbivory damage in our plants. This research shows that reducing 
the amounts of impervious surface in the urban matrix can help increase bee biodiversity and abundance and improve 
pollination services in urban community gardens.
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et al. 2015; Liere et al. 2020); therefore, maximizing the 
pest control and pollination services provided is particularly 
relevant to applied urban ecology research, which empha-
sizes improving human wellbeing (Pickett et al. 2016; 
Byrne 2022).

In addition, urban ecology research has increasingly 
emphasized that the urban matrix is a complex, heteroge-
neous landscape with feedback between human and natural 
components (Pickett et al. 2016). This heterogeneity in land-
scape patterns can be difficult to capture and thus explains 
why recent studies have yielded conflicting results on 
arthropods’ responses to urbanization metrics (Theodorou et 
al. 2020; Wenzel et al. 2019). For example, Matteson et al. 
(2012) found that highly developed urban areas with dense 
infrastructure had lower bee biodiversity, while Lowenstein 
et al. (2014) saw the opposite trend. Some of this variation 
may be due to factors like impervious surfaces and urban 
development (both derived from land cover data and often 
serving as a metric for urbanization) being insufficient pre-
dictors of matrix quality. Impervious surface measurements 
can conceal land use heterogeneity and complex vegetation 
within smaller parcels of land in urban areas (Cadenasso 
et al. 2007; Beninde et al. 2015). To better predict matrix 
quality, scientists have started incorporating social variables 
with impervious surfaces into landscape-level urban ecol-
ogy research (Pickett et al. 2016; Zhao et al. 2019).

Studies have found that urban biodiversity positively cor-
relates with socioeconomic conditions (i.e., income, home 
values, and educational attainment; Hope et al. 2003; Leong 
et al. 2018). This pattern is called the luxury effect. One 
study to uncover this relationship in arthropod communities 
found that neighborhoods with higher income had higher 
indoor arthropod diversity and that this relationship was 
stronger in homes with less yard space (Leong et al. 2016). 
This supports past research findings that cities’ larger-scale 
landscape and economic factors may impact biodiversity 
patterns more than local habitat factors (Goddard et al. 2010; 
Mitchell et al. 2014). To date, few studies have attempted to 
link landscape-level land cover and economic covariates to 
ecosystem services as a function of arthropod community 
composition in urban agricultural systems. However, stud-
ies have identified links between different types of urban 
green spaces and arthropod-mediated ecosystem services, 
showing that urban landscape context does impact the qual-
ity of pest and pollination services (Gardiner et al. 2013; 
Bennett and Lovell 2019; Philpott and Bichier 2017).

The overarching question for this study is: How well do 
the social-ecological features of the urban matrix predict 
the pollination and pest control services provided by arthro-
pods in community gardens? We hypothesize that both bio-
physical and socioeconomic factors surrounding garden 
sites will interact to shape arthropod communities and their 

ecosystem services by altering matrix quality. Specifically, 
we predict that increased impervious surfaces will reduce 
pollinator and natural predator abundances, as well as bee 
diversity, reducing pollination and increasing the abun-
dance of herbivorous pests, which will reduce crop pro-
ductivity. Conversely, increased neighborhood wealth will 
increase arthropod populations through improved matrix 
quality (increased habitat and floral resources), leading to 
an increase in pollination and pest control services, which 
will increase fruit mass (Fig. 1a). This work aims to under-
stand the mechanisms that moderate arthropod communities 
and their services in urban gardens to better inform their 
management.

Methods

Study sites and Socio-ecological landscape context

The study was conducted at seven community garden sites 
in Boulder County, Colorado, USA (Fig. 1b). Boulder is a 
part of the Front Range Urban Corridor along the southeast-
ern base of the Rocky Mountains with a semi-arid climate. 
The gardens in this study were all part of the same gar-
den collective, Growing Gardens (https://growinggardens.
org/), and ranged in size from 336 m2 to 18,238 m2 (mean 
4110.8 ± SD 6008.0). Each garden was separated from the 
others by a minimum of 1.5 km and contained numerous 
plots individually maintained by members (Table 1). We do 
not know which specific fertilizers, herbicides, and insecti-
cides were used in every plot, as this was at the discretion 
of individual gardeners. However, the Growing Gardens 
collective has a strict policy against synthetic products and 
only allows organic products. They also do not allow bee 
hives to be placed in the gardens. Vegetation was variable 
across individually managed plots, and we did not observe 
any systematic patterns that we expect would influence the 
results. Across the sites, some of the most common plants 
observed were squash (Cucurbitaceae), tomatoes and pep-
pers (Solanaceae), and sunflowers (Asteraceae).

At the landscape scale, degree of urbanization was clas-
sified using the urban imperviousness landcover raster from 
the 2021 National Land Cover Database (NLCD, 30 m 
resolution) in R Statistical language (v4.2.0; R Core Team 
2022) using the packages raster (v3.6.3; Hijmans R 2023), 
rgeos (v0.5.9; Bivand and Rundel 2021), rdgal (v1.5.32; 
Bivand et al. 2023), and sp (v1.5.0; Pebesma and Bivand 
2005). Each pixel in the Urban Imperviousness raster shows 
impervious surfaces as a percentage of developed surfaces 
over 30 m2. To find the most appropriate scale to measure 
impervious surfaces, we tested five different circular buf-
fers with radii between 200 m and 2000 m around each 
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garden site, then calculated the log-likelihoods of each 
model (models described below). The 200 m scale showed 
the best fit and was included in our final models (Fig. S1). 
The percent impervious surface values across our sites 
ranged from 19.06 to 34.34% (mean 28.6% ± SD 8.82%). 
We used ESRI’s 2022 Wealth Index (ESRI Demograph-
ics, 2022) to quantify the economic conditions surrounding 
each garden site. In ESRI’s wealth index, a value of 100 
represents wealth equivalent to the national average, and it 
encapsulates household income, net worth, and the value of 
possessions and resources (Fig. S2). This Wealth Index was 
derived using ArcGIS software for residents within a 1-km 

radius of each community garden, the finest grain for which 
it was available for all gardens. The wealth index values 
across our sites ranged from 121 to 235 (mean 169 ± SD 
37.9).

Arthropod sampling

We sampled arthropods in each garden using pitfall and 
vane traps on June 22–24, July 20–22, and August 19–21 of 
2022. Three 13 cm deep white pitfall traps were placed at 
each site, equidistant from each other, with approximately 
10 m of space between each trap. A funnel with a diameter 

Table 1 Number of plots, size, percent impervious surface within a 200-meter radius, Wealth Index values within a 1-km radius for each garden 
site in Boulder, CO, USA.

Site Number of plots Garden size (m2) % Impervious surface (200 m radius) ESRI Wealth Index
(1-km radius)

1) Foothills 46 3426.24 30.85 163
2) Fortune 18 336.88 37.46 121
3) Hawthorne 200 18238.58 22.68 235
4) Hickory 28 2736.12 28.94 135
5) Hope 23 657.99 36.42 159
6) Kerr 41 2324.05 10.79 162
7) Living Harvest 30 1055.85 33.29 209

Fig. 1 (A) A conceptual diagram of predicted causal relationships 
between impervious surface and neighborhood wealth, arthropods, 
and crop yield. Red arrows indicate negative relationships, blue arrows 
indicate positive ones, solid lines indicate direct relationships, and 
dashed arrows indicate indirect ones. (B) A landcover class map of the 
study area, Boulder Co., CO, with community gardens (blue dots) and 

a 1 km buffer. Developed land cover is shown in magenta. Numbers 
correspond with garden names listed in Table 1. (C) A vane trap set out 
at a garden site. (D) An aerial photo of a community garden. Image 
credits: (A) Canva Pro License, (B) ESRI CC BY-NC, (C) Asia Kaiser, 
(D) Google Earth Images
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At each site, five randomly chosen plants were covered 
loosely with mesh bags made of < 1 mm mesh tulle to pre-
vent insects from landing on them, and five others were left 
exposed to examine the relationship between insect access 
and fruit mass and herbivory. The mesh coverings did not 
appear to inhibit the growth of the pepper plants (Asia Kai-
ser, personal observation). The plants were placed in the 
pathways at garden sites in two rows approximately 30 cen-
timeters apart. They were left in the field for three weeks and 
watered every other day, then returned to the greenhouse. 
Any visible arthropods were removed from the plants, and 
all plants were covered with mesh upon returning them to 
the greenhouse to help prevent any unseen arthropods from 
spreading between plants from different sites. Any flower 
buds that grew in the greenhouse were pinched off to ensure 
we were only collecting data for peppers that had been pol-
linated in the field. When peppers began to turn red, they 
were picked and weighed fresh. The masses of all jalapeño 
peppers from a single plant were averaged to obtain a single 
fruit mass value per plant. Plant leaf damage, used as an 
index for herbivory, was calculated by counting the propor-
tion of leaves on a plant with signs of herbivory damage 
(holes or chewed edges) promptly after plants were returned 
to the greenhouse.

Data analyses

Analyses were conducted using the R Statistical language 
(v4.2.0; R Core Team 2022) on macOS Big Sur 11.6.7. All 
data cleaning and data visualization was done using the 
Tidyverse package in R (Wickham et al. 2019).

Arthropod functional group analyses

We ran Negative Binomial Generalized Linear Mixed Mod-
els (GLMMs) with a log link to analyze the relationships 
between impervious surface and wealth index and total 
arthropod abundance, as well as the abundance of each 
functional group (pollinators, herbivores, and predators), 
for the full summer using the R package lme4 (v1.1.30; 
Bates et al. 2019). Percent impervious surface and wealth 
index were included as fixed effects and month was included 
as a random intercept in each model. We back-transformed 
the coefficient estimates provided by each model by taking 
the exponent of each coefficient to obtain effect sizes. To 
analyze the impact of impervious surface and wealth index 
on bee diversity (how we calculated diversity is described 
below), we ran a Linear Mixed Effect Model (LMM) with 
the same structure as the previous model with the R pack-
age nlme (v3.1.157; Pinheiro et al. 2022). We performed a 
natural log (ln) transformation for the bee diversity data to 

of 3.5 cm was placed atop the traps to prevent vertebrate 
animals from falling in. The pitfall traps were placed in 
the ground immediately outside of plots in garden path-
ways. These are dirt paths where garden members regularly 
remove weeds and forbs. Three fluorescent blue vane traps 
with three different collection jar colors – clear, fluorescent 
yellow, and fluorescent magenta – were put in the field to 
help capture a greater diversity of flying insects (Vrdoljak 
and Samways 2011). The vane traps were placed at a height 
of 1.3 m (Fig. 1c) on stakes approximately 10 m apart from 
each other in the pathways in the gardens. Both pitfall and 
vane traps were filled with a propylene glycol-water solu-
tion to help capture and preserve specimens and left in the 
field for 48 h. The traps were then returned to the lab for 
specimens to be counted and identified to order level. Bees 
were further identified to species using taxon-specific books 
and dichotomous keys (Gibbs 2011; LeBuhn 2013; Wilson 
and Messinger 2016; Messinger Carril and Wilson 2023), 
Discover Life Identification Nature Guides (Ascher and 
Pickering 2017), and consultation with taxonomic experts 
from the University of Colorado Museum of Natural His-
tory (CUMNH) (Scott et al. 2011). Hemiptera and beetles 
were further identified to family or genus level, using Dun-
ford and Long (2002), Discover Life Identification Nature 
Guides, and local expert opinion from the Resasco Lab at the 
University of Colorado Boulder. Lower-level classification 
helped us assign individuals more accurately to functional 
groups, as there is more variability in the dietary behavior in 
these clades. We were unable to accurately identify all small 
Hemiptera and beetle specimens (less than 5 mm in width), 
so their functional group was left unknown (Table S2). All 
arthropods were assigned to a functional group (pollinator, 
herbivore, predator, omnivore, detritivore, parasitoid, grani-
vore, sanguinivore) based on their known feeding behavior 
(Schuh et al. 2010; Gullan and Cranston 2014; BugGuide, 
Iowa State University). Only pollinator, herbivore, and 
predator data were included in our final analyses.

Experimental plants

We used ‘Early Jalapeño’ cultivars of the species Capsicum 
annuum (Solanaceae) as sentinel plants to measure pollina-
tion services and herbivory damage because they grow well 
in various climates throughout the continental United States 
and benefit from insect pollination (Raw 2000). While jala-
peños are self-pollinating and will set fruit with no pollina-
tion, fruit size is greater when they are pollinated (Cohen et 
al. 2020). They are also visited by a variety of insect pol-
linators, including bees (Raw 2000), wasps (Bosland and 
Votava, 1999), and syrphids (Jarlan et al. 1997). A total of 
70 pepper plant seeds were planted in a greenhouse on April 
1, 2022, and then placed in the gardens on August 17, 2022. 
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predator abundance, leaf damage, and pepper mass. Wealth 
Index and impervious surface were included only as predic-
tor variables. Bee diversity, pollinator abundance, and her-
bivore abundance were encoded as correlated errors in the 
model. A directed-separation test in piecewiseSEM showed 
no significant dependencies between variables not tested 
against each other in the model.

Results

A total of 3287 arthropods were sampled across all com-
munity garden sites. Of this total, 1176 (34.5%) were pol-
linators, 368 (10.8%) were herbivores, and 255 (7.5%) 
were predators. 96% of pollinators were bees from 48 spe-
cies across all gardens (Table S1). The most common taxa 
observed were long-horned bees (Melissodes agilis, n = 413; 
Melissodes bimaculatus, n = 208) and squash bees (Eucera 
pruinosa, n = 296). Most arthropods categorized as preda-
tors were arachnids (n = 211) and centipedes (n = 30). There 
were 24 different taxa categorized as herbivores (listed in 
Table S2); some of the most commonly collected herbivores 
were weevils (Curculionidae, n = 29) and grasshoppers 
(Acrididae, n = 21).

For our experimental jalapeño pepper plants, we found 
no significant difference in leaf damage between covered 
and uncovered plants (t = 0.432, df = 54.1, p = 0.667). There 
were also no differences in leaf damage across our sites 
(p > 0.05 for all pairwise differences). A total of 297 jalapeño 
peppers were harvested across 64 plants. Of the 70 plants 
initially placed in the field, 6 pepper plants (2 uncovered 
and 4 covered) never produced any fruit and were removed 
from our analyses. There were no significant differences in 
pepper mass between our covered and uncovered plants (t = 
-0.74, df = 54.5, p = 0.46).

Arthropod functional groups

There was no significant relationship between site percent 
impervious surface (z = -1.7, p = 0.09) or wealth index (z 
= -0.13, p = 0.89) and the average arthropod abundance per 
site for the summer (Fig. S3). However, we found significant 
relationships between our environmental covariates and 
pollinator, herbivore, and predator abundances (monthly 
data in Fig. S4). Pollinator abundance negatively corre-
lated with impervious surface (z = -3.23, p < 0.01, Fig. 2a) 
but was unrelated to site wealth index (z = -1.48, p = 0.14, 
Fig. 2b). Every percent increase in impervious surface cor-
responded to a decrease in pollinator abundance by 0.96 
(± 0.01 SE) individuals. Herbivore and predator abundance 
both positively correlated with impervious surfaces. Every 
percent increase in impervious surface corresponded to a 

achieve a normal distribution. Additionally, we ran LMMs 
to test for differences in herbivory damage and pepper mass 
between our covered and uncovered pepper plants with site 
included as a random intercept. We then ran a Tukey test to 
look at pairwise differences between our sites.

Bee diversity

We examined bees in more detail using the Hill-Simpson 
Diversity Index with an asymptotic estimator to estimate 
relative bee diversity per site using the R package iNEXT 
(v2.0.2; Hsieh et al. 2016). This method has been demon-
strated to provide a more appropriate metric for biodiversity 
than species richness, which is highly sensitive to rarity and 
can give more biased estimates of relative abundances at 
smaller sample sizes (Simpson 1949; Roswell et al. 2021).

We were also interested in how bee community compo-
sition varied across sites and whether or not this variation 
was linked to any environmental covariate. Bee community 
composition for each site was analyzed using all bees col-
lected from vane and pitfall traps using Non-metric Mul-
tidimensional Scaling Analysis (NMDS) with Bray Curtis 
distances in the R package vegan (v2.6.4; Oksanen et al. 
2022). This non-parametric indirect gradient analysis tech-
nique uses ranks rather than distances between objects and 
is, thus, more robust to data without an identifiable distri-
bution (Kenkel and Orloci 1986). To analyze the effect of 
our environmental variables on bee community composi-
tion, we used the envfit function in the R package vegan 
(v2.6.4; Oksanen et al. 2022). With this function, we calcu-
lated a multiple regression of the environmental variables 
of interest, percent impervious surface (continuous) and 
wealth index (continuous), with the ordination axes from 
our NMDS. With this function, significance is tested by a 
permutation test.

Structural equation modeling

We constructed a structural equation model using the piece-
wiseSEM package in R (v2.3.0; Lefcheck 2015) to test the 
direct and indirect effects of our environmental covari-
ates on herbivory damage and fruit sizes in our uncovered 
experimental jalapeño pepper plants. This model used only 
arthropod data from August to ensure that we were testing 
relationships with the arthropod community present at the 
same time our plants were there. Structural equation mod-
els are advantageous in that variables can be included as 
both predictors and response variables. Our structural equa-
tion model tested all the hypothesized relationships shown 
in Fig. 1a and consisted of six equations (Supplement 1) 
testing the following response variables: bee Hill-Simpson 
diversity, pollinator abundance, herbivore abundance, 
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Fig. 2 Relationships between percent impervious surface and site 
wealth index and (a & b) pollinator abundance (R2

GLMM (m) = 0.08; 
R2

GLMM (c) = 0.84), (c & d) herbivore abundance (R2
GLMM (m) = 0.15; 

R2
GLMM (c) = 0.55), and (e & f) predator abundance (R2

GLMM (m) = 0.33; 
R2

GLMM (c) = 0.48) using arthropod abundance data summed across 

traps and across three sampling dates (June, July, August 2022). All 
p-values were obtained from a Negative Binomial Generalized Mixed 
Effect Model (GLMM), with ns meaning a relationship was not signifi-
cant (p > 0.05). Marginal and conditional R2

GLMM values were derived 
using a trigamma estimate
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of impervious surface (R2 = 0.23, p = 0.61) and a significant 
effect of wealth index (R2 = 0.81, p = 0.046) on bee com-
munity composition after running a permutation test with 
the ordination axes from our NMDS (NMDS plot shown in 
Fig. S5).

Structural equation model results

Our model had a Fisher-C global goodness of fit value of 
24.48 with 20 df (p = 0.22), indicating no significant rela-
tionships between unconnected variables in our model. No 
significant relationships existed between our environmental 
covariates (wealth index and impervious surface) and our 
experimental pepper plant responses (leaf damage and fruit 
mass). Overall, the SEM results (Fig. 3a, full model output in 
Table S3) indicate that (a) pollinator abundance was signifi-
cantly negatively related to impervious surface (R2 = 0.89, 
p < 0.001) but not significantly related to neighborhood 
wealth (R2 = 0.89, p = 0.13), (b) herbivore abundances were 

1.04 (± 0.02 SE) increase in herbivore individuals (z = 2.32, 
p = 0.02, Fig. 2c) and a 1.07 (± 0.02 SE) increase in preda-
tor individuals (z = 2.66, p < 0.01, Fig. 2e). Herbivore abun-
dance for the summer was not significantly related to wealth 
index (z = 1.92, p = 0.055, Fig. 2d). Predator abundance 
was significantly positively related to site wealth index 
(1.69 ± 0.27 SE, z = 2.99, p < 0.01, Fig. 2f).

Bee diversity

As the wealth index around sites increased, bee-Hill Simp-
son diversity decreased (-0.15 ± 0.06 SE, t = -2.34, df = 16, 
p = 0.03). Because bee Hill-Simpson diversity was rarefied, 
it was not highly correlated with pollinator abundance at a 
site (r = 0.072), verified by a Pearson product correlation 
test (t = 0.403, df = 31, p = 0.69). There was no significant 
effect of impervious surface surrounding garden sites on bee 
Hill-Simpson diversity for the full summer community (t 
= -0.13, df = 16, p = 0.89). There was no significant effect 

Fig. 3 Structural equation model results using data collected in August 
2022. (A) The relationships between impervious surface and neigh-
borhood wealth, arthropod functional group (pollinator, herbivore, 
and predator) abundances, and jalapenõ plant herbivory and crop yield 
(fruit mass). (B) The relationships between impervious surface and 
neighborhood wealth, bee Hill-Simpson diversity, and jalapenõ plant 
fruit mass. The numbers on the arrows are standardized coefficient 

estimates, and the numbers beneath the response variables show the 
pseudo-R2 value for each equation. Red lines show negative relation-
ships (also shown with negative coefficients), blue lines show positive 
ones (also shown with positive coefficients), and dotted lines show 
nonsignificant ones. Image credits: (A) Canva Pro License, (B) Canva 
Pro License & © DiscoverLife.org
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would then cause herbivorous pest abundance to increase. 
As impervious surfaces increased, herbivore abundances 
increased as predicted, but predator abundances also 
increased, contrary to expectations (Figs. 2 and 3a). These 
results match a study conducted in Los Angeles, CA, which 
saw a positive relationship between impervious surfaces 
and predator arachnid abundance (Lewthwaite et al. 2024). 
Another study examining aphids and their arthropod preda-
tors in urban landscapes saw that predators were negatively 
related to impervious surfaces but also positively related to 
aphid prey populations (Rocha and Fellowes 2018). These 
results suggest that certain predator taxa may be more sen-
sitive to local factors, such as prey populations and local 
habitat complexity, than to features of the urban matrix.

Predator abundances were positively related to neighbor-
hood wealth, as predicted. There was no relationship between 
herbivore abundance and neighborhood wealth across the 
full summer, but our structural equation model detected 
a positive relationship in August. This suggests that there 
could be important changes in insect community composi-
tion, even within guilds, throughout a season. While we did 
see a negative relationship between predator and pest abun-
dances in this study, we cannot determine whether the rela-
tionship was causal (with predators reducing prey) and thus 
impacting pest-control services. We found no differences in 
leaf damage (used as a proxy for herbivory) among our sites 
or between our covered and uncovered jalapeño plants. We 
believe that there was higher than expected herbivory in our 
covered plants because large orthopterans (grasshoppers & 
katydids) were able to bite through the mesh (Asia Kaiser, 
personal observation). Our sampling methods were not tar-
geted toward collecting these insects, so we are unsure how 
their abundances differed across our sites. This represents 
a limitation in our herbivore exclosure treatments, making 
us unable to estimate an effect size for herbivore leaf dam-
age within a site. However, we still observed no differences 
in leaf damage across our sites related to herbivore abun-
dances across the gardens (Fig. 3a). These results suggest 
that the abundance of herbivorous insects may not be a good 
predictor of herbivory pressure on plants in an urban agro-
ecosystem. A more effective measure may be to look at the 
abundance of the most highly destructive herbivore taxa.

Pollinator abundance, bee diversity, and pollination 
services

Both pollinator abundance and bee diversity decreased as 
the impervious surfaces around sites increased. These results 
are consistent with numerous studies examining the effect of 
urbanization on wild bee assemblages (Ahrné et al. 2009; 
Matteson et al. 2012; Geslin et al. 2016). This suggests that 
the habitat area provided in community garden sites alone 

positively related to both impervious surface and neighbor-
hood wealth (R2 = 0.74, p < 0.001 and p < 0.001), (c) preda-
tor abundances were positively related to both impervious 
surface and neighborhood wealth (R2 = 0.39, p = 0.038 and 
p = 0.036), and (d) predator and herbivore abundances were 
negatively correlated with each other (R2 = 0.74, p < 0.001). 
No other pathways in the model were significant, including 
relationships between arthropod abundance, leaf damage, 
and pepper mass. Both neighborhood wealth and impervi-
ous surface were negatively correlated to bee Hill-Simpson 
diversity (R2 = 0.95, p < 0.001 and p = 0.03). Bee Hill-Simp-
son diversity was positively correlated with experimental 
pepper plant mass. As Hill-Simpson diversity increased, the 
ln pepper mass increased at a rate of 0.126 (± 0.048 SE) 
grams (R2 = 0.42, p = 0.016, Figs. 3b and 4).

Discussion

We found that the abundance of pollinator, herbivorous, and 
predatory arthropods and bee diversity in urban community 
gardens was related to the amount of impervious surfaces 
and neighborhood wealth values in the landscape surround-
ing a garden, with different functional groups exhibiting dif-
ferent responses (Figs. 2 and 3). Additionally, our results 
show that bee biodiversity did not reflect the luxury effect 
(Fig. 3b), as bee biodiversity was negatively correlated 
with neighborhood wealth in this system. Finally, we found 
that jalapeño fruit mass was higher at sites with higher bee 
diversity (Fig. 4).

Herbivores, predators, and pest-control services

We predicted that predators would be negatively related to 
impervious surfaces because of reduced habitat and dimin-
ished matrix quality (Burkman and Gardiner 2014), which 

Fig. 4 The relationship between the bee hill-Simpson diversity index 
at a garden in August and the natural log-transformed average mass 
of peppers on uncovered jalapeño plants (R2 = 0.42, p = 0.016). Image 
credits: Canva Pro License
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Study limitations

A limitation of this study is that the arthropod exclosures on 
our sentinel plants did not work as intended, so we could not 
achieve a causal estimate of the pollination and pest-control 
services provided at each site. While we observed differ-
ences in pepper mass across our sites, no differences existed 
between our covered and uncovered plants. We believe this 
may be because the mesh coverings changed environmental 
variables affecting the plant growth unrelated to arthropods. 
Although the mesh used was very lightweight, it could have 
provided additional shading to plants and slowed down 
evapotranspiration. Additionally, while jalapeño plants have 
been shown to benefit from insect pollination (Cohen et al. 
2020), they do not require it, and perhaps wind within cov-
ered plants may have been sufficient to compensate for the 
lack of pollinator visitation. As mentioned above, certain 
herbivores were able to bite through the mesh exclosures 
as well, causing us to see no differences in leaf damage 
between covered and uncovered plants at a site.

Another potential limitation of this study is using pas-
sive sampling methods (pitfall and vane traps) instead of 
active sampling methods such as aerial nettings. While traps 
catch many more insect specimens, active sampling meth-
ods are better at capturing rare species (Montgomery et al. 
2021). Passive sampling may have caused highly effective 
pollinators and natural enemies or deleterious pests to be 
underrepresented in our sample, despite them having a large 
impact on our jalapeño plants. For example, we observed in 
the field (and numerous gardeners confirmed) that invasive 
Japanese beetles (Popillia japonica) were highly abundant 
and caused significant crop damage. However, we collected 
relatively few individuals (n = 11). This may be because res-
idents in the surrounding neighborhood were using baited 
Japanese beetle traps (Asia Kaiser, personal observation), 
making them less likely to be caught in our traps. As a 
result, passive sampling methods may not always provide 
a true representation of the arthropod community compo-
sition and should be complemented with active sampling 
methods in future research.

A third limitation of our data is that our relatively small 
number of sites may not have captured the full range of 
socioeconomic values in our neighborhood wealth values. 
Our dataset’s wealth values range from 121 to 235 (with 100 
representing the national average), meaning we are missing 
data on the lowest-income neighborhoods. The luxury effect 
in certain arthropod groups may also be non-monotonic, and 
biodiversity decreases above and below certain socioeco-
nomic levels. A past study looking at bird species richness 
in the developing world similarly found a negative relation-
ship between wealth and diversity in highly urban neighbor-
hoods, but the relationship flipped in less urban landscapes 

is insufficient to support diverse bee populations when there 
are high amounts of impervious surfaces in the surrounding 
matrix. While there was no relationship between pollinator 
abundance and neighborhood wealth, there was a signifi-
cant negative relationship between bee diversity and neigh-
borhood wealth. This was the opposite of what is predicted 
by the luxury effect (Hope et al. 2003; Leong et al. 2018). 
This reverse luxury effect for bee diversity was especially 
surprising for our study system in Boulder, CO, as a past 
meta-analysis found that arid landscapes exhibit even stron-
ger luxury effects than non-arid landscapes (Chamberlain et 
al. 2020).

A potential explanation for this discrepancy is that very 
few studies have looked at luxury effects on arthropods, 
with 95% of studies in the meta-analysis focusing on plants 
or birds (Chamberlain et al. 2020). The nesting behaviors 
of bees may also be a potential mechanism for why neigh-
borhood wealth is negatively correlated with bee diversity. 
Most (> 70%) bee species are ground nesting (Antoine and 
Forrest 2020; Harmon-Threatt 2020) and prefer bare ground 
for nesting spots (Gardein et al. 2022). Abiotic factors like 
mulch have been shown to reduce pollinator diversity and 
abundance (Cohen et al. 2020). If higher-income neighbor-
hoods have more manicured lawns with more irrigation, turf 
grass, mulch, and pesticide use (Fraser et al. 2013; Fuentes 
2021), this may deter most bee species from nesting in these 
areas. Around 94% of the bees we sampled were ground 
nesters, which means these mechanisms are highly relevant 
to this bee community (Table S1). One study looked at the 
cultural drivers of yard landscaping decisions by college-
educated homeowners surrounding community garden sites 
with consistently low pollinator scores and found that many 
lawns had low vegetative complexity due to a perceived 
socio-cultural pressure to maintain a “perfect lawn” (Burr 
et al. 2018). Additionally, wealthy areas tend to have more 
moist environments from irrigation and tree cover, but bee 
biodiversity is richest in arid and semi-arid environments 
(Orr et al. 2020).

Understanding the impact of environmental covariates 
on bee diversity may be especially important for urban food 
production, as bee Hill-Simpson diversity was the only vari-
able with a positive relationship to jalapeño pepper mass in 
our study. This is supported by a previous urban agriculture 
study in California, which found that jalapeño pepper seed 
count increased as pollinator richness increased (Cohen et 
al. 2020). In our study, pollinator abundance alone was not 
a significant predictor of fruit size. This shows that increas-
ing pollinator population sizes alone may not be enough to 
ensure robust pollination services, and maximizing polli-
nator species richness must also be prioritized to increase 
pollinator community effectiveness (Willcox et al. 2017; 
Woodcock et al. 2019).
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