1. Mix the following reagents in a 0.2-mL thin-walled PCR tube:

50 ng of template DNA¹ 50 pmol forward primer² 50 pmol reverse primer² 5 μ L 10X PCR Buffer without MgCl₂³ 4 μ L 25 mM MgCl₂ 1 μ L 10 mM dNTP mixture 0.2 μ L Taq DNA polymerase^{4,5} sterile water

total volume: 50 μ L

2.	Perform PCR as follows:	1 cycle:	94°C for 3 min
		25 – 35 cycles:	94°C for 30 sec 55°C for 30 sec 72°C for 1 min per kb product size⁵
		1 cycle:	72°C for 10 min
		1 cycle:	4°C indefinitely

3. Analyze 5 μ L of PCR by agarose gel electrophoresis.

*If many templates are to be subjected to PCR, prepare a "master mix" containing all of the reagents except the DNA and/or primers (if different templates or primer sets are required). Add aliquots of the master mix to an aliquot of each DNA and/or primer set that has been aliquoted into a PCR tube. To account for volume loss, the master mix should contain enough reagents for all of the samples plus an additional 2 – 3 samples.

For example, if 8 different templates are to be examined using the same set of primers, and all of the templates consist of miniprep DNA that has been diluted 1:150 in sterile water:

reagent:	for 1 sample:	master mix for 10 samples:
25 μ M forward primer	2 <i>µ</i> L	20 <i>µ</i> L
25 μ M reverse primer	2 <i>µ</i> L	20 µL
10X PCR Buffer	5 <i>µ</i> L	50 μL
25 mM MgCl2	4 <i>µ</i> L	40 μL
10 mM dNTP mix	1 <i>µ</i> L	10 μL
Taq DNA polymerase⁴	0.2 <i>μ</i> L	2 <i>µ</i> L
sterile water	34.8 μL	348 μL
total volume:	49 <i>µ</i> L	490 <i>µ</i> L

Vortex master mix briefly, then pulse-spin at full speed for 5 seconds. Dispense 49 μ L of the master mix to PCR tubes in which 1 μ L of each template has been aliquoted.

Notes:

¹If plasmid miniprep DNA is to be used as a template, dilute the DNA 1:150 in sterile water and use 1 μ L (~50 ng). Use 5 μ L of template consisting of genomic DNA harvested from 5 mL of an overnight saturated culture of yeast cells and resuspended in 500 μ L TE.

²A convenient primer stock concentration is 25 μ M in sterile water.

³Some manufacturers include MgCl₂ in their 10X PCR buffer. If so, do not add more MgCl₂.

⁴Add Taq to the reaction last.

⁵A high-fidelity polymerase (e.g., Pfu) can be added together with Taq or instead of Taq. In either case, increase the extension time at 72°C to 2 min per kb product size.