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CHAPTER I

Introduction

1.1 Motivation

Hypersonic flight vehicles range in design from blunt-bodied reentry vehicles such

as the Stardust sample return capsule shown in Figure 1.1a, to long, slender lifting

body designs such as the X-43 that is shown in Figure 1.1b. The differences in

design are driven by the flight conditions that a vehicle will encounter, as well as

the purpose of the vehicle. Reentry vehicles are typically blunt-bodied because they

must absorb very high heat loads for short periods of time, and they only require

limited maneuverability. Lifting body designs, on the other hand, are typically used

for vehicles that are designed for sustained flight within the atmosphere. These types

of vehicles are subject to much lower heat loads than reentry vehicles, and they must

incorporate a propulsion system, as well as the capability to maneuver within the

atmosphere. While the applications for these different types of vehicles and the flight

conditions that they will encounter may vary significantly, the ability to predict the

aerothermal or aerothermoelastic response of a vehicle to the applied thermal and

aerodynamic loads is crucial to a successful design.

The terms “aerothermal” and “aerothermoelastic” refer to the fluid, thermal, and

possibly structural interactions that become important at high flight speeds. The con-

nections between these various disciplines are often depicted geometrically using the
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(a) Stardust return capsule [4] (b) X-43 hypersonic vehicle [67]

Figure 1.1: Examples of hypersonic vehicles.

aeroservothermoelastic hexahedron shown in Figure 1.2. Each node of the hexahedron

corresponds to a different component of the full coupled problem, and the lines and

faces between the nodes indicate coupling between those components. Aerothermal

analysis is depicted by the line connecting the nodes for aerodynamic and thermal

effects, and aerothermoelasticity extends this analysis to include the elastic node and

the inertia node for dynamic problems. These four nodes form what is referred to as

the aerothermoelastic tetrahedron [32].

Figure 1.2: Aeroservothermoelastic hexahedron [43].
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Figure 1.3 shows the trajectory for the Stardust sample return capsule, and the

operating envelopes for several different hypersonic vehicles. It is obvious from these

figures that hypersonic vehicles are expected to operate over a very wide range of

velocities and at high altitudes. The combination of high altitude and high speed

makes it very difficult and expensive to experimentally test hypersonic vehicles. In

some cases it is not possible to match all of the flow and geometric parameters during

a ground test that are relevant for an aerothermoelastic analysis. The cost and diffi-

culty of hypersonic ground and flight testing makes the development of accurate and

efficient computational tools a high priority for the design and analysis of hypersonic

vehicles. However, the complicated flow physics that arise at high-speeds, as well

as the difficulties inherent in accounting for multiple different disciplines in a cou-

pled analysis, make the computational modeling of aerothermoelasticity a non-trivial

problem.

(a) Stardust flight trajectory [4, 76] (b) Hypersonic vehicle operating envelopes [67]

Figure 1.3: Stardust sample return capsule trajectory, and operating envelopes for
several hypersonic vehicles.

As vehicle flight speed increases, the aerodynamic heating that is experienced by

the vehicle also increases. This heating is due in large part to viscous dissipation

within the boundary layer, however, for blunt bodies, the strong bow shock that
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forms at hypersonic speeds also leads to substantial heating [7]. At large enough

speeds, the vibrational energy modes of the air molecules can become excited, and,

if the temperature continues to increase, the molecules will dissociate and the gas

flow will become chemically reacting. The capability to predict these types of high-

temperature gas phenomena greatly increases the computational cost and complexity

of a fluid dynamics simulation, but it is crucial for accurate prediction of the heat

flux and aerodynamic loads on a vehicle.

The heating of a flight vehicle through aerothermal loads can lead to several impor-

tant structural effects. In his 1956 paper [14], Bisplinghoff identifies four important

high-temperature structural considerations: deterioration of mechanical properties,

thermal stresses, modification of stiffness and vibration properties, and lower bound-

aries for aeroelastic instabilities. Depending on the flight time and trajectory of a

vehicle, these four different high-temperature effects can become more or less impor-

tant. In the case of a reentry vehicle, flight times tend to be very short, but peak

heating rates can be very large. For this type of trajectory, an ablative thermal

protection system (TPS) is often used, which keeps the load bearing structure at a

relatively low temperature, and the thermal impact on the elastic properties of the

structure is minimal. It is still very important, however, to be able to accurately

model the heating loads on the vehicle in order to properly size the TPS. In the case

of an ablative TPS, surface recession can alter the vehicle geometry, and ablation

products can alter the flow chemistry, so it is important to account for the coupled

fluid-thermal interactions.

For air-breathing hypersonic vehicles, the projected flight times are much longer

than reentry vehicles, but due to the lower flight speeds the heating rate tends to be

much lower. This leads to a long thermal soak where the load bearing structure of the

vehicle can heat up and remain at an elevated temperature for an extended period

of time. For this reason, structural analysis of a hypersonic vehicle must account for

4



the time history of the aerodynamic heating. Figure 1.4a shows the vehicle exposure

times and temperatures for a variety of different high-speed vehicles. Air-breathing

hypersonic vehicles such as those listed in Figure 1.3b will tend to have exposure times

closer to that of the X-30 than the other listed vehicles. Figure 1.4b shows the moduli

of several different materials as functions of temperature, showing the degradation in

material properties as temperature increases. For vehicles that undergo significant

heating of the structure, it becomes important to couple the elastic analysis with the

thermal analysis.

As a structure such as a panel heats up, it can deform due to stresses caused by

thermal expansion. The deformation can then impact the flow field, leading to high

localized pressure and heating loads [75], and causing a coupling between the fluid

and structure that would not occur at low temperatures.

(a) Exposure times (b) Modulus decrease

Figure 1.4: Flight exposure times for several hypersonic vehicles, and the decrease in
modulus with temperature for several materials [93].

These strong interactions between the flow and structure, which are driven by

thermal effects, lead to the need for a coupled computational analysis framework.

The complexity of the high-speed flow physics, and the possibly complicated material
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response, indicates the need for high-fidelity modeling. At the same time, however,

the potentially long thermal soak times for a vehicle make a computationally efficient

analysis framework necessary.

1.2 Review of Related Work

The necessity of considering aerothermal loads in the design of flight vehicles has

its origins in the late 1940s and the 1950s, shortly after the first supersonic aircraft, the

Bell X-1, was flown [93]. The development of high-speed aircraft proceeded relatively

quickly after this point. As flight speeds increased, the importance of including

aerothermal effects in the structural analysis also increased, and by the mid-1950s

the main structural and aeroelastic considerations for high-speed flight had been

identified [14]. With the advent of the space race, the need for aerothermal analysis

was extended to the design of blunt-bodied reentry vehicles and thermal protection

systems [93], which often consisted of ablative materials.

In these early years, the computational capability did not exist to perform an

aerothermal or aerothermoelastic analysis of a vehicle using the full set of governing

equations for the flow and structure, so many approximate methods for determining

the aerodynamic thermal and pressure loads were developed. A discussion of some

of the early approaches for predicting heating can be found in Van Driest [99] and

Truitt [97], but one method that is still in use today is Eckert’s reference enthalpy

method [36]. An overview of many of the approximate aerodynamics theories that

were developed for high-speed flight can be found in McNamara and Friedmann [67].

One of the most successful and widely used approximate aerodynamic models for

aeroelasticity is piston theory [8, 57], which provides a simple relationship between

surface motion and aerodynamic pressure.

Early approaches to coupling aerodynamic and structural response generally ig-

nored thermal effects and focused on panel flutter [33, 35]. These studies used piston
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theory and plate theory to develop an equation of motion that could be solved to

study the unsteady response of an elastic panel in a high-speed flow. During this

same time period, the capability to model the thermal effects on an ablative heat

shield was also being introduced. One of the most widely used ablative material re-

sponse tools to be developed was the one-dimensional Charring Materials Ablation

(CMA) code [71].

More recently, as available computing power has increased, there have been many

different studies performed on coupling aerodynamic, structural, and thermal models

in order to study problems that are relevant to the design of hypersonic vehicles.

Thornton and Dechaumphai [95] combined the solution of the fluid, thermal, and

structural problems into a single finite element framework in order to study the re-

sponse of thin metallic panels in hypersonic flow. The laminar Navier-Stokes equa-

tions for a perfect gas were solved along with the structural equations for a solid. A

quasi-static coupling procedure was used where the solution sequence alternated be-

tween coupled flow and thermal analyses and structural thermal analysis. At a select

number of times, the panel temperatures were used to update the structural defor-

mations. This study showed both convex and concave panel deformations depending

on how the panel boundary conditions were implemented. This solution approach

was also applied to studies involving aerodynamically heated leading edges [30] and

shock-shock interactions on cylinders and leading edges [31].

Löhner et al. [58] implemented a loosely coupled procedure for computing fluid-

structure-thermal interaction problems. This approach allowed for the use of three

independent codes to be used for the sub-problems, and a master code that coordi-

nated the other codes and facilitated the passing of boundary information between

codes was required. The use of off-the-shelf codes for the fluid, structure, and ther-

mal problems greatly decreased the development time of a fluid-structure-thermal

interaction framework.
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Coupled analysis of a realistic metallic TPS was performed by Kontinos and

Palmer [54] using a steady-state, axisymmetric computational fluid dynamics (CFD)

code, and finite element models for the thermal and structural response of the TPS.

Heat flux values at each coupled iteration time were obtained from a predefined flight

trajectory and were applied uniformly over the surface of a panel, and the transient

thermal response of the panel was computed. Using the thermal solution, the elastic

response of the panel was computed, and the updated geometry, defined in terms

of the panel bow height, was used to update the surface heat flux based on a pre-

computed database of CFD solutions for flow over panels with varying bow height.

The thermal calculation was then updated, and the thermal-structure procedure was

iterated until the computed panel deflections converged.

Recently, there have also been several studies on fluid-thermal-structural coupling

for hypersonic flows that make use of lower-order models that account for thermal

effects, and are computationally inexpensive enough to study the dynamic response of

a structure over longer flight times. Culler and McNamara implemented an aerother-

moelastic framework that used piston theory, Eckert’s reference enthalpy method,

and von Kármán plate theory to study the coupled response of a simply-supported

insulated metallic panel [27, 26] and a carbon-carbon skin panel [28].

More detailed aerothermal and aerothermoelastic models are proposed by Crowell

et al. [25] and by Miller et al. [70]. In the first paper, the NASA CFL3D code [12]

was coupled to a finite element model for solid heat transfer in a partitioned, time-

accurate fashion. The resulting framework was used to investigate the aerothermal

problem of an unsteady shock impinging on a vibrating panel. Both one-way and two-

way coupling procedures were investigated, as well as the effect of quasi-steady and

unsteady flow models. In the paper by Miller et al. [70], a complete aerothermoelastic

framework that couples implicit CFD and finite element analyses in a partitioned,

fully time-accurate fashion was developed, and, using some simplified models, the
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order of accuracy of the coupled framework was demonstrated.

On a slightly different front, coupled analysis for the aerothermal modeling of

problems involving surface ablation has also moved towards higher fidelity simula-

tions. Blackwell and Hogan [15] introduced the use of the control volume finite ele-

ment method (CVFEM) to solve the heat conduction equation in multiple dimensions

on unstructured meshes, with an aerodynamic heating boundary condition to allow

for uncoupled aerothermal analysis. Hogan, Blackwell, and Cochran [48] built on this

work by including a thermochemical ablation boundary condition to account for the

heat loss and surface recession caused by surface ablation. A mesh motion procedure

based on treating the mesh as a linear elastic solid [59] was included to account for

the change in geometry due to surface recession. Kuntz et al. [55] then demonstrated

an iterative procedure for the coupled computation of an external flow field with a

Navier-Stokes solver, and multi-dimensional material response with thermochemical

ablation occurring at the solid surface.

1.3 Scope of Present Work

The goal of this dissertation is to develop a general material response code that is

capable of analyzing the thermal and elastic behavior of a hypersonic vehicle, and cou-

pling that code with an established Navier-Stokes CFD code. The material response

code is to be general enough to be used on a wide variety of geometries, ranging

from blunt reentry vehicles to the panels or sharp leading edges found on modern

air-breathing hypersonic vehicles. The ability to model two or three-dimensional

structures with anisotropic, temperature dependent material properties is included in

the code, as well as the capability to model the thermochemical surface ablation of

non-charring ablative materials. This generality allows the material response code to

be used for a wide range of flight conditions and a wide range of vehicle types.

The code uses unstructured meshes and the CVFEM to discretize the governing
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equations. Use of the same mesh for the thermal and structural problems allows for

straightforward coupling of the thermal and structural solutions. The thermal model

is time accurate, and the structural model can be used to study either dynamic or

static structural responses depending on the type of problem being studied. A total

Lagrangian structural mechanics formulation is used in conjunction with the Green-

Lagrange strain tensor and the Generalized Hooke’s Law to allow for the study of

large elastic deformations. To ensure the correct implementation of the thermal and

structural models, the Method of Manufactured Solutions is used to verify the code

order of accuracy.

In addition to the development of a material response code, a framework is im-

plemented for coupling the material response code with a hypersonic CFD code to

allow for high-fidelity aerothermal and aerothermoelastic simulations of hypersonic

vehicles. This work focuses specifically on the use of the framework for steady flow

problems with quasi-static thermal-structural response. The framework is general

enough, however, to support fully dynamic simulations.

Chapter II presents the governing equations for the CFD code, LeMANS, and for

the thermal and structural portions of the material response code. Descriptions of

the necessary constitutive relations are given along with the modeling assumptions

that are made. The modeling of surface ablation, and the thermochemical ablation

boundary condition are also discussed.

Chapter III gives details on the numerical approaches used to solve the fluid,

thermal, and structural models presented in Chapter II. A brief overview is given of

the finite volume discretization used in LeMANS, along with the approach used to

enforce boundary conditions. Then, a description of the CVFEM is presented, and

its application to the thermal and structural governing equations is discussed, along

with the implementation of boundary conditions. Details on the systems of nonlinear

equations that result from discretization are discussed, and the methods used to solve
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them are outlined. Finally, the aerothermoelastic coupling framework is described.

The results of verification tests performed on LeMANS and the material response

code are presented in Chapter IV. The Method of Manufactured Solutions and its

application to the codes that are tested is presented, along with a discussion of code

order of accuracy. The results from using the Method of Manufactured Solutions are

shown, and any discrepancies between the expected and observed orders of accuracy

for the tested codes are discussed.

Chapter V shows the results of using the aerothermoelastic framework on two

different test cases. The first case involves aerothermal coupling and surface ablation

for a reentry vehicle. The second case uses quasi-static aerothermoelastic coupling to

investigate the response of a thermally insulated metallic panel exposed to hypersonic

flow.

Finally, Chapter VI gives a summary of the work presented in the previous chap-

ters, and highlights the contributions of this work to the topic of coupled hypersonic

flow-thermal-structural response. Additionally, suggestions for future research are

presented.
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CHAPTER II

Mathematical Formulation

2.1 Introduction

Modeling the aerothermoelastic response of a structure involves a wide range of

physical processes across multiple disciplines, and thus multiple governing equations

are needed in order to fully describe the problem. The choice of governing equa-

tions presents a trade-off between simulation accuracy and speed, and so the choice

is often governed by the desired application. The goal of this work is to develop a

framework that allows for high-fidelity simulations of aerothermal and aerothermoe-

lastic phenomena present in hypersonic flow, with an emphasis on problems that can

be classified as quasi-static. In this context, quasi-static means that the relevant flow

time scales are much shorter than the relevant elastic and thermal time scales of the

structure. This leads to the assumption that the flow can be modeled as steady-state,

but the elastic and thermal responses are time resolved.

Following from this goal, the flow is modeled using the Navier-Stokes equations,

and Cauchy’s equation and the heat equation are used for conservation of momentum

and energy within a structure. The Navier-Stokes equations allow for the simulation

of continuum flows that are in weak thermal and chemical nonequilibrium, which is

appropriate for many hypersonic flows. The heat equation and Cauchy’s equation

allow for simulation of anisotropic materials with temperature dependent properties.
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Thermo-mechanical coupling is neglected, however, so the structural energy and mo-

mentum equations are uncoupled.

This chapter presents the governing equations, associated models, and assump-

tions used in this work for the flow and structural components of the coupled problem.

Emphasis is placed on the thermal and structural models as these were the main focus

of this work, but an overview of the CFD modeling is also provided. For full details

of the CFD model, the reader is referred to Scalabrin [87].

2.2 Computational Fluid Dynamics: LeMANS

The CFD code used in this study is LeMANS [87, 66], which is a Navier-Stokes

code developed at the University of Michigan for use on hypersonic problems. The

governing equations solved in LeMANS are shown in Equations 2.1 - 2.4.

∂ρs
∂t

+
∂

∂xi
(ρsui + Ji,s) = ω̇s (2.1)

∂ρui
∂t

+
∂

∂xi
(ρuiuj + pδij − τij) = 0 (2.2)

∂E

∂t
+

∂

∂xi
((E + p− τij)ui + qi +

∑
Ji,shs) = 0 (2.3)

∂Eve
∂t

+
∂

∂xi
(Eveui − qvei +

∑
Ji,seve,s) = ω̇v (2.4)

Equation 2.1 represents conservation of mass on a per species basis, where ρs is

the density of species s, ui is the ith component of the velocity vector, Ji,s is the mass

diffusion of species s in the ith direction, and ω̇s is the mass production rate of species

s. When solving for the flow field quantities, it is necessary to solve Ns conservation

of mass equations, where Ns is the total number of species. The species mass diffusion

fluxes are modeled using a modified form of Fick’s law [91] shown in Equation 2.5 that

ensures that the sum of the diffusion fluxes is zero. In this equation, ρ is the total

density of the gas mixture, Ds is the diffusion coefficient of species s, Ys is the mass
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fraction of species s, Cs is the charge of species s, and Ms is the species molecular

weight.

Ji,s 6=e = −ρDs
∂Ys
∂xi
− Ys

∑
r 6=e

−ρDr
∂Yr
∂xi

Ji,e = Me

∑
s 6=e

Ji,sCs
Ms

 (2.5)

The species mass production rates are computed using either a 5-species or 11-

species finite-rate chemistry model for reacting air. More complicated chemistry sets

that include ablation products along with air species can also be used. In order

to account for the level of nonequilibrium in the flow when computing the forward

and backward reaction rates, Park’s two-temperature model [77] is adopted. This ap-

proach uses a controlling temperature for the reaction rates, Tc, that is determined as:

Tc = T atrT
b
ve, where the subscripts indicate the translational-rotational or vibrational-

electronic energy modes, and a and b allow for different weighting of each energy

mode. The forward reaction rates are then calculated using Arrhenius curve fits on

the controlling temperature, and the backward rates are obtained using a backward

controlling temperature and equilibrium constants determined from Gibb’s free en-

ergy as shown in Equation 2.6. In this equation, p0 is a reference pressure equal to

1 bar and νr =
∑

s (βs,r − αs,r) where α and β are the stoichiometric coefficients for

each species s in each reaction r. The necessary enthalpy (ĥs) and entropy (ŝs) values

are determined from curve fits, and can be found in Scalabrin [87].

Keq =

(
p0

RTtr

)νr
exp

{
−
∑
s

(βs,r − αs,r)

[
ĥs
RTtr

− ŝs
R

]}
(2.6)

Conservation of momentum is given by Equation 2.2 where p is the pressure and

τij is the viscous stress tensor. Viscous stresses are modeled in LeMANS by assuming

a Newtonian fluid and making use of Stokes’ hypothesis [105]. This leads to the
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formulation:

τij = µ

(
∂uj
∂xi

+
∂ui
∂xj

)
− 2

3
µ
∂uk
∂xk

δij (2.7)

where µ is the coefficient of viscosity of the mixture and δij is the Kronecker delta.

Equation 2.3 shows the conservation of total energy, where E is the total energy

per unit volume, qi is the ith component of the total heat flux vector, and hs is the

enthalpy of species s.

The Navier-Stokes equations are capable of modeling weakly nonequilibrium flows,

and at hypersonic speeds this capability can become important. LeMANS is capable

of simulating flows in rotational, vibrational, and electronic nonequilibrium; however,

for this work it is assumed that only the vibrational mode is important. In this case,

it is assumed that the rotational and translational energy modes of all species can

be described by the temperature Ttr, and the vibrational and electronic modes of all

species can be described by a single temperature, Tve. This approach assumes that the

continuum approximation is valid and therefore the rotational nonequilibrium will be

negligible since the rotational and translational energies will reach equilibrium after

just a small number of collisions [87]. For the vibrational modes, it is assumed that

the transfer of energy between electrons and the vibrational mode of molecules is

very fast [45], and that vibrational-vibrational energy transfer between molecules is

very efficient, which leads to similar vibrational temperatures for different molecules

[23, 56].

The vibrational-electron-electronic temperature, Tve, is obtained by solving an

additional conservation of energy equation given by Equation 2.4. In this equation,

Eve is the vibrational-electron-electronic energy per unit volume of the mixture, qvei

is vibrational-electron-electronic heat flux in the ith direction, eve,s is the vibrational-

electron-electronic energy per unit mass of species s, and ω̇ve is the vibrational energy

source term. This term can include changes in vibrational energy due to the work done

on electrons by an electric field, chemical reactions, vibrational relaxation, energy
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transfer between heavy particles and electrons, and impact ionization reactions.

LeMANS is capable of modeling the mixture transport properties in multiple ways,

but this work makes use of Wilke’s semi-empirical mixing rule [107] to determine

the mixture viscosity and thermal conductivity. Blottner’s curve fits [16] are used

to calculate species viscosities, and species thermal conductivities are determined

separately for the translational-rotational and vibrational-electron-electronic energy

modes using Eucken’s relation [102].

Conductive heat fluxes are modeled using Fourier’s law, and the total conductive

heat flux is computed as shown in Equation 2.8 with contributions from both energy

modes.

qcondi = −
(
κtr

∂Ttr
∂xi

+ κve
∂Tve
∂xi

)
(2.8)

An additional heat flux due to mass diffusion is also computed as shown in Equation

2.9.

qmdi = −
∑
s

Ji,shs (2.9)

The total heat flux is then given by Equation 2.10.

qtoti = qcondi + qmdi (2.10)

2.3 Material Response

The following sections detail the governing equations and models used in the

material response portion of this work. The material response module consists of

two components: a heat equation solver for obtaining the thermal response, and a

structural mechanics solver for determining the elastic response of a structure. It

is assumed that the material properties are functions of temperature, but thermo-

mechanical coupling is neglected. While this coupling may be important in some

analyses, it is generally neglected in aerospace problems of the type considered in
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this work [93]. The main result of this assumption is that the energy and momentum

equations are decoupled and can be solved independently. In order to include the

effect of temperature on a structure, the energy equation is solved first, and the

computed temperature field is then used as a thermal load in the momentum equation.

2.3.1 Thermal response

The thermal response of a material is calculated from the energy balance shown in

Equation 2.11, where q̃i is the heat flux in the ith direction, ρ is the material density,

h is the specific enthalpy, vcsi is the grid velocity in the ith direction, and e is the

specific internal energy of the material. This is the heat equation with a source term

and written for an arbitrarily moving control volume.

∫
∂Ω

q̃in̂i d∂Ω −
∫
∂Ω

ρhvcsin̂i d∂Ω +
d

dt

∫
Ω

ρedΩ =

∫
Ω

QdΩ (2.11)

The reason for formulating the energy equation for a moving control volume is

to allow for the modeling of surface ablation. Broadly speaking there are two main

classes of ablative materials that are used on aerospace vehicles: charring and non-

charring [62]. Charring materials consist of a matrix filled with a resin, and as the

material is heated the resin can decompose, or pyrolyze, which serves to keep the

vehicle’s structure at a relatively cool temperature. These types of ablators may or

may not experience surface recession once a sufficient amount of resin has pyrolyzed

from the interior of the material. Non-charring ablators, on the other hand, do

not contain a decomposing resin. Chemical reactions at the material surface serve

to reduce the heat flux to the vehicle, resulting in surface recession that must be

modeled.

Only non-charring materials are considered in this work, so the effects of pyrolysis
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are neglected, but the ability to model a recessing surface is included. The grid

convection term in Equation 2.11 allows for the deformation of the entire mesh in

response to surface recession in order to prevent the formation of highly skewed or

overlapping grid elements near the surface.

The heat flux is modeled using Fourier’s Law as shown in Equation 2.12 where

κ̄ij is the thermal conductivity tensor and T is the material temperature. The tensor

formulation allows for heat conduction in fully anisotropic materials to be modeled.

q̃i = −κ̄ij
∂T

∂xj
(2.12)

The thermal conductivity, specific enthalpy, and specific energy are assumed to

be functions of temperature. The specific enthalpy and energy, which are the same

for a solid material, are determined from a user-input table of the specific heat, cp,

as a function of temperature via parabolic interpolation. Parabolic interpolation is

used since the specific heat is assumed to vary linearly between the input values,

so it would be incorrect to also assume a linear variation in internal energy. The

interpolation routine that is used is described in Amar[5].

In addition to temperature dependence, all of the material properties needed for

the thermal response equation are assumed to be functions of material composition,

where the composition varies linearly between a virgin state and a char state. The

purpose of interpolating between two states is to enable the simulation of pyrolyzing

ablative materials where in-depth decomposition of the material occurs. The inter-

polation scheme used is shown in Equation 2.13 for a generic property, Θv with yv

representing the fraction of material still in the virgin state, and the subscripts in-

dicating properties in the fully virgin and fully char states. The study of pyrolyzing

ablative materials is outside the scope of this work, so for all properties it is assumed

that the virgin and char states are identical (Θv = Θc), and therefore the material
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composition does not change and all properties are constant with respect to material

composition. Density is therefore constant throughout a simulation since it does not

vary with temperature either.

Θ(T ) = yvΘv(T ) + (1− yv)Θc(T ) (2.13)

In cases where there is surface recession due to ablation, vcsi will be non-zero. The

material velocity at the recessing surface is determined in one of two ways. First, the

velocity can be obtained through the use of a thermochemical ablation, or B′, table

as described in Amar [5]. This approach requires the formation of an input table

before computing the material response, and assumes equilibrium chemistry, which

may not be a valid assumption in all cases. The second approach is to use a finite-rate

surface chemistry (FRSC) code to compute a recession rate at the material surface

[4]. This method is generally preferable since it allows for nonequilibrium chemistry

and avoids the need to generate and interpolate a thermochemical table. The end

result of both of these approaches is a surface recession rate, which allows vcsi at the

material surface to be computed as shown in Equation 2.14, where ṡ is the recession

rate and n̂ini is the inward pointing surface normal.

vcsi = ṡn̂ini (2.14)

The control volume velocities for the interior of the domain are then determined based

on the chosen mesh motion scheme. In this work, the mesh is considered to be an

elastic solid [59, 48], and the deformation is computed by solving the equilibrium

stress equations with zero body force shown in Equation 2.15. Since only the mesh

displacements are desired and the stresses have no physical meaning, the elastic con-

stants for the fictitious mesh “material” can be chosen arbitrarily. Following the work
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of Hogan [48], the elastic properties are chosen to be representative of steel.

∂σij
∂xj

= 0 (2.15)

The source term, Q, is an optional addition to Equation 2.11, and can represent

either an internal volumetric energy source or sink.

2.3.2 Structural Response

The elastic response of a structure is determined from Equation 2.16, which is

known as Cauchy’s equation. This equation states the conservation of momentum for

a continuum. In Equation 2.16, ρ is the material density, ui is the displacement in the

ith direction, bi is the body force in the ith direction, and σij is the stress tensor. The

double dots above a variable indicate the second derivative with respect to time, so üi

is the acceleration. In this work, body forces and structural damping are neglected,

so the governing equation that is actually solved is shown in Equation 2.17.

ρüi − bi −
∂σij
∂xj

= 0 (2.16)

ρüi −
∂σij
∂xj

= 0 (2.17)

The stress tensor can be broken into several different contributions as shown in Equa-

tion 2.18, where σTij is the total stress, σeij is the elastic stress, σthij is the thermal stress,

and σ0
ij is the initial stress.

σeij = σTij − σthij − σ0
ij (2.18)

The generalized Hooke’s law (GHL) is used to provide a linear relationship between

the elastic stresses and strains, where the elastic strains can be written as εeij =

εTij − εthij − ε0ij. Using the GHL, Equation 2.18 can be written in terms of strains as
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shown in Equation 2.19, where Cijkl is the fourth-order stiffness tensor.

σeij = Cijkl
(
εTkl − εthkl − ε0kl

)
(2.19)

The total strains are computed using the Green-Lagrange strain tensor as shown in

Equation 2.20, and the thermal strains are given by Equation 2.21. In this equation,

αi is the thermal expansion coefficient in the ith direction and ∆T is the change in

temperature between an initial state and the current state of the material. The initial

strains are user inputs and in this work they are neglected.

εTij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
(2.20)

εthij = αi∆Tδij (2.21)

In conjunction with the Green-Lagrange strain tensor, the 2nd Piola-Kirchhoff

stress tensor is used. This tensor is work-conjugate with the Green-Lagrange strain

tensor and is appropriate for analyses involving large displacements or rotations and

either large or small strains [13]. The 2nd Piola-Kirchhoff stress tensor, σ̃, is related

to the Cauchy stress tensor, σc, through Equation 2.22, where F is the deformation

gradient tensor given by Equation 2.23. This tensor relates the initial geometry

defined by x0, y0, and z0 to the current geometry given by x0 + u, y0 + v, and z0 +w

where u, v, and w are the displacements in each of the coordinate directions. The

deformation gradient tensor is the gradient of the current displacement vector with

respect to the initial undeformed geometry.

σ̃ =
0ρ
tρ

F−1σc
(
F−1

)T
= det (F) F−1σc

(
F−1

)T
(2.22)
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F =


∂(x0+u)
∂x0

∂(x0+u)
∂y0

∂(x0+u)
∂z0

∂(y0+v)
∂x0

∂(y0+v)
∂y0

∂(y0+v)
∂z0

∂(z0+w)
∂x0

∂(z0+w)
∂y0

∂(z0+w)
∂z0

 (2.23)

The purpose of using the Green-Lagrange strain tensor, which is appropriate for

large strains and large rotations, and the GHL, which is generally only appropriate

for small strains, is to be able to model structures where there may be large rotations,

but the strains remain small. One example of this type of problem which is studied

in this work is a metallic plate deforming due to a thermal load. If the large rotation

but small strain assumptions are not valid for a given case, then a more appropriate

stress-strain relationship should be employed.

The governing equation must also be formulated in such a way as to account for

the change in geometry due to finite deformations. There is more than one approach

to accomplish this, but in this work the total Lagrangian [13] formulation is adopted,

which measures the stress tensor relative to the original geometry. Equation 2.24

shows this formulation of the governing equation given by Equation 2.16.

ρüi −
∂

∂x0j

(Fikσ̃jk) = 0 (2.24)

Equation 2.24 can be rewritten in integral form as shown in Equation 2.25, which

is a more useful form for the numerical scheme discussed in Chapter III. Note that

the integration in Equation 2.25 is performed over the initial undeformed geometry

in keeping with the total Lagrangian approach.

∫
Ω0

ρüidΩ0 −
∫

Ω0

∂

∂x0j

(Fikσ̃jk) dΩ0 = 0 (2.25)

The notation used for the structural response equations can be simplified by taking

into account the symmetry of the stress and strain tensors, which reduces the number
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of independent stress and strain terms to six each. This allows the tensors σij and

εij to be represented as the vectors σi and εi shown in Equation 2.26. Note that in

this instance σij and εij are generic stress and strain tensors, and this simplification

is valid for any of the stress and strain tensors that are used.

σi =



σ11

σ22

σ33

σ12

σ13

σ23


=



σ1

σ2

σ3

σ4

σ5

σ6


and, εi =



ε11

ε22

ε33

ε12

ε13

ε23


=



ε1

ε2

ε3

ε4

ε5

ε6


(2.26)

In a similar manner, these symmetries reduce the total number of elastic constants

for a fully anisotropic material from 81 to 36, and the stiffness tensor, Cijkl, can be

represented as a 6 × 6 stiffness matrix, D. In this work the structural response

is considered only for isotropic and orthotropic materials, and for these cases the

stiffness matrix has the general form shown in Equation 2.27.

D =



d11 d12 d13 0 0 0

d21 d22 d23 0 0 0

d31 d32 d33 0 0 0

0 0 0 d44 0 0

0 0 0 0 d55 0

0 0 0 0 0 d66


(2.27)

In the case of an orthotropic material, it is assumed that the material has three

orthogonal planes of symmetry [61]. The material properties needed in the constitu-

tive relations are Young’s modulus (E), shear modulus (G), and Poisson’s ratio (ν).

For a three-dimensional problem this results in nine independent elastic constants
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that need to be specified. In the case of an isotropic material, the elastic constants

are independent of the orientation of the axes, and so only two independent constants

need to be specified: Young’s modulus and Poisson’s ratio. The shear modulus can

then be determined as shown in Equation 2.28 [61]. More details on the constitutive

relations can be found in Appendix A.

G =
E

2 (1 + ν)
(2.28)

In addition to the elastic constants, it is also necessary to specify thermal ex-

pansion coefficients (α) in order to compute thermal stresses. For an orthotropic

material there are three separate coefficients, one for each coordinate direction, and

for an isotropic material there is only one. The elastic constants and thermal ex-

pansion coefficients are all assumed to be functions of temperature, and so can vary

throughout a material if a temperature gradient is present. The density, however, is

assumed to be constant.
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CHAPTER III

Numerical Methods

3.1 Introduction

A variety of different techniques are available to reduce a system of continuous

governing equations into a set of discrete equations that can be solved on a computer.

Three of the most widely used approaches are the finite difference method, the finite

volume method, and the finite element method [47]. While each of these methods

is applicable to a wide range of problems, the finite volume method is the most

widely used approach for fluid dynamics problems, and the finite element method is

the standard approach in the field of structural analysis [47]. In this thesis, a finite

volume approach is used to discretize the flow field, and a finite volume/finite element

hybrid approach, known as the control volume finite element method (CVFEM), is

used to discretize the thermal and elastic material response problems.

This chapter details the numerical approach used to solve the equations presented

in Chapter II. Included is an overview of the spatial and temporal discretization

techniques used in LeMANS and the material response code, as well as the numerical

methods used to solve the resulting sets of discrete equations. The different types

of boundary conditions and their implementation are discussed, with an emphasis on

the boundary conditions needed to facilitate aerothermoelastic coupling. Finally, the

aerothermoelastic coupling procedure is described, including the technique for moving
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the flow mesh in response to material deformation.

3.2 LeMANS

LeMANS is a Navier-Stokes code that uses a second-order accurate finite volume

method for spatial discretization and the backward Euler scheme for first order accu-

rate fully implicit time integration. The discrete form of Equations 2.1 - 2.4 that is

obtained using this discretization approach is shown in Equation 3.1. In this equa-

tion, ∆Qcl is the change in conserved properties, Fn̂,j and Fvn̂,j are the inviscid and

viscous fluxes normal to face j, and Scv,cl is the vector of source terms. The time step

is given by ∆t and the time level is indicated by n. The volume of cell cl and the

area of face j are given by Vcl and sj, respectively. The right hand side of Equation

3.1 is known as the residual, and is given the symbol Rcl. As a solution approaches

steady-state, the residual should tend towards zero, which is a useful criterion for

determining when to end a simulation. The conserved quantities, flux vectors in the

x-direction, and source terms, are shown in Equations 3.2 and 3.3.

Vcl
∆t

∆Qcl =

[
−
∑
j∈cl

(Fn̂,j − Fvn̂,j) sj + VclScv,cl

]n+1

= Rn+1
cl (3.1)

Q =



ρ1

...

ρns

ρu

ρv

ρw

E

Eve



Scv=



ω̇w
...

ω̇ns

0

0

0

0

ω̇v



Fx =



ρ1u

...

ρnsu

ρu2 + p

ρuv

ρuw

(E + p)u

Eveu



(3.2)
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Fv,x =



−Jx,1
...

−Jx,ns

τxx

τxy

τxz

τxxu+ τxyv + τxzw − (qtr,x + qve,x −
∑

(Jx,shs)

−qve,x −
∑

(Jx,seve,s)



(3.3)

The inviscid fluxes are computed using a modified form of Steger-Warming flux

vector splitting [89] that uses a pressure switch to decrease the numerical dissipation

when computing boundary layers [60, 34]. MUSCL variable extrapolation [100] with

a correction for unstructured grids is used to obtain second-order spatial accuracy for

the inviscid fluxes. The viscous fluxes are computed using a second-order accurate

stencil that was originally developed for unstructured meshes and which makes use

of both nodal and cell center values for derivative calculations [50].

In order to solve the set of discrete equations, the residual, Rcl, is linearized,

and the resulting linear system is solved using either a point or line implicit method

[87]. At each step in this approach, the left-hand side of the linear system is reduced

to diagonal or tridiagonal form by moving any off-diagonal terms to the right-hand

side of the equation. The diagonal form of the left hand side results from using the

point implicit approach, and the tridiagonal form results from using the line implicit

approach. In either case, once the off-diagonal terms have been moved, a series of

relaxation steps is performed, with the right-hand side of the equation updated at

each step using the solution of the diagonal system. Using the recommendation of

Wright [109], four relaxation steps are used. While this approach provides good

steady state results, it is not strictly time accurate, and so throughout this work all

reported LeMANS solutions are for a steady state flow field.
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Boundary conditions in LeMANS are implemented using the “ghost-cell” method.

In this approach, the code generates extra layers of cells around the boundaries of

the domain, and the variables in these extra cells are set so that the correct fluxes

are obtained at the actual domain boundaries. This allows the same method of flux

calculations to be used at the boundaries as is used in the interior of the domain.

In order to allow for second-order accurate boundary flux calculations, two layers of

ghost cells are created. The ghost cells are not part of the linear system to be solved,

but they are only used to compute fluxes at the boundaries for use in Equation 3.1.

Only one set of ghost cells is used for computing both the inviscid and viscous fluxes,

but the cells are populated with different values depending on which type of flux is

being computed.

In the case where there is an ablating surface, a blowing boundary condition is

implemented [62]. This allows a mass blowing rate to be specified along the bound-

ary, which allows ablation products to be introduced into the flow field. For more

details on the implicit implementation of boundary conditions, as well as a more de-

tailed discussion of the discrete equations and numerical methods used in LeMANS,

the reader is directed to Reference [87]. The effect of different boundary condition

implementations on the order of accuracy of LeMANS is also discussed in Chapter

IV.

3.3 Material Response

The following sections detail the implementation of the material response code.

First, an overview is given of the spatial discretization technique used for the gov-

erning equations. Then, the details of the thermal and structural discretizations are

discussed along with the numerical approaches used to solve the resulting sets of

nonlinear equations.
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3.3.1 The Control Volume Finite Element Method

The material response code uses a discretization technique known as the control

volume finite element method (CVFEM) [11, 104, 15]. Similar to a finite element

method, the CVFEM discretizes the computational domain into a number of elements

of a specific shape, uses interpolation functions based on the elements, and assembles

the discrete equations on an element by element basis. Rather than using a variational

principle or the Galerkin technique to derive the discrete equations, however, the

CVFEM uses a control volume approach [10]. In this respect, the CVFEM is similar

to a node-centered finite volume scheme. Use of the CVFEM has been demonstrated

for both thermal [15, 5] and elastic structural problems [9, 88], and it can be coupled

in a straightforward manner with a finite volume CFD code [106].

The CVFEM uses two different meshes to develop a spatial discretization. The

first mesh, referred to here as the primary mesh, is created by grid generation software

and consists of triangular elements in two dimensions and tetrahedral elements in

three dimensions. The second mesh, called the dual mesh, is created in the material

response code by connecting element centroids, edge midpoints, and face centroids

for tetrahedral elements in order to form a closed circuit around a given node. This

leads to node-centered control volumes, and it is these control volumes over which

the discretized equations are integrated. Figure 3.1 shows an example of the primary

and dual meshes for a two dimensional domain, and Figure 3.2 shows the control

volume contributions of a single element to the node i control volume in two and

three dimensions.

Quantities are only known at the centroids of the dual mesh (nodes of the primary

mesh), so in order to integrate the equations an assumption must be made about how

a quantity varies across a control volume. In the implementation of the CVFEM used

in this work, it is assumed that quantities vary linearly within each element of the

primary mesh, and linear shape functions are used to interpolate the nodal values
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Figure 3.1: Primary (dotted lines) and dual (solid lines) meshes for the CVFEM in
two dimensions.

Figure 3.2: Control volume contribution of a single element to node i.

within an element. Interpolation for a quantity, θ, is performed within a reference

element, and the result is mapped back to physical space. Equation 3.4 shows the

mapping from reference to physical space for θ, where θ̃i is the value at node i of an
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element, φi is the shape function associated with node i, n is the number of nodes in

an element, and ξ, η, and ζ are the coordinates of the reference element. The shape

functions for triangular and tetrahedral elements are given by Equation 3.5. This

process is shown schematically for a two dimensional element in Figure 3.3.

θ(x, y, z) =
n∑
i=1

θ̃iφi(ξ, η, ζ) (3.4)

triangles



φ1 = 1− ξ − η φ1 = 1− ξ − η − ζ

φ2 = ξ φ2 = ξ

φ3 = η φ3 = ζ

φ4 = η


tetrahedra (3.5)

reference space physical space

Figure 3.3: Interpolation and mapping of a quantity from reference space to physical
space.

In order to compute the contributions of an element to a control volume, the

element nodal values are interpolated to the corners of the dual mesh within each

element, which correspond to the points labeled k in Figure 3.2. The necessary

integrals over the dual mesh edges and volumes are then carried out analytically in

reference element space and mapped back to the physical space using Equation 3.6

where J is the determinant of the Jacobian, which is constant for linear elements.
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The physical volume is denoted by Ω, and the reference volume by Ωr. Equation

3.7 shows the corresponding mapping for derivatives. This approach assembles the

global system of equations on an element by element basis, with each element that is

connected to node i contributing a portion of the node i control volume.

∫
Ω

f(x)dΩ =

∫
Ωr

f(x(ξ))JdΩr = J

∫
Ωr

f(x(ξ))dΩr (3.6)

∂f

∂x
=
∂f

∂ξ

∂ξ

∂x
=
∂f

∂ξ
J−1 (3.7)

3.3.2 Thermal Response

The structural thermal response is governed by Equation 2.11, repeated below for

convenience.

∫
∂Ω

q̃in̂i d∂Ω −
∫
∂Ω

ρhvcsin̂i d∂Ω +
d

dt

∫
Ω

ρedΩ =

∫
Ω

QdΩ (3.8)

Using the CVFEM approach described in the previous section and making use of

Fourier’s law leads to the discrete form of Equation 3.8 shown in Equation 3.9. In

this equation, Ht contains the shape functions, Lt contains the differential operators,

n̂ is the normal vector of the control surface, k is the thermal conductivity tensor,

and variables with a tilde represent nodal values. The term ṽn in the grid convection

integral is the vector of nodal values of grid velocity in the direction normal to the

control surface, and it is computed as vcsi · n̂ where vcsi is the grid velocity vector

at node i. Equations 3.10 and 3.11 show the Lt vector and a vector of generic nodal

values, θ̃, and Equation 3.12 shows the Ht matrix. The Ht and θ̃ arrays are written

for an element containing n nodes.

The integral domains in Equation 3.9 are the full control volumes around each

node, i, however, they are computed on an element by element basis so the integral

over each control volume is actually split into several segments corresponding to the
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contributions from each element that is connected to node i. The element integrals

are computed analytically in reference space and then mapped back to physical space.

More details on integration, including the analytic results, can be found in Appendix

B.

∫
∂Ωi

−n̂TkLtHt
T T̃ d∂Ω︸ ︷︷ ︸

conduction

−
∫
∂Ωi

(
HT h̃

) (
HT ṽn

)
d∂Ω︸ ︷︷ ︸

grid convection

+
d

dt

∫
Ωi

ρHT ẽ dΩ︸ ︷︷ ︸
energy content

=

∫
Ωi

HTQ̃dΩ︸ ︷︷ ︸
source

(3.9)

Lt =


∂
∂x

∂
∂y

∂
∂z

 (3.10) θ̃ =



θ1

θ2

...

θn


(3.11) Ht =



φ1

φ2

...

φn


(3.12)

Equation 3.9 represents a set of nonlinear equations since the material properties

are functions of temperature. The Newton-Raphson method is used to solve this

nonlinear system, and therefore it is necessary to linearize each term in Equation 3.9.

To accomplish this, each term is linearized using a Taylor series expansion in iteration

space. If the conduction term in Equation 3.9 is denoted by Qcondi , then it can be

linearized as shown in Equation 3.13.

ν+1Qn+1
condi

= νQn+1
condi

+ Jcondi∆T̃i (3.13)

In this equation Jcondi is the vector of partial derivatives of Qcondi with respect to

the temperature at node j, where j represents all of the nodes that are connected to

node i. The time level is denoted by n, the nonlinear iteration number is given by

ν, and the incremental change in temperature is given by ∆T̃i. In a similar manner,
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the grid convection and source terms can be linearized as shown in Equations 3.14

and 3.15.

ν+1Qn+1
gci

= νQn+1
gci

+ Jgci∆T̃i (3.14)

ν+1Qn+1
srci

= νQn+1
srci

+ Jsrci∆T̃i (3.15)

For the energy content term, the time derivative must also be taken into account.

This is done using a backward Euler scheme, which leads to first-order accurate

implicit time integration. The time derivative can be written as shown in Equation

3.16.

dQeci

dt
=
Qn+1
eci
−Qn

eci

∆t
(3.16)

Expanding this equation in iteration space leads to the linearized version shown in

Equation 3.17.

dQeci

dt
=

1

∆t

(
νQn+1

eci
+ νJeci∆T̃i −Qn

eci

)
(3.17)

Equations 3.13 - 3.17 are written for a control volume, i, but all of the individual

control volumes can be written as an N × N system of equations, where N is the

number of nodes in the primary mesh. Doing this, and combining Equations 3.13,

3.14, 3.15, and 3.17, leads to Equation 3.18.

(
Jcond − Jgc − Jsrc +

1

∆t
Jec

)
∆T̃ = Qcond −Qec −Qsrc +

1

∆t
(Qec −Qn

ec) (3.18)

This further simplifies to Equation 3.19, which is the N × N sparse linear system

that is solved at each iteration, ν, of the Newton-Raphson method. In order to

reduce the amount of memory needed to store this system, the compressed sparse

row (CSR) storage format [86] is used. Equation 3.19 is solved using the Generalized

Minimal Residual (GMRES) method [85]. To improve the convergence properties

of the GMRES solver, restarting is used along with either a Gauss-Seidel or ILU(0)
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preconditioner [86].

νJall∆T̃ = νQall (3.19)

The thermal material response code supports several different boundary condition

types including specified temperature, specified heat flux, radiation, aerodynamic

heating, and thermochemical ablation. In all cases, the necessary boundary values

are prescribed at the boundary nodes, and values are assumed to vary linearly along

the boundary. Therefore, the boundary condition implementation is second-order

accurate and consistent with the internal discretization.

Specified temperature boundary conditions are applied at a node, i, by modifying

the ith row of both Jall and Qall. The diagonal term of row i in Jall is set to 1.0, and all

other terms in row i are set to 0.0. In Qall, row i is set to ∆T = Tbnd−Tw where Tbnd

is the desired boundary temperature and Tw is the current boundary temperature at

iteration ν of the Newton-Raphson method.

The specified heat flux boundary condition is applied by adding the desired heat

flux to Qall, so that the right hand side of Equation 3.18 becomes:

RHS = Qcond −Qgc −Qsrc +
1

∆t
(Qec −Qn

ec) + Qsf (3.20)

where Qsf =
∫
∂Ω

q̃bndd∂Ω. No changes are made to Jall. Also, due to how the heat

flux boundary condition is implemented, an adiabatic condition where q̃bnd = 0.0

requires no modification of the linear system.

The aerodynamic heating, radiation, and thermochemical ablation boundary con-

ditions are typically applied simultaneously at a given boundary, and they can be

used to couple the thermal code with a CFD code. The surface energy balance for

the coupled case is shown in Equation 3.21.

−k∇T · n̂︸ ︷︷ ︸
Conduction

= qah︸︷︷︸
Convection

− εσ(T 4
w − T 4

∞)︸ ︷︷ ︸
Radiation

− ρsṡhwn̂︸ ︷︷ ︸
Ablation

(3.21)
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The aerodynamic heating boundary condition is implemented in two different

ways depending on whether or not the thermal code is coupled to a CFD code. In the

uncoupled case, the external flow conditions are user-defined, and the aerodynamic

heat flux, qah, is given by Equation 3.22

qah = Ch (hr − hw) (3.22)

where Ch is a convective heat transfer coefficient, hw is the specific enthalpy of the

gases adjacent to the wall, and hr is the recovery enthalpy of the flow. The wall

enthalpy is computed by an equilibrium chemistry code for various pressures and

temperatures, and then input as a thermochemistry table to the thermal code. The

density, boundary layer edge velocity, and Stanton number are also user inputs that

rely on an assumed flow field and can vary in time. More details on the aerodynamic

heating boundary condition for the uncoupled case can be found in Amar [5]. For

the coupled case, the heat flux computed by the CFD code is applied directly in the

thermal solver, so qah = qCFD. The CFD heat flux can include both conduction and

mass diffusion heat fluxes and is given by Equations 2.8 - 2.10 for LeMANS.

The radiation boundary condition accounts for the radiative heat flux from the

material to the flow field, and is given by Equation 3.23.

qrad = εσ
(
T 4
w − T 4

∞
)

(3.23)

In this equation, ε is the emissivity of the material, σ is the Stefan-Boltzmann con-

stant, Tw is the current boundary temperature, and T∞ is the temperature of the

environment to which energy is radiating.

When modeling a problem that includes ablation, it is also necessary to include

the thermochemical ablation boundary condition, which is shown in Equation 3.24
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where ρs is the density of the solid material at the wall, ṡ is the surface recession rate,

and hw is the same wall enthalpy as is used for the uncoupled aerodynamic heating

boundary condition.

qabl = ρsṡhw (3.24)

The surface recession rate is computed based on a mass blowing rate, ṁabl, as shown

in Equation 3.25.

ṡ =
ṁabl

ρs
(3.25)

The mass blowing rate and wall enthalpy are obtained from a thermochemical table [5]

that is computed assuming an equilibrium chemistry solution of the ablation materials

and the flow species. It is also possible, and more physically realistic, to use a finite

rate surface chemistry (FRSC) module as part of LeMANS [4] to compute the mass

flux directly based on a nonequilibrium surface chemistry solution. Use of the FRSC

module is beyond the scope of this work, however, and all reported results that include

ablation use the thermochemical, or B′, table approach.

In cases where there is surface recession, it is necessary to deform the mesh so

that the numerical problem domain is coincident with the physical problem domain.

In order to move an unstructured mesh in a consistent and general manner, the mesh

is treated as a linear elastic solid, and the elastic solid mechanics equations are solved

with zero body forces [59, 48, 29]. The equations for a two-dimensional domain

written in terms of the nodal displacements u and v are shown in Equation 3.26.

1

1− 2ν

∂

∂x

[
(1− ν)

∂u

∂x
+ ν

(
∂v

∂y

)]
+

1

2

∂

∂y

(
∂u

∂y
+
∂v

∂x

)
= 0

1

2

∂

∂x

(
∂u

∂y
+
∂v

∂x

)
+

1

1− 2ν

∂

∂y

[
(1− ν)

∂v

∂y
+ ν

(
∂u

∂x

)]
= 0

(3.26)

Poisson’s ratio, ν, is the only material property that is needed to solve these

equations. Since the solution of Equation 3.26 is only used to move the mesh and
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the stresses in the fictitious mesh “material” are not important, Poisson’s ratio can

be arbitrarily chosen. Following the work of Lynch and O’Neill [59], ν is taken to be

0.0 for this study.

The solid mechanics equations are solved using the GMRES method with specified

nodal displacements at the boundaries. At ablating boundaries, the nodal displace-

ment over a time step, ∆t, is found using the surface recession rate calculated in

Equation 3.25, and is given by Equation 3.27 where nx, ny are the components of the

surface normal vector, n̂. u
v

 =

ṡ∆tnx
ṡ∆tny

 (3.27)

All non-ablating boundaries are assumed to have zero displacement. Non-ablating

boundary nodes near an ablating surface, however, are allowed to slide along the

boundary in order to prevent elements near the ablating surface from becoming highly

skewed.

Once qah, qrad, and qabl have been computed for each of the boundary nodes, they

are added to Qall in the same way as the specified heat flux boundary condition. In

the case of the radiation and thermochemical ablation boundary conditions, and the

uncoupled aerodynamic heating boundary condition, it is also necessary to modify

Jall by adding Jrad, Jabl, and Jah, which are the Jacobians of the different boundary

heat fluxes. The Jacobian terms for each of the boundary conditions can be found in

Amar [5].

3.3.3 Elastic Response

The structural elastic response is governed by Equation 2.25, repeated below for

convenience. ∫
Ω0

ρüidΩ0 −
∫

Ω0

∂

∂x0j

(Fikσ̃jk) dΩ0 = 0 (3.28)
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Equation 3.28 can be written in a more convenient form for discretization by the

CVFEM by applying the divergence theorem to the second integral to obtain Equation

3.29. ∫
Ω0

ρüidΩ0 −
∫
∂Ω0

Fikσ̃jkn̂jd∂Ω0 = 0 (3.29)

Equation 3.29 can then be discretized using the CVFEM, which leads to the discrete

equation shown in Equation 3.30.

∫
Ω0

ρHs
˜̈u dΩ0 −

∫
∂Ω0

FN̂D

(
LsHs +

1

2
AGHs

)
ũ d∂Ω0 =

−
∫
∂Ω0

FN̂Dε̃0 d∂Ω0 −
∫
∂Ω0

FN̂Dε̃th d∂Ω0 +

∫
∂Ωb0

FN̂tp d∂Ωb0 (3.30)

Similar to Equation 3.9, Hs contains the shape functions, Ls contains the differential

operators, and variables with a tilde are nodal values. The constitutive relations from

Equation 2.27 are contained in D, F is the deformation gradient tensor from Equation

2.23, and the product AG contains the nonlinear portion of the Green-Lagrange strain

tensor. The N̂ matrix contains the components of the control surface normal vector,

and tp is the vector of prescribed traction values for applying a traction boundary

condition. Integration is again performed analytically in reference elements and then

mapped back to physical space, however, for the elastic response a total Lagrangian

formulation is used, so the integration is always over the initial undeformed geometry.

The definitions of Hs, Ls, N̂, A, G, and the nodal displacement vector, ũ, are shown

in Equations 3.31 - 3.36.

Hs =


φ1 0 0 φ2 0 0 · · · φn 0 0

0 φ1 0 0 φ2 0 · · · 0 φn 0

0 0 φ1 0 0 φ2 · · · 0 0 φn

 (3.31)
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Ls =



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y


(3.32)

N̂ =


nx 0 0 ny nz 0

0 ny 0 nx 0 nz

0 0 nz 0 nx ny

 (3.33)

A =



∂u
∂x

∂v
∂x

∂w
∂x

0 0 0 0 0 0

0 0 0 ∂u
∂y

∂v
∂y

∂w
∂y

0 0 0

0 0 0 0 0 0 ∂u
∂z

∂v
∂z

∂w
∂z

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂x

∂v
∂x

∂w
∂x

0 0 0

∂u
∂z

∂v
∂z

∂w
∂z

0 0 0 ∂u
∂x

∂v
∂x

∂w
∂x

0 0 0 ∂u
∂z

∂v
∂z

∂w
∂z

∂u
∂y

∂v
∂y

∂w
∂y


(3.34)

G =



∂
∂x

0 0

0 ∂
∂x

0

0 0 ∂
∂x

∂
∂y

0 0

0 ∂
∂y

0

0 0 ∂
∂y

∂
∂z

0 0

0 ∂
∂z

0

0 0 ∂
∂z



(3.35) ũ =



u1

v1

w1

u2

v2

w2

...

un

vn

wn



(3.36)

Equation 3.30 can be rewritten more simply using Equations 3.37 - 3.39 which
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leads to Equation 3.40.

M =

∫
Ω0

ρHs dΩ0 (3.37)

K = −
∫
∂Ω0

FN̂D (LsHs +
1

2
AGHs) d∂Ω0 (3.38)

R = −
∫
∂Ω0

FN̂Dε̃0 d∂Ω0 −
∫
∂Ω0

FN̂Dε̃th d∂Ω0 +

∫
∂Ωt0

FN̂tp d∂Ωt
0 (3.39)

M˜̈u+ Kũ = R (3.40)

Due to the use of the nonlinear Green-Lagrange strain displacement relation, Equation

3.40 must be solved iteratively in a similar fashion to the thermal equation. In order to

develop the iterative version of Equation 3.40, the acceleration term can be neglected

and a Taylor series expansion of Equation 3.41 is taken about u∗ as shown in Equation

3.42 assuming that R is not a function of displacement.

f (u∗) = R−Kû = 0

= R−Ψ (u∗) = 0

 (3.41)

f
(
ν+1u∗

)
= f (νu) +

∂f

∂u
|νu (u∗ −ν u)

⇒ ∂f

∂u
|νu∆u = f (u∗)− f (νu)

= −R + Ψ (νu)

⇒ ∂Ψ

∂u
|νu∆u = R−Ψ (νu)

⇒ KT∆u = R−Ψ (νu)


(3.42)

The matrix KT is known as the tangent stiffness matrix and contains the deriva-

tives of the nodal point forces with respect to the nodal point displacements [13].

Following the approach of Fallah [39], the tangent stiffness matrix can be written as
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shown in Equation 3.43.

∂Ψ

∂u
= KT = −

∫
∂Ω0

N̄PG d∂Ω0 −
∫
∂Ω0

FN̂DB d∂Ω0 (3.43)

The matrix, B, is given by B = LsHs +AGHs, and the matrices P and N̄ are shown

in Equations 3.44 and 3.45 where I is the 3× 3 identity matrix.

P =


σxxI σxyI σxzI

σxyI σyyI σyzI

σzxI σzyI σzzI

 (3.44)

N̄ =


nx 0 0 ny 0 0 nz 0 0

0 nx 0 0 ny 0 0 nz 0

0 0 nx 0 0 ny 0 0 nz

 (3.45)

Using the tangent stiffness matrix, Equation 3.40 can be rewritten as shown in

Equation 3.46. While this formulation accounts for the nonlinearity of the governing

equation, it is still necessary to write the acceleration term in terms of incremental

displacements in order to solve the equation. This is performed by selecting a time

integration scheme, which assumes a relationship between the nodal acceleration and

displacement.

M˜̈u+ KT∆ũ = R−Kũ (3.46)

Time integration is performed using the Newmark-beta method [73], which makes

use of the assumptions shown in Equations 3.47 and 3.48, written for a node, i. The

Newmark-beta method describes a family of integration techniques depending on the

values of β and γ. In this work, β = 1/2 and γ = 1/4, which leads to a second order
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accurate implicit time integration scheme.

un+1
i = uni + u̇ni ∆t+

[
(1− 2β) üni + 2βün+1

i

] ∆t2

2
(3.47)

u̇n+1
i = u̇ni +

[
(1− γ) üni + γün+1

i

]
∆t (3.48)

Solving Equation 3.47 for ün+1, and using the fact that ν+1un+1
i = νun+1

i + ∆ui

allows the acceleration at time n+ 1 to be written as shown in Equation 3.49.

ν+1ün+1
i =

1

β∆t2
(
νun+1

i − uni + ∆ui −∆tu̇ni
)
− 1− 2β

2β
üni (3.49)

Substituting Equation 3.49 into Equation 3.46 and rearranging terms leads to Equa-

tion 3.50, which is the linear system that needs to be solved for the time accurate

solution of the nonlinear Cauchy’s equation. This can be written in a simplified form

similar to the thermal equation as shown in Equation 3.51.

(
M

1

β∆t2
+ KT

)
∆ũ = R−Kν+1ũn+1 +

M

(
1− 2β

2β
˜̈u
n

+
1

β∆t
˜̇u
n

+
1

β∆t2
ũn − 1

β∆t2
νũn+1

)
(3.50)

K̂∆ũ = R̂ (3.51)

There are two different types of boundary conditions that can be applied to the

above equations: specified displacement and specified traction. These can be written

as shown in Equations 3.52 and 3.53 where upi and tpi are the specified displacement

and traction values and ui is the current displacement. The Fikσ̃jkn̂j term represents

the current force vector at the boundary expressed in terms of the initial undeformed

geometry. The initial geometry is used in order to be consistent with the total La-

grangian formulation. Boundary segments where the different boundary conditions
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are applied are indicated by Ωu
0 and Ωt

0.

ui = upi on Ωu
0 (3.52)

tpi = Fikσ̃jkn̂j on Ωt
0 (3.53)

Specified displacement boundary conditions are implemented in the same manner

as the specified temperature boundary conditions for the thermal equation. The ∆ũ

needed to produce the desired displacement at node i is specified in the ith row of R̂,

and the corresponding row in K̂ is modified to be 1.0 on the diagonal and 0.0 off the

diagonal.

The specified traction boundary condition is implemented by prescribing the terms

of the stress tensor along the boundary. This, along with the surface normal vector

and the deformation gradient tensor, allows the traction vector at the boundary to be

computed. The traction vector is then added into the R vector as shown in Equation

3.39. If the structural code is coupled with a CFD code, then a specified traction

boundary condition is used at the fluid-solid interface, and the pressure and viscous

shear stress components computed in the CFD code are combined into a stress tensor

and applied as the boundary conditions.

The Newton-Raphson method is used to iteratively solve the nonlinear govern-

ing equations. For the elastic response, the standard Newton-Raphson method is

combined with a line search and backtracking technique [79] in order to improve the

global convergence and robustness of the method. This approach proved very useful

for the solution of the elastic equations, but it was not found to be necessary for the

thermal equations.

In a similar manner to the thermal code, the linear system in Equation 3.51 is

stored in CSR format. However, since the displacements in each direction are part of

the solution, the size of the system is now (NDN)× (NDN), where ND is the number
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of spatial dimensions in the problem. Once the linear system is assembled and the

boundary conditions applied, a preconditioned, restarted GMRES method is used to

solve the system.

3.4 Aerothermoelastic Coupling

In order to solve an aerothermoelastic problem, it is necessary to couple the flow,

material thermal response, and material structural response solutions. The coupling

process can in general take either a monolithic or a partitioned approach. In the

monolithic approach all of the governing equations for the different physical pro-

cesses (flow, thermal, structural) are combined into a single framework and solved

simultaneously. This approach is well suited to problems where there is very strong

interaction between the flow and solid, and it can often be more stable than a par-

titioned scheme [44]. There are several drawbacks, however, including the need to

develop a highly specialized code, the necessity of using the same time step for the

different physical subsystems, and the possibility of ill-conditioned system matrices

[49]. The partitioned approach, on the other hand, solves the fluid and structural

problems separately and links them through boundary conditions. One advantage

of the partitioned approach is that separate off-the-shelf codes can be used for each

component problem, and a single specialized code does not need to be developed [51].

Also, the partitioned approach allows for the most appropriate time step, discretiza-

tion techniques, and numerical methods to be used for each component problem. The

partitioned approach is adopted in this work since the problems being considered have

widely varying time scales between the fluid and structure, and because it is desirable

to use the already existing CFD code, LeMANS.

The coupling framework that is developed assumes a quasi-static relationship

between the fluid and structural codes, where the flow is considered to be steady

relative to the structure. This allows steady state solutions from LeMANS to be
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used, but it does limit the applicability of the coupling procedure to cases where the

quasi-static assumptions are valid. In particular, it is assumed that the characteristic

time scales of the flow problem are much faster than the thermal and elastic response

times of the structure, and therefore the flow can be assumed steady relative to the

structure. This assumption greatly reduces the computational load since a time-

accurate flow solution is not required. In some cases it is also possible to assume that

the elastic response time of a structure is much faster than the thermal response time,

but still much slower than the fluid response time. In this case the elastic response

can be solved assuming a static rather than dynamic problem.

The overall coupling procedure between the CFD and computational structural

dynamics (CSD) codes can be summarized as shown in Figure 3.4. This method splits

Solution from 
previous 

trajectory point

Move flow
mesh and update
flow boundary 

conditions

Material response

Elastic response

Thermal response

Update material 
response boundary 

conditions

Flow field
for        iterations

No

Flow residual
converged

Yes

Next 
trajectory point

Figure 3.4: Flowchart for the aerothermoelastic coupling procedure.

a coupled problem into a series of trajectory points. These trajectory points may be
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actual points in time along a vehicle’s flight path, or they may simply be user-defined

points that are chosen in order to split a problem with a long run time into a series

of shorter length problems. In either case, the first trajectory point consists of a flow

field only solution, and no material response is included. The next trajectory point

uses the flow-only solution from the first point to initialize the flow field, and the

solid material is initialized to a constant temperature and zero stress and strain. The

material response is then called as a subroutine from LeMANS, and is run in a time

accurate fashion from the start time to the end time of the current trajectory point.

The necessary boundary conditions for the structural thermal and elastic solvers

are passed from LeMANS to the material response code. The updated wall temper-

ature, Tw, wall displacement ∆xw, and mass blowing rate, ṁabl, are passed back to

LeMANS as new flow boundary conditions, and the flow field is advanced for some

number of iterations, Nit. After Nit flow iterations, the material response is called

again using the updated flow solution to provide new boundary conditions for the

thermal and elastic solvers. This coupling procedure is continued until the flow field

has reached a steady state and the flow residual has converged. If there are more

points in the trajectory being modeled, then the next point, i+ 1, is initialized using

the flow and solid solutions from the previous point, i. In all cases the flow is assumed

to be steady, and the thermal material response is time accurate. The elastic material

response may be static or dynamic depending on the problem. The thermal struc-

tural boundary conditions are assumed to vary linearly in time during each trajectory

point with the initial value being the flow field solution from the previous trajectory

point and the final value being the current flow field solution. The elastic structural

boundary conditions vary linearly in time for a dynamic simulation, but for a static

simulation only the current flow solution is used. The static boundary conditions are

applied incrementally in order to improve convergence [22].

The boundary conditions at the coupled interface are shown in Equations 3.54
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and 3.55.

Tf = Ts (3.54)

σf · n̂f + σs · n̂s = 0 (3.55)

where the f and s subscripts indicate flow and solid quantities, and the flow field

pressure and viscous stresses are combined into a single stress tensor as shown in

Equation 3.56.

σf = σfij = τij − pδij (3.56)

These equations state that the flow and solid temperatures must match at the inter-

face, and that the flow and solid surface forces must also match. The flow is computed

in an Eulerian reference frame, so the flow stress tensor represents Cauchy stresses,

or stresses that are expressed in the deformed configuration in terms of the deformed

geometry [38]. The elastic structural response is computed in a total Lagrangian

reference frame, however, so the flow stresses must be converted to the 2nd Piola-

Kirchhoff stress tensor before they can be applied as a boundary condition. This is

achieved using Equation 2.22 and results in the specified traction boundary condition

for the elastic solver shown in Equation 3.57.

tp = F
[
det(F)F−1σf (F

−1)T
]
· n̂s (3.57)

The meshes in the flow and solid domains can be generated independently, and

the surface nodes in each domain are not required to be coincident. Therefore, to

pass boundary values between meshes it is necessary to interpolate. Interpolation is

performed by linking boundary nodes in the solid mesh with boundary faces in the

flow mesh, and flow face centroids in the flow mesh with boundary element edges in

the solid mesh. Values are then interpolated to the solid nodes and flow face centroids

48



by assuming a linear variation across the linked flow face or solid edge. The reason

for interpolating to nodes in the solid mesh and face centroids in the flow mesh is that

those are the most convenient locations at which to apply the boundary conditions for

the different discretization techniques used in the flow and solid domains. Figure 3.5

shows an example of the linking process. This figure indicates the flow face centroids

as squares, the flow field boundary nodes as triangles, and the solid boundary nodes

as circles. As an example, to interpolate a value from the solid mesh to the flow

centroid, f1, Equation 3.58 is used, where θ is the interpolated value, s is the length

of the solid boundary edge formed by nodes j and j+1, and d is the distance between

f1 and node j.

θf1 =

(
1.0− d

s

)
θj +

d

s
θj+1 (3.58)

Likewise, to interpolate from the flow mesh to the solid node j + 2, Equation 3.59

would be used where s is now the distance between flow mesh nodes i+ 1 and i+ 2,

and d is the distance between solid node j + 2 and flow node i+ 1.

θj+2 =

(
1.0− d

s

)
θi+1 +

d

s
θi+2 (3.59)

LeMANS is a cell-centered finite volume code, but the nodal values in the flow mesh

are computed as part of the viscous flux calculations, and therefore it is straightfor-

ward to also use the nodal values as part of the boundary interpolation scheme.

Since the elastic response of a structure is being modeled, the interface between

the flow and solid domains will often move over the course of a simulation. This

can be caused by ablation induced surface recession, or by structural deformation

due to aerodynamic or thermal loads. As the fluid-solid interface moves, it becomes

necessary to adjust the flow mesh so that the computational domains of the flow and

solid remain connected.

The mesh motion approach adopted in LeMANS uses Bézier curves [41] to adjust
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flow mesh

solid mesh

Figure 3.5: Interpolation points along the fluid-solid interface.

the location of nodes within the flow mesh, and the elastic material response solution

to determine the interface location. The first step is to identify lines of nodes in the

mesh that extend from the coupled interface into the flow field, typically to an inlet

boundary. Using the start and end points of the node lines, a third order Bézier curve

is defined that is normal to the interface boundary. The nodes that are identified on

the mesh lines are then redistributed along the Bézier curves using the one-sided

stretching function proposed by Vinokur [103] with a user-defined first cell length.

As the elastic material response is updated, the new interface location is used to

define new starting points for the Bézier curves, and the nodes are again distributed

along the updated curves.

This mesh motion method is fairly simple to implement, and it maintains good

mesh quality throughout a simulation since the desired first cell length and mesh

clustering are maintained as the interface moves. The use of Bézier curves leads to

a smoothly varying distribution of nodes and mesh lines that do not overlap one

another. An additional benefit is that the mesh lines defined by the Bézier curves
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are normal to the coupled interface, which is beneficial for the prediction of surface

properties.

Since only steady-state solutions are sought in LeMANS, the mesh motion does

not need to be accounted for in the governing equations or their discretization. The

mesh is moved as the coupled interface location changes, and the flow solution is

continued in the updated domain.

The number of iterations, Nit, between calls to the material response code can be

determined in one of two ways. First, it can be a constant user-specified value. This

approach is simple to implement and can produce good results [64, 65]. The second

approach is to dynamically determine Nit based on the convergence of the parameters

in LeMANS at the coupled interface that are passed as boundary conditions to the

material response. In particular, it is useful to monitor the heat flux predicted by

LeMANS at the coupled interface. When the average change in these values between

flow iterations drops below a user-specified threshold, then the material response

is called again. Additionally, if the average change in these values drops below a

separate threshold value between calls to the material response code, then the material

response code is not called anymore. This takes advantage of the fact that if the

boundary conditions for the material response code are not changing from one call

of the code to the next, then the material response solution is not changing, and

there is no need to update the boundary conditions for the steady-state flow solution.

This approach to setting Nit has the benefit of being more physically grounded than

the first approach, and in general leads to faster and more robust convergence of the

overall coupled problem [40].

The thermal and elastic modules are coupled via the temperature solution. The

thermal solver is run first, with a time step of ∆tf and a temperature distribution is

obtained. For a dynamic elastic problem the thermal solver is paused after a time step,

and the elastic solver is run with a time step of ∆ts up to the time tn+1 = tn + ∆tf ,
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where it is assumed that ∆ts < ∆tf . The nodal temperatures from the thermal solver

are interpolated linearly in time across the structural time steps in order to account for

the thermal load on the structure. This approach is known as multicycling [70]. The

updated displacement solution is then used to generate updated control volumes for

the thermal code, and thermal code is run for the next time step, ∆tf . Since thermo-

mechanical coupling is neglected, the updated displacement field is considered fixed

while the thermal code is running. The cycling of thermal and elastic time-stepping

is continued until a solution is obtained for the length of the current trajectory point.

In the case of a static elastic problem, the thermal code is run with a time step of

∆tf for the full length of the current trajectory point. The elastic code is then called

using the final temperatures computed by the thermal code as the thermal load on

the structure. At the end of the material response solution, the final temperature,

displacement, and mass blowing rate values are returned to LeMANS as updated

flow boundary conditions. There is no need to interpolate the LeMANS boundary

conditions in time since a steady state flow solution is sought.

The coupling methodology that is presented in this chapter is designed to work

for a certain class of problems. Specifically, quasi-static problems are the focus of this

method. The term “quasi-static” refers to the idea, discussed earlier in the chapter,

that some of the physical processes in a coupled problem may have much shorter

time scales than other processes, and so the “fast” portions of the problem can be

treated as steady. In Chapter V, two different test cases are considered, and it is

found that the coupling framework is robust, as long as the quasi-static assumption

remains valid.
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CHAPTER IV

Code Verification Studies

4.1 Introduction

As a code is developed, it is important to ensure that the discretization of the

governing equations and the numerical approaches used to solve the equations are

implemented correctly. The term that is given to this testing process is code verifica-

tion. Verification is not concerned with how well a code’s results match experimental

data, or with whether or not the correct physical models are used for a particular

problem; these concerns are related to the task of validation.

Verification and validation are terms that are sometimes used interchangeably

when talking about code development, however, they refer to two very different, but

equally important ideas. Validation is the process of ensuring that the models used

in a code accurately reflect the physical processes that are being studied. Oberkampf

[74] states the idea of validation as:

“Verification does not address whether the conceptual model has any

relationship to the real world. Validation, on the other hand, provides ev-

idence (substantiation) for how accurately the computational model sim-

ulates reality.”

Validation requires the comparison of computational results with experimental data.
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For cases involving complex physics, including hypersonic or aerothermoelastic prob-

lems, the availability of experimental data is typically very limited, thus validation

using experimental data is difficult or impossible.

Verification, however, is only concerned with whether or not the models used in a

code have been correctly implemented. Roache [81] states this more formally as:

“The code author defines precisely what partial differential equations

are being solved and convincingly demonstrates that they are solved cor-

rectly, i.e., usually with some order of accuracy, and always consistently,

so that as some measure of discretization ∆ (e.g., the mesh increments)

→ 0 the code produces a solution to the continuum equations; this is

verification. Whether or not those equations and that solution bear any

relation to a physical problem of interest to the code user is the subject

of validation.”

Therefore, verification is a purely mathematical exercise and does not require exper-

imental data or even physically valid solutions to the governing equations. It only

seeks to confirm the expected order of accuracy of a code’s spatial and temporal

discretization approaches.

The above definition of verification refers specifically to the idea of code verifica-

tion. There is another verification procedure known as solution verification, which

seeks to estimate the magnitude of the discretization error for a particular calculation

rather than the order of the error [53]. Code verification only needs to be performed

once for a given code, but solution verification should be applied to each new calcu-

lation that is performed [81]. This chapter is only concerned with code verification,

and therefore the term “verification” is taken to refer to the code verification process

and not solution verification.

There are several ways in which verification can be accomplished including: com-

parison with exact analytical solutions (Method of Exact Solutions), comparison with
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highly refined solutions from numerical benchmarks, code-to-code comparisons, and

the Method of Manufactured Solutions (MMS) [53]. Of these methods, the Method

of Manufactured Solutions and the Method of Exact Solutions are the only two that

can be considered rigorous order of accuracy verification procedures [84]. The use of

manufactured solutions offers some advantages over the use of exact solutions in that

it can be used in cases where analytical solutions are impossible to obtain or are very

complicated to implement due to the use of infinite series, non-trivial integrals, or

special functions [53]. Therefore, the Method of Manufactured Solutions allows for

testing of the full, possibly nonlinear, set of governing equations in arbitrary domains

with non-constant material properties and non-trivial boundary conditions.

In this chapter, verification results obtained using the Method of Manufactured

Solutions are presented for LeMANS, and for both the thermal and structural com-

ponents of the material response code for a number of different boundary conditions.

In the case of LeMANS, the code has already been validated against experimental

data and compared with other codes [87], but rigorous verification studies have not

been performed for all aspects of the code relevant to the aerothermoelastic test cases

considered in Chapter V. The boundary conditions and code options tested for the

material response code are likewise targeted towards verifying the portions of the

code that are relevant to the aerothermoelastic framework. Therefore, the verifica-

tion results shown do not represent an exhaustive verification of every code option

and boundary condition combination that is possible, but they demonstrate the ba-

sic functionality related to the aerothermoelastic coupling and provide confidence in

each code’s implementation. Tests of the inter-code interpolation process are also

presented to ensure that the interpolation does not negatively impact code accuracy.
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4.2 Order of Accuracy and Manufactured Solutions

In this section, an overview of the Method of Manufactured Solutions and how

this method is used as a part of the code verification process is given. Specific details,

including the manufactured solutions that are used, are given for LeMANS and the

material response code. Next, a description is given of how the order of accuracy of a

code is computed, and what it means for a code to be pth-order accurate. In addition,

the error metrics that are used to compute the code order of accuracy are outlined.

4.2.1 The Method of Manufactured Solutions

The Method of Manufactured Solutions is a powerful tool for performing order of

accuracy verification of a numerical code. The idea of using manufactured solutions

along with grid refinement to determine the order of accuracy is generally credited

to Steinberg and Roache [90] and Roache [81]. Many details and practical examples

of the MMS are given by Knupp and Salari [53], and a general overview is given

by Roache [80]. This method has been used in several different verification exercises

including verification of a material thermal response code [6], Euler and Navier-Stokes

codes [101, 19, 20, 21, 82], and even a monolithic fluid-structure interaction code [37].

The basic idea of the Method of Manufactured Solutions is to choose, or “man-

ufacture,” a solution for each dependent variable in a set of governing equations,

and then compute analytical source terms to balance the governing equations. The

source terms are necessary since the manufactured solutions do not in general satisfy

the governing equations. Source terms are found by substituting the manufactured

solutions and any constitutive relations into the governing equations and evaluating

them directly. Depending on the complexity of the governing equations and manu-

factured solutions, the resulting source terms can be very complicated and difficult

to work with. To alleviate the risk of introducing errors while adding the source term

functions into a code, Mathematica [108] is used to analytically compute the source
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terms, and then generate C and Fortran functions which can be directly implemented

in LeMANS and the material response code.

A manufactured solution can, in theory, be almost any function of the spatial

coordinates and time. In practice, however, there are several guidelines given by

Knupp and Salari [53] to ensure that the chosen manufactured solution provides a

suitable test of a code. A manufactured solution should consist of smooth, analytic

functions such as polynomials or trigonometric functions that are easy to evaluate and

allow the theoretical order of accuracy to be obtained. In addition, solutions should

contain enough non-trivial derivatives to fully test the code, and be general enough

so that all terms of interest in the governing equations are exercised. Finally, the

solution should be chosen so that the code will run reliably, and so that assumptions

made by the code (e.g. positive temperatures) are not violated. This does not mean

that the chosen solution has to be physically valid, i.e. a valid solution to the set of

governing equations, but it should not prevent the code from running. The testing of

code robustness is not part of the verification process, and cannot be accomplished

using manufactured solutions.

One of the key considerations when developing manufactured solutions is the

boundary conditions that will be tested. Typically, the standard Dirichlet and Neu-

mann conditions are simple to implement, but more specialized boundary conditions,

such as wall boundaries in a CFD code, require extra care. For this reason it is

often useful to test the interior equation set first by using Dirichlet or other simple

boundary conditions on all boundaries so that errors caused by specialized boundary

conditions can be more easily identified and isolated [19].

There are two ways in which boundary conditions can be handled using the

Method of Manufactured Solutions. The first method requires the development of

a manufactured solution that exactly satisfies a given boundary condition [24]. For

instance, when testing a no-slip boundary condition in a Navier-Stokes code, the
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manufactured solution that is used must have zero velocity at the no-slip boundary.

This method is straightforward and requires no modification of the MMS procedure

outlined above, however, it requires a different manufactured solution each time a new

boundary condition type is tested. The second method of implementing boundary

conditions defines an additional source term that is only computed at the boundary,

and that depends on the boundary condition type. The additional source term is used

to drive the boundary residual to zero [42]. This method is more flexible than the

first method in that it allows any variety of boundary conditions to be tested using

the same manufactured solution simply by modifying the boundary source term. The

drawback is that it requires an additional source term to be computed and enforced

at the boundaries. In this work, the first method of implementing boundary condi-

tions is adopted, so different manufactured solutions are generated for each type of

boundary condition that is tested beyond the simple Dirichlet and Neumann type

boundary conditions.

A common approach used in CFD to obtain a stable higher-order solution for

flows that contain shocks is to use a limiter [96]. A limiter locally decreases the order

of accuracy of a code in the vicinity of strong flow gradients, such as near a shock,

but allows for a higher-order of accuracy to be obtained in smooth regions of the flow.

In the case of LeMANS, a minmod limiter is used within the second-order accurate

spatial discretization.

A disadvantage to using the Method of Manufactured Solutions is that it requires

smooth solutions, which means that the use of the MMS only tests the limiter for

the case where no shocks are present in the solution, and higher-order accuracy is

expected. The use of the MMS on non-smooth solutions is still an open area of

research [83]. Therefore, the performance of LeMANS on flows where shocks are

present is not tested in this work.
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4.2.1.1 Manufactured Solutions: LeMANS

The governing equations for LeMANS are given by Equations 2.1 - 2.4. In the

MMS tests, however, vibrational energy is not considered, so Equation 2.4 is not

needed. A two species flow consisting of atomic and molecular nitrogen in chemical

equilibrium is used for most of the presented cases, so there are two species conser-

vation equations, and the chemical source terms are zero for both equations. It is

therefore necessary to construct manufactured solutions for 5 different variables that

are independent of one another. The chosen set of variables for which solutions are

manufactured is: ρN2 , ρN , u, v, Ttr. Note that this is not the only valid set of vari-

ables that could be chosen, but it represents a convenient set for use in LeMANS.

In addition to the governing equations, the necessary auxiliary relations for the ther-

modynamic and transport properties can be found in Scalabrin [87]. These relations

also make use of the manufactured variables for computing the MMS source terms.

Taking into account the guidelines listed in the previous section, the manufactured

solutions for LeMANS are shown in Equation 4.1. This set of equations defines a two-

dimensional steady flow-field for a free stream test case designed to use the supersonic

inlet and supersonic outlet boundary conditions that are available in LeMANS. These

are the two simplest boundary conditions that can be applied in LeMANS, and there-

fore are useful for testing the interior equations before including more complicated

boundary conditions. The manufactured solution contains a number of constants

that are defined by the code user, and can be used to make the solution more or less
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complicated in order to test specific aspects of the code.

ρs(x, y) = ρs0 + ρxscos
(axsπx

L

)
+ ρyssin

(aysπy
L

)
+ ρxyscos

(axysπxy
L2

)
u(x, y) = u0 + uxsin

(axuπx
L

)
+ uycos

(ayuπy
L

)
+ uxycos

(axyuπxy
L2

)
v(x, y) = v0 + vxsin

(axvπx
L

)
+ vycos

(ayvπy
L

)
+ uxycos

(axyuπxy
L2

)
Ttr(x, y) = T0 + Txcos

(axTπx
L

)
+ Tycos

(ayTπy
L

)
+ Txycos

(axyTπxy
L2

)
(4.1)

In addition to the free stream boundary conditions, the inviscid isothermal wall

boundary condition and the no-slip, isothermal wall boundary condition are tested in

LeMANS. For these boundary conditions the manufactured solution must be modified

so that it satisfies the constraints implied by the different wall boundaries. At the

inviscid isothermal wall, the normal flow velocity must be zero, and the temperature

must be constant. Equation 4.2 shows the modified manufactured solution for the

inviscid wall case. The f(x, y) − Cs term defines a surface in the flow domain, and

when f(x, y) = Cs the v-velocity will be zero and the temperature will be T0 to

satisfy the wall boundary conditions. For the cases that are considered, f(x, y) = y

and Cs = 0.0 which enforces zero v-velocity and constant temperature at a surface

located at y = 0.0. The wall boundary for the domains tested in Section 4.3 is flat,

and lies along y = 0.0, so it is not necessary to modify the u-velocity from Equation

4.1 in order to set the normal velocity to zero. Similarly, there is no need to change

the density solutions from Equation 4.1 to satisfy the boundary conditions.

v(x, y) = (f(x, y)− Cs)
{
v0 + vxsin

(axvπx
L

)
+ vycos

(ayvπy
L

)
+ uxycos

(axyuπxy
L2

)}
Ttr(x, y) = T0 + (f(x, y)− Cs)

{
Txcos

(axTπx
L

)
+ Tycos

(ayTπy
L

)
+ Txycos

(axyTπxy
L2

)}
(4.2)
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The only change that needs to be made to the inviscid isothermal wall boundary

manufactured solution for use with the viscous isothermal wall boundary is that the

u-velocity must also go to zero at the wall. This is accomplished in the same way as

for the v-velocity in Equation 4.2, and the result is shown in Equation 4.3.

u(x, y) = (f(x, y)− Cs)
{
u0 + uxsin

(axuπx
L

)
+ uycos

(ayuπy
L

)
+ uxycos

(axyuπxy
L2

)} (4.3)

4.2.1.2 Manufactured Solutions: Material Response

The governing equation for the thermal material response code is Equation 2.11.

The only variable that needs to be analytically defined is the temperature, for which

the manufactured solution is shown in Equation 4.4. In addition to the tempera-

ture, analytical forms of the specific heat and thermal conductivity are constructed

as shown in Equation 4.5. The only boundary conditions that are tested with the

thermal code are the specified temperature and specified heat flux conditions, which

correspond to Dirichlet and Neumann boundary conditions, so there is no need to

develop an additional manufactured solution to test the boundary conditions. Note

that the manufactured solution in this case is dependent on time as well as the spatial

coordinates, so it is possible to test the temporal order of accuracy of the code.

T (x, y, t) = T0 cos
(
Bxx

2 +Byy
2 + ωT t

)
+ εT (4.4)

κij(T ) = κ0ij + κ1ijT + κ2ijT
2

cp(T ) = cp0 + cp1T

 (4.5)

The implementation of manufactured solutions for the structural material response

code is very similar to the thermal code. The governing equation in this case is Equa-

tion 2.17 and the manufactured variables are the displacements in the x and y direc-

tions. The necessary material properties: Young’s modulus, shear modulus, Poisson’s
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ratio, and thermal expansion coefficients are all temperature dependent, and have the

same form as the thermal conductivity shown in Equation 4.5. The manufactured

solution for displacement is shown in Equation 4.6. Once again, only Dirichlet and

Neumann boundary conditions are tested, so there is no need to develop additional

manufactured solutions to satisfy specialized boundary conditions. Temperature is

also used in the structural code to compute thermal stresses and material property

values, but it is not one of the solution variables. Therefore, the temperature distri-

bution shown in Equation 4.7 is specified in the code, and is used in the construction

of the manufactured source term.

u(x, y, t) = u0 + utcos

(
autπt

T0

){
uxsin

(auxπx
L

)
+ uycos

(auyπy
L

)
+ uxysin

(auxyπxy
L2

)}
v(x, y, t) = v0 + vtcos

(
avtπt

T0

){
vxsin

(avxπx
L

)
+ vycos

(avyπy
L

)
+ vxysin

(avxyπxy
L2

)}
(4.6)

Ts(x, y, t) = T0 + Ttsin

(
aTtπt

T0

){
Txcos

(aTxπx
L

)
+ Tysin

(aTyπy
L

)}
(4.7)

4.2.2 Order of Accuracy

The order of accuracy of a code refers to the rate at which the error in the solution

decreases as the spatial or temporal discretization is refined. The discretization error

is generally assumed to have the form shown in Equation 4.8, neglecting higher order

terms. The time discretization is given by ∆t and the spatial discretization by ∆h,

and a and b are constants. The superscripts m and q are the orders of accuracy of

the spatial and temporal discretizations.

ED = a∆tq + b∆hm (4.8)

62



So, if a code is expected to have second-order spatial accuracy, then m = 2, and the

spatial error in the solution, given by EDs = ∆hm, should decrease by a factor of

four as the mesh is refined by a factor of two. If, after a series of systematic grid or

time step refinements, the error in the solution does not match the expected trend,

then there is a strong possibility that either some portion of the code is implemented

incorrectly, or is implemented in such a way that the theoretical order of accuracy is

decreased.

The order of accuracy, p, is determined from Equation 4.9 where Ê(mesh1) and

Ê(mesh2) are measures of error on two different meshes, and r is the refinement

ratio between the meshes. The refinement may be spatial or temporal depending

on whether the spatial or temporal order of accuracy is being determined. The

theoretical spatial order of accuracy for LeMANS is second-order. The temporal order

of accuracy for LeMANS is not considered since only steady state solutions are sought.

The expected spatial order of accuracy for both the thermal and structural modules

of the material response code is second-order. The thermal material response code

is expected to be first-order accurate in time, and the structural material response

code should be second-order accurate in time. Results are not presented for the time

accuracy of the structural code, however, as only static solutions are considered in

the Chapter V test cases.

p =
log
(

Ê(mesh1)

Ê(mesh2)

)
log(r)

(4.9)

The spatial and temporal orders of accuracy are often tested independently, how-

ever, it is possible to simultaneously refine the grid spacing and the time step in order

to verify both orders of accuracy at the same time. The benefit of this approach is

that it can lead to substantial computational time savings since it is not necessary

to solve a problem using either very small mesh spacing or time steps. The main

drawback is that if the observed order of accuracy is different from what is expected,
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then it is not necessarily obvious whether an error is present in the spatial or temporal

discretization [6]. The theory for how to simultaneously refine the grid spacing and

time step is outlined below, and is based on the work shown in Amar [6].

By factoring out the quantity b∆hm, Equation 4.8 can be rewritten as shown in

Equation 4.10, where the th subscripts represent the theoretical orders of accuracy,

which are known for a given discretization technique.

ED =

(
1 +

a∆tqth

b∆hmth

)
b∆hmth (4.10)

The grid spacing and time step can be refined simultaneously as long as the ratio of

∆tqth
∆hmth

is kept constant. If the ratio is constant, then taking the log of both sides of

Equation 4.10, and taking the derivative of log (ED) with respect to log (∆h), leads

to Equation 4.11, which is the continuous form of Equation 4.9. Therefore, if p-order

accuracy is observed over the course of a grid refinement study, then it is valid to say

that both the qth-order of accuracy of the temporal discretization and the mth-order

of accuracy of the spatial discretization are verified.

∂ [log (ED)]

∂ [log (∆h)]
= p (4.11)

If log (ED) is plotted as a function of log (∆h), then the slope of the resulting line

is the observed order of accuracy. The observed order of accuracy is often compared

to the theoretical by plotting the observed error norms vs. mesh size on a log-log plot,

and then plotting an additional line on the same plot that represents the theoretical

order of accuracy. If the two lines have similar slopes, then the expected order of

accuracy is confirmed. An example of this comparison is shown in Figure 4.1a for a

code that is expected to be second-order accurate. As can be seen, the error computed

from a coarse mesh does not necessarily lead to the expected order of accuracy, but as

the mesh is refined the observed order of accuracy approaches the theoretical. This is
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Figure 4.1: Example order of accuracy plots for a theoretically second-order accurate
code.

known as the asymptotic error behavior, and it is important that the grid is refined

sufficiently to reach the asymptotic error regime.

A different method of displaying the order of accuracy is the approach of Bond et

al. [18], where the computed order of accuracy is directly plotted against the log of

the grid spacing. Figure 4.1b shows an example of this type of plot using the same

data as Figure 4.1a. Plotting the order of accuracy directly makes it easier to quickly

identify when the order of a code is less than expected, and therefore the results

presented in this chapter use this style of plot.

As part of the verification process it is necessary to systematically refine the time

step and grid spacing. While the definition of a time step is relatively unambiguous,

the choice of a grid spacing metric is somewhat harder to define, especially for un-

structured meshes. In this work, the number of elements in one dimension, computed

as d
√
Ne, is used to define the characteristic mesh length scale, ∆h, as shown in Equa-

tion 4.12. In this equation d is the number of dimensions of the problem, Ne is the

number of elements in the mesh, and L is the length of the domain. This definition
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works well for the problems that are considered in the present work since all of the

domains are initially square.

∆h =
L
d
√
Ne

(4.12)

The results presented in Section 4.3 present the order of accuracy as a function of the

normalized grid spacing, hnorm, which is defined as hnorm = ∆h
∆hn

, where ∆hn is the

grid spacing for the most refined mesh. As hnorm approaches one, the grid spacing

becomes smaller.

The error values used in Equation 4.9 are based on error norms of the solutions at

each mesh refinement. Two different error norms, the L∞ norm and the L2 norm, are

used to compute the observed order of accuracy. Definitions of each norm are shown

in Equation 4.13 where e is the vector of nodal errors.

‖e‖∞ = max (|e1|, ..., |en|)

‖e‖2 =

√√√√ 1

Ne

n∑
i=1

(ei)
2

(4.13)

The reason for computing the order of accuracy using different norms is that

each norm highlights different aspects of the error. The L2 norm provides a more

“averaged” view of the error, which means that it gives a good global picture of the

order of accuracy, but may not detect localized regions of lower order accuracy. If

first-order accurate errors are being generated at one specific boundary or at a small

number of points within the domain, then the L2 norm may still indicate second-

order accuracy even though that is not the order of accuracy present throughout the

entire domain. The L∞ norm is much more sensitive, however, and will detect even

highly localized regions of first-order accurate errors [18]. Looking at the order of

accuracy using both of these norms helps to provide a more complete picture of how

the discretization error is behaving across a series of mesh refinements.
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4.3 Verification Test Cases

In this section, the results of applying the Method of Manufactured Solutions to

LeMANS and the material response code are presented. In cases where the observed

order of accuracy does not match the theoretical order, details on why this occurred

are presented, and, when possible, changes made to the codes which allow the the-

oretical order to be obtained are described as well. In addition to the verification

of the individual flow and material response codes, verification studies for some por-

tions of the coupled aerothermal code are presented, and the verification of the full

aerothermoelastic coupling procedure is discussed.

4.3.1 LeMANS: Free Stream Boundary Conditions

The first MMS test case in LeMANS uses the supersonic inlet and supersonic outlet

boundary conditions in order to model a free stream flow. Testing these boundary

conditions first allows for errors in the interior equations to be identified more easily

before using more complicated boundary conditions. Due to the hyperbolic nature of

the inviscid portion of the governing flow equations, at a supersonic inlet information

can only propagate into the flow domain, and at a supersonic outlet information

can only propagate out of the domain [46]. This means that at an inlet, all of the

flow variables must be specified from the manufactured solutions. At an outlet, the

boundary values are set by extrapolating the solution from the interior cells. The

order of extrapolation used to set the boundary values can have an impact on the

observed order of accuracy of the code, and can influence the level of error in the

solution. This effect is demonstrated by using two different extrapolation orders.

Figure 4.2 shows the manufactured variables for the free stream case. Flow is

from the lower left corner of the domain to the upper right corner with supersonic

inlet boundary conditions set at the x = 0.0 and y = 0.0 boundaries, and supersonic

outlet boundary conditions used at the x = 1.0 and y = 1.0 boundaries. The flow is
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supersonic everywhere, so it is valid to use the supersonic inlet and outlet boundary

conditions. The series of meshes listed in Table 4.1 is used for the grid refinement

study. Not all of the mesh levels listed in Table 4.1 are used for every case, but only

as many as are needed in order to demonstrate the asymptotic order of accuracy.

This series of meshes is used for all of the LeMANS MMS test cases, not just the free

stream case. Uniform meshes are used for all LeMANS verification test cases. The

Refinement Level Number of Elements Refinement Ratio (r) hnorm

0 64 – 32
1 256 2 16
2 1024 2 8
3 4096 2 4
4 16384 2 2
5 65536 2 1

Table 4.1: Meshes used for the grid refinement studies of LeMANS.

constants used in the manufactured solutions for the free stream test case are listed

in Table C.1 of Appendix C.
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(a) Density of N2 (b) Density of N

(c) u-velocity (d) v-velocity

(e) Temperature

Figure 4.2: Contours of manufactured quantities for the free stream test case.
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Results for two variations of the free stream test case are presented in this section.

The first case uses only the Euler equations to model a single species flow. The second

case uses the full Navier-Stokes equations and models a two species flow in chemical

equilibrium. The manufactured solution constants are the same in both cases, with

the exception that the Euler case has only one density equation.

Figure 4.3 shows the observed order of accuracy results for the single species

Euler equation test case using zero-order extrapolation to set the supersonic outlet

boundary values. Zero-order extrapolation sets the ghost cell values equal to the

interior cell values at the boundary, and therefore enforces a zero-gradient condition

at the outlet. It is clear that the observed order of accuracy in both norms is close

to first-order rather than the theoretically expected second-order accuracy.
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(b) Order of accuracy based on L∞ norms

Figure 4.3: Initial observed order of accuracy for the free stream test case of the Euler
equations.

Looking at the error contours for this case, which are shown in Figure 4.4, there are

clearly larger errors clustered near the outlet boundaries. This is due to two different

implementation choices in LeMANS that produce correct results, but cause the free

stream boundary conditions to be first-order accurate. The first implementation

70



issue is the number of ghost cells that are generated around the domain. The results

shown in Figure 4.3 use only a single layer of ghost cells, but the boundary flux is still

computed using MUSCL variable extrapolation, which requires two values on either

side of a face to construct a second-order flux. Since there is only a single ghost cell on

the outside of each boundary face, the MUSCL extrapolation is effectively truncated,

and the reconstructed boundary flux is no longer fully second order accurate. This is

an issue for all of the boundary conditions, not just the supersonic inlet and outlet

conditions.

The second implementation issue is the use of zero-order extrapolation at the

outlet boundaries. This is appropriate when the flow field properties actually have

zero gradients at an outlet, however, this is not the case for the manufactured solution.

The effect of this extrapolation approach is to compute a boundary flux that decreases

in error more slowly than the rest of the flow field since the ghost cell value is not

computed with the same level of accuracy as the rest of the flow domain.
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Figure 4.4: Error contours for the Euler free stream test case with one layer of ghost
cells and zero-order outlet boundary extrapolation.

Figure 4.5 shows error contours for the same test case, but with a second layer
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of ghost cells added around the boundary and with linear, rather than zero-order,

extrapolation used to set the ghost cell values at the outlet boundaries. After these

two changes, the large boundary error that appeared in Figure 4.4 has decreased to

the level of the rest of the flow field. Figure 4.6 shows the new order of accuracy for

this case, and, as expected, both the L∞ and L2 norms show second-order accuracy.

x [m]

y
 [

m
]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

% Error:  N
2

0.06

0.04

0.02

0

­0.02

­0.04

­0.06

­0.08

­0.1

­0.12

(a) Percent error in N2 density

x [m]

y
 [

m
]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

% Error: v

0.02

0.015

0.01

0.005

0

­0.005

­0.01

­0.015

­0.02

(b) Percent error in v-velocity

Figure 4.5: Error contours for the Euler free stream test case with two layers of ghost
cells and linear extrapolation at the outlet boundaries.

The remaining free stream case is to test the full Navier-Stokes equations with

a two species flow in chemical equilibrium. Figure 4.7 shows the order of accuracy

results for this case using the updated boundary condition implementation. Second-

order accuracy is observed in both the L2 and L∞ norms. Based on these results,

the inlet boundary conditions, outlet boundary conditions, and interior equations of

LeMANS are verified.

72



h
norm

O
rd

e
r 

o
f 

A
c

c
u

ra
c

y

5 10 15 20
0

0.5

1

1.5

2

2.5

rho N
2
 ­ L

2
 Norm

u Vel. ­ L
2
 Norm

v Vel. ­ L
2
 Norm

E
tot

 ­ L
2
 Norm

T
tr
 ­ L

2
 Norm

1

(a) Order of accuracy based on L2 norms

h
norm

O
rd

e
r 

o
f 

A
c

c
u

ra
c

y

5 10 15 20
0

0.5

1

1.5

2

2.5

3

rho N
2
 ­ L

∞
 Norm

u Vel. ­ L
∞
 Norm

v Vel. ­ L
∞
 Norm

E
tot

 ­ L
∞
 Norm

T
tr
 ­ L

∞
 Norm

1

(b) Order of accuracy based on L∞ norms

Figure 4.6: Observed order of accuracy for the Euler free stream test case with two
layers of ghost cells and linear extrapolation at the outlet boundaries.
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(b) Order of accuracy based on L∞ norms

Figure 4.7: Observed order of accuracy for the Navier-Stokes free stream test case.

4.3.2 LeMANS: Wall Boundary Conditions

Two different wall boundary conditions are considered: an inviscid, isothermal

wall, and a no-slip, isothermal wall. The inviscid wall only tests the implementation
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of the Euler equations, while the viscous wall requires the solution of the full Navier-

Stokes equations. The reason for looking at two different wall boundary conditions is

to isolate any errors that may be caused by the inviscid calculations before working

with the full set of viscous equations.

(a) u-velocity (b) v-velocity

(c) Temperature

Figure 4.8: Contours of manufactured quantities for the inviscid wall test case.

The manufactured velocity and temperature contours for the inviscid wall case

are shown in Figure 4.8. Flow is from left to right, and the manufactured solution

is designed so that the flow is supersonic at the inlet and outlet boundaries so that
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the supersonic boundary conditions that were tested in the previous section can be

used again. The density contours are the same as for the free stream case, and the

u-velocity contours are the same shape, but the velocity magnitude is increased to

ensure that the flow remains supersonic at the inlet and outlet boundaries. The wall

boundary is located at y = 0.0, inlet boundaries are at x = 0.0 and y = 1.0, and

the outlet boundary is at x = 1.0. The meshes listed in Table 4.1 are again used for

the grid refinement study, and the constants used in the manufactured solution are

shown in Table C.2 of Appendix C.

The order of accuracy results for the inviscid wall test case are shown in Figure 4.9.

In this case the errors for the velocity components show second-order convergence,

but the error for all other variables converges at a rate that is closer to first-order.

To understand why this is the case, it is necessary to look at how the inviscid wall

boundary conditions are implemented in LeMANS.
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(b) Order of accuracy based on L∞ norms

Figure 4.9: Initial observed order of accuracy for the inviscid wall test case.

Equation 4.14 shows how the ghost cell values are populated for each variable,

with the g subscript indicating a ghost cell value, the s subscript denoting the species,

and the cl subscript denoting the interior cell adjacent to the wall boundary. These
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equations are written in the reference frame of the mesh boundary face, so the n and

t subscripts indicate components in the directions normal and tangential to the face.

Implementing the boundary conditions in this fashion correctly sets the zero normal

velocity condition, however, it also forces the other variables to have zero gradient at

the wall. This is not the case for the manufactured solution, and is also not necessarily

the case for a general non-MMS problem.

ρs,g = ρs,cl

ρgun,g = −ρclun,cl

ρgut,g = ρclut,cl

Etot,g = Etot,cl

(4.14)

To improve the accuracy of the inviscid wall boundary condition, linear extrapo-

lation from the interior domain to the wall is implemented for the density and energy

variables. The implementation of the velocity components at the boundaries is un-

changed since the normal velocity condition is already being properly enforced. Figure

4.10 shows the results of these changes on the observed order of accuracy. It can be

seen that now all variables show the expected second-order accuracy in both norms.

The error contours for temperature are shown in Figure 4.11 for the original and up-

dated wall boundary implementations. Even after implementing linear extrapolation,

the maximum error is still concentrated near the wall boundary, but the magnitude of

the maximum error has decreased significantly by using linear extrapolation. While

not shown, the error in the other flow variables shows similar behavior.

At this point, the interior equations, inviscid wall boundary conditions, and inlet

and outlet boundary conditions have all been verified. The next case to consider is the

viscous wall boundary. Manufactured flow quantities are shown for this case in Figure

4.12. The temperature and density contours are the same as for the inviscid wall case,

and the wall boundary is again located at y = 0.0. Inlet boundary conditions are now
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(b) Order based on L∞ norms

Figure 4.10: Observed order of accuracy for the inviscid wall test case.

(a) Percent error in temperature, original
boundary condition

(b) Percent error in temperature, updated
boundary condition

Figure 4.11: Error contours for the inviscid wall test case for the two different wall
boundary implementations.

applied at all boundaries except the wall, however, since the cells near the wall will

contain subsonic flow due to the no-slip condition. The supersonic outlet boundary

condition is therefore not valid immediately adjacent to the wall. It is valid to use
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an inlet boundary condition on all of the non-wall boundaries because it specifies the

full state vector, and can be used within LeMANS as a Dirichlet boundary condition

to exactly set the ghost cell values [82]. The constants used in the manufactured

solution are found in Appendix C in Table C.3.

(a) u-velocity (b) v-velocity

Figure 4.12: Contours of manufactured velocities for the no-slip wall test case.

The order of accuracy results for the viscous case are shown in Figure 4.13. The

observed order of accuracy is near two based on the L2 norms for all variables except

the u-velocity, but the L∞ norms show an order of accuracy near one for all variables.

The exact reason for this is not clear, however there are several possibilities.

One possible reason is the way in which the viscous fluxes are computed. In

order to compute the derivatives necessary for the viscous flux calculations, LeMANS

requires the values of the flow quantities at the mesh nodes. These values are obtained

by averaging the cell centered values from all of the cells that share a node. At the

domain boundaries the averaging process includes values from the ghost cells, and,

especially at the corners of a domain where different boundary conditions meet, this

averaging can lead to less accurate values being computed at the boundary nodes.

This could result in localized errors that decrease at a slower rate than the errors in
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the remainder of the flow field, and which would decrease the order of accuracy based

on the L∞ norms.

Regardless of the reason for the observed order of accuracy, it is important to

remember that lower order of accuracy does not mean that the results generated by

LeMANS are incorrect. The errors in the solution are still decreasing as the mesh is

refined; the rate of decrease is just less than theoretically expected. Therefore, while

the implementation of the viscous wall boundary condition cannot be considered

rigorously verified based on the results presented, the use of LeMANS within the

aerothermoelastic framework is still valid.
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(b) Order of accuracy based on L∞ norms

Figure 4.13: Observed order of accuracy for the no-slip wall test case.

Based on the manufactured solution tests, several code options and boundary con-

ditions in LeMANS can be considered formally verified. Specifically, the supersonic

inlet and outlet boundary conditions, the inviscid wall boundary condition, and the

interior equations for a multi-species gas mixture in thermal and chemical equilibrium

have been shown to be correctly implemented within the limits of the MMS. This does

not necessarily mean that there are no errors in the code, but, in conjunction with

previously performed validation studies and code-to-code comparisons, it provides
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increased confidence that the results produced by LeMANS are correct within the

limits of the models that are used.

4.3.3 Thermal Material Response

The thermal material response code has two main boundary condition options:

specified temperature and specified heat flux. Both of these boundary conditions can

be tested along with the interior equations using the same manufactured solution,

which is given by Equation 4.4. The boundary conditions for the material response

code are applied directly at the boundary nodes, so unlike LeMANS there are no ghost

cells. The main difference in applying the MMS to the thermal material response code

rather than LeMANS is that the temporal order of accuracy is considered in addition

to the spatial order of accuracy. As described in Section 4.2.2, both orders of accuracy

are verified simultaneously by refining both the time step and the grid spacing at each

refinement level in the grid refinement study. Table 4.2 shows the grid levels and time

steps that are used for the specified temperature boundary condition cases.

Refinement Number Refinement
hnorm

Time Step
Level of Elements Ratio (r) [s]

0 72 – 67.68 1.0
1 304 2.05 32.94 2.3684× 10−1

2 1282 2.05 16.04 5.616× 10−2

3 5154 2.01 8.00 1.397× 10−2

4 20658 2.00 4.00 3.49× 10−3

5 82950 2.00 1.99 8.7× 10−4

6 329754 1.99 1.00 2.2× 10−4

Table 4.2: Meshes used for the grid refinement studies of the thermal material re-
sponse code with specified temperature boundary conditions.

The first boundary condition to be tested is the specified temperature case. This

acts mainly as a check on the interior equations since it represents a Dirichlet bound-

ary condition that is exactly enforced at the boundary. The thermal conductivity
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(a) Temperature (b) Thermal conductivity, κxx

Figure 4.14: Contours of manufactured quantities for the specified temperature test
case.

and specific heat are given by Equation 4.5 and are temperature dependent. The

thermal conductivity is also anisotropic. In keeping with the assumptions outlined in

Chapter II, density is constant and for these tests has a value of ρ = 1000.0 [kg/m3].

The manufactured temperature contours and thermal conductivity, κxx, contours are

shown in Figure 4.14, and the constants for the manufactured solution and manufac-

tured properties can be be found in Appendix C in Tables C.4 and C.5. The other

components of the thermal conductivity tensor have similar variation, but different

values. Specified temperature boundary conditions are applied at all boundaries.

Figure 4.15 shows the observed order of accuracy for this test case at two different

times: 1.0 seconds and 4.0 seconds. The order of accuracy that is shown represents

the combined spatial and temporal orders of accuracy. Since the observed values are

showing second order accuracy in both norms, this confirms that the code is second-

order accurate spatially and first-order accurate temporally. Therefore, the interior

equations, the time integration, and the specified temperature boundary condition

are verified for the thermal material response code.
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(a) Order of accuracy after 1.0 seconds
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(b) Order of accuracy after 4.0 seconds

Figure 4.15: Observed order of accuracy for the specified temperature test case.

The specified flux boundary condition case makes use of a different domain geom-

etry in order to test the calculation of normal vectors at the boundaries. The mesh

refinement levels used for this case are shown in Table 4.3. The material properties

Refinement Number Refinement
hnorm

Time Step
Level of Elements Ratio (r) [s]

0 42 – 67.68 1.0
1 178 2.05 32.94 2.3684× 10−1

2 746 2.05 16.04 5.616× 10−2

3 3186 2.01 8.00 1.397× 10−2

4 13636 2.00 4.00 3.49× 10−3

5 56542 2.00 1.99 8.7× 10−4

6 224626 1.99 1.00 2.2× 10−4

Table 4.3: Meshes used for the grid refinement studies of the thermal material re-
sponse code with specified flux boundary conditions.

and temperature solution are the same as the specified temperature boundary condi-

tion case, and the manufactured solution constants can once again be found in Table

C.4. The manufactured temperature solution is shown in the new geometry in Figure

4.16. Specified flux boundary conditions are applied at all of the boundaries.
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The observed order of accuracy for this case is shown in Figure 4.17. Only one

simulation time is tested since the time integration is already verified in the specified

temperature case. Second order accuracy is again obtained for both norms, so the

specified flux boundary condition for the thermal material response code is verified.

Figure 4.16: Contours of manufactured temperature for the specified flux test case.
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Figure 4.17: Observed order of accuracy for the specified flux test case after 1.0
seconds.
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4.3.4 Structural Material Response

Similar to the thermal material response code, the structural response code has

two different boundary conditions to be tested: specified displacement and specified

traction, which represent a Dirichlet and a Neumann condition, respectively. Table

4.4 shows the meshes used for the grid refinement study. The structural response

tests that are conducted using manufactured solutions are static, so unlike the ther-

mal response case it is not necessary to refine both the time step and grid spacing

since the temporal accuracy is not tested. The same manufactured solution is used

for both boundary conditions, and Figure 4.18 shows the manufactured variables in

the deformed configuration. The domain is initially a square with zero displacement

everywhere. Similar to the thermal case, the material properties tested are tempera-

ture dependent, but in this case they are isotropic. Thermal stresses are considered,

and the temperature distribution is also shown in Figure 4.18. This temperature

distribution is imposed directly in the code using Equation 4.7 with t = 1.0 seconds,

and is not computed by the thermal response code. Figure 4.19 shows contours of

the temperature dependent material properties. The constants needed for the man-

ufactured solution, temperature distribution, and manufactured material properties

are shown in Tables C.6 - C.9 of Appendix C.

Refinement Level Number of Elements Refinement Ratio (r) hnorm

0 74 – 67.68
1 290 1.98 32.94
2 1130 1.97 16.04
3 4504 2.00 8.00
4 18088 2.00 4.00
5 72514 2.00 1.99
6 290592 2.00 1.00

Table 4.4: Meshes used for the grid refinement studies of the structural material
response code.
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(a) x-displacement (b) y-displacement

(c) Temperature

Figure 4.18: Contours of manufactured quantities for the structural test cases.

The specified displacement case serves as a way to test the interior equations,

and results for this case are shown in Figure 4.20. The displacement values, which

are the dependent variables in the structural simulations, show the expected second-

order accuracy in both error norms. The stress values, however, which are derived

quantities, show only first-order accuracy. A lower order of accuracy for the stress

values is expected for the numerical approach used in this work because stresses are

computed using the derivatives of displacement. The displacement is assumed to
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(a) Young’s modulus (b) Poisson’s ratio

(c) Coefficient of thermal expansion

Figure 4.19: Contours of manufactured properties for the specified temperature test
case.

vary linearly across an element, which means that the derivatives of displacement are

constant across an element. Having derivatives that are constant within an element

leads to first-order accurate stress calculations. While not shown here, the error in

the strain calculations is also of first-order accuracy for the same reason. Therefore,

observing first-order accuracy in the stress calculations and second-order accuracy in

the displacement results verifies the implementation of the interior equations and also
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(b) Order of accuracy based on L∞ norms

Figure 4.20: Observed order of accuracy for the specified displacement test case.

the specified displacement boundary conditions.

For the specified traction case, displacement boundary conditions are applied on

the left boundary at x = 0.0, and traction boundary conditions are used on the

remaining boundaries. The reason for this is that applying traction boundary condi-

tions at all boundaries results in a numerical problem that is not well-posed. Fixing

one edge of the boundary allows the problem to be solved computationally, and still

provides an adequate test of the specified traction boundary condition. The results

for this case are shown in Figure 4.21. The L2 norms indicate the expected order

of accuracy for both the displacements and the stresses. The L∞ norms show the

expected first-order accuracy for the stresses, but seem to be converging to an order

of accuracy between first and second-order for the displacements.

The slightly lower than expected observed order of accuracy is due to localized

errors in the corners of the domain that decrease at a slightly slower rate than the

errors in the rest of the domain. This is the result of the way that the control volumes

are constructed at the domain corners, and is not indicative of an error in the code.

Therefore, the specified traction boundary condition can be considered verified.
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Figure 4.21: Observed order of accuracy for the specified traction test case.

The L∞ order of accuracy could be improved, however, by nonuniform refinement

of the mesh in the corners of the domain. This is a technique that is often used in

structural analysis for dealing with problems that contain singularities [110]. It is

worth noting, though, that the local error in the domain corners does not seem to

impact the solution in the rest of the domain. Therefore, depending on the quantities

of interest, it may not be necessary to overly refine the mesh corners in order to get

a practical solution.

4.3.5 Aerothermoelastic Coupling Framework

As discussed in Chapter III, a partitioned approach is used in this work to couple

the CFD and material response codes. Since the partitioned approach uses completely

separate codes for each sub-problem and the coupling is enforced through boundary

conditions, verification of each code can be performed individually as long as the

boundary conditions that are relevant to the coupling procedure are also tested. The

boundary conditions that are needed for a fully coupled simulation include the no-

slip wall boundary in LeMANS, specified heat flux in the thermal response code, and
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specified traction in the structural response code. All of these boundary conditions

were tested in the previous sections. The only remaining aspect of the procedure

that is relevant to the test cases considered in Chapter V of this thesis is the spatial

interpolation of boundary values between the fluid and material response codes.

Testing the interpolation is accomplished by defining manufactured solutions for

temperature in both the fluid and solid domains that have identical temperature

values and temperature gradients at the fluid-solid interface. If the same values for

thermal conductivity are used in both the fluid and solid, then the heat flux computed

by LeMANS at the interface and interpolated to the thermal response code will act

as the manufactured boundary heat flux for the thermal code. While it is possible

to test the code-to-code interpolation in a simpler manner, the approach used here

is chosen for two reasons. First, it provides a test of all of the code that deals with

interpolating variables from one mesh to another exactly as it is used in a real case.

Second, even though the aerodynamic heating boundary condition for the coupled

case uses the same implementation as the specified heat flux boundary condition, it

corresponds to a different branch of the thermal response code, which will be tested

using this approach.

It is only necessary to test the inter-code interpolation in one direction (i.e. Le-

MANS → material response or material response → LeMANS) since the two cases

are the same, only differing in the position at which the interpolating values are lo-

cated. Additionally, the interpolation of pressures and stresses is identical to the

interpolation of temperature, and the specified traction boundary condition used in

the coupled framework is the same code as for the uncoupled case, so interpolation

between the fluid and structural material response codes does not need to be tested

in addition to the thermal response interpolation.

The coupled manufactured solution case uses a single mesh for the fluid domain

and the series of meshes shown in Table 4.5 for a grid refinement study in the solid
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domain. The mesh used in the fluid domain is the same as was used in the verification

tests of LeMANS and corresponds to refinement level 4 in Table 4.1. This mesh is

chosen so that the number of flow boundary nodes at the fluid-solid interface is higher

than the number of solid boundary nodes for the coarse solid meshes, and lower

than the number of solid boundary nodes for the more refined solid meshes. The

thermal response code uses specified temperature boundary conditions at the non-

coupled boundaries, and LeMANS uses inlet boundary conditions at the non-coupled

boundaries in the same way as for the viscous wall test case.

Refinement Number Refinement
hnorm

Time Step
Level of Elements Ratio (r) [s]

0 64 – 36.31 1.0
1 288 2.12 17.12 2.5× 10−1

2 1258 2.09 8.19 6.25× 10−2

3 5110 2.02 4.06 1.5625× 10−2

4 20874 2.02 2.01 3.90625× 10−3

5 84370 2.01 1.00 9.765625× 10−4

Table 4.5: Meshes used for the grid refinement studies of the thermal response code
coupled to LeMANS.

Equations 4.15 and 4.16 give the manufactured solutions for the flow and solid

domains. The value of Cs is 0.25, and the other necessary constants for these equations

are listed in Table C.10 in Appendix C. Both the fluid and solid domains use a

constant, isotropic thermal conductivity equal to 15.0 [W/m−K]. The density values,

which are shown in Figure 4.22 are chosen so that there is no mass flux to the wall.

This eliminates the mass diffusion heat flux, and makes matching the fluid and solid

manufactured solutions much simpler, while still providing a good test of the coupling

procedure. The manufactured temperature for the flow and solid domains is shown in

Figure 4.23. At the fluid-solid interface, the temperature and heat flux are identical

in both domains, however, away from the interface the solid temperature distribution

has an additional time dependent component that is not present in the flow solution.
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Note that the manufactured velocity components in LeMANS are not important for

this test case, since only the thermal solution is sought in the solid domain.

ρs(x, y) = ρs0 + ρxscos
(axsπx

L

)
+ ρyssin

(aysπy
L

)
+ ρxyscos

(axysπxy
L2

)
u(x, y) = (f(x, y)− Cs)

{
u0 + uxsin

(axuπx
L

)
+ uycos

(ayuπy
L

)
+ uxycos

(axyuπxy
L2

)}
v(x, y) = (f(x, y)− Cs)

{
v0 + vxsin

(axvπx
L

)
+ vycos

(ayvπy
L

)
+ uxycos

(axyuπxy
L2

)}
Ttr(x, y) = T0 + Txcos

(axTπx
L

)
+ Tycos

(ayTπy
L

)
+ Txycos

(axyTπxy
L2

)



(4.15)

Ts(x, y, t) = Ttsin

(
atπt(y − Cs)2

T0

)
+ T0 + Txcos

(axTπx
L

)
+ Tycos

(ayTπy
L

)
+ Txycos

(axyTπxy
L2

)
= Ttsin

(
atπt(y − Cs)2

T0

)
+ Ttr(x, y)

(4.16)

The procedure for the coupled tests is as follows. First, the flow domain and

coupled variables are initialized to the exact manufactured solution. Then, LeMANS

is run as normal and interpolates the flow values to the solid domain boundaries, and

then calls the material response code. The material response is run to a simulation

time of 1.0 seconds, and the results are returned to LeMANS. At this point, since

the order of accuracy of LeMANS is not being tested, the case is finished. This is

repeated for each of the solid mesh refinements shown in Table 4.5.

The order of accuracy results for the coupled test case are shown in Figure 4.24.

The L2 norms show second-order accuracy, however, the L∞ norms only indicate

first-order accuracy. The lower order of accuracy is due to how the thermal response
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(a) Density of N2 (b) Density of N

Figure 4.22: Contours of manufactured density in LeMANS for the coupled test case.

Figure 4.23: Contours of manufactured temperature in the fluid and solid domains
for the coupled test case.

code handles the corners of the domain at (x, y) = (0.0, 0.25) and (x, y) = (1.0, 0.25)

where the different boundary condition types meet. This is a result of how the

control volumes at the intersection of two boundary conditions are constructed, and

is not indicative of an error within either the thermal response code or the coupling

procedure.

92



h
norm

O
rd

e
r 

o
f 

A
c

c
u

ra
c

y

5 10 15 20 25 3035
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

L
∞
 Norm

L
2
 Norm

1

Figure 4.24: Observed order of accuracy of the thermal response code for the coupled
test case at t = 1.0 seconds.

Figure 4.25 shows the error contours on two different meshes for the corner of

the solid domain at (x, y) = (1.0, 0.25). The boundary condition types used on the

different sides of the domain are also shown. From these plots it is clear that there is a

highly localized region of larger error present where the different boundary conditions

meet. This is due to the fact that the error at the corner of the domain decreases at

a slower rate than the error in the rest of the domain, which leads to regions of larger

error being present on the more refined meshes. Similar to the traction boundary

condition case shown earlier, these local regions of error could be decreased to the

level of the rest of the domain by refining the mesh in the corners. Based on both the

observed order of accuracy and the error contours, however, the locally large errors

do not propagate into the rest of the solution domain, and so in practice it may not

be necessary to use a highly refined mesh in these regions.

Based on the results presented in this chapter, the interior equations of LeMANS,

the thermal material response code, and the structural material response code are

verified. The boundary conditions in each of these codes that are relevant to the

aerothermoelastic framework are also found to be correctly implemented, and the in-

93



(a) Refinement level 4 (b) Refinement level 5

Figure 4.25: Contours of percentage temperature error for the corner of the coupled
solid domain at two different mesh refinements.

terpolation of boundary values between the codes is found to not reduce the observed

order of accuracy. These results provide confidence that the aerothermoelastic frame-

work is correctly implemented, and that it provides valid results within the limits of

the models that are used.
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CHAPTER V

Aerothermal and Aerothermoelastic Test Cases

5.1 Introduction

The previous chapter presents a series of code verification exercises which help to

build confidence in the implementation of the various pieces of the aerothermoelas-

tic framework. Verification exercises are important, but it is also desirable to test

the framework on physically realistic problems. In particular, it is useful to study

problems where experimental data is available, or where it is possible to compare

results with other codes. When dealing with hypersonic flows and coupled material

response, there is very limited experimental data that is available and useful for com-

parison with a numerical code. So, in the present work, two test cases are studied

which allow for comparison with other codes and with lower fidelity models in order

to build confidence in the aerothermoelastic framework, and to demonstrate the code

capabilities.

In this chapter, two different test cases are considered in order to investigate the

performance of the aerothermoelastic framework on realistic problems. The first test

case is of the IRV-2 vehicle, which is an unmanned reentry vehicle. The vehicle’s

reentry trajectory is discretized into a series of points, and a coupled aerothermal

solution is found at a number of these points. The structural material response is

not considered for this problem, so this is an aerothermal problem rather than a full
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aerothermoelastic problem. Non-charring ablation is modeled at the IRV-2 surface,

and the associated surface recession is taken into account. The results from the

current work are compared with results from a one-dimensional material response

code [63, 64], and also with the ABRES Shape Change Code (ASCC) [52].

The second test case consists of a two-dimensional wedge in hypersonic flow, with

a compliant panel located over a portion of the wedge. This is a full aerothermoelastic

problem involving LeMANS and both the thermal and structural material response

modules. The geometry and test conditions for this case come from a study [27,

26] that uses a similar aerothermoelastic coupling strategy as the present work, but

simplified flow and structural models. Some of the differences in results due to the

different models are discussed, and a number of studies are presented on how changing

various parameters of the coupling procedure affects the results. The purpose of

this test case is to gain insight into how the aerothermoelastic coupling procedure

performs, and to test whether or not reasonable results are generated by assuming a

steady state flow field and quasi-static thermo-structural response.

5.2 The IRV-2 Vehicle

The IRV-2 test case is used to investigate the aerothermal coupling portion of

the aerothermoelastic framework, along with a surface ablation boundary condition.

Structural material response is not considered. Results from the present work are

compared with results from a one-dimensional material response code, and with re-

sults from ASCC. An overview of the test case, as well as a discussion of the results

is presented.
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5.2.1 IRV-2 Geometry and Test Conditions

The IRV-2 vehicle, shown in Figure 5.1, has a sphere-biconic geometry, and a

total length of 1.386 m. The nose radius is 0.01905 m, and the two cone angles are

8.42° and 6.10° [55]. The only portion of the vehicle that is modeled is the nosetip,

which consists of the sphere and the first cone, and extends axially 0.1488 m from

the stagnation point. This geometry is modeled as an axisymmetric sphere-cone,

and a schematic of the computational domain is shown in Figure 5.2 along with

the boundary conditions that are used. Figure 5.3 shows the initial flow and solid

meshes that are used. The flow mesh contains 8448 cells, and the solid mesh contains

1106 nodes, which corresponds to the number of control volumes using the CVFEM

for spatial discretization. These meshes will evolve slightly in shape as the vehicle

surface recesses, however, the recession for this particular test case is not large enough

to greatly alter the shape of the vehicle, and the number of mesh cells does not vary.

All of the results presented in this chapter are computed on a single processor for

both the fluid and solid domains. Computational times for each case considered are

on the order of 50 hours of CPU time.

Figure 5.1: The IRV-2 vehicle [55].
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Figure 5.2: The computational domain and boundary conditions for the IRV-2 sim-
ulations.

The IRV-2 vehicle follows a ballistic trajectory, which Kuntz et al. [55] split

into a series of 23 discrete points, with each trajectory point representing a flight

time at which a coupled solution is found. In the present work, only the first four

trajectory points are considered. The free stream conditions for these points are

listed in Table 5.1. Trajectory point 0 is a flow-only point, so no material response is

computed, and the flow solution is only used as the initial conditions for trajectory

point 1. The remaining trajectory points use the coupled approach presented in

Chapter III, with the flow boundary conditions given in Table 5.1, and the initial

conditions provided by the solution at the previous trajectory point. The solid domain

is initialized to a constant temperature of 300.0 K at trajectory point 1, and the

following trajectory points are initialized with the temperature distribution found

at the previous trajectory point. In order to allow for comparison with the one-

dimensional material response results found in [64], a 5-species air model consisting

of N2, O2, NO, N, and O is used in LeMANS. So, while the mass flux of ablation

species into the flow field is considered, the chemistry between the ablation products

and the flow species is neglected.
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Figure 5.3: Initial flow and solid meshes for the IRV-2 simulations.

The material properties used to model the IRV-2 carbon-carbon nosetip are for

generic non-charring carbon and are taken from Amar [5] and listed in Appendix D.

Carbon-carbon is a non-decomposing ablator, so no pyrolysis gas is generated and

chemical ablation occurs only at the material surface. The B’ table approach is used

to determine the wall enthalpy and char mass blowing rate. The necessary surface

thermochemistry data is generated using the Aerotherm Chemical Equilibrium (ACE)

code [78].

For this test case, a fixed iteration coupling procedure is used, and the material

response code is called every 100 flow field iterations. The value of 100 was chosen

based on experimentation with this test case, and was found to lead to a stable

coupling scheme. The somewhat arbitrary process for choosing the flow coupling

parameter highlights one of the drawbacks of the fixed iteration coupling procedure.

The method proposed by Hogan et al. [48] is used to iteratively solve for the surface
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Trajectory Reentry time Altitude Mach Temperature Density
point [s] [km] number [K] [kg/m3]

0 0.00 66.7 22 227.8 1.25× 10−4

1 4.25 56.0 21 258.0 5.05× 10−4

2 6.75 49.3 21 270.7 1.13× 10−3

3 8.75 44.0 21 261.4 2.26× 10−3

Table 5.1: Free stream conditions for the first four IRV-2 trajectory points.

recession rate as a function of temperature and pressure. A constant time step of

∆t = 0.1 seconds is used for the thermal material response. At each of the trajectory

points presented, the partitioned aerothermal coupling approach is robust and leads

to converged flow field results.

5.2.2 Comparison of One-Dimensional and Multi-Dimensional Material

Response

The one-dimensional material response results are obtained using the MOPAR

code [62] that has been developed at the University of Michigan. MOPAR uses

the same governing heat conduction equation and ablation boundary condition as

the code developed in this work. The one-dimensional results are obtained at each

boundary face in the flow mesh along lines that are normal to the faces of the flow

mesh which lie along the fluid-solid interface. Each line has a constant length equal

to the IRV-2 nose radius, and an adiabatic boundary condition is set at the end of

the line that lies within the solid domain. Once one-dimensional results are obtained

for each mesh face along the boundary, the contours shown in Figures 5.5 and 5.6

are generated by combining all of the one-dimensional solutions together using the

interpolation routines available in Tecplot [92].

Figure 5.4 shows the temperature contours for the axisymmetric material response

at trajectory points 1 and 3. The nosetip heats up very rapidly from the initial

temperature of 300.0 K, and there is very little surface recession over the course of
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the trajectory points that are considered. At the t = 8.75 s trajectory point, the

shock becomes thinner, and also moves slightly closer to the vehicle surface. The

temperature of the IRV-2 vehicle increases over all of the trajectory points, with the

highest temperatures found in the nose region. The flow of heat is much greater in

the axial direction than in the radial direction due to the much larger aerodynamic

heating that is present over the nose of the vehicle.
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Figure 5.4: Temperature contours for the axisymmetric solutions at t = 4.25 s and
t = 8.75 s.

Figure 5.5 shows a comparison of temperature contours between the one-dimensional

and axisymmetric codes at trajectory point 1. The flow field results are nearly iden-

tical to one another, which is not surprising, since in both cases the flow solution is

axisymmetric and the surface values do not change drastically between the different

models. The in-depth solid solutions are noticeably different, however, especially in

the shape of the temperature contours. The one-dimensional material response results

do not adequately capture the multi-dimensional nature of the heat flow, especially

in the highly curved nose region. The effect of using one-dimensional lines of constant

length is also evident in how the temperature penetrates into the material. Looking

along the centerline of the material it can be seen that using lines of length equal to
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the nose radius (0.01905 m) causes an adiabatic boundary condition to be set at a

location where it is not physically accurate to do so. At a location of z = 0.01905 m, it

is evident from the axisymmetric solution that there are still significant temperature

gradients, so using an adiabatic boundary condition at that location impacts how the

in-depth temperature profiles develop.
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Figure 5.5: Comparison of one-dimensional and axisymmetric results at t = 4.25s.

To further examine the differences between the one dimensional and axisymmetric

material response models, the temperature contours in the solid are shown for the last

three trajectory points in Figure 5.6. The multi-dimensional nature of the heat flow is

clearly evident from the temperature contours, and this leads to several observations.

First, near the vehicle’s surface, the axisymmetric contours are more curved. This

causes higher temperatures to be found further aft along the surface than for the

one-dimensional model. Second, along the stagnation line (r = 0.0 m) the one-

dimensional contours become elongated and distorted as the back of the solution line

is approached. This is due in part to setting an adiabatic boundary condition at a

location where it is not physically accurate to do so, but it is also due to the fact that
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(a) t = 4.25s (b) t = 6.75s

(c) t = 8.75s

Figure 5.6: Comparison of one-dimensional and axisymmetric temperature contours.

the high temperatures along the stagnation line are unable to conduct radially into

the material. In the axisymmetric case, these problems are alleviated, leading to a

more physically accurate prediction of the in-depth material response.

Figure 5.7 shows a comparison of several different surface properties between the

one-dimensional and axisymmetric results. The heat flux, ablation mass flux, and

rate of recession predicted by the one-dimensional approach are all higher near the

stagnation point than the corresponding axisymmetric results. However, the stag-

nation point temperature of the one-dimensional model is lower than that obtained
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with the axisymmetric approach. The lower surface temperature leads to the higher

heat flux from LeMANS due to the larger difference between the flow and solid tem-

peratures. The higher ablation rate in the one-dimensional results leads to a larger

surface recession in the stagnation region.
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Figure 5.7: Comparison of several different surface properties between one-
dimensional and axisymmetric results.

The axisymmetric temperature and mass flux results show broader profiles than

the one-dimensional results, especially for the earlier trajectory times. This is the
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same trend that was evident in Figure 5.5 where the contours in the multi-dimensional

case were curved further aft, which indicates that higher temperatures were main-

tained further along the vehicle’s surface. This is a result of the heat being able to

conduct along the surface and into the material rather than just into the material as

in the one-dimensional case.

5.2.3 Comparison With ASCC

In addition to comparing results between the one-dimensional and axisymmet-

ric material response codes, the axisymmetric code is also compared against results

obtained with ASCC [55]. Figure 5.8a compares the predicted stagnation point tem-

peratures between ASCC and both the axisymmetric and the one-dimensional Le-

MANS/material response coupled results. Both models predict lower stagnation point

temperatures than ASCC for all of the trajectory points that are considered, and the

agreement with ASCC decreases for both codes at each successive trajectory point.

Figure 5.8b shows a comparison of the stagnation point surface recession between

the axisymmetric model and ASCC. ASCC predicts a higher surface recession rate

with an increasing difference between LeMANS and ASCC for later trajectory points,

which is consistent with the temperature comparison.

The differences in results between ASCC and the present work are likely due to

several causes. First, the flow model used in this work does not include carbon-in-air

chemistry. This was done to allow for comparison with the one-dimensional code, but

it will impact the comparison with ASCC. Additionally, the surface chemistry model

that is used can greatly impact the results [40], and differences between ASCC and

the present work would contribute to the observed differences. The exact material

properties used in ASCC are also not known, and the material model used in this

work may have slightly different properties.

It is clear from the results presented that accounting for the multi-dimensional
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Figure 5.8: Comparison of stagnation point quantities between ASCC and the Le-
MANS/material response coupled results.

heat conduction within a material can significantly alter the results when compared

to a one-dimensional heat conduction model. This is especially true in geometries with

relatively large curvature, such as the nose region of the IRV-2 vehicle. Additionally,

when comparing the present results with ASCC, it is likely that accurate flow field

and surface chemistry modeling play a larger role in matching the ASCC data than

whether a one-dimensional or multi-dimensional material response model is used.

5.3 Aerothermoelastic Compliant Panel

The purpose of this case is to test the full aerothermoelastic framework, and to

investigate the assumptions made by using a steady state flow model in conjunction

with a quasi-steady structural material response model. An overview of the test case

is presented, along with a discussion of the results. The impact of different boundary

conditions on the compliant panel, as well as the effect of varying different coupling

parameters is also investigated. Finally, the computational cost of the coupled ap-

proach is examined.
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This test case differs significantly from the IRV-2 case, both in terms of geometry

and flight conditions. The wide range of simulation parameters illustrates the wide

range of applicability for the coupling procedure presented in this thesis.

5.3.1 Background

The aerothermoelastic test case consists of a two-dimensional wedge in an hyper-

sonic flow. A portion of the wedge surface is a compliant panel that can deform due

to the aerothermal and aerodynamic loads from the external hypersonic flow. The

geometry and flight conditions used were proposed by Culler and McNamara [27],

who studied the test case using considerably different flow and structural models

compared to the present work. Culler and McNamara used inviscid shock relations

to determine the local ambient flow properties over the deforming panel based on the

oblique shock that forms at the leading edge of the wedge. A third-order expansion

of piston theory [8, 69] was used to compute pressures over the panel, and Eckert’s

reference enthalpy method [36] is used to compute the aerodynamic heating. The flow

was assumed to be fully turbulent over the panel. To model the elastic response of

the structure, a simply supported, semi-infinite panel was assumed, and the equation

of motion was found by using von Kármán plate theory [33, 94]. A number of other

modeling assumptions were made with respect to the thermo-structural model, and

a full description can be found in Culler and McNamara [27].

The flow model used in this thesis represents one of the most significant differences

with the methods outlined above. In particular, the results from LeMANS do not

use a turbulence model, so the aerodynamic heating predictions are expected to be

considerably lower than those obtained using Eckert’s reference enthalpy method for a

turbulent flow. The use of a full CFD model also allows for higher fidelity in modeling

any flow changes that are caused by panel deformation.

A partitioned coupling method is used by Culler and McNamara, and the coupling

107



approach taken in this work is similar to the quasi-static approach (case C-2) pre-

sented in [27]. The use of CFD and the full structural equations in the present work

greatly increase the computational cost compared to the models used by Culler and

McNamara. The increased cost means that for long simulation times it is desirable

to study problems with stable dynamic response so that the flow solution does not

need to be updated as often. Therefore, the flight conditions that are used in this test

case, and which are outlined in the following section, are chosen because they lead

to a dynamically stable panel response as predicted by Culler and McNamara [27].

The computation of a dynamically stable response allows for larger time steps be-

tween flow updates, and the quasi-static update procedure is valid. As is discussed in

more detail in Section 5.3.1.2, the characteristic time scale of the structural response

is roughly two orders of magnitude shorter than the thermal time scale. Therefore,

static structural response solutions are computed, and only the thermal response is

treated in a time accurate fashion.

5.3.1.1 Geometry and Test Conditions

The geometry, shown schematically in Figure 5.9, consists of a rigid two-dimensional

wedge in a hypersonic flow. A compliant panel of length a = 1.5 meters is located

at a distance of 1.0 meter from the leading edge of the wedge. The wedge angle, θ,

is 5°. The deforming panel consists of three layers of material: a radiation shield,

a layer of thermal insulation, and a load-bearing plate structure. The arrangement

of the layers is shown in Figure 5.9b, and Table 5.2 lists the materials used and the

thickness of each layer. The radiation shield and thermal insulation together form the

TPS, and the titanium plate carries the aerothermal loads. The thermal and elastic

material properties are isotropic and temperature dependent, with the initial values

at T = 300.0 K given in Table 5.3. Density is constant with respect to temperature

for all three materials, and structural data is only listed for titanium since the plate
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structure is the only load bearing layer. Data for the temperature dependence of the

properties is found in [72] for the radiation shield and thermal insulation, and in [3]

for the titanium plate. Note that in the remainder of this chapter the term “panel”

refers to the complete layered material, and “plate” refers to only the load bearing

structure.

Free stream

Symmetry plane
Rigid wedge

Panel

(a) Schematic of geometry

Radiation shield

Thermal insulation

Plate structure

(b) Schematic of plate layers

Figure 5.9: Geometry for the aerothermoelastic plate test case.

Layer Material Thickness [mm]

Radiation shield PM-2000 2.0
Thermal insulation internal multiscreen insulation (IMI) 10.0

Plate structure titanium (Ti-6Al-2Sn-4Zr-2Mo) 5.0

Table 5.2: Plate materials and thicknesses for each panel layer.

Material
ρ c κ

Emissivity
E α

ν
[kg/m3] [J/Kg −K] [W/m−K] [GPa] [1/K × 10−6]

PM-2000 1010.0 464.7 0.250 0.7 – – –
IMI 73.0 729.3 0.0258 – – – –

titanium 4540.0 456.8 6.954 – 113.9 2.159 0.32

Table 5.3: Material properties for each plate layer at T = 300.0 K.

In keeping with Culler and McNamara, it is assumed that the radiation shield and

thermal insulation do not carry any load, and so only the titanium plate is considered
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in the structural material response code. The thermal response, however, is computed

for all three layers of the panel structure. Flow field pressures are applied directly at

the plate surface, which assumes that the normal vectors are the same at the titanium

plate as they are at the flow boundary. This is an assumption, but for this particular

geometry it should introduce very little error, and it is consistent with the approach

in [27]. Since only the static response of the structure is considered, the mass of

the thermal protection layers is neglected in the elastic calculations. The thermal

protection layers are assumed to deform in exactly the same way as the surface of

the titanium plate, and so to move these mesh layers the plate surface deformation

is mapped directly to the TPS mesh.

A Mach 8 flow is assumed for most of the test cases that are presented. The free

stream properties that are used are shown in Table 5.4, and are based on the standard

atmosphere [1] at an altitude of 30km. The computational domains for the fluid and

solid problems, along with the boundary conditions used, are shown in Figure 5.10.

Altitude [km] 30
M∞ 8
T∞ [K] 226.7
ρ∞ [kg/m3] 1.801× 10−2

p∞ [Pa] 1171.9

Table 5.4: Free stream flow properties for the aerothermoelastic plate test case.

Clamped boundary conditions are used on the edges of the plate for most of

the results that are presented, rather than simply-supported as used by Culler and

McNamara. The reason for using clamped boundary conditions is to prevent the edges

of the deforming panel from rotating into the flow field or overlapping the fixed-wall

boundaries, which could happen with a simply supported boundary condition. The

use of clamped boundary conditions is expected to result in smaller panel deformations

than the simply supported case. The temperature at the rigid wall boundaries is
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set using a radiative equilibrium boundary condition with the boundary emissivity

assumed to be 0.7, which is the same as the radiation shield emissivity. The shape

of the flow domain is designed to prevent any additional shocks that may form due

to panel deformation from impinging on the inlet boundaries. One end of the panel

mesh is shown in Figure 5.11 with the different material layers indicated. The full

panel mesh has 3168 elements with 594 cells in the radiation shield, 1782 cells in the

thermal insulation, and 792 cells in the plate structure.
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Figure 5.10: Schematic of the computational domain and boundary conditions.

The total simulation time is 900.0 s. This refers to the total length of time over

which the thermal problem is allowed to evolve. A constant time step of ∆t = 1.0 s is

used for the thermal solutions. The pressure along the back of the panel varies along

the panel length as shown in Figure 5.12. This is an approximation of the initial

pressure distribution across the top surface of the panel that is computed by running

an uncoupled flow simulation. This back pressure is chosen so that the pressure
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Figure 5.12: Panel back pressure and initial surface pressure.

differential across the panel is approximately zero at the start of the simulation.

The coupling procedure for this series of test cases uses a dynamic coupling pro-
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cedure, rather than the fixed iteration coupling used in the IRV-2 case, to determine

when the material response code is called from LeMANS. The material response code

is called when the maximum change in the heat flux over the length of the panel

between flow iterations drops below 5.0 × 10−3 %. The code moves to the next tra-

jectory point when the change in the L2 norm of the panel heat flux values between

calls to the material response code drops below 1.0 %. More details on the coupling

procedure are found in Section 3.4.

5.3.1.2 Characteristic Time Scales

The quasi-static aerothermoelastic coupling procedure that is described in Chapter

III relies on the separation of time scales between the fluid, structural, and thermal

components of a problem. It is assumed that the characteristic time scale of the

fluid is much shorter than the characteristic time scale of the structural response,

so that the fluid computations can be treated as steady compared to the structural

computations. In the same way, for this test case, the structural time scale is assumed

to be much shorter than the thermal time scale, so the structural response can be

treated as steady compared to the thermal response. The end result is that only

the thermal problem is solved in a time accurate fashion, while both the fluid and

structural problems are treated as steady state.

Equations for the characteristic fluid, structural, and thermal time scales are

shown in Equations 5.1, 5.2, and 5.3 [28].

tf =
L

U∞
(5.1)

ts =
1

f1

(5.2)

tth =
ρch2

p

κ
(5.3)

113



For the fluid time scale, L is the length of the panel, and U is the magnitude of

the free stream velocity. The structural response time is based on the lowest natural

frequency, f1, of the structure. Given the geometry in Section 5.3.1.1, and assuming

clamped boundary conditions on the plate, f1 can be found from Equation 5.4 [68].

f1 =
(4.73)2

2πL2

√
EI

ρA
(5.4)

The thermal time scale is found by assuming a Fourier number equal to 1.0 [94, 28],

which allows the time scale to be determined by the ratio of a characteristic length

scale squared to the thermal diffusivity.

Using the above definitions and the material properties for each material at T =

300.0 K, the time scales shown in Table 5.5 are computed. Note that the structural

time scale is only computed for the titanium plate, since that is the only layer in

which the structural equations are solved. The ratio of the thermal and structural

time scales in the titanium plate is the relevant parameter in deciding whether or

not a quasi-static thermal-structural response is valid. If B, the ratio of time scales

given in Equation 5.5, is much greater than 1, then it is generally valid to treat the

structural response as static and the thermal response as transient [17, 94].

tth (PM-2000) 7.5 s
tth (IMI) 206.4 s
tth (Ti) 7.5 s
ts 8.7× 10−2 s
tf 6.2× 10−4 s

Table 5.5: Characteristic time scales for the aerothermoelastic plate test case.

B =
tth
ts

(5.5)

Looking at Table 5.5, the structural time scale of the plate is two orders of mag-
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nitude shorter than the thermal time scale, so B >> 1, and a quasi-static thermal-

structural response is valid. Similarly, the flow time scale is two orders of magnitude

shorter than the structural response time, so steady-state flow calculations are valid.

5.3.2 Flow Solution

To ensure that the initial uncoupled surface properties are sufficiently resolved,

a grid convergence study is performed for the uncoupled case. Only the flow is

modeled, and the flow conditions are the same as for the full coupled case. Three

different meshes are used in the grid convergence study with 13640 cells, 27156 cells,

and 54250 cells each. In addition to the number of cells, the initial cell length at the

wall is varied from 5.0 × 10−7 m in the coarsest mesh to 1.25 × 10−7 m in the most

refined mesh.

Figure 5.13 shows the results of the grid convergence study. Only the heat flux and

pressure values are considered since these are the flow quantities that are most relevant

for the aerothermoelastic coupling. Figure 5.13 indicates that mesh 2 consisting of

27156 cells is sufficient to resolve the initial uncoupled surface properties, and Figure

5.14 shows this mesh.

Figure 5.15 shows solution contours for the flow-only case using the 27156 cell

grid. As can be seen, a relatively weak oblique shock forms on the wedge, but the

highest flow temperatures are located very near the wall boundary. This is due to the

large amount of viscous dissipation that occurs near the wall boundary as a result

of the very high flow velocity. It is also the result of using a radiative equilibrium

boundary condition at the wall.

Figure 5.16 shows the wall boundary values for the uncoupled case. The posi-

tion of the panel is superimposed on the plots, and it can be seen that the highest

temperature, pressure, and heat flux are located near the leading edge of the panel.

The wall temperature profile is determined from the radiative equilibrium boundary
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condition, and so it follows the same trend as the heat flux profile.
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Figure 5.13: Wall values for three different mesh refinements for the uncoupled flow
case.
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(a) ρN2
(b) ρO2

(c) Temperature (d) Pressure

Figure 5.15: Flow contours for the uncoupled solution.
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Figure 5.16: Wall values for the uncoupled flow case.
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5.3.3 Mach 8 Thermochemical Equilibrium, Neglecting Pressure

As a first step towards the full aerothermoelastic test case, a case is run which

uses the same geometry, flow properties, and material properties, but neglects the

aerodynamic pressure force on the plate. The panel deformation is computed, but all

deformation is due only to thermal effects. Using this simplified test case, the effect

of the trajectory step length, ts, on the results is investigated. The trajectory step is

the length of time that the thermal material response code is run before computing

the updated plate geometry and updating the flow solution. This splits a continuous

simulation into a sequence of discrete “snapshots” of the coupled solution. Four

different trajectory step lengths are considered: ts = 10.0 s, ts = 5.0 s, ts = 2.5

s, and ts = 1.25 s. Using a shorter step length increases the computational cost of

the coupling procedure since it increases the number of discrete trajectory points at

which a solution must be obtained.

Figure 5.17 shows contours of flow temperature and solid y-displacement for the

longest and shortest trajectory step lengths. In both cases, the panel deformation is

quite small, so there is very little impact on the flow field. The shorter trajectory

step length, ts = 1.25 s, leads to roughly an order of magnitude more deflection in

the panel than the ts = 10.0 s case. This causes a weak expansion to form over the

front of the panel, and a weak shock to form over the aft portion of the panel. This

is shown more clearly in Figure 5.18 where additional contour levels are included to

highlight the small changes in flow properties.

The thermal surface properties at the final simulation time of t = 900.0 s are

shown in Figure 5.19. The ts = 10.0 s case shows very little change in either the

temperature or heat flux profiles from the uncoupled flow-only results since there is

essentially no panel deformation. The drop in temperature and corresponding increase

in heat flux for the ts = 10.0 s case is due to the additional heat transport into the

material that is not accounted for with a radiative equilibrium boundary condition.
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(a) Full computational domain, ts = 10.0 sec. (b) Close-up of panel region, ts = 10.0 sec.

(c) Full computational domain, ts = 1.25 sec. (d) Close-up of panel region, ts = 1.25 sec.

Figure 5.17: Flow temperature and solid y-displacement contours for the converged
solution at t = 900.0 seconds neglecting pressure for two different trajectory step
lengths.

As the deformation increases with shorter trajectory steps, the slight effects due to

the expansion and shock which form can start to be seen. The temperature and heat

flux decrease through the expansion over the front of the panel, and increase through

the compression that forms over the back half of the panel.

The cause of the larger panel deflections for shorter trajectory step lengths is due
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Figure 5.18: Flow temperature and solid y-displacement contours for ts = 1.25 sec-
onds using more refined contour levels.

to the higher temperatures at the titanium plate at a given time when a shorter

time is used for ts. This can be seen in Figure 5.20a. The temperature at the top

surface of the plate structure for the shortest and longest trajectory lengths is shown

at three different solution times. The plate temperatures are considerably lower than

the panel surface temperatures due to the thermal protection layers above the plate.

The in-depth profiles show the effect of non-constant heat flux across the length of

the panel, and the plate temperatures are slightly higher near the leading edge of

the plate. Additionally, the shorter trajectory lengths lead to slightly higher plate

temperatures, and the temperature difference between the ts = 10.0 s case and the

ts = 1.25 s case appears to be growing over time.

Figure 5.20b shows the temperatures at the top and bottom of the plate at two

different simulation times and for two different trajectory step lengths. There is
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Figure 5.19: Surface properties at t = 900.0 seconds for various trajectory step
lengths.

almost no temperature gradient through the plate thickness for the cases shown. As

the simulation progresses in time, however, the temperature gradient along the length

of the plate grows.
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Figure 5.20: Plate temperatures for various trajectory step lengths.
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Figure 5.21: Plate material properties at three different simulation times with a
trajectory step length of ts = 1.25 seconds.

The effect of temperature on the material properties is shown in Figure 5.21. As

expected based on the material properties, the structural stiffness decreases and the

thermal expansion increases over the course of the 900.0 second test as the plate

temperature increases. Additionally, there is a property gradient along the length of

the plate due to the nonuniform temperature distribution. The values shown in Figure

5.21 are only for the middle of the plate, and there will also be a minor change in

properties through the thickness of the plate. As shown in Figure 5.20, however, the

temperature change through the plate is very small, and so the change in properties

is also very small relative to the change along the plate length.

Figure 5.22 shows a comparison of the transverse panel deflection at t = 900.0

s normalized by the plate thickness, hp = 0.005 m, for each of the trajectory step

lengths as a function of the normalized distance along the plate. Due to the lack

of aerodynamic forces acting on the plate, the deflection, which is caused only by

thermal forces, is nearly symmetric, but biased slightly towards the front of the plate

due to the higher temperatures in that region [28]. The amount of deflection increases
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with decreasing trajectory step length, but the largest jump occurs from the ts = 10.0

s case to the ts = 5.0 s case.
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Figure 5.22: Normalized transverse panel deflection at t = 900.0 seconds for different
trajectory step lengths.

The reason for larger panel deflections with shorter trajectory steps is that shorter

trajectory steps lead to a slightly faster heating rate of the plate. This causes the

plate to buckle sooner, and so the deflection at a given time after buckling is larger for

the shorter trajectory steps. Figure 5.23a shows the temperature at a panel location

of x/a = 0.5 for the wall boundary and the surface of the plate. The wall boundary

heats up very rapidly, and reaches an equilibrium temperature. Due to the TPS

panel layers, however, the plate heats up much more slowly, and does not reach an

equilibrium temperature within the 900.0 second simulation length. So the deflections

shown in Figure 5.22 do not represent final converged panel shapes, but rather they

are “snapshots” of the panel shape after 900.0 seconds of heating.

Figures 5.23a and 5.23b show that the shorter trajectory step lengths maintain

higher panel surface temperature and heat flux over the course of the 900.0 second

simulation. The longer trajectory step lengths lead to surface temperature and heat

flux values that drift slightly after the surface reaches thermal equilibrium. As the
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deflection of the panel becomes large enough to impact the flow solution, the tem-

perature and heat flux increase at the x/a = 0.5 panel location. As can be seen from

Figure 5.22, this is due to the fact that x/a = 0.5 is slightly towards the compression

side of the panel.

A time history of the panel deflection at x/a = 0.5 is shown in Figure 5.23c. This

plot clearly shows the earlier start to the deformation for the shorter trajectory step

lengths, and the subsequent larger deflections at t = 900.0s.

The shorter trajectory steps more accurately capture the transition regions in

the time history of the problem. For instance, Figure 5.24 shows the heat flux at

x/a = 0.5 for the early portion of the simulation before the equilibrium region is

reached. The ts = 10.0 s case does not capture the earliest portion of the heat flux

curve, and it forms a fairly jagged curve as the surface properties relax to equilibrium.

The ts = 1.25 s case, on the other hand, captures more of the initial heat flux, and

follows a much smoother curve as the solution relaxes to equilibrium. This causes

the integrated heat load on the vehicle to be slightly different between the different

values of ts. These relatively small differences between the trajectory steps can grow

over the course of a 900.0 s simulation since each trajectory point builds off of the

solution from the previous trajectory point.

Figure 5.25 shows the panel deflections and plate temperatures for the first 200.0 s

of the simulation. Results are shown for the ts = 10.0 s and ts = 1.25 s trajectory step

lengths at three different locations along the panel. In both cases, the panel begins to

deform almost as soon as the temperature rises above 300.0 K, but the deformations

are very small. An interesting trend is that the front portion of the panel (x/a = 0.25)

and the midpoint of the panel (x/a = 0.5) both deform away from the flow field, with

the front portion deforming more rapidly. The back portion of the panel (x/a = 0.75),

on the other hand, begins to deform into the flow field. This pattern of deformation

remains fairly constant for all trajectory step lengths out to roughly 800.0 seconds,
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Figure 5.23: Time history of solution for various trajectory step lengths at a plate
location of x/a = 0.5.

at which time the midpoint of the panel begins to deflect more rapidly than the front

portion, and the entire panel begins to deform very rapidly away from the flow field.

This behavior can be seen in Figure 5.26 which shows the time history of deflections

and temperatures at three panel locations for all four trajectory step lengths.

The period of rapid panel deflection occurs at roughly the same plate temper-

ature for all four trajectory step lengths. So, even though the deflections occur at
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Figure 5.24: Heat flux and surface temperature at early simulation times.
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Figure 5.25: Panel deflection (solid lines) and plate temperature (dash-dot lines) at
three different plate locations for two different values of ts and for early simulation
times.

different points in time for the different trajectory step lengths, they are starting at

approximately the same temperature values. This seems to indicate that the sudden

increase in deflection is due to a critical temperature being reached, at which point
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the plate buckles due to the thermal expansion. This is consistent with the idea that

the thermal loads are driving the panel response in this test case, and the deflections

are qualitatively similar to those shown by Usmani [98] for beams subjected to purely

thermal loading.
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Figure 5.26: Panel deflection (solid lines) and plate temperature (dash-dot lines) at
three different plate locations for two different values of ts.

It is clear that ts plays a significant role in the time evolution of the solution.

Ideally, ts should be refined until a converged time history is obtained. The length
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of ts that is needed to produce convergence is not clear, however, it is below the

values tested in this work. As the panel temperature reaches an equilibrium value, it

is expected that the impact of ts on the final equilibrium panel shape will be much

smaller than the impact on the time evolution.

5.3.4 Mach 8 Thermochemical Equilibrium, Including Pressure

Building off of the previous test case, the same geometry and flow conditions are

used, but the aerodynamic loads are considered in addition to the thermal loads.

Once again, a series of trajectory step lengths is investigated, but the step length

now ranges from 20.0 seconds to 2.5 seconds. Based on results presented by Culler

and McNamara [27], the free stream conditions listed in Table 5.4 should lead to a

dynamically stable panel response, and therefore the quasi-static coupling framework

presented in this work is valid.

Figure 5.27 shows the time history of panel deflection, surface pressure, temper-

ature, and aerodynamic heat flux at a location of x/a = 0.5 along the length of the

panel for the four different trajectory steps considered. There are several things to

note about these plots. Looking first at Figure 5.27a, the different trajectory step

lengths again lead to very different deflection histories. In addition, as the trajec-

tory step length becomes shorter, the panel begins to oscillate, and the deflection

magnitudes become quite large relative to the plate thickness. The peak deflection

amplitudes for the ts = 2.5 s case are roughly six times larger than for the corre-

sponding case in Section 5.3.3. This oscillatory behavior indicates that the problem

is no longer dynamically stable, and the quasi-static solution procedure breaks down.

In fact, for the ts = 2.5 s and ts = 5.0 s cases it is not possible to run for the full 900

seconds because the surface properties are not able to converge sufficiently between

material response calls in order to move on to the next trajectory point. The code

does not complete the full 900.0 s simulation because of an oscillating convergence
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history, not because it crashes. This is discussed in more detail in Section 5.3.4.1.

The lack of a dynamically stable response for this test case, even though it is

predicted to be stable in [27], may be due to the difference in computational tools that

are used. The flow model in particular differs significantly from that used by Culler

and McNamara, and may be responsible for the difference in behavior. Alternatively,

a different trajectory step length may lead to a stable response. However, this does

not seem likely since the longer trajectory steps show signs of clipping the solution,

and the shorter trajectory steps seem to enhance the instability. While the dynamic

nature of the panel response cannot really be studied with the coupling procedure

used in this work, it is still possible to look at the steady state snapshots of the flow

that did converge, and investigate the impact of the panel deformation on the flow

solution.

Looking again at Figure 5.27, it can be seen that the panel deflections are ac-

companied by oscillations in the surface properties as well. The pressure oscillations,

shown in Figure 5.27b, are in phase with the deflections and show the effects of a large

snap-through from a concave to a convex deformation, followed by a more steady in-

crease or decrease to the maximum or minimum pressure value. The maximum and

minimum pressure values lag slightly behind the maximum convex and concave deflec-

tions. The temperature at the panel surface also oscillates, however, the oscillations

only roughly match up with the displacement oscillations. This is due to the longer

time scales of the thermal problem. The temperature oscillations at the panel surface

are not present at the plate surface within the simulation time that is considered, due

to the time lag created by the TPS. The heat flux is similar to the temperature in

that it does not show the same level of oscillation as the pressure and displacement

profiles.

Figure 5.28 shows the flow pressure, flow temperature, and solid y-displacement

contours for the ts = 2.5s trajectory step length at two different times corresponding
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Figure 5.27: Time history of solution for 4 different trajectory step sizes.

to the largest positive and negative panel deflections determined from Figure 5.27a.

The use of time values does not indicate a physically accurate period of oscillation,

but only refers to the time within the thermal solver at which these deformations

occurred. Contrary to the flow contours shown for the no pressure test case, these

figures show considerable changes in the flow properties due to the much larger panel

deformations. In the case of convex panel deflection, a shock forms over the front
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portion of the panel accompanied by an expansion and another compression near the

aft of the panel. The concave panel deflection leads to the inverse situation where

there is an expansion over the front of the panel and a shock over the rear. For both

the convex and concave deformations, the shocks that form are stronger than the

initial shock generated at the leading edge of the wedge, and lead to high localized

pressures and temperatures.

(a) t = 672.5 seconds, pressure (b) t = 727.5 seconds, pressure

(c) t = 672.5 seconds, temperature (d) t = 727.5 seconds, temperature

Figure 5.28: Flow and solid contours for for two times using a trajectory step size of
ts = 2.5 seconds.
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Figure 5.29 shows the wall pressure and temperature profiles for t = 672.5 s and

t = 727.5 s. The concave deflection (t = 727.5 s) shows higher maximum pressures and

temperatures than the convex deflection case. This is due to the stronger compression

that forms over the aft portion of the panel, which is a result of a larger magnitude

panel deflection.
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Figure 5.29: Surface properties at two different solution times for the ts = 2.5 s test
case.

Figure 5.30 shows the normalized deflection of the panel for some of the different

trajectory step lengths. Figure 5.32a shows the deflection for the ts = 20.0 s and

ts = 10.0 s cases at t = 900.0 seconds. These are the only two cases that ran for the

full 900.0 seconds, however, they still show signs of dynamic instability. Similar to the

no pressure case, different trajectory step lengths lead to the panel starting to deform

at different times. In the case of a dynamic response, this leads to deflection profiles

for the same simulation time that look very different since they represent different

instants in time during a dynamic response.

The second figure shows the maximum positive and negative panel deflections for

the ts = 2.5 s second case. These correspond to the flow contours shown in Figure
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Figure 5.30: Normalized deflections for two different times using multiple trajectory
step lengths.

5.28. The deflections are not symmetric about the zero displacement line, and the

magnitude of the displacement is greater in the negative direction. The location of

maximum displacement is slightly aft of the midpoint of the panel. This is in contrast

to the no pressure case where the maximum displacement was slightly forward of the

midpoint. The change is due to the addition of the pressure forces on the plate which

act to push the plate aft.

The temperature distribution at the middle of the plate at several different times

is shown in Figure 5.31. Similar to the no pressure case, shorter trajectory lengths

lead to slightly higher in-depth temperatures at a given time. Also, although it is not

shown, the temperature gradient through the panel is once again very small, so the

plate surface temperatures are approximately the same as the mid-plate temperatures.

The temperature effects due to panel oscillation have not penetrated to the depth of

the plate, so the temperature profiles look very similar to the profiles from the no

pressure case shown in Figure 5.20.

Figure 5.32 shows a comparison between the pressure and viscous stresses for the
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Figure 5.31: Temperature at the middle of the plate for several different solution
times and two different trajectory step lengths.
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Figure 5.32: Comparison of the pressure and viscous stresses for the ts = 2.5 s case
at t = 785.0 s.

convex deformation case with ts = 2.5 s. The pressure force on the plate, even when

there is a strong expansion, is considerably larger than the viscous forces. In fact, for

this test case, the viscous forces are completely negligible.
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5.3.4.1 Effect of Plate Boundary Conditions

The previous results all utilize a clamped boundary condition on the edges of the

plate. Use of a simply-supported boundary condition should result in larger total

deformations since the ends of the plate are free to rotate. In order to test the impact

of the plate boundary conditions on the panel response, the previous test case is

modified to use a simply-supported boundary condition at the midpoints of the plate

ends. For this test, only a trajectory step of 10.0 seconds is used since this trajectory

step length ran for the full 900.0 s in the clamped boundary condition case.

Figure 5.33a shows the time history of deflection for the simply-supported case.

For the clamped case it was found that a trajectory step of 10.0 s became unstable at

approximately t = 800.0 s, but would converge for the full 900.0 s simulation. In the

simply-supported case, however, after the first large deflection at roughly t = 400.0

s, the surface properties would not converge between calls to the material response

code. The deformations obtained are much larger than the clamped ts = 10.0 s case,

but still smaller than those observed in the clamped ts = 2.5 s case. The instability

also starts much sooner in time for the simply-supported case than for any of the

clamped cases.

Figure 5.33b shows the normalized deflection as a function of the coupling itera-

tion number rather than time. The coupling iteration number refers to the number

of calls made to the material response code from LeMANS. Multiple coupling itera-

tions typically occur within a single trajectory step in order to converge the surface

properties during that step. The iterations that occur during a trajectory step at a

simulation time of t = 450.0s are highlighted in the figure. It is interesting to note

that the deflections at the iterations within a single time step show bounded, nearly

symmetric, non-periodic oscillations. Similar behavior is also present in the clamped

boundary condition case, but it is much more pronounced with the simply-supported

boundary conditions.
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Figure 5.33: Deflection as a function of time and coupling iteration number for a
simply supported boundary condition.

Figure 5.34 shows the panel shapes obtained at 10 consecutive iterations within

the t = 450.0s time step. Similar panel shapes are observed by Dowell [33] and

Dugundji [35] using plate theory and a first-order aerodynamic approximation. The

results shown in [33] and [35] are time resolved, however, and so the sequence of

panel shapes does not match what is shown in Figure 5.34. Due to the lack of time

accuracy in the computed structural response, and since the trajectory steps are

considerably longer than the time scale of the dynamic response, the panel shapes

that are computed show different instantaneous panel deflections within the entire

range of panel oscillation, and not a continuous series of deflections in time. If the

trajectory step length is shortened to capture the dynamic response time scale, and

the panel acceleration is accounted for in the structural response, then it should be

possible to resolve the oscillations accurately using the present approach, however, it

is computationally prohibitive for this test case.
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Figure 5.34: Series of panel deflections at t = 450.0 seconds.
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5.3.5 Mach 7 Thermochemical Equilibrium, Effect of Plate Back Pressure

Based on analysis shown in [27], the time-to-flutter for this panel test case increases

as the flight Mach number decreases. This is due to lower levels of thermal and

aerodynamic loading. Therefore, a test case using the same panel geometry and free

stream flow conditions is run at a Mach number of 7, to investigate whether the lower

heating and aerodynamic force levels will lead to a dynamically stable response at

t = 900.0 s.

An additional comparison is made using two different back-plate pressure distribu-

tions. The initial back pressure is set using the same approach as in the Mach 8 case,

where a linear pressure variation is assumed with the values taken from the Mach 7

flow-only solution. This pressure distribution is then increased uniformly by 10% to

produce a higher back pressure along the panel. As discussed in Section 5.3.1.1, the

actual magnitude of the back pressure for this test geometry, as well as the pressure

distribution along the back of the panel is not known. Two different trajectory step

lengths are used: ts = 10.0 s and ts = 5.0 s.

Figure 5.35 shows the time histories of deflection and temperature at x/a = 0.5

for all of the cases considered. The original pressure cases do not show any panel de-

flection until almost 900.0 seconds, and the panel surface temperature quickly reaches

an equilibrium temperature that is nearly constant for most of the simulation. The

equilibrium temperature for this case is slightly lower than for the Mach 8 case since

the aerothermal load is lower. All of this is consistent with lower Mach numbers

delaying the panel dynamic response.

When the back pressure is increased by 10%, the results change considerably.

For both trajectory step lengths, the panel begins to deform immediately due to the

pressure difference across the panel. The ts = 5.0 s case has a more rapid rate of

deformation, but both cases reach approximately the same maximum stable defor-

mation. At roughly t = 800.0 s, the ts = 5.0 s case becomes unstable, and the panel
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Figure 5.35: Time history of deflection and temperature for the Mach 7 test case with
different plate back pressures.

begins to oscillate around the stable deformed position [33]. The ts = 10.0 s case,

on the other hand, remains stable over the entire 900.0 second simulation, with the

panel deformation nearly constant after 600.0 seconds.
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Figure 5.36: Normalized deflections at t = 900.0s for the Mach 7 test case with
different plate back pressures.

Figure 5.36 shows the normalized deflections for the two different plate back pres-
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sure cases at the ts = 10.0 s trajectory step length. The increased back pressure case

shows much larger deflections, which is mainly due to the pressure imbalance across

the plate at the initial time. Both of the plotted deflections show the peak deflection

occurring aft of the plate midpoint.

These results indicate that decreasing the aerodynamic and aerothermal loads on

the panel by using a lower free stream velocity does delay the onset of unstable behav-

ior. This is consistent with Culler and McNamara’s results. Additionally, a moderate

increase of the plate back pressure causes significant changes in the deformation of the

plate. At higher back pressures the plate shows either a stable response over the 900.0

second simulation, or an unstable response when a shorter trajectory step length is

used. The considerable changes that occur for different back pressures indicate that

appropriate determination of the back pressure is very important in determining the

panel response.

5.3.6 Effect of Nonequilibrium

The cases presented up to this point do not allow for the possibility of thermal

or chemical nonequilibrium. To assess the potential impact of nonequilibrium on the

panel response, the Mach 8 case from Section 5.3.4 with clamped boundary conditions

is rerun, but with the vibrational energy conservation equation included, and allowing

for chemical reactions to take place. The only reactions that could potentially take

place within the 5 species air model that is used are the dissociation of N2 and O2,

and the subsequent formation of NO. Two different trajectory step lengths, ts = 10.0

s and ts = 2.5 s, are used.

Figure 5.37 shows the time histories of the panel deflection, surface pressure,

surface temperature, and heat flux for the cases allowing for nonequilibrium and for

the equilibrium results from Section 5.3.4. For both of the trajectory step lengths

that are considered the results from the equilibrium and nonequilibrium solutions are
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very similar. The only difference is that the nonequilibrium results become unstable

at a slightly earlier time, so the dynamic response is shifted slightly earlier in time.

This offset is less evident for the ts = 10.0 s case than it is for the ts = 2.5 s case.

Looking at the translational and vibrational heat fluxes in Figure 5.38 for the

ts = 10.0 s case, it can be seen that the heat flux due to vibrational energy is over

2 orders of magnitude lower than the translational energy heat flux. This indicates

that thermal nonequilibrium is a very minor factor for this test condition.

Figure 5.39 shows vibrational temperature contours for the maximum positive and

negative panel deflections. In the convex deformation case, there is no discernible

change in vibrational temperature even through the shock. In the concave case there

is a very slight increase in temperature after the shock, but it’s only about a de-

gree above the free stream temperature. As was shown in Section 5.3.4, the shock

in the concave case is stronger than the shock caused by convex deformation, and

while this leads to only a very small change in Figure 5.39, it is conceivable that for

large enough deformations, or for similar deformations at higher speeds, the effects

of nonequilibrium could become more important.

Similar results are obtained for the flow chemistry. Flow temperatures are too low

for the dissociation of N2 and O2, and so the flow remains in chemical equilibrium.
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Figure 5.37: Comparison of time histories for equilibrium (EQ) and nonequilibrium
(NEQ) flow models.
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5.3.7 Computational Cost

An important consideration with any form of computational modeling is the time

that it takes to produce a solution. Table 5.6 shows the total time required for the

Mach 8 equilibrium and nonequilibrium cases from sections 5.3.3, 5.3.4 and 5.3.6, as

well as the percentage of time spent on flow calculations versus material response

calculations. The total time listed is the CPU time, not the wall time. Most of

the results presented make use of 16 processors for the flow computations, but only

a single processor for the material response calculations. In order to present a fair

comparison, times are shown only for the cases that completed the full 900.0 second

simulation to a similar level of convergence.

Case ts [s]
Material CPU Time

% Flow
% Material

Response Calls [hr] Response

No Pres.

10.0 106 342.1 98.73 1.27
5.0 198 700.2 97.73 2.27
2.5 377 806.7 97.38 2.62
1.25 738 1128.4 96.63 3.37

EQ Pres.
20.0 58 509.4 97.72 2.28
10.0 122 563.1 96.97 3.03

NEQ Pres. 10.0 115 1242.9 98.50 1.50

Table 5.6: Computational times for aerothermoelastic test cases.

The CPU time increases as ts decreases, but the percentage of time spent in the

flow and material response codes changes very little between the different trajectory

step lengths. In general, there is a slight increase in the percentage of time spent

in the material response code as shorter trajectory steps are used. As expected, the

computational time increases as the level of coupling is increased, and as the flow

model becomes more complicated. Including the effects of nonequilibrium in the

flow solution is the largest source of increased computational time between the three

different cases listed. In all cases, the vast majority of computational time is spent
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computing the flow solution.

5.4 Summary

This chapter presented the results from two different test cases that involved fluid-

thermal-structural coupling. The first test case investigated the aerothermal response

of the IRV-2 reentry vehicle, including surface ablation of a carbon-carbon material.

The results generated using the methods presented in this thesis were compared with

results from a one-dimensional material response code, and also from the ASCC code.

The multi-dimensional material response results were found to produce temperature

contours that are more physically realistic than the one-dimensional results, but the

predicted surface temperatures were higher for the multi-dimensional case, and the

ablation rate was lower in the stagnation region. Additionally, it was found that

the multi-dimensional material response code produced stagnation point temperature

predictions that were closer to the ASCC results than the one-dimensional code, but

the predicted stagnation point recession rate was considerably lower than the ASCC

results.

The second test case that was studied consisted of an insulated metallic plate

exposed to an hypersonic flow. As the temperature of the plate increased due to

aerodynamic heating, thermal stresses within the material caused the plate to deform.

The deformation then impacted the flow solution. It was found that the amount of

simulation time between updates to the flow solution has a strong impact on the time

evolution of the coupled solution. Shorter update times lead to a faster increase in

plate temperature, and therefore an earlier start to the plate deformation. When the

effects of flow pressure were included in the analysis, the aerothermoelastic response

of the plate became unstable, and the quasi-static coupling procedure presented in

this work began to break down. The time between flow updates was again found

to have a significant impact on the start time and the severity of the instability.
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Varying the pressure on the back side of the plate was found to strongly influence the

time history of the plate deflection, and in some cases suppressed the appearance of

unstable behavior. Additionally, it was found that for the flight conditions considered

in this test case, the effects of thermal and chemical nonequilibrium in the flow field

are negligible.

These results indicate that the aerothermoelastic framework implemented in the

present work is robust for cases where the quasi-static coupling approximation is valid.

When material deformation is accounted for in the framework, frequent updates of

the flow solution are required for accurate time evolution of the coupled problem.

This increases the computational cost of the approach presented.
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CHAPTER VI

Conclusions

6.1 Summary

Chapter I introduced the concept of aerothermoelastic coupling, and discussed

some of the difficulties that exist in modeling fluid-thermal-structural interactions for

hypersonic vehicles. The high-speed flight environment leads to significant thermal

loads on the structure of a vehicle, which can in turn lead to structural deformation

and material property degradation. This sets up a coupled interaction between the

fluid and structure that is driven by thermal effects. Depending on the type of hy-

personic vehicle and its time of flight and trajectory, an ablative thermal protection

system may be needed to ensure that the vehicle survives. Use of this type of TPS can

minimize the impact of thermal effects on the load bearing structure of the vehicle,

but it becomes necessary to model the chemical ablation and surface recession of the

ablative material. The need to account for all of these different physical phenom-

ena and the coupling between them, leads to a complicated computational modeling

problem.

Chapter II presented the models used to study the fluid, thermal, and structural

aspects of the coupled aerothermoelastic problem. The governing equations and rele-

vant constitutive relations for each model were discussed. The chapter first described

LeMANS, a Navier-Stokes code developed previously at the University of Michigan,
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that is used for the flow field modeling in this study. Next, details on the equations,

modeling assumptions, and boundary conditions were given for the thermal and struc-

tural material response code that is developed in this work. The total Lagrangian

structural formulation was discussed, along with the use of the 2nd Piola-Kirchhoff

stress tensor and the Green-Lagrange strain tensor.

Chapter III discussed the numerical approaches used to solve the governing equa-

tions for the models presented in Chapter II. The use of the finite volume method

in LeMANS was described first, along with an overview of the ghost-cell method for

implementing boundary conditions. Next, the control volume finite element method

was introduced, and its application to the thermal and structural governing equations

was discussed. Details were given on the systems of nonlinear equations that result

from the CVFEM. A discussion of the time integration methods that are used, along

with the Newton-Raphson method was also presented. Finally, the chapter described

the partitioned framework that is used to couple the fluid, thermal, and structural

aspects of an aerothermoelastic problem. The quasi-static coupling assumption and

the types of problems where it is valid were discussed. Also discussed was the in-

terpolation scheme between the fluid and solid meshes, and the boundary conditions

that must be applied at the interface between the fluid and solid.

Chapter IV discussed the idea of code verification, and introduced the Method of

Manufactured Solutions (MMS). The application of the MMS to LeMANS and the

thermal-structural material response code was presented, including the manufactured

solutions used in each case, and the handling of specialized boundary conditions. The

chapter next discussed code order of accuracy, and how it is computed for the purpose

of code verification. Results from using the Method of Manufactured Solutions were

then presented for LeMANS and the material response code. It was found that the

original implementation of the supersonic inlet, supersonic outlet, and inviscid wall

boundary conditions in LeMANS resulted in first-order accuracy, rather than the ex-

150



pected second-order accuracy. The implementation of these boundary conditions was

modified, and second-order accuracy was demonstrated. The viscous wall boundary

condition was also tested, and it was found that a lower than expected order of ac-

curacy was observed based on the L∞ error norms. The root cause of this decreased

order of accuracy was not fully identified, however, it is thought to be related to the

way that LeMANS computes viscous fluxes at the wall boundary, and is not the result

of an error in the code.

The thermal material response code was tested for anisotropic, temperature de-

pendent materials using a time dependent manufactured solution. For all boundary

conditions and computational domains that were tested, the expected second-order

accuracy was observed. The structural material response code was also tested for

materials with temperature dependent properties, but using a steady manufactured

solution. The specified displacement boundary condition showed the expected second-

order accuracy in displacements and first-order accuracy in stresses. Next, the spec-

ified traction boundary condition was applied on three sides of the domain and the

displacements were specified along the fourth side. Results from this case showed

the expected orders of accuracy using the L2 error norm, but the L∞ norm showed

a slightly lower than expected order of accuracy for the displacement components.

This is thought to be the result of how the control volumes are constructed at mesh

locations where the different boundary conditions meet, and it is not indicative of an

error in the traction boundary condition.

A manufactured solution was also developed to allow for the testing of the inter-

code interpolation between the fluid and solid meshes. This solution consisted of

temperature distributions in the flow and solid domains that had the same tempera-

ture and temperature gradient at the fluid-solid interface, but different values away

from the interface. This allowed for the wall heat flux values interpolated from the

flow mesh to be used as the boundary conditions for the manufactured solution in
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the solid domain. Using this approach, it was found that second order accuracy was

maintained in the thermal code after the coupling process based on the L2 norms,

but the L∞ norms showed first-order accuracy. This was again a result of the control

volume construction at points where multiple boundary conditions meet.

The Method of Manufactured Solutions was found to be a valuable tool as part

of the code development process. The ability to test realistic material properties

and boundary conditions helped to build confidence in the tested codes. There are,

however, some drawbacks to using the MMS as a verification tool. The manufac-

tured source terms that are needed to balance the governing equations can become

extremely large and complicated to work with. The use of a symbolic math program

such as Mathematica helps to alleviate this difficulty, but does not eliminate it. Ad-

ditionally, as the source terms become more complicated, the run time for a program

can increase considerably. Finally, the sensitivity of the method to detecting differ-

ences from the expected order of accuracy even in very small regions of the domain

can be both a blessing and a curse. These highly localized regions of error, sometimes

only individual control volumes, are often not due to errors in the code, and they

typically do not impact the rest of the solution, but they show up in the order of

accuracy analysis in the same way that an actual error does. This can complicate the

process of debugging a code.

Chapter V presented results for two different test cases that were studied using

the aerothermoelastic framework outlined in Chapter III. LeMANS was used to ob-

tain flow field solutions, and the material thermal and structural response code was

used to find solutions in the structural domain. The first test case was an aerother-

mal analysis of the nosetip of the IRV-2 reentry vehicle, including a model for the

surface ablation of carbon-carbon. A series of points along the IRV-2 reentry tra-

jectory were modeled assuming an axisymmetric steady-state flow solution and an

axisymmetric transient thermal solution. Code-to-code comparisons were made with
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a one-dimensional material response code, and with the ASCC code. Significant differ-

ences in the temperature distributions were observed between the axisymmetric and

one-dimensional results. The axisymmetric surface temperature results were found

to compare slightly better with the ASCC code than the one-dimensional results, but

the stagnation temperature and recession rate was still under-predicted compared

with the ASCC results.

The second test case involved the aerothermoelastic analysis of a thermally insu-

lated metal plate inclined at 5° to a hypersonic flow for a simulated time of 900.0 s.

The flow field was assumed to be steady relative to the structural response, and the

elastic response of the plate was assumed to be steady relative to the transient tem-

perature solution. A series of numerical trajectory step lengths were investigated in

order to determine the impact of updating the structural response and fluid solutions

at longer time intervals. The update intervals that were used were considerably longer

than those used for this test case with lower order models [27]. This was done to de-

crease the computational cost associated with using the high-fidelity models presented

in the earlier chapters on a long thermal soak problem. It was found that in all cases,

the time response of the panel was a strong function of the trajectory step length

that was used, with shorter steps resulting in earlier, larger panel deformations. This

resulted in different behavior at the 900.0 s simulation time. The different deforma-

tions were the result of faster panel heating for the shorter trajectory steps, and the

fact that the plate did not reach an equilibrium temperature within the simulation

time due to the thermal insulation. It was also found that for a test case where lower

order models with increased time resolution predicted a dynamically stable response,

the methods presented in this work resulted in a dynamically unstable response that

caused the quasi-static coupling framework to break down. Before break down oc-

curred, an oscillatory plate behavior was observed, with alternating large convex and

concave panel deformations. These deformations had a significant impact on the flow
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field, and led to relatively strong shocks and expansions forming over the plate. The

pressure distribution across the back of the plate was varied, and this was found to

have a strong impact on the response and stability of the panel. The impact of con-

sidering thermochemical nonequilibrium in the flow was also investigated, and it was

found that for this case, the effects of nonequilibrium were negligible.

Based on the results presented, it is likely that much shorter trajectory step lengths

must be used in order to obtain convergence in the time history of the panel response.

This will greatly increase the computational cost associated with solving long simula-

tion time problems using high-fidelity codes, even when a steady state flow model is

used. Additionally, the stability of a solution response is not the same between this

work and that performed using simplified aerodynamic models. This is potentially

the result of using full Navier-Stokes CFD solutions that more accurately capture the

nonlinear fluid response to panel deformations. It is also possible that the instabilities

that were observed are a result of assumptions made in the coupling framework, and

are not physically accurate.

6.2 Contributions

The work presented in this dissertation advances the simulation of coupled fluid-

thermal-structural problems in hypersonic flows in several ways. Contributions are

made to both the flow and material response models, as well as the aerothermoelastic

coupling framework. The specific contributions are outlined below.

1. The main goal of this work, and the single largest contribution is the develop-

ment of a new material response code that can solve for the multi-dimensional

thermal and elastic structural behavior of arbitrary geometries undergoing large

deformations. While the modeling approaches used are not new, the code

is developed independently from other research groups and is designed with
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the capability to be directly coupled with the LeMANS CFD code for use in

aerothermal and aerothermoelastic simulations. Additionally, the use of sepa-

rate thermal and structural portions of the code is beneficial for inclusion within

a partitioned coupling approach, since it makes it easy to use widely varying

time steps between the different physical processes. It also allows for easy im-

plementation of simplifying assumptions such as quasi-static thermo-structural

response. Finally, the capability to model surface ablation in the same code

makes it a useful tool for a wide range of fluid-thermal-structural problems that

are important when studying hypersonic vehicles. This flexibility allows it to

be used as a base for the investigation of different aerothermal and aerother-

moelastic problems by other researchers.

2. An aerothermoelastic framework is developed that allows for a steady state flow

code to be coupled with transient thermal and structural response codes. This

takes advantage of the large time scale separation between different physical

phenomena that is often present in hypersonic cases. This is done in order

to decrease overall computational time by not requiring a time accurate flow

response. A method of dynamically determining how often to update the flow

and structural solutions is proposed that is based on the local convergence of

the fluid-solid interface values. Included in this framework is the coupling of

a nonequilibrium Navier-Stokes solver with a full nonlinear structural response

code. The coupling of these two components allows for much greater physical

accuracy in the aerothermoelastic response of a structure at hypersonic speeds

than is possible with either perfect gas CFD codes or lower order aerodynamic

models.

3. The Method of Manufactured Solutions is used to verify several different codes,

including a multi-species CFD code. In the process, commonly used methods
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of enforcing boundary conditions in a hypersonic CFD code are shown to lead

to lower order of accuracy than is expected. This illustrates the benefits of rig-

orously verifying even an established code. Additionally, a method of verifying

a partitioned code framework using the Method of Manufactured Solutions is

described and demonstrated for a flow-thermal coupling. This method can be

extended to more complicated coupling scenarios, while still allowing for formal

order of accuracy verification.

4. Results from a quasi-static, coupled, fluid-thermal-structural problem computed

using the high-fidelity models presented in this work, show a strong dependence

on the length of time between flow updates. This indicates that even in cases

where the structural response is dynamically stable, the time between flow up-

dates needs to be quite small in order to obtain convergence in the time evolution

of the problem.

6.3 Future Work

The work presented in this thesis represents a first step towards a high-fidelity

aerothermoelastic framework. There are still significant improvements that can be

made to the individual codes, as well as to the coupling framework. Some of the

most useful next steps are outlined here, along with potential directions in which the

research could be continued.

It is important to continue testing of the aerothermoelastic framework via code-to-

code comparisons and comparisons with lower fidelity models. These types of analyses

help to build confidence in the code’s implementation, and also serve to identify when

the quasi-static coupling assumptions made in the current framework begin to break

down. It would be interesting to couple a lower order structural model, such as von

Kármán plate theory, with LeMANS using the same coupling approach, in order to
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more clearly understand the impact of a high-fidelity flow model on the structural

response of a panel. This would allow for a more exact comparison with published

lower order results, and would also allow for the differences in results that are caused

by the flow model and those that are caused by the structural model to be more easily

separated.

The effect of the various coupling parameters in the present aerothermoelastic

framework should be further investigated. In particular, the effect of trajectory step

length, the parameters used to determine when the material response code is called

from LeMANS, and the parameters that determine when LeMANS moves from one

trajectory point to the next should be more fully quantified. Additional cases for the

insulated metallic plate geometry should be run with shorter trajectory steps in order

to determine when convergence in the time history of the panel response is obtained.

One of the most important modifications that should be made to the presented

material response code is to implement the capability for parallel processing through

domain decomposition. For the smaller two-dimensional problems considered in this

work, it was feasible to solve for the material response on a single processor, how-

ever, as problems become more complicated, and as three-dimensional problems are

investigated, it will become infeasible to use a single processor.

The linear algebra methods that are used in the material response code can be

improved by switching to those that are available in LAPACK [2]. This would give

access to highly optimized linear algebra routines for solving systems of equations, as

well as access to a number of improved preconditioning routines compared to those

currently used. The use of LAPACK could potentially decrease simulation times,

improve code robustness, and cut down on future code development time.

In LeMANS, the introduction of full time-accuracy is important for the ability

to model aeroelastic problems. Extending the coupling framework to include a time-

accurate CFD code would allow for a much wider range of aerothermoelastic problems
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to be investigated. In particular, the impact of thermochemical nonequilibrium at

high Mach numbers on the dynamic response of structural components represents an

important extension of this work.

Additionally, the effects of turbulence should be included in the aerothermoelastic

coupling framework. Accounting for turbulence will lead to much higher heat fluxes,

which could have a large impact on the deformation of a structure. The Baldwin-

Lomax turbulence model is currently implemented in LeMANS, however, the inclusion

of a more physics based model would be useful.

It would also be interesting to include the capability of modeling charring ablative

materials, which include in-depth material decomposition. This would greatly extend

the applicability of the material response code. In-depth decomposition, along with

the ability to model the structural response, would allow for predictions of the stresses

generated in a charring TPS material due to both temperature change and the internal

pore pressure caused by pyrolysis gases. This could be further extended to the study

of mechanical ablation.
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APPENDIX A

Constitutive Relations

This appendix gives the specific form of the constitutive matrices used in the

structural mechanics portion of this work. These are the standard relations for elastic

materials based on Hooke’s law. Two different constitutive matrices are presented, the

first for orthotropic materials, and the second for isotropic materials. In both cases

the stress-strain relationship is given by Equation A.1, where D is the constitutive

matrix. 
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
= D



εxx

εyy

εzz

εxy

εxz

εyz


(A.1)

In the following matrices, νij is Poisson’s ratio, Ei is Young’s modulus, and Gij

is the shear modulus. In the case of isotropic materials, the subscripts are dropped

since the material properties do not depend on the coordinate direction. Note that

the constitutive relations are written in terms of the true tensorial shear strains, and

not the engineering shear strains. The engineering shear strains can be found by
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multiplying the tensorial shear strains by 2.

Orthotropic Materials

D =



1−νyzνzy
EyEz∆

νyx+νzxνyz
EyEz∆

νzx+νyxνzy
EyEz∆

0 0 0

νxy+νxzνzy
EzEx∆

1−νzxνxz
EzEx∆

νzy+νzxνxy
EzEx∆

0 0 0

νxz+νxyνyz
ExEy∆

νyz+νxzνyx
ExEy∆

1−νxyνyx
ExEy∆

0 0 0

0 0 0 2Gxy 0 0

0 0 0 0 2Gxz 0

0 0 0 0 0 2Gyz


(A.2)

where,

∆ =
1− νxyνyx − νyzνzy − νzxνxz − 2νxyνyzνzx

ExEyEz

Isotropic Materials

In the case of isotropic materials, the shear modulus can be written in terms of

Young’s modulus and Poisson’s ratio as shown in Equation A.3. This leads to the

constitutive matrix shown in Equation A.4.

G =
E

2 (1 + ν)
(A.3)
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D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1− 2ν 0 0

0 0 0 0 1− 2ν 0

0 0 0 0 0 1− 2ν


(A.4)
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APPENDIX B

Analytical Integrals

This appendix outlines the procedure for analytically computing the control vol-

ume integrals in a reference element. Examples are given for surface and volume

integrals in triangular elements, and the extension to tetrahedral elements is dis-

cussed. The conduction and storage terms of the heat equation are used to illustrate

the procedure. The process shown here is applied to the portion of each primary

mesh element that contributes to the ith control volume in the dual mesh.

As discussed in Chapter III, integration is performed in a reference element, and

the result is mapped back to physical space in order to assemble the discrete form of

the governing equations. Figure B.1 shows the control volume contribution, denoted

by the nodes (i, k1, k2, k3), from a triangular element to the control volume around

node i. The elemental control volume contribution is split into two triangular sub-

control volumes, v1 and v2, defined by the indices (i, k1, k2) and (i, k2, k3), respectively.

Each sub-volume has a surface denoted by f1 or f2. It is not necessary to integrate over

the (i, k1) or (i, k3) surfaces since these are part of the interior of the control volume

around node i. Surface integrals are computed over f1 and f2 separately, and the

results are added together to compute the total total surface integral for the elemental

control volume. The volume integrals over v1 and v2 are computed individually as
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well. The reason for computing these integrals separately is to allow each sub-control

volume to be mapped to a triangular reference element for integration, rather than

integrating over the full diamond-shaped elemental control volume contribution. This

greatly simplifies the integration.

Figure B.1: Triangular reference element with the sub-control volume for node i
indicated.

The procedure for integrating over the sub-control volume associated with node

i is as follows. First, the necessary values from the h, i, and j nodes, which are

nodes within the primary mesh, are interpolated to the k1, k2, and k3 sub-element

nodes using the linear shape functions given in Equation 3.5, and repeated here for

convenience.

triangles



φ1 = 1− ξ − η φ1 = 1− ξ − η − ζ

φ2 = ξ φ2 = ξ

φ3 = η φ3 = ζ

φ4 = η


tetrahedra
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Next, Jacobians are computed for the faces f1 and f2, or for the volumes v1 and

v2, depending on whether surface or volume integration is being performed. Then,

the integration is performed over a reference sub-control volume, assuming a linear

variation of the properties at the sub-control volume nodes. The result from each sub-

control volume is then mapped back to physical space using the Jacobians, and the

sub-control volume results are added together to give the full elemental contribution

to node i.

A specific example of this procedure is given below, using the conduction and

storage terms from Equation 2.11, which is repeated here. The conduction term

leads to a surface integral over the f1 and f2 faces, and the storage term leads to a

volume integral over v1 and v2.

∫
∂Ω

q̃in̂i d∂Ω︸ ︷︷ ︸
conduction

−
∫
∂Ω

ρhvcsin̂i d∂Ω +
d

dt

∫
Ω

ρedΩ︸ ︷︷ ︸
storage

=

∫
Ω

QdΩ

Since Fourier’s law is used to compute heat flux, the quantities that need to be

interpolated to the sub-control volume nodes are the thermal conductivity, the density,

and the internal energy. The temperature derivatives used in the heat flux calculations

are assumed to be constant over an element, so they do not need to be interpolated.

Equation B.1 shows the interpolated values. The superscripts, km, where m ranges

from 1 to 3, indicate to which sub-control volume node the element nodal values are

being interpolated. They also indicate the location at which the shape functions are

evaluated. The subscripts indicate which shape function is being used, and which

element node value is being interpolated. The values of 1, 2, and 3 correspond to the

i, j, and h nodes in Figure B.1. The thermal conductivity values are shown only for

the κxx component of the conductivity tensor, but the other components are treated
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in an identical fashion.

κ̂kmxx = φkm1 κxx1 + φkm2 κxx2 + φkm3 κxx3

ρ̂km = φkm1 ρ1 + φkm2 ρ2 + φkm3 ρ3

êkm = φkm1 e1 + φkm2 e2 + φkm3 e3

(B.1)

The x-component of the conduction term is then computed for the f1 and f2

faces as shown in Equations B.2 and B.3, where Jf1 and Jf2 are the Jacobians for

the two faces, and ξ is a reference element coordinate. The total control volume

contribution is then the sum of the f1 and f2 integrals. The approach is identical for

the y-component of heat flux, substituting the correct normal vectors and thermal

conductivity terms.

∫
f1

qxn̂x dS = −Jf1n̂x
[
∂T

∂x

∫ 1

−1

1

2
κ̂k1xx (ξ + 1) +

1

2
κ̂k2xx (1− ξ) dξ

+
∂T

∂y

∫ 1

−1

1

2
κ̂k1xy (ξ + 1) +

1

2
κ̂k2xy (1− ξ) dξ

]
= −Jf1n̂x

[
∂T

∂x

(
κ̂k1xx + κ̂k2xx

)
+
∂T

∂y

(
κ̂k1xy + κ̂k2xy

)]
(B.2)

∫
f2

qxn̂x dS = −Jf2n̂x
[
∂T

∂x

∫ 1

−1

1

2
κ̂k2xx (ξ + 1) +

1

2
κ̂k3xx (1− ξ) dξ

+
∂T

∂y

∫ 1

−1

1

2
κ̂k2xy (ξ + 1) +

1

2
κ̂k3xy (1− ξ) dξ

]
= −Jf2n̂x

[
∂T

∂x

(
κ̂k2xx + κ̂k3xx

)
+
∂T

∂y

(
κ̂k2xy + κ̂k3xy

)]
(B.3)

The integrals of the storage term over the v1 and v2 sub-volumes proceed in a

similar fashion. Equations B.4 and B.5 show the analytical integrals for this case.

The total control volume contribution to node i is then the sum of the v1 and v2

integrals. Note that the density and internal energy are allowed to vary separately,
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rather than just computing the linear variation of the ρe product.

∫
v1

ρe dV = Jv1

[ ∫ 1

0

∫ 1−ξ

0

(
ρ̂i (1− ξ − η) + ρ̂k1ξ + ρ̂k2η

)
(
êi (1− ξ − η) + êk1ξ + êk2η

)
dη dξ

]
=
Jv1
24

[
ρ̂i
(
2êi + êk1 + êk2

)
+ ρ̂k1

(
êi + 2êk1 + êk2

)
+ρ̂k2

(
êi + êk1 + 2êk2

)]
(B.4)

∫
v2

ρe dV = Jv2

[ ∫ 1

0

∫ 1−ξ

0

(
ρ̂i (1− ξ − η) + ρ̂k2ξ + ρ̂k3η

)
(
êi (1− ξ − η) + êk2ξ + êk3η

)
dη dξ

]
=
Jv2
24

[
ρ̂i
(
2êi + êk2 + êk3

)
+ ρ̂k2

(
êi + 2êk2 + êk3

)
+ρ̂k3

(
êi + êk2 + 2êk3

)]
(B.5)

The approach for tetrahedral elements is nearly identical, except the sub-control

volume integrals are performed over triangular and tetrahedral reference elements,

rather than lines and triangular elements. Figure B.2 shows the elemental control

volume contribution from a tetrahedral element to node i. There are three different

faces, f1, f2, and f3, that make up the sub-control volume. In order to compute the

analytical surface integrals, each of these faces is split into two triangles, and the

integration is carried out in a reference triangular element. The volume integrals are

computed by splitting the sub-control volume into six tetrahedra, two associated with

each face. For example, face 3 is made up of the nodes (k2, k7, k4, k3), and the two

tetrahedra associated with this face are given by (i, k7, k3, k2) and (i, k7, k3, k4). The

total sub-control volume integral is found by summing over all of the faces or all of

the volumes, depending on whether a surface or volume integral is being computed.

The full sub-control volume integrals are not listed here, since they follow the same

approach as the triangular elements, but using the tetrahedral shape functions from
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Equation 3.5, and integrating over the additional ζ dimension.

Figure B.2: Tetrahedral reference element with the sub-control volume for node i
indicated.

The integrals for the structural equations are performed in exactly the same man-

ner. The only differences are the quantities that are being integrated, and the fact

that integration is performed over the initial undeformed geometry since the total

Lagrangian formulation is used. This does not impact the procedure outlined above,

but it means that the Jacobians used to map the solution from a reference element

to a physical element are constant throughout a simulation, even if the material is

deforming.
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APPENDIX C

Manufactured Solution Constants

This appendix lists the values for the various constants that are used in the man-

ufactured solutions from Chapter IV.

Equation θ0 θx θy θxy ax ay axy L

ρN2(x, y) 0.5 0.15 -0.1 0.0 1.2 0.3 0.0 1.0
ρN(x,y) 0.9 0.15 -0.1 0.0 0.7 1.3 0.0 1.0
u(x, y) 800.0 50.0 -30.0 0.0 2.3 0.6 0.0 1.0
v(x, y) 800.0 -75.0 40.0 0.0 0.7 0.667 0.0 1.0
Ttr(x, y) 330.0 67.5 169.0 0.0 2.2 1.4 0.0 1.0

Table C.1: Constants used in the manufactured solution for the LeMANS free stream
boundary condition test case.

Equation θ0 θx θy θxy ax ay axy L

ρN2(x, y) 0.5 0.15 -0.1 0.0 1.2 0.3 0.0 1.0
ρN(x,y) 0.5 0.15 -0.1 0.0 1.2 0.3 0.0 1.0
u(x, y) 2000.0 50.0 -30.0 0.0 2.3 0.6 0.0 1.0
v(x, y) -1500.0 -75.0 40.0 0.0 0.7 0.667 0.0 1.0
Ttr(x, y) 2000.0 67.5 169.0 0.0 2.2 1.4 0.0 1.0

Table C.2: Constants used in the manufactured solution for the LeMANS inviscid
wall boundary condition test case.
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Equation θ0 θx θy θxy ax ay axy L

ρN2(x, y) 0.5 0.15 -0.1 0.0 1.2 0.3 0.0 1.0
ρN(x,y) 0.5 0.15 -0.1 0.0 1.2 0.3 0.0 1.0
u(x, y) 2000.0 50.0 -30.0 0.0 2.3 0.6 0.0 1.0
v(x, y) -1500.0 -75.0 40.0 0.0 0.7 0.667 0.0 1.0
Ttr(x, y) 2000.0 67.5 169.0 0.0 2.2 1.4 0.0 1.0

Table C.3: Constants used in the manufactured solution for the LeMANS viscous
wall boundary condition test case.

Equation T0 Bx By ωT εT

T (x, y, t) 300.0 100.0 66.667 0.5 400.0

Table C.4: Constants used in the manufactured solution for the thermal material
response code with specified temperature and specified flux boundary conditions.

Equation κ0ij κ1ij κ2ij Cp0 Cp1

κxx(T ) 15.0 2.0× 10−3 1.0× 10−5 – –
κyy(T ) 7.5 3.0× 10−2 2.0× 10−4 – –
κxy(T ) 3.0 4.0× 10−3 1.0× 10−4 – –
Cp(T ) – – – 500.0 0.5

Table C.5: Constants used in the manufactured properties for the thermal material
response code with specified temperature and specified flux boundary conditions.

Equation θ0 θx θy θxy θt ax ay axy at T0 L

u(x, y, t) 0.0 0.2 0.0 0.05 1.0 0.5 0 0.3 0.0 300.0 1.0
v(x, y, t) 0.0 0.1 0.1 0.0 1.0 0.7 0.5 0.0 0.0 300.0 1.0
T (x, y, t) – 77.0 42.0 0.0 1.0 0.6 0.2 0.0 150.0 300.0 1.0

Table C.6: Constants used in the manufactured solution for the structural material
response code with specified displacement and specified traction boundary conditions.
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Equation E0 E1 E2

E(T ) 6.0× 1010 −1.0× 108 −1.0× 105

Table C.7: Constants used in the manufactured Young’s modulus for the structural
material response code with specified displacement and specified traction boundary
conditions.

Equation α0 α1 α2

α(T ) 4.0× 10−6 1.0× 10−8 1.0× 10−9

Table C.8: Constants used in the manufactured thermal expansion coefficient for the
structural material response code with specified displacement and specified traction
boundary conditions.

Equation ν0 ν1 ν2

ν(T ) 1.2× 10−1 2.0× 10−4 1.0× 10−6

Table C.9: Constants used in the manufactured Poisson’s ratio for the structural
material response code with specified displacement and specified traction boundary
conditions.

Equation θ0 θx θy θxy θt ax ay axy at L

ρN2(x, y) 0.75 0.0 1.0 0.0 – 1.2 0.0 0.0 – 1.0
ρN(x, y) 0.75 0.0 1.0 0.0 – 1.2 0.0 0.0 – 1.0
u(x, y) -5500.0 0.0 0.0 0.0 – 0.0 0.0 0.0 – 1.0
v(x, y) 500.0 0.0 0.0 0.0 – 0.0 0.0 0.0 – 1.0
Ttr(x, y) 700.0 67.5 169.0 127.0 – 2.2 1.4 1.0 – 1.0
Ts(x, y, t) 700.0 67.5 169.0 127.0 100.0 2.2 1.4 1.0 2400.0 1.0

Table C.10: Constants used in the manufactured solution for the coupled Le-
MANS/thermal response test case.
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APPENDIX D

Material Properties

This appendix lists the thermophysical properties of carbon-carbon that are used

for the IRV-2 simulations in Chapter V. These quantities are obtained from Amar

[5].

Temperature Specific heat Conductivity
Emissivity

[K] J/kg −K W/m−K

255.56 544.284 64.176 0.8
533.33 921.096 64.799 0.8
811.11 1318.842 53.583 0.8
1088.89 1624.478 46.107 0.8
1366.67 1775.203 39.253 0.8
1644.44 1925.928 34.891 0.8
1922.22 2009.664 31.776 0.8
2200.00 2080.840 30.530 0.8
2477.78 2122.708 29.907 0.8
2755.56 2143.642 29.907 0.8
3033.33 2177.136 29.284 0.8
5555.56 2177.136 29.284 0.8

Table D.1: Thermophysical properties of carbon-carbon.
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ABSTRACT

High-Fidelity Material Response Modeling as Part of an Aerothermoelastic
Framework for Hypersonic Flows

by

Jonathan E. Wiebenga

Chair: Iain D. Boyd

The development of a numerical code capable of simulating the multidimensional

thermal and structural response of materials exposed to hypersonic flow is presented.

The control volume finite element method (CVFEM) is used for the spatial discretiza-

tion, and implicit time integration is used in both the thermal and structural portions

of the code. Fourier’s law is used to compute heat fluxes, and the thermal portion

of the code can model materials with temperature-dependent, anisotropic proper-

ties. A total Lagrangian structural mechanics formulation is used along with the

Green-Lagrange strain tensor and the generalized Hooke’s law, to allow for simula-

tion of large elastic deformations of temperature-dependent, orthotropic materials.

The Method of Manufactured Solutions (MMS) is used to verify the implementation

of several aspects of the material response code.

The material response code is coupled with a Computational Fluid Dynamics

(CFD) code using a partitioned framework, in order to study quasi-static aerothermal

and aerothermoelastic problems that arise in hypersonic flow. Characteristic times

for the flow component of the coupled problem are assumed to be much faster than

the thermal and structural time scales, allowing for steady state flow solutions to be

used. The thermal and structural material response is updated as the flow solution



converges to steady state. The temperature solution is used to compute thermal

stresses in the structural response. The MMS is used to verify the CFD code and

some aspects of the coupling procedure.

Two test cases are presented to demonstrate the performance of the material

response code and the coupling framework. The first case simulates the aerothermal

response, including surface ablation, of a reentry vehicle. Comparisons are made with

results from other codes, and it is found that accounting for multidimensional heat

transport within the vehicle leads to higher surface temperatures, but lower surface

recession. The second test case models a thermally insulated compliant panel in an

hypersonic flow. A strong dependence on the time between computing updated flow

solutions exists, even for cases that are dynamically stable. Additionally, dynamic

panel response is observed for some test conditions, and the impact of this behavior

on the quasi-static coupling framework is discussed.


