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And let steadfastness have its full e↵ect, that you may be

perfect and complete, lacking in nothing.

- James 1:4 -
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CHAPTER I

Introduction

As humankind seeks to reach Mars and beyond, fast travel and a↵ordability are key

factors in our pursuit of deep-space exploration, which requires a type of propulsion

system. The conventional propulsion system for space travel is chemical propulsion.

However, chemical propulsion is limited by temperature of the nozzle, and the molec-

ular mass and chemical specific energy of propellants. Even after the remarkable

advances in the last 60 years, the limitations of conventional chemical rockets require

high fuel consumption to reach even one of our nearest planetary neighbors—Mars [1].

Alternatively, electric propulsion (EP) technology enables a↵ordable and distant mis-

sions by having reduced propellant mass and achieving high exhaust velocity. EP

devices use acceleration mechanisms (electrostatic and electromagnetic) that do not

rely on the conversion of heat to kinetic energy and can provide high delta-v (�v).

While exhaust velocities of gas jets or chemical rockets are generally 3,000 to 4,000

m/s, electric propulsion devices have exhaust velocities of up to 105 m/s for heavy

propellants (e.g. xenon) and 106 m/s for light propellants (e.g. helium) [2].

Development of EP has been relatively slow due to the long history of chemical

propulsion, but there have been EP missions that proved the potential of EP thrusters

for future space missions. In 1998, the Jet Propulsion Laboratory (JPL) flew the Deep

Space 1 (DS1) spacecraft as the first solar electric propulsion (SEP)-driven deep space

1



mission using the NSTAR (ion) thruster [3]. After the successful demonstration of ion

propulsion capability by the DS1 mission, this innovative technology was implemented

on the Dawn spacecraft to explore the two heaviest main-belt asteroids: Vesta and

Ceres [4]. Dawn is the only spacecraft to ever orbit two destinations beyond Earth

and the only to orbit an object in the main asteroid belt between Mars and Jupiter.

Dawn’s on-going nearly-ten-year journey to gain insights into the beginning of our

solar system is made possible only by the implementation of EP.

Among EP devices, Hall-e↵ect thrusters (HETs) can provide the high-specific

impulse (Isp) and the high-power propulsion required to enable long-range missions.

A HET can produce higher thrust at a given power, requires fewer power supplies,

and is a much simpler device than ion thrusters [2]. The actual physical processes

occurring in a HET, however, are complex. The detailed physics of plasma processes,

such as the anomalous electron transport and the erosion mechanism of a cathode

due to impacts of anomalously high-energy ions, are not yet well understood.

Fully understanding the physical processes in the plume of a HET is critical from

both the thruster performance perspective and spacecraft integration purposes. De-

tailed knowledge of electron transport across magnetic field lines will help improve the

performance of the thruster. Furthermore, accurate prediction of collision dynamics

between propellant neutrals and ions in the plume will help us better understand the

interaction between the plume and the host spacecraft, and ensure long life of both

the thruster and spacecraft.

In order to better understand and predict fundamental physical processes in a

HET plume, it is necessary to develop a reliable numerical model that can capture

the collision and plasma dynamics accurately, validated with experimental data. Var-

ious numerical models have been used to simulate the partially-ionized plasma in the

plume of a HET, which will be reviewed in more detail in Section 1.2. In general,

Hall thruster plume simulations do not include the e↵ect of a magnetic field because
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modeling the magnetic field is complicated due to the cross partial derivative term

(i.e., @
@x
( @
@y
)). Another reason for neglecting magnetic field e↵ects in the plume is that

the magnetic field strength in the plume is also relatively weaker than the strength

of the field inside or near the exit of the discharge chamber of the HET. However,

experiments [5, 6] show that magnetic field lines leak into the plume of HETs. Char-

acterizing the magnetic field e↵ect is thus necessary to examine the assumption of

neglecting magnetic field in plume modeling, especially in the near-field plume. Al-

though the magnetic field strength is relatively weak in the plume, its e↵ect needs to

be included in order to model the transport of electrons correctly, which is one of the

main factors driving the performance of a HET.

This study is concerned with developing an accurate physics-based model to simu-

late the plume of a Hall thruster using a hybrid particle-fluid approach. As Chapter III

will discuss in more detail, the previous model [7] makes a number of assumptions,

including neglecting magnetic field e↵ects from the construction of a physical model.

In the present study, a new electron model is developed to include the magnetic field

and assess its e↵ects on plasma properties. The new model has the ability to simulate

any magnetic field shapes, which is important because magnetic field topologies vary

from one thruster to another and may change often to improve thruster performance.

In addition to the new electron model, a sputter model is implemented to extend the

capability of the HET plume simulation. The sputter model can be used to estimate

an erosion rate on a solid surface, including the surface of a thruster or any other

components of the host satellite. Accurate predictions of the plume characteristics

and associated erosion rate are key to successful spacecraft integration from a systems

engineering perspective. The new model can predict plasma plume properties that

can be used to improve thruster performance and reduce harmful interaction of the

plume with a spacecraft.

Section 1.1 of this chapter describes the basic principles on the operation of a
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HET and its cathode. The background on Hall thruster plume modeling is reviewed

in Section 1.2. The objectives of present study and outline of the dissertation are in

Sections 1.3 and 1.4.

1.1 Basic Principles of Hall Thruster Operation

The Hall-e↵ect thruster is an electrostatic device that creates an ion beam to gen-

erate thrust by using a cross-field discharge described by the Hall e↵ect. The three

main components of a HET consist of an annular anode inside the discharge cham-

ber, an externally- or centrally-mounted cathode, and a magnetic circuit (Fig. 1.1).

Electrons in a HET are magnetized, and their gyrating motion around a magnetic

field line is described by the gyrofrequency, or cyclotron frequency:

!g =
e|B|
me

(1.1)

where e is the elementary charge, |B| is the magnetic field strength and me is the

electron mass. In a HET, the cathode emits electrons to serve two purposes: to

ionize the xenon propellant inside the discharge chamber and to neutralize the ion

beam downstream of the thruster. Some fraction of the emitted electrons enter the

thruster channel due to the positive potential of the anode relative to the cathode.

These electrons are confined to the azimuthal drift, or E⇥B drift, which is generated

by the axial electric field, E, and the radial magnetic field, B. These electrons ionize

the neutral propellant, typically xenon, that is fed into the annular discharge chamber

through the anode. The ionized xenon, mainly Xe

+ and Xe

2+, are then accelerated

by the electric field, exiting the thruster as a beam. This ion beam is neutralized as

a quasi-neutral plasma by the other fraction of the electrons emitted by the cathode.

Figure 1.2 shows the main parts of the cathode: the insert emitter, the orifice,

and the keeper. When the cathode is heated, electrons are emitted from the insert
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Figure 1.1: Schematic of HET operation with a centrally-mounted cathode. Propel-
lant gas (i.e., Xe) is fed into the anode and undergoes electron-impact
ionization inside the discharge chamber. These ions are then accelerated
into the plume as a beam. The electrons emitted by the cathode are used
to ionize Xe in the discharge chamber and to neutralize the ion beam in
the plume.

through thermionic emission. These electrons ionize the neutral gas injected through

the cathode tube, flowing from the left side of Fig. 1.2. Ionization produces more

electrons, some of which are extracted through the orifice into the plume, where some

fraction of electrons move towards the anode and some move along the main beam,

neutralizing the flow. In order to protect the cathode orifice from ion bombardment

that might limit cathode lifetime, a keeper is used. In addition to the purpose of

protecting the cathode, the keeper is used both to start the cathode discharge and to

5



maintain cathode temperature and operation in the event of temporary interruption

of the beam current [2]. Therefore, the life of the keeper is very important to the life

of the cathode and thruster.

Figure 1.2: Schematic of the main components of cathode: the insert, the orifice, and
the keeper.

The Hall thruster used in this study is a 6-kW (H6) laboratory Hall thruster

(Fig. 1.3), which was jointly developed between the Air Force Research Laboratory

(AFRL), JPL, and the University of Michigan [8]. The H6 Hall thruster has a nominal

operating power level of 6-kW, discharge current of 20 A, thrust of 397 mN, and anode

specific impulse of 2000 s. The cathode used in the H6 thruster is a central-mounted

LaB6 hollow cathode [9].

1.2 Hall Thruster Plume Modeling

The region where the plasma beam expands outside of the thruster is called the

thruster plume. The plume of a Hall thruster contains low-temperature partially-

ionized plasma (i.e., neutrals, ions, and electrons) of various energies. Energetic ions

in the main beam are the major source of thrust to propel the spacecraft. The ac-

celerating potential for these ions are only a few hundreds volts, so the plume can

be significantly broaden [2]. With a typical divergence angle of HETs being approx-
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Figure 1.3: The 6-kW (H6) Hall thruster during operation with xenon propellant.
Photo taken at JPL by author.

imately 60 deg. from the centerline of the thruster [10], energetic ions in the main

ion beam can impinge directly on spacecraft surfaces as backflow, especially if the

plume divergence angle is large (Fig. 1.4). These ions can damage and sputter ma-

terials from various surfaces of the thruster and spacecraft. Moreover, the sputtered

materials can deposit on or contaminate other spacecraft surfaces. In addition to

the high-energy ions, the HET plume also contains low-energy ions that are results

of charge-exchange collisions, which are important collision mechanisms in a Hall

thruster plume. During a charge-exchange collision, an electron is transferred from a

fast-moving ion to a slow-moving neutral, resulting in a slow ion and a fast neutral.

These charge-exchanged ions have low energy and thus are susceptible to the local

electric field. Thus, they can also sputter the thruster and spacecraft, because they

can move at large angles with respect to the main beam. Lastly, neutrals—especially

the charge-exchanged neutrals—can also sputter the thruster or spacecraft. Because

neutrals do not respond to either the electric or magnetic field, their trajectories

cannot be changed.

7



Figure 1.4: Schematic of thruster plume, showing the main plasma beam produced
by the thruster and some backflow as a result of large divergence angle
and/or charge-exchange phenomena.

Therefore, the detailed collision and plasma dynamics in the plume need to be

predicted using an accurate numerical model to reduce any harmful interactions be-

tween the plume and the thruster itself or the spacecraft. A numerical simulation can

also be performed to predict an erosion rate, or even a lifetime, of the thruster or any

spacecraft components. When a particle hits a solid surface, if its energy is greater

than the bonding energy of the surface material, then sputtering will occur. Since

sputtering can reduce the lifetime of the thruster and spacecraft, the ability to model

sputtering phenomena and to estimate the erosion rate is critical in a Hall thruster

plume modeling. The sputter model implemented in the present study is described

in Chapter V.

The flow in a HET plume is characterized as a rarefied flow, in which plasma and
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collision length scales are similar to or even larger than the size of the thruster [11].

Such flow requires a kinetic-based description of the system to accurately capture

the physics. While the full kinetic description provides accurate results, electrons

are usually simulated as a fluid for the following reason. The kinetic simulation

of electrons requires significantly high computational e↵ort to resolve the electron

timescale because the magnitude of the electron thermal velocity is much greater

than that of the ions. More details on choosing the appropriate type of model are

discussed in Chapter II.

A popular approach used in Hall thruster modeling is a hybrid particle-fluid ap-

proach, in which heavy species (i.e., neutrals and ions) are simulated as particles and

electrons are simulated as a fluid. A hybrid model can accurately capture the bulk

plasma phenomena and ion kinetics with reasonable computational time. Early work

by Oh [12, 5], and followed by many others [13, 14, 15, 16, 17, 7], employed the direct

simulation Monte Carlo (DSMC) method [18] coupled with the particle-in-cell (PIC)

method [19] for heavy species simulation. The DSMC method emulates the nonlinear

Boltzmann equation by simulating the intermolecular collisions determined from the

kinetic theory of a dilute gas, as will be discussed in greater detail in Section 2.1.3.

While these hybrid methods employ similar approaches for the heavy species model,

the main di↵erence among them is in the choice of electron model [7]. There are

various fluid electron models, ranging from the simple Boltzmann relation to more

sophisticated fluid models based on conservation laws. Refs. [13, 14, 15, 17] use the

simple Boltzmann relation, while Refs. [16, 7] use more detailed electron models based

on mass, momentum, and energy conservation laws.

The hybrid model used in this study, MPIC [16], also uses the DSMC-PIC method

for heavy species and has two di↵erent types of electron models: 1) the Boltzmann

relation and 2) the detailed electron model that solves electron mass, momentum, and

energy conservation equations to determine electron velocity, plasma potential, and
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electron temperature, respectively. In MPIC, three conservation equations are solved

by using a single finite element solver for a Poisson equation (i.e., r·(�r�) = f(x, y))

by calculating the source terms (f(x, y)) in advance using another method. During

this process, some assumptions are made that may a↵ect the accuracy of the solution

(see Section 2.2.3). In order to improve the physical and numerical accuracy of the

electron model, a new finite element model is developed in this study. More details

on the motivation for developing the new electron model is discussed in Section 3.1.

It is very di�cult for a single hybrid code to accurately resolve physical processes

of partially-ionized plasma in all regions of a Hall thruster, i.e., from the anode and

the cathode into the far-field plume. The length scales and flow physics occurring in

these regions are very di↵erent, and resolving the smallest scales will require signifi-

cant computational time. Therefore, plume simulations typically start from the exit

plane of the thruster, requiring plasma characterizations at the exits of the discharge

channel and the cathode. Since the plume structure strongly depends on the plasma

conditions and magnetic field configuration at the exit plane of the discharge channel,

it is important to get as accurate a condition as possible. These conditions can be

obtained from experiments or simulations. While having experimental measurements

o↵ers accurate properties for some parameters, not all necessary input parameters can

be measured, and the spatial resolution of the measurement may be limited. Thus, an

internal plasma simulation can be performed to model the plasmas in the discharge

chamber and can be coupled to the plume model at the thruster exit boundary. Cou-

pling together two codes is an approach that has been used before and was reviewed

by Huismann [7].

In the work prior to the current study, Huismann used the state-of-the-art hybrid

code HPHall to simulate plasmas in the discharge chamber and to provide the plasma

conditions at the thruster exit plane as an inlet boundary condition to MPIC. HPHall

was originally developed by Fife [20] and has been improved by others [21, 22, 7] over
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many years. HPHall is an axisymmetric model designed to simulate plasmas internal

to Hall thrusters using a structured grid. The computational domain of a HPHall

simulation is shown in Fig. 1.5. HPHall simulates the discharge plasma from the

discharge chamber up to the very near-field plume of the thruster. In HPHall, the

collision dynamics between heavy species are modeled using the Monte Carlo collision

(MCC) method, the transport of ions are modeled using the PIC method, and the

electrons are modeled using a quasi 1-D fluid method. The magnetic field e↵ect is

included in the model.

Figure 1.5: Schematic of the computational domain of HPHall, indicating the anode,
the discharge chamber, internal and near-field plume plasmas, and the
thruster exit plane where plasma conditions are extracted to be used as
an inlet boundary condition in MPIC plume simulation.

While discharge plasma conditions at the thruster exit are provided by coupling

with HPHall, the previous study by Huismann made strong assumptions about the

makeup of the cathode mass flow. It was assumed that the only heavy particles in-

jected at the cathode inflow were xenon neutrals, because there were no data available

on the ion properties at the cathode outside of current density measurements. How-
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Figure 1.6: Computational domain of OrCa2D [23]. Shown are the insert, orifice,
keeper, and plume regions. The keeper exit plane shown is the inlet for
the current plume model domain.

ever, xenon ions clearly exist in the cathode plume [7, 2], and thus should be included

in the model. In the current model, full plasma (i.e., ions and electrons) and neu-

tral conditions are incorporated at the exit plane of the cathode keeper as an inflow

condition. These conditions were extracted from results provided by a global hollow

cathode code, OrCa2D developed at the Jet Propulsion Laboratory [23]. OrCa2D is a

fluid model, where ions and neutrals are also modeled as fluids by solving conservation

laws. Figure 1.6 shows the computational domain of OrCa2D with a contour plot of

the electron density. The computational domain includes the insert, the orifice, the

keeper, and the plume regions.

1.3 Objective of Research

This study has four overall objectives: 1) develop an accurate physics-based model

to simulate a HET plume, 2) improve the accuracy of the plume simulation by refining

cathode condition, 3) assess the accuracy of the model through comparison with
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available experimental data, and 4) extend the capability of the plume simulation

by implementing a sputter model. Of these four, the most important objective is to

improve the accuracy of the Hall thruster plume modeling.

The accuracy of plume modeling is improved mainly in two ways. First, accurate

physical and numerical models for the fluid electrons are developed by including

magnetic field e↵ects. The magnetic field is neglected in the prior models, however it

may play an important role in the plume, especially in the near-field plume. Including

the magnetic field e↵ect will result in a more physically accurate model and require

modeling of the anomalous electron transport in the plume of a Hall thruster. Because

the new model is derived from a 3-D cylindrical coordinate system without loss of

generality, the model can simulate any and all complex magnetic field topologies. The

new electron model is also numerically more accurate and robust than the prior model

by directly applying the continuous Galerkin finite element method to the governing

equation. Moreover, the electron transport coe�cient tensor formed by including the

magnetic field e↵ect is easily integrated by using the quadrature rule.

The second way to improve the plume model is to apply more accurate boundary

conditions at the boundaries of the discharge channel and the cathode. As demon-

strated by previous studies using MPIC for Hall thruster plume simulations [24, 7],

the boundary conditions at the discharge channel have a significant impact on the

plume structure. By coupling the current plume model with internal Hall thruster

and cathode plasma models, we can generate accurate boundary conditions and thus

obtain more accurate plume simulation results. In the present study, two internal

plasma codes are used to link the discharge plasma to the plume model: 1) a state-

of-the-art Hall thruster model HPHall to provide inflow conditions at the discharge

channel and 2) a global hollow cathode model OrCa2D to provide more accurate

cathode boundary conditions.

Once the plume simulation has been performed using the new electron model and
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boundary conditions, the model has to be validated. An assessment of the accuracy

of the new models is performed through direct comparisons between simulation re-

sults and experimental data. During this process, an electron mobility modeling is

performed by adjusting the anomalous electron mobility coe�cient (↵) to study its

e↵ect on the plume structure.

Understanding the detailed dynamics of the plume is important to predict its

interaction with a spacecraft. The final objective of the present study is to add the

capability to simulate sputtering phenomena on solid surfaces. Including sputtering

phenomena is essential in plume modeling from a spacecraft integration perspective.

In this study, the sputtering model is applied to simulate sputtering process and to

estimate the steady-state erosion rate of the cathode keeper.

1.4 Thesis Outline

The remaining chapters of the dissertation are described in this section. Chapter II

reviews the background of numerical methods and governing equations used in this

study. Hybrid particle-fluid approaches are discussed to simulate the HET plume—a

transitional flow. Chapter III describes the prior modeling e↵ort using MPIC and the

motivation to develop a new, improved electron model. The new physical and nu-

merical models for the electron momentum equation are reviewed in detail. The new

model is verified by using the method of manufactured solutions and by comparing

it with another electron model using a mock Hall thruster case simulation. Chap-

ter IV first presents the comparison of the new model with the prior model when the

magnetic field e↵ect is neglected. Then, the new model with the magnetic field is

compared to the new model without the magnetic field to study the magnetic field

e↵ects in the plume. Lastly, the validation of the new model is performed by compar-

ing against experimental measurements. Chapter V reviews a sputtering model that

is implemented in MPIC. It investigates incoming species energy and flux distribu-
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tions, and estimates the steady-state erosion rate. Finally, Chapter VI summarizes

the findings of the present work and makes recommendations for future work.
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CHAPTER II

Numerical Methods and Governing Equations

The plume of a Hall thruster consists of low-temperature, partially-ionized gas

including neutral, ion, and electron species. Each species has di↵erent transport

physics due to their di↵erent masses and charges. For instance, since electrons and

ions have charges, their motions are governed by electric and magnetic fields, while

neutrals do not respond to these fields. Moreover, electrons move much faster than

the heavy species (i.e., neutrals and ions) because electrons have much lighter mass.

Thus, the nature of physics for each species determines the type of numerical approach

used in a simulation. In general, there are three approaches to simulate plasma flows

in a Hall thruster: 1) a fluid approach by solving conservation laws, 2) a kinetic or

particle approach to track the evolution of the particles, and 3) a hybrid method

where the fluid approach is used for electrons, and the particle approach is used for

the heavy species.

The current study uses a 2-D axisymmetric hybrid particle-fluid model known as

MPIC, or MONACO-PIC, which was first developed by Cai [16] at the University of

Michigan, and has been used by many others [25, 7, 26] to simulate a non-equilibrium

or rarefied flow, such as a plume of a Hall thruster. In MPIC, the transport of neutrals

and the collision dynamics of heavy species are modeled using the direct simulation

Monte Carlo method [18]. The transport of ions is modeled using the particle-in-
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cell method [19], which includes the e↵ects of electrostatic fields. The electrons are

modeled using a continuum approximation by solving fluid conservation equations.

This chapter describes the detailed physical and numerical models that are used to

simulate the heavy species and electrons.

2.1 Transport of Heavy Species based on Particle Approach

The gas in the plume of a Hall thruster is defined as a rarefied gas, where the con-

tinuum assumption breaks down and, instead, a molecular description of the system

is necessary to accurately capture the physics. Modeling rarefied gas using a particle

method tracks the motion of individual molecules, or particles, using discrete Eulerian

grid points in space. The first part of this section provides background information

on rarefied gas dynamics, and the second and third parts describe the two parti-

cle methods—direct simulation Monte Carlo (DSMC) and particle-in-cell (PIC)—for

modeling heavy species. The next part of this section summarizes the major steps

for a hybrid particle method, i.e., DSMC-PIC, and the last part describes boundary

conditions for this method. In this thesis, the conventional use of the word molecule

in this field is used as a generic term that includes monatomic and diatomic molecules

consisting of a single atom and two atoms, respectively.

2.1.1 Background on Rarefied Gas Dynamics

A system is defined as a rarefied gas based on the mean distance traveled by

particles between collisions, known as a mean free path �mfp, defined as the mean

thermal speed c̄ of the particle divided by the collision frequency ⌫c, i.e., �mfp = c̄/⌫c.

When the gas pressure is low, the gas deviates from the equilibrium state and follows

the kinetic theory. The degree of rarefaction of a gas can be assessed by calculating

the Knudsen number (Kn), which is an important non-dimensional parameter that

17



indicates the validity of continuum approaches, defined as the following:

Kn =
�mfp

Lc

(2.1)

where Lc is a characteristic length of the system.

Generally, the gas flow can be categorized using three regimes depending on Kn,

which also determines the set of governing equations that need to be used in order

to accurately capture the physics of the flow. For Kn < 0.01, the continuum flow

assumption is valid and thus the Navier-Stokes or magnetohydrodynamic (MHD)

equations can be solved. In the continuum flow regime, the velocities of particles

are described by a Maxwellian velocity distribution centered at a bulk flow velocity

with a variance related to the temperature of the gas. As Kn increases, however, the

intermolecular e↵ects start to become insignificant, and particles start deviating from

the Maxwellian velocity distribution. For Kn > 1, the continuum approximation

becomes invalid due to every particle moving independently from each other, and

thus the problem has to be modeled using the particle or kinetic approach, i.e.,

solving the Boltzmann equation, to model particles at the molecular level. This flow

regime is called the free-molecular, or collisionless regime. When Kn is in between

the continuum and free-molecular regimes (0.01 < Kn < 1), the flow is defined as a

transitional flow, or a rarefied flow, where the particle or kinetic approach should be

used as well.

There are several di↵erent types of modeling techniques for simulating rarefied

flow at the molecular level depending on what the focus of the modeling is. One

approach is a direct kinetic method where the collisionless Boltzmann equation, or the

Vlasov equation for charged particles is directly solved by using finite discretization

methods [27]. This method is also computationally intensive because the equation is

in 7 dimensions, i.e., (r,v, t) = (x, y, z, vx, vy, vz, t). Alternative methods to directly
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solving kinetic equations are the particle-based kinetic methods, or particle methods,

that solve the Boltzmann equation using probabilistic techniques. One example of

the particle method is a Monte-Carlo technique, which includes Monte-Carlo Collision

and direct simulation Monte-Carlo methods, that models intermolecular collisions to

track the evolution of macroparticles at each time step. These methods are e↵ective in

simulating a neutral flow and a rarefied gas [28]. Another example of a particle method

is the particle-in-cell method, which simulates the transport of charged particles by

calculating electrostatic or electromagnetic forces acting on the particles.

The flow of the plume of electric propulsion devices for satellites is in the tran-

sition regime [29][2]. Thus, heavy species are usually simulated using a hybrid par-

ticle method—the DSMC method coupled with the PIC method, i.e., DSMC-PIC.

Generally, the DSMC method is e↵ective in simulating dilute neutral gas flow while

the PIC method is e↵ective in simulating dilute flows with charges and electric and

magnetic field e↵ects, i.e., plasma [16]. Both the DSMC and PIC methods use a

macroparticle that represents a large number of real particles to simulate gases at

the microscopic level. More details of the PIC and DSMC methods are explained in

Sections 2.1.2 and 2.1.3, respectively.

2.1.2 Particle-In-Cell Method for Particle Transport

The particle-in-cell (PIC) method is a particle-based kinetic method that tracks

the motions of charged particles continuously in a Lagrangian frame using Eulerian

grids [30]. In the current simulation, only ions are modeled using the PIC method.

The force acting on charged particles is described by the Lorentz force:

F = q (E+ v ⇥B) (2.2)
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where q is the elementary charge, E is the electric field, v is the velocity, and B

is the magnetic field. In a Hall thruster, the magnetic field is not strong enough

to magnetize ions. Neglecting the magnetic field e↵ect, the motion of each ion is

governed by Newton’s second law:

dx

dt

= v

dv

dt

=
q

m

E
(2.3)

In the PIC method, as the name suggests, the charge density (⇢) at each grid

point is calculated from the distribution of particles in each cell. From this charge

density, we can calculate the electric potential (�) by solving the Poisson equation

r2
� = �⇢/✏0, where ⇢ = q(ni � ne) and ✏0 is the vacuum permittivity. In this study,

however, quasi-neutrality (ni ⇡ ne) is assumed, and an electron fluid momentum

conservation equation is solved to calculate the electric potential on each node. By

di↵erentiating the electric potential, the electric field Ej = (Ex, Ey)j is computed at

each node j. To calculate the derivatives of the potentials on nodes, a least-squares

method is used [16]. In this method, if the current node j has N nodes connected

with potential gradients d�i/dxi, then the N nodes form N ⇥ 2 relations which are

overdetermined using the following:

ME = d� (2.4)

where M is an N ⇥ 2 matrix, E is a 2 ⇥ 1 vector, and d� is an N ⇥ 1 vector. By

multiplying this equation by a transposed matrix M

T on both sides, this overdeter-

mined matrix becomes a 2⇥ 2 matrix that can be solved. More details can be found

in Ref. [16].

After the electric field is calculated, it is then converted into electrostatic force,

which accelerates on particles as in Eq. (2.3). Finally, the velocities and positions of
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the particles are calculated at each time step using the electric field at the particle

position by integrating Eq. (2.3). Once particles are moved using their trajectories,

collisions between particles are performed using the DSMC algorithm, which may

adjust their trajectories again if determined to collide (see Section 2.1.3).

The PIC method requires a weighting scheme to compute charge and neutral

densities on discrete spatial grids from particle positions. The same weighting scheme

is also used to interpolate the electric field from the grids to particles. One method to

accurately calculate the charge density on a grid point j is to sum all particle charges

inside a volume or cell Vj enclosing the grid, and then divide the sum by the total

volume or area surrounding the grid point, as in the following:

nj =

 
NX

j=0

Nj

!
/

 
NX

j=0

Vj

!
=

 
NX

j=0

Nj

!
/ Vk (2.5)

where Vk is the corrected cell-centered volume that is the sum of volumes of all cells

surrounding the node. To calculate Vk, we need to use the reference coordinates, as

shown in Ref. [31]. However, this type of weighting scheme requires much cross-node

transportation on a parallel machine, which would be quite ine�cient [16]. While

various other weighting schemes are discussed in Ref. [16], the weighting scheme for

the charge and neutral allocations adopted in this study is a simple and accurate one

described as follows. After the cell-average values are calculated, they are averaged

onto the nodes in each processor. The charge density n on a node in one computer

processor, where N cells are connected to the node, is calculated as in the following:

n =

 
NX

j=0

nj

!
/N (2.6)

where the j

th cell has an average charge density nj. This scheme does not require a

complete list of cell-average values for all cells physically connected to a node, but
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only the cells in the same computer processor. Therefore, this weighting scheme is

e�cient on a parallel machine without significant loss of accuracy.

Additionally, in order to reduce statistical scatter in the density-weighting cal-

culations, MPIC uses a relaxation technique in ion and neutral number densities on

each node:

nnew = wnallocate + (1� w)nold (2.7)

where w is a weighting factor, nnew is the current ion or neutral number density,

nallocate is the density obtained from MPIC’s cell-averaged weighting function, nold

is the density from the previous time step, and a value of w = 0.1 is employed in

the current work. This treatment is e↵ective at suppressing statistical scatter in

steady-state flow simulations [16].

2.1.3 Direct Simulation Monte-Carlo Method for Collision Dynamics

When particles collide, they do not physically touch each other, however their

force fields interact with each other. When modeling these intermolecular collisions,

however, the calculation of force-fields of every collision pair is almost impossible due

to the extremely large number of collisions that occur at almost all times in a rarefied

gas. Therefore, instead of solving the actual intermolecular forces, we use a proba-

bilistic method that computes collision probability from collision cross-sections and

molecular diameters. Such probabilistic methods include the Monte Carlo Collisions

(MCC) method and the direct simulation Monte Carlo (DSMC) method. The current

study uses the DSMC method because it conserves both the momentum and energy,

while the MCC method does not conserve energy. The DSMC method can directly

simulate particles at the molecular-level instead of solving fluid conservation equa-

tions. In the DSMC method, the intermolecular collision in a rarefied gas is modeled

as a binary collision, where one particle collides with only one other particle, because

the mean molecular spacing is larger than the e↵ective molecular diameter [18].
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A number of di↵erent types of collisions can occur between particles in an ionized

gas, such as elastic (e.g., momentum-exchange), inelastic (e.g., excitation and ion-

ization), superelastic, radiative, and charge-reactive (e.g., charge-exchange). In the

case of electric propulsion and plasma processing applications, the most important

collisions that must be considered in modeling are the elastic momentum-exchange

(MEX) and charge-exchange (CEX) collisions. Collision mechanisms implemented

in the current model are the MEX collision between neutral-neutral and neutral-ion

pairs, and the CEX collision between neutral-ion pairs.

During a CEX collision between a slow-moving neutral and fast-moving ion, an

electron is transferred from a slow neutral to a high-energy ion, exchanging a charge.

Since the CEX interaction is a long-range reaction, the post-collision velocities and

trajectories of the colliding particles are assumed not to be a↵ected by the collision.

Charge-exchange collision is an important mechanism in Hall thruster plumes because

at the thruster exit plane, the atoms and ions have velocities that di↵er by almost

two orders of magnitude as a result of CEX collisions [15].

The DSMC method simulates collisions between macroparticles, each of which

represents a large number of real particles. The ratio between the real number of

particles and the macroparticles is defined as Wref . In the DSMC module, a list of

colliding particle pairs in each cell is selected at random, regardless of their relative

positions and velocities, to perform binary collisions. Since checking for collision pairs

between all particles would be ine�cient (about N2
/2 pairs), Bird’s No-Time-Counter

(NTC) scheme [18] is used to calculate the total number of possible collision candidate

pairs in each cell for each time step 4t:

Ntotal pairs =
1

2
NpN̄p(�g)max4t (2.8)

where Np is the instantaneous number of macroparticles, N̄p is a time or ensemble
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averaged number density in each cell, g is the relative velocity between colliding

particles, and � is the total cross-section. Whether these candidate pairs actually

undergo collisions depends on the collision probability of each pair. The collision

probability of each candidate pair is calculated at each time step, and is proportional

to the product of the relative velocity between the colliding particles and the total

cross-section. The collision candidate pair will undergo a collision if the collision

probability is greater than a random number, R, which is uniformly distributed in

[0,1):
�g

(�g)max

> R (2.9)

The simplest cross section model is the hard-sphere approximation, where the total

collision cross-section is:

�HS = ⇡d

2 (2.10)

where d is the e↵ective molecular diameter. While the hard-sphere approximation

is simple, it is not realistic and is independent of the relative translational energy

Et = 1/2mrg
2 where mr is the reduced mass. In most cases, the e↵ective cross-

section of real molecules decreases as Et increases [32]. In 1981, Bird [32] introduced

the variable hard sphere (VHS) model, in which the cross section can vary with the

relative speed of the two colliding particles, g, as the following:

�

�r

=
g

�2!

g

�2!
r

(2.11)

where �r is the reference cross-section (�r = ⇡d

2
r), gr is the relative collision velocity

at the reference temperature Tr, and ! is the viscosity temperature exponent ranging

from 0 to 0.5 with 0 being a hard-sphere model. Assuming Tr = 273K, ! and dr

values can be found for several major species in Ref. [18].

The collision dynamics modeled in the current DSMC method include MEX col-

lisions between neutral atoms (Xe-Xe) and both MEX and CEX collisions between
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the neutral and ion (Xe+-Xe and Xe2+-Xe). The collision algorithms employed in the

DSMC method is summarized in Figure 2.1. When Xe-Xe pairs are selected to col-

lide, the collision probability is determined by using the variable hard sphere (VHS)

cross-section. If neutral-ion pairs are selected to collide, they have an equal chance of

having MEX and CEX collisions, because the MEX collision cross-section for neutral-

ion elastic collisions is equivalent to the CEX collision cross-section, which is demon-

strated by Boyd and Dressler [15] as shown in Figure 2.2. The CEX cross-section

between neutral and ion was measured by Miller et al. [33], which is parameterized

as the following semi-empirical formulas:

�CEX

�
Xe,Xe

+
�
= 10�20 [87.3� 13.6 log10(E)] m

2

�CEX

�
Xe,Xe

2+
�
= 10�20 [45.7� 8.9 log10(E)] m

2
(2.12)

Figure 2.1: Flow chart of collision dynamics in the DSMC model

If the collision candidate pair is determined to collide, its post-collision velocities

and deflection, or scattering, angles must be calculated. The post-collision velocities

are calculated using the conservation of linear momentum and energy. For all MEX

collisions in the current model, the post-collision scattering angle is isotropic—equally

probable in all direction.When the collision between Xe+-Xe results in a CEX collision,

a di↵erential cross-section is used to calculate the deflection angle, which is calculated
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Figure 2.2: Impact parameter dependence of the Xe

+-Xe charge-exchange probabil-
ity at an ion energy of 300 eV [15]

from Ref. [15] for xenon Hall thruster plume modeling. For the DSMC method,

we need to have enough particles in each cell to represent the velocity distribution

adequately. The rule of thumb is to have at least 20 (preferably, >30) macroparticles

per each cell.

2.1.4 Background Pressure Treatment

Although Hall thrusters are designed to operate in space where the background

pressure and density are extremely low, Hall thrusters must be tested in a vacuum

chamber facility that contains a finite background pressure. Having a finite back-

ground pressure a↵ects thruster performance as described in Ref. [34], which includes

artificially increased thrust due to the ingestion of background species by the thruster.

Therefore, the e↵ect of background pressure in the vacuum chamber should be in-

cluded when numerically simulating a thruster plume. For valid comparisons with

experimental data, a matching backpressure is applied to the current model.

In the current study, a finite background pressure is maintained by having static

particles in the background of the simulation domain. Each cell in the domain con-
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tains a pre-set number of macroparticles with their velocities sampled from a zero-

centered Maxwellian velocity distribution function. When an inflow particle collides

with a static background particle, the same collision algorithm is used to calculate

the collision probability. If they are determined to collide, the velocity and posi-

tion of the background particle remains unchanged, while the collision influences the

post-collision trajectories of the inflow just as regular collisions. As a result, the

finite background pressure can remain constant, while the plume structure changes

according to the law of rarefied gas dynamics.

2.1.5 Boundary Conditions for DSMC-PIC Methods

MPIC has four types of boundary conditions: inflow, outflow, symmetry, and wall.

The DSMC-PIC methods require number densities, velocities, and temperatures for

each heavy species at inlet boundaries, i.e., discharge channel and cathode inlets.

The prior MPIC simulation by Huismann assumed that the only heavy particles

injected at the cathode inflow were xenon neutrals for simplicity, because there was

no data available on the ion properties at the cathode outside of current density

measurements [7]. In the current model, full plasma conditions, i.e., ions and electron

fluid, as well as neutrals are implemented at the cathode keeper exit as an inflow

condition. These conditions were extracted from simulation results provided by a

global hollow cathode code OrCa2De developed at the Jet Propulsion Laboratory

(JPL) [35].

When a neutral particle hits a wall, the particle will reflect o↵ the wall with

a reflecting velocity distribution that varies with the type of the wall. Two main

types of wall conditions are considered in the DSMC-PIC methods: specular and

di↵use walls. A specular reflection is a reflection o↵ of perfectly smooth surfaces,

where the particle’s tangential velocity component ct to the wall remains the same

and the normal component cn changes its sign, with the incidence angle equal to the
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reflection angle. On the other hand, when a particle bounces di↵usely back from a

rough surface with the wall temperature Tw, its velocity components tangential to

the wall are sampled from the standard Maxwellian distribution as follows:

f(ct) dct =
1p

2⇡RTw

exp

✓
c

2
t

2RTw

◆
dct (2.13)

And, its normal component is sampled from the biased-Maxwellian distribution:

f(cn) dcn =
cn

RTw

exp

✓
c

2
n

2RTw

◆
dcn (2.14)

where R is the gas constant.

An accommodation coe�cient (↵) represents the fraction of particles colliding

with the wall and is thermalized by the wall. The accomodation coe�cient varies

from 0 to 1. The remaining fraction (1 � ↵) of the particles is specularly reflected

by the wall. In this thesis, a full accommodation coe�cient (↵ = 1) is used in all

simulations. The internal energy of a reflecting particle can be handled in the same

manner. However, for atomic xenon, which is exclusively used in all simulations in

the thesis, no internal energy is considered.

When an ion crosses a wall boundary, it loses its charge and reflect as a neu-

tral, following the same physics described above. When particles cross the outflow

boundaries, they are subsequently removed from the simulation.

2.2 Transport of Electrons based on Fluid Approach

An understanding of the electron physics is important in the study of Hall thrusters

because electrons determine the e�ciency and performance of thrusters. For instance,

electrons a↵ect the current utilization e�ciency by maximizing the ion yield, the

ionization e�ciency through their average temperature, and the acceleration e�ciency
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by establishing the self-consistent electric field [36].

Since electrons have a mass several orders of magnitude smaller than ions, they

move much faster and adjust their velocities more quickly than ions. Thus, this

study simulates electrons as a fluid by solving conservation laws. The detailed model

in MPIC solves the continuity, momentum, and energy conservation equations that

describe the electron fluid at steady-state, and is capable of representing detailed

descriptions for electron temperature, velocities, and plasma potential. The following

sections describe governing equations and numerical methods for the prior electron

fluid model, which neglects the magnetic field. The new electron model that includes

the magnetic field e↵ect will be described in Chapter III.

2.2.1 Conservation Laws

MPIC consists of two types of electron models: 1) Boltzmann relation model, and

2) detailed model. The Boltzmann relation, in Eq. (2.15), is one of the most widely

used electron models in plasma simulation:

� = �r + Te ln

✓
ne

nr

◆
(2.15)

where � is electric potential, Te is electron temperature in eV, ne is electron density,

and the subscript r indicates the reference values. The Boltzmann relation is the

simplest form of a momentum equation derived using the following assumptions: the

electron fluid flow is isothermal and collisionless, electron pressure obeys the ideal

gas law, and magnetic field e↵ects can be neglected. However, these assumptions are

not valid in Hall thruster plume, because the gradients of electron number density,

temperature, and potential are large. This is true especially near the channel exit,

where magnetic field is still strong.

In order to increase the level of physics as compared to the Boltzmann relation
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model, a detailed electron fluid model was proposed [37]. The detailed model solves

the continuity, momentum, and energy conservation equations that describe the elec-

tron fluid at steady state, and is capable of representing more detailed descriptions

for electron velocities, temperature, and plasma potential. The electron mass conser-

vation, or the continuity, equation is the following:

@ne

@t

+r · (neve) = nennCi (2.16)

where ne is the electron number density, ve is the electron velocity, nn is the neutral

number density, and Ci is the ionization rate coe�cient expressed as a function of

electron temperature by Ahedo’s model [38]:

Ci = �i0ce


1 +

Te"i

(Te + "i)

�
exp

✓
� "i

Te

◆
(2.17)

where "i is the energy for primary ionization, �i0 = 5⇥ 10�20
m

2 is a reference cross

section for xenon, ce is the electron thermal speed, and Te is in electron volts. By

assuming steady-state and introducing a stream-function  , such that r = neve =

je/e, we obtain the following equation:

r2
 = nennCi (2.18)

The momentum equation of the detailed electron model is derived from a gener-

alized Ohm’s law:

Je = �e

✓
E+ ve ⇥B+

1

ene

rPe

◆
(2.19)

where �e is the electric conductivity defined as:

�e =
e

2
ne

me⌫e

(2.20)
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where the classical electron collision frequency (⌫c) is the sum of the electron-ion

collision frequency (⌫ei), and the electron-neutral collision frequency (⌫en):

⌫c = ⌫ei + ⌫e (2.21)

By assuming that the magnetic field is negligible in the plume and that the fluid

follows the ideal gas law, Eq. 2.19 reduces to the following:

Je = �e


�r�+

1

ene

r(nekBTe)

�
(2.22)

The charge continuity equation is the following:

r · Je = �@⇢e
@t

(2.23)

Assuming steady state, we acquire the following form of the momentum equation

by substituting Eq. (2.22) into (2.23):

�r · (�er�) +r ·

kB

e

�e

ne

r(nekBTe)

�
= 0 (2.24)

The second term is expanded by using vector identities and by assuming thatr(1/ne)

is so small that it is negligible, resulting in the following equation:

r · (�er�) =
kB

e

�
�er2

Te + �eTer2 ln(ne)

+�er ln(ne) ·rTe + Ter�e ·r ln(ne) +r�e ·rTe}
(2.25)

which can then be solved for plasma potential � using a general Poisson’s equation

solver discussed in Section 2.2.3.
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The energy conservation equation for electron fluid is as follows:

D

Dt

✓
ne

3

2
kBTe

◆
= �per·ve�r·qe+Je·E�

NhX

h=1


2me

mh

⌫̄ehne
3

2
kB (Te � Th)

�
�Ṅ (2.26)

where subscript h indicates heavy species, ⌫̄eh is the electron collision frequency with

heavy species, Nh is the number of heavy species, Ṅ is the net rate per unit volume

of nonelastic energy loss from the electrons, the �per ·ve term is net flux of heat into

the element due to pressure, the Je ·E term is the rate of increase of electron thermal

energy per unit volume by electromagnetic fields, and qe is the electron heat flux,

which is defined as the product of thermal conductivity, e and negative of the local

temperature gradient, �rTe, using Fourier’s law. The electron thermal conductivity

is defined as [39]:

e =
2.4

1 + ⌫eip
2⌫e

k

2
BneTe

me⌫e

(2.27)

Assuming uniform and steady plasma conditions, and the only inelastic energy loss

is due to ionization of neutral xenon, this equation reduces to the following equation:

3

2
ne(ve ·r)kBTe =� per · ve +r · erTe + Je · E

�
NhX

h=1


2me

mh

⌫̄ehne
3

2
kB (Te � Th)

�
�

NhX

h=1

(nenh"iCi)
(2.28)

r2
Te =�r ln(e) ·rTe +

1

e


�Je · E+

3

2
ne(ve ·r)kBTe + per · ve

�

+
1

e


3me

mh

⌫̄ehnekB (Te � Th) + nenh"iCi

� (2.29)

The current continuity, momentum, and energy equations, in Eqs. (2.18), (2.25),

and (2.29), for electron fluid can now be expressed as the following form of a gener-
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alized Poisson’s equation:

�r · [G(x, y)rU(x, y)] = F (x, y) (2.30)

where G(x, y) represents a space-dependent coe�cient, U(x, y) is the primary variable

to be solved, and F (x, y) is a known forcing function. The continuity and energy

equations are in the form of �r2
U(x, y) = F , which is identical to Eq. 2.30 when

G(x, y) = 1. In order to solve all three equations using a single finite element solver

conveniently, the quantities on the right-hand side (RHS) should be known and be

expressed as a single term forcing function F (x, y). In the current model, the RHS

of all three equations have been reduced to one F (x, y) by calculating the derivatives

using the least-squares method as described in Ref. [16]. This procedure will be

further described in Section 2.2.3.

2.2.2 Background on Continuous Galerkin Finite Element Formulation

In many science and engineering fields, solutions of partial di↵erential equations

(PDEs) are required. Since solving PDEs analytically is not always possible, equations

are solved numerically in discrete phase space, by using discretization methods such as

finite di↵erence, finite volume, and finite element methods. These methods solve sets

of algebraic system of linear or nonlinear equations derived as discrete approximations

of a problem to obtain numerical solutions. The form of discrete equations solved and

the complexity of numerical algorithms used in finite element methods (FEMs) are

not very di↵erent from finite di↵erence (FD) or finite volume (FV) methods. However,

while the FD and FV methods solve for an approximate state at the nodes and cells,

respectively, FEMs rely on a functional representation of the solution everywhere on

an element by using trial basis, or basis, functions [40]. Moreover, the FEM can

handle a complex geometry or vastly di↵erent length scales that require non-uniform

33



and unstructured meshes. Because the length scale of the cathode plume and the

far-field plume of a Hall thruster vary significantly, using the FEM is ideal for Hall

thruster plume simulations. We can use finer mesh near the cathode plume and larger

mesh in the far-field plume.

The finite element method is a weighted residual method that uses compactly-

supported trial basis functions to approximate a solution on individual elements.

The finite element method uses a weak formulation, which is a variational statement

of the problem where a test function is integrated against. A weak formulation has

the e↵ect of relaxing the problem; instead of finding an exact solution everywhere,

we are finding a solution that satisfies the strong form on average over the domain.

When the same trial basis function is used for the test function, the method is called

the continuous Galerkin finite element method.

In this section, the continuous Galerkin finite element formulation for a 2-D ax-

isymmetric unstructured triangular mesh is derived using the momentum conserva-

tion equation in Eq. (2.25). This equation is multiplied by a test function 'i and

integrated over the domain ⌦:

Z

⌦

'i [�r · (�er�) + f(x, y)] d⌦ = 0 (2.31)

where f(x, y) is the source terms on the RHS of the momentum equation. By taking

integration by parts of the divergence term, the following equation is obtained:

�
Z

@⌦

('i�er�) · ~n dS

| {z }
Boundary term

+

Z

⌦

r'i · (�er�) d⌦+

Z

⌦

'if(x, y) d⌦ = 0

| {z }
Interior elements

(2.32)

This equation is discretized using a trial basis function ('j) to approximate the
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solution variable U(x, y) as the following:

U(x, y) ⇡
X

j=1

Uj'j (2.33)

The present study uses 2-D piecewise linear functions for both the test and trial

basis functions. In the continuous Galerkin method, the test function is the same as

the trial basis function, and each trial basis function is non-zero only locally over one

or a few neighboring elements. To illustrate this, Fig. 2.3 shows 1-D piecewise linear

basis functions, 'k and 'k+1, that are non-zero only in the elements connected to the

vertex with index k and k + 1, respectively. Because the basis functions are zero at

the edge of their domain of influence, the boundary term in Eq. (2.32) is zero for all

internal elements.

Applying Eq. (2.33) to Eq. (2.32), we acquire a system of linear algebraic equations

as follows:
NjX

j=1

2

4
Z

⌦

r'i · (�er'j) d⌦

3

5

| {z }
Aij

�j +

Z

⌦

'if(x, y) d⌦

| {z }
Fi

= 0 (2.34)

which is an N⇥N matrix system, AU+F = 0, and the matrix Aij is called a sti↵ness

matrix. The sti↵ness matrix is assembled by looping over all elements.

Figure 2.3: 1-D piecewise linear trial basis function, showing non-zero magnitude of
trial basis functions 'k on the node k and zero on adjacent nodes

35



To evaluate the integrals in Eq. (2.34), a reference coordinate system is used,

mapping an arbitrary triangle to a reference triangle as shown in Figure 2.4. The

global space (x, y) is transformed to the reference space (⇠, ⌘) using Jacobian:

J =
@x(x, y)

@⇠(⇠, ⌘)
(2.35)

where

x(⇠, ⌘) = x1 + (x2 � x1)⇠ + (x3 � x1)⌘ (2.36)

For derivatives, the chain rule is used:

@f

@x
=
@f

@⇠

@⇠

@x
=
@f

@⇠
J

�1 = r⇠J
�1 (2.37)

The determinant of the Jacobian is two times the area of element k:

|J | = 2�k =

����������

1 x1 y1

1 x2 y2

1 x3 y3

����������

(2.38)

Figure 2.4: Transformation from an arbitrary triangle in the physical space (x, y) to
a reference triangle in the reference space (⇠, ⌘), and the inverse mapping.
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The piecewise linear basis functions used in Eq. (2.33) are given in the following:

'1 = 1� ⇠ � ⌘

'2 = ⇠

'3 = ⌘

(2.39)

for triangular elements. The integrals over the element k should be transformed into

integrals over the reference element R. Transformation of the forcing vector is shown

as in the following:

Z

⌦k

f(x, y) d⌦ =

Z

⌦R

f(x(⇠, ⌘), y(⇠, ⌘)) |J |d⇠d⌘ (2.40)

Similarly, transformation of the divergence term in Eq. (2.40) becomes:

Z

⌦k

r'i · (�er'j) d⌦k =

Z

⌦R

(r⇠'iJ
�1) · (�er⇠'jJ

�1) |J |d⇠d⌘ (2.41)

2.2.3 Prior Generalized Poisson’s Equation Solver

The prior electron model without the magnetic field e↵ect solves all governing

equations, i.e., Eqs. (2.18), (2.25), and (2.29), as a single generalized Poisson’s equa-

tion (Eq. (2.30)). In order to use a single finite element solver, the derivatives in

the source terms of all equations are: 1) calculated using the least-squares method

described in Section 2.1.2 that is also used to calculate E = �r�, and 2) reduced to

a single linear function f(x, y). In the generalized Poisson’s equation, if G(x, y) and

F (x, y) can be represented as scalar linear functions within each element, then the

integrals in the sti↵ness matrix and forcing function can be calculated analytically,

which simplifies the FEM solver very e↵ectively. The derivatives of the test function
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of Eq. (2.41) in the reference space is:

r⇠'iJ
�1 =

2

66664

�1 �1

1 0

0 1

3

77775

0

B@
1

|J |

2

64
y2 � y3 x1 � x3

y1 � y2 x2 � x1

3

75

1

CA =
1

|J |

2

66664

y2 � y3 x3 � x2

y3 � y1 x1 � x3

y1 � y2 x2 � x1

3

77775
(2.42)

where x and y are physical coordinates in 2-D space. The coe�cient for the di↵usion

operator is assumed to be a linear function in an element such that:

G(x, y) ⇡ 1

3
(g1 + g2 + g3) (2.43)

where g1, g2, and g3 are nodal values.

Similarly, Eq. (2.40) can also be computed analytically by using a linear approxi-

mation of f(x, y) ⇡ f1'1 + f2'2 + f3'3 such that:

F

k
i =

Z

⌦k

'if(x, y) d⌦k ⇡
Z

⌦k

'i (f1'1 + f2'2 + f3'3) d⌦k (2.44)

Using the following theorem:

Z

⌦k

('1)
m('2)

n('3)
l
dxdy =

m!n!l!

(m+ n+ l + 2)!
2�k (2.45)

Eq. (2.44) becomes:

F

k
1 =

Z

⌦k

'1 (f1'1 + f2'2 + f3'3) dxdy ⇡ f1
�k

6
+ f2

�k

12
+ f3

�k

12

F

k
2 =

Z

⌦k

'2 (f1'1 + f2'2 + f3'3) dxdy ⇡ f1
�k

12
+ f2

�k

6
+ f3

�k

12

F

k
3 =

Z

⌦k

'3 (f1'1 + f2'2 + f3'3) dxdy ⇡ f1
�k

12
+ f2

�k

12
+ f3

�k

6

(2.46)
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The final matrix form of the systems of linear equations is as follows:

�k

2

66664
1

3
(g1 + g2 + g3)(r⇠'iJ

�1) · (r⇠'jJ
�1)

⇢
uk

�
� 1

12

2

66664

2 1 1

1 2 1

1 1 2

3

77775

⇢
fk

�

3

77775
= 0

(2.47)

For the continuity and energy equations, where the coe�cient G(x, y) = 1, the

(g1 + g2 + g3)/3 term in Eq. (2.47) becomes 1. For slightly di↵erent derivations, see

Refs. [16] and [40].

Since the sti↵ness matrix for the current formulation is symmetric and positive-

definite, the system is solved using the conjugate gradient method [16].

2.2.4 Boundary Conditions for the FEM

When assembling the sti↵ness matrix, we must consider boundary conditions. The

following Dirichlet boundary conditions can be achieved:

Uboundary = uDirichlet (2.48)

by replacing the forcing vector F with �uDirichlet, and the entire row of the sti↵ness

matrix with zeros except the main diagonal, which is replaced by 1. For Neumann

boundary conditions, the boundary term from Eq. (2.32) becomes the following equa-

tion by transferring over to the forcing vector while the sti↵ness matrix remains the

same:

�
Z

@⌦

('i�r�) · ~n dS = 'i(�r�)
����
boundary

(2.49)

In the current simulation, the gradient term in the Neumann boundary condition is

always zero for the momentum equation, which is naturally satisfied by the continuous

Galerkin method, not contributing to the forcing term and sti↵ness matrix.
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2.3 Summary of MPIC Algorithms

This section summarizes the general steps of the hybrid DSMC-PIC-fluid methods

in MPIC. As discussed throughout this chapter, the DSMC method simulates the

transport of neutral particles and the collision dynamics between the heavy species,

the PIC method simulates the transport of ions in the presence of electric fields, and

the detailed model simulates the electrons as a fluid. The procedure for these methods

in MPIC is as follows:

1. Calculate the charge density at grid points from the charge distribution in cells

2. Solve electron fluid conservation laws, i.e., continuity, momentum, and energy

equations, to obtain electron velocity, potential field, and temperature on each

grid point

3. Calculate ionization of neutrals in each cell using the following equation: ni =

Cininn�t, where the ionization rate Ci is computed by Eq. (2.18)

4. Calculate electric fields on each grid point by di↵erentiating plasma potential:

E = �r�

5. Perform intermolecular collisions

6. Inject new macroparticles at inlet boundaries

7. Compute post-collision velocities and angles

8. Interpolate the ion acceleration in a cell from the particle positions and the

electric field at each grid point

9. Move particles and compute their interactions with all boundaries

10. Sample macroscopic flow information.

40



CHAPTER III

A New Electron Model with

Magnetic Field E↵ects

This chapter describes the newly developed electron model that includes magnetic

field e↵ects. Section 3.1 discusses the motivation to develop the new model. A detailed

description of the physical and numerical models of the new momentum equation is

described in Section 3.2. Lastly, the implementation and verification of the new model

are described in Section 3.3.

3.1 Motivation for Developing New Electron Model

As briefly discussed in Chapter I, many Hall thruster plume simulations [5, 13,

14, 29, 17, 41, 7, 42] have neglected the magnetic field e↵ects because modeling the

magnetic field in the plume is complicated. The magnetic field in the plume of a

HET is two-dimensional (2-D) and its topology can be quite complex. Solving the

full 2-D magnetic field is numerically challenging due to the cross partial derivative

term (i.e., @
@x
( @
@y
)). Thus, plume simulations usually neglect the magnetic field e↵ects

by assuming that the magnetic field strength in the plume is relatively weaker than

the strength of the field inside the discharge chamber of a Hall thruster.

The prior Hall thruster simulations using MPIC [7, 42] also have neglected the
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magnetic field, which resulted in the over-estimation of the plasma potential and

electron temperature compared to experimental data. Figure 3.1 shows the plasma

potential calculated by Huismann using MPIC. As shown in the red curve, the

plasma potential was over-predicted by more than 100 V in the very near-field plume

(Z/Dthruster ⇡ 0.1). In order to improve the agreement between simulation results

and experimental data, Huismann [7] proposed mapping the discharge chamber inflow

boundary from the exit plane of the thruster discharge chamber onto an “e↵ective

inlet” for MPIC to start its simulations outside of the strong magnetic field regions.

This e↵ective inlet is the magnetic field line shown in Fig. 3.2. Using this e↵ective

inlet improves agreement of the simulation result with experimental data, which is

shown in the green curve of Fig. 3.1. Huismann’s study shows that the magnetic

field needs to be included in plume simulations to accurately capture the electron

Figure 3.1: Axial profile of plasma potential comparing simulation results with exper-
imental data measured by Jameson [43]. The red curve shows the plasma
potential calculated using the standard thruster exit plane as an inflow
boundary, while the green curve shows the potential calculated using the
e↵ective inlet proposed by Huismann [7].
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Figure 3.2: Schematic of the HPHall domain showing the “e↵ective” inlet proposed
by Huismann [7]. The regions of the strong magnetic field e↵ect are
eliminated from the computational domain by using the e↵ective inlet to
couple the discharge plasma to the plume. simulation.

physics in the plume. Moreover, experimental measurements of the near-field plume

plasma from Hall thrusters have shown that the magnetic field lines indeed leak into

the plume [5, 6]. This field a↵ects electron motion in the near-field plume region, and

ultimately drive the e�ciency and performance of a Hall thruster.

In Fig. 3.3, the magnetic field topology in a 6-kW (H6) Hall thruster are plotted.

The thruster plume contains a magnetic field separatrix, a purely axial component

along the cathode centerline axis, and a purely radial component near the discharge

channel exit. In Hall thrusters, the maximum magnetic field strength occurs near the

exit plane of the discharge channel walls. Some thrusters, including the H6 thruster,

have the maximum magnetic field strength occurring in the very near-field plume

of the thruster. Figure 3.4 shows the normalized radial and axial magnetic fields

along the discharge channel centerline. The peaks of these fields occur downstream

of the thruster exit, which is the near-field plume. The axial magnetic field along

the cathode centerline is also strong, i.e., 1.4 times stronger than the strength of the
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Figure 3.3: Magnetic field topology in the H6 thruster.

Figure 3.4: Axial profiles of normalized magnetic fields along the discharge chamber
centerline. The maximum radial magnetic field (Br) and radial magnetic
field (Bz) occur in the near-field plume, downstream of the thruster exit
plane.

44



maxim radial magnetic field along the discharge channel. Since the magnetic field is

still strong in the near-field plume regions and thus can a↵ect the plume structure, it

should be included in plume simulations to model the electron transport across the

field lines correctly, which is one of the main factors driving the performance of a

HET.

The current study takes up Huismann’s investigation of using an e↵ective inlet to

model a Hall thruster with the improved cathode boundary conditions he suggested at

the end of his study [7]. Since the results using the models neglecting magnetic field

e↵ects could not accurately predict plasma properties, a new electron model has been

developed with the hope of improving agreement between the simulation results and

experimental data. Because electron motion is largely influenced by the topology and

shape of the magnetic field, capturing electron transport across any and all magnetic

field shapes is important to provide accurately predict plasma properties. Since some

thrusters may have complex curvature of magnetic field lines, the magnetic field e↵ect

has to become fully two-dimensional. The new electron model has the capability to

model electron transport across a complex magnetic field topology. The main equation

a↵ected by the presence of a magnetic field is the momentum conservation equation.

Thus, the new momentum equation is derived and applied to the continuous Galerkin

finite element formulation. The new equation now contains an electron mobility

tensor coe�cient, which is the main di↵erence between the new and existing physical

momentum equations. Detailed physical and numerical descriptions of the new model

are explained below.
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3.2 Physical and Numerical Models of the New Momentum

Equation in MPIC

This section describes a second order continuous Galerkin finite element method

using piecewise linear approximation in unstructured triangular meshes for the new

momentum conservation equation in MPIC. During the Galerkin finite element for-

mulation, 3-D cylindrical coordinate is used first, and 2-D axisymmetric assumption

is applied later.

The new momentum conservation equation that includes the magnetic field is also

derived from the generalized Ohms law, as in Eq. (2.19), with a slight modification:

J = µ(J⇥B) + �e

✓
E+

1

ene

rPe

◆
(3.1)

where µ = e/(me⌫e) is the electron mobility. Combining the J term on the RHS with

the J term on the left results in the following equation in a matrix form:

µJ = �e[E+
1

ene

rP] (3.2)

in a vector form, or the following matrix form:
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where µ is a tensor form of the electron mobility coe�cient. Solving for J results in

the following equation:

J = µ

�1
�e(E+

1

ene

rPe) (3.4)

Substituting this equation into the steady-state charge continuity equation, we acquire
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a new governing equation to solve:

r · (µ�1
�er�) = r · (µ�1 �e

ene

rPe) (3.5)

where µ

�1 is the inverse of µ:
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When the magnetic field e↵ect is present in weakly-ionized plasma, electrons dif-

fuse across magnetic field lines, which is usually taken as Bohm di↵usion or anoma-

lous di↵usion in the Hall thruster community. This Bohm di↵usion coe�cient is

much greater than the classical electron di↵usion, which is commonly attributed to

instabilities in the discharge. Since this anomalous electron di↵usion is still poorly un-

derstood, the coe�cient ↵e is often used in Hall thruster simulations. The anomalous

electron collision frequency ⌫B is defined as:

⌫B =
↵a

16
!c (3.7)

The total electron collision frequency is now: ⌫e = ⌫ei + ⌫en + ⌫B.

3.2.1 Continuous Galerkin Method with Tensor Coe�cient

Following the same procedure in Section 2.2.2, the new momentum conservation

equation is multiplied by the piecewise linear test function and integrated over the

domain: Z

⌦

'i


�r · (µ�1

�er�) +r · (µ�1 �e

ene

rPe)

�
d⌦ = 0 (3.8)
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Because of the Laplacian-like operator on both terms, integration by parts is per-

formed on them once, which results in the following weak form:

Z

@⌦

('iµ
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�er�) · ~n dS �

Z

⌦

r'i · (µ�1
�er�) d⌦
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Z
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Z
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ene
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(3.9)

The boundary terms
R
@⌦ become zero because the basis function is only non-zero

inside an element. Transforming coordinate systems from a 3-D cylindrical to a 2-D

axisymmetric system, the integrals in the above equation become:

Z
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Z

⌦k

r drd✓dz =

Z

⌦k

2⇡r drdz (3.10)

where r is the distance from the the symmetry axis to an element node.

Considering only the interior elements, a weak formulation of the above equation

becomes an AU+ F = 0 system:
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(3.11)

The tensor coe�cient µ�1 makes the analytic integrals di�cult as shown in Eqs. (2.47).

Rather, the integrals are performed numerically using Dunavant’s Gaussian quadra-
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ture rules [44]. For a function g, the quadrature rule is defined as:

Z

⌦k⇤

g(⇠, ⌘) d⌦k⇤ =

NqX

q=1

!qg(⇠q, ⌘q) (3.12)

where ⇤ indicates the transformed coordinate (⇠, ⌘). Using the quadrature rule makes

an implementation of higher-order basis functions possible and straightforward for

the future, instead of piecewise linear functions. Currently, the quadrature rules of

up to the 14th order are implemented, where the order of a quadrature rule is the

degree of the lowest degree polynomial used to approximate the integral.

Although the new model also uses the continuous Galerkin approximation, the new

model applies the forcing termr·(µ�1
�e

1
ene

rP ) directly into a weak formulation as is

without expanding or making any assumptions, while the existing model expands the

term first, then computes derivatives using another method to reduce all terms into

a known linear function f(x, y). Even if the source terms in Eq. (2.25) and Eq. (3.5)

are analytically indistinguishable except for the r1/ne terms, directly putting the

governing equation into a weak formulation is more accurate than the expanded form.

Since FEM solves the weak equation instead of the strong form, solving Eq. (3.11)

is di↵erent from solving the existing momentum equation in Eq. (2.34) even in the

case when B = 0. Thus, now we have the gradient of the test function, r' instead

of the test function itself '. Another di↵erence in the numerical approach results

by approximating r'i · (µ�1
�erPe) vs. 'f(x, y) where f(x, y) is calculated using

a di↵erent method, i.e., the least-squares method. Using the least-squares method

and approximating f(x, y) made it possible to use a single Poisson’s equation solver

to solve all three governing equations. However, the truncation error may result in

large di↵erences if the accrued error is large enough. The current continuous Galerkin

formulation should be more robust and accurate than the existing formulation. Thus,

in the current electron model, we solve the momentum equation using the new FEM
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and solve the remaining equations using the general Poisson’s equation solver.

3.2.2 Solving Matrix System

The conjugate gradient method is an algorithm to solve systems of linear equa-

tions (Ax = b) that involve a symmetric and positive-definite matrix [16]. Since the

sti↵ness matrix of the new momentum equation is not symmetric and non-positive-

definite, the conjugate gradient method no longer can be used. Therefore, the bicon-

jugate gradient (BCG) method is used. A basic description of the BCG method can

be found in Ref. [45].

3.3 Implementation and Verification

In order to verify the algorithms for solving the new momentum equation, the

new FEM solver described above is first coded in MATLAB and then tested using

the method of manufactured solutions. The method of manufactured solutions is a

relatively simple approach to verify numerical models and their orders of accuracy.

In this study, the new model is tested using various types of functions as manufac-

tured solutions, including polynomial, sinusoidal, and exponential solutions, or some

combination of these. As an example, one of the manufactured solutions is shown

below:

uexact = 25 exp
⇣
�x

2

⌘
� 2xy3 (3.13)

This manufactured solution is substituted into the new momentum equation in Eq. (3.5)

in order to analytically acquire a source term that satisfies the governing equation.

In this case, the source term is:

f(x, y) = �µ

�1
�e


25

4
exp

⇣
�x

2

⌘
+ 24y

�
(3.14)
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The convergence study is performed using the L2-norm error:

kekL2 =

vuuut
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NqX
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wq [u(xq, yq)h � uexact(xq, yq)]
2 |J |

(3.15)

where uh is the numerical solution and wq is the weight of a quadrature point (xq, yq).

Using this formula, a grid convergence study has been performed to confirm the order

of accuracy of this method, which we expect to be of 2nd order for piecewise linear

functions. For the domain 1m⇥ 1m, four di↵erent triangular meshes are tested using

the uniform right triangles with �x = 0.25, 0.145, 0.0625, and 0.03125. The order of

accuracy can be determined as the slope of the log-plot of the error vs. mesh size. This

particular manufactured solution is tested using the 2nd and 14th orders of quadrature

rules. For each mesh and quadrature rule, the error using L2-norm is calculated and

plotted against the mesh size in Figure 3.5. The slope here is approximately 2, thus

confirming our expected 2nd order accuracy.

Figure 3.5: Grid convergence study using manufactured solution; two di↵erent
quadrature points were used, and 2nd order was confirmed.

Next, the new model is implemented in MPIC, which is written in C/C++, as a
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Figure 3.6: Contour plots of plasma potential calculated by a fully 2-D finite di↵erence
model by Dragnea [46].

sub-electron model. In order to verify the new model in MPIC with a Hall-thruster-

like case, a mock-Hall thruster test case was simulated by Dragnea using a new 2-D

axisymmetric finite-di↵erence electron model [46], as shown in Fig. 3.6. Dirichlet

boundary conditions of 300 V and 0 V are applied at the left (anode-like) and the

right (cathode-like) boundaries, respectively. Neumann conditions with zero-gradient

are applied at the top and the bottom boundaries, respectively, which are considered

as discharge channel walls in a Hall thruster. The plasma potential is calculated in

the domain and compared against Dragnea’s simulation result using the matching

input variables provided, including pressure, collision frequencies, magnetic field, and

number densities. A contour plot of the plasma potential calculated by the new elec-

tron model is shown in Figure 3.7. Both models show similar result. A quantitative

confirmation is shown in Figure 3.8 through a grid convergence study assuming the

solution provided is the true solution. As a result, 2nd order accuracy of the electron

model is confirmed.

52



Figure 3.7: Contour plots of plasma potential calculated using the new model.

Figure 3.8: Grid convergence study using a Hall-thruster-like case.

As a final validation of the new model, the simulation results will be compared

against various experimental data of the H6 Hall thruster in Chapter IV. The magnetic

field data of the H6 Hall thruster is provided by the Jet Propulsion Laboratory. The

magnetic field data are read in Tecplot 360, and is interpolated to the computational

grid points by using inverse distance weighting.
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3.4 Summary of the New Electron Model

The new fluid electron model is described in this chapter. The physical model of

the new governing equation that includes the e↵ect of the magnetic field is derived

in a 3-D cylindrical coordinate system without loss of generality. The new model has

the tensor transport coe�cient µ

�1
�e on both the LHS and the RHS of Eq. (3.5),

as a result of including the magnetic field e↵ects, while the prior model has a scalar

coe�cient �e. When the applied magnetic field is zero, the new momentum equation

reduces to the prior momentum equation:

r · (µ�1
�er�) = r · (�er�) (3.16)

because µ

�1 reduces to an identity matrix when B = 0.

The prior model had a single general Poisson equation solver that uses the least-

squares method to estimate derivative terms on the forcing function. All terms are

then added in order to calculate one linear forcing term. In contrast, the new con-

tinuous Galerkin finite element model solves the governing equation directly, without

using the least-squares method. This new formulation minimizes any truncation er-

rors that could be accumulated over many timesteps if derivatives are estimated using

the least-squares method. Then, the sum of the derivative terms is again approxi-

mated as a linear forcing function.

To numerically integrate the discretized equation, the Dunavant quadrature rule

up to the 14th order is implemented. The new electron model can simulate the 2-D

axisymmetric e↵ects of the magnetic field in any shape.
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CHAPTER IV

Simulation of a Hall-E↵ect Thruster plume using

the New Electron Model

The hybrid particle-fluid plume model, MPIC, described in Chapters II and III

is applied to simulate the plume of the H6 Hall thruster. A series of simulation

results and experimental validation is presented throughout this chapter. Section 4.1

describes the computational domain, flow conditions, and operating conditions of

the tests from which experimental data are used for model validation. Section 4.2

reports the comparisons between the prior model and the new model without the

magnetic field. Then, simulation results including magnetic field e↵ects are presented

in Section 4.2. Finally, the accuracy of the new model is performed through direct

comparisons with detailed experimental data (Section 4.4).

4.1 Simulation Setup for the H6 Hall Thruster Plume

In order to enable valid comparisons between simulation results and experimental

data, simulations are performed to match the thruster operating conditions and back-

ground pressure of the vacuum facilities. Section 4.1.1 describes operating conditions

of the H6 thruster. Section 4.1.2 describes the computational domain and boundary

conditions used for the simulations.
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4.1.1 Thruster Operating Condition

The Hall thruster used in this study is a 6-kW laboratory (H6) Hall thruster

(Fig. 1.3), which was jointly developed by the Air Force Research Laboratory, Jet

Propulsion Laboratory, and the University of Michigan [8]. A series of simulation

results is compared with plasma measurements in the plume of the H6 thruster in

order to validate the model. The H6 thruster experiment was conducted at the

following nominal conditions: discharge voltage of 300 V, discharge current of 20 A,

anode flow rate of 20 mg/s of xenon, and cathode flow rate measuring 7% of the

anode flow.

At the nominal condition, plasma potential, electron temperature, and electron

number density were measured by Sekerak [47] using high-speed dual Langmuir

probes. The uncertainties associated with these measurements were approximately

25%. The measurement was taken in the Large Vacuum Test Facility (LVTF) of the

Plasmadynamics and Electric Propulsion Laboratory (PEPL) at the University of

Michigan. The background pressure during the thruster operating was 1± 0.1⇥ 10�5

Torr.

The ion current density measurements were performed by Reid [48] using two

Faraday cup probes. The uncertainty associated with the near-field probe measure-

ments is ±10%, whereas the far-field probe measurements have ±0 � 50% on the

integrated beam current. The measurement also occurred in the LVTF at PEPL.

The background pressure during the thruster operating was 1.5⇥ 10�5 Torr.

Since the di↵erence in the background pressures between Sekerak’s and Reid’s

experiments is very small (i.e., 5 ⇥ 10�6), the simulation results using these two

background pressures were identical. Therefore, simulations are performed using the

background pressure of 1.1⇥ 10�5 Torr.
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4.1.2 Computational Domain and Boundary Conditions

The current model simulates a 2-D axisymmetric domain with the axis of sym-

metry being the centerline of the H6 Hall thruster as well as the cathode. Figure 4.1

shows the H6 thruster and a schematic of the cross-sectional view of the thruster.

This figure indicates the centerlines of the cathode and the discharge channel, and

the thruster exit plane. The cathode centerline (CL) is aligned with the axis of sym-

metry. Comparisons with experimental measurements used in this study are mainly

performed along the CLs of the cathode and the discharge channel, and a few radial

sweeps in the plume.

This study uses two di↵erent computational domains. For the comparisons be-

tween the prior model and the new model without the applied magnetic field (Sec-

tion 4.4), the “e↵ective” inflow domain is used, as proposed by Huismann when

neglecting the magnetic field. If the standard discharge channel exit is used as an

inflow when the magnetic field is neglected, the model over-predicted the plasma po-

tential by 100 V in the near-field plume (Section 3.1). When the applied magnetic

field is included, however, the standard discharge channel exit is used as an inflow

to compare the new model with the magnetic field and without the magnetic field

(Sections 4.3 and 4.4). Because the e↵ective inlet eliminates the significance of the

magnetic field e↵ect, which is the strongest in the very near-field plume region, the

magnetic field e↵ect cannot properly be studied using the e↵ective inlet.

4.1.2.1 “E↵ective” Inflow Domain when Neglecting the Magnetic Field

E↵ects

A schematic of the computational domain of the H6 thruster plume using the

e↵ective inlet is shown in Fig. 4.2. The four main boundaries are labeled in this

figure: the inflows from the cathode and channel, outflow, symmetry axis, and walls

(thruster and keeper).
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Figure 4.1: Cross-sectional view of the thruster indicating the centerlines of the cath-
ode and discharge channel, and the thruster exit plane for the 2-D ax-
isymmetric simulation.

Figure 4.2: Schematic of the domain of the Hall thruster plume.

Figure 4.3 shows the HPHall computation domain, indicating both the thruster

exit (TE) plane and the “B-field line,” which is a magnetic field line. Although plume
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simulations usually start at the thruster exit plane, the B-field line was proposed to

be used as an “e↵ective” inlet by Huismann [7] to eliminate magnetic field e↵ects

from the plume simulation, because the prior version of MPIC ignores magnetic field

e↵ects. The magnetic field e↵ects are strongest near the thruster exit plane, especially

in the near-field plume of the discharge channel, and diminish rapidly away from the

thruster exit plane.

Figure 4.3: Magnetic field line in HPHall that is chosen as an “e↵ective” inlet bound-
ary for the plume simulation of the H6 Hall thruster.

The mesh used in the computational domain is shown in Fig. 4.4, where the domain

spans 10 times the thruster diameter (Dth) in the axial (z) direction and 6 times the

Dth in the radial (r) direction. The domain consists of a total of 1,996 triangular

cells. The plume simulation runs for 450,000 timesteps to reach a steady state and

then for another 200,000 timesteps to sample macroscopic data. The timestep size

used is 4.0 ⇥ 10�8 s. In order to ensure a su�cient number of particles to reduce

statistical noise, approximately 4.7 million particles are simulated.

Hall thruster plume simulations using the current model require boundary condi-

tions to be specified at the inflow boundaries (i.e., cathode keeper exit and discharge
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Figure 4.4: Computational domain of MPIC using the “e↵ective” inlet and unstruc-
tured mesh.

channel exit), along the outer edges of, and along all walls in the computational

domain. For the heavy species model (DSMC-PIC), the following parameters are

required: velocities in z- and r-directions (vz,i, vr,i), species temperature (Ti) and

species number density (ni), where i ranges over each species that is modeled. For

the electron model, plasma potential (�), electron velocity stream function (r ), and

electron temperature (Te) are necessary, where r is calculated from electron current

density (je) by using r = �je/e.

Since the plume structure strongly depends on the plasma conditions at the inflow

boundary, it is important to get as accurate a condition as possible. In order to

provide accurate boundary conditions at the channel and cathode inflows, the plasma

simulation results from HPHall and OrCa2D are used. The inflow conditions at the

e↵ective inlet are provided by Huismann using HPHall (Tables 4.1 to 4.4 [7]). The

e↵ective inflow boundary is constituted by 15 line segments, S1-S15, in order to closely
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map onto the magnetic field line extracted from HPHall (Fig. 4.5).

Figure 4.5: Proposed discharge channel inlet (“e↵ective inlet”) boundary by Huis-
mann [7]. The boundary is constituted by 15 line secments, S1-S15

Table 4.1: Xe neutral parameters extracted from HPHall at the B-field shape inflow
geometry [7]

Location u(m/s) v(m/s) T (K) n(m�3)

S1 27.0 �33.0 400 2.88⇥ 1017

S2 23.0 �31.0 450 2.81⇥ 1017

S3 34.0 �9 650 2.91⇥ 1017

S4 165 56.0 1500 3.89⇥ 1017

S5 281 63.0 3100 4.40⇥ 1017

S6 309 27.0 5400 3.94⇥ 1017

S7 384 2.00 8250 3.58⇥ 1017

S8 660 �6.00 10100 3.38⇥ 1017

S9 449 �12.0 9700 3.44⇥ 1017

S10 430 �25.0 7700 3.80⇥ 1017

S11 411 �62.0 5450 4.47⇥ 1017

S12 352 �104 3150 4.58⇥ 1017

S13 67.0 �12.0 1250 2.39⇥ 1017

S14 47.0 17.0 680 2.45⇥ 1017

S15 59.0 23.0 550 2.71⇥ 1017
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Table 4.2: Xe

+ parameters extracted from HPHall at the B-field shape inflow geom-
etry [7]

Location u(m/s) v(m/s) T (K) n(m�3)

S1 �1310 4250 7.17⇥104 4.46⇥ 1015

S2 830 6020 1.62⇥105 6.48⇥ 1015

S3 4620 7100 2.57⇥105 1.17⇥ 1016

S4 9480 6510 2.84⇥105 2.21⇥ 1016

S5 14200 4440 2.16⇥105 5.35⇥ 1016

S6 16400 1930 1.46⇥105 1.33⇥ 1017

S7 17300 160 1.22⇥105 2.58⇥ 1017

S8 18000 �660 8.58⇥104 3.27⇥ 1017

S9 17900 �1080 8.74⇥104 3.39⇥ 1017

S10 17000 �1730 1.19⇥105 2.99⇥ 1017

S11 15800 �3330 1.70⇥105 1.51⇥ 1017

S12 12200 �5520 2.51⇥105 6.30⇥ 1017

S13 6980 �7420 2.56⇥105 2.47⇥ 1017

S14 530 �5810 8.79⇥104 1.06⇥ 1017

S15 �1940 �4340 2.10⇥104 7.35⇥ 1017

Table 4.3: Xe

2+ parameters extracted from HPHall at the B-field shape inflow geom-
etry [7]

Location u(m/s) v(m/s) T (K) n(m�3)

S1 �1790 8340 1.10⇥105 3.76⇥ 1014

S2 1030 9980 1.90⇥105 5.62⇥ 1014

S3 5240 10330 3.02⇥105 9.47⇥ 1014

S4 11200 9300 4.22⇥105 1.87⇥ 1015

S5 17200 6440 4.47⇥105 4.59⇥ 1015

S6 21200 2950 3.46⇥105 1.29⇥ 1016

S7 22900 300 2.73⇥105 3.14⇥ 1016

S8 23700 �930 2.17⇥105 4.82⇥ 1016

S9 23500 �1660 2.23⇥105 4.87⇥ 1016

S10 22000 �2630 3.12⇥105 6.40⇥ 1016

S11 19300 �4640 4.24⇥105 1.43⇥ 1016

S12 14000 �7610 4.92⇥105 5.47⇥ 1015

S13 6780 �9670 3.87⇥105 2.34⇥ 1015

S14 470 �8800 2.17⇥105 1.25⇥ 1015

S15 �2960 �6810 1.40⇥105 9.10⇥ 1014

The same conditions for both the heavy species model and the electron model are

required at the cathode inflow boundary. The discharge plasma from the cathode is
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Table 4.4: Electron parameters extracted from HPHall at the B-field shape inflow
geometry [7]

Location �(V ) r (m�2
s

�1) Te(eV )

S1 5.10 �4.11⇥ 1020 6.05
S2 6.10 �8.43⇥ 1020 6.12
S3 8.50 �1.82⇥ 1021 6.08
S4 12.3 �1.82⇥ 1021 6.07
S5 17.6 �2.79⇥ 1021 6.08
S6 23.3 �2.72⇥ 1020 6.04
S7 27.3 5.55⇥ 1021 6.09
S8 29.1 1.49⇥ 1022 6.04
S9 29.5 1.01⇥ 1022 6.13
S10 27.5 6.26⇥ 1021 6.21
S11 23.5 9.09⇥ 1019 6.11
S12 18.2 �1.64⇥ 1021 6.04
S13 13.2 �1.01⇥ 1021 6.01
S14 8.10 �7.93⇥ 1020 6.07
S15 6.20 �3.15⇥ 1020 5.94

coupled to the plume simulation at the exit plane of the cathode keeper shown in

Fig. 4.6. using OrCa2D [23]. OrCa2D is a full-fluid cathode code developed at JPL,

which solves conservation laws for partially-ionized plasma in the cathode. Figure 4.6

shows a contour plot of the plasma potential calculated by OrCa2D. The computation

region includes the emitter, orifice, keeper, and plume of the cathode. The simulation

Figure 4.6: Contour plots of the plasma potential calculated by OrCa2D.
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was performed at 20 A of discharge current with a slight o↵-nominal condition for

the cathode mass flow fraction of 5% anode flow; whereas the nominal operating

condition of the H6 Hall thruster is 20 A with the cathode mass flow fraction of 7%

anode flow. Magnetic field e↵ect was neglected in this particular simulation.

Figure 4.7 shows profiles of the electron model, plasma potential, electron temper-

ature, and electron current density (r = �je/e) extracted at the keeper exit plane

from OrCa2D. OrCa2D calculates the plasma potential with respect to the cathode

potential, so the cathode to ground voltage (Vcg = -13 V) is accounted for when using

the value for MPIC and the experimental measurement. For heavy species conditions,

the velocity, temperature, and number density of each species are extracted.

Figure 4.7: Profiles of the plasma potential (�), electron temperature (Te), and elec-
tron stream function (-je/e) calculated by OrCa2D along the keeper exit
plane for the inlet conditions in MPIC.

In MPIC, the keeper exit plane is divided into two equal-length cells (i.e., K1

and K2) to represent radial variation of inflow properties, which is shown in Fig. 4.8.
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Figure 4.8: Schematic of cathode inflow boundary that consists of 2 equal-length cells
K1 and K2.

These properties are averaged across each cell. The heavy species parameters at the

keeper exit are summarized in Table 4.5, and the electron parameters are summarized

in Table 4.6.

Table 4.5: Heavy species parameters extracted from OrCa2D [23] at the cathode
keeper exit plane

Species Location u(m/s) v(m/s) T (K) n(m�3)

Xe K1 282 35.5 935 3.52⇥ 1020

K2 363 32.3 1070 3.40⇥ 1020

Xe

+
K1 1260 1200 935 1.76⇥ 1019

K2 1320 667 1070 2.28⇥ 1019

Table 4.6: Plasma parameters extracted from OrCa2D at the discharge channel exit
plane [23]

Species Location �(V ) r (m�2
s

�1) Te(eV )

e

�
K1 3.42 �3.70⇥ 1024 3.06
K2 3.65 �4.13⇥ 1024 3.03
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4.1.2.2 Discharge Channel Exit Inflow Domain when Including the Mag-

netic Field E↵ects

For the simulation of the new model with the applied magnetic field, the discharge

channel exit is used as an inflow boundary to couple the plasma flow from the anode

to the plume simulation. A schematic of the 2-D axisymmetric simulation domain

of the H6 Hall thruster plume is shown in Fig. 4.9. Four main types of boundaries

are labeled in the figure: 1) inflows from the cathode and channel, 2) outflow, 3)

symmetry axis, and 3) walls (thruster and keeper).

Figure 4.9: Schematic of the computational domain of the Hall thruster plume using
the discharge channel exit as an inflow boundary.

At the discharge channel exit boundary, the plasma potential values provided by

Huismann [7] were approximately 70 V higher than the actual measurement that is

used for comparisons in the current study. Therefore, the H6 simulation was re-run

using HPHall, and the inflow boundary conditions were extracted at 0.5 mm upstream

of the actual thruster exit plane in order to match the same plasma potential value

to the experimental data measured by Sekerak [47]. The discharge channel inflow

boundary is constituted by ten equal-length segments to allow radial variation. The
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new inflow conditions at the discharge channel exit plane are summarized in Tables 4.7

and 4.9.

Table 4.7: Xe parameters extracted from HPHall at 0.5 mm upstream of the discharge
channel exit as an inflow boundary.

Location u(m/s) v(m/s) T (K) n(m�3)

S1 266 66.0 472 4.06⇥ 1018

S2 279 128 546 2.20⇥ 1018

S3 286 156 619 1.16⇥ 1018

S4 289 137 753 6.62⇥ 1017

S5 288 49.0 883 4.53⇥ 1017

S6 292 -76 864 4.69⇥ 1017

S7 294 -146 726 6.93⇥ 1017

S8 287 -155 622 1.23⇥ 1018

S9 277 -119 559 2.29⇥ 1018

S10 261 -54.0 508 4.20⇥ 1018

Table 4.8: Xe

+ parameters extracted from HPHall at 0.5 mm upstream of the dis-
charge channel exit as an inflow boundary.

Location u(m/s) v(m/s) T (K) n(m�3)

S1 12368 -2263 68000 1.64⇥ 1017

S2 13723 -279 43148 2.91⇥ 1017

S3 14575 4.00 28822 3.77⇥ 1017

S4 15128 -139 17530 4.26⇥ 1017

S5 15210 -309 12421 4.62⇥ 1017

S6 14935 -515 32186 4.57⇥ 1017

S7 14139 -578 19068 4.29⇥ 1017

S8 12976 -419 27694 3.80⇥ 1017

S9 11579 288 41536 2.98⇥ 1017

S10 10055 2477 59646 1.62⇥ 1017

The same cathode conditions are applied as for the e↵ective inlet simulations

(Tables 4.5 and 4.6).
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Table 4.9: Xe

2+ parameters extracted from HPHall at 0.5 mm upstream of the dis-
charge channel exit as an inflow boundary.

Location u(m/s) v(m/s) T (K) n(m�3)

S1 14426 -2393 129764 8.52⇥ 1015

S2 17097 -144 115005 1.64⇥ 1016

S3 18347 146 104483 2.87⇥ 1016

S4 19076 -148 87235 4.12⇥ 1016

S5 19131 -427 76155 5.06⇥ 1016

S6 18755 -759 95419 4.92⇥ 1016

S7 17621 -896 86492 3.99⇥ 1016

S8 15974 -740 94358 2.76⇥ 1016

S9 13921 135 107717 1.60⇥ 1016

S10 11347 2673 112883 7.70⇥ 1015

4.2 Comparison of the Prior and New Models Without the

Magnetic Field E↵ect

In this section, the simulation results from the new model without the applied

magnetic field are compared with the results from the prior model using the e↵ective

inlet. The purpose of these comparisons are to examine the di↵erences between the

prior and the new model when there is no applied magnetic field. As described in

Section 3.2, the left-hand side of the momentum conservation equation in the prior

model and the new model are equivalent when the applied magnetic field is zero

(Eq. 3.16). In this section, comparisons between the two models are made through

examining the following macroscopic plasma properties: plasma potential, electron

temperature, electron number density, and ion current density.

4.2.1 Plasma Potential

The contour plots of the plasma potential in the plume calculated by both models

are compared in Fig. 4.10. While the plasma potential variation in the plume is about

26 V for both models, the new and the existing models predict slightly di↵erent struc-

ture. In the new model, the plasma potential is highest in the region just downstream
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of the discharge channel and decreases relatively quickly in the axial direction to the

far-field plume potential of approximately 22.5 V. In comparison, the prior model

predicts very gradually decreasing plasma potential from the discharge channel exit

to the far-field plume. This di↵erence appears to be more clear from the axial plasma

potential profiles along the channel in Fig. 4.11. While the new model shows the

negative gradient in potential at the very near-field plume (Z/Dth < 0.5), the prior

model predicts very low gradient in the plasma potential.

Figure 4.12 shows the plasma potential profiles along the axis of symmetry, or the

cathode centerline (R/Dth = 0). The plasma potential calculated by the prior model

increases more rapidly than the new model, reaching its peak potential at Z/Dth = 2.

As the axial displacement increases, the new model reaches nearly-constant far-field

potential value, while the potential calculated by the prior model gradually decreases

until the far-end of the computational domain (Z/Dth = 10).

Figure 4.10: Contour plots of the plasma potential: new electron model (top) and
prior model (bottom). The magnetic field e↵ect is neglected.
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Figure 4.11: Axial plasma potential profiles along the cathode CL (Z/Dth = 0) and
the discharge channel CL (Z/Dth = 0.5), comparing the prior and new
model when the magnetic field is neglected.

Figure 4.12: Axial plasma potential profiles along the cathode CL (Z/Dth = 0) and
the discharge channel CL (Z/Dth = 0.5), comparing the prior and new
model when the magnetic field is neglected.
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4.2.2 Electron Temperature

The contour plots of the electron temperature in the plume are compared in

Fig. 4.13 in the case of zero magnetic field. Both models predict almost the same

electron temperature fields in the entire domain.

The magnetic field a↵ects the plasma potential, which then a↵ects the electric

field. When the magnetic field e↵ect is neglected, however, this e↵ect on the electric

field is very small because the plasma potential gradient in the plume is small. Both

models show that the electron temperature decreases smoothly in all directions. The

temperature variation in the plume is about 4 eV. The electron temperature in the

cathode plume starts at a lower value and then increases rapidly, with the maximum

temperature occurring at Z/Dth = 0.15.

Figure 4.14 shows the axial profiles of the electron temperature along the dis-

charge channel centerline. Both models predict monotonically decreasing electron

Figure 4.13: Contour plots of the electron temperature: new electron model (top)
and prior model (bottom). The magnetic field is neglected.
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Figure 4.14: Axial electron temperature profiles along the discharge channel center-
line, comparing the prior and new model when the magnetic field is
neglected.

Figure 4.15: Axial electron temperature profiles along the cathode centerline, com-
paring the prior and new model when the magnetic field is neglected.

temperature along the discharge channel centerline. Figure 4.15 shows the electron

temperature profiles along the cathode centerline. The electron temperature increases
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rapidly as the flow expands out from the cathode inflow, and then decreases monoton-

ically in the increasing axial displacement. The electron temperature profiles along

the the cathode centerline reach the same value as the axial displacement increases.

4.2.3 Electron Number Density

Figure 4.16 compares the electron number density contours calculated by both

models. These models show very similar contours throughout the entire domain

except small di↵erence in the cathode plume. The highest electron density is shown

at the cathode plume (on the order of 1019 m�3). The density at the cathode plume

decreases very quickly as the flow di↵uses into the plume; the density decreases about

two orders of magnitudes in Z/Dth = 0.1. In comparison, the density drop along the

discharge channel centerline is not as rapid as the cathode centerline because the

e↵ective inlet shape neglects the region closest to the thruster exit plane.

Figure 4.16: Contour plots of the electron number density: new electron model (top)
and existing model (bottom)
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Figure 4.17: Axial electron number density profiles along the discharge channel cen-
terline.

Figure 4.18: Axial electron number density profiles along the cathode centerline.

The axial profiles of the electron density along the cathode and discharge channel

centerlines are shown in Fig. 4.18. The new model shows slightly larger gradient in

the very near-field of the cathode than the existing model. As the axial displace-
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ment increases, the electron density along the cathode centerline increases slowly as

the cathode flow meets with the ion beam from the discharge channel at about 1

thruster diameter downstream. Both models predict very similar electron density at

the discharge channel centerline.

4.2.4 Ion Current Density

Figure 4.19 shows contours of ion current density calculated by both the new and

prior models. Similar to the electron number density, the highest ion current density

occurs at the cathode exit and near the center of discharge channel inlet. The ion

current from cathode and channel meet at the cathode centerline at approximately

1 to 2 thruster diameter downstream (i.e., Z/Dth = 1 to 2). At this location, the

existing model predicts slightly higher ion current density than the new model does.

Figure 4.21 shows the axial ion current density profiles at the cathode centerline.

Figure 4.19: Contour plots of the ion current density: new electron model (top) and
existing model (bottom).
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Figure 4.20: Axial ion current density profiles along the discharge channel CL, com-
paring the prior model and the new model.

Figure 4.21: Axial ion current density profiles along the cathode CL, comparing the
prior model and the new model.

As the flow expands out from the cathode, the ion current density along the cathode

centerline rapidly decreases, with the lowest current density at about Z/Dth = 0.2 for
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the new model and Z/Dth = 0.4 the existing model. Downstream of these locations,

the ion current densities increase back as the axial displacement increases. Despite

the location of the lowest ion current density, the overall profiles look very similar.

The profile along the channel centerline decreases gradually, varying approximately

90 mA/cm2 from Z/Dth =0 to 3. Both models also predict similar profiles of the ion

current densities along the channel centerline (Fig. 4.20). The ion current density

calculated by the new model is slightly higher than the prior model.

4.2.5 Discussion

Although the new and the prior models solve the same LHS of the governing

equation when the applied magnetic field is zero, the plasma potential structure are

moderately di↵erent due to di↵erent numerical schemes used in both models. The new

model puts the governing equation directly into a weak form and discretize using the

continuous Galerkin method. In comparison, the prior model estimates derivatives

of the source terms and add them to result in the linear forcing function, which is

then discretized by the continuous Galerkin method. Numerical errors can truncate

by using the least-squares method to estimate the derivatives to determine f(x, y) in

Eq. 2.22.

For qualitative comparisons with experimental measurement, the axial profiles of

the plasma potential are compared with experimental measurement by Sekerak [47]

in Figs. 4.22 and 4.23. Along the discharge channel centerline (4.22), a large plasma

potential gradient is observed from the experimental measurement. While the new

model can capture the gradient in plasma potential at the very near-field plume of

the channel, the existing model cannot capture the gradient. In Fig. 4.23, as the axial

displacement increases, the plasma potential data also increases rapidly in the very

near-field plume of the cathode. The potential then reaches the far-field potential that

is nearly constant. The overall profile shapes are similar between the models and the
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measurement. However, the new model shows more constant plasma potential value

than the existing model. Both models does not well capture the location where the

depressed cathode potential starts increasing near the cathode exit.

While the new model and the existing model predict a slightly di↵erent structure

of the plasma potential in the plume, the remaining properties are not a↵ected by

much. The slightly large plasma potential gradient at the very near-field plume of the

discharge channel is not su�cient to a↵ect the electron number density and the ion

current density. The existing model shows slightly elevated ion current density along

the cathode centerline at about Z/Dth = 2, and this is due to the slightly increase

plasma potential at this location that decreases further downstream, accelerating ions

at this location.

Figure 4.22: Axial plasma potential profiles along the discharge channel centerline,
comparing the prior and the new models with the experimental data
from Sekerak [47].

The new model without the applied magnetic field using the e↵ective inlet provides

good agreement with measured plasma potential. In addition, adding the magnetic
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Figure 4.23: Axial plasma potential profiles along the cathode centerline, comparing
the prior and the new models with the experimental data from Sek-
erak [47].

field e↵ects in the new model does not require additional computational time, because

the new model does not use the least-squares method to calculate derivatives, which

requires additional computational time for the prior model.
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4.3 Electron Mobility Modeling

This section presents simulation results using the new electron model with mag-

netic field e↵ects. Including magnetic field e↵ects requires modeling of the cross-field,

or “anomalous” electron mobility. First, background on anomalous electron mobility

modeling is provided. Then, a parametric study of the anomalous mobility coe�cient

is presented.

4.3.1 Background on Anomalous Electron Mobility Modeling in Hall

Thrusters

The transport of electrons across magnetic field lines in a Hall thruster is partially

controlled by the collisions with heavy species, known as the “classical” mechanism of

transport. However, di↵usion through classical collisions alone is not su�cient to re-

produce the cross-field mobility of electrons observed experimentally. The cross-field

di↵usion of electrons is known to be enhanced by plasma turbulence and instabil-

ity [49], which is a mechanism described as the “anomalous” transport. Since the

anomalous electron transport is still not well-understood, the electron mobility is

modeled using an anomalous Bohm collision frequency, defined as the classical Bohm

collision frequency with a coe�cient ↵e:

⌫B =
↵e

16
!g (4.1)

where ↵e is the anomalous Bohm coe�cient used as a free parameter to match exper-

imental data, and !g is the electron gyro-frequency. For the classical Bohm di↵usion

case, ↵e = 1.

Although a constant anomalous Bohm coe�cient can be used throughout the

entire computational domain, multiple-region mobility modeling has been developed

over time [50, 51, 22, 52], to account for spatial variation in the anomalous mobility
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coe�cient. In the case of the state-of-the-art Hall thruster code, HPHall, the first

version of the code developed by Fife [20] used a single mobility coe�cient over the

entire computational domain. Then, two-region mobility modeling was implemented

by Hagelaar [50] and Koo [51], and eventually three-region mobility was implemented

by Hofer [22] to increase the fidelity of the model. Hofer [22] shows that there are at

least three distinct regions from the anode to the near-field plume of Hall thrusters,

labeled in I, II, and III in Fig. 4.24. These regions are divided according to the

shape and magnitudes of the measured plasma potential profile and the calculated

Hall parameters along the centerline of the discharge channel. The current version of

HPHall, thus, uses a three-region mobility model, divided into the near-anode region,

thruster exit region, and very near-field plume region. Although these three regions

clearly show di↵erent behaviors from Fig. 4.24, it is still unclear how the anomalous

mobility coe�cient actually changes spatially. Moreover, the computational domain

of HPHall includes only up to the near-field plume with zero-mobility coe�cient

beyond a near-cathode magnetic field line, which is only couple centimeters away

from the thruster exit plane. Therefore, it is not clear what the coe�cient should be

beyond the very near-field plume (closed to the thruster exit) and the cathode plume

region.

For the electron mobility modeling of the H6 thruster, Hofer [22] used high Bohm

values of ↵e = 1 and 10 in the plume using HPHall, whereas Mikellides [53] used lower

values of ↵e = 0.15 and 0.075 using Hall2De—a full-fluid code developed at JPL.

Since all models simulate di↵erent computational domains with di↵erent physical

and numerical models, di↵erent values are used in di↵erent models. In the remainder

of this section, a parametric study of the anomalous Bohm mobility coe�cient is

presented.
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Figure 4.24: Figures taken from Ref. [22] to show three distinct regions for electron
mobility modeling. Left: Experimental data showing the axial variation
of the plasma potential on the discharge channel centerline of the P5,
NASA-173M, NASA-173M with internal trim coil (ITC), and a 6 kW
laboratory thruster. Right: Axial variation of the Hall parameter com-
puted from experimentally measured plasma properties, normalized to
its maximum value, on the discharge channel centerline of the P5 and
the NASA-173M.

4.3.2 E↵ect of the Anomalous Bohm Coe�cient on Plasma Properties

To study the e↵ect of the anomalous Bohm coe�cient on plasma properties in

the plume, the following values are simulated: ↵e = 10, 5, 1, 0.5, 0.2, 0.1, 0.05, 0.01,

and 0.001. The present study uses a constant value of ↵e throughout the entire

computational domain.

Figure 4.25 shows the axial profile of anomalous Bohm collision frequencies along

the centerline of the discharge channel. The Bohm collision frequency has its highest

value near the thruster exit plane (Z/Dth) and decreases exponentially downstream,

because the strength of the magnetic field also decreases downstream in the same

manner. As the value of ↵e decreases, the magnitudes of the Bohm collision frequency

profiles also decrease monotonically. This trend is expected since the Bohm frequency

is linearly proportional to ↵e according to Eq. (4.1). A similar trend is observed in

the axial profile of the Bohm collision frequencies along the cathode centerline in

Fig. 4.26. A sudden decrease and subsequent increase in ⌫B is observed at about
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Z/Dth = 2.35, which is caused by the magnetic field separatrix occurring at this

location along the cathode centerline (Fig. 3.3). The small bumps shown in the ⌫ei

and ⌫en curves are likely due to numerical errors in the particle weighting schemes.

The values chosen for ↵e determines the di↵erent collision mechanisms (i.e., clas-

sical vs. Bohm) that dominate the electron physics. To demonstrate this, relatively

high (↵e = 5.0) and low (↵e = 0.01) Bohm coe�cients are chosen, and their Bohm

collision frequencies are compared with the classical collision frequencies in Figs. 4.27

and 4.28. Classical collision frequencies include electron-neutral (⌫en) and electron-

ion (⌫ei) collisions. Figure 4.27 shows that the total collision frequency in the entire

domain is dominated by the anomalous Bohm frequency when using ↵e = 5.0. In the

case of small Bohm coe�cient (Fig. 4.28), the Bohm frequency is still dominant in

the very near-field plume region, while the electron-ion collision frequency dominates

downstream of Z/Dth = 0.85.

Figure 4.25: Axial profiles of anomalous Bohm collision frequency along the discharge
channel centerline using various mobility coe�cients ↵e.
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Figure 4.26: Axial profiles of anomalous Bohm collision frequency along the discharge
channel centerline using various mobility coe�cients ↵e.

Figure 4.27: Axial profiles of electron collision frequencies along the discharge channel
centerline using a high Bohm coe�cient (↵e = 5.0).
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Figure 4.28: Axial profiles of electron collision frequencies along the discharge channel
centerline using a low Bohm coe�cient (↵e = 0.01) .

The total electron collision frequency influences the shape and magnitude of elec-

tron mobility. The electron mobility calculated along the centerlines of the discharge

channel and the cathode using various Bohm coe�cients are shown in Figs. 4.29

and 4.30, respectively. The magnitude of the electron mobility is much smaller when

↵e is larger, because the Bohm collision frequency is inversely proportional to the

electron mobility (µe / 1/⌫B) for small to intermediate values of the magnetic field.

In Fig. 4.29, the mobility is suppressed along the discharge channel centerline due to

relatively high Bohm collision frequency. For instance when ↵e = 5.0, the electron

mobility is very low from Z/Dth = 0 to 1.0, and then increases gradually downstream.

For smaller values of ↵e, the electron mobility increases throughout the domain. Es-

pecially for ↵e < 0.1, the shape of the mobility profiles in the very near-field plume

becomes di↵erent than those at higher values of ↵e. For example, when ↵e = 0.01, the

electron mobility shows a noticeable peak near Z/Dth ⇡ 0.85, which is the location
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where classical collision starts to dominate the total electron collision as previously

shown in Fig. 4.28. Along the cathode centerline shown in Fig. 4.30, the electron mo-

bility in the very near-field plume is still relatively low even with the smallest Bohm

coe�cient used in this study (↵e = 0.001), because the magnetic field is stronger in

the near-field plume than the far-field plume.

Figure 4.31 shows the plasma potential profiles along the discharge channel cen-

terline using various ↵e values. The main di↵erences among these profiles are the

slopes of the plasma potential drop in the very near-field plume region (Z/Dth < 0.2)

and the far-field plume potential value at an increasing Z/Dth. For moderate to high

Bohm coe�cients (↵e = 0.2 to 10, shown in solid lines), the decreasing value of ↵e in-

creases the plasma potential gradient in the near-field plume and decreases the values

of the far-field plume potential. For smaller coe�cients (↵e = 0.01 to ↵e = 0.1, shown

in dashed lines), decreasing the value of ↵e results in a decreased plasma potential

Figure 4.29: Axial profiles of the electron mobility along the discharge channel cen-
terline using various mobility coe�cients.
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Figure 4.30: Axial profiles of the electron mobility along the cathode centerline using
various mobility coe�cients.

gradient in the near-field plume and an increased value for the far-field plume poten-

tial. Thus, the overall magnitude of plasma potential profiles do not show a linear

trend with the values of ↵e in the plume. This non-monotonic trend may be due to

the 2-D magnetic field e↵ects in the plume. Unlike the inside of the discharge chan-

nel and near the channel exit—where the magnetic field is almost purely radial—the

plume has a highly curved, two-dimensional magnetic field topology. The curvature

and varying strengths of axial and radial magnetic fields in di↵erent regions of the

plume may contribute to the non-monotonic trend between the mobility coe�cient

and the plasma potential.

Similar trends are shown along the cathode centerline (Fig. 4.32). As ↵e decreases

from 10.0 to 0.5, the far-field potential value monotonically decreases, and for smaller

↵e, the far-field potential value increases. Because of the 2-D magnetic field e↵ect,

there may be one or more alternative ↵e values that can produce similar profiles of the
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Figure 4.31: Axial profiles of plasma potential along the discharge channel centerline
using various mobility coe�cients.

Figure 4.32: Axial profiles of plasma potential along the cathode centerline using
various mobility coe�cients.
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plasma potential in the plume. For instance, the far-field plasma potential values are

very similar for ↵e = 1.0 and 0.1. However, the profiles show slightly di↵erent behavior

in the plasma potential in the very near-field plume for both the discharge channel

and the cathode. Along the discharge channel centerline in Fig. 4.31, ↵e = 0.1 shows

a steeper potential gradient than ↵e = 1.0. In Fig. 4.32, the plasma potential is more

suppressed in the near-field cathode plume when using ↵e = 1.0 than ↵e = 0.1. To

determine a value of ↵e that results in a more accurate overall shape and magnitude,

the simulation results need to be compared with experimental data.

Figure 4.33: Axial profiles of plasma potential along the discharge channel center-
line using various mobility coe�cients, compared with experimental
data [47].

In Fig. 4.33, axial profiles of the plasma potential along the discharge channel

centerline are compared with experimental measurement by Sekerak [47]. When ↵e =

5.0 and 10.0, the plasma potential increases slightly in the very-near field plume

of the discharge channel exit (Z/Dth ⇡ 0) before it drops slightly to the far-field

plume potential downstream. These profiles are not similar to the experimental data,
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in which a steep negative gradient in the potential is observed in very near-field

plume (0 < Z/Dth < 0.2). The potential gradient in this region is an extension of

the potential gradient in the discharge channel produced by the localized transverse

magnetic field. This steep potential drop causes an increased axial electric field that

accelerates ions. In contrast to the high Bohm cases, the plasma potential drop in

the very near-field plume is well captured by ↵e = 0.1 to 1. The far-field potential

predicted using these values are about within the error bars of the measurement.

Figure 4.34 compares the axial profiles of plasma potential along the cathode

centerline with experimental data. While the suppressed potential profile at the axial

displacement of Z/Dth < 0.5 is well captured by using ↵e = 0.5, the far-field plume

potential is slightly under-estimated. When using ↵e = 0.1 and 0.2, the plasma

potential agrees well with the measured data, except in the very near-field plume of

the cathode (Z/Dth < 0.3).

Figure 4.34: Axial profiles of plasma potential along the cathode centerline using
various mobility coe�cients, compared with experimental data [47].

90



While these trends do not o↵er an explanation of the underlying physics of the

anomalous electron mobility, they show that the plasma potential profiles do not in-

crease or decrease monotonically according to the anomalous Bohm coe�cient in the

plume due to the e↵ects of 2-D magnetic field. Moreover, because of the completely

di↵erent magnetic field topologies in the cathode plume and the near-field plume of

the discharge channel, it is possible that di↵erent transport mechanisms may be dom-

inant in di↵erent regions of the plume, which may indicate that multi-region mobility

modeling is required. Since more than one ↵e value can result in a similar value of the

plasma potential, it is di�cult to determine which value should be used. Therefore,

other parameters should also be compared with experimental data in the future to de-

termine the ↵e value(s) that gives the best agreement with various experimental data.

In this study, however, the mobility coe�cients between 0.1 to 1 agree reasonably well

with experimental data.

4.3.3 Multi-Region Mobility Modeling

Although the single-region mobility model gives an ability to better match experimentally-

measured plasma properties, it is possible to further improve the agreement using a

multiple-region mobility model. Multi-region models have been used by many stud-

ies [50, 51, 22], but they mainly focus on the plasma inside the discharge channel

and the very near-field plume. This study does not attempt to solve the anomalous

electron mobility problem. Rather, multi-region mobility modeling is performed to

examine whether using spatially-varying mobility can further improve the agreement

with experimental data. Typically, the mobility coe�cient is varied only in the axial

direction, which is a good assumption along the discharge channel centerline. This is

the approach taken in the present work. However, capturing the electron transport

in the cathode plume will require radially-varying mobility coe�cients because the

magnetic field is mainly axial.
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Figure 4.31 from the previous section shows that the negative slope of the potential

drop predicted by the current model is slightly lower than the experimental data just

downstream of the discharge channel (Z/Dth < 0.1). This steep potential gradient

is extended from the discharge channel potential gradient produced by the localized

transverse magnetic field. Since this potential gradient causes an acceleration on ions,

we want to obtain as accurate potential gradient profile as possible. In attempt to

best match these features observed in the experimental data, the mobility calculation

algorithm in the current model was slightly modified to use spatially-varying ↵e values

in three regions, as shown in Fig. 4.35. Each regions have a linear transition region

that is determined by the following formula from Ref. [22]:

↵e =

8
>>>>>><

>>>>>>:

↵1, Z/Dth < Z1

↵1f1 + ↵2f2, Z1 < Z/Dth < Z2

↵2, Z2 < Z/Dth < Z3

↵2f2 + ↵3f3, Z3 < Z/Dth < Zp

↵3, Z/Dth > Zp

(4.2)

where

f1 = 1� f2

f2 =
Z/Dth � Z1

Z2 � Z1

f3 = 1� f4

f4 =
Z/Dth � Z2

Z3 � Z2

Table 4.10: The Bohm coe�cient (↵e) and the axial displacement (Z) used in the
multi-region model. Z is normalized by thruster diameter Dth.

↵1 ↵2 ↵3 Z1 Z2 Z3 Zp

0.2 0.01 0.1 0.003 0.13 0.44 0.56

The axial profiles of the single-region and multi-region electron mobility for ↵e =

0.01, 0,1, and 0.2 are shown in Fig. 4.36. Three distinct values of mobility is shown
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Figure 4.35: Axial profiles of single-region and multi-region mobility coe�cients.

Figure 4.36: Axial profiles of single-region and multi-region electron mobility.
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from the multi-region model. The electron mobility in the first region calculated using

the multi-region model is identical to the mobility calculated using the single-region

model with ↵e = 0.2. Similarly, the second and the third regions show the same

profiles as the corresponding single mobility region.

The plasma potential profile calculated using the multi-region model is compared

with the single-region model and experimental data in Fig. 4.37. The error-bars are

removed to make the trends more clearly visible. While the single mobility coe�cient

cases show reasonably good agreement with experimental data, mixing the three

mobility coe�cients (i.e., ↵e = 0.2, 0.1, and 0.01) results in an excellent agreement

with the experimental data. Especially, the multi-region mobility model successfully

captures both the steep gradient in the very near-field plume of the discharge channel

and the gradually-decreasing potential profile downstream.

Figure 4.37: Axial profiles of plasma potential along the discharge channel centerline
using a single-region and multi-region mobility model, compared with
experimental data [47].
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4.3.4 Discussion

The cross-field mobility of electrons is defined as:

µ? =
e

me⌫e

0

@ 1

1 +
!2
g

⌫2e

1

A (4.3)

In the limit of a large Hall parameter, the cross-field electron mobility is proportional

to ⌫e, which is true inside the discharge channel or near the channel exit of a Hall

thruster, where the magnetic field is strong. Therefore, a large ↵e would enhance

the anomalous electron transport in this region, such as the very near-field plume of

HPHall domain as shown in Ref. [22]. For small to intermediate values of the Hall

parameter, the mobility is inversely proportional to ↵e, which is true in the plume

where the magnetic field strength decays quickly. In the plume, larger ↵e reduces

the mobility because having a large ↵e coe�cient would be equivalent to having a

strong magnetic field that limits the transport of electrons. Therefore, there may be

a turning point in the behavior of the mobility in the plume.

Although the multi-region model can successfully reproduce the potential profile

along the discharge channel centerline, there could be more sets of ↵e values that

can produce a similar or better results. Moreover, the cross-field mobility modeling

in the cathode plume may require radially-varying ↵e coe�cient. Therefore, more

fundamental work on understanding the physics of anomalous electron transport is

necessary for the future.

4.4 Comparison of the New Electron Model With and With-

out the Magnetic field

In this section, a series of simulation results using the new model with and without

magnetic field e↵ects is compared in order to study the e↵ects of magnetic field on the
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plume properties. The following macroscopic plasma properties are examined: plasma

potential, electron temperature, and ion current density. The standard discharge

channel exit plane is used as the inflow boundary to couple the flow from the anode

to the plume simulation. From the previous section, the constant mobility coe�cient

with ↵e = 1 and 0.01 and the multi-region coe�cients (↵e = 0.2, 0.01, and 0.1) showed

the best results.

4.4.1 Plasma Potential

The contour plots of the plasma potential calculated without and with the mag-

netic field are compared in Fig. 4.38. Because the results using constant coe�cients

of ↵e = 1 and 0.01 and the multi-coe�cients are similar, only ↵e = 1 is plotted to

represent the model with the applied magnetic field. This figure shows very di↵er-

ent overall shapes of the two models; while the model with the magnetic field has

an equipotential shape that matches the magnetic field lines (Fig. 3.3), the model

without the applied magnetic field does not. The far-field plasma potential is also

di↵erent by about 70 V. At the near-field plume of the cathode, the plasma potential

calculated by the model with the magnetic field is suppressed at lower potential. In

comparison, the potential using the model without the applied magnetic field predicts

a rapidly increasing plasma potential.

For a qualitative comparison, the axial profiles of the plasma potential along

the centerlines of the discharge channel and the cathode are compared in Figs. 4.39

and 4.40. In the new model with the magnetic field, the plasma potential along the

channel centerline is highest at the thruster exit plane (Z/Dth = 0) and decreases

relatively quickly in the axial direction to the far-field plume potential of 24-28 V.

In comparison, the plasma potential profile calculated by the model without the

magnetic field increases slightly from Z/Dth = 0 to Z/Dth = 0.1 and then becomes

almost constant to the far-field plume. The negative plasma potential gradient at the
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Figure 4.38: Contour plots of the plasma potential using the new electron model
without the magnetic field (top) and with the magnetic field (bottom).

very near-field plume (Z/Dth < 0.2) is largest when multi-region model is used.

Figure 4.40 shows the axial profiles of the plasma potential along the cathode

centerline. When the magnetic field is not included, the plasma potential increases

very quickly in the axial direction to a large far-field plume potential (98 V). This

potential profile reaches the far-field plume potential at about Z/Dth = 0.2 When the

magnetic field is included, the profiles show similar far-field potential values ranging

between 24-28 V. For ↵e = 1, the plasma potential is suppressed from the cathode

exit (Z/Dth = 0) to Z/Dth = 0.2, and then gradually increases to the far-field plume

potential. For ↵e = 0.1 and multi-region model, the “suppression” of the potential in

the cathode plume becomes smaller.
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4.4.2 Electron Temperature

For the same reason mentioned in Section 4.4.1, the model with the applied mag-

netic field with ↵e = 1 is compared to the model without the magnetic field in the

contour plot shown in Fig 4.41. While the overall magnitudes are similar between

the two cases, the shapes of the electron temperature profiles are di↵erent. The Te

predicted by the model without the magnetic field monotonically decreases from the

near-field plume of the discharge channel exit to the far-field plume with an arc shape

profile. In comparison, the model with the magnetic field does not predict a mono-

tonically decreasing profile in the radial direction; the electron temperature is slightly

elevated at approximately R/Dth = 0.6 and R/Dth = 0.8. The elevated temperature

at these locations are likely caused by the large negative axial magnetic field occurring

at theses locations. At the near-field plume of the cathode, the electron temperature

calculated by the model with the magnetic field is lower than the model without the

Figure 4.39: Axial plasma potential profiles along the discharge channel CL, compar-
ing simulation results with and without magnetic field e↵ects.

98



Figure 4.40: Axial plasma potential profiles along the cathode CL, comparing simu-
lation results with and without magnetic field e↵ects.

magnetic field.

The axial profiles of the electron temperature along the discharge channel center-

line is shown in Fig. 4.42. The electron temperatures calculated without and with

the magnetic field show similar profiles; the profiles monotonically decrease from the

very near-field plume of the discharge channel exit (Z/Dth=0) to the far-field plume,

which is also observed from the contour plot above.

Figure 4.43 shows the axial profiles of the electron temperature along the cathode

centerline. The model without the magnetic field shows that the Te increases from

the cathode exit (Z/Dth = 0) to its maximum value at about Z/Dth = 0.15, and

then decreases monotonically downstream. Similar trend is predicted by the model

with the magnetic field using multi-region mobility coe�cients. The models with

single-region mobility (↵e = 1.0 and 0.1) predict that the Te increases rapidly from

the cathode exit to Z/Dth = 0.05, reaches almost a constant value from Z/Dth = 0.05

to Z/Dth = 0.5, and decreases monotonically downstream.
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Figure 4.41: Contour plots of the electron temperature using the new electron model
without the magnetic field (top) and with the magnetic field with ↵e =
1.0 (bottom).

4.4.3 Ion Current Density

The contour plots of the ion current density calculated without and with the mag-

netic field (↵e = 1.0) are compared with the experimental measurement by Reid [48]

in Fig. 4.44. They show similar contour profiles with slight di↵erences in the cathode

plume and the far-field plume. The ion current density in the cathode plume is higher

when the magnetic field is neglected than included. Without the magnetic field, the

ion current density shows a collimated beam structure across all axial displacements.

With the magnetic field, the ion current density merges to the axis of symmetry at

the far-field plume and is slightly higher in magnitudes than without the magnetic

field.

Figure 4.45 shows the axial ion current density profiles along the discharge channel

centerline. All models predict very similar ion current density profiles; the ion current

density is the highest in the region just downstream of the discharge channel and

100



Figure 4.42: Axial electron temperature profiles along the discharge channel CL, com-
paring simulation results with and without magnetic field e↵ects.

Figure 4.43: Axial electron temperature profiles along the cathode CL, comparing
simulation results with and without magnetic field e↵ects.
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decreases gradually in the axial direction.

Figure 4.44: Contour plots of the ion current density using the new electron model
without the magnetic field (top) and with the magnetic field with ↵e =
1.0 (bottom).

Figure 4.45 shows the ion current density profile along the cathode centerline.

The magnitude of the ion current density is highest in the region just downstream of

the cathode and decreases quickly in the axial direction to its lowest value between

Z/Dth = 0.3 and Z/Dth = 0.6, and increases gradually downstream. The minimum

ion current densities occurring in these regions are likely to be cause by the insu�cient

kinetic energy of ions to overcome the steep increase in the plasma potential, resulting

in the negative axial velocity of ions at Z/Dth < 0.3. The model without the magnetic

field e↵ect shows lower magnitude of the overall ion current density profile along the

cathode centerline.
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Figure 4.45: Axial ion current density profiles along the discharge channel CL, com-
paring simulation results with and without magnetic field e↵ects.

Figure 4.46: Axial ion current density profiles along the cathode CL, comparing sim-
ulation results with and without magnetic field e↵ects.
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4.5 Comparison of the New Electron Model and Experimen-

tal Data

In this section, a series of simulation results using the new model with and without

the magnetic field e↵ects is compared in order to validate the new model and study the

e↵ects of magnetic field on the plume properties. The following macroscopic plasma

properties are examined: plasma potential, electron temperature, and ion current

density. The standard discharge channel exit plane is used as the inflow boundary to

couple the flow from the anode to the plume simulation. From the previous section,

the constant mobility coe�cient with ↵e = 1 and 0.01 and the multi-region coe�cients

(↵e = 0.2, 0.01, and 0.1) showed the best results.

4.5.1 Plasma Potential

The axial profiles of the plasma potential calculated without and with the magnetic

field are compared to experimental data [47] in Fig. 4.47. The experimental data

shows a steep potential gradient in the very near-field plume (0 < Z/Dth < 0.1),

which is an extension of the negative potential gradient from the acceleration channel.

When the magnetic field is included, the new model predicts the steep potential

gradient in the very near-field plume that is observed from the experimental data.

The model with the multi-region electron mobility model shows excellent agreement

with the experimental data. The model with the magnetic field using ↵e = 1.0 and

0.1 show reasonable agreement to the measurement by predicting a similar negative

plasma potential gradient in the near-field plume and the far-field plume potential. In

contrast, the model without the magnetic field does not predict the negative potential

gradient in the near-field plume, and over-estimates the far-field plume potential by

over 100 V.

Figure 4.48 shows the plasma potential profiles along the cathode centerline. The
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Figure 4.47: Axial plasma potential profiles along the discharge channel CL, compar-
ing simulation results with and without magnetic field e↵ects.

model without the magnetic field shows a steep increase in the potential, whereas the

model with B-field shows a more gradually increasing potential. The model without

the applied magnetic field over-predicts the entire plasma potential profile by about

70 V. When the magnetic field is applied, the overall magnitudes of plasma potential

profiles agree with the experimental data. The near-field plume potential predicted

using ↵e = 1 predicts the suppressed plasma potential that agrees well with the

experimental data.

Figure 4.40 shows the axial profiles of the plasma potential along the cathode

centerline. When the magnetic field is not included, the plasma potential increases

very quickly in the axial direction to a large far-field plume potential (98 V). This

potential profile reaches the far-field plume potential at about Z/Dth = 0.2 When the

magnetic field is included, the profiles show similar far-field potential values ranging

between 24-28 V. For ↵e = 1, the plasma potential is suppressed from the cathode
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Figure 4.48: Axial plasma potential profiles along the cathode CL, comparing simu-
lation results with and without magnetic field e↵ects.

exit (Z/Dth = 0) to Z/Dth = 0.2, and then gradually increases to the far-field plume

potential. For ↵e = 0.1 and multi-region model, the “suppression” of the potential in

the cathode plume becomes smaller.

4.5.2 Electron Temperature

The electron temperatures calculated using the new model without and with the

applied magnetic field are compared with the experimental data. Figure 4.49 shows

the axial profiles of the electron temperature along the discharge channel centerline.

Both the new models with and without the magnetic field e↵ect show similar profiles;

they reach their peaks at Z/Dth = 0.05 and monotonically decrease downstream.

While the overall magnitudes of the profiles are similar to the experimental data, the

data shows a steeper gradient of the electron temperature in the near-field plume

than all the simulation results.

Figure 4.50 shows the axial profiles of the electron temperature along the cath-
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Figure 4.49: Axial electron temperature profiles along the discharge channel CL, com-
paring simulation results with and without magnetic field e↵ects.

Figure 4.50: Axial electron temperature profiles along the cathode CL, comparing
simulation results with and without magnetic field e↵ects.
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ode centerline. The experimental data shows a peak electron temperature at about

Z/Dth = 0.4, which decreases monotonically downstream to a far-field plume tem-

perature of about 3 eV. The model without the magnetic field and the model with

multi-region mobility coe�cients show similar trend, except that their peaks appear

at the location of Z/Dth = 0.15. In comparison, the models with single-region mo-

bility model (↵e = 1.0 and 0.1) show almost constant values of electron temperature

from Z/Dth = 0.05 to Z/Dth = 0.5, and decreases monotonically downstream.

4.5.3 Ion Current Density

Figure 4.51 shows the axial ion current density profiles along the discharge chan-

nel centerline. Both the models with and without the applied magnetic field show

reasonably good agreement with experimental data. The model with the magnetic

field slightly over-estimates the ion current density at the far-field plume. This is due

Figure 4.51: Axial ion current density profiles along the discharge channel CL, com-
paring simulation results with and without magnetic field e↵ects.
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Figure 4.52: Axial ion current density profiles along the cathode CL, comparing sim-
ulation results with and without magnetic field e↵ects.

to the magnetic field causing slightly more acceleration on the ions, through larger

negative potential gradient along the channel centerline.

Along the cathode centerline in Fig. 4.51, the near-field profiles are not well cap-

tured by either simulations. While the experimental data shows almost a constant

ion current density profile downstream of Z/Dth = 0.3, the calculated ion current

densities are much lower. The decrease in the ion current density at Z/Dth = 0.2 to

0.4 is likely being insu�cient to overcome the steep increase in the plasma potential

that is previous observed in Fig. 4.51.

4.5.4 Discussion

Including the magnetic field e↵ects results in much better agreement in the plasma

potential with the experimental data. The model with the magnetic field e↵ects suc-

cessfully reproduces the large negative potential gradient in the near-field plume of
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the discharge channel. Especially, using the multi-region mobility model results in

excellent agreement with the experimental data along the discharge channel center-

line. In the cathode plume, the plasma potential profile along the cathode centerline

is suppressed in the near-field plume and gradually increases to the far-field plume

potential downstream. In order to further improve agreement in the plasma potential

along the cathode centerline, the mobility model may need to be varied radially to

capture the cross-field electron mobility in the radial direction since the magnetic

field is mainly axial in the cathode plume.

The magnetic field also a↵ects the electron temperature profiles. In the cathode

plume, including the magnetic field e↵ects lowers the magnitude of the electron tem-

perature in the very near-field plume. However, both the models with and without

the magnetic field do not capture the detailed profiles correctly. The rapid increase

in the electron temperature in the near-field plume of the cathode may be improved

by including more inelastic collisions, i.e., electron-impact excitation of neutrals and

ions. Because the only inelastic collision implemented in the current model is the ion-

ization of neutrals, there may not enough inelastic collisional losses for the electrons,

which may cause the electron temperature to increase rapidly.

While good agreement is shown in the ion current density along the discharge

channel centerline, large discrepancy is shown in the cathode plume. The steep in-

crease in the plasma potential in the cathode plume pushes Xe+ ions back towards

the cathode, resulting in the negative velocity in the very near-field cathode plume.

This results in the decreased ion current density in the cathode plume. This may be

improved by applying more correct ion velocity conditions at the cathode boundary.

The current cathode flow is slightly lower than the nominal H6 operating condition;

the cathode flow rate used in OrCa2D simulation is 5% of the anode flow, whereas

the nominal condition is 7% of the anode flow.
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CHAPTER V

Modeling Erosion of the Cathode Keeper

A Hall thruster plume contains ions of various energies. Charge-exchanged ions

and the energetic beam ions at large divergence angles from the thruster centerline

can bombard surfaces of the thruster or components of the host spacecraft. If the

bombarding ion has su�cient energy that is greater than the binding energy of the

surface, one or more atoms can be ejected from the surface, which is a process known

as sputtering. Sputtering on spacecraft components can reduce the life of the satellite

or mission. Furthermore, sputtered materials can re-deposit onto other surfaces of

the spacecraft (such as solar panel and optics) that can interfere with a mission.

Modeling sputtering phenomena is, therefore, an essential capability in Hall thruster

plume simulations from the perspective of spacecraft integration. A sputter model can

be used to predict the sputter or erosion rates, and even the lifetime of the thruster

or any other components. Furthermore, the simulation can be used to determine the

positions of di↵erent components of the satellite and the design of the solar arrays.

In this chapter, a sputter model that is implemented into MPIC is described. The

sputtering model is used to simulate the steady-state erosion behavior of the cathode

keeper in the H6 Hall thruster. Then, the simulation results from the sputtering

model are reported.
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5.1 Sputter Model

A sputtering model is implemented in MPIC to calculate erosion rates of solid

surfaces due to ion bombardment. Sputter yield is primarily a function of target

material, incident species, incident energy, and incident angle. The total sputter

yield is the product of the energy-dependent yield at normal incidence angle, Y (E),

and the angle-dependent yield, Y (✓):

Y = Y (E)Y (✓) (5.1)

In the current sputter model, the sputter yield, Y , is determined by using fitting

functions for Y (E) and Y (✓).

The energy-dependent yield for the ions impacting a wall at normal incidence can

be calculated using the following formula [54, 55]:

Y (E) = A

p
E

 
1�

r
Eth

E

!B

(5.2)

where E is the total energy of the projectile atom impacting the wall, Eth is the

threshold energy below which sputtering does not occur, and A and B are fitting

coe�cients for experimental data. Traditionally, B = 2.5 for a carbon target, but

here we are using it as a free parameter to best fit the experimental data.

Before striking the surface, ions must transverse a sheath. Although the plasma

sheath at surfaces is not resolved in the current plume model, the total energy of

an ion is calculated as the sum of its direct kinetic energy and the sheath potential

energy—the drop in potential across the sheath. Assuming there is no secondary

electron emission, the sheath potential is:

�s =
kBTe

e

ln

✓
M

2⇡me

◆1/2

(5.3)
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where M is the mass of the ion and me is the electron mass.

The keeper of the LaB6 cathode in the H6 thruster is made of graphite [56].

Most published theoretical works [54, 57] predict a threshold energy higher than 130

eV for xenon ions bombarding a carbon target, but more recent experiments [58,

59] show that sputtering does occur at or below 50 eV. Although there is no exact

threshold energy data for graphite, Ref. [60] reports that modeling results are in

better agreement with experimental data if the accumulation of xenon in graphite is

accounted for. This means that some fraction of the projectiles are carbon and some

fraction of the target atoms are xenon. Including this e↵ect, the threshold energy

for sputtering on graphite surface can be calculated as 36.5 eV using the equation

below [60]:

Eth

Us

=
1 + 5.7

⇣
M1
M2

⌘

�

M1M2 (5.4)

where Us is the surface binding energy of the target solid in eV, � is an energy trans-

fer factor in the elastic collision, and M1 and M2 are the masses of the projectile

and target atom, respectively. The threshold energy of 36.5 eV is used in the cur-

rent sputtering model in MPIC, since it is in good agreement with the experimental

results [58, 59].

Experimental measurements of the sputter yields of various forms of carbon and

graphite from xenon ion bombardment at normal incidence [58, 59, 61, 62, 63] are

plotted in Fig. 5.1. Based on these data, coe�cients to the fitting function in Eq. 5.2

are determined as A = 0.013 and B = 3.

The angle-dependent yield is defined as [55]:

Y (✓) = 1 + c0[1� cos(c1✓)]
c2 (5.5)

where ✓ is the angle relative to the wall normal and c0, c1, and c2 are the fitting

coe�cients for experimental data. Experimental measurement of sputter yields at
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Figure 5.1: Experimental data and fitting functions of the sputter yield at normal
angle incidence [58, 59, 61, 62, 63] using fitting coe�cients of A = 0.013
and B = 3, and the threshold energy of Eth = 36.5 eV for Eq.5.2.

various incidence angles [64] are normalized and shown in Fig. 5.2 with the fitting

function. The coe�cients for Eq. 5.5 are determined as c0 = 0.91, c1 = 2.5614, and

c2 = 1.91.

The sputtering model is activated when the simulation starts sampling for macro-

scopic parameters after steady state has been reached, given that the incident energy

of the particle is greater than the threshold energy of the surface. During the sam-

pling period, the energies and fluxes of incident particles onto the wall surfaces are

recorded whenever particles cross the wall boundary, using the particle-in-cell algo-

rithm described in Section 2.1.2. At each timestep, the erosion rate is calculated as

the product of incident flux on a target surface and the sputter yield calculated using

Eq. 5.1. The erosion rate at each timestep is totaled during the entire sampling pe-
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Figure 5.2: Experimental data and fitting functions of normalized sputter yield at
various incident angles with incident ion energy of 600 eV and 1000 eV [64]
using coe�cients c0 = 0.91, c1 = 2.5614, and c2 = 1.91 to Eq. 5.5.

riod, and is divided by the number of sampling timesteps at the end of the simulation

to determine the mean erosion rate. The resulting mean erosion rate is reported as a

function of position along the surface.

5.2 Modeling Erosion of the Keeper Surface

For long-duration missions using Hall-e↵ect thrusters, the thrusters need to op-

erate at high e�ciency and for a long lifetime. The lifetime currently required by

NASA may exceed 80,000 hours for long-duration missions [35]. One of the main

life-limiting factor in conventional Hall thrusters has been the erosion process of

the discharge channel walls due to ion bombardment. However, the erosion of the

discharge channel walls in the state-of-the art magnetically shielded thrusters has
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e↵ectively been eliminated as a failure mechanism. Magnetic-shielding is associated

with shaping magnetic field lines such that the discharge channel walls are shielded

from ion bombardment by achieving ideal equipotentialization of the lines of force

near the walls [65][66]. The next potential failure mode in a magnetically shielded

Hall thruster is now the erosions of the cathode and surface of the magnetic-field

pole-pieces [56][67]. Modeling the sputtering of these surfaces is necessary to predict

the erosion mechanism and rates, and eventually improve the limited lifetime of these

components in a Hall thruster.

In the present study, the sputter model described above is applied to simulate the

sputtering process of the LaB6 cathode keeper in the H6 Hall thruster. The mean

erosion rate is calculated and presented below that can be used to determine cathode

erosion as a potential life-limiting factors of the thruster. The sputtering model can

also be used to simulate the erosion profile on any surfaces, such as the thruster pole-

pieces in magnetically shielded thrusters or any components of host spacecraft in the

future.

5.3 Results for Estimating Keeper Erosion Rate

The sputter model described in this chapter is used to simulate the erosion be-

havior on the exit plane of the keeper wall as shown in Fig. 5.3. The keeper wall

consists of four computational cells, and the results are shown with normalized radial

displacements from 0 to 1. When a particle hits the keeper surface, its energy and

incident flux are recorded on each surface element to calculate the sputter yield and

erosion rate as a function of position. In this section, the energy distributions and

fluxes of incident particles, and the erosion rate due to these particles are discussed.

The simulation is performed using the new model described in Chapter III without

applied magnetic field in the e↵ective inlet domain, because this model showed very

good agreement with experimental data for the H6 thruster plume (Chapter IV).
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Figure 5.3: A schematic of cathode keeper wall for calculating sputter yields and
erosion rates.

5.3.1 Incident Energy Distributions of Heavy Species

In Figs. 5.4 to 5.7, the incident energy distributions of xenon neutrals and ions

are plotted. Cell 1 corresponds to the radially inner-most cell and cell 4 corresponds

to the cell located farthest away from the cathode centerline. The vertical axes have

arbitrary units. Figure 5.4 shows the Xe neutral energy distributions. The majority

of the neutrals have very low energy (<5 eV), and only very few of them have high-

enough energy (>36.5 eV) to contribute to the sputtering of the wall. The neutrals

hit the keeper uniformly on each cell.

The energy distributions of Xe+ ions on the keeper walls are shown in Fig. 5.5,

where two distinct peaks are observed. Not all Xe+ ions have energy greater than

the threshold energy of 36.5 eV. According to the small shifts observed in the peaks

in the lower energy range (<30 eV), the ions hitting the cells located at smaller radii

have lower energies than the ions hitting the cells at larger radii. The second peaks

in the slightly greater energy-range (>30 eV) show that the number of ions hitting

the surface with this energy range increases as the radial displacement increases.

A similar trend is observed for double-charged ions in Fig. 5.6. The energy peak

for the lower energy range is shifted slightly to the right for cells at larger radii, and
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Figure 5.4: Incident Xe species energy distributions on the keeper wall.

Figure 5.5: Incident Xe+ species energy distributions on the keeper wall.
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Figure 5.6: Incident Xe2+ species energy distributions on the keeper wall.

Figure 5.7: Incident total ion energy distributions on the keeper wall.
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cell 4 experiences more ions with higher energy than cell 1 does. Almost all of the

Xe2+ ions hitting the keeper can contribute to sputtering of the surface since their

energy is greater than 36.5 eV.

The total ion energy distributions (i.e., Xe+ and Xe2+) are shown in Fig. 5.7,

where two distinct peaks below 50 eV and one very small peak around 90 eV are

observed. While almost all Xe2+ have su�cient energy to sputter the keeper, only a

fraction of Xe+ have enough energy to sputter.

Ions are accelerated through the decrease in the plasma potential, and gain en-

ergy through the sheath potential that is proportional to electron temperature, as in

Eq. 5.3. According to the electron temperature profile on the wall shown in Fig. 5.8,

ions accelerate through a slightly greater sheath potential for cells at larger radii (i.e.,

cell4) than the cells at smaller radii because Te is slightly greater at larger radii (i.e.,

cell 1).

Figure 5.8: The plasma potential (�(V )) and electron temperature (Te(V )) profiles
along the keeper wall boundary. Sheath potential is not shown.
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5.3.2 Incident Fluxes of Heavy Species

Figure 5.9 shows the fluxes of each species on the keeper surface as a function

of normalized radial displacement. The neutral flux on the keeper is up to about

one order of magnitude higher than Xe+ and two orders of magnitude higher than

Xe2+. While flux of Xe is almost constant along the keeper, the fluxes of ions are the

highest on cell 1 which is the lowest radial displacement on this plot. The fluxes of

ions hitting cell 1 are the highest because the number density is the highest and the

plasma potential is the lowest at this location than other cells (Fig. 5.8). As a result,

the total flux of all heavy species is as shown in Fig. 5.9.

Figure 5.9: Incident fluxes of Xe, Xe+, Xe2+, and total species on the keeper wall.

5.3.3 Prediction of Mean Erosion Rate

Figure 5.10 shows the mean erosion rates as a function of normalized radial dis-

placement of the keeper for all species. The erosion of the keeper is mainly caused

by Xe2+ ions and partially by Xe+ ions. Although the flux of Xe2+ is much lower
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than Xe neutrals and Xe+ (Fig. 5.9), their incident energies are much greater than

the threshold energy (Fig. 5.6), unlike most of the neutrals and single-charged ions.

The mean erosion rate calculated by all heavy species is approximately 0.014 µm/h.

Although no keeper erosion measurements for the H6 thruster are available, the

calculated mean erosion rate is compared with the published erosion rate of the dis-

charge channel wall, also known as the insulator ring, from Ref. [66], in Table 5.1.

The estimated mean erosion rate of the keeper wall is approximately 0.014 µm/h,

which is of the same order of the measured erosion rate of the inner channel wall of

the magnetically shielded (H6MS) thruster, and more than three orders of magni-

tude lower than the erosion rates of both the inner and outer rings of the unshielded

(H6US) thruster.

Figure 5.10: Steady-state mean erosion rate as a function of radial displacement on
the keeper by all heavy species.
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Table 5.1: Summary of measured erosion rates of the discharge channel walls of the
H6US and H6MS thrusters [66].

Axial Position (Z/Lchannel) Erosion Rate (µm/h)

Unshielded - outer ring 0.973 15.0
Unshielded - inner ring 0.973 19.7

Magnetically shielded - outer ring 0.947 0.00
Magnetically shielded - inner ring 0.947 0.02

5.4 Summary

A sputter model is implemented in MPIC to extend the capability of the plume

model. Semi-empirical fits for the energy- and angle-dependent sputter yields are

found using available data for Xe bombarding graphite surface. The H6 thruster

plume with the e↵ective inflow domain is simulated using the new model without

magnetic field. The sputter model is applied to estimate the erosion rates along the

cathode keeper wall.

The energy distributions and fluxes of all heavy species are calculated. While

the flux of Xe neutrals is the highest, their energy is not su�ciently high enough to

cause much sputtering. The keeper erosion is mainly contributed by Xe2+ ions and

partially by Xe+. Since double ionization is not allowed in the current model and

no Xe2+ ions are injected from the cathode inlet, these ions are migrated from the

discharge channel. The resulting erosion rate of the graphite keeper wall is 0.014 µm/h

which is comparable with the erosion rate of the inner ring in the H6MS thruster.
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CHAPTER VI

Conclusions

In this chapter, the major conclusions from and contributions of this dissertation

are summarized, and suggested approaches to further improving Hall thruster plume

simulations are discussed.

6.1 Summary

There were four main objectives of this dissertation: 1) to develop an accurate

physics-based model to simulate a Hall thruster plume by including magnetic field

e↵ects; 2) to improve the accuracy of the plume simulation by refining the cathode

boundary condition; 3) to assess the accuracy of the new model through comparisons

with available experimental data; and 4) to extend the capability of the plume model

by implementing a sputter model.

To simulate the plasma plume generated by the H6 Hall thruster, the 2-D axisym-

metric hybrid particle-fluid model (MPIC) was used. This model uses the particle-

based kinetic approach, known as the DSMC-PIC method, to describe the heavy

species (i.e., neutral and ion), while an electron fluid model solves the continuity,

momentum, and energy conservation equations of the electrons at steady state. In

order to achieve the first objective of the dissertation, a new electron fluid model that

includes magnetic field e↵ects was developed, tested, and incorporated into MPIC.
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The new governing equation for this model was derived in a 3-D cylindrical coordinate

system without loss of generality (Chapter III). The new electron model is capable

of simulating 2-D axisymmetric magnetic field e↵ects, which enables the simulation

of any shape of magnetic field topology. By including the magnetic field, the new

governing equation now consists of a tensor form of electron mobility coe�cient.

In order to solve the new governing equation with a tensor coe�cient, the con-

tinuous Galerkin finite element model was developed. The prior model had a single

general Poisson equation solver that uses the least-squares method to estimate deriva-

tive terms in order to calculate a linear forcing term. In contrast, the new continuous

Galerkin finite element model solves the governing equation directly. Moreover, a

quadrature rule was used to integrate the weak form, and the biconjugate gradient

method was used to e�ciently solve the linear system. Including the magnetic field

does not require additional computational time, because the least-squares method is

not used.

To confirm the order of accuracy of the new continuous Galerkin finite element

method, a grid-convergence study with the method of manufactured solutions has

been performed using various analytic solutions, including polynomial, sinusoidal,

and exponential solutions. As a result, 2nd order accuracy was confirmed. Another

verification of the new electron model was performed by simulating a Hall-thruster-

like test case. The simulation results of the model was compared with a new 2-

D axisymmetric finite di↵erence model developed by Dragnea [46]. The 2nd order

accuracy was confirmed again through a grid convergence study.

The second objective of improving the accuracy of the plume simulation was

achieved by coupling internal plasma simulations to the current model to provide

physically accurate boundary conditions at the discharge channel and cathode in-

flows. The prior work by Huismann [7] coupled the discharge channel exit as an

inflow in order to use the plasma conditions simulated by HPHall as inflow condi-
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tions for the plume model. The present study used the same conditions as this prior

work at the discharge channel exit. Since the prior work made a strong assumption

about the composition of the cathode mass flow. The refinement of the boundary

condition at the cathode inflow was achieved by using plasma conditions simulated

by OrCa2D [23]. These conditions were coupled with the plume simulation at the

exit plane of the cathode keeper. All simulations in this dissertation were performed

with the improved cathode inflow conditions.

First, the e↵ect of electron models is studied by comparing the new model with-

out the magnetic field and the prior model. Simulations were performed using the

“e↵ective” inlet proposed by the prior work [7]. Although the left hand side of the gov-

erning equation of the new model reduces to the prior model when applied magnetic

field is zero, the plasma potential structure were slightly di↵erent because di↵erent

numerical schemes are used with di↵erent assumptions in the two models. The new

model puts the governing equation directly into a weak form and discretize using the

continuous Galerkin method. In comparison, the prior model estimates derivatives

of the source terms and add them to form a linear forcing function, which is then

discretized by using the continuous Galerkin method. A number of assumption (e.g.,

using the least squares method and assuming r(1/ne) is negligible) that goes into the

formulation of the prior model results in a slightly di↵erent plasma potential profile

in the plume. The order of accuracy of the prior model can be calculated using the

method of manufactured solution.

Next, in order to study the e↵ect of the magnetic field, the new model with the

magnetic field e↵ect was compared with the new model without the magnetic field

e↵ect using the standard discharge channel inflow domain. A single-region and multi-

region mobility models were used to simulate the cross-field electron transport. A

parametric study was performed to examine the e↵ect of anomalous mobility coef-

ficient (↵e) in plume properties. The e↵ect of the anomalous Bohm coe�cient was
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found to follow a non-monotonic relationship with the plasma potential because of

the 2-D magnetic field e↵ect; there was a turning point in the behavior of the mobil-

ity. In the plume, larger ↵e reduces the mobility because having a large ↵e coe�cient

would be equivalent to having a strong magnetic field that limits the transport of

electrons. Although the multi-region model can successfully reproduce the potential

profile along the discharge channel centerline, there could be one or more sets of ↵e

values that can produce a similar potential profile. Moreover, the cross-field mobility

modeling in the cathode plume may require radially-varying ↵e coe�cient. Therefore,

more fundamental work on understanding the physics of anomalous electron transport

is necessary for the future.

In the presence of the magnetic field, the plasma potential gradient in the near-field

plume of the discharge channel is captured by the model. In the cathode plume, where

the axial magnetic field is relatively strong, the model with the magnetic field resulted

in a suppressed plasma potential in the near-field plume, compared to the model

without the magnetic field. Both the new models with and without the magnetic field

e↵ect showed very similar ion current densities along the centerline of the discharge

channel, which agreed with experimental data. The magnetic field increased the

plasma potential gradient from the channel exit to the near-field plume, decreasing

the far-field plasma potential.

The assessment of the accuracy of the new model was performed by comparing

the simulation results with experimental data. The new model with the magnetic

field successfully reproduced the detailed structure in the near-field plume of the

cathode by including the magnetic field e↵ect. Although the new model with the

magnetic field provides results more accurate than without the magnetic field, sig-

nificant di↵erences still remain between the simulations and measurements regarding

the overall magnitude of the electron temperature, which implies that the electron

energy equation needs to be improved.
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The last objective of this dissertation was achieved by implementing a sputter

model to calculate steady-state erosion rates. A semi-empirical fit for sputter yield

data was found for Xe bombarding graphite. The sputter model was applied to

estimate the erosion rates along the cathode keeper wall in the H6 thruster operating

at the nominal conditions. The mean erosion rate of the graphite keeper wall was

calculated to be 0.014 µm/h, which is on the same order of the erosion rate of the

discharge channel walls in the magnetically-shielded H6 Hall thruster.

6.2 Contributions

The present study represents several contributions to the field of Hall thruster

plasma plume modeling as follows:

1. Development of the new electron model. A new electron model that includes

full 2-D axisymmetric magnetic field e↵ects is developed. The new electron

model has the ability to simulate electron transport across a complex magnetic

field topology in the plume. The magnetic field in the plume includes a purely

axial component along the cathode centerline axis, a purely radial component

near the discharge channel exit of the thruster, and a magnetic field separatrix.

2. Improvement of the numerical methods. The numerical algorithm for solving

the electron model has been improved by using a new continuous Galerkin finite

element method. The discretized equation with the electron transport tensor

coe�cient is integrated using the Dunavant quadrature rules. Quadrature points

up to 14th order are implemented, which can be used to integrate higher order

polynomial basis functions in the future.

3. Incorporation of a full plasma condition at the cathode boundary. The present

work represents the first application of a more physically-accurate cathode con-

dition including ion flows, which was calculated by OrCa2D [23].
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4. Implementation of a sputter model. A sputter model to calculate the steady

state erosion rate is implemented in a full-scale plume simulation. The present

sputter model computes the flux and energy distributions of incident species

to any solid surface, and a sputtering yield function based on an empirical

curve fit of xenon-graphite data. The capability of the sputtering model is not

limited to Hall thruster components, but can also be applied to other surfaces

of spacecraft.

5. Estimation of the steady-state erosion rates of a LaB6 keeper in the H6 Hall

thruster at the nominal operating condition.

6.3 Recommendations for Future Work

In the process of completing this research, several areas have been identified that

can lead to further improving the accuracy of Hall thruster plume simulation.

6.3.1 New Electron Energy Equation Solver

As shown by the comparisons of a simulated electron temperature with experi-

mental data, the axial and radial profiles of the electron temperature were not able to

reproduce the detailed shape of the measurements. In order to capture the detailed

electron physics, the current energy equation must be improved.

The energy equation in MPIC is currently formulated as a Poisson equation where

the forcing function also contains the electron temperature:

r2
Te = f(Te) (6.1)

Instead of discretizing all terms, the forcing function is calculated using the value of

Te from the previous time step and estimating all derivatives using the least-squares
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method. A more mathematically correct way to solve this equation is to discretize

all terms.

The electron model can be further improved by applying the continuous Galerkin

finite element formulation to the governing equation without putting it in the Poisson

equation form:
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Solving this equation directly will more accurately describe the detailed electron

physics. However, discretization and solving the system will be challenging. We

recommend that the steady state should be assumed first. Once the steady-state

form of this equation can be solved successfully, the unsteady energy conservation

equation needs to be solved to capture time-dependent phenomena.

6.3.2 Higher Order Finite Element Solver

The current new model uses piecewise linear basis functions on triangular elements

and thus has 2nd order accuracy. Since the mesh size is small near the thruster and

the cathode but is large at the far-field plume, having a higher order method can

produce more accurate results. If the mesh size is too fine, because the same grids are

used for the heavy species model, ensuring 20 or more particles per cell will require

significant amounts of computational time. Therefore, using a higher-order finite

element method will result in a more accurate solution.

6.3.3 Wall Boundary Conditions

In Hall thrusters, two types of walls exist: floating and grounded walls. The

physics occurring at the boundary of the floating and grounded walls are di↵erent

and thus should be treated appropriately.
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6.3.4 Magnetic-Field-Aligned Mesh

In consideration of applied magnetic fields, the plasma potential contour showed

numerical di↵usion along the magnetic field line. This di↵usion was probably caused

by the large disparity of the transport coe�cients parallel and perpendicular to the

magnetic field. One way to approach this problem would be to use a computational

mesh that is aligned with the applied magnetic field lines.
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ABSTRACT

Improved Hall Thruster Plume Simulation by Including Magnetic Field E↵ects

by

Maria Choi

Chair: Iain D. Boyd

Hall-e↵ect thrusters (HETs) are a↵ordable and e�cient electric propulsion devices for

space exploration, with higher specific impulse than conventional chemical propulsion

and higher thrust at a given power compared to ion thrusters. A detailed understand-

ing and an accurate characterization of the physical processes occurring in HET plume

are critical from both the thruster performance and spacecraft integration perspec-

tives. Therefore, a new electron model that includes full 2-D axisymmetric magnetic

field e↵ects is developed and incorporated within the framework of a 2-D axisymmetric

hybrid particle-fluid code. The governing equation of this new electron model consists

of an electron mobility coe�cient tensor. The new electron model can simulate any

shape magnetic fields.

The accuracy of the model is first assessed using the method of manufactured

solutions and a Hall thruster test case to confirm 2nd order accuracy. Then, the

simulation results of a 6-kW laboratory Hall thruster are directly compared with

experimental measurements to validate the model. By including the magnetic field,

modeling of the anomalous electron mobility is required. Since the anomalous electron

mobility is still not yet well-understood, it is modeled using the Bohm coe�cient. A

parametric study of the Bohm coe�cient is performed to examine its e↵ect on plasma

properties. Due to the concave shape of magnetic field lines, the plasma potential



in the plume does not show a linear trend with the anomalous collision frequency.

Comparisons with experimental data show that the new model with the magnetic

field captures the detailed physics than without the magnetic field. In particular,

the plasma potential profile agrees well with data by accurately capturing the strong

negative gradient near the discharge channel exit of the thruster.

In order to extend the capability of the plume simulation, a sputter model is also

implemented. The sputter model is applied to simulate the sputtering process of

xenon propellants bombarding the surface of the “keeper” for the cathode, which can

be an important failure mechanism in Hall thrusters. The steady-state mean erosion

rate suggests that keeper erosion is as low as the erosion rate of the discharge channel

walls in magnetically-shielded Hall thrusters.
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