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Determining the Energy of Activation Parameters from Dynamic NMR 
Experiments: 

-Dr. Rich Shoemaker (Source: Dynamic NMR Spectroscopy by J. Sandstöm, and me) 
• The results contained in this document have been published: 

o Zimmer, Shoemaker, & Ruminski, Inorganica Chimica Acta, 359(2006) 1478-1484 

The most common (and oft inaccurate) method of determining activation energy parameters is 
through the determination (often estimation) of temperature at which the NMR resonances of 2 
exchanging species coalesce.  The coalescence temperature (Tc) is then used in conjunction with 
the maximum peak separation in the low-temperature (i.e. slow-exchange) limit (∆ν in Hz).  The 
biggest source of error using the method of coalescence is (1) accurately determining Tc and (2) 
accurately determining ∆ν.  Often, the isotropic chemical shifts of the exchanging species are 
temperature dependent, so ∆ν changes with temperature.  If this happens, then the error in 
estimation of the activation energy barrier (∆G‡) can be very large. 

k1The rate constant (kr) in these calculations, for nearly all NMR exchange Bsituations, is actually k1+k2 in a system for A exchanging with B, where: A 
k2 

The equation to estimate ∆G‡ using the coalescence temperature is: 
‡   Tc ∆G = aT 9.972 + log   where a = 4.575 x 10-3 for units of kcal/mol  

  ∆ν  
a = 1.914 x 10-2 for units of kJ/mol 

Note: at the coalescence temperature, kc = π∆υ/√2 

A second common method of determining the energy of activation (Ea) is by performing an 
Arrhenius Plot. If one knows the exchange rate constant (kr) at several temperatures (always in 
Kelvin), one can plot ln(k) vs. 1/T .  The slope = -Ea/R and the Y-intercept is = ln(A), where A is 
the Arrhenius frequency factor (described below). 

Obtaining kr at several temperatures can be accomplished by using transient exchange 
experiments (i.e. 2D-EXCHSY or 1D-EXCHSY (aka GOESY)) using several mixing times, and 
measuring the buildup rate of the exchange cross-peak vs. mixing time at several temperatures. 

Alternatively, the more common method is to measure the 1D NMR at many temperatures 
(between the slow-exchange limit and fast-exchange limit), and then the exchanging resonances 
can be simulated using programs like DNMR or MEXICO.  We have these simulation routines 
available in the lab within the SpinWorks software, written by Kirk Marat at the University of 
Manitoba.  Good simulation requires time, patience, and practice. 

−E 
The Arrhenius equation is: kr = A• e 

a
RT . Bear in mind that Ea ≠ ∆G‡, but Ea is related to ∆G‡ 

in that Ea = ∆H‡ + RT (of course ∆G‡ = ∆H‡-T∆S‡ and at this point we don’t have ∆S‡).  At a 
given temperature, you can get ∆H‡ from Ea because ∆H‡ = Ea - RT.  (Remember that if you use 
1.98717 for R, then RT is in units of calories, not kilocalories.) 

Complete analysis of the activation energy parameters requires the use of the Eyring equation. 



 

 
 

  
 
 
 

       
        

     

   

      

          

          
 

 
 

   

      
      
 

   
    

    

     
 

  
     

 

     

 
 

Eyring Equation: 

k T −
∆G≠ 

k = κ b e RT 
r h 

Assuming a transmission coefficient (κ) = 1, you can calculate ∆G≠ if you know kr at any single 
temperature. A good estimate of ∆G‡ can often be obtained if one has kr at several temperatures, 
and you can use the equation below to calculate ∆G‡ at each temperature. 

‡   kbT  
∆G = RT ln  − ln(krate )h    

or 

‡   T  
∆G = RT 23.760 + ln  use R = 1.9872 for calories/mol 

k  rate  
R = 8.3144 for Joules/mol 

In Sandstöm’s book (page 96) this has been converted to a different form using base-10 
logarithms: 

‡∆G = 


aT 10.319 + 
 


log  

 

T 
krate 

 
 
 

where a= 4.575 x 10-3 for units of kcal/mol 
a= 1.914 x 10-2 for units of kJ/mol 

Knowing ∆G‡ using this equation, and knowing Ea from an Arrhenius plot, one can get a good 
estimate of ∆S‡ without doing an Eyring plot (described below).  

‡ 
‡ [(Ea − RT )− ∆G ]

∆S = 
T 

Eyring Plot: Plot ln(kr/T) vs. 1/T.  Slope is -∆H‡/R  ; Intercept is ∆S‡/R + 23.7600 
{Note 23.7600 is ln(kb/h)} The drawback of the Eyring Plot is that the Y-intercept (used to 
determine ∆S‡) is normally a large extrapolation from the experimental data.  Therefore, if the 
linear fit of ln(kr/T) vs. 1/T is not extremely good, the error in ∆S‡ can be quite large. 

 kr  ∆H ‡ ∆S ‡  kb ln  = − + + ln  {remember: ln(kb/h) = 23.7600} 
 T  RT R  h  

An example of these methods for a real dynamic system is presented on the following page: 



  
  

   
 

 

 
    

   

 
 

 
 

Experimental Data 

9.6 9.4 9.2 

111 

9.0 PPM 

Temperature 
(Kelvin) 

350 

330 

321 

316 

312 

303 

298 

273 

248 
I I I 

9.8 

DNMR3 Dynamic Simulation 

I I I 

9.6 
I I I 

9.4 

Rate 
(sec-1) 

3300 

950 

475 

345 

250 

110 

65 

5 

<2 

Example of using variable-temperature NMR to evaluate the thermodynamic parameters 
governing chemical exchange: Re- dpop’ (dipyrido(2,3-a:3',2'-j)phenazine).  On this molecule, 
the coordinating nitrogens on the dpop’ exchange between bound and unbound to the Re. This 
molecule was synthesized in the laboratory of Dr. Ron Ruminski, University of Colorado at 
Colorado Springs (Inorganica Chimica Acta, 359(2006) 1478-1484). 

N Cl N 
O NC 

Re 
NO C 

C 
O 

This low temperature 1H NMR shows distinct NMR resonances for the protons on the aromatic 
rings on opposite ends of the dpop’ ligand. The variable temperature NMR spectra, and the 
dynamic-NMR simulations (DNMR3 utility in the SpinWorks 2.4 software) are shown below, 
including the temperatures and the rates extracted from the simulations. 



   

  

 
   

       
 

   
   

   
   
   
   
   
   
   
   

   
   
   

 
  

   
 

 

 

Re-DPOP, Arrhenius Plot 
ln(K) vs. 1/T (Slope= -Ea/R) 
Slope= -8117.0; Ea= 16.1 Kcal/Mal 

0.0028 0.0030 0.0032 0.0034 

- x column vs y column 
• 1/T vs ln(k) 

1/T (Kelvin) 

0.0036 0.0038 

Using the best estimate of coalescence temperature (Tc) = 314 Kelvin, and ∆ν=52.5 Hz (at 248 
‡   Tc Kelvin), ∆G = aT 9.972 • log    = 15.3 kcal/mol.  This is our initial estimate of ∆G‡. ∆ν   

An Arrhenius plot of ln(kr) vs. 1/T gives a very linear fit, with r2=0.998. 

Using the Eyring Equation, ∆G‡ can be calculated for every rate at every temperature (Note that 
∆S‡ is usually << ∆H‡ so the temperature dependence of ∆G‡ is usually undetectable within error) 

∆G‡ 

Temp Rate kcal/mol 
273 5 15.06 
298 65 14.97 
303 110 14.92 
312 250 14.87 
316 345 14.86 
321 475 14.90 
330 950 14.89 
350 3300 14.96 

Average 14.93 
Std.Dev. 0.065 

From the Arrhenius plot, Ea= 16.1 kcal/mol, so ∆H‡ = Ea - RT = 15.5 kcal/mol (using T=314 
Kelvin, which is the best estimate of the coalescence temperature, and mid-range in the 
experiments). 

‡[(E − RT )− ∆G ]Using ∆G‡=14.9 kcal/mol, and ∆S ‡ = a , ∆S‡ = 1.8 cal/(mol-Kelvin). 
T 
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Eyring Plot {ln(k/T) vs. 1 /T} 
Slope= DeltaH/R 
Intercept= [DeltaS/R+ln(kb/h)] 

Intercept= 24.7077 
Slope = -7809.5298 

DeltaH = 15.5 kcal/mol 
Deltas = 1 .884 cal/(mol-K) 

-5 -+---------------------------! 

0.0028 0.0030 0.0032 0.0034 

-- x column vs y column 
e 1/T vs ln(k/T) 

1/T (Kelvin) 

0.0036 0.0038 

A semi-independent method of obtaining ∆H‡ and ∆S‡ can be obtained by performing the Eyring 
Plot discussed earlier.  This is semi-independent because the Eyring Equation was used to 
perform the ∆G‡ calculation above.  The results of the Eyring Plot of the data obtained from the 
variable-temperature NMR is shown below. 

The slope yields a  ∆H‡ = 15.5 kcal/mol, and  ∆S‡ = 1.88 cal/(mol-Kelvin).  Clearly, these 
numbers agree very well with the values calculated previously. 

This document is a compilation of information that is readily available in the literature, and in 
various textbooks and resources; however, many find it difficult to pull out the useful 
information out of all of the mathematics.  Hopefully, this document will be useful in clarifying 
how these methods can be applied to real-world research problems. 

-Dr. Rich Shoemaker, Ph.D.  – last updated December, 2009 




