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Endosomal sorting complexes required for transport (ESCRTs)

execute the biogenesis of late endosomal multivesicular bodies

(MVBs). The ESCRT pathway has traditionally been viewed as a

means by which transmembrane proteins are degraded in

vacuoles/lysosomes. More recent studies aimed at

understanding the broader functions of ESCRTs have uncovered

unexpected links with pathways that control cellular metabolism.

Central to this communication is TORC1, the kinase complex

that controls many of the catabolic and anabolic systems. The

connection between TORC1 activity and ESCRTs allows cells to

quickly adapt to the stress of nutrient limitations until the longer-

term autophagic pathway is activated. Increasing evidence also

points to ESCRTs regulating RNA interference (RNAi) pathways

that control translation.
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Introduction
Eukaryotic cells transport proteins and lipids to the

vacuole/lysosome for degradation and recycling of amino

acids and fatty acids that can be used for new protein and

lipid synthesis. The importance of the vacuolar/lysoso-

mal degradation system for normal metabolic function of

the cell becomes evident when extracellular nutrients

are scarce. Starvation dramatically increases the influx of

cellular proteins into this system to harvest amino acid

resources required for survival. The starvation-induced

autophagy pathway is well established [1,2]. In this

review, we focus on a second pathway in the starvation

response whereby transmembrane proteins are targeted

for vacuolar/lysosomal degradation via multivesicular

bodies (MVBs). Recent studies indicate that this
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degradation pathway is tightly linked to cellular metab-

olism, not only for stress response, but also as part of an

overall regulatory system that balances anabolic and

catabolic pathways. Because much of our understanding

of the MVB pathway derives from studies in Sacchar-
omyces cerevisiae, we will use yeast protein and organelle

nomenclature unless stated otherwise.

Regulating ubiquitination of MVB pathway
cargoes
The topological problem of degrading transmembrane

proteins is solved by the formation of MVBs, which

package these proteins into intralumenal vesicles (ILVs)

that are delivered into the hydrolytic lumen of the

vacuole (Figure 1). The formation of ILVs and sorting

of their transmembrane protein cargoes is executed by a

set of five distinct cytosolic protein complexes called

ESCRT-0, ESCRT-I, ESCRT-II, ESCRT-III, and the

Vps4 complex [3]. These complexes transiently assemble

on the endosomal membrane into a protein network that

drives ILV formation by a poorly understood mechanism

(reviewed in [4]).

For most ILV cargoes, ubiquitination serves as the sorting

signal that mediates their interaction with ESCRT

machinery. The ubiquitination reaction in yeast is exe-

cuted by the ubiquitin ligase Rsp5 and is a key regulatory

step that decides the fate of plasma membrane proteins

[5]. For many cell-surface proteins, ubiquitination occurs

at the plasma membrane, which triggers their endocytosis

and subsequent delivery to endosomes. However, the

mechanism that determines when a particular protein

undergoes ubiquitination is not always known and can

vary, depending on the type of plasma membrane protein

and the state of the cell. While many receptors that

activate intracellular signaling cascades are ubiquitinated

and degraded via the MVB pathway in response to their

activation (e.g. pheromone receptors in yeast and growth

factor receptors in metazoans) [6], the stability of most

plasma membrane nutrient transporters is regulated by

the concentration of the solute they pump (amino acids,

saccharides, among others). High solute concentration

causes ubiquitination and degradation of the correspond-

ing transporter, whereas low solute concentration stabil-

izes it [7]. In the case of the uracil transporter Fur4, a

protein-intrinsic system triggers its ubiquitination when

bound to substrate, indicating that the transporter

regulates its own turnover rate to keep the cytoplasmic

concentration of uracil within a physiological range [8��]
(Figure 2). Ubiquitination of many transporters is also
Current Opinion in Cell Biology 2013, 25:489–494
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Model of the endocytic pathway of eukaryotic cells. Plasma membrane

proteins are endocytosed and delivered to an early endosome from

where they either recycle or continue on the way to the vacuole/

lysosome. At the MVB, protein cargoes destined for degradation are

packaged into ILVs. Upon fusion of the MVB with the vacuole/lyosome,

the ILVs are exposed to the hydrolytic environment and both proteins

and lipids are degraded. Alternatively, certain MVBs fuse with the

plasma membrane and release the ILVs, termed exosomes, into the

extracellular melieu. TORC1 localizes to the vacuolar membrane where it

senses the amino acid content of the compartment. High amino acid

levels activate TORC1 which in turn suppresses the autophagy pathway.
regulated on a cellular level by arrestin-related trafficking

adaptors (Art proteins). Yeast express at least 10 distinct

Art proteins, each of which binds a specific set of trans-

porters to recruit Rsp5 [9��,10–13]. The activity of each

Art is regulated by phosphorylation and ubiquitination,

which allows the cell to modulate the turnover rate of

nutrient transporters targeted by a specific Art [14,15�].
Because the nutrients imported by transporters are inte-

gral to cellular metabolism, regulating Art proteins might

allow adjustment of cell-surface transporter activity

according to metabolic needs.

Survival during starvation
The acute metabolic stress of starvation triggers rapid

degradation of a large number of transporters in unison

[16–20,21��]. This stress response seems to be the result
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of upregulating both ubiquitin-dependent endocytosis

from the plasma membrane and ESCRT-mediated sort-

ing at endosomes. Gap1, the general amino acid per-

mease, is an exception, in that starvation stabilizes

Gap1 at the plasma membrane [13,22]. Therefore, cells

respond to amino acid depletion by degrading specialized

amino acid transporters and upregulating the general

transporter Gap1.

Yeast ESCRT mutants die more readily than do wild-type

cells when they reach stationary phase, a condition in

which nutrients become limiting. Depriving individual

amino acids is sufficient to expose this Achilles’ heel

[21��]. The reduction in viability of ESCRT-mutant yeast

appears to stem from the central role MVBs have in

transmembrane protein degradation at vacuoles. In the

short term, their degradation can provide amino acids

needed for producing proteins required for cells to

immediately adapt to starvation stress. One such adap-

tation is the induction of autophagy, a long-term

starvation response that requires new protein synthesis.

Therefore protein degradation by the MVB pathway buys

the cell time until autophagy kicks in to sustain cellular

viability if starvation is prolonged. Such need for main-

taining sufficient amino acid levels during acute

starvation is shared by human cells [23��].

Starvation-induced endocytosis
Both Rsp5 and the Art proteins are substrates for Npr1, a

kinase that is a downstream effector of the Tor complex 1

(TORC1) [14,24]. TORC1 is a highly conserved protein

complex containing the protein kinase known as target of

rapamycin (Tor in yeast, mTor in mammalian cells).

TORC1 monitors the metabolic state of the cell

[25,26]. The presence of amino acids, glucose, and other

nutrients activates TORC1, which in turn promotes ana-

bolic functions such as protein production and suppresses

starvation response pathways, including autophagy. Loss

of TORC1 activity, induced either by starvation or the

presence of the antibiotic rapamycin, increases endocy-

tosis of nutrient transporters, in part by activating Npr1

(Figure 2).

Phosphorylation of Rsp5, Arts, and nutrient transporters

by Npr1 could account for the increase in transporter

ubiquitination and subsequent endocytosis

[13,14,22,24,27,28] but the effect of these phosphoryl-

ation events is controversial. A recent study found rapa-

mycin-induced phosphorylation of Art proteins

suppresses recruitment of Rsp5 and concomitant ubiqui-

tination and degradation of cell-surface transporters [14].

Other studies found, instead, that starvation induces

degradation of cell-surface transporters. This discrepancy

could originate from the use of rapamycin as a way to

induce the starvation-response pathways. Although rapa-

mycin blocks TORC1 activity to mimic starvation, gene

expression profiling identified clear differences in the
www.sciencedirect.com
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Model of the regulatory interactions between endocytosis, MVB sorting and protein translation. The active TORC1 kinase suppresses ubiquitin-

dependent endocytosis of nutrient transporters and increases translation efficiency. High translation efficiency, in turn, lowers ESCRT-mediated ILV

formation at the MVB (via Ist1). ILV formation at the MVB is important for the assembly of active RISC which lowers expression of specific mRNAs by

inhibiting translation or inducing mRNA degradation.
cellular response to rapamycin versus amino acid

depletion [29]. Moreover, genetic disruption of Npr1

inhibits rapamycin-induced downregulation of transpor-

ters but not increased transporter degradation caused by

amino acid deprivation [21��], suggesting at least two

regulatory systems, a TORC1-dependent and a

TORC1-independent pathway.

Regulation of ESCRTs by starvation-response
pathways
To handle the influx of transporters and other proteins

targeted for degradation in response to starvation,

ESCRT activity is upregulated through Ist1 [30,31].
www.sciencedirect.com 
Depending upon its cellular abundance, Ist1 can either

promote or inhibit ESCRT activity. At low levels, Ist1

promotes recycling of the ESCRTs, which sustains

MVB function by enabling further rounds of ESCRT

activity, but at high levels, Ist1 stalls the cycle of

ESCRT activity and thus impairs the MVB pathway

[30]. The amount of Ist1 is high when wild-type yeast

are grown in rich medium but drops precipitously when

cells are starved, precisely when levels of intracellular

amino acids plummet [21��]. That Ist1 depletion is

important for starvation survival is emphasized by the

poor viability of starved cells when high Ist1 expression

is artificially maintained [21��].
Current Opinion in Cell Biology 2013, 25:489–494
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Ist1 control of ESCRT activity is indirectly regulated by

TORC1. High levels of intracellular amino acids stimu-

late TORC1 signaling, which promotes protein synthesis,

including that of Ist1 (Figure 2). This situation is reversed

upon amino acid starvation or rapamycin treatment. The

drop in Ist1 levels coincides precisely with phosphoryl-

ation of the eIF2 translation initiation factor a subunit

[21��], which is a well-known consequence of reduced

TORC1 activity that represses general protein synthesis

to favor translation of mRNAs that encode proteins essen-

tial for cellular adaptation to amino acid starvation

(reviewed in [32]). Together, the data suggest that lower

Ist1 levels are a consequence of reduced translational

activity during starvation, combined with a high turnover

rate of Ist1. Therefore, Ist1 forms a regulatory link between

the metabolic state of the cell and protein degradation via

the MVB pathway: rich nutrient conditions promote cell

growth by increasing synthesis of Ist1 and other proteins,

thereby suppressing protein degradation, whereas

starvation inhibits synthesis of Ist1 and non-essential

proteins and also generally promotes protein turnover.

The ESCRTs are important for Gcn4 and
TORC1 function
Amino acid starvation not only causes rapid shutdown of

general translation but also induces translation of a set of

starvation-response proteins, such as the Gcn4 transcrip-

tion factor (see review [33]). Gcn4 regulates expression of

numerous genes, including those of amino acid biosyn-

thesis pathways. The goal of this regulatory system is to

conserve amino acids and initiate pathways of amino acid

synthesis. Surprisingly, mutations that either disrupt traf-

ficking to endosomes or impair the MVB pathway inhibit

transcriptional upregulation of Gcn4 target genes [34�].
Furthermore, the vacuolar delivery of proteins from the

Golgi via the MVB pathway is critical for Gln3 mediated

transcription of genes involved in nitrogen-starvation

response [35]. In yeast mutants defective in Golgi-to-

endosome trafficking, TORC1 regulated nuclear translo-

cation of Gln3 is impaired, suggesting a link between

endosomal trafficking and Tor signaling. This link is also

observed in mammalian cells, where studies demon-

strated the importance of a normal endosomal system

for mTOR activity [36].

A likely reason for the close relationship between

TORC1 and endosomal trafficking is the fact that both

in yeast and higher eukaryotes, TORC1 localizes at least

transiently to the cytosolic side of endosomal/lysosomal

membranes [37,38] where it appears to monitor the amino

acid pool stored within vacuoles/lysosomes (Figure 1).

One explanation for how this sensation is achieved is

based on the dependence of TORC1 activation on late

endosomal/lysosomal localization of PAT1, a mammalian

amino acid transporter [39�]. PAT1 interacts with the Rag

GTPases that function in the activation of TORC1,

suggesting PAT1 functions not only as a transporter that
Current Opinion in Cell Biology 2013, 25:489–494 
pumps amino acids from the lysosome to the cytoplasm

but also as a sensor for the presence of amino acids in the

lysosomal lumen. In this regard, PAT1 seems to function

as a ‘transceptor,’ a transporter with signaling function

(transporter and receptor). A well-studied transceptor in

yeast is Gap1, which not only imports amino acids but,

when active, also signals via protein kinase A the presence

of extracellular amino acids [40�]. The idea that PAT1

might signal to TORC1 the presence of lysosomal amino

acid storage levels would also explain why the vacuolar

ATPase (v-ATPase) is required for mTORC1 activation

[41]. v-ATPase is the ATP-driven proton pump that

acidifies the lumen of the endo-lysosomal compartments.

Because amino acid transport by PAT1 is proton-driven,

loss of the proton gradient would block PAT1 function

and thus TORC1 activation.

Taken together, recent studies make a strong argument

for a tight link between TORC1 signaling and the cata-

bolic functions of the vacuole/lysosome. This link

explains the importance of the MVB pathway, and thus

ESCRT function, for proper TORC1 signaling and regu-

lation of starvation-response pathways. The MVB path-

way is responsible for the delivery of transmembrane

proteins to the lumen of the vacuole for degradation.

The resulting amino acids are transported to the cyto-

plasm for re-use in protein synthesis, thereby activating

TORC1. Consistent with this idea, mutations in the yeast

MVB pathway exhibit increased expression of the autop-

hagy protein Atg8 even in presence of rich growth med-

ium, a result that indicated decreased TORC1 activity in

ESCRT-mutant cells [21��].

ESCRTs and translational regulation
In higher eukaryotes, ESCRT function at the MVB is also

linked to RNA interference (RNAi) mediated by small

interfering RNAs (siRNAs) and micro RNAs (miRNA).

These RNAs originate from both intrinsic and external

sources and are bound by Argonaute proteins (AGO),

which then assemble with other factors to form RISCs

(RNA-induced silencing complexes). RISC activity low-

ers expression of a specific protein by initiating degra-

dation or inhibiting translation of its corresponding

mRNA (reviewed in [42]). Studies suggest that siRNA-

mediated silencing is affected by endosomal protein

trafficking, which in part could be explained by the

observation that RISC assembly occurs on MVBs

[43�,44�,45]. Mutations in ESCRTs impair RISC assem-

bly and thus cause inefficient RNAi. The precise role of

ESCRTs in RISC formation/activity is unknown. It has

been suggested that the observed packaging of the RISC

component TNRC6/GW182 into ILVs might be import-

ant for the disassembly and recycling of the RISC proteins

in order to re-engage new miRNAs ([43�], Figure 2).

The localization of RISC components to MVBs could

explain why certain mRNAs and miRNAs are
www.sciencedirect.com
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packaged into exosomes, which are ILVs secreted

from cells upon the fusion of MVBs with the plasma

membrane [46]. The physiological role of exosomes is

not fully understood, but increasing evidence suggests

they represent a type of long distance signaling in

which RNA packaged into exosomes in one cell can

regulate protein expression in distant target cells (dis-

cussed in [47–49]). ESCRTs are not only essential in

exosome formation but might also be responsible for

sorting RNA molecules into ILVs that will become

exosomes. In this regard, it is interesting to note that

ESCRT-II has been shown in Drosophila to function

as a RNA-binding complex [50�].

Concluding remarks
In recent years an increasing number of studies have

identified connections between the endosomal system

and many regulatory pathways of the cell. The endosome

seems to function as a hub for the convergence of cell

signaling, environmental sensing, and metabolic control.

Recent progress has revealed how the degradative func-

tion of the endosomal system, and thus the activity of the

ESCRTs, is linked to regulatory systems that control

metabolism and cell growth. This tight link between

catabolic and anabolic activities of the cell is necessary

because of the low storage capacity for energy and nutri-

ents within cells. When extracellular nutrients become

scarce, small metabolites such as sugars, amino acids, and

fatty acids are rapidly depleted, and cells must rely on

their existing macromolecules to remain viable and adapt

to the new environmental condition.
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