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ABSTRACT

Spacecraft electric propulsion (EP) takes advantage of the ability of electric and

magnetic fields to accelerate plasmas to high velocities to generate efficient thrust.

The thermionic hollow cathode is a critical component to both gridded-ion and Hall-

effect thrusters, the state-of-the-art devices of the EP discipline. However, experi-

ments demonstrate that the hollow cathode is plagued by erosion of its surfaces by the

plasma, which may eventually cause premature failure of the device. This erosion has

been linked to the ion-acoustic instability (IAI), a kinetic plasma instability which

operates in the cathode plume. Existence of this kinetic instability has prevented

numerical simulation from predicting the operating characteristics and lifetime of

the hollow cathode device. Therefore, this thesis utilizes deterministic-kinetic (DK)

simulation of gas and plasma flows to further the understanding of the IAI as it

relates to the hollow cathode plume and to ultimately develop a predictive hollow

cathode simulation platform. Towards these goals, two approaches to applying the

DK simulation method to the hollow cathode plasma are undertaken: hybrid-kinetic

simulation and fully-kinetic simulation.

Hybrid-kinetic simulations utilize a kinetic description of the heavy propellant

particles while using a reduced-order, fluid approach for the light electrons. Two

unique two-dimensional, axisymmetric kinetic schemes are developed, one for neu-

tral particles and one for ions; the schemes are verified by comparison with solutions

obtained using the direct-simulation Monte Carlo method and with an analytic solu-

tion for a rarefied neutral jet flow. Assuming quasi-neutrality in the hollow cathode

plasma and using the Boltzmann relation for the plasma potential, the hybrid-kinetic
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solver is applied to the problem of NASA’s NSTAR discharge hollow cathode. Partial

validation is achieved through agreement with experimental Langmuir probe data in

the near-orifice region, while shortcomings of the solver such as use of a simplified

electron model are discussed.

Fully-kinetic simulations, where all species are considered kinetically, are carried

out to study the IAI. The anomalous resistivity generated by the IAI is measured

from one-dimensional fully-kinetic simulations and compared with a closure model

commonly used in hollow cathode fluid codes, finding that the agreement with the

closure model varies based on simulation domain size and electron Mach number.

Further, the formation of high-energy tails in the ion velocity distribution function

is observed near the transition to the Buneman instability, another instability of

current-carrying plasmas. Two-dimensional kinetic simulations of current-carrying

instabilities are carried out, finding that the nature of nonlinear saturation of the IAI

differs significantly from that shown in one-dimensional simulations. A phenomenon

known as the off-axis instability generates waves propagating normal to the current

direction which eventually reach energy levels close to that of the waves along the

current direction.

Further fully-kinetic simulations demonstrate the formation of weak plasma dou-

ble layers, regions of plasma which sustain a potential gradient, in the nonlinear

saturation stage of the IAI. These double layers are found to be ubiquitous in all

plasma species considered, even the heavy xenon ions commonly used in hollow

cathodes. Phase space analysis suggests the double layers form from ion-acoustic

wave packets which grow into ion phase space holes. Spectral analysis demonstrates

a shift towards smaller wavenumbers which marks this transition. An electron two-

stream instability is spawned due to the potential well of the double layer, where
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spectral analyses demonstrate that a simple theoretical expression well-predicts the

resulting wave phase velocity.
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CHAPTER I

Introduction

“It is wrong to think that the task of physics is to figure out how nature

is. Physics concerns what we can say about nature.”

– Niels Bohr, as quoted by Aage Peterson

This chapter sets the stage for the work performed in this thesis. In Section

1.1, the motivations for pursuing the problems addressed throughout the thesis are

described. Section 1.2 details the general theory of gas and plasma dynamics, which

is the foundation of this work. In Section 1.3, the field of spacecraft propulsion is

briefly surveyed, a field with which much of this work is concerned. Finally, Section

1.4 lays out the objectives that this thesis strives to accomplish.

1.1 Motivations

The advent of modern-day computing has had profound impacts on science and

engineering. With ever increasing computational resources, problems of ever higher

complexity are being unlocked for detailed study. The fields of fluid dynamics and

plasma physics, notorious for their complexity, have benefited greatly by weaving the

newer field of computational physics into their midst. The use of computers allows

the scientist or engineer to peer into spatial and temporal scales which are as of yet

1
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inaccessible to experimental apparatus, with limited concerns for safety, cost, and

time. As a companion to theoretical and experimental study, numerical study has

proven an invaluable asset in science and engineering.

The massive increase in computational resources over the past few decades has

enabled direct computational analysis of fluids and plasmas. That is to say, rather

than making simplifying assumptions regarding the state of the fluid/plasma which

allow for a reduced computational burden, the governing equation(s) may be solved

directly. This relatively recent development makes numerical analysis all-the-more

valuable, as the caveats to results introduced by simplifying assumptions are slowly

being dropped.

Increasing access to direct computational analysis has had a profound effect on the

field of spacecraft electric propulsion. In this field, gas and plasma flows are utilized in

order to generate thrust in-space. In recent years, it has come to the attention of this

field that thruster technologies which have decades of flight heritage are subject to an

array of plasma instabilities, some of which tend to dominate the plasma discharge.

These instabilities may degrade the operating efficiency of the thruster and even limit

their operational lifetime due to effects such as erosion of the thruster body. One

example of such an instability is the ion-acoustic instability, which has been identified

to operate in the plume of the hollow cathode device, a sub-component of various

flight-proven thruster technologies. This instability has been postulated as a primary

life-limiting factor for the hollow cathode, as it is linked to surface erosion measured

in standalone cathode tests. Therefore, this thesis aims to take advantage of the

advent of direct numerical analysis of fluids and plasmas by applying it to problems

of interest to the field of spacecraft electric propulsion, particularly relating to the

effect of plasma instabilities and their role in the thermionic hollow cathode.
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1.2 Gas and Plasma Dynamics

Macroscopically, gas is a state of matter with variable volume and shape. Mi-

croscopically, atoms or molecules of a gas freely traverse space and only interact

with their neighbors through collisions. The average distance which a gas particle

travels before encountering and colliding with another is known as the mean free

path (MFP), λ. The degree of collisionality within a gas uniquely determines the

theory which describes its motion and bulk properties. To measure this property, a

non-dimensional parameter known as the Knudsen number:

(1.1) Kn =
λ

L
,

was devised. The Knudsen number compares the MFP with the characteristic length

of the gas container, L. Three general regimes exist to describe the state of the

gas: continuum, transitional, and free molecular. In the continuum state, where

Kn < 0.01, collisions between gas molecules are frequent. In the free molecular

state, where Kn > 10, collisions are infrequent; the state between these two is

known as the transitional state, where 0.01 < Kn < 10.

Each of these three states lead to entirely different behavior of the gas; to under-

stand why this is, the concept of the velocity distribution function (VDF), f(v), is

important. Any particular gas is composed of a massive amount of particles which

each move with a velocity, v. In virtually every case, these velocities are not all iden-

tical, but rather form a distribution of velocities. The function f(v) thus describes

how many particles exist at each value for velocity, v. Now, going back to the concept

of the Knudsen number: the action of collisions is to drive the particles towards a

state of equilibrium. That is, in highly collisional (or continuum) flows, the particles

of the gas exchange information so frequently that they are in a constant state of
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equilibrium. This equilibrium state in terms of velocity, or translational energy, is

described by the Maxwell-Boltzmann, or Maxwellian, distribution:

(1.2) fM(v)dv =
N∏

nd=1

(
m

2πkbT

)nd/2
exp

(−mv2
nd

2kbT

)
dv,

where N is the number of dimensions, kb is Boltzmann’s constant, m is the species

mass, and T is the species temperature. On the other hand, in the case of free

molecular flow information is exchanged relatively infrequently; this allows the gas

to reach a state of non-equilibrium, where the VDF is no longer necessarily described

by the Maxwellian distribution.

The description of a gas as a distribution of particles with differing velocities

applies equally well to a plasma. Plasma is often considered the fourth state of

matter, where some fraction of a gas population has been ionized. That is, atoms or

molecules of the gas have had electrons stripped off and free electrons exist in the flow;

this may occur through a variety of physical mechanisms. Thus, a plasma consists of

the charged particles known as ions and electrons, as well as some fraction of neutral

gas particles. As in a gas, these particles all flow freely and interact via collisions,

with one major exception: due to the charged nature of ions and electrons, they

are subject to Coulombic interaction with each other and to the effects of external

electric and magnetic fields. This property of the plasma, that the particles are able

to interact from long ranges due to the electromagnetic fields between them, leads to

what is otherwise known as collective behavior: the tendency for a plasma to respond

to external influence by the collective motion of its constituent charged particles.

If plasmas are indeed considered to be the fourth state of matter, why, then, are

they not commonly encountered on Earth? While plasmas exist naturally throughout
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the universe, they exist on Earth in a limited variety of forms: lightning bolts, the

Aurora Borealis, and fluorescent lights, to name a few. Due to the high density of gas

in Earth’s atmosphere, plasmas do not exist under ambient conditions; the reason for

this can be understood from the Saha equation, which gives the fraction of ionized

particles to neutral particles:

(1.3)
ni
nn
≈ 2.4× 1021T

3/2

ni
exp

(
−Ui
kbT

)
,

where Ui is the ionization energy, nn is the neutral density, and ni is the ion density.

Assuming the atmosphere to be composed of molecular nitrogen, then Ui = 14.5

eV, T = 300K and nn ≈ 3 × 1025; this leads to an ionization fraction of ni/nn ≈

10−122, which is certainly negligible. The reason for this absence of plasma lies in

collisions: at low temperature, collisions aren’t energetic enough to ionize the gas,

and further, collisions with neutral particles cause any charged particles that do arise

to recombine. Even in a plasma, this process of recombination occurs at some finite

rate, which is the reason that plasmas are often encountered under near or total

vacuum conditions, where the neutral particle density is very low.

The distinction of where a gas becomes a plasma, and vice versa, is an important

one. To make this distinction, a variety of characteristic parameters are useful. In a

plasma, the motion of charged particles tends to drive internal electric fields towards

zero, which causes plasmas to generally be quasi-neutral. That is to say, if a test

particle with finite charge is inserted into a plasma, the plasma re-organizes itself to

shield out the charge. However, within a small enough spatial scale, finite electric

fields do remain in the plasma; this characteristic spatial scale of plasmas is known
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as the Debye length:

(1.4) λD =

√
ε0kb/q2

e

ne/Te + ni/Ti
,

where ε0 is the permittivity of free space, ne is the electron number density, qe is the

elementary charge, and Te and Ti are the electron and ion temperatures. Often times,

the ion term is dropped by assuming the mobility of ions is negligible compared to

the process time scale. The Debye length serves as one criterion in distinguishing a

plasma: should a collection of charged particles exist in a container with length L,

the Debye length must be much smaller, or λD � L, in order for a plasma to exist.

Otherwise, rather than being quasi-neutral, the charged particles would sustain finite

electric fields within the container.

The temporal characteristic parameter of plasmas is known as the plasma fre-

quency. In particular, the electron plasma frequency is the rate at which electrons

tend to oscillate about the ions to maintain quasi-neutrality. This is a fundamental

motion of plasmas and is ubiquitous to any and all regimes of a plasma. In the limit

of infinite ion mass and ignoring electron thermal motion, the plasma frequency is

given by:

(1.5) ωp,e =

√
nee2

meε0
,

where e is the standard electric charge. Since frequent collisions with neutral particles

cause charged particles to behave hydrodynamically, rather than collectively, the

plasma frequency need be larger than the neutral collision frequency, ωp,e > ωc, in

order for collective effects to dominate.

Finally, the last characteristic parameter of a plasma is known as the Debye

sphere, ND. Collective behavior of a plasma requires that there are a sufficient
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number of particles to screen out an external charge. The Debye sphere is defined

as: ND = n4
3
πλ3

D. The number of particles within a Debye sphere must be much

greater than one, ND ≫ 1, in order for collective behavior to dominate. Therefore,

if the following are satisfied:

(1.6)



λD � L,

ND ≫ 1,

ωp,e > ωc,

a collection of charged particles is a plasma. [19] It is important to note that special

cases exist where a plasma locally violates these parameters, such as at plasma-solid

boundaries when a plasma forms what is known as a sheath; nonetheless, these pa-

rameters provide a useful measure to determine the relative importance of collective

effects.

A plasma under the influence of a magnetic field requires further characterization.

Should the effect of a magnetic field be considered, another important parameter

arises known as the Larmor radius:

(1.7) rL =
mv⊥
|qe|B

,

where B is the magnetic field strength and v⊥ is the velocity perpendicular to the

magnetic field. The Larmor radius describes the radius of gyration for a charged

particle in a magnetic field. Since this quantity depends on the mass of the particle,

electrons and ions have varying orbits for an identical magnetic field. This one

example of the hierarchy of temporal and spatial scales for electrons and ions in

a plasma represents a defining feature of plasma physics that will be important
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to various studies in this thesis. Partially attributable to this large range of spatio-

temporal scales is the important and wide-spanning concept of instability in a plasma.

In addition to macroscopic instabilities, such as those experienced by gases, plasmas

may also be subject to microscopic, or kinetic, instabilities. In some cases, when an

instability is allowed to grow in a plasma from some initial perturbation, the result

is generation of plasma waves with a phase velocity characterized by a dispersion

relation. These plasma waves may either be electrostatic (characterized by only

electric field perturbation) or electromagnetic (characterized by a coupled electric

and magnetic field perturbation) in nature. The subject of plasma instabilities will

also be a key point of exploration in this thesis.

A final and important point is the distinction of various regimes of plasma. Plasma

regimes are generally characterized by the number density and temperature of the

plasma electrons. Low-temperature plasmas, the regime in which the plasmas con-

vered in this thesis lie, generally have temperatures such that Te < 105K. The density

of the plasmas considered here lie in the middle of the plotted range in Figure 1.1,

in the bubble labeled “Electric Propulsion,” with Debye lengths in the range of

1µm< λD < 1mm. Indeed, these plasmas are similar in nature to industrial plasmas

used for material processing, but vary significantly from fusion plasmas which are

of much higher temperature and density. The concepts of electric propulsion, a key

technology motivating this thesis, will be detailed in the next section.

1.3 Spacecraft Electric Propulsion

Electric propulsion (EP) is a sub-field of spacecraft propulsion which utilizes elec-

tric energy applied to a propellant to generate thrust. This technology differs from

conventional, chemical propulsion in that for chemical propulsion, the thrust energy
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Figure 1.1: Various regimes of plasmas in the density-temperature space. The Debye length and
Debye sphere parameters are given as reference. Reproduced from Ref. [46] with permission.

is harnessed from within the propellant, whereas in electric propulsion, energy is har-

nessed electrically. This electric energy may come from any type of in-space source,

such as solar panels or nuclear reactors. Generally, EP thrusters produce signifi-

cantly less thrust than their chemical counterparts, meaning that they may not be

used to escape Earth’s gravity but rather only once the craft is in-space. However,

EPs advantage lies in its ability to generate large propellant exhaust velocities. The

advantage of large exhaust velocities is clearly demonstrated by Tsiolkovsky’s rocket

equation, which gives the resultant delta-v for a particular thrust maneuver:

(1.8) ∆v = ve ln
m0

mf

,
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where ve is the exhaust velocity of the propellant, m0 is the spacecraft mass before

the maneuver and mf is the mass after the maneuver.

Therefore, an efficient way to drive up the delta-v of a given maneuver is to

increase the exhaust velocity of the propellant. EP is able to realize much larger

exhaust velocities than chemical propulsion, meaning that less propellant mass is

necessary to tackle an identical mission envelope. The exhaust velocity is often

described in seconds by a quantity known as the specific impulse, Isp = ve
g

, where g

is the acceleration due to gravity. A typical mono- or bi-propellant chemical thruster

has a specific impulse on the order of 200− 400s, whereas modern EP thrusters have

an Isp of 2000 − 4000s. [73] EP devices are not without their pitfalls: for example,

since their thrust is low, EP maneuvers may take much longer than their chemical

counterparts; in many cases, however, this is an acceptable trade-off in order to save

precious payload mass that must be launched into orbit.

There are three general types of electric propulsion systems: electrothermal, elec-

trostatic, and electromagnetic. Electrothermal thrusters convert electric energy into

heat in order to energize a propellant and achieve high exhaust velocities. Elec-

trostatic thrusters utilize applied electric fields to accelerate propellant, and finally,

electromagnetic thrusters utilize a combination of electric and magnetic fields to ac-

celerate propellant. Several types of EP thrusters exist and have been flown on satel-

lites, such as resistojets (electrothermal), gridded-ion thrusters, Hall-effect thrusters,

electrospray thrusters (electrostatic). For satellite missions, these thrusters are often

used for station-keeping (maintaining orbital altitude). While less common, there

have also been deep-space missions that flew with EP systems: NASA’s Deep Space

1 and Dawn missions (gridded-ion), ESA’s Bepicolombo mission (gridded-ion), and

NASA’s upcoming Psyche mission (Hall-effect).
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1.3.1 Ion and Hall Thrusters

Gridded-ion thrusters and Hall-effect thrusters utilize plasmas as their means of

generating thrust. Figure 1.2 gives a schematic showing the fundamental components

of ion and Hall thrusters. The basic operating principles of the gridded-ion thruster

are as follows: a neutral gas is flowed into an ionization chamber, where by some

process (often via a thermionic hollow cathode, which will be detailed in Subsection

1.3.2), the neutral gas is ionized. At the exit of the ionization chamber, a voltage drop

is applied across two grids, causing the ions of the resulting plasma to be accelerated

as they are extracted from the ionization chamber. A beam of ions exits the thruster

and streams away, thus creating thrust. A device known as a thermionic hollow

cathode generates a neutralizing stream of electrons to equalize the positive charge

of the ion beam exiting the thruster, thereby avoiding a buildup of charge on the

spacecraft.

For the Hall-effect thruster, the operating principles are quite different. At a

positively biased anode, neutral gas is injected into an annular channel. Fixed con-

centric magnets create a radial magnetic field within this channel. A thermionic

hollow cathode is placed outside of the channel and emits a current of electrons

which stream towards the anode. However, when these electrons encounter the mag-

netic field within the channel, they are accelerated in the azimuthal direction (to

circulate around the annular channel) and form what is known as the Hall current.

This current of electrons serves to ionize the neutral gas which is flowing through the

channel, ultimately creating a quasi-neutral plasma. While electrons are magnetized

because their Larmor radius, rL is smaller than the channel width, the plasma ions,

being much more massive than the electrons, are effectively un-magnetized. There-

fore, the applied electric field accelerates the ions out of the channel and thereby
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Figure 1.2: Schematic showing the basic components of a Hall-effect (left) and gridded-ion (right)
thruster. Reproduced from Ref. [72] with permission.

creates thrust.

Ion thrusters and Hall thrusters have been in development for at least six decades;

the first spacecraft ion thruster was flown by the United States in 1970, and the first

spacecraft Hall thruster was flown in 1971 by modern-day Russia. [43] Considerable

interest in these technologies and their efficiency for satellite station-keeping has

resulted in a steady rise in EP-equipped spacecraft over the past several decades (see

Figure 1.3). [71,72] A fundamental understanding of the physics driving the operation

of these thrusters, however, has lagged behind their ever-expanding application. One

of the chief limiting factors in advancing electric propulsion from a near-Earth orbit

technology to a deep-space technology has been erosion of the thruster surfaces. For

example, ions with sufficient energy to sputter the channel walls in a Hall thruster

have posed a long-standing problem for their use in long duration deep space missions.

[132] A major recent advance in Hall thruster technology has come in the form of

magnetic shielding, where the magnetic field topology is shaped such that the field

lines do not terminate on the channel walls; this technology has demonstrated a

significant reduction in channel erosion. [86] However, magnetic pole-piece erosion
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Figure 1.3: Number of geo-stationary satellite launches with EP from 1981 to 2018. Note the recent
dominance of Hall-effect thrusters. Reproduced with permission from Ref. [71].

remains a challenge for these devices. [59] Ion thrusters, too, have been subject

to erosion problems; in particular, erosion of the grid(s) of the thruster reduces the

efficiency of the thruster and is a primary factor in determining thruster lifetime. [89]

For in-space operation, electric propulsion systems must reliably operate for thou-

sands or even tens of thousands of hours. Flight qualification of a thruster thus re-

quires continuous operation in a vacuum chamber for thousands of hours, requiring

significant resources to construct, maintain, and operate. [55] Numerical simulation

provides an attractive, complementary approach in the development of EP systems

for many reasons. Perhaps most importantly, a well-posed simulation of a thruster

operating for thousands of hours could potentially require significantly less resources

than a full-scale experimental test campaign. Due to the complexity of these sys-

tems, however, this predictive EP modeling remains elusive. Before predictive mod-

eling may be realized, the entirety of the dominant physics of the thrusters must be

understood; fortunately, in this realm simulation also provides a crucial complement

to experiment and theory. With these obstacles in mind, this thesis aims to apply

simulation to both drive an understanding of the physics and push towards predictive

modeling of the hollow cathode device.



14

Figure 1.4: Cartoon demonstrating hollow cathode operation. Often, a keeper is placed around the
cathode in order to shield it from ion bombardement and aid lighting the discharge.

1.3.2 Thermionic Hollow Cathodes

A common thread linking gridded-ion thrusters and Hall-effect thrusters is the

thermionic hollow cathode. This device takes advantage of the phenomenon of

thermionic emission, whereby an emissive material “boils off” electrons when suf-

ficiently energized (this material is often chosen to be barium oxide or lanthanum

hexaboride due to their favorable work function, φw, which determines the energy

necessary to emit electrons). This energy is initially supplied in the form of heat

by heater coils wrapped around the cathode body. The propellant gas, often xenon,

is flowed through the cathode body where it encounters the emitted electrons and

ionizes. The resulting quasi-neutral plasma then expands through an orifice at the

end of the cathode body and into the plume. Figure 1.4 gives a simple cartoon

demonstrating the hollow cathode operating principles.

The hollow cathode plasma often serves multiple purposes. In the case of the

gridded-ion thruster, two hollow cathodes are often used: one serves to sustain the
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discharge plasma while the other serves to neutralize the resulting ion beam. In

Hall-effect thrusters, one hollow cathode is used which serves to both sustain the

discharge and neutralize the ion beam. As with the overall thruster systems, the

physics of the hollow cathode itself is still in the process of being understood. En-

ergetic ion bombardment of the plume-facing cathode body necessitates the use of

a keeper, which is essentially a shield that encloses the cathode to protect it from

ion sputtering. Despite this protection, cathode keeper erosion has proven to be

problematic and a life-limiting factor for gridded-ion thruster operation. [26] The

physics driving high-energy ion production was for a time unknown, but proposed

mechanisms included the presence of multiply charged ions [33, 131] and a ‘double

layer’-type structure outside the cathode orifice [81]. Later numerical investigations,

however, found that the conditions in the hollow cathode plume favored the growth

of a plasma instability known as the ion-acoustic instability; [83] as this instability

is capable of generating high-energy ions, it arose as a possible source of the erod-

ing ions in the plume. Later experimental measurements confirmed the existence of

ion-acoustic waves, which are spawned by this instability. [62]

The ion-acoustic instability is a kinetic instability, meaning that it cannot be cap-

tured by a fluid description of the plasma. However, most existing numerical efforts

to model the hollow cathode utilize multi-fluid descriptions because these approaches

have the distinct advantage of being significantly less computationally costly than

kinetic methods. In order to incorporate the effects of the ion-acoustic instability,

closure models have been introduced into fluid simulations that have improved agree-

ment with experimental measurement. [83, 94, 112] There are important limitations

to such an approach; for example, the efficacies of the applied closure models for the

ion-acoustic instability have not been investigated for a xenon plasma with condi-
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tions relevant to the hollow cathode plume. As these closure models are derived using

certain assumptions, it is important to evaluate them for their particular application

to the hollow cathode plume; this may only be done through either experimental

measurement or kinetic simulation.

Further, while a multi-fluid description may include the effect of anomalous re-

sistivity or heating caused by the instability, it inherently cannot capture the non-

Maxwellian nature of the particle VDFs driven by the instability. Recent attempts to

develop a hybrid-kinetic particle-in-cell (PIC) simulation (with kinetic ions and fluid

electrons) demonstrated the use of an ion-heating model driven by the ion-acoustic

instability. [67, 68] This type of approach has the advantage of enabling sputtering

predictions due to non-Maxwellian ion populations while keeping the benefit of low

computational cost by using a fluid electron model. Assuming that such an ion heat-

ing model is well-posed and experimentally validated, it would provide a relatively

low-cost option with the capability to predict erosion rates. In this thesis, this type

of hybrid approach is adopted in order to provide an engineering-level tool to bet-

ter understand hollow cathode operation, with the intent to eventually produce a

predictive hollow cathode model.

The ion-acoustic instability, which occurs when a plasma carries a net current,

is known to generate high-energy ion tails which are non-Maxwellian; these tails

may prove to be important in assessing cathode erosion. [76] A recent numerical

investigation into cathode keeper erosion found that back-streaming ion tails are

indeed formed for such a current-carrying plasma, yet to observe non-negligible tails

the current level had to be driven beyond that of the ion-acoustic instability and

into the regime of another instability, the Buneman instability. [49] This finding

challenges the commonly accepted notion of the ion-acoustic instability’s sole role in
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driving cathode keeper erosion. However, notably these simulations were carried out

in 1D; previous numerical studies of the ion-acoustic instability have demonstrated

that the nature of the instability’s saturation (the process by which the instability

stops growing) differs significantly in higher dimensions. [6]

Additionally, previous experimental erosion estimates based on measured plasma

potential fluctuation levels found agreement with measured erosion rates, yet these

fluctuation levels were in excess of those expected by the ion-acoustic instability.

[21,84] This finding highlights another important aspect of the hollow cathode plume

plasma: the existence of two operational modes known as the spot and plume modes.

The plume mode is characterized as an unfavorable regime where low-frequency

oscillations arise in the plasma and erosion rates are measurably enhanced compared

to the nominal, quiescent spot mode. Recent numerical and experimental work has

identified that the plume mode is an ionization-type oscillation which is driven by

the enhanced resistivity of the ion-acoustic instability. [38, 87] Therefore, the ion-

acoustic instability may drive cathode keeper erosion both through triggering an

ionization-type oscillation and by driving high-energy ions through interaction with

ion-acoustic wave potentials. In the spot mode, low-frequency ionization oscillations

are absent and thus erosion may be chiefly dictated by high-energy ion formation

through the ion-acoustic instability, whereas in the plume mode the erosion may be

influenced by the interplay of both processes.

In order to address the question of keeper erosion due to high-energy ion formation

by the ion-acoustic instability, which may be important in both the spot and plume

mode, the use of a fully-kinetic simulation approach provides an important piece to

the puzzle. This is because fully-kinetic simulations may directly capture the growth

of the plasma waves and their interaction with the ions which leads to high-energy
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tail formation. Therefore, this thesis sets out to utilize both hybrid-kinetic and

fully-kinetic analyses of the current-carrying hollow cathode plasma to approach the

problem of keeper erosion and achieving predictive simulation from multiple avenues.

1.4 Research Objectives

In light of the necessity to explore the properties of inherently kinetic current-

carrying instabilities with plasma conditions relevant to the hollow cathode plume,

this thesis sets out to accomplish the following:

• Develop and verify a 2D-axisymmetric kinetic simulation framework for analy-

sis of the hollow cathode system to ultimately provide a predictive simulation

capability.

• Implement new physical models into the kinetic simulation framework, such as

collisions, to better capture the hollow cathode plasma.

• Validate the 2D-axisymmetric solver with experimental hollow cathode data.

• Analyze the ion-acoustic instability with properties relevant to the cathode

plume plasma and evaluate the efficacy of a closure model(s) used in multi-

fluid hollow cathode codes.

• Investigate the nonlinear behavior of plasmas subject to current-carrying insta-

bilities in order to better understand saturation processes and particularly the

production of high-energy ions important to cathode keeper erosion.

• Extend the numerical investigation of current-carrying instabilities to two-dimensions

in order to observe how this saturation differs compared to one-dimensional

studies.
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1.5 Thesis Outline

In this thesis, the deterministic-kinetic method is applied to a variety of gas and

plasma dynamics problems which are of interest to the electric propulsion discipline.

The layout of the thesis is as follows: in Chapter II, the numerical methods used to

study the various problems in the thesis are detailed. In Chapter III, the problem of

gas and plasma expansion flows is considered. In this chapter, a study is conducted to

verify kinetic results and benchmark performance with an existing kinetic method,

known as direct-simulation Monte Carlo, using analytic solutions of a neutral gas

expansion; this is followed by the 2D-axisymmetric solver’s application to a hollow

cathode geometry, where it is verified and validated with experimental data. Chapter

IV presents an investigation of plasma current-carrying instabilities via fully-kinetic

DK simulations. Both one-dimensional and two-dimensional simulations of the ion-

acoustic and Buneman instabilities are considered. In Chapter V, the appearance of

a nonlinear phenomenon as a result of the ion-acoustic instability, the plasma double

layer, is investigated via one-dimensional, fully-kinetic simulation. Finally, Chapter

VI lays out the findings of this thesis and provides avenues for future work.



CHAPTER II

Numerical Methods

In this chapter, the details of the numerical methods used in this study are given in

detail. First, Section 2.1 gives a general overview of what kinetic methods are and to

what situations they are applied. Section 2.2 details the stochastic particle method

known as direct-simulation Monte Carlo (DSMC) which is applied to neutral gas

flows. Section 2.3 details the deterministic- or direct-kinetic (DK) method which is

primarily used in the simulations detailed in this thesis, both for neutral and charged

particle cases. Sections 2.4 and 2.5 detail the implementation of Maxwell’s equations

and collision modeling, which are coupled to the DK simulation framework. Finally,

Section 2.6 gives a variety of cases used to verify the various solvers implemented in

this thesis.

2.1 Kinetic Methods Overview

Kinetic theory utilizes a detailed understanding of molecular behavior to build a

macroscopic description of gas properties. This field is rooted in the understanding

that any gas is characterized by a distribution of particles f over velocity space

v, where f(v) is known as the velocity distribution function (VDF). By avoiding

simplifying assumptions, kinetic theory provides an exact description of a dilute gas’

properties. The Boltzmann equation describes, most generally, the evolution of a

20
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dilute gas in physical, velocity and temporal space, otherwise known as phase space

(x, v, t):

(2.1)
∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
=
∂f

∂t collisions
,

where the left-side terms describe advection in time, space, and velocity, respec-

tively, and the right-side term accounts for the effect of inter-molecular collisions.

This equation represents the most exact description of gas motion. However, direct

solution of this equation is very computationally costly, and therefore simplifying as-

sumptions are often made to reach the well-known Euler and Navier-Stokes equations

of fluid dynamics.

To reach the Euler equations, one must assume infinite collisionality and thus a

state of equilibrium everywhere in the gas. To reach the Navier-Stokes equations,

on the other hand, one may assume small perturbations from equilibrium in what

is known as the Chapman-Enskog expansion. [126] However, the assumptions of

these well-known equations of fluid dynamics break down in limits such as those

of zero collisionality (rarefied flow) or large perturbations from equilibrium (non-

equilibrium). In these cases, one must return to a more complete, kinetic description

of the gas.

Even when considering cases where the Euler and Navier-Stokes equations break

down, the exact form of the collision term in Equation 2.1 is quite complex, both an-

alytically and numerically. Approximations are often used to reduce this complexity:

for example, in the limit of no collisions, the right-side is zero and the Boltzmann

equation reduces to the Vlasov equation:

(2.2)
∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= 0.
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The Vlasov equation (2.2) is valid when the effect of collisions is negligible, such

as in low-density plasmas and free-molecular gas flows. As this expression makes

no assumptions on the state of the VDF, it is still able to capture non-equilibrium

behavior. In the cases of dilute gas or plasma flows with highly non-equilibrium

velocity distributions, there exist a variety of options for simulation of the Boltz-

mann and/or Vlasov equations. Two important examples of these kinetic simulation

methods are described in this chapter: the direct-simulation Monte Carlo method

and the deterministic-kinetic method.

2.2 DSMC: A Stochastic Method

A common approach to simulation of the Boltzmann equation is through particle

methods. Particle methods are Lagrangian in nature, tracking individual particles

through a computational domain in physical space. Two popular methods are the

DSMC [4] and particle-in-cell (PIC) [5] methods, both of which have demonstrated

great success in the fields of gas and plasma dynamics, respectively. Notably, PIC

is better described as a semi-Lagrangian method, as properties of the particle distri-

butions are interpolated to grid points and the electric and magnetic fields are then

calculated there.

In this thesis, a particular focus is placed on the DSMC method, as it is repeat-

edly used for benchmarking and verification of the DK method. The DSMC code

MONACO, developed in the Non-equilibrium Gas and Plasma Dynamics (NGPDL)

group, is used for this purpose. [23] The DSMC method makes use of statistical units

known as macroparticles, which are taken to represent a collection of real particles

assumed to have identical properties. At each time in the DSMC simulation, particles
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are advanced in space according to their velocity v:

(2.3)
dx

dt
= v.

If any external forces are considered, the velocity is first updated according to the

acceleration a:

(2.4)
dv

dt
= a.

At each time step, collisions may or may not be evaluated. DSMC often assumes

that binary collisions between molecules are dominant, and therefore focuses solely

on this type of collisions. There exist many methods to simulate such collisions, yet

the No-Time-Counter (NTC) scheme is popular and used by MONACO. [4] This

scheme calculates the probability of collision, P , in a particular cell via:

(2.5) P = FNVS,max/VC ,

where FN is the number of real particles simulated by a single macroparticle, VS,max

is the volume swept by two molecules moving at the relative speed between them,

and VC is the numerical cell volume. With this expression, the number of colliding

pairs in a particular time step is found by:

(2.6) Npairs =
1

2
NN̄VS,max/VC ,

where N is the instantaneous number of macroparticles in the cell and N̄ is the time-

averaged number of macroparticles in the cell. A collision probability is evaluated for

each of these pairs, and for those which experience a collision the post-collision state

is determined through conservation of momentum and energy. In the limiting case

of a single specie of atoms (which have no internal energy modes such as rotation
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or vibration) the collision may be assumed elastic, e.g. all energy is kept in the

translational mode. After collisions are assessed, particle interactions with boundary

conditions are calculated. In MONACO, various boundary conditions have been

implemented; those used in this study are:

• Inflow: particles are injected to the boundary cells according to a prescribed

density, temperature, and bulk velocity,

• Outflow: particles which cross the boundary plane are removed from the simu-

lation,

• Symmetry: particles which would cross the boundary plane are re-introduced

to the simulation with velocity coordinates normal to the plane reflected,

• Wall: particles which would cross the boundary plane are reflected either spec-

ularly (elasticly), diffusely (where the particle takes on a new velocity charac-

terized by the temperature of the wall), or a combination of both, depending

on the specified accommodation coefficient.

Finally, the macroscopic properties of the gas, such as number density n, temper-

ature T , and bulk velocity U may be found through averages of the macroparticle

properties. Constructing a histogram of the aggregate particle velocities amounts to

the VDF of the gas in every physical cell, where the resolution of this VDF depends

on the number of particles per cell. Figure 2.1 gives a representative sketch of the

system of macroparticles in DSMC and how a sampling of particle properties in a

given cell reconstructs the VDF. There are a variety of numerical constraints which

must be followed in order to ensure the DSMC solution is numerically valid:

• The number of particles per cell, Np, must be sufficiently large. A common

heuristic is that Np ≥ 20.
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Figure 2.1: Sketch of a 2D DSMC simulation, with a representative grid, with a sampling of the
particle properties from the top-left cell and the resulting reconstructed VDF.

• The time step is sufficiently small, such that it is smaller than the mean collision

time ∆t < τcoll.

• The cell size is smaller than the mean free path at any point in the domain,

∆x < λ.

The use of macroparticles and the statistical nature of evaluating collisions allows

the DSMC method to simulate flows with relatively low computational expense, but

also introduces an important limitation to the scheme: statistical error. Statistical

error is inherent to DSMC due to the use of macroparticles and a statistical collision

algorithm. In order to drive down statistical error, an ensemble-average of multiple

simulations (in the case of an unsteady system) or time averaging over multiple

sampling steps (in a steady system) may be taken. However, even when all of the

above conditions are met, statistical error is important to consider when evaluating

the results of stochastic methods, as it may prevent resolution of fine-scale VDF

perturbations or even introduce un-physical oscillations into the system. [103]
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2.3 DK: A Deterministic Method

Another class of kinetic simulation methods solve the Boltzmann equation directly

via an Eulerian approach, here called the DK method. In these methods, both phys-

ical and velocity space are discretized, and the Boltzmann equation is solved using,

in this case, a finite-volume method with a hyperbolic scheme. Thus, these methods

are not statistical in nature but rather are deterministic. At each physical location

x, the VDF is represented by a velocity grid. Figure 2.2 gives a representation of the

phase space grid. It should be noted that in actuality, the x and v coordinates are

independent and would result in a 4D grid; this figure is only meant to help represent

the storage of information for the DK scheme. At each velocity cell boundary and

each physical cell boundary, a flux is calculated according to the Boltzmann equa-

tion. Thus, the distribution function f is the dependent variable which is advected

through the domain.

2.3.1 Existing Numerical Schemes

The code used in these studies was originally developed at the University of Michi-

gan, [46] and has been under active development since. [103] In the finite-volume

method used here, a flux-limited scheme is used which reverts to first-order accuracy

in order to prevent spurious numerical oscillation near sharp gradients [39], while at-

tempting to achieve second-order accuracy otherwise. The scheme used is known as

the Monotonic Upwind Scheme for Conservation Laws, or MUSCL. [122] Numerical

fluxes, F , are calculated according to the following expression:

(2.7) F+
i−1/2 = cfi−1 +

(1− c)|c|
2

(fi − fi−1)Ψ(ri−1/2)ri−1/2,
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Figure 2.2: 2D2V DK simulation domain example. The VDF is represented at each physical cell
(x, y) by an independent grid of velocity cells (vx, vy).

where c is the Courant-Friedrichs-Lewis (CFL) number, Ψ is the flux-limiter function,

and r is the ratio of gradients in the solution. The subscript i refers to the location

of f in physical or velocity space, depending on the flux being evaluated. The ratio

of gradients, r, is defined as:

(2.8) ri−1/2 =
fi−1 − fi−2

fi − fi−1

,

and is used to determine the ‘smoothness’ of the function at a particular location.

Based on this value, the flux limiter Ψ is then determined; a variety of choices are

available for this function, though they must satisfy certain conditions. For example,

the limiter function must go to zero when the ratio of gradients does, e.g. Ψ(0) = 0,

and go to one when the ratio of gradients is one, Ψ(1) = 1. These properties ensure

the solver is total-variation-diminishing (TVD), or that it tends to drive down the
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level of numerical oscillation. Thus, when Ψ(0) = 0, the scheme reduces to first-

order accuracy. Figure 2.3 gives the Sweby diagram, which compares various limiter

functions Ψ with the gradient ratio r. The harmonic, superbee, [105] and Arora-

Roe [1] limiter functions are given for comparison with the function developed for

the present DK scheme, a modified Arora-Roe limiter. [46] The modified Arora-Roe

limiter has the following properties:

(2.9) Ψ(r) =



0 r < 0,

min(2r,Ψ(r)) 0 ≤ r < 1,

min(2,Ψ(r)) r ≥ 1.

Figure 2.3: Sweby diagram demonstrating the properties of various flux-limiter functions, Ψ(r),
including that used in this study, the modified Arora-Roe limiter. Reproduced from Ref. 46.

Temporal advance is accomplished via explicit methods of varying orders of ac-

curacy. The simplest first-order scheme, explicit Euler, is given by:

(2.10) fn+1(x, v) = fn(x, v) + ∆tD(fn, x, v),
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where D(fn, x, v) is the total derivative of f with respect to x and v. If higher order

accuracy is desired, Runge-Kutta (RK) schemes may be applied. RK schemes utilize

intermediate values of the function to generate higher-order accurate solutions; for

example, in second-order or RK2:

(2.11) f int(x, v) = fn(x, v) + ∆tD(fn, x, v),

and

(2.12) fn+1(x, v) = fn(x, v) +
∆t

2
(D(fn, x, v) +D(f int, x, v)).

Since the temporal schemes used are explicit, a CFL condition must be satisfied to

ensure stability. For explicit Euler, the CFL condition is c ≤ 1; RK schemes extend

the region of stability. The CFL number is defined differently based on the flux being

considered. In the case of spatial flux, the CFL number is defined as c = v∆t/∆x,

where in the case of velocity flux the number is defined as c = a∆t/∆v. Therefore,

for the explicit Euler method, the total CFL condition ctot which must be respected

in the code is:

(2.13) ctot =

(
max |v|∆t

∆x
+

max |a|∆t)
∆v

)
≤ 1

In order to evaluate the macroscopic quantities of the gas or plasma from the

VDF, moments of the distribution are taken. The zeroth moment:

(2.14) n =

∫ ∞
∞

f(x, v)dv,

is used to find the number density, while the first moment:

(2.15) 〈U〉 =

∫ ∞
∞

vf̂(x, v)dv,
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is used to find the drift velocity, and the second moment:

(2.16) 〈U2〉 =

∫ ∞
∞

v2f̂(x, v)dv,

is useful for finding information such as the temperature:

(2.17) T =
m

Nkb
(〈U2〉 − 〈U〉〈U〉),

where the normalized distribution is found by: f̂n = fn/nn. In practice, these

integrals must be evaluated numerically, with the continuous integral being replaced

by a discrete one. For example, the zeroth moment becomes:

(2.18) n =
vmax∑
vmin

f(x, v)V,

where V is the velocity cell volume defined by V1 = ∆vx in 1V, V2 = ∆vx∆vy in 2V,

and V3 = ∆vx∆vy∆vz in 3V. As it is impossible to represent all of velocity space, the

infinite limits of the continuous integral have been replaced with the discrete limits

of vmin and vmax. Indeed, in order to capture the relevant information contained

in the VDF, care must be taken to ensure these velocity boundaries are sufficiently

large so as not to truncate the VDF. However, a balance must be struck, as larger

velocity boundaries create a larger domain and thus larger computational expense.

Due to the necessity of simulating a spatial and a velocity (phase space) grid,

the DK method is computationally intensive. In order to mitigate this expense,

the DK code is parallelized via the Message Passing Interface (MPI). MPI launches

simultaneous threads at runtime which communicate with each other to exchange

information. The parallelization scheme of the DK code is to divide the domain

based on the physical axial location, such that each thread holds information for

an identical number of axial cells. Thus, each thread also holds information for the
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entire velocity grid located at each physical cell. In most cases considered within

this thesis, the DK code is run in parallel on a supercomputer cluster which holds a

very large number of CPU nodes. Both the Great Lakes cluster at the University of

Michigan and the Summit cluster at the University of Colorado have been utilized

in this thesis. For both clusters, the Slurm job scheduling language is used to launch

and run these jobs. [133]

2.3.2 2D-Axisymmetric Solver

Previous iterations of the DK code have been applied to both 1D1V and 2D2V

domains for both fully- and hybrid-kinetic modeling. [46, 103] In order to approach

hybrid-kinetic modeling of the hollow cathode in this work, a new functionality is

added to the DK code: the ability to run 2D-axisymmetric (2D-AXI) simulations,

which are 2D3V. Previous DK simulations of, for example, Hall thruster channels

have been able to demonstrate that 2D2V is sufficient when the solution is not

near the centerline (r = 0). [103] This situation changes, however, for the case of

center-mounted hollow cathodes as the solution is desired near r = 0 and therefore

necessitates three-dimensional resolution in velocity space.

In order to accomplish this task, it is necessary to convert the full 3D3V Boltzmann

equation in Cartesian (x, y, z, vx, vy, vz) coordinates:

(2.19)
∂f

∂t
+ vx

∂f

∂x
+ vy

∂f

∂y
+ vz

∂f

∂z
+ ax

∂f

∂vx
+ ay

∂f

∂vy
+ az

∂f

∂vz
=
∂f

∂t collisions
,

to cylindrical (z, r, θ, vz, vr, vθ) coordinates. Such a transformation results in the

following expression [128]:

(2.20)

∂f

∂t
+vz

∂f

∂z
+vr

∂f

∂r
+
vθ
r

∂f

∂θ
+az

∂f

∂vz
+

(
ar+

v2
θ

r

)
∂f

∂vr
+

(
aθ−

vθvr
r

)
∂f

∂vθ
=
∂f

∂t collisions
.
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For a 2D-AXI geometry, one assumes that there is no dependence of the dependent

variable f on spatial position in θ, which yields:

(2.21)
∂f

∂t
+vz

∂f

∂z
+vr

∂f

∂r
+az

∂f

∂vz
+

(
ar+

v2
θ

r

)
∂f

∂vr
+

(
aθ−

vθvr
r

)
∂f

∂vθ
=
∂f

∂t collisions
.

Equation 2.21 is applied to charged particles in the hybrid-kinetic, 2D-AXI problems

addressed in this thesis.

Notably, additional acceleration terms have been introduced by the coordinate

transform. These terms are the centrifugal acceleration,
v2θ
r

, and the Coriolis acceler-

ation, vθvr
r

, and the implication of these terms is that a flux in velocity space must be

evaluated even in the absence of any outside forcing: (az, ar, aθ) = (0, 0, 0). This flux

calculation introduces additional numerical error into the system, which may cause

an initially equilibrium distribution to distort. [129] Should there be no outside forc-

ing, which is often true for neutral particles but not true for charged particles due

to the Lorentz force, one may take advantage of the fact that the centrifugal and

Coriolis forces act in a circular manner by introducing new variables (ξ, ω) and us-

ing the coordinate transformation (vr, vθ) = (ξ cos(ω), ξ sin(ω)). [120] From here, the

2D-AXI Boltzmann equation in conservative form, with no outside forcing, is:

(2.22)
∂rf

∂t
+ vz

∂rf

∂z
+ ξ cos(ω)

∂rf

∂r
− ξ ∂(sin(ω)f)

∂ω
=
∂rf

∂t collisions
,

where the centrifugal and Coriolis forces are combined into a single coordinate-

transform flux, ξD(sin(ω)f).

For this equation, care must be taken in choice of the scheme to evaluate the

coordinate-transform flux. In Ref. 79, a variety of schemes are proposed and tested,

finding that the T-UCE scheme has the most effective balance of accuracy and fa-

vorable conservation properties. The T-UCE scheme is an upwinded scheme given
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by:

(2.23) D(sin(ω)f) =
1

2 sin(∆ω/2)

(
(sinωi+1/2)+fi+1 + (sinωi+1/2)−fi

− (sinωi−1/2)+fi − (sinωi−1/2)−fi−1

)
,

where a± denotes 1
2
(a±|a|) and ωi±1/2 denotes ωi±∆ω

2
. This scheme has the favorable

attributes of preserving positivity, conserving mass, axial momentum and energy, and

dissipating entropy. This scheme is used in Equation 2.22, which is applied to neutral

flows for 2D-AXI problems addressed in this thesis.

This cylindrical coordinate scheme takes advantage of the fact that, in combina-

tion, the characteristic curves of the coordinate transform forces are circular. [79]

Figure 2.4 demonstrates the circular action of these forces in combination. How-

ever, charged particles do not equally benefit from this coordinate transform due to

the action of the Lorentz force (electric and magnetic fields) on them. Therefore in

this thesis, the ion scheme represents the velocity grid using a Cartesian coordinate

space, while the neutral scheme represents the grid with a cylindrical coordinate

space. To demonstrate the efficacy of the cylindrical representation and associated

T-UCE flux scheme, the conservation of energy is tracked for an initially equilibrium

(Maxwellian) xenon gas at T = 300 K in a 1D3V domain. The boundary conditions

in physical space are set to be specular walls, while the axial, radial, and azimuthal

velocity space boundaries are set to vb = ±4.3vth such that the VDF value is negligi-

ble near the boundaries. Time is advanced with a first-order explicit Euler scheme;

the time step is set to ∆t = 10 ns and the simulation is run for a total of 0.5 ms.

Tables 2.1 and 2.2 give the number of grid points used to represent the compu-

tational domain. While not explicitly plotted here, it was first verified that all six
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Figure 2.4: A sketch demonstrating the relative magnitude of the centrifugal and Coriolis acceler-
ations in the vθ-vr plane. A circle is overlaid to demonstrate the circular characteristic curve of
these accelerations in combination. Reproduced with permission from Ref. [129].

Case Name Cartesian rx1 rx2 rv1 rv2
NR 5 10 20 5 5
NV R 24 24 24 48 120
NV T 24 24 24 48 120

Table 2.1: Cartesian mesh discretization for the 2D-axisymmetric scheme energy conservation com-
parison.

Case Name Cylindrical
NR 5
Nξ 24
Nω 60

Table 2.2: Cylindrical mesh discretization for the 2D-axisymmetric scheme energy conservation
comparison.

cases preserve the total number of particles in the system. Figure 2.5 tracks the

conservation of energy during the simulation for all six cases. The Cartesian scheme

does not preserve the system energy, and in the baseline case the gas temperature
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Figure 2.5: Comparing the energy conservation property of the Cartesian and cylindrical 2D-
axisymmetric schemes. The cylindrical scheme preserves the system energy to machine precision
while the Cartesian scheme converges towards this exact conservation with refinement of the grid.

rises from 300 K to 900 K by the end of the simulation. This clearly demonstrates the

effect of numerical error when the coordinate transform forces are present. However,

Figure 2.5 demonstrates that the level of conservation of energy improves with grid

refinement; this is an important verification of the scheme. The cylindrical scheme,

on the other hand, exactly (to machine precision) preserves the system energy over

the course of the simulation such that the gas temperature is identical at the begin-

ning and end of the simulation. This behavior clearly demonstrates the advantage of

utilizing the cylindrical scheme for neutral gas flows where no outside forcing, such
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as the Lorentz force, is present.

2.3.3 Boundary Conditions

Careful application of boundary conditions (BCs) is important for an accurate

solution, and a variety of boundary conditions are utilized in this thesis. These

boundary conditions are used for both the hybrid- and fully-kinetic simulations con-

ducted here. The DK scheme uses a ghost cell method to apply boundary conditions,

where additional cells are simulated outside of the domain with values assigned ac-

cording to the boundary condition desired. Two layers of ghost cells are applied at

each boundary. There are five boundary conditions considered in this work: inflows,

outflows, walls, periodic planes, and symmetry planes.

Physical Space: Inflows At inflow boundaries, a distribution function is set, based

on information known a priori, relevant to the problem being considered. The inflow-

ing distribution, fin, is assumed to be in a state of thermal equilibrium, described by

the Maxwell-Boltzmann distribution, with a known temperature and species mass.

Both ghost cells are set to this distribution, fg1,g2 = fin. The last term needed to

fully describe the inflow is the number density, n. Two methods to supply this in-

formation have been implemented: i) scaling the distribution by a known number

density n, or ii) supplying a volumetric flow rate, Q, and determining the number

density from this quantity. More information on this second method will be detailed

in Chapter III.

Physical Space: Outflows Outflow boundaries are defined by the information ex-

iting the domain at the last cell, fout. For a first-order accurate solution, assuming

information exits the domain with positive velocity, a zeroth order extrapolation
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is used and the ghost cells are set equal to the information within the domain:

f(x, v)g1,g2 = f(x, v)out for v > 0. For second-order accuracy, a first-order extrap-

olation is necessary [130]. For information entering the domain, or (v < 0) in this

example, an external pressure Pb may be assigned. Otherwise, a vacuum condition

may be set by setting the ghost cells to zero: fg1,g2(x, v) = 0; as no background

pressures are considered, this vacuum condition is used for all cases considered in

this thesis:

(2.24)



fg1(x, v) = fout(x, v) + ∆x∂fout(x,v)
∂x

v > 0,

fg2(x, v) = fout(x, v) + 2∆x∂fout(x,v)
∂x

v > 0,

fg1,g2(x, v) = 0 v < 0.

Physical Space: Walls When particles encounter a wall, they may either be per-

fectly (specularly) reflected, or strongly (diffusely) interact with the wall and be

reflected according to a Maxwellian distribution with the temperature of the wall

Twall. Wall boundaries are therefore described by an accommodation coefficient,

αacc, which determines what fraction of particles are reflected specularly (αacc = 0)

and what fraction diffusely (αacc = 1). In specular reflection, the information enter-

ing the domain from the boundary is set equal to the information exiting the domain.

The information exiting the domain is set via zeroth order extrapolation. Assuming

particles impinge on a wall boundary with positive velocity, v > 0, the ghost cells

are set as:

(2.25) f specg1,g2(x, v) =


fout(x, v) v > 0,

fout(x,−v) v < 0.

Therefore, all particles which impinge on the wall are effectively reflected.
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In diffuse reflection, the information exiting the domain is set via zeroth order

extrapolation. The information entering the domain is set to a half-Maxwellian

distribution characterized by the wall temperature, Twall. Again assuming particles

impinge on a wall boundary with positive velocity:

(2.26) fdiffg1,g2(x, v) =


fout(x, v) v > 0,∏N

nd=1

(
m

2πkbTwall

)nd/2
exp

(
−mv2nd
2kbTwall

)
v < 0.

The density of the incoming Maxwellian is set by equating fluxes in such a way that

ensures mass conservation, Γin = Γout. [103] Finally, the boundary information is

set according to: fg1,g2 = (1 − αaccom)f specg1,g2(x, v) + αaccomf
diff
g1,g2(x, v), such that the

accomodation coefficient α may be adjusted to allow any fraction of particles to be

reflected specularly and diffusely.

Physical Space: Symmetry Planes The symmetry boundary is handled in the

same way as the specular reflection boundary. Particles which impinge upon the

boundary are reflected by assigning the incoming distribution to be equivalent to the

outgoing one, while the outgoing distribution is set via zeroth order extrapolation.

For particles impinging on a symmetry boundary with v > 0:

(2.27) f symmg1,g2 (x, v) =


fout(x, v) v > 0,

fout(x,−v) v < 0.

Physical Space: Periodic Planes For periodic boundaries, the ghost cells are set

to be equivalent to the cells adjacent to the boundary on the opposite side of the
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domain. For a domain with Nx cells:

fperig1 (x−1, v) = fout(xNx , v),(2.28)

fperig2 (x−2, v) = fout(xNx−1, v).(2.29)

Velocity Space For all cases considered in this thesis, the velocity space boundaries

are set to a Neumann condition with zero flux, e.g. ∂f
∂v

= 0. This assumption of zero

flux is valid when the value of the VDF is negligible near the boundary, f(v) ≈ 0,

which is accomplished by setting the velocity boundaries to be sufficiently large.

2.4 Maxwell’s Equations

The fully-kinetic simulations of a plasma in this thesis require a self-consistent

calculation of electromagnetic fields, where one must concurrently solve Maxwell’s

equation(s). In these studies, only electrostatic systems are considered, and therefore

the magnetic field does not need to be calculated. Two options for calculating the

electric field are possible: Poisson’s equation and Ampere’s equation.

2.4.1 Poisson’s Equation

Poisson’s equation is given by:

(2.30) ∇2φ = − ρ
ε0
,

where φ is the electrostatic potential and ρ is the charge density. In a plasma, the

charge density is given by: ρ = e(ni − ne), where ni is the ion number density

and ne is the electron number density. Poisson’s equation is purely elliptic and

therefore requires a different class of solution method than those detailed for the

DK solver. In these studies, the library PoisFFT is adopted, which makes use of

Fast Fourier Transforms (FFTs) to solve this equation. [31] This library allows for a
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variety of boundary conditions, but in all cases considering Poisson’s equation within

this thesis, the boundary conditions are set to periodic.

2.4.2 Ampere’s Equation

Another option for calculating the electric field is use of Ampere’s equation: [93]

(2.31)
∂E

∂t
= −µ0c

2(Jint + Jext),

where Jint is the internal current density given by:

(2.32) Jint =
∑
i

qi

∫ ∞
−∞

vf(x, v)dv,

where qi is the unit charge of species i. In practice, however, the current density of the

DK solver is actually given by the limited fluxes calculated by the likes of Equation

2.7. Therefore, the values of these numerical fluxes are used in place of the analytic

fluxes calculated from Equation 2.32. When approaching electrostatic problems with

Ampere’s Law, a common assumption is that there exists some external current

density, Jext, such that the spatially-averaged electric field E0 is constant in time:

∂E0

∂t
= 0. [12] This means that Jext always balances the spatially-averaged internal

current, Jint. Solution of Ampere’s equation has the advantage of requiring no spatial

boundary conditions and may therefore be useful for open boundary simulations.

However, while this method has been implemented in the code, it is not used for the

studies detailed herein due to the possibility of temporal error to building up over

the course of a simulation.

2.5 Collisions

In problems where collisions are important, the collision source term Q on the

right side of the Boltzmann equation becomes non-zero. However, the full Boltz-
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mann collision integral is very computationally costly and often unnecessary to solve

exactly. Instead, different models are available, depending on the type of collision

in question and the level of accuracy desired. In this thesis, two types of collision

models are implemented in order to study collisional flows.

2.5.1 Ionization Collisions

In a plasma, ionization events are important in problems with sufficiently high

neutral densities. The hollow cathode, for example, may have neutral densities of

O(1019−22) m−3 near the cathode channel, and therefore it is expected that ionization

events are frequent. [80] The model applied here is a rate coefficient model based on

empirical data: [43]

(2.33) Qi = ninnζ(εe),

where nn is the neutral density and the term ζ(εe) is the rate coefficient which

depends on the electron energy εe. This rate coefficient is given by: [103]

(2.34) ζ =

∫ ∞
ε0

√
2εe
me

σ(εe)fe(εe)dεe,

where σ is the collision cross section, fe is the electron energy distribution function,

and ε0 is the collision activation energy. Here, the electrons are assumed to be repre-

sented by a Maxwellian distribution, and so the rate coefficient may be represented

only by the electron temperature: ζ(εe) = ζ(Te). The collision cross sections used are

given by Ref. [100]. Although doubly or triply charged ionization events are possible,

in these studies only singly charged ions are considered. Self-consistent inclusion of

multiply-charged ions is reserved for future work.

When ionization events occur, neutrals are subtracted from the system and ions

are added to the system. However, in the 2D-AXI simulations, ions and neutrals
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are represented by different velocity space coordinate geometries (solving Eqs. 2.21

and 2.22, respectively). In order to properly execute ionization events, a mapping

function is developed which ensures particle conservation. If the velocity coordinate

in Cartesian space (for ions) is given by jion, the velocity coordinate in Cylindrical

space (for neutrals) is given by jneut. The mapping function then gives:

(2.35) Cmap(jneut) = jion.

In order to calculate the number of neutrals lost, the normalized neutral distribution

function, f̂n is found by:

(2.36) f̂n = fn/nn.

Then in a given time step ∆t, neutrals are lost to ionization via the following:

(2.37) fn+1
n (jneut) = fnn (jneut)−∆tζ(Te)f̂n(jneut),

and ions are gained by ionization via:

(2.38) fn+1
i (Cmap(jneut)) = fni (Cmap(jneut)) + ∆t

Vn
Vi
ζ(Te)f̂n(jneut),

where Vn and Vi are the velocity cell volumes for neutrals and ions, respectively.

2.5.2 BGK and ES-BGK Operators

In addition to ionization collisions, other collisions such as momentum-exchange

collisions (MEX) are important in certain physical systems. For example, as men-

tioned in the last section, the hollow cathode channel has high neutral densities of

O(1019−22) m−3, where neutral-neutral (n-n) collisions are important and cannot be

neglected. In order to model these collisions, the Bhatnagar-Gross-Crook (BGK)

and ellipsoidal-statistical BGK (ES-BGK) collision operators are implemented. The
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BGK model is given by the following:

(2.39) QMEX =
1

τ
(fM(x, v)− f(x, v)),

where τ is the relaxation time and fM is the Maxwellian distribution function (Eq.

1.2) characterized by the local temperature and density.

The ES-BGK model is generally considered superior to the original BGK model

as it is able to capture the correct Prandtl number, Pr = 2
3
, in the hydrodynamic

limit. [64] The Prandtl number is a dimensionless quantity that is defined as the

ratio between momentum diffusivity and thermal diffusivity. The ES-BGK model is

given by the following:

(2.40) QMEX =
1

τ
(feq(x, v)− f(x, v)),

where feq is an anisotropic Gaussian distribution characterized by the local temper-

ature and number density:

(2.41) feq =
n

det(2πT )
exp

(
− 1

2
(v− 〈U〉)TT −1(v− 〈U〉)

)
,

where R is the gas constant and T = 1
Pr
RTI + (1− 1

Pr
)Θ is a linear combination of

the stress tensor, Θ, and the Maxwellian isotropic stress tensor, I. [79] In the limit

that QMEX = 0, the ES-BGK operator reduces to the BGK operator as feq = fM .

The choice of how to define relaxation time, τ , depends on the collision process

being modeled. In the case of neutral-neutral MEX collisions, the variable-hard-

sphere (VHS) model is chosen. [4] From the VHS model, the relaxation time is:

(2.42) τ =
T δref
µref

mnRT 1−δ,

where Tref is the reference temperature and δ is a constant related to the inverse-
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power law for inter-atomic potentials for the particular species in question. These

values are assigned based on the species considered; considering xenon, for example,

they are: Tref = 273K, δ = 0.85. Based on these values, the reference viscosity µref

is defined by:

(2.43) µref =
15
√

2πmkbTref

2(5− 2δ)(7− 2δ)πd2
ref

where dref is the reference diameter for xenon, taken to be dref = 5.74Å. [10]

In order to avoid the strict CFL condition that would be imposed by the collision

operator in dense regimes, e.g. where τ ≪ 1, an implicit-explicit (IMEX) method is

applied. [98] In this method, the collision source term is computed implicitly, while

the remaining flux terms are computed explicitly as previously detailed. To first-

order, this method involves implicit calculation of an intermediate value of the VDF,

f (1):

(2.44) f (1) = fn +
∆t

τ
(feq − f (1)),

where the value at time n+ 1 is:

(2.45) f (n+1) = fn +
∆t

τ
(feq − f (1)).

The IMEX approach is used in the problems within this thesis which make use of

the BGK or ES-BGK operators to model collisions.

2.6 Verification Problems

It is of critical importance to provide verification of numerical methods in order to

have confidence of future results. Verification is the process of comparing numerical

results with an analytic solution or other, previously verified code results, to ensure

that the code has been correctly implemented and is therefore solving the governing
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equations as intended.

2.6.1 Manufactured Solution for Poisson’s Equation

In order to verify the PoisFFT solver in a standalone configuration, a ‘toy’ problem

or manufactured solution is considered. Consider a 1D, periodic system where φtoy =

sin(2x), such that the solution to Poisson’s equation is then ∇2φtoy = ∂2φtoy
∂x2

=

−4 sin(2x). Solution of this equation by the PoisFFT library is expected to produce

second-order accuracy, meaning the solution error, ε = 〈φ − φtoy〉 should decrease

with number of grid points h following a power law with exponent −2. Indeed, in

Figure 2.6 demonstrates that second-order accurate convergence is achieved by the

solver by giving the equation of the line-fit to the data points (note that log in this

case is the natural logarithm, such that Y = e−2 log(x) = x−2). With this result, there

is confidence that the PoisFFT solver has been correctly implemented.

2.6.2 Sod Shock Tube

The ES-BGK model detailed in Section 2.5.2 is implemented in the DK solver;

to verify the algorithm coupled with the solver, a classic problem in gas dynamics is

considered: the Sod shock tube. [118] In this problem, gases with different properties

are initialized on either side of a virtual diaphragm. At time t = 0, this diaphragm

bursts (or is removed), allowing the gases to intermix. This problem is particularly

well-suited to test that the collision algorithm is properly implemented and married

to the DK solver, as an analytic solution exists and predicts that a shock, contact

discontinuity, and rarefaction fan should be clearly observed.

The 1D problem is initialized as two Maxwellian gases, left (L) and right (R) of

the diaphragm, with the following properties: ρL = 5.25ρr, TL = 6.75TR, where ρ

represents the mass density of the gas. The numerical parameters of the test case are
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Figure 2.6: Grid convergence demonstrating second-order accuracy of the Poisson equation solver
from PoisFFT. Numerical error, ε, decreases with an increasing number of grid points, h, to the
second power.

detailed in Table 2.3. Solutions from the DK code are compared with exact solutions

of the Riemann problem evaluated numerically (see Ref. [118] for details on these

calculations) with Python.

Table 2.3: Numerical parameters of the Sod shock tube verification problem.

Physical Domain Size L (cm) 2.0
Number of Physical Cells Nx 2000
Velocity Bounds Vx (m/s) [−1500, 1500]
Number of Velocity Cells Nv 120
Total Time T (µs) 10
Number of Time Steps Nt 10, 000

Figures 2.7, 2.8, and 2.9 give the normalized density, velocity, and pressure com-

pared with the Riemann solver solution. All results demonstrate excellent qualitative

agreement with the analytic solution. Numerical diffusion is clearly visible, causing

the DK solution to ‘smooth out’ near the regions of sharp gradients. This is due
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to the flux-limiting scheme tending towards first-order accuracy to avoid numerical

oscillation. [122] Nonetheless, even with this limiter in place, some amount of numer-

ical oscillation is observed in the velocity solution in Figure 2.8. As this oscillation

remains small and localized to the region of discontinuities in the flow, these results

provide confidence that the collision algorithm is properly implemented and coupled

to the DK code.

Figure 2.7: Normalized density from DK compared with the analytic (Riemann problem) solution
for the Sod shock tube problem. The rarefaction, contact discontinuity, and shock are all labeled.



48

Figure 2.8: Normalized velocity from DK compared with the analytic (Riemann problem) solution
for the Sod shock tube problem. A small numerical oscillation occurs near the contact discontinuity
which is a likely result of the flux limiting scheme not providing sufficient diffusion in this region.

Figure 2.9: Normalized pressure from DK compared with the analytic (Riemann problem) solution
for the Sod shock tube problem.
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2.6.3 1D1V Landau Damping

The coupling of the Poisson’s equation solver into the DK code is important to

verify, as this solver has not been used in conjunction with the code previously. In

order to accomplish this, the problem of Landau damping in a plasma is particularly

useful. Landau damping is the collisionless damping of plasma waves whereby energy

is transferred to the plasma particles at the expense of the wave energy. [69] This

problem is particularly useful as a verification for plasma solvers as there exists an

analytic solution for the linear damping rate γ for a particular wavenumber ko and

frequency ωr:

(2.46) γ = ωp,e

√
π

8

1

(koλD)3
exp

(
− 1

2
(koλD)2

)
,

where λD is the electron Debye length and ωp,e is the electron plasma frequency. In

practice, to launch a wave in the plasma simulation, a density perturbation is applied

to the initial electron distribution finit of the form:

(2.47) finit(x) = fM(1 + α sin(kox)),

where α is the perturbation magnitude. The numerical setup of this problem is given

in Table 2.4, where the problem dimension is 1D1V and the boundary conditions are

periodic for both the DK and the Poisson solver. The problem setup is equivalent to

that of Refs. [75, 110], where koλD = 0.4 and α = 0.05. Ions are assumed to provide

a stationary background. With no collisions, the solver is solving the Vlasov-Poisson

system of equations.

From the density perturbation applied, Landau theory predicts an electron plasma

wave to be launched with phase velocity vφ = 3.21. Figure 2.10 gives the logarithm



50

Table 2.4: Numerical parameters of the 1D1V Landau damping verification problem.

Total Time T (ωpe) 60
Number of Time Steps Nt 25, 000
Domain Length L (λD) 15.7
Number of Physical Cells Nx 512
Electron Velocity Bounds Ve (vth,e) [-6,6]
Electron Velocity Cell Count NVe

1600

Figure 2.10: Trapping signature in the electron VDF associated with the density perturbation of
electrons from Eq. 2.47. The theoretical prediction of phase velocity vφ from Landau’s theory is
given as a red line.

of the spatially-averaged electron VDF, 〈f〉, from the simulation during the linear

damping phase, with the expected phase velocity of the wave given as the red line.

The electrons are trapped by the plasma potential oscillations caused by the wave,

causing a plateau in the VDF centered around the wave phase velocity. Figure

2.10 provides confirmation that the wave launched in the plasma is traveling at the

expected phase velocity. After the linear phase, Landau damping becomes inherently

non-linear after the bounce time τb = α−1/2. Figure 2.11 gives the variation of the

average electric field with time during the course of the simulation, compared with

the expected linear Landau damping rate of γ = −0.0661. The decay of the electric
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Figure 2.11: Damping rate of the electric field associated with the plasma wave (black) compared
with the analytic theory of Landau damping (red) for 1D1V. The cutoff time of linear damping is
marked by the dashed red line marked τlinear, after which time non-linear effects become important.

field agrees well with the expected value. After time τb, the problem becomes non-

linear; while agreement with the linear rate worsens after this time, it is observed that

reasonable agreement with this damping rate is found until tωp,e ≈ 25, in agreement

with Ref. [75]. These agreements with analytic predictions provide confidence that

the 1D1V Vlasov-Poisson system is properly implemented.

2.6.4 2D2V Landau Damping

While the DK code has been previously verified for 1D1V problems, it has not

been verified for 2D2V problems. A straightforward extension of the 1D1V Landau

damping problem, verified in Section 2.6.3, is the 2D2V Landau damping problem.

The problem in this case is similar to that in 1D1V: a density perturbation is applied

to plasma electrons in order to launch a wave in the plasma, which is subsequently

damped, collisionlessly, by Landau damping. For this case we use the parameters
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given in Table 2.5. The perturbation applied to the electrons takes the form:

(2.48) finit(x, y) = fM(1 + α sin(kox) sin(koy)),

where α = 0.05 and ko = 0.5.

Table 2.5: Numerical parameters of the 2D2V Landau damping verification problem.

Total Time T (ωpe) 48
Number of Time Steps Nt 10, 000
Domain Length Lx (λD) 12.6
Domain Length Ly (λD) 12.6
Number of Physical Cells Nx 64
Number of Physical Cells Ny 64
Electron Velocity Bounds Ve,x (vth,e) [-6,6]
Electron Velocity Bounds Ve,y (vth,e) [-6,6]
Electron Velocity Cell Count NVe,x

300
Electron Velocity Cell Count NVe,y

300

For the input perturbation values, the expected damping rate is γ = −0.394.

[91] Figure 2.12 compares the measured electric field amplitude, E =
√
E2
x + E2

y ,

with this analytic prediction. The results indicate excellent agreement between the

linear theory and the DK results until tωp,e ≈ 25, after which time non-linear effects

dominate. This finding is the same as in the 1D1V case, which is to be expected as

the density perturbation magnitude α is identical for both cases. With these results

in hand, the 2D2V DK code, coupled with the Poisson solver, is verified.

2.7 Summary

In this chapter, an outline on numerical approaches to solving the Boltzmann

equation (kinetic methods) was given. The deterministic-kinetic method, utilized

in the remainder of the thesis, was described and the techniques used to solve the

Boltzmann equation were detailed. A particular focus was the implementation of the

2D-AXI functionality in the code, while boundary conditions for the solver were also
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Figure 2.12: Damping rate of the electric field magnitude associated with the plasma wave (black)
compared with the analytic theory of Landau damping (blue) for 2D2V. As in 1D, agreement with
the linear theory is found until tωp,e ≈ 25. This is expected as the perturbation strength α is
identical in both cases.

laid out. The implementation of supplemental modules, such as for Poisson’s equa-

tion and for collisions, was explained. Finally, a variety of verification problems were

analyzed: the 1D1V Sod shock tube for neutrals, 1D1V & 2D2V Landau damping

for plasmas. Numerical solutions found good agreement with theory, providing con-

fidence that the DK solver and new functionalities have been correctly implemented

and coupled.



CHAPTER III

Neutral Gas and Plasma Expansion Flows

The existence of various methods to approach kinetic simulation of gas and plasma

flows requires that one carefully considers which method is most appropriate for the

problem at hand. While deterministic methods, such as the one developed in this

thesis, are attractive for their noise-free nature, they are also generally known to

require more computational resources to apply. It is therefore important to com-

pare the deterministic method with another method, the stochastic particle method

DSMC, to weigh the costs and benefits associated with each. Critical to such a

comparison is the existence of analytic solutions for verification. The rarefied jet

presents a useful tool for such a comparison, as analytic solutions exist in both one

and multiple dimensions. In addition, the 2D-axisymmetric rarefied jet serves as a

simplified hollow cathode problem, and thus provides a meaningful step towards a

hollow cathode simulation tool.

In this chapter, Sections 3.1 and 3.2 consider neutral flow in both an unsteady,

one-dimensional rarefied jet and a steady, two-dimensional-axisymmetric rarefied jet

problem. For both problems, grid convergence is tested by refining the discretization

variables associated with each numerical scheme. For DK, these variables are the

spatial grid spacing ∆x, velocity grid spacing ∆v, and temporal grid spacing ∆t,

54



55

while for DSMC they are ∆x, ∆t, and the number of particles per cell, Np. The

distinction of Np as a discretization variable is chosen so as to provide an analog to

the ∆v of DK; however, this quantity is also tied to the statistical error of particle

methods. Statistical error is known to be related to the number of samples Ns =

Np ∗ k, where k is the number of sampling steps or number of ensemble averages

taken. These sections carefully consider statistical error in addition to discretization

error when analyzing results.

After careful consideration of the rarefied neutral jet problems, Section 3.3 turns to

simulation of a hollow cathode system, which involves concurrent simulation of both

neutral and charged particles. For this purpose, the NSTAR discharge hollow cathode

is chosen for comparison, as there exists a wealth of numerical and experimental data

on this device. By comparing with experimental data, these results provide a level of

validation for the newly developed cathode simulation platform, while also addressing

the current shortcomings of the solver.

3.1 The Unsteady, One-Dimensional Rarefied Jet

3.1.1 Problem Setup

The problem of the unsteady, 1D rarefied jet has a solution detailed in Ref. 10.

This problem is characterized by an equilibrium gas, described by temperature To

and density no, initially held at rest within a reservoir. At time t = 0, a wall holding

the gas is removed from one side, allowing the gas to escape. Solutions for both the

density and velocity of the gas, in space and time, exist:

(3.1)
n(z, t)

no
=

1

2
erfc

(
βz

t

)
,
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and

(3.2) U(z, t) =
1√
πβ

exp

[
−
(
βz
t

)2]
erfc

(
βz
t

) ,

where erfc() is the complementary error function. For clarity of comparison, non-

dimensional variables are introduced in this solution. The spatial normalization

factor is the hard sphere mean free path λo, which is defined as λo = 1√
2noσ

, where no

is the number density of the gas and σ is the collision cross section of the molecule

considered. The velocity normalization factor β, the inverse thermal velocity vth
−1,

is defined as β =
√

m
2kbTo

. The temporal normalization factor τ is then defined as

τ = λo
〈C〉 , where 〈C〉 =

√
8kbTo
πm

is the mean speed of the gas.

The domain extents and initial conditions for the problem are given in Table

3.1. A sweep of cases are run, uniformly refining the number of cells used for each

discretization parameter in both numerical schemes. The number of cells or particles

for each case are given in Table 3.2. Thus, in cases with an identically numbered

subscript, the DK case (subscript D) and DSMC case (subscript S) have identical

parameters, save for the difference between velocity cells and number of particles.

Dimensions 1D1V
Total Time, T (τ) 0.3
Channel Length, L (λo) 6
Velocity Boundaries, Vz (vth) [-7,7]

Table 3.1: Numerical inputs for the 1D unsteady, rarefied jet cases run using DK and DSMC. The
velocity boundaries are only relevant to the DK case.

Parameter C1D C2D C3D C4D C5D C1S C2S C3S C4S C5S

Nt 150 300 600 1200 2400 150 300 600 1200 2400
Nz 50 100 200 400 800 50 100 200 400 800
Nvz 50 100 200 400 800 - - - - -
Np - - - - - 50 100 200 400 800

Table 3.2: Grid parameters for the 1D rarefied jet cases. DK cases are denoted by subscript D
while DSMC cases are denoted by subscript S.
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3.1.2 Results: Comparing DK with DSMC

Figure 3.1a gives the densities and Figure 3.1b the velocities for a few cases of the

1D jet compared with the analytic solution at the early time of t = 0.1τ . It becomes

immediately clear that the DSMC solution does not exist in the far downstream

region of the flow; this is due to the absence of any macroparticles in this region.

At the same time, in the region where a solution does exist for DSMC, there are

apparent fluctuations in the solution. Both of these problems may be traced back

to an insufficient sample size, Ns. In the upstream region of the flow (behind the

location of the removed wall), the DSMC solution is subject to fluctuations which

diminish when the quantity Np increases (see Figure 3.2), indicating the fluctuations

are due to statistical error. Downstream of the removed wall, in this relatively early

time of the flow, only fast particles or ‘tails’ of the distribution are able to reach

locations far from the initial wall boundary. For DSMC, representing this sparse

population of particles is difficult, as they represent only a small fraction of the

VDF.

The problems of statistical error and insufficient particles to generate a solution

may both be helped by increasing the quantity Np, which would increase the sample

size Ns in both the region upstream and downstream of the wall boundary. Ensemble-

averaging of multiple runs would also serve to increase k and therefore Ns, yet this

approach is not effective when there are insufficient macroparticles to generate a so-

lution. It is important to note that, by choosing an early time in the simulation to

make the comparison given here (t = 0.1τ), the problem of resolving VDF tails in the

downstream flow is exacerbated. As the solution progresses, the slow-moving parti-

cles reach the downstream section of the domain, making the difficulty of resolving

the fast tails less pronounced and allowing a solution for the DSMC case.
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(a) Normalized densities. (b) Normalized velocities.

Figure 3.1: 1D rarefied jet flow properties compared with the analytic solution in the domain at
time t = 0.1τ . The location of the removed wall is marked by the black dashed line.

There is another attribute of DSMC that is important to consider: since it is

impossible to sample all possible velocity space, limits must be chosen for which

particles will be introduced. In the case of MONACO, these limits are ±3vth, which

encompasses all but .002% of a non-drifting Maxwellian distribution. [4] The choice of

velocity space limits for DSMC is important, as it determines how effective a certain

number of particles can be at representing the VDF. In this case, extension of the

velocity limits of DSMC would likely aid agreement in the downstream region, at

the expense of requiring more macroparticles to represent the VDF. This is because

larger velocity boundaries results in a greater velocity spread of macroparticles which

represent the distribution; should Np be kept constant, the resolution of the VDF

becomes inherently coarser. In DK, the choice of where to cut off velocity space is

also made; the advantage of DK is that the choice of an excessively large velocity

domain does not risk under-representing the distribution while the cell size is kept
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constant, though it may result in undue computational expense. For this case, the

DK velocity boundaries are ±7vth, much larger than the effective boundaries set by

DSMC. Aside from resolving tails of the VDF, the zero-gradient velocity boundary

condition used in the DK method makes it important to ensure the distribution is

essentially zero at the velocity boundaries, as this can otherwise lead to a buildup of

information at the boundary and an unphysical solution.

The DK solution is able to capture the analytic solution more effectively than

DSMC. There are no regions where the solution does not exist, nor are there fluc-

tuations due to statistical error. Upstream of the wall, the DK solution is able to

capture the very small bulk velocity, while downstream of the wall, DK well-captures

the supersonic flow. The extent to which both methods capture the analytic solution

is made more clear in Figure 3.2, which gives the relative error εr = (ns − na)/na,

where ns is the simulated value and na is the analytic value. The largest error in

the DK solution is downstream of the wall, but decreases rapidly with grid refine-

ment. By comparison, the DSMC error is much higher than DK upstream of the wall

and, similar to DK, begins to increase in the downstream region before the solution

vanishes and no further error may be plotted.

The convergence behavior for each method is determined by comparing the level

of error for each refinement of the grids. As all parameters are refined simultaneously,

the rate of convergence is expected to be either a mix of the rates of all parameters

considered, if the errors are of similar magnitude, or dominated by the largest source

of error. There are expected levels of error associated with both numerical approaches

used here. The error in the DK method is subject to the order of accuracy of the

numerical scheme; the DK method uses the second-order accurate method detailed in

Chapter II and thus the expected convergence of numerical error goes with ε ∼ N−2.
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Figure 3.2: Relative density errors for DK and DSMC in the 1D
rarefied jet.

For DSMC, the expected accuracy associated with the particle movement scheme is

first-order, ε ∼ N−1, while the order associated with the number of particles is also

first-order. [20, 102] On the other hand, the statistical error of DSMC is known to

converge with half-order, ε ∼ N−0.5. [32] Therefore, only if the level of statistical error

is driven below the level of discretization error will first-order accuracy be realized.

The chosen parameter in this comparison, seen in Figure 3.3, is the number of

spatial cells Nx, though the rate would be identical for any chosen parameter as

the refinement ratio is identical for all parameters, rp = 2. The results from Figure

3.3 show that DSMC converges with the rate 1/
√
N . This demonstrates that the

DSMC results here are chiefly dictated by the statistical error, rather than any
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discretization error, in the range of parameters considered. On the other hand, DK

converges with 1/N , which is far below the expected second-order rate of convergence.

The reason for this reduced convergence is due to the presence of a discontinuity in

the problem considered here. In the presence of discontinuities, the flux limiter used

drops to first-order accuracy in order to prevent numerical oscillation. [106] Therefore,

the DK scheme is limited to first-order accuracy for this particular problem, which

is important to consider when applying the DK method to further problems with

discontinuous flow features.

Figure 3.3: Grid convergence for DK and DSMC cases of a 1D rarefied
jet. The DK solution converges with first order accuracy while the
DSMC solution converges with one half order accuracy. The DSMC
solution is not ensemble-averaged to demonstrate the effect of statis-
tical error.

The amount of computational expense required to achieve a certain level of accu-
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racy for both schemes is a useful metric when weighing which numerical approach

to adopt. This comparison is subject to many factors, such as efficiency of each

code structure. For example, the DK code is compiled with Intel compilers using the

optimization flags -O3 and -ipo. On the other hand, MONACO is compiled with

GNU compilers using the optimization flag -O3. These compiler options may lend

an advantage to the speed of the DK results. Nonetheless, despite these differences,

comparing simulation wall times represents a useful benchmark to qualitatively un-

derstand the relative expense required to achieve a certain level of accuracy. In

Figure 3.4, the computational wall time, WT , associated with each simulation is

compared to the level of error. In the range of parameters considered, it is evident

that DK achieves roughly an order of magnitude lower error than DSMC for similar

wall times. Conversely, considering the wall time required to achieve the same level

of error: DK is able to reach an error of order ε ∼ 10−2 with a wall time that is

approximately three orders of magnitude less than DSMC.

These results demonstrate the efficacy of DK for both an unsteady problem and

a problem of low dimensionality (1D). However, it is important to recognize that

ensemble averaging may enable DSMC to become more effective in this test case, by

increasing the order of accuracy to 1/N in regions where there are sufficient particles

to generate a solution. There are additional ways to improve the DSMC method; for

example, Strang splitting has been demonstrated to enable second-order accuracy for

spatio-temporal updates. [54] Further, running the simulation with significantly more

particles is a viable method, given the computational ease of the 1D problem, in order

to predict flow properties further downstream. However, this approach to unsteady

problems would become far more computationally costly in higher dimensions, and

a careful comparison of results for such a problem is necessary.
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Figure 3.4: Computational effort to achieve a certain level of error for
DK and DSMC cases of a 1D, unsteady rarefied jet. The DK results
demonstrate better efficiency in achieving a lower level of error for a
particular wall time. The DSMC solution is not ensemble-averaged
to demonstrate the effect of statistical error.

3.2 The Steady, Two-Dimensional Axisymmetric Rarefied Jet

3.2.1 Problem Setup

Both steady and unsteady rarefied jet solutions have been derived in higher di-

mensions for a variety of inlet shapes. [14] The problem of interest in this study is

that of rarefied gas effusion from a circular exit with zero bulk velocity (Uo = 0). The

flow is assumed to be axisymmetric such that ∂f
∂θ
≈ 0. This problem considers an exit

with radius R, from which emanates an equilibrium gas with initial density no and

temperature To. Here, the number density is used as the parameter for comparison;
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the solution for the density in the flow field follows:

(3.3)
n(z, r)

no
=

1

2
− z

4π

∫ π

−π

[
z2 + r2 − rR sin(θ)

(z2 + r2 cos2(θ))
√
z2 + r2 +R2 − 2rR sin(θ)

]
dθ,

where z is the axial position, r is the radial position, and θ is the angle between z

and r as measured from the centerline. To emulate the physical problem, the left-

side boundary is set to include an inflow condition up to r = R, and above this the

ghost cells are set to vacuum. The centerline (r = 0) is set to a specular reflection

condition, while the right-side (z = L) and upper-side (r = H) boundaries are set to

outflow conditions.

Dimensions 2D3V
Total Time, Ts (τ) 150
Channel Length, L (λ) .0258
Channel Height, H (λ) .0258
Axial Velocity Boundaries, Vz (vth) [0, 3.3]
Radial-Azimuthal Velocity Boundaries, ξ (vth) [0, 3.3]
Angular Domain, ω (degrees) [0, 180]

Table 3.3: Numerical inputs for the steady, 2D-AXI jet case run using DK and DSMC. The velocity
boundaries are only relevant to DK.

As for the 1D problem, multiple cases are run for each numerical method. Table

3.4 gives the details of the number of grid points used for each case. Since the

problem of interest is steady, the number of time steps is chosen so the final result is

found after the number of particles in the DSMC simulation and the total number

density in the DK simulation have reached asymptotic limits. This steady-state time

is chosen to be identical for both numerical schemes, t = 150τ . However, for DSMC,

time-averaging sampling steps must be taken after reaching steady-state in order to

obtain a statistically meaningful solution; the number of sampling steps is increased

by the same factor as all other parameters in these test cases. Both schemes utilize

uniform, structured grids in physical and (for DK) velocity space.

In these cases, a few assumptions are employed to reduce the size of velocity
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Parameter C1D C2D C3D C1S C2S C3S

Nt 7500 15000 22500 7500 15000 22500
Nz 20 40 60 20 40 60
Ny 20 40 60 20 40 60
Nvz 6 13 19 - - -
Nξ 32 65 98 - - -
Nω 9 18 27 - - -
Np - - - 50 100 200
k - - - 17500 35000 52500

Table 3.4: Grid parameters for all axisymmetric cases. DK cases are denoted by subscript D while
DSMC cases are denoted by subscript S.

space: the flow is assumed to be irrotational, so the DK velocity grid in ω only

includes angles 0◦ to 180◦. In addition, since only particles with a positive axial

velocity are present in the solution, the lower axial velocity bound is chosen to be

Vz = 0. In contrast to the cases in Section 3.1, the number of particles per cell in

DSMC is much lower than the total number of velocity cells in DK. In case C1D, for

example, the number of velocity cells per physical cell is Nv = Nvz×Nξ×Nω = 1, 728

cells; compared with the number of particles per cell in case C1S, Np = 50, this is

a significant difference. However as will be demonstrated in Subsection 3.2.2, even

with this relatively small number of particles, DSMC is able to achieve a level of

error similar to that of DK.

For this problem, all cases are run in parallel on a Linux computing cluster; the

number of cores is identical for each refinement: 10, 20 and 40 cores for subcases 1,

2, and 3 respectively. The DK scheme is parallelized by assigning processors purely

based on axial position, z. The DSMC scheme, on the other hand, uses METIS to

partition the grid based on balancing the number of particles across processors. [65]

The parallel efficiencies of both codes are an important benchmark to consider; par-

ticularly, the weak parallel efficiency is important here as the problem size increases

with each grid refinement. MONACO has been shown to maintain nearly 90% weak

scaling efficiency for 50 processes, while, as seen in Figure 3.5, DK only demonstrates
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approximately 50% efficiency at this number of processes. Thus, there is a significant

amount of computational overhead for DK for large problem sizes, which must be

considered when interpreting wall times.

Figure 3.5: Parallel scaling efficiencies for the DK code.

3.2.2 Results: Comparing DK with DSMC

In Figure 3.6, the densities from solutions for four test cases detailed in Table

3.4 are given. An immediately noticeable feature lies near the centerline for the DK

results, where for case C1D there is a clear ’bump’ in the density solution. This

centerline behavior of DK simulations has been identified in previous studies, and is

attributed to the difficulty in resolving the beam-like distribution near the center-

line. [48,103] Due to the inability of the scheme to resolve this distribution, a buildup

of particles near the centerline occurs. To remedy this problem, further refinement of

the radial VDF is helpful; in case C3D the centerline solution is much improved. De-

spite this difficulty with DK, good agreement with the analytic solution is otherwise

found and improves with grid refinement. Another area where this improvement is
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notable lies in the large radial (r = 0.6 − 1.0m), but small axial (z = 0.0 − 0.2m)

locations of the grid. Here, the density is over-estimated for case C1D, but with

refinement of the grid the error becomes nearly indiscernible.

For the DSMC solution, even the coarsest physical grid considered is able to

resolve the solution to a surprising degree of accuracy when compared to the DK

solution for an identical physical grid. The region with the most evident error is

also along the centerline, where the solution contains fluctuations. Similar to the

DK solution, this region is plagued by the difficulty in resolving the centerline beam

distribution, which requires a sufficient number of particles emitted from the inflow

to have zero or near zero radial velocity. Since there are relatively few particles with

this property, this region is subject to greater error. Nonetheless, DSMC is able to

capture the densities near the centerline with greater apparent accuracy than the

DK method for the coarsest grid; for the finest grid, the difference between the two

methods becomes much smaller.

In light of these results, it is important to recognize the particularly difficult nature

of the present problem in resolving the centerline VDF for both schemes. Due to

the absence of any collisions or any walls, there exist no particles which cross the

centerline except for those which are emitted from the inlet. Thus, at ever larger

axial positions, the only particles which exist near the centerline are those with very

small radial speeds, which appear to be difficult for both schemes to resolve. In

more realistic flows, e.g. those with collisions included, this difficulty would be less

pronounced. Nevertheless, this difficulty is important to consider when approaching

axisymmetric problems with both schemes.

Proving convergence of numerical error at the expected order-of-accuracy for the

DK method is challenging due to the left-side boundary. The left-side boundary is a
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Figure 3.6: Densities of DK (red) and DSMC (blue) compared to the analytic solution (black) for
the steady-state, axisymmetric rarefied jet.

vacuum condition where no particles should enter the domain; therefore, the ghost

cell values here are set to zero. However, similar to the 1D problem, this amounts

to a discontinuity which drives the flux-limiter function towards first-order accuracy.

At the same time, for the analytic solution, values near this boundary are subject
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to integration error which may approach the level of the solution. [14] Therefore, for

the purposes of evaluating the numerical convergence, cells near this boundary are

neglected. It must be acknowledged that near-vacuum boundaries present a difficulty

for retaining the desired order-of-accuracy in the DK method. However, in a more

physically realistic system, e.g. one with collisions and wall boundaries, information

could enter the domain from such a boundary (the ghost cells would not be set to

zero, but rather a zero-flux or back-pressure condition), preventing the discontinuity

and thus this difficulty. Indeed, outflow boundary conditions must be handled with

care in order to preserve the desired order of accuracy. [130]

The level of spatially-averaged relative error, 〈εr〉 = 〈(ns − na)/na〉, is given for

all six cases in Figure 3.7. While the DK cases begin with larger error than DSMC,

the error decreases with near the expected second-order accuracy, with a power

fit parameter of -1.78. This result provides the first verification of the 2D-AXI

functionality within the DK solver. Further, the DSMC solution error decreases with

near the expected first-order accuracy, with a power fit of -0.82. Generally, in the

axisymmetric case, both schemes have superior rates of convergence when compared

to the 1D-unsteady case. For DK, this is due to the absence of a discontinuity in the

bulk solution which caused the flux-limiting scheme to revert to 1st-order accuracy.

For DSMC, this is due to the large number of sampling steps which are taken after

the flow reaches steady-state, which drives down the statistical error. As the DSMC

rate of convergence goes with 1/N rather than 1/
√
N , in contrast to the 1D case,

these results indicate the level of statistical error is less than that of the discretization

error.

A final and important metric to consider is the wall time associated with each

level of error attained; this data is plotted in Figure 3.8. These results demonstrate
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Figure 3.7: Grid convergence for DK and DSMC cases of a steady, axisymmetric rarefied jet when
ignoring cells near the left-hand side vacuum boundary. The DK solver is able to converge with an
order of accuracy one power greater than DSMC, but neither scheme achieves the expected order
of accuracy.

the massive increase in computational expense associated with the DK method when

considering this multi-dimensional problem. Although cases C2D and C1S achieve a

similar level of error, the DK solution (using the same amount of computational

resources) requires two orders of magnitude greater computational time. This com-

putational burden is potentially restrictive and it is important to understand why

there is a significant difference between the two methods. In axisymmetric coordi-

nates, the DK method must resolve a 3D VDF for each physical cell; this means that

the total grid size for, say, the C2D simulation is: Ntot = Nv ∗Nz ∗Ny = 24.3M units.

In contrast, the DSMC simulation carried out on the same physical grid has a total

size (assuming particles to be a proxy for velocity cells) Ntot = Np ∗Nz ∗Ny = 0.16M

units. This amounts to a domain size difference of ∼ 150x between the two schemes,
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and helps to explain the identically large increase in computational expense. These

results also demonstrate that the massive increase in domain size for DK (∼ 150x)

has a greater impact on computational expense than the additional time steps re-

quired by DSMC (∼ 3.3x) to sample the solution.

Figure 3.8: Computational effort to achieve a particular level of error
for DK and DSMC cases of a steady, axisymmetric rarefied jet when
ignoring the left-hand side vacuum boundary. A serial version is run
for the coarsest grid and is plotted for both schemes as the unfilled
symbol.

Ultimately, these results highlight the importance of exploring avenues to more

efficiently utilize computational resources when applying the DK method to multi-

dimensional problems. For example, the use of non-uniform meshes in velocity space

or adaptive mesh refinement (AMR) would enable a more cost-effective approach. [66]

AMR takes advantage of the fact that the VDF may often be described by a much

smaller portion of velocity space than the entire domain, and refines the mesh only
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where it is useful. The method used in this study, however, requires that velocity

space be uniformly represented, and therefore at any physical point there may be

many velocity cells where the distribution f is very sparsely populated (and thus

that are not contributing to the solution). Further, more efficient parallelization is

important to drive down wall times; for example, it is possible to parallelize the algo-

rithm in both spatial directions (axial and radial), which may provide computational

cost savings for large number of spatial grid points. Finally, while the DK scheme

utilized here is 2nd order accurate and makes use of uniform spatial and velocity

grids, there are ways to improve the accuracy achieved for a similar computational

expense. Higher order methods, such as fourth-order, have been implemented which

would allow faster convergence. [128]

3.2.3 Considering Multi-Dimensional Transient Behavior

Section 3.1 demonstrated the efficacy of the DK method when considering an

unsteady expansion into vacuum, particularly in its ability to provide good agreement

with the analytic solution for distances far from the ‘inlet.’ By contrast, the DSMC

method struggled to provide a solution in these regions due to a lack of particles.

It is useful to briefly consider these effects for a multi-dimensional problem, such

as considered in this section, as well. Figure 3.9 gives the density solution for both

DK (C2D) and DSMC (C2S) at time t = 10τ , overlaid on a contour which shows

the number of particles per cell, Np, from the DSMC solution. The DSMC solution

has been re-run with an automatic weighting scheme to attempt reaching Np =

1, 000 particles per cell in order to provide better accuracy in regions advancing into

vacuum, where fast VDF tails dominate the bulk properties.

While both solutions agree well near the inlet, this agreement becomes worse near

the domain outflow boundaries. Indeed, the number of particles in DSMC rapidly
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Figure 3.9: Transient density solution for the 2D-axisymmetric problem at t = 10τ , with DK as
the red lines and DSMC as the blue lines. The solutions are overlaid on a contour of the number
of particles per cell (Np) in the DSMC solution.

drops off near the boundaries, as the domain is initially set to a vacuum condition.

Figure 3.10 demonstrates this more clearly, by sampling a line which cuts across

the domain at a 45◦ angle. In this plot, the DSMC density drops rapidly near the

domain edge, which corresponds to the region with no macroparticles. This behavior

is similar to that observed in Section 3.1, and again demonstrates the difficulty for

DSMC to capture a transient expansion into vacuum which requires resolving fast-

moving tails of the VDF. Further increasing the number of particles may help to

alleviate this problem, though as in 1D, the resolution of these tails of the VDF
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is more suited for the DK method as it is effectively guaranteed by simulating a

sufficiently large velocity domain. Although the computational cost to achieve these

solutions favors the use of DSMC, the advantage of DK in resolving VDF tails is an

important consideration when weighing these numerical approaches.

Figure 3.10: Transient density solution for the 2D-axisymmetric prob-
lem at t = 10τ , taken as a 45◦ line across the simulation domain. |L|
is the position magnitude. The density solution for DSMC vanishes
near the boundary, where the number of particles rapidly drops off.
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3.3 The NSTAR Discharge Hollow Cathode

3.3.1 Problem Setup

Section 3.2 demonstrated the advantage of DSMC for steady problems in higher

dimensions, while also serving to verify the 2D-axisymmetric DK solver with an an-

alytic solution. With this verification of the 2D-axisymmetric DK solver, attention

may now turn to simulation of a cathode geometry. Though hollow cathode oper-

ation is considered to be steady state, recent developments regarding the effect of

instabilities highlight the possible importance of resolving fine-scale portions, and

even transient behavior, of the VDF. Therefore, rather than particle methods, the

DK method is applied to simulation of a hollow cathode geometry. The NASA Solar

Electric Propulsion Technology Applications Readiness (NSTAR) project saw ex-

tensive development towards a gridded ion thruster which was eventually flown on

NASA’s Deep Space 1 mission. [11] The NSTAR discharge hollow cathode, which

provides the ionization source to sustain the plasma discharge, has been the subject

of experimental [26, 40] and numerical [84, 112] investigation partially due to high

keeper erosion rates. Therefore, this cathode presents a useful testbed for the newly

developed solver used in this thesis.

Similar to a hollow cathode experimental run, in these simulations the neutral gas

(xenon) is allowed to flow before the plasma is lit. Therefore, in Stage I only neutral

gas is simulated, while in Stage II both neutrals and charged species are simulated.

The boundary conditions of the hollow cathode are given in Figure 3.11. An axis of

symmetry condition is imposed at the centerline (given in blue), while the outflow

conditions (given in green) are assumed to be vacuum. Since a self-consistent wall

heating model is not applied in this study, the cathode wall boundary temperature,

Twall, is assumed to be at a steady-state operation temperature characteristic of
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the device. At the inflow, the neutral gas temperature, Tin, is assumed to be in

equilibrium with the walls. The numerical properties of the spatial grid and the

neutral gas are given by Table 3.5.

Figure 3.11: Boundary conditions for the NSTAR discharge hollow cathode geometry.

Special care has to be taken in order to obtain the proper neutral density at

the inflow. Cathode operating conditions are given in terms of a volumetric flow

rate, Q, in standard cubic centimeters per minute (SCCM). However, early simula-

tion attempts demonstrated neutral densities that were below experimental values

by order(s) of magnitude. This discrepancy is due to not properly accounting for

backpressure within the cathode channel; a method to do so based on the cathode

geometry is therefore adopted in order to remedy this: [43]

(3.4) nn = 9.65x1024 ∗ Pn
Tn
,

where Tn is the temperature of the gas and,

(3.5) Pn =

√
0.78QξTrl

d4
,
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Time Step, ∆t (s) 5× 10−8

Channel Length, Lc (cm) 2.0
Channel Height, Hc (cm) 0.2
Plume Length, Lp (cm) 2.0
Plume Height, Hp (cm) 1.6
Orifice Length, Lo (cm) 1.0
Orifice Height, Ho (cm) 0.5
VZ (vth) [-4.5,4.5]
ξ (vth) [0,4.5]
ω (deg) [0,180]
Nt 25,000
NZ 40
NR 64
NVZ 26
Nξ 260
Nω 18

(a) Simulation domain conditions.

Accomodation Coefficient, α 1.0
VHS Power, δ 0.85
Volumetric Flow Rate, Q (SCCM) 3.6
Inlet Density, ninlet (m−3) 2.20× 1022

Inlet Temperature, Tinlet (K) 1350
Wall Temperature, Twall (K) 1350

(b) Neutral gas conditions.

Table 3.5: Numerical input conditions for the simulation domain and the neutral gas for the NSTAR
discharge hollow cathode case run using DK. A DSMC case is run with identical conditions for
verification of the newly implemented functionality in the DK solver.

where ξ is the viscosity of the gas, Tr = Tin/289.7, l is the length of the cathode

channel, and d is the diameter of the cathode orifice. The viscosity of xenon is found

from [43]:

(3.6) ξ = 2.3× 10−4T 0.71+0.29/Tr .

With this inlet boundary condition in place, neutral densities are found to match

the experimental values to the correct order of magnitude.

In Stage II, when the plasma is ‘turned on,’ ions and electrons are accounted for

via two methods. Singly charged ions (no multiply charged ions are considered) are

simulated kinetically via the 2D-AXI DK solver. Due to the action of the Lorentz

force on the ions, Equation 2.21 is solved for the ions while Equation 2.22 is solved

for the neutrals. Electrons are modeled by assuming the plasma to be quasineutral

(ne ≈ ni), where they act as a massless fluid which exactly follows the ion motion.

Neglecting resistive effects and assuming the plasma to be isothermal allows the
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plasma potential to be found via the Boltzmann relation:

(3.7) φ =
kbTe
e

ln

(
ni
no

)
+ φo,

where no and φo are a reference density and potential, respectively. These values

are assigned such that the correct density-potential relation is found in the region of

interest; they are given in Table 3.6. From the potential found from Equation 3.7,

the electric field E is calculated from a second-order accurate central finite-difference

stencil:

(3.8) E =
φi+1 − φi−1

2∆x
.

Given the use of the Boltzmann model rather than a kinetic description of electrons,

this model is hybrid-kinetic. The properties of the DK ion mesh are given in Table

3.6. Two types of collisions are considered for the NSTAR simulation: neutral mo-

mentum exchange and, in Stage II only, ionization collisions. The algorithms used

for both of these collisions are detailed in Section 2.5.

The assumption of quasineutrality is a good one for the cathode channel, [82]

though this assumption breaks down in the cathode plume. Among other reasons,

this is because a) electrons gain significant drift velocity due to acceleration by the

applied voltage rise upon exiting the cathode orifice and b) classical collisions fall

dramatically outside the orifice as the flow becomes rarefied. An extension of this

model is important but beyond the scope of this thesis and is reserved for future work.

Another shortcoming of using the Boltzmann relation for electrons is that is does not

self-consistently calculate the electron temperature, Te. Therefore, this value must be

assigned in the simulation domain. In this study, the electron temperature is assumed

to increase monotonically in the axial direction from 1 eV to 4 eV. This assumption
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VZ (vth) [-13.5,20.5]
VR (vth) [-20.5,20.5]
Vθ (vth) [-6.8,6.8]
NVZ 40
NVR 48
NVθ 20
Loss Coefficient, β 1.0
Reference Potential, φo (V) -20.0
Reference Density, no (m−3) 1× 1016

Table 3.6: Simulation conditions for the plasma in Stage II of the NSTAR cathode case for DK.
The velocity boundaries given are for the kinetic ions, while the reference values are used for the
Boltzmann relation.

is based on experimental measurements for various hollow cathode geometries which

demonstrate electron heating as the plasma expands into the cathode plume (see,

for example, Fig. 5 in [42]). This non-classical behavior is thought to be the result

of the ion-acoustic instability, which will be discussed in detail in Chapter IV.

3.3.2 Results: Neutral Flow Verification with DSMC

As detailed in Section 3.3.1, Stage I is run with only neutral xenon flow until

a steady-state is reached. A number of new additions to the solver have not yet

been tested; first, the ES-BGK collision algorithm has not yet been tested when

coupled with the 2D-AXI solver. In addition, the 2D-AXI solver has been modified

to handle an orificed cathode geometry. Given these changes, it is important to

verify the solver with DSMC once more. Thus, a 2D-AXI neutral flow simulation

in MONACO is undertaken with identical boundary conditions, grid size and time

step size; other important input parameters are Np = 100 and k = 350, 000. As in

previous MONACO runs, the number of particles is automatically scaled to maintain

Np particles per cell.

Figure 3.12 gives the density contours for the DK and DSMC results, while Fig-

ure 3.13 gives the number density and flow velocities along the centerline of the

domain. [123] The orifice exit, where the gas rapidly expands, is at location L = 0.2
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cm. From Figure 3.12, it is clear that the two solutions agree well qualitatively. The

largest apparent difference in the results is at the centerline, where the DK solution

is not smooth. This behavior is similar to that noted in Section 3.2, again demon-

strating the difficulty in resolving the centerline flow. Nonetheless, these results are

encouraging and indicate that the DK solver is properly implemented and coupled

to the collision algorithm.

Figure 3.12: Density contours of the NSTAR neutral flow verification for the DK code (left) and
DSMC (right), demonstrating the rapid expansion of the gas near the orifice. As noted in Section
3.2, the centerline of the DK results proves difficult to smoothly resolve, yet otherwise the solutions
appear to be in qualitative agreement.

Along the centerline in Figure 3.13, the greatest apparent discrepancy between

the DK and DSMC results is in the radial velocity just beyond the orifice exit. This

region of the flow is transitional [121] and likely poses a challenge for the ES-BGK

model used to simulate the collisions; similar levels of error have been reported in

previous studies of transitional regimes. [78] Despite this error, the density, axial

velocity, and pressure all qualitatively agree very well along the domain centerline.

With these results in hand, the simulation is advanced to Stage II to include the

plasma species.
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Figure 3.13: Centerline properties for NSTAR neutral flow verification; density and velocities (left),
pressure (right). The largest discrepancy is in the radial velocity at the orifice, where the gas rapidly
expands. This discrepancy may be attributed to the ES-BGK collision algorithm employed, which
is prone to error in transitional flows.

3.3.3 Results: Validation with Experimental Plasma Measurement

In Stage II, ionization is allowed to proceed after steady-state neutral flow is

realized. A floor density of ions, nfloor = 1× 1015m−3, is imposed in order to trigger

ionization, which then proceeds according to the local neutral density, ion density,

and the rate coefficient which depends solely on the local electron temperature (see

Equation 2.33). The simulation is allowed to progress until the ion population reaches

a steady-state.

The plasma properties found from Stage II are plotted along the domain centerline

in Figure 3.14. In this plot, comparisons have been made with both experimental

values and numerical values. The experimental values are those taken by Lang-

muir probe by the Jet Propulsion Laboratory [41], while the numerical data labelled

“Fluid” are the results of a multi-fluid hollow cathode code developed at the Uni-

versity of Toulouse. [111,112] Two cases of the DK code are given here: i) where the

Boltzmann relation is used to calculated the local plasma potential (given in blue)

and ii) where the potential beyond the orifice is assigned in an attempt to better
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Figure 3.14: Comparison of centerline plasma properties for the NSTAR discharge hollow cathode.
Results are plotted versus axial position normalized to orifice entrance. The dots are experimental
data taken from Ref. [41], while the green lines are numerical data taken from the code described
in Ref. [112].

match experimental data.

The densities given in Figure 3.14 demonstrate that the DK code is only able to

achieve good agreement with experiment near the orifice. Upstream of the orifice,

the DK code overestimates the density, while downstream, DK underestimates the

density. There are a number of reasons for these disagreements: beginning with the

upstream (channel) region, the DK code does not include the effects of many other

collisions which may be important to the plasma, such as charge-exchange (CEX)

collisions. In addition, the plasma sheath is not resolved in the DK simulations,

nor are the boundary conditions adjusted to artificially account for the presence of

a sheath. Finally, a self-consistent electron model is not used here but rather the

Boltzmann relation with an assumed electron temperature; inclusion of a more so-

phisticated electron model is likely necessary to capture the plasma evolution within

the channel. All three of these sets of physics are included in the multi-fluid code

used for comparison, which is able to capture a much better agreement with the

experimental data.

Downstream of the cathode orifice, neither the DK code nor the multi-fluid code
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achieve agreement with the data, although the DK code performs better. An im-

portant reason for this superior agreement is likely that a fluid description breaks

down for both the gas and the plasma beyond the orifice. For the gas, this is because

the flow rapidly becomes rarefied outside of the orifice [82], and therefore collisions

are too sparse to maintain a Maxwellian distribution. While a fluid description of

the plasma may also suffer from this shortcoming, the existence of the ion-acoustic

instability in the hollow cathode plume has also been identified. [83] The existence

of such an instability further invalidates the use of a fluid model, as its effect on the

electron and ion distributions is to drive them further from the Maxwellian distri-

bution (though it should be noted that the code from Ref. [112] has implemented

closure models to include the macroscopic effects of the ion-acoustic instability). The

DK code used here cannot inherently capture this instability, because the instabil-

ity is kinetic in nature and thus requires a fully-kinetic (both ions and electrons)

description. Such a pursuit will be the focus of Chapter IV.

A further shortcoming of the hybrid-DK model used here is the inability to capture

the potential gradient due to the experimental anode. In the experimental setup, the

experimental anode is set up as a conical and cylindrical section around the cathode

and biased positively to sustain the discharge. Although the boundary value of the

potential may be assigned in the Boltzmann relation, a self-consistent calculation

of the potential is necessary to capture the potential rise towards the anode. The

second DK case aims to remedy this shortcoming by assigning the plasma potential

outside of the orifice to increase monotonically. Figure 3.14 demonstrates that while

this allows much better agreement with the plasma potential value, it drives down

the plasma density to even poorer agreement with experiment. Again, these results

demonstrate the need for a self-consistent electron model to better capture the hollow
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cathode discharge.

Despite the observed discrepancies with the experimental data, it is useful to

demonstrate the ability of the DK code to assess keeper erosion rates. High-energy

ions, the source of which is thought to be the ion-acoustic instability, are the likely

culprit for keeper erosion in hollow cathodes. [60] Given that a fluid description

of the ions is insufficient in the plume, a kinetic method such as DK may provide

insight into the incident ion energies at the keeper location. For simplicity in these

simulations, a keeper is not explicitly included; however, in experiment the keeper

is placed around the cathode body and the downstream-facing region is sputtered.

Figure 3.15 gives the ion energy distribution functions along a few locations at the

radial wall boundary. In this plot, the measured axial ion energies are far below

the threshold energy for sputtering molybdenum (a common keeper material) of 30

eV. [49] Therefore, the predicted sputter yield is negligible; this, however, is expected

as the ion-acoustic instability is not accounted for in these simulations.

In order to provide an avenue to estimate erosion rates due to the ion-acoustic

instability, a closure model must be implemented to provide ion heating. [67] This is

beyond the scope of the current study and is thus reserved for future work. Despite

currently lacking an ion-heating model to account for the ion-acoustic instability,

these results demonstrate the ability of the solver to simulate a hollow cathode system

via a hybrid-kinetic approach. This work provides an important milestone towards

a predictive hollow cathode simulation by laying the groundwork for the solver. The

inclusion of additional relevant physics will aid agreement with experiment in the

plume and emitter regions, with the ultimate goal of allowing the solver to predict

keeper erosion rates in the future.
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(a) r = 0.65cm (b) r = 0.75cm (c) r = 0.85cm

Figure 3.15: 2V IEDFs along the simulation plume wall boundary, demonstrating the use of the
DK method in estimating erosion rates. The axial ion energies are key to erosion estimates of the
keeper face; without the inclusion of the ion-acoustic instability, high-energy tails are not observed.

3.4 Summary

In this chapter, analytic solutions of an unsteady, one-dimensional and a steady,

two-dimensional axisymmetric rarefied neutral jet flow were used to benchmark the

DK method with the DSMC method. Grid convergence studies were conducted,

where the level of error was compared with refinement, while the level of error was

also compared with the computational wall time necessary to achieve it. It was

found that the DK method is better suited for low-dimensional (1D) and unsteady

problems, due to its ability to resolve a wide range of velocity space. In higher

dimensions, however, the computational cost of DK scales poorly, and particularly

for steady problems, the DSMC method becomes more efficient. Unsteady problems

in higher dimensions may warrant the cost of DK, especially if the tails of the VDF

are important to capturing the physics.

Benchmarking DK with DSMC in 2D-axisymmetric coordinates provided verifi-

cation for the newly implemented DK solver. The solver was then applied to the

simulation of a hollow cathode geometry, where the Boltzmann relation was used

to simulate the electrons and the ions were accounted for kinetically. An attempt

to validate the solver with experimental data yielded mixed results in which good
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agreement was found only in the near-orifice region of the cathode. The discrepancy

with experiment elsewhere in the domain was attributed to missing physics models in

the solver, which are presented as avenues for future work. Finally, ion energy distri-

butions were presented from the results of the hybrid-DK simulations to demonstrate

the ability of the solver to provide keeper erosion estimates. To capture high-energy

ion formation due to plasma instabilities, closure models for the ion-acoustic insta-

bility are crucial but beyond the scope of this thesis; the inclusion of an ion heating

model was thus presented as future work.

These results demonstrate important progress towards developing a predictive

hybrid-kinetic simulation framework for the hollow cathode system that may ulti-

mately address lifetime estimates through erosion rates. A particularly important

next step towards achieving agreement with experiment is the coupling of the solver

with closure models for the ion-acoustic instability. The DK code has the distinct

advantage of being able to study the ion-acoustic instability directly through fully-

kinetic simulations, allowing a benchmarking of the various closure models for the

ion-acoustic instability. Therefore, the next chapter in this thesis focuses on the de-

velopment and consequences of plasma current-carrying instabilities, studied through

the lens of deterministic-kinetic simulation.



CHAPTER IV

Plasma Current-Carrying Instabilities

The previous chapter demonstrated the need for a better understanding of the ion-

acoustic instability (IAI), which has important consequences for the properties of the

hollow cathode plume plasma. Therefore, in this chapter, the deterministic-kinetic

method is applied to the study of plasma current-carrying instabilities. This class

of instabilities, of which the ion-acoustic instability belongs to, is of importance to a

variety of different plasmas. The use of kinetic methods to simulate these so-called

micro-instabilities, even in idealized geometries, provides an important piece of the

puzzle when attempting to characterize how the plasma behaves macroscopically.

In Sections 4.2 and 4.3, one-dimensional (1D1V) and two-dimensional (2D2V) fully-

kinetic simulations are carried out to better understand the nature of current-carrying

instabilities. A particular emphasis is placed on these instabilities’ role in driving

enhanced resistivity and high-energy ion formation, which both have important im-

plications for the hollow cathode plume plasma and other classes of current-carrying

plasmas. In order to drive towards a predictive, reduced-order model of the hollow

cathode, a thorough understanding of the efficacy of their closure models is essential.

Further, the rate of production of energetic ions in the cathode plume due to these

instabilities must be understood in order to predict keeper erosion rates. Avenues

87
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for future work are discussed in light of the results from these analyses.

4.1 The Ion-Acoustic Instability

4.1.1 Theory

The ion-acoustic instability, sometimes called the ion-sound instability, exists in

the more general category of current-carrying instabilities which arise when a plasma

carries a net current. The IAI is known as a micro-instability, meaning that the effects

of the instability depend on the particular structure of the VDF and therefore kinetic

simulation is necessary to capture its evolution. This is in contrast to fluid, or macro-

instabilities, which depend on the bulk structure of the plasma; the Rayleigh-Taylor

and Kelvin-Helmholtz instabilities are well-known macro-instabilities. The IAI has

been thoroughly investigated for many decades [13] as it appears in the context of

fusion plasmas [21, 76, 117] and space plasmas. [52, 95–97] More recently, there has

been renewed interest in the instability as it relates to stimulated Brillouin scattering

in plasmas [16,17] as well as its discovery in the hollow cathode device used in electric

propulsion. [58,62]

Many existing forays into numerical simulation of the hollow cathode device have

utilized multi-fluid descriptions of the plasma, which inherently cannot capture the

formation of the IAI. However, in part due to a lack of agreement with numerical re-

sults and experimental data in early multi-fluid cathode simulation attempts by the

Jet Propulsion Laboratory, the existence of the IAI in the cathode plume was pro-

posed; indeed, further study found that inclusion of IAI closure models significantly

aided agreement with experiment. [83–85] Later experimental efforts to identify ion-

acoustic waves in the cathode plume have confirmed their existence, lending further

credibility to the theory that the IAI is present in the plume plasma. [61, 62] More

recent attempts to model the cathode have found success by increasing the physical
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fidelity (and complexity) of the IAI closure models from an algebraic closure to a

one-equation closure. [94, 111, 112] Given the documented importance of the IAI in

the cathode plume, it is prudent to delve into the basic theory of this instability.

To understand the IAI, consider a collisionless plasma with a single ion popula-

tion and an electron population, both described by equilibrium Maxwell-Boltzmann

distributions fMe and fMi
, which are characterized by temperatures Te and Ti, re-

spectively. If there is a sufficiently large drift velocity between electrons and ions,

V
′
e = Ve − Vi, the real frequency ωr and growth rate γ of the resulting plasma waves

are given by [21]:

(4.1) ωr =

√
k2c2

s

(
1

1 + (λdek)2
+

3Ti
Te

)
,

and

(4.2)

γ =

√
π

8

kcs
(1 + (λdek)2)2

[
V

′
e − cs
vth,e

−
√
me

mi

−
(
Te
Ti

)3/2

exp

(
− Te

2Ti(1 + (λdek)2)

)]
,

where cs is the ion-acoustic speed and k is the wavenumber; see Figure 4.1a for a

canonical sketch of an initial configuration of the plasma unstable to the IAI. In

a hollow cathode plume plasma, the following hierarchy of velocities often holds:

vth,i � cs � Ve � vth,e, such that V
′
e − cs ≈ V

′
e . Defining the electron-to-ion

temperature ratio as Γ = Te
Ti

and the electron-to-ion mass ratio as Π = me
mi

, and in

the limit of small wavenumbers λdek � 1 and large ion mass, clearer representations

for the frequency and growth rate are given as:

(4.3) ωr =

√
k2c2

s

(
1 + 3/Γ

)
,
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(4.4) γ =

√
π

8
kcs

[
Me − Γ3/2 exp

(
− Γ

2

)]
,

where Me = V
′
e

vth,e
is the electron Mach number. In Equation 4.2, the first term rep-

resents inverse electron Landau damping and the second term ion Landau damping.

Thus, it is understood that the IAI is triggered when enough energy exists in the

electron drift to excite inverse electron Landau damping and overcome the effects of

ion and electron Landau damping. In terms of the necessary values of macroscopic

quantities in order for waves to grow, the electron drift V
′
e and temperature ratio Γ

must be sufficiently large. [119] A few important takeaways from these expressions

are: at small wavenumbers, the wave frequency simplifies to ωr ≈ kcs, and Equation

4.2 admits a simple expression to determine linear stability of the plasma to ion-

acoustic waves based on a threshold electron Mach number:

(4.5) Mthr = Γ3/2 exp

(
− Γ

2

)
.

Should the electron Mach number be sufficiently large, generally Me > 1.3, the

IAI is superseded by another current-carrying instability known as the Buneman

instability. [22] This instability is able to produce larger magnitude plasma waves

and may generate abrupt heating of plasma particles. The dispersion relation of the

Buneman instability is given by [53]:

(4.6) 1 =
ω2
p,i

ω2
+

ω2
p,e

(ω − kVe)2
.

where ωp,i is the ion plasma frequency and ωp,e is the electron plasma frequency.

Generally, given the consensus of the IAI’s existence in the hollow cathode by the

electric propulsion community, [25, 36, 94] the ion-acoustic instability will be the

focus in this thesis, but the Buneman instability is also discussed as a possible factor
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important to the cathode plume.

The ion-acoustic instability generates plasma waves which travel near the ion-

acoustic speed. The instability is known to undergo three distinct phases during

its evolution: i) linear growth, ii) quasi-linear saturation, and iii) nonlinear satura-

tion. [13,96] In the course of the development of the IAI, the average wave potential

amplitude reaches an asymptotic limit in a process known as saturation. This satura-

tion may be described by quasi-linear theory when the growth rate of the instability

is larger than the time-rate-of-change of the mean VDF value, 〈f〉−1∂t〈f〉 < γ. This

quasi-linear assumption breaks down when the bounce frequency becomes larger than

the growth rate of the wave:

(4.7) νb =
1

τb
= k
√
eφ/ms > γ,

where φ is the wave potential magnitude and ms is the species mass. [49] The bounce

frequency is the rate at which a particle, trapped by an electrostatic potential pertur-

bation, will execute an oscillatory motion within the extent of the perturbation. At

the breakdown of the quasi-linear assumption, nonlinear effects become important.

The process of quasi-linear saturation is marked by the formation of a plateau

in the electron VDF near the velocity of the ion-acoustic waves. [97] During such a

process, the electrons are heated while also losing drift energy, as particles faster than

the waves (which are present to a larger degree than those slower than the waves,

see Figure 4.1b) are slowed down. At the same time, as there exist more ions with

velocities below the wave phase velocity than above, ions interact with the waves

by forming a high-energy tail (again see Figure 4.1b). [76] It is precisely this ion

tail formation which may be of importance to the hollow cathode system in driving

erosion rates. [60]
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(a)

(b)

Figure 4.1: Velocity space of (a) a system unstable to the ion-acoustic instability and (b) the system
during quasi-linear saturation of the instability (b). The ion VDF is given in blue and the electron
VDF is given in red, and the ion-acoustic speed is given as the orange line marked cs. In (b), the
electrons demonstrate a plateau near cs while the ions form a high-energy tail.

Beyond quasi-linear saturation, should the condition of Equation 4.7 be satisfied,

nonlinear effects become important. Such nonlinear effects include that of parti-

cle trapping [92] and ion resonance broadening [116]. The nonlinear process which

dominates depends on the conditions of the plasma. A useful tool in understanding

the state of the plasma instability is that of the wave spectrum. Viewing the con-

tent of the plasma potential (or electric field) in the frequency domain allows for a

deeper understanding of the state of the instability; see Figure 4.2. During the linear

growth phase of IAI, analytic theory predicts a fastest-growing mode with wavenum-

ber k. [119] During the quasi-linear saturation phase, a range of wavenumbers are

excited and the spectrum broadens while maintaining an apparent peak. Finally,
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in the nonlinear saturation phase, the spectrum is characterized by a power law de-

cay where the wave energy follows a power law form for large wavenumbers. [62]

Thus, the nonlinear state of the IAI is a state of turbulence [17] often referred to as

ion-acoustic turbulence (IAT).

Figure 4.2: Evolution of the electric field spectrum during the course of the ion-acoustic insta-
bility. (a) The initial white-noise field spectrum, (b) the linear growth phase with an apparent
fastest-growing mode, (c) the quasi-linear saturation phase, and (d) the non-linear saturation phase.
Reproduced from Ref. [96] with permission.

4.1.2 IAI Closure Models

The existence of the IAI has consequences for macroscopic properties of the

plasma. In order to translate these kinetic effects on the VDFs to changes in bulk

properties of the plasma, the concept of an anomalous collision rate, νa, is introduced.

Even in a collisionless plasma, that is, in the absence of classical particle collisions,

νa may exist as a result of virtual collisions caused by the presence of plasma waves.

This collision term may then be included in fluid plasma models as an additional
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collision mechanism, supplementing classical collisions between particles. Similar to

fluid turbulence theory, there are a variety of levels of fidelity incorporated into these

closure models; [99] algebraic (zero-equation) models are the simplest to implement,

while one-equation models provide further physical fidelity at the cost of increased

complexity.

For the IAI, an initial foray into closure model development was offered by Sagdeev

and Galeev, which assumes the instability is in a saturated state: [108]

(4.8) νSGa = ωp,iΓ
Ve
cs
,

This model has been shown to overpredict the collision frequency by many orders

of magnitude, and a more popular version of the closure model introduces α, a free

parameter that may be tuned to better match experimental data:

(4.9) νSGma = αωp,iΓ
Ve
cs
.

This parameter is often set to α = 10−2 to achieve better agreement with experiment.

[83] An apparent shortcoming of this model is its inability to capture the growth and

decay of the instability (due to lack of time-dependence) and an inability to capture

the propagation of wave energy (due to lack of spatial-dependence).

More recent attempts to model the hollow cathode plume plasma have applied

one-equation models of IAT to simulations. [94,112] These models concurrently solve

a conservation equation for the wave energy, εW , alongside the plasma simulation,

which has spatio-temporal dependence. These equations have the general form:
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(4.10)
∂εW
∂t

+∇ ·
(
Ve
|Ve|

csεW

)
= 2γεW ,

which describes the spatio-temporal evolution of the wave energy, driven by a source

term which depends on the growth rate γ. The model used for the IAI growth rate

varies; for example, the model used in Ref. [112] assumes the rate of the fastest

growing mode γF :

(4.11) γF =

√
π

9
ωp,i

(√
Π

[√
3

2
Me − 1

]
− Γ3/2 exp(−Γ/3)

)
,

where here collision terms are neglected. Indeed, inclusion of these higher fidelity

models has proven effective in capturing dynamic processes in the cathode plume,

such as the spot-to-plume mode transition. [36,87,111]

4.1.3 Motivating Kinetic Simulations

There exists a notable gap in attempts to understand the possible role of current-

carrying instabilities in the hollow cathode plume. While many experimental cam-

paigns have been carried out and reduced-order models have been successfully ap-

plied to simulation of hollow cathode devices, there have been few efforts to model

the inherently kinetic IAI with the use of kinetic methods. Modeling the IAI in such

a way serves to provide an important piece of the hollow cathode puzzle, allowing

for a better understanding of the effects on macroscopic properties of the plasma

and how non-linear behavior such as particle trapping may affect closure models.

This approach has precedence in the broader electric propulsion community, where

kinetic simulations have gained traction in recent years as a means of understand-

ing instabilities which may significantly influence bulk properties of the thruster
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plasma. [9,18,88] These simulations are often conducted in idealized geometries, yet

still provide valuable insight into the evolution of the instabilities and how they may

affect the plasma discharge as a whole.

For example, the ability of kinetic simulations to resolve the spectral content of

plasma waves enables a useful tool for probing the wave energy per mode, which may

be used to calculate the anomalous collision rate νa by [37,63]:

(4.12) νa =
∑
k

√
πmi

2me

ωk

(
qφk
Te

)2

,

which utilizes the quasi-linear growth rate for the IAI, assuming the waves are of large

wavelength (kλD � 1). The terms φk and ωk are the wave potential and frequency

for a given wavenumber, respectively. Another important question which remains

to be solved in the hollow cathode community is that of keeper erosion; while the

IAI has been postulated as the source of enhanced erosion rates, formal ties between

IAI-enhanced ion energies and erosion rates remain elusive. A recent attempt to

kinetically model the current-carrying plasma of a hollow cathode demonstrated the

useful nature of kinetic simulations by observing high-energy ion VDF ‘tail’ formation

and using these VDFs to predict erosion rates; notably, significant counter-streaming

ion tail formation (ions which would theoretically stream back towards the cathode

keeper) was only observed for electron Mach numbers in excess of the threshold for the

Buneman instability, Me > 1.3. [49] While this result provides evidence of energetic

ion production by current-carrying instabilities, it presents questions about whether

the ion-acoustic instability is alone sufficient to explain experimentally measured

erosion rates.

In this Chapter, a fully-kinetic approach is taken to study the ion-acoustic insta-
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bility in detail. The first objective of this chapter is to study the anomalous resistivity

of the plasma subject to the IAI and compare with existing closure models used in

reduced-order fluid codes. A secondary objective is to investigate the presence of

high-energy ion tail formation which could lead to erosion of the cathode keeper. To

accomplish the goal of fully-kinetic simulations, the DK Boltzmann solver is coupled

to the Poisson solver detailed in Chapter II.

4.2 1D1V Current-Carrying Instability Simulations

4.2.1 Problem Setup

In order to study the ion-acoustic instability with kinetic methods, two types of

approaches are considered. The first approach, here referred to as triggered cases,

assumes that the plasma electrons begin the simulation with some finite drift cor-

responding to a Mach number, Me, that is above the threshold for linear stability

given in Equation 4.5. The second approach, referred to as spontaneous cases, ap-

plies an external electric field, Eext, to the system in order to accelerate electrons to

Me > Mthr. In order to prevent Eext from accelerating electrons out of the velocity

domain, collisions are included in these spontaneous cases using a BGK operator.

In both triggered and spontaneous cases, even when the electron drift velocity

exceeds that of the linear threshold for stability, the noise-free nature of the DK sim-

ulations means that there are virtually no electrostatic perturbations in the plasma

which would grow in an unstable configuration. In order to initiate the instability

in a way that minimizes the effect of an initial perturbation, a white-noise electric

field is applied to the system in the form of a superposition of various sinusoidal

wavemodes [12]:

(4.13) E(z, 0) =
Ncut∑
i=1

Etf sin(kiz − θi),
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where Ncut is the index of the largest wavenumber kMAX , set to the electron Debye

length λD, and the smallest wavenumber kMIN is set to the length of the domain.

Etf is the thermal noise level, set to Etf = 1×10−10 V/m in the simulations herein so

as to be much smaller than the electrostatic field strength of the waves generated by

the IAI. The phase of each wave, θi, is set randomly. The action of the white-noise

field is applied to the plasma species as:

(4.14) fs(z, v) = fMs(v)(1 + δfs(z, v)),

where the species distributions are initially assumed to be Maxwellian:

(4.15) fMs(v) =

√
ms

2πkbTs
exp

(
ms(v − Us)2

2kbTs

)
,

and

(4.16) δfs(z, v) = ∓qE(z, 0)

ms

∂fs
∂vz

,

where s designates the plasma species, Ts is the temperature of species s, and Us is

the initial drift velocity of species s. [125]

For the cases considered here, in addition to any CFL restrictions on the time step,

there are important physical restrictions that must be followed to properly resolve

the spatio-temporal characteristics of the plasma. The electron Debye length, λD,

must be resolved such that ∆z < λD. The electron plasma frequency must also be

resolved, such that ∆t < ωp,e. In order to ease the computational burden of these

simulations, a sub-stepping method is employed which utilizes an electron time step

∆te and a larger ion time step ∆ti. With these restrictions in mind, simulations

here are set up with the parameters given in Table 4.1. The only parameters which
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change between cases are the ion species mass mi and electron Mach number Me.

All cases are run with periodic boundary conditions.

Table 4.1: Numerical inputs for periodic 1D1V simulation of the ion-acoustic instability.

Physical Cell Size ∆z λd/5
Electron Velocity Bounds Ve (vth,e) [-6.75,6.75]
Electron Velocity Cell Count NVe

1600
Electron Velocity Cell Size ∆ve (vth,e) 0.00844
Ion Velocity Bounds Vi (vth,i) [-32,32]
Ion Velocity Cell Count NVi

1600
Ion Velocity Cell Size ∆vi (vth,i) 0.040
Electron Time Step ∆te (∆tωpe/2π) 0.0037
Ion Time Step ∆ti (∆tωpe/2π) 0.30
Temperature Ratio Γ 10

4.2.2 Verification with Drift-Diffusion Model

The spontaneous cases considered here assume two types of collisions are impor-

tant to the plasma: (i) Coulomb collisions between electrons and ions with a collision

rate νei and (ii) inelastic collisions between electrons and neutrals νinel. Both of these

collisions are modeled with the BGK collision operator given in Equation 2.5.2. For

the Coulomb collisions, the target (equilibrium) distribution drift and temperature

are given as [90]:

(4.17) V̄ei =
miVi +meVe
me +mi

,

and

(4.18) T̄ei = Te +
2mime

(me +mi)2

(
Ti − Te +

mi

6kb
(Ve − Vi)2

)
,

while the inelastic target properties are chosen as:

(4.19) V̄inel = Ve,
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and

(4.20) T̄inel = Te0 ,

where Te0 is the initial electron temperature. Due to this choice of target properties

for inelastic collisions, it is important to recognize that the spontaneous simulations

do not conserve bulk energy, as the linear addition of energy from the external field

Eext is not identically removed by the non-linear BGK collision operator.

However, the advantage of this methodology is that it allows the simulation to

reach a steady state in the absence of instability growth. By coupling the BGK

collision operators to the 1D1V Boltzmann equation, the 0th, 1st, and 2nd moments

provide the fluid conservation equations. Then, the steady-state electron drift veloc-

ity and temperature may be found:

(4.21) Veq =
−eEext +meV̄eiνei +meV̄inelνinel

meνeff
,

and

(4.22)

Teq =

2(eEext)
2 +

(
me(V̄

2
ei − V 2

e ) + kbT̄ei

)
meν

2
ei +

(
me(V̄

2
inel − V 2

e ) + kbT̄inel

)
meνinelνei

2kbmeνeiνeff
,

where νeff = νei+νinel. As the inelastic collision target is set to V̄inel = Ve, Equation

4.21 reduces to:

(4.23) Ve =
eEext
meνei

,

which is the common drift-diffusion approximation. With knowledge of these steady-
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Figure 4.3: Verification of the drift-diffusion assumption for calculation of the anomalous collision
frequency for an external field of Eext = −10 V/m. Analytic predictions are given as dashed lines
while numerical results are given as solid lines.

state values, a verification case is run for electrons, assuming ions form a constant

background, to test that the drift-diffusion assumption is valid. An external electric

field Eext is imposed and added to the value calculated from Poisson’s equation,

Eint. Electrons are initialized with an initial drift velocity Vinit and temperature

Tinit. The evolution of the electron values of drift velocity and temperature are

compared with the theoretical steady-state values predicted by Equations 4.21 and

4.22. This comparison is given in Figure 4.3. Discretization error in the DK scheme

prevents exact agreement with theory, yet the results achieve a steady relative error

of εr < .003% and thus demonstrate a satisfactory agreement between the theoretical

and numerical results.

The results of Figure 4.3 demonstrate that the drift-diffusion assumption is valid

for this system when no instabilities are present. Therefore, any deviation from drift-
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diffusion theory may be assumed to be a result of instabilities causing anomalous

resistivity in the plasma. Thus, to find the anomalous collision rate, the following

expression is used:

(4.24) νa =
eEext
meVe

− νei.

Equation 4.24 provides a method to calculate νa in simulations with classical colli-

sions, while Equation 4.12 provides a method to calculate νa in simulations without

classical collisions. Armed with these expressions, kinetic simulations of the IAI may

be carried out and the anomalous collision rate compared with closure models.

4.2.3 Results: Anomalous Resistivity

Collisionless simulations of a xenon plasma are run on a domain length of L =

100λD for electron Mach numbers Me = 0.5, Me = 1.0, and Me = 1.5; as the

last value for Me is above the threshold for transition to the Buneman instability,

this case is not be used for analysis of νa but is rather to confirm the transition to

this instability for Me > 1.3. Figure 4.4 gives the spatially-averaged electrostatic

energy, 〈ε〉 = 1
2
ε0〈E2〉, as a function of time during the simulation, demonstrating

the increase in energy with increasing Me. Notably, increasing Me by a factor of

1.5 from 1.0 to 1.5 results in a larger increase in electrostatic energy in the system

than the twofold increase from 0.5 to 1.0. Figure 4.5 gives the plasma potential in

a space-time diagram, and demonstrates the increasing wave energy for increasing

Me. [124] In addition, the figure shows that the nature of wave dispersion for the

Me = 1.5 case is markedly different than in the cases where Me = 0.5, 1.0. This is

expected to be due to the different dispersion relation of the Buneman instability,

found in Equation 4.6. Thus this result suggests that, commensurate with previous

investigations, the Buneman instability takes hold in the region of 1.0 < Me < 1.5.
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Figure 4.4: Spatially-averaged electrostatic energy against time with increasing Me for L = 100λD
in a xenon plasma. Note the large increase in wave energy from Me = 1.0 to Me = 1.5, compared
with the increase from Me = 0.5 to Me = 1.0.

This transition will be further investigated in Subsection 4.2.4.

Focusing now only on the results from the Me = 0.5 and Me = 1.0 cases, the

anomalous collision rate is plotted with time in Figure 4.6 and compared with the

Sagdeev-Galeev closure of Equation 4.9. Results are initially taken from the L =

100λD cases, yet for Me = 0.5 the results for νa are orders of magnitude lower than

the value predicted by the SG closure. Since an assumption used in calculation of

νa is that of large wavelengths (see Equation 4.12), the domain length is extended

to L = 2000λD and the cases re-run. For the extended domain, the agreement with

the SG closure in the Me = 0.5 case is much improved. For the Me = 1.0 case,

however, the agreement becomes poor on the extended domain during the long-time

saturation of the instability. A closer investigation of this phenomenon determined

that this large secondary increase in νa is the result of double layer formation, [125]
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Figure 4.5: Potential space-time diagrams for current-carrying instabilities in a xenon plasma for
L = 100λD. The case for Me = 1.5 corresponds to the Buneman instability while the other cases
correspond to the ion-acoustic instability. The nature of the wave dispersion becomes much different
for the Buneman instability, as expected from Eq. 4.6.

which invalidates the calculation beyond the point of initial saturation marked with

a red arrow in Figure 4.6. Nonetheless, νa at initial saturation agrees with the SG

closure to within a factor of two for the Me = 1.0 case and a factor of four for the

Me = 0.5 case. These results suggest that the saturation wave energy, and thus the

anomalous collision rate, do not scale linearly with the electron drift Ve; therefore,

a dynamic value for α may be necessary to obtain better agreement with the SG

closure model, or another closure model may be better suited to capture the proper

collision rate.

The large increase in νa for extended domain lengths is important to understand

from spectral analysis. An FFT of the plasma potential at the point of initial sat-

uration, for all four cases shown in Figure 4.6, is given in Figure 4.7. For both
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Figure 4.6: Domain-averaged anomalous collision rate due to the ion-acoustic instability in a
current-carrying plasma, calculated from Eq. 4.12, for domain lengths of L = 100λD (light lines)
and L = 2000λD (dark lines). The expected value from the Sagdeev-Galeev closure model (Eq.
4.9) is plotted as the dashed lines for comparison, with α = 10−2. Initial saturation is marked by
the red arrows.

values of Me, the extension of the domain length reveals significantly more content

at small wavenumbers (large wavelengths) that is not resolved by the L = 100λD

case, indicating the importance of properly resolving such wavemodes. In addition,

the nature of the potential spectra differs with an increase in Me. By comparing with

Figure 4.2, it is apparent that the saturation in the Me = 0.5 case is quasi-linear,

while in the Me = 1.0 case it is nonlinear, taking on a power law decrement for

large wavenumbers. The reason for this change may be attributed to the increase in

the average wave energy for Me = 1.0, which would tend more easily to satisfy the

condition of Equation 4.7, that trapping effects become important.

The large wavenumber region of Figure 4.7, especially for the Me = 0.5 case,

demonstrates what appears to be the presence of wave harmonics. This may be a
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signature of two-ion decay (TID), a process identified as an important driver for

transitioning the ion-acoustic instability to a state of turbulence. [16] A further im-

portant aspect of Figure 4.7 is the presence of a secondary peak near kλD = 0.1. This

peak was not observed in Figure 4.2 of Ref. [96], and indicates a nonlinear growth of

large wavelength modes after initial saturation of the instability. Indeed, this growth

is associated with double layer formation, and will be the focus of Chapter V.

Figure 4.7: Wave potential amplitude spectra at initial saturation. Black lines to the L = 100λD
cases and red lines correspond to the L = 2000λD cases.

4.2.4 Results: Anomalous Heating and the Buneman Transition

Figure 4.5 demonstrated the transition of the wave dispersion to that of the Bune-

man instability for Me = 1.5. A commonly accepted notion is that when Me > 1.3,

the Buneman instability, rather than the ion-acoustic instability, is active. [22] Ad-

ditionally, a recent 1D1V numerical study found that beyond this transition point,

there is evidence of counter-streaming ion tails which would theoretically impinge

upon the hollow cathode keeper. [49] This result has significant implications for hol-

low cathode keeper erosion, suggesting that the Buneman instability may play an

important role in producing the counter-streaming energetic ions necessary to erode
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the cathode keeper. It is thus important to investigate the ion-acoustic-to-Buneman

transition regime of current-carrying instabilities, where Me ≈ 1.3. For this purpose,

a hydrogen plasma is simulated on a L = 300λD domain for Me = 1.2. While hydro-

gen is not usually the propellant for hollow cathode devices in electric propulsion,

choosing this ion mass allows for much lower simulation wall times, particularly for

higher dimensions. Investigation of a xenon plasma is reserved for future work.

Figure 4.8 gives 〈ε〉, the spatially-averaged electrostatic energy of the system,

atop the spatially-averaged electron VDF, 〈fe〉, and the logarithm of the spatially-

averaged ion VDF LOG(〈fi〉), over time. From this figure, it can be seen that

once the wave energy begins to saturate, a plateau begins to form in the electron

VDF suggesting quasi-linear saturation. As the wave energy further progresses into

nonlinear saturation, a secondary peak in the electron VDF appears in the negative

velocity direction. This suggests that the system is susceptible to inverse Landau

damping of ion-acoustic waves in the negative direction, as the streaming energy of

such a secondary peak could provide energy to growth of further, back-streaming ion-

acoustic waves. At the same time, the ion VDF demonstrates significant high-energy

tail formation with positive velocity, while also developing a smaller high-energy tail

with negative velocity. Indeed, the formation of the negative tail in the ion VDF

lags that of the positive tail formation by many plasma frequencies, only forming

once the electrons exhibit a reflected population in the VDF plateau region and the

instability enters nonlinear saturation. The presence of a negative ion tail suggests

that counter-streaming waves are present during nonlinear saturation.

To verify whether such counter-streaming waves are present, a spatio-temporal

FFT of the system is taken during quasi-linear saturation of the instability and

again during nonlinear saturation; Figure 4.9 gives the result of these two FFTs.
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Figure 4.8: Spatially-averaged field energy, electron VDF, and ion VDF plotted with time for a
hydrogen plasma with Me = 1.2 on a L = 300λD domain. Upon nonlinear saturation of the wave
energy, there is a signature of a reflected peak in the electron VDF with negative velocity. A
high-energy ion tail forms with positive velocity while a smaller tail forms with negative velocity,
suggesting counter-streaming waves. The white dashed line gives the ion acoustic velocity, cs.

The Buneman dispersion relation is solved from Equation 4.6 and the ion-acoustic

dispersion from Equation 4.1, and both are overlaid in the plots as BI and IAI, re-

spectively. During quasi-linear saturation, Figure 4.9a demonstrates that there is

an ion-acoustic-like signature in the forward direction. During nonlinear saturation,

the dispersion becomes much more complex. A fast branch appears in the positive

direction, which agrees well with the Buneman dispersion relation. The slow, ion-

acoustic-type branch remains as well, and more notably, negative-streaming wave

branches are identified. [57] The slow branch in the negative direction agrees rea-

sonably well with an overlaid ion-acoustic dispersion curve marked CS-IAI, while

there also appears to be faster wave content that may be related to the Buneman

instability.

These results confirm that counter-streaming waves appear for values near the
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Figure 4.9: Spatio-temporal FFTs of the plasma potential for the hydrogen plasma with Me = 1.3
and L = 300λD. a) is taken during the quasi-linear saturation phase, while b) is taken during
nonlinear saturation. The linear dispersion relation for the Buneman instability is overlaid in green
(BI) while the ion-acoustic dispersion is given in red (IAI). In b), a counter-streaming ion-acoustic-
like wave signature appears and is marked with CS-IAI.
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Buneman transition, Me ≈ 1.3. The cause for this wave growth is not immedi-

ately clear, though due to the appearance only for large wave amplitudes, nonlinear

phenomena are the likely culprit. Possible explanations include a negative-mass-

instability [24] or the result of wave-wave coupling. [104] The results also demon-

strate that the Buneman instability is active for Me = 1.2, below the commonly

accepted threshold for this instability. Ultimately, in the context of hollow cathode

keeper erosion, these 1D1V results suggest that high-energy counter-streaming ion

tail formation is only possible when the Buneman instability is active. However, it

is important to recognize that these simulations have been conducted on a 1D1V

domain, and therefore may be missing important physics which occurs in higher di-

mensions. For this reason, these simulations have been extended to consider a 2D2V

plasma.

4.3 2D2V Current-Carrying Instability Simulations

The dynamics of current-carrying instabilities in higher dimensions differs greatly

from those in one dimension. Early simulations demonstrated that the nature of IAI

saturation changes when considering a 2D domain, finding the saturation wave ener-

gies to be much larger in 2D [6] and larger still in 3D. [7] This finding was attributed

to the growth of off-axis modes (wavemodes which grow at an angle from the direc-

tion of the current), which prevent a plateau formation in the electron VDF from

being as effective in quenching the instability. This phenomenon has been recently

termed the off-axis instability (OAI). [16] Further, later simulations demonstrated

that the Buneman instability transitions to the IAI after saturation, yet the effects

of this transition are not properly resolved in 1D simulations. [29] Therefore, in this

section, 2D2V simulations of the Buneman and ion-acoustic instabilities are con-
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ducted in order to provide a comparison with the 1D1V simulations in Section 4.2.

A particular emphasis is placed on anomalous heating of ions and electrons due to

the instabilities.

4.3.1 Problem Setup

The 2D2V cases are in many respects the same as their 1D1V counterparts, with

the numerical parameters detailed in Table 4.2. All cases are ‘triggered’ by setting

the initial electron Mach number Mz,e to a linearly unstable value; Mz,e is varied

between cases, while Mr,e is always set to zero. In other words, the electrons are set

to drift in only the axial direction so-as to trigger instability. The simulation is seeded

with white-noise electrostatic perturbations as detailed in Subsection 4.2.1, simply

extended to two dimensions. All boundary conditions are periodic. For these cases,

the ion species is hydrogen, as computational requirements are very demanding for

higher dimensions. Due to the restrictive computational demands of the problem,

the domain size is set to Lz = 100λD and Lr = 100λD.

Table 4.2: Numerical inputs for doubly-periodic 2D2V simulation of the ion-acoustic instability in
a hydrogen plasma.

Axial Physical Cell Size ∆z λd/2
Radial Physical Cell Size ∆r λd
Electron Axial Velocity Bounds Vz,e (vth,e) [-6,6]
Electron Radial Velocity Bounds Vr,e (vth,e) [-6,6]
Electron Axial Velocity Cell Count NVz,e

100
Electron Radial Velocity Cell Count NVr,e 100
Electron Velocity Cell Size ∆ve (vth,e) 0.12
Ion Axial Velocity Bounds Vz,i (vth,i) [-20,20]
Ion Radial Velocity Bounds Vr,i (vth,i) [-20,20]
Ion Axial Velocity Cell Count NVz,i

200
Ion Radial Velocity Cell Count NVr,i

200
Ion Velocity Cell Size ∆vi (vth,i) 0.2
Electron Time Step ∆te (∆tωpe/2π) 0.014
Ion Time Step ∆ti (∆tωpe/2π) 0.75
Temperature Ratio Γ 10
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4.3.2 Results: The Effect of Off-Axis Modes

Cases are run for Mz,e = 0.5, 1.0, and 1.5, which is in excess of the threshold for

linear stability of the IAI (in this case, Mthr = 0.236); in the case of Me = 1.5, this

corresponds to the Buneman instability. The spatially-averaged electrostatic energy

is plotted in Figure 4.10 for all three cases. In this figure, it is evident that the

axial electrostatic energy grows first, while the radial electrostatic energy remains

at the initial noise level. This would be expected from linear theory of the IAI, as

the electron drift is purely axial. However, after the axial energy has saturated, the

radial energy begins to grow and eventually saturates near, but below, the level of

the axial energy. This growth of radial energy is attributed to the growth of the OAI.

For the Mz,e = 0.5 case, the radial energy does begins to grow within the time of

the simulation, but does not saturate. Due to the computational expense associated

with these 2D simulations, the number of time steps is kept small; an extension of

the simulation time is needed for all cases considered here and is reserved for future

work. Nonetheless, examination of these results provides important insight into the

value of higher-dimensional simulations of the IAI.

Analytic formulations of the angular spectrum of the IAI predict that the peak

angular wave energy will occur around θw ≈ 35◦, which has been qualitatively verified

by PIC simulation. [13] To compare with these observations, a 2D FFT of the spatial

content of the plasma potential is taken and the average energy along angles θw found;

the result of this analysis for the Mz,e = 1.0 case is given in Figure 4.11. In this

figure, the angular spectrum during linear growth of the wave energy and after its

saturation is plotted. Before saturation, virtually all of the wave energy is contained

in the axial direction (θw = 0), while after saturation, an angular distribution is

apparent with a peak in energy near θw ≈ 30. This is in reasonable agreement with
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Figure 4.10: Spatially-averaged axial (blue) and radial (red) electrostatic field energy for a hydrogen
plasma with Mz,e = 0.5, 1.0, and 1.5 on a 2D2V domain. Note that the number of time steps is
smaller for the Mz,e = 1.5 case.

the theoretical predictions and prior PIC analysis.

The effect of the OAI on saturation of the instability has significant consequences

for macroscopic properties of electrons. The spatially-averaged axial drift velocity

and temperature of electrons in the simulation is given in Figure 4.12. Upon sat-

uration of the instability, the electron axial drift velocity drops significantly while

the electron temperature simultaneously rises. These are known effects of the ion-

acoustic instability as discussed for 1D1V: to drive an anomalous resistivity while

heating both electrons and ions. However, in 2D2V these effects are much more pro-

nounced; the 1D1V case from Subsection 4.2.4 is given for comparison, demonstrating

the drastic increase in resistivity and heating in higher dimensions.

The overall effect of the resistivity and heating is to drive the electron Mach

number below the threshold of linear stability, Mthr. Figure 4.13 gives Mz,e for the

three cases detailed in Figure 4.12, with Mthr given for reference. Indeed, in 2D2V,
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Figure 4.11: Angular distribution of electrostatic wave energy due to the ion-acoustic instability
for a hydrogen plasma with Me,z = 1.0 on a 2D2V domain. The angle θ is as measured from the
purely axial direction.

Mz,e is driven below Mthr; in 1D1V, however, this is not the case, which has been

demonstrated in previous PIC simulations. [6] It is also interesting to note that in

the Mz,e = 1.5 case, the electron Mach number initially declines very rapidly, and

is then followed by a more gradual decline similar to the Mz,e = 1.0 case. This

provides evidence that the Buneman instability is rapidly quenched and serves to

pre-heat the electrons for transition to the IAI. [28] A calculation of the anomalous

collision rate from these 2D2V results is saved for future work; it is important to

consider the anomalous collision rate for a xenon plasma as well in order to provide

a better analog to the hollow cathode plasma.

It is useful now to observe the evolution of the electron and ion VDFs in 2D2V

due to the altered manner of saturation, as this can affect the high-energy ion tail

formation (possibly responsible for cathode erosion) as well as the plateau formation
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Figure 4.12: Spatially-averaged axial electron drift velocity and temperature for hydrogen plasmas
on a 2D2V domain. Drift velocities are given as solid lines while temperatures are given as dashed
lines. For comparison, results from the 1D1V Me = 1.2 case are given, highlighting the much larger
effect on macroscopic properties in 2D which results from a different saturation mechanism.

Figure 4.13: Evolution of the axial electron Mach number for a hydrogen plasma in 2D2V. For
reference, the 1D1V case of Me = 1.2 is given. The effect of the instability is to drive Mz,e below
Mthr in 2D; 1D simulations do not capture this phenomenon.
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in the electrons (which affects the saturation Me and thus resistivity). For the case

of Mz,e = 1.0, the spatially averaged axial and radial VDFs, for electrons and ions,

are plotted in Figures 4.14, and 4.15. In Figure 4.14, it is evident that the axial

electron VDF forms a plateau, as in 1D1V, while only the axial electrostatic energy

has saturated. However, upon saturation of the radial electrostatic energy, the axial

VDF rapidly shifts to lower bulk velocity. At the same time, the radial VDF heats

isotropically. This phenomenon is a result of the OAI causing a spread of waves to

form, which renders the plateau formation ineffective.

Figure 4.14: Axial (b) and radial (c) spatially-averaged electron VDF given with time for a hydrogen
plasma with Mz,e = 1.0 in 2D2V. The spatially-averaged electrostatic field energies (a) are given
as reference. After the axial electrostatic energy has saturated, the axial electron VDF forms a
plateau as in 1D1V. Once the radial electrostatic energy saturates, the bulk of the axial VDF
rapidly decelerates. At the same time, the radial VDF heats yet remains at near-zero drift.

For Figure 4.15, the axial ion VDF forms a positive axial tail while only the axial

electrostatic energy has saturated. Once the radial energy saturates, the positive

axial tail becomes more pronounced, while a smaller negative axial tail forms. In

the radial VDF, as for electrons, saturation of the radial electrostatic energy causes
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Figure 4.15: Axial (b) and radial (c) spatially-averaged ion VDF given with time for a hydrogen
plasma with Mz,e = 1.0 in 2D2V. The spatially-averaged electrostatic field energies (a) are given
as reference. During saturation of the axial electrostatic field, a positive axial tail forms; after
the radial electrostatic energy saturates, the positive tail becomes even more pronounced, while a
smaller negative tail becomes evident. At radial saturation, the radial VDF heats isotropically.

isotropic heating. It is interesting to note that the ions form a negative axial VDF

tail even in 2D2V, and that this tail formation is not necessarily for cases above the

Buneman threshold, Mz,e > 1.3. This counter-streaming tail formation is weak for

the case considered here, and indeed for xenon it may be weaker still. However, a

further investigation of counter-streaming tail formation in 2D2V kinetic simulations

of xenon is important to address the question of cathode keeper erosion and should

be considered for future work.

4.4 Summary

In this chapter, current-carrying instabilities of the Buneman and ion-acoustic

type were evaluated via deterministic-kinetic simulations. The motivation for these

studies was laid out, explaining the gap in kinetic studies of the ion-acoustic insta-
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bility when addressing anomalous resistivity and energetic ion production for the

hollow cathode plasma. 1D1V simulations for a xenon plasma were carried out to

compare with the 0D closure model of Sagdeev-Galeev for the anomalous collision

rate, finding varying levels of agreement based on domain length and duration of

saturation, and motivating the use of more sophisticated, 1D closure models. A

later growth of long-wavelength modes was found to be important in the extended

domain simulations in 1D1V. Additionally, counter-streaming ion formation was ex-

plored for a hydrogen plasma in 1D1V in the Buneman transition regime, finding

evidence of counter-streaming ions. The confirmed presence of counter-streaming

ions, as found via previous numerical investigations, is of particular importance for

predicting hollow cathode keeper erosion rates. Notably, dispersion analysis suggests

that the Buneman instability was active for Me = 1.2, below the commonly accepted

threshold of Me = 1.3.

The investigations of these instabilities was carried further to 2D2V simulations.

Even for a purely axial electron Mach number, Mz,e, radial field energy growth was

observed for all cases considered. This phenomenon has been termed the off-axis

instability, or OAI; an analysis of the angular distribution of wave energy found

a peak at an angle θ ≈ 30 off axial, in agreement with prior investigations. The

OAI caused the nature of the ion-acoustic instability’s saturation to be significantly

altered when compared to 1D1V simulations, with the heating rate and reduction in

Mz,e far greater in the 2D2V simulations. Contrary to 1D1V simulations, Mz,e was

found to decrease below the threshold for linear stability Mthr in 2D2V. Analysis

of the spatially-averaged VDFs in 2D2V demonstrated that plateau formation in

the axial electron VDF is disrupted when the radial electrostatic energy saturates,

leading to a rapid reduction in the bulk drift energy. Positive axial ion tail formation
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was observed and found to be bolstered by the growth of the OAI, while a small

negative ion tail was observed for Me = 1.0, well below the Buneman instability

threshold.

A few avenues for future work were discussed, including a careful analysis of the

anomalous resistivity and heating rates in 2D2V simulations. Extension to a xenon

plasma is important to provide a better comparison with the hollow cathode plasma,

and erosion estimates could then be derived. Finally, an important avenue to consider

is the analysis of the wavenumber spectrum in 2D2V. Sophisticated reduced-order

models make use of an assumed power-law form of the wave-energy spectrum during

saturation, with the exact power depending on the physics driving the spectrum.

Kinetic simulations provide an avenue to investigate the spectrum and determine its

shape during nonlinear saturation, which could then inform reduced-order modeling

efforts and improve their accuracy.

These analyses have provided another angle of attack to the problem of hollow

cathode predictive simulation and keeper erosion estimates. By comparing with the

Sagdeev-Galeev model used in hollow cathode fluid codes, the importance of bench-

marking closure models against the results of kinetic simulation was demonstrated.

Further, by having observed generation of high-energy ion tails in 1D and 2D, this

work has also demonstrated the utility of kinetic simulations in predicting erosion

rates for engineering systems. An extension of this work to quantitative predictions

of heating and erosion rates from multi-dimensional kinetic simulations will provide

the field with important tools which can be implemented in reduced-order modeling

efforts.



CHAPTER V

Weak Plasma Double Layers

Chapter IV revealed that nonlinear saturation of the ion-acoustic instability was

capable of generating plasma double layers. Given the existence of the ion-acoustic

instability in the hollow cathode plume and the standing need to provide a definitive

answer to the problem of keeper erosion, this motivates the need to better understand

this phenomenon. Double layers are kinetic in nature and may only be resolved

through kinetic simulation. Therefore, in this chapter, Section 5.1 details what a

double layer is and the motivations for studying them with respect to the hollow

cathode system. In Section 5.2, 1D1V simulations of a current-carrying plasma

for extended domain lengths are conducted, enabling the growth of double layers.

Phase space analysis, in conjunction with spectral analysis, help to characterize

the formation and consequences of double layers in the plasma. In Section 5.3,

conclusions are drawn and avenues for future work, particularly in determining their

possible connection to the hollow cathode system, are detailed.

5.1 The Plasma Double Layer

5.1.1 Theory

While a plasma is generally considered to be quasi-neutral, there may exist regimes

where the plasma is non-neutral on scales larger than the Debye length. One such

120
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region is the plasma sheath, which is known to form at the interface of a plasma

with a solid object. Electrons tend to be lost to solid boundaries at a much faster

rate than their slower ion counterparts, giving rise to a net positive potential of the

bulk plasma compared to the solid boundary which spans multiple electron Debye

lengths. In this chapter, another potential non-neutral region of plasma is discussed:

the plasma double layer.

Contrary to the plasma sheath, the double layer may form in a non-bounded

plasma. Similar to the sheath, however, the double layer is characterized by a poten-

tial gradient which spans multiple electron Debye lengths. Double layers have been

identified in laboratory, [70, 101] from spacecraft measurements, [8, 22] and from

numerical simulation. [56, 74] The presence of a localized potential gradient in the

plasma results in particle reflections and accelerations, therefore making a double

layer inherently kinetic.

Double layers are often split into two distinct classes which depend on their po-

tential magnitude relative to the electron temperature, φDL/Te. For strong double

layers, the ratio φDL/Te > 1 while for weak double layers, φDL/Te ≤ 1. Within weak

double layers, there exists a class known as non-monotonic double layers (NDLs),

named so because their potential gradient exhibits a non-monotonic structure. [114]

This type of double layer has also been termed an ion-acoustic double layer, as it

is known to arise from the ion-acoustic instability; this was first demonstrated from

simulation and later experimentally verified. [15,113]

As coherent phase space structures, the formation of non-monotonic double layers

from the chaotic state of ion acoustic turbulence remains an open question with vari-

ous existing interpretations. Generally, this transition of the plasma to an organized

state requires a selective growth of small-k modes, as the double layers are found
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to be of O(10λd) wide. Possible mechanisms for this process include the growth of

a negative solitary wave, [51] growth of a slow ion acoustic mode, [114] and growth

of an ion acoustic wave packet. [3] Each interpretation is subject to apparent incon-

sistencies; for example, ion acoustic solitons (self-reinforcing waves which propagate

at constant velocity) in a single-ion plasma are always compressive (of positive po-

tential), [77] and ion acoustic wave packets are subject to dispersion which tends to

damp selective wavemode growth. [3] A more recent study has found that an ion

acoustic wave packet may indeed grow selectively at small-k modes should the linear

growth rate of the ion acoustic instability exceed that of the packet dispersion rate

for a particular k. [45].

In the case of the ion-acoustic double layer, growth begins after saturation of the

ion-acoustic instability and initially manifests as growing negative potential wells

(see Figure 5.1). The negative potential regions grow in magnitude until they are

able to trap ions, resulting in an ion hole(s). At the same time, electrons are reflected

off of both sides of the potential well. Since the plasma is current-carrying, however,

a greater buildup of electrons occurs on the side opposite the current’s direction.

This causes a charge imbalance to grow across the potential well, leading to a net

potential difference across it and forming an asymmetric ion hole; this asymmetric

ion hole is also known as the non-monotonic double layer.

Not all electrons are reflected, however, as some have sufficient kinetic energy to

overcome the potential barrier of the double layer. Electrons with sufficient energy

are characterized by a cutoff velocity, vc, given by:

(5.1) vc =

√
2eφL
me

.

Due to the current-carrying state of the plasma, more electrons streaming in the
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Figure 5.1: Sketch of ion-acoustic double layer growth, considering the
plasma potential, ion phase space, and electron phase space. Repro-
duced from Physics of Plasmas, 27(11), 112303, with the permission
of AIP Publishing.

current’s direction have the energy required to traverse the asymmetric potential well.

The asymmetry of the well leads to a net acceleration of electrons which traverse it in

the current’s direction, resulting in a two-stream distribution of electrons downstream

of the double layer. A simple yet effective expression for the resulting beam velocity

of accelerated electrons based on the double layer’s potential is given by:

(5.2) vD =

√
v2
c +

2eφDL
me

=

√
2e(φL + φDL)

me

=

√
2eφR
me

.
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A two-stream distribution is known to be an unstable configuration in the plasma,

resulting in the two-stream instability (TSI). This instability causes plasma wave

growth with phase velocity corresponding to the distribution beam velocity, or ω/k =

vD. Therefore, this expression allows for an estimate of the plasma waves which would

be generated by the presence of a NDL.

5.1.2 Motivations: Implications for Hollow Cathodes

The implications of these phenomena for hollow cathodes are important to con-

sider, as the ion-acoustic instability is known to exist in the cathode plume. The

ion acoustic instability has been investigated as the potential source for this erosion;

however, experimental estimates of erosion rates found plasma potential fluctua-

tions in excess of established wave energy limits of the ion-acoustic instability. [84]

These oscillations were rather attributed to the ionization instability of the cathode

plume mode, which has been linked to the increased resistivity generated by the

ion-acoustic instability. On the other hand, a recent 1D numerical investigation of

current-carrying instabilities found that high-energy, back-streaming ions are only

generated when the electron Mach number Me is driven to levels associated with

the Buneman instability, which is capable of generating larger amplitude plasma

waves. [49] Therefore, these investigations both suggest that the ion-acoustic insta-

bility alone may not be sufficient to explain measured erosion rates of the hollow

cathode keeper. In addition to the Buneman instability and the ionization oscil-

lations of the plume mode, which have been previously investigated, double layers

represent another mechanism capable of generating large amplitude potential oscil-

lations which could be important to the hollow cathode plume plasma.

Furthermore, wave measurements in the hollow cathode plume have identified

wave packets traveling orders of magnitude faster than the ion acoustic speed. [34,35]
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As the NDL has been reported to generate an electron TSI, these waves may provide

a possible culprit for these fast-moving waves. The formation of an NDL has been

experimentally confirmed for ion and electron temperatures relevant to the hollow

cathode [15, 115], while Vlasov [12] and particle [44] simulations have demonstrated

that double layers may form with a realistic mass ratio. However, formation of an

NDL has not been studied for a xenon plasma, nor has the resulting two-stream

instability been characterized and compared with theory. Therefore, in this chapter,

the aim is to perform fully-kinetic simulations in order to understand whether an

NDL forms for a xenon plasma and, if an electron TSI is observed, quantify the

resulting phase speed of the TSI waves in the plasma.

5.2 1D1V Non-Monotonic Double Layer Simulations

5.2.1 Problem Setup

A variety of simulations are carried out to understand whether NDLs form for

the heavy ion plasmas of argon and xenon, while also to test the theory relating

the NDL potential to generation of an electron TSI. For all of the cases considered

here, both ions and electrons are modeled kinetically, according to Equation 2.2, the

Vlasov equation. Therefore, the plasma is assumed to be collisionless. The system is

assumed to be electrostatic (no magnetic fields are considered) with the electric field

calculated self-consistently from Poisson’s equation. Boundary conditions are peri-

odic, both for Vlasov’s and Poisson’s equation. The simulation is initiated according

to the same method as in Chapter IV, where the densities of electrons and ions are

perturbed by a superposition of white-noise electric fields with random phase.

The simulation conditions given in Table 4.1 are applied here as well, for ions with

an artificial mass ratio mi/me = 50, as well as hydrogen (these are referred to as the

light ions), argon, and xenon (these are referred to as the heavy ions). The domain
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Figure 5.2: Average electrostatic field energy for an argon plasma with varyingMe on the L = 100λD
(blue) and 500λD (purple) domains.

length is varied between L = 100, 500, 1000 and 2000 electron Debye lengths, λd,e.

An initial sweep of cases with varying electron Mach numbers, Me, is conducted

for the argon plasma, the results of which are given in Figure 5.2. In this figure,

the spatially-averaged electrostatic field energy is given, defined by: εE = 1
2
〈εo|E|2〉,

where εo is the vacuum permittivity.

In Figure 5.2, it is evident that a secondary growth period in the field energy occurs

when the domain length is L = 500λD. The relative magnitude of this secondary

growth is most apparent for the lowest Mach number, Me = 0.5, while for the highest

Mach number, Me = 1.5, no secondary growth occurs. Therefore, to most clearly

study the mechanism(s) behind this secondary growth, the electron Mach number

is set to Me = 0.5 in the subsequent cases considered here. This is in excess of the

threshold Mach number Mthr for linear stability of the ion acoustic instability given

in Equation 4.5 for all species considered.
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5.2.2 Results: Ion and Electron Phase Space

Figure 5.3 gives the spatially-averaged electrostatic energy, εE, over the course of

all simulations conducted. For all ion species considered and when the domain length

exceeds L = 500λD, after the initial growth (Phase I) and saturation (Phase II) of

the ion acoustic instability, a secondary growth period occurs (Phase III) followed

by a secondary saturation (Phase IV). For the heavy mass ions, this second growth

phase occurs with a longer delay than for the light ions; additionally, the secondary

saturation occurs at lower energies. Furthermore, for the heavy ions, there does

not appear to be an asymptotic limit to the energy at which this saturation occurs,

whereas for the light ions, such an asymptote becomes evident.

Figure 5.3: Average electrostatic field energy progression for the artificial mass and hydrogen
plasmas (left) and the argon and xenon plasmas (right) for an initial electron Mach numberMe = 0.5
with varying domain length. The artificial mass and argon lines are bold while the hydrogen and
xenon lines are dashed. Reproduced from Physics of Plasmas, 27(11), 112303, with the permission
of AIP Publishing.

Examination of ion (Figure 5.4) and electron (Figure 5.5) phase spaces provides
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evidence that growth of the NDL(s) and the resulting TSI are responsible for this

secondary increase in electrostatic energy. The phase space snapshots are taken

during growth of the NDL(s), which is marked as Phase III in Figure 5.3. For the

ions, this growth begins in Figure 5.4a as perturbations around the ion acoustic

speed, cs. Multiple packets of perturbations, groups of trapping signatures marked

by the acceleration of ions, may be seen growing simultaneously. In Figure 5.4b, a

single perturbation has grown to become an ion hole, while also slowing down to

near zero velocity. A zoomed in view of the ion hole shows that it is asymmetric,

meaning there is a net potential difference across it and is therefore also classified

as a double layer. The other ion acoustic perturbations appear to separate from the

VDF and accelerate positively, evidence of de-trapping of these ions. [107] Finally,

in Figure 5.4c, the NDL reverses direction and decays, while the other ion acoustic

perturbations further accelerate positively. This analysis of ion phase space suggests,

qualitatively, that ion phase space packets are the precursors to the NDL.

For the electrons in Figure 5.5a, the ion acoustic perturbations result in reflections

in both the positive and negative velocities. Positive streaming electrons are also

accelerated through the potential well of the perturbation packets, resulting in an

apparent electron beam associated with each packet. In Figure 5.5b, the largest

perturbation, which becomes the NDL, generates a large amount of electron reflection

while also resulting in a fast electron beam. Downstream of the NDL’s location, a

large number of electron holes are observed traveling far faster than the ion acoustic

speed, cs. This is evidence of the TSI initiated by acceleration due to the NDL.

Finally in 5.5c, there is no longer a large reflection/acceleration region as the NDL

has decayed. There are, however, electron holes still evident which have propagated

toward the domain boundary. Additionally, there are electron holes at lower velocities
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Figure 5.4: Ion phase space showing growth and saturation of the NDL for the artificial mass
plasma. a), b), and c) correspond to times of tωpe = [6630, 7020, 7410]. In b), a zoom-in of the
developed asymmetric ion hole associated with the NDL is given. Reproduced from Physics of
Plasmas, 27(11), 112303, with the permission of AIP Publishing.

closer to the location of the decaying double layer, suggesting that the plasma waves

from the TSI become slower as the NDL decays in magnitude and generates a slower

electron beam.

Observing electron phase space indeed indicates that the electron populations are

subject to acceleration by the NDL, resulting in a beam which produces a two-stream

distribution. Figure 5.6 gives an example progression of plasma potentials, corre-

sponding with Figures 5.5 and 5.4, which demonstrates the non-monotonic structure

of the observed double layers. The maximum potential magnitude of the NDL, along

with the expected resulting beam velocity, are compared across a variety of cases in

Table 5.1. By measuring the maximum potential magnitude of the NDL in each
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Figure 5.5: Electron phase space showing growth and saturation of the NDL for the artificial mass
plasma on the L = 1000λd domain for Me = 0.5. a), b), and c) correspond to times of tωpe = [6630,
7020, 7410]. The white line indicates the location of the distribution function given in Figure 5.7a.
Reproduced from Physics of Plasmas, 27(11), 112303, with the permission of AIP Publishing.

case, it is evident that the light mass ions approach the weak double layer limit of

φR = eTe, resulting in a beam velocity which approaches the limit vD =
√

2vth. For

the heavy mass ions, values approaching this limit are not realized for the domain

lengths considered, suggesting that longer domain lengths are necessary to determine

whether an asymptotic limit exists at or near the weak double layer limit.

Closer examination of 1V electron VDFs downstream of the NDLs, in Figure 5.7,

helps to clarify how the TSI forms for a variety of ion masses. For the lighter ions

species, a large gap has appeared separating the primary, thermal electron VDF and

the beam generated by the NDL. For argon, however, the weaker magnitude of the

NDL results in a more modest perturbation which generates a beam with only a frac-
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Figure 5.6: Example double layer potential progression corresponding with Figures 5.4 and 5.5. φn
is the normalized plasma potential, eφ/Te0. Reproduced from Physics of Plasmas, 27(11), 112303,
with the permission of AIP Publishing.
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Table 5.1: Two-stream-driven phase velocity estimates at the time of maximum potential magnitude
for the double layer.

Species L (λd) tωp,e φR (V) vD (km/s)
Artificial 1000 6.96×103 1.60 750
Artificial 2000 6.96×103 1.60 750
Hydrogen 1000 2.24×104 1.40 701
Hydrogen 2000 2.24×104 1.60 750
Argon 1000 1.76×105 8.00×10−2 167
Argon 2000 1.68×105 3.00×10−1 325
Xenon 1000 1.62×105 1.60×10−2 75.0
Xenon 2000 1.52×105 8.00×10−2 167

tion of the electron thermal velocity. The nearly identical two-stream distributions

for the artificial mass and hydrogen plasmas suggests that, for a sufficiently long do-

main, the NDL affects real mass ratio plasmas in the same way as it affects artificial

ones. Additionally, it is worth noting that there is a flattening of the electron VDF

close to zero velocity which may be a result of both reflection of the back-streaming

population by the NDL and trapping by ion-acoustic waves.

5.2.3 Results: Spectral Analysis

With the presence of waves in the system, a great amount of information may

be gleaned from analyzing data in the Fourier domain. By doing this, it is possible

to determine the phase velocity of waves present in the system, as well as their

wavelengths and frequencies. This work utilizes the SciPy FFT library in Python in

order to process the data in the Fourier domain. [127] Spatio-temporal Fast Fourier

Transforms (FFTs) are taken of the plasma potential data from the artificial mass

ratio and argon plasma simulations for the 1000λD domain; these results are plotted

in Figures 5.8 and 5.9.

Figure 5.8a gives data taken during Phase II of the simulation, where the only

evident signature is found to agree well with the theoretical dispersion for ion-acoustic

waves (IAWs) given in Equation 4.1. On the other hand, Figure 5.8b, taken during
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Figure 5.7: Example electron VDFs downstream of NDL for the artificial, hydrogen, and argon
plasmas at times tωpe = [7.41×103, 2.12×104, 1.75×105], respectively, for a domain length L =
1000λd. The initial VDF is given as the dashed black line (fINIT ), while the VDF downstream of
the NDL is given as the solid red line (fDL). All VDFs have been normalized by their maximum
value, fMAX . Reproduced from Physics of Plasmas, 27(11), 112303, with the permission of AIP
Publishing.

Phase III, has two wave branches. The slower of the two appears nearly identical

to that from Phase II: the ion-acoustic branch. The fast branch is compared with

the theoretical electron two-stream phase velocity due to the NDL for this case,

ω/k = 750 km/s, where good agreement with this theory is found. For Figures

5.9a-b, the same wave branches are evident, though their associated phase velocities

are much lower (note the different scaling of the y-axis). Again, the ion-acoustic

theory and the NDL-generated TSI theory both agree well with the data. Therefore,
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these results provide verification for the proposed mechanism of TSI generated by

the NDL.

Figure 5.8: Dispersion plots for Phases II (a) & III (b) for the artificial plasma, L = 1000λd. The
theoretical ion-acoustic dispersion (Eq. 4.1) is plotted in red and marked IAW, while the theoretical
two-stream instability dispersion (ω = kvD) is plotted in green and marked TSI. Reproduced from
Physics of Plasmas, 27(11), 112303, with the permission of AIP Publishing.

Figure 5.9: Dispersion plots for Phases II (a) & III (b) for the argon plasma, L = 1000λd. Note
the change in the scale of the y-axis from Figure 5.8. Reproduced from Physics of Plasmas, 27(11),
112303, with the permission of AIP Publishing.
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Given the variety of theories regarding NDL formation, it is useful to observe the

progression of wavemodes during the growth of the NDL, as this may provide evidence

to support any of the existing theories of formation. Figure 5.10 gives the wavemodes

in the argon plasma plotted with time in the simulation; the various Phases of the

simulation are denoted. In Phase I, the ion-acoustic instability grows, where initially

very little wave content is evident; eventually, the plasma enters Phase II when waves

with a range of wavenumbers between kλd = 0.4 and kλd = 1.6 grow in strength.

During Phase II, there is an apparent transition towards small wavenumber content

within the turbulent spectrum around kPλd = 0.1. This marks the growth of the

supposed ion acoustic wave packets, which lead to ion hole formation and eventually

the non-monotonic double layer. Later, this process transitions to Phase III, where

the NDL has formed. During this phase, the electron TSI is triggered by the presence

of the double layer; coupled with the continued growth of the ion acoustic modes,

this results in a wide range of strengthening wavemodes. The extended spectrum

of waves grow in strength throughout Phase III until reaching a peak, marking the

transition to Phase IV.



136

Figure 5.10: Wavenumber analysis for the argon plasma, L = 2000λd and Me = 0.5. Values are
normalized by the maximum potential value at each time step, φM , given in the line plot. Phases
corresponding to those marked in Figure 5.3 are denoted by the dashed lines. kIA corresponds
to the region of growing wavemodes during linear growth of the ion acoustic instability, while kP
corresponds to the growing wavemodes of the ion acoustic wave packets. Reproduced from Physics
of Plasmas, 27(11), 112303, with the permission of AIP Publishing.
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5.3 Summary

This chapter described the investigation of the rise of non-monotonic double layers,

or NDLs, from a plasma subject to the ion-acoustic instability (IAI). The maximum

potential magnitude of the NDL was found to differ for varying ion mass and domain

length, and an asymptotic maximum potential near the weak double layer limit

was found for the artificial mass and hydrogen, the lightest of the four ion species

considered. The initiation of an electron two-stream instability (TSI) due to the

presence of an NDL was examined for a variety of ion masses and found to agree

well with a derived theoretical prediction. Finally, a Fourier analysis demonstrated

the transition to smaller wavenumbers associated with the rise of ion-acoustic wave

packets which appeared to lead to the eventual emergence of the NDL.

Avenues for future work with regards to double layer modeling include the use of

open-boundary simulations, which would eliminate the confounding effect of recycling

due to the periodic boundaries used here. Higher dimensional simulations are also

important to undertake, as the formation of double layers in multiple dimensions is

known to be suppressed. In addition, the inclusion of a magnetic field is useful to

investigate, particularly as the hollow cathode plume is often subject to the magnetic

field of a Hall thruster and magnetic fields have been shown to stabilize double layer

formation. [2]

NDLs are of possible import to the hollow cathode system, given that the IAI is

capable of generating them and their ability to produce large-amplitude plasma waves

through spawning an electron two-stream instability. Double layers have not been

identified experimentally in the plume of the hollow cathode, and due to their small

size and transient nature, their existence may be difficult to prove experimentally.
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However, fast-moving waves, whose origin has not been concretely identified, have

been observed in the cathode plume. This work has demonstrated that, at least

in 1D, ion-acoustic double layer formation is feasible in conditions relevant to the

hollow cathode plume plasma. Extension of this work to higher dimensions with more

physically realistic boundaries will provide a more definitive prediction of whether

these double layers could be sustained in the cathode plume and the role they would

then play in keeper erosion



CHAPTER VI

Conclusions

“An expert is a person who has found out by his own painful experience

all the mistakes that one can make in a very narrow field.”

– Niels Bohr, as quoted by Edward Teller

This thesis set out to advance the predictive modeling capabilities of the elec-

tric propulsion discipline through kinetic simulation of expansion flows and current-

carrying plasmas. In this chapter, the findings of the thesis are summarized and

novel contributions are laid out. Avenues for future work are provided which would

further the developments achieved in this thesis.

6.1 Dissertation Summary

The first topic addressed, in Chapter II, was the application of the direct-simulation

Monte Carlo method and the deterministic-, or direct-kinetic method. The existing

schemes and boundary conditions of these methods were elucidated. Development

of a 2D-axisymmetric capability within the DK solver was detailed. For fully-kinetic

simulations, the procedure for coupling of Maxwell’s equations was given. The ad-

dition of two types of collision operators, the BGK and ES-BGK operators, was

laid out; further, the process for ionization collisions and a new phase-space map-
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ping algorithm was detailed. With the implementation of various new numerical

schemes to the DK framework, a variety of verification problems were undertaken.

A manufactured solution for the coupled Poisson’s equation solver demonstrated the

expected second-order convergence, while application of the coupled DK-BGK solver

to the one-dimensional Sod shock tube problem found good agreement with theory.

Further, the fully-kinetic, coupled DK-Poisson solver was tested with the Landau

damping problem in one- and two-dimensions, again finding good agreement with

theoretical values.

The second topic was the application of kinetic methods to neutral gas and plasma

expansion flows. Analytic solutions of rarefied gas expansion in one-dimensional and

2D-axisymmetic geometries were used as a benchmark to compare the efficacy of

the statistical DSMC method and the determinstic DK method. These simulations

demonstrated the useful nature of DK simulations in resolving fine-scales of the VDF,

such as the tails, which may dominate in early times of an unsteady expansion. How-

ever, the computational efficiency of DSMC proved important in higher dimensions,

finding a higher degree of accuracy for significantly less computational expense for

the steady 2D-axisymmetric flow.

The DK and DSMC solvers were then used to simulate a hollow cathode geometry,

the NSTAR discharge cathode. The Boltzmann relation was described, which is used

to calculate the plasma potential in the plasma phase of this simulation. First, DSMC

was used to verify the neutral flow results of DK, finding good agreement. Then, from

a steady-state neutral flow, the plasma was allowed to evolve; in the plasma phase,

DK results were compared with both fluid code results and experimental Langmuir

probe data for the plasma density and potential. Agreement was only achieved in the

near-orifice region of the cathode; the reasons for disagreement in other regions were
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discussed, highlighting the importance of the ion-acoustic instability in the cathode

plume.

In Chapter IV, fully-kinetic simulations were applied to study plasma current-

carrying instabilities; of particular interest was the ion-acoustic instability, known to

exist in the hollow cathode plume. One-dimensional simulations were carried out to

study the anomalous resistivity and anomalous heating caused by current-carrying

instabilities. 1D1V simulations demonstrated the importance of the simulation do-

main’s spatial extent and the electron Mach number, especially when comparing with

the algebraic closure model of Sagdeev and Galeev often used in hollow cathode fluid

codes. During nonlinear saturation, the case where Me = 1.0 was found to agree well

with the closure, while the Me = 0.5 case did not agree with the closure. Extending

the domain caused the opposite trend, where the Me = 1.0 case no longer was in

agreement with the closure while the Me = 1.0 case was; these results motivate the

necessity of further exploring the efficacy of fluid closure models for the ion-acoustic

instability.

Further one-dimensional results demonstrated the onset of counter-streaming ion

tail formation, the possible culprit for hollow cathode keeper erosion, for a case where

Me = 1.2. This region is slightly below the commonly accepted Mach number for

Buneman transition, Me = 1.3, and indicates that there is a transitory Buneman

instability regime where counter-streaming ion tail formation is possible. Finally, in

agreement with previous PIC simulation, two-dimensional simulations of a current-

carrying plasma found that the nature of saturation for the ion-acoustic instability

vastly differs from the one-dimensional saturation. Rather than the formation of a

plateau in the electron VDF, a secondary growth of radial (or off-axis) wavemodes

known as the off-axis instability results in an axial-radial isotropization of the electron
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VDF. In further agreement with theory and prior PIC simulation, the peak wave

energy was found to lie at an off-axis angle of θ ≈ 35◦.

Chapter V pursued a phenomenon, identified during nonlinear saturation in one-

dimensional simulations of the ion-acoustic instability, known as a plasma double

layer. The formation of weak double layers, with a potential energy maximum

equivalent to the electron thermal energy, was found to be ubiquitous for artifi-

cial mass, hydrogen, argon, and xenon plasmas if the physical domain length was

sufficiently large. The presence of the weak double layer was found to spawn an elec-

tron two-stream instability in all cases considered as well, and a simple theoretical

expression was derived to estimate the phase velocity of the resulting plasma waves.

Spectral analysis demonstrated the transition from wavemodes characteristic of the

ion-acoustic instability (kλD ≈ 1) to smaller wavelengths (kλD ≈ 0.1), signalling

the onset of the double layer; phase space analysis suggested the growth of an ion-

acoustic wave packet(s) into ion phase space hole(s) was the precursor mechanism

for the double layer.

6.2 Discussion

The work of this thesis was conducted with the goal of realizing predictive simula-

tion of thermionic hollow cathodes used for spacecraft propulsion. Two separate but

complementary avenues were pursued towards this end: hybrid-kinetic simulation of

the engineering-scale hollow cathode device and fully-kinetic simulation of current-

carrying instabilities and resulting plasma double layers which may be important to

the operating characteristics of the hollow cathode plume plasma. The hybrid-kinetic

platform was applied to simulate the NSTAR hollow cathode, finding, as previous

fluid codes have found, that inclusion of closure models for the ion-acoustic instabil-
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ity are crucial to obtaining agreement with experimental measurements. While not

yet realized in this work, the utility of the hybrid-kinetic solver developed herein lies

in its ability to include a kinetic, ion-heating closure model based on the ion-acoustic

instability. The inclusion of such a model, in addition to an anomalous collision

closure, would allow this tool to provide useful predictions of erosion rates for the

cathode keeper.

Fully-kinetic simulations conducted here demonstrated the use of kinetic simula-

tion in benchmarking existing closure models for conditions relevant to the hollow

cathode plasma. The algebraic model of Sagdeev-Galeev was shown to only agree

with the kinetic simulation results in certain cases, and demonstrated the need for

use of a more sophisticated model. An important capability of kinetic simulation is

its ability to identify the dominant saturation process of the ion-acoustic instability;

this could then inform development of a new closure model(s) which are more relevant

to the hollow cathode plume plasma. Further, this work explored the possible roles

of the ion-acoustic and Buneman instabilities in generating high-energy ions which

could erode the cathode keeper. Notably, the Buneman instability may play an im-

portant role in generating these high-energy ions; in multiple dimensions, previous

simulations have shown that the Buneman instability relaxes relatively quickly, pre-

heating the plasma and leading to the ion-acoustic instability. In the cathode plume,

it is feasible that the Buneman instability similarly preheats the plasma before the

onset of the ion-acoustic instability; the Buneman instability may also be responsible

for the fast-traveling plasma waves which have been measured in the cathode plume.

The effects of the Buneman instability may be particularly important in the case

of the cathode plume mode, where the ion-acoustic instability is known to alternate

between activity and inactivity due to ionization oscillations. Further investigations
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with 2D2V simulations are needed to understand the effect of the Buneman instabil-

ity and its role in anomalous resistivity as well as driving high-energy ion formation.

Finally, fully-kinetic simulations of the ion-acoustic instability also demonstrated

the emergence of non-monotonic double layers during nonlinear saturation of the

instability. These double layers were predicted to be approximately 10λD wide,

meaning that in the cathode plasma they could measure on the order of microns

across and would be very difficult to resolve experimentally. However, measurements

of the presence of plasma waves with a phase velocity on the order of the electron

thermal velocity may lend credit to the possibility of their existence. Further, mea-

surements of the spectral wavelength content of the cathode plume would help to

identify whether there exists a peak in the long wavelength region. However, it is

important to run 2D2V simulations of the ion-acoustic instability with an extended

domain to determine whether double layer formation still occurs, or whether their

prevalence in 1D1V simulations is due to the focusing effect of lower dimensionality.

6.3 Contributions

Here, the contributions which this thesis offers to the greater scientific community

are detailed:

• A 2D-axisymmetric deterministic-kinetic solver was implemented, with unique

schemes for neutral and charged particles. The solver was verified via compar-

isons with direct-simulation Monte Carlo as well as an analytic solution for a

rarefied jet flow.

• The stochastic kinetic method of direct-simulation Monte Carlo was bench-

marked with the direct-kinetic deterministic method via analytic solutions. Grid

convergence was demonstrated for both methods and a comparison of compu-
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tational cost was conducted.

• The 2D-axisymmetric deterministic-kinetic solver was compared with experi-

mental Langmuir probe data for the NSTAR discharge hollow cathode, finding

validation in the near-orifice region while highlighting the importance of prop-

erly modeling plasma instability(s) in the cathode plume region.

• Deterministic-kinetic, one-dimensional simulations of the ion-acoustic instability

found the efficacy of the Sagdeev-Galeev fluid closure model to vary based on

domain length and electron Mach number. Further, the formation of counter-

streaming ion tails was attributed to the development of the Buneman instability

via phase space and spectral analyses.

• Deterministic-kinetic, two-dimensional simulations of current-carrying instabil-

ities demonstrated a significant deviation in the manner of nonlinear saturation

for the ion-acoustic instability by way of the off-axis instability.

• The formation and consequences of weak double layers from the ion-acoustic

instability was elucidated via one-dimensional, deterministic simulations. The

subsequent development of an electron two-stream instability was identified and

characterized via a theoretical expression.

6.4 Future Work

There are many available paths to further the work laid out in this thesis. In this

section, some of these possible avenues are detailed.

6.4.1 2D-Axisymmetric Fluid Electron Model

The hollow cathode simulation(s) carried out in Chapter II made use of the Boltz-

mann relation to calculate the plasma potential, with an assigned electron tempera-

ture distribution based on experimental data. For these simulations to further move
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towards being predictive, a self-consistent electron model is critical. For example, the

2D-axisymmetric electron model developed in Ref. [27] would provide the necessary

physics. However, it is important to note that recent efforts have demonstrated the

commonly used drift-diffusion approximation in fluid electron models is inconsistent

with the physics of the plasma when kinetic energy is large. [47] Therefore, the use of

a full-fluid moment model for the electrons may provide more accurate results. [109]

6.4.2 Hybrid-Kinetic Ion-Acoustic Instability Closure Models

The effect of the ion-acoustic instability is critical to obtain the proper physics

in the hollow cathode plume plasma. Therefore, with the inclusion of an electron

fluid model, the addition of a closure model for the anomalous collision rate due to

the ion-acoustic instability is necessary. Ideally, a one-equation model in the form

of Equation 4.10 would be incorporated to capture spatio-temporal variation of the

ion-acoustic wave energy. Further, as in Ref. [67], the addition of a closure model

for ion heating due to the ion-acoustic instability would allow for informed erosion

lifetime estimates.

6.4.3 Multiply Charged Ions

Fully-kinetic and hybrid-kinetic simulations detailed in this thesis only considered

singly charged ions. Doubly charged ions may play an important role in hollow

cathode keeper erosion, being doubly affected by electric field accelerations; they are

indeed present in non-negligible concentrations in ion thrusters and Hall thrusters.

[33] Though the ion-acoustic instability is believed to be the chief culprit of keeper

erosion, the coupling of doubly charged ions with the presence of the ion-acoustic

instability has not been investigated and could produce erosion rates higher than

previously estimated. Further, the presence of multiply charged ions has been shown
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to trigger secondary instabilities in recent kinetic simulations. [50] Kinetic simulations

including doubly charged ions could provide valuable insight into any such couplings

between doubly charged ions and plasma instabilities.

6.4.4 Two-Dimensional, Kinetic Analysis of the Buneman and Ion-Acoustic Instabil-
ities

Chapter IV demonstrated the importance of extending kinetic simulations of the

ion-acoustic instability to higher dimensions, as the mechanism for saturation changes

significantly and thus affects the evolution of bulk properties at saturation. To be

more relevant to the electric propulsion community, the work carried out in this

thesis must be furthered by: considering a xenon plasma, measuring anomalous

resistivities, and finding erosion rates due to counter-streaming ion tail formation.

Further, analysis of the wave energy spectrum to determine the driving mechanism

during nonlinear saturation of the ion-acoustic instability would inform deployment

of closure models in reduced-order modeling efforts.

6.4.5 Open Boundary Simulations of the Ion-Acoustic Instability

This thesis made use of periodic boundary conditions for simulation of the ion-

acoustic instability and resulting non-monotonic double layers. In order to better

understand the development of the plasma during nonlinear saturation of the ion-

acoustic instability, open boundary simulations are important as they would remove

any possible confounding effects of recursion due to periodic boundary conditions.

In conjunction with a two-dimensional domain, open boundary kinetic simulations

would provide a much closer analog to the physical plasma of the hollow cathode

plume, making any conclusions drawn less muddled by computational considerations.
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6.4.6 Improving the Computational Efficiency of the DK Method

While leaps in computational power have enabled the use of the DK method for

larger and more complex problems, Chapter III demonstrates that it still remains

very computationally costly when considering higher dimensional problems. There

are a few possible avenues to explore for improving the DK method in this realm:

further parallelization and more efficient velocity discretization methods. The DK

solver currently utilizes MPI to split the domain purely based on number of axial

cells; further parallelizing the code, and using a tool such as METIS to do so automat-

ically, could see large gains in computational efficiency. Further the velocity space

discretization is currently uniform; methods such as adaptive mesh refinement [66]

or manual refinement based on the relevant physics [30] could save the simulation

from utilizing massive amounts of memory.

6.4.7 Implementation of External Grid Loading

Finally, the DK code is currently configured such that only structured, Cartesian

grids are possible and these grids must be set up manually. In order to advance the

current DK framework such that it may more easily handle a variety of problem types,

the capability to accept grids generated in external softwares is critical. Further,

implementing a method to handle unstructured grids in physical space would allow

the DK solver to tackle problems with complex geometries.
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