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ABSTRACT

The goal of this dissertation is to improve the state-of-the art modeling approaches avail-

able for simulating the discharge plasma in a Hall effect thruster (HET). A HET is a space

propulsion device that utilizes electrical energy to ionize and accelerate propellant, generat-

ing thrust. The device features a cross-field configuration, whereby the transverse magnetic

field traps electrons, and the axial electric field electrostatically accelerates ions out of the

thruster channel. This configuration enables desirable thruster performance characteristics

typically characterized by a relatively high specific impulse (1000-3000 s) and a high thrust

density (a few N m-2).

High fidelity computational models are useful to investigate the physical processes that

govern the HET’s performance, efficiency, and lifetime limitations. The non-equilibrium

nature of the plasma transport should be resolved so that the flow can be accurately char-

acterized. A grid-based direct kinetic (DK) simulation is capable of modeling the non-

equilibrium state of plasma without the numerical noise that is inherent to particle-based

methods since the velocity distribution functions (VDFs) are obtained in a deterministic

manner. As the primary objective of this work, a two-dimensional, hybrid-DK simulation

of the discharge plasma in a HET is developed. As a secondary objective, a plasma sheath,

one of the important physical structures that form in the discharge plasma of a HET near

the channel walls, is examined via a two-dimensional full DK simulation that highlights

slight spatial differences in the sheath as a result of electrically disparate, adjacent wall

materials. The memory storage requirements and computational load for the parallelized

xviii



DK simulation grow with additional species, physical space dimensions, and velocity space

dimensions. Some of these numerical limitations are encountered within this work.

The hybrid-DK HET model utilizes a quasi-one-dimensional fluid electron algorithm

in conjunction with a two-dimensional DK method to simulate the motion of neutral atoms

and ions in a HET channel and near-field plume. Upon its development, the hybrid-DK sim-

ulation is benchmarked against results obtained from a two-dimensional hybrid-particle-in-

cell (PIC) simulation with an identical fluid electron algorithm. To achieve agreement be-

tween the simulation results, a boundary condition for the DK model that satisfies particle

conservation at the wall boundaries is developed, and electron model boundary conditions

that provide solution stability are sought and utilized. For both high-frequency and low-

frequency oscillations, the two simulations show good agreement for both time-averaged

and dynamic plasma properties. Statistical noise tends to randomize plasma oscillations

in the PIC simulation results, whereas the DK results exhibit coherent oscillatory behav-

ior. Furthermore, results indicate that the DK simulation is capable of responding to small

changes in electron dynamics, which is promising for future work.

The DK plasma sheath simulation models a two-dimensional plasma sheath that high-

lights slight spatial differences inside the sheath as a result of electrically disparate, adjacent

materials. To accomplish this goal, a quasi-one-dimensional sheath model is first built in

a two-dimensional framework, boundary conditions are developed, and results are verified

against theoretical expectations. Then, the full two-dimensional plasma sheath is modeled.

The proof-of-concept model shows that two-dimensional effects are present in the vicinity

of the discontinuous plasma potential at the wall, and electron and ion VDFs both clearly

exhibit changes due to these effects.

xix



CHAPTER I

Introduction

“Because of collective behavior, a plasma does not tend to conform to external

influences; rather, it often behaves as if it had a mind of its own.”

– Francis F. Chen, Introduction to Plasma Physics

In the present chapter, the general motivation for this dissertation is provided in Sec-

tion 1.1, states of matter are described in Section 1.2, and the characteristics of a plasma

are introduced in Section 1.3. An overview of gas and plasma modeling for different flow

regimes is described in Section 1.4, and in Sections 1.5 and 1.6, the plasma discharge de-

vice of interest, the Hall effect thruster, is described in detail. Specific research objectives

for this thesis are outlined in Section 1.7.

1.1 Motivation

With the increase in computational power in recent years, numerical simulations have be-

come a critical component of engineering applications and to general scientific inquiry.

This work explores computational methods related to the modeling of the Hall effect

thruster (HET), a spacecraft propulsion device that utilizes plasma for operation. The

motivation for this research is multi-fold. From the perspective of basic plasma science,

computational models can assist in the collective understanding of the physical processes

that govern the behavior of plasmas. Seen through the lens of mathematics and the growing
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field of computation, new numerical models may provide insight into the capabilities and

limitations of existing models and algorithms presently in use. Finally, from a human per-

spective, space has captured the collective imagination of humankind. To further explore

this final frontier, it is essential to have a deep understanding of the physics that govern

modern-day space technologies.

1.2 Matter

All matter consists of atoms, either alone or composed into molecules. In a solid, inter-

molecular forces are strong relative to the amount of thermal energy, and molecules are

closely bound to one another in a fixed volume. Analysis of solids is concerned with stress,

strain, deformation, and failure. In a liquid, intermolecular forces are weaker than those in

a solid, but molecules are still packed closely together in a fixed volume, and the matter

will take the shape of its container. In a gas, intermolecular forces are weaker than those in

a liquid, and random molecular motion via collisions may occur. The particles in a gas will

spread out or compress to fill the volume they are allowed.

Liquids and gases are both fluids, i.e. substances that continuously deform when sub-

jected to a shear force. When a fluid is in local thermodynamic equilibrium, macroscopic

flow properties including density, flow velocity, temperature, and pressure vary slowly in

space and over time. Liquids are typically incompressible, dense compared to gases, and

almost always exist in local thermodynamic equilibrium. Gases, however, have a fairly

large range of densities and levels of collisionality. They can exist in both equilibrium

and non-equilibrium states. A plasma is an ionized gas, known in popular literature as the

fourth state of matter, and by mass it comprises approximately 99% of the visible universe.

[1] It may be partially or completely ionized, i.e. it can consist of both neutral and charged

particles or solely the latter.
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1.3 Characteristics of a Plasma

Since electrons have a much larger mobility than other species in a plasma due to their small

mass, they arrange themselves to shield out external electric fields. The Debye length, λD,

measures the scale of the charge imbalance in a plasma and is described by:

λD =

√
ε0kbTe
e2ne

(1.1)

where ε0 is the vacuum permittivity, kb is Boltzmann’s constant, e is the elementary charge,

ne is the electron number density, and Te is the electron temperature. Note that e is always

taken as a positive value in this work.

λD can be derived by considering a one-dimensional plasma of density n0 subjected

to an applied potential such that φ(x = 0) = φ0. To compute φ(x), assuming ions are

singly charged, the Poisson equation is solved. The one-dimensional Poisson equation is

described by:

∇2φ =
d2φ

dx2
= −e(ni − ne)

ε0
(1.2)

Assuming that the perturbation due to the applied potential occurs on the time scale of

electrons, which is much smaller than the ion time scale, the ion density will remain un-

perturbed, i.e. ni = n0. In the presence of potential energy, −eφ, the electron distribution

function, fe(vx), is:

fe(vx) = A exp

(−1
2
mev

2
x − eφ

kbTe

)
(1.3)

where A is a constant. Integrating fe(vx) over vx, the Boltzmann relation is obtained:

ne = n0 exp

(
eφ

kbTe

)
(1.4)
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Substituting Eq. (1.4) into Eq. (1.2) and expanding the potential in a Taylor series results

in the following relationship:

d2φ

dx2
=
en0

ε0

[
exp

(
eφ

kbTe

)
− 1

]
=

e2n0

ε0kbTe
φ (1.5)

The solution to Eq. (1.5) corresponds to:

φ = φ0 exp

(
−|x|
λD

)
(1.6)

According to Eq. (1.6), when the Debye length is small compared to a representative phys-

ical length scale (λD � (x = L)), electrical charge imbalances are negligible outside of

the Debye sphere, rendering the plasma quasineutral. Thus, ion and electron densities are

approximately equal (ni ≈ ne) over length scales greater than the plasma Debye length.

Consider a Debye sphere with a radius of λD. In an ideal plasma, a Debye sphere

must contain a macroscopically large number of particles (ND � 1). This is necessary

so that a plasma will exhibit collective behavior, meaning that long-range interactions be-

tween charged particles dominate over binary collisions. Correspondingly, in a collisional

plasma, charged particles should not collide so frequently with neutral atoms that their mo-

tion is controlled by hydrodynamic forces rather than electromagnetic forces. Therefore,

the frequency of a typical plasma oscillation should be large compared to the mean time

between particle collisions, i.e. ωτ > 1, where ω is the plasma frequency and τ is the mean

time between particle collisions.
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1.4 Overview of Gas and Plasma Modeling

The basis for all dilute gas dynamics is the Boltzmann equation which in its general form

is given as:

∂f

∂t
+ v

∂f

∂z
+ a

∂f

∂v
= Sboltz (1.7)

Eq. (1.7) states that the velocity distribution function, f , evolves in time, t, physical space,

z, and velocity space, v. Sboltz on the right hand side of Eq. (1.7) is a collision term due

to two-particle interactions. Elastic collisions are described by the Boltzmann collision

integral, which is given by:

Sboltz =

ˆ ˆ
gσ(f

′

Af
′

B − fAfB)dΩdv (1.8)

where subscriptsA andB denote the colliding particles, g = |vB−vA| is the relative speed

between particlesA andB, σdΩ is the differential cross section where dΩ is the solid angle,

and superscript ′ denotes information after the collision event. [2]

The Boltzmann equation is derived from the more general Liouville equation, which

describes the time evolution of the phase space distribution function for a system of N par-

ticles. The derivation of the Boltzmann equation is described in detail in Reference [3].

Two of the primary assumptions for this derivation include: (1) that the collision integral,

Sboltz, considers only binary collisions and (2) that the velocities of two colliding parti-

cles are not correlated with each other. With these assumptions, the Liouville equation

can be transformed into a chain of equations consisting of multiple particle distribution

functions known as the Bogoliubov Born Green Kirkwood Yvon (BBGKY) hierarchy, and

the truncated BBGKY hierarchy may then be used to obtain the Boltzmann equation. The

Boltzmann equation is challenging to solve, both analytically and computationally, so sim-

plifications are made when possible. Note that other types of collision models may be
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incorporated into Eq. (1.7). For example, ionization processes may be taken into account

by applying an ion source term, Sion:

Sion = νionfneutral (1.9)

where νion is the ionization frequency and fneutral is the distribution function for neutral

atoms. The Fokker-Planck collision model provides another important collision integral for

fully-ionized plasma physics applications, as the model takes into account binary elastic

collisions between charged particles known as Coulomb interactions. [4]

1.4.1 Knudsen Number

The Knudsen number (Kn) is a dimensionless parameter that describes the level of non-

equilibrium of a gas flow and is defined as the ratio of the mean free path, λmfp, to a

representative physical length scale, L:

Kn =
λmfp
L

(1.10)

Whether the flow is collisional or collisionless is determined by the value of the Knud-

sen number. If the Knudsen number is much smaller than unity, the flow is collisional.

If there are a significant number of elastic collision events without any inelastic collision

events, the gas particles relax to a Maxwell-Boltzmann velocity distribution, also known

as a Maxwellian distribution. Such a gas is in the continuum regime, meaning that the

frequency of intermolecular collisions inside the sampling volume is high, and thermody-

namic equilibrium can be established. In the continuum regime, macroscopic flow proper-

ties vary continuously from point to point in the flow, and the conservation equations for

mass, momentum, and energy can be solved using macroscopic approaches. If Kn → ∞,

the gas is in the free molecular flow regime, i.e. the flow is collisionless. For an intermedi-

ate Knudsen number (0.01 < Kn < 1), the flow is in a transitional, non-equilibrium state,
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and it is necessary to consider the non-Maxwellian nature of the gas. Modeling techniques

for these different regimes are discussed in Sections 1.4.2-1.4.4.

1.4.2 Near-Equilibrium Gas Dynamics Models

For a non-ionized gas with a small Knudsen number, numerical models often make the as-

sumption that the flow relaxes to a Maxwellian distribution. In this regime, it is appropriate

to derive partial differential equations (PDEs) to model gas flows by taking moments of

the Boltzmann equation (Eq. (1.7)). Perhaps the most widely used sets of equations are the

Euler equations and the Navier-Stokes equations (discussed in various texts including Ref-

erences [2] and [5]). The Euler equations for adiabatic, inviscid flows are derived assuming

that gas particles relax to a Maxwellian distribution. The Euler equations consist of a set of

five PDEs and can be used to analyze certain aspects of incompressible and compressible

flow fields including, for example, the lift generated over a thin airfoil at a small angle of

attack or the properties across a steady shock wave. The Navier-Stokes equations consist

of twenty PDEs involving heat flux and shear stress tensors and are derived by assum-

ing a relaxation toward an equilibrium distribution and performing the Chapman-Enskog

perturbation expansion under the assumption of a short relaxation time. [2, 6]

As Kn → ∞, free molecular flow analysis may be used. The flow is collisionless, so

the collision integral in Eq. (1.7) goes to zero, and the free molecular gas stream is char-

acterized by a Maxwellian velocity distribution function (VDF). Therefore, it is possible

to calculate fluxes of properties such as mass, momentum, and energy when the flow field

encounters a surface, such as a spacecraft, and to analyze the effects of the flow field on

the vehicle. When the Knudsen number is in the transitional regime, it is necessary to use

a numerical method that allows for the analysis of strongly non-equilibrium flows. The

approaches for modeling gas dynamics in this regime are discussed in Section 1.4.4.
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Figure 1.1: Summary of various plasmas for a wide range of densities and temperatures.
Image reproduced from Reference [7].

1.4.3 Near-Equilibrium Plasma Dynamics Models

For plasmas, the Boltzmann equation is coupled with Maxwell’s equations, which are

described in Chapter II, to account for electric and magnetic fields in the medium. As

shown in Fig. 1.1, plasmas span a variety of length scales, densities, and temperatures.

The two main near-equilibrium models of plasma dynamics are two-fluid theory and

magnetohydrodynamics (MHD). Two-fluid theory approximates a plasma as “mutually

interacting, finite-pressure electron and ion fluids” [8]. This approach requires that par-

ticles conform to Maxwellian VDFs, which is true only if there are sufficient collisions

present or if there is another randomizing process in place that allows for this assump-

tion. This last point is important, since two-fluid equations have been utilized successfully

to model some weakly collisional and collisionless plasmas. A partial justification for its

use in these cases is that a strong magnetic field can play the role of collisions by forc-

ing particles to gyrate in a Larmor orbit that is much smaller than the particle mean free
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path. Some phenomena that have been successfully modeled using the two-fluid approach

include Alfvèn waves relevant to the solar corona and fast magnetic reconnection in solar

flares. [9] The MHD model approximates a plasma as a single, finite-pressure, electrically-

conducting fluid. Essentially, the two-fluid equations are combined to describe a single,

center-of-mass fluid with a relative drift motion between the fluids. The MHD approach

has been used in cosmic electrodynamics, fusion, and other areas. [10]

1.4.4 Non-Equilibrium and Hybrid Modeling Techniques

For both non-ionized gases and for plasmas, the non-equilibrium flow regime requires

an approach which can account for the departure from local thermodynamic equilibrium

(LTE). One of the most popular techniques for non-ionized gases is the direct simulation

Monte Carlo (DSMC) approach. Developed by Bird in in the 1960s, the DSMC approach

is a stochastic method that emulates the physics of the Boltzmann equation. [11] The

DSMC approach necessitates the creation of particles, for which the equations of motion

are solved, and collisions are accounted for in a stochastic fashion. A simulated particle

does not represent a single real particle but rather a macroparticle, or a collection of of

identical real molecules. Thus, the technique does not simulate every real molecule, and

the deterministic nature of molecular movement and collisions cannot be retained below

the scale of a computational cell size. [2]

Analogous to the DSMC technique for neutral gases is the electrostatic particle-in-

cell (PIC) method which can be used to simulate the motion of plasma in the presence of

an electric field. Throughout this work, the term PIC will be used to refer to the solution

technique for the motion of both non-ionized and ionized gases. The term DSMC will

be reserved for the collision technique associated with the DSMC approach. Often, the

PIC technique is used in plasma physics to model the collisionless Boltzmann, or Vlasov

equation. Examples of applications for which Vlasov theory may be applied include col-

lisionless sheaths (discussed in Chapter VI) and Landau damping, which is collisionless
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damping of plasma waves. Landau damping can occur for both electrons and ions; ion

acoustic waves, for instance, can be greatly affected by Landau damping. [10] Collisional

forms of the kinetic equation are also commonly modeled using the PIC technique.

In lieu of the stochastic PIC technique, a deterministic direct kinetic (DK) method can

also be utilized to simulate the motion of non-ionized gases and plasmas. This method

resolves the Boltzmann or Vlasov equations in discretized phase space by evaluating the

grid-based VDFs as they evolve over time, and its implementation is the bulk of the present

work. The primary advantage of the DK method compared to the PIC method is that

there is no statistical noise in the DK algorithm. [12] In recent years, one-dimensional

DK methods have been used to model plasma sheaths [12, 13, 14], HET channel physics

[15], mode transitions in HETs [16], and ion acoustic turbulence in a cathode plume. [17]

Two-dimensional and axisymmetric DK methods have been applied to the axial-azimuthal

geometry of a HET [18], to hollow cathode plasmas [19], and, as described in this work,

to axial-radial HET geometries. [20] A full discussion of the DK method is provided in

Chapter II.

Depending on the application, a combination of modeling techniques can be beneficial.

In applications where ions and electrons are in different regimes, a hybrid approach may be

appropriate. In the present work related to a HET, ions and neutral particles are modeled

using kinetic (DK and PIC) techniques while electrons are considered to be a fluid. The

hybrid numerical techniques utilized in this work are discussed at length in Chapter III.

1.5 In-Space Propulsion Systems

An overview of numerical modeling has been provided in previous sections. Now, it is

necessary to introduce the primary object of numerical modeling in this work: the Hall

thruster, a type of space propulsion device. Simply stated, the objective of a space propul-

sion device is to move its host vehicle. A specific propulsion system is often designed for
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a unique purpose. For example, a launch from Earth’s surface requires much more thrust

than an orbit transfer, and it is more efficient that different propulsion systems be utilized

for these two purposes. According to Newton’s second law, the rate of change in time of

an object’s momentum, p, is equal to the sum of the external forces, Fext, acting on that

object:

Fext =
dp

dt
=
d(mv)

dt
Newton’s second law (1.11)

where m is the mass of the object and v is its velocity. Assuming that a space vehicle

operates in total vacuum, i.e. that external gravitational and frictional forces acting on the

vehicle are negligible, then Fext = 0.

If the mass flow rate of the propellant, dm
dt

= ṁ, and its exit velocity, ue, are also

constant and uniform, then Eq. (1.11) can be rewritten as:

m
dv

dt
= −ṁue (1.12)

where the negative sign indicates that mass is ejected from the vehicle in the direction

opposite to the vehicle’s motion. Integrating Eq. (1.12) from the initial state of the rocket

at time ti, to a state sometime later at time tf , it is found that:

mf

mi

= exp

(
−∆v

ue

)
= exp

(
−∆v

gIsp

)
(1.13)

where ∆v represents the velocity change for a maneuver of interest between times ti and tf .

Over the course of a space vehicle’s mission, ∆v can also represent the sum of all changes

in velocity. Isp = ue
g

= Fth

ṁg
describes the thrust provided by the fuel, relative to the weight-

use-rate of the fuel. Eq. (1.13) states that, to achieve a high ∆v during a maneuver, either

the fuel consumption, i.e. the resultant change in mass, or the specific impulse must be

high. A high specific impulse (Isp) is indicative of an efficient maneuver that minimizes the
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Figure 1.2: Thrust and specific impulse of various chemical and electric space propulsion
devices. Figure reproduced from Reference [21]

propellant mass, thereby maximizing the allowable mass of non-propellant cargo on board

the space vehicle, known as the payload. The thrust and specific impulse values of various

chemical and electric space vehicles are displayed in Fig. 1.2. Chemical propulsion devices

(displayed in the figure as bipropellant and monopropellant engines) typically consume a

relatively large amount of fuel, display low levels of Isp and relatively high levels of thrust.

Electric propulsion devices, described in Section 1.5.1, typically display higher levels of

Isp and lower levels of thrust in comparison to their chemical counterparts.

1.5.1 Electric Propulsion

EP devices produce thrust by utilizing electrical energy to generate high exit velocities for

the propellant molecules, thereby using relatively little fuel by mass to achieve a partic-

ular thrust level compared to conventional types of propulsion. Typical EP systems are

described briefly below.

1. Electrothermal devices include resistojets and arcjets. Propellant is heated via an
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Figure 1.3: Number of EP-based GEO satellites launched in the years 1981 through 2018
(3-year moving average), divided into electric thruster subclasses. Image reproduced from
Reference [22].

electrical source prior to entering a nozzle, where it is thermally expanded.

2. Electromagnetic devices include the pulsed plasma thruster (PPT) and the

magnetoplasmadynamic (MPD) thruster. These devices utilize the interaction of

time-varying electric and magnetic fields to ionize and accelerate particles.

3. Electrostatic thrusters include Hall effect thrusters and ion thrusters. The propellant

gas is first ionized and then accelerated out of the thruster via an applied electric

field.

A breakdown of the present-day usage of common EP devices is shown in Fig. 1.3. Overall,

the total usage of EP systems for flight continues to grow, and presently, HETs make up

well over half of the EP systems currently launched on GEO satellites.

1.6 Hall Effect Thrusters

A HET is a space propulsion device typically used for applications including satellite sta-

tion keeping and orbit raising maneuvers. A schematic of a typical, single-channel HET

is shown in Fig. 1.4. In a standard configuration, the thruster operates at nominal power

levels of 1.5-4.5 kW and generates relatively high Isp (1500-2000 s) and thrust levels on the
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Figure 1.4: Schematic of a Hall effect thruster. (Left) two-dimensional side view of a
thruster, and (right) three-dimensional cross section of a thruster. Image reproduced from
Reference [25].

order of 100 mN. [23] The first HET was a stationary plasma thruster (SPT), developed in

the then Soviet Union in the late 1960s, and it was launched in 1971 on board the satellite

Meteor-18. [24] Another type of HET is the thruster with anode layer (TAL). The primary

difference between the two models is that the TAL has metallic walls and contains a shorter

channel than the SPT, whose longer channel walls are typically composed of an insulator

material such as boron nitride.

HETs have advanced significantly since the 1970s, and their development continues yet

today. To combat the high rate of erosion at thruster channel walls, magnetically-shielded

thrusters were constructed. [26] Today, thrusters are being scaled from their traditional

power levels to both higher (100 kW+) and lower levels (<100 W) of power. [27, 28]

When these new configurations become available for flight, the breadth of applicability of

the HET may increase greatly to include missions for small satellites such as cubesats as

well as larger vehicles for deep space missions.
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Figure 1.5: Cross section of Hall effect thruster channel.

1.6.1 Hall Effect Thruster Operating Principles

The HET is an electrostatic accelerator that utilizes the Hall effect to confine electrons and

a large electric field to accelerate ions and generate thrust. A schematic of a HET channel

cross section is shown in Fig. 1.5. The device contains either electromagnets or permanent

magnets that create a primarily radial magnetic field inside the thruster channel and its

near-field plume. Typical nominal operating conditions for Fakel’s SPT100M, an HET in

the kW range, are displayed in Table 1.1. For operation, a noble gas such as xenon is

injected at the anode-side of the thruster, and electrons are emitted into the flowfield via an

external cathode which lies downstream of the thruster. An electric potential difference is

applied between the anode and the cathode, with ground taken such that the anode potential

is positively biased by several hundred volts, and the cathode potential is slightly negative.

The gyroradius or Larmor radius, rL, describes the radius of the circular motion of a
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Table 1.1: Typical operating conditions and orders of magnitude for a Hall thruster in the
kW range (Fakel SPT100M). Values obtained from Reference [25].

Parameter Value

Channel length, L 2.5 cm

Inner channel radius, R1 3.5 cm

Outer channel radius, R2 5.0 cm

Discharge current, ID 4.5 A

Discharge voltage, VD 300 V

Power, PD 1350 W

Xenon mass flow rate, ṁ 5.3 mg/s

Thrust, T 90.2 mN

Specific impulse, Isp 1734 s

Mean velocity of ion beam, Vi,b 17 km/s

charged particle in the presence of a magnetic field. It is described by:

rL = v⊥/ωB (1.14)

where v⊥ is the particle’s velocity perpendicular to the magnetic field, and ωB is the par-

ticle’s cyclotron frequency. Inside the thruster channel, electron-neutral collisions occur,

and positively charged ions are generated via electron-impact ionization. The ions have

a large gyroradius compared to the diameter of the channel and therefore remain mostly

non-magnetized. Thus, ions are electrostatically accelerated out of the channel. Due to

quasineutrality, the axial force density acting on ions due to the electric field (eneEz) is

equal and opposite to the axial force density acting on electrons. However, electrons have

a small gyroradius, and in the presence of a radial magnetic field, they cannot freely accel-

erate toward the anode. Instead, they drift in the azimuthal direction, thereby generating

an axial magnetic field force density on themselves due to the interaction of the azimuthal

current density and the radial magnetic field (je,θ × Br), where je,θ is known as the Hall
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current. This force density is approximately equal and opposite to the electrostatic force

density acting on the electrons; therefore, electron motion toward the anode is impeded

by the magnetic field. The measure of electron confinement due to the magnetic field is

described by the Hall parameter, Ω, which is the ratio of the electron cyclotron frequency

to the electron momentum transfer frequency, νm:

Ω = ωB,e/νm (1.15)

Ω is typically much larger than unity in a HET, indicating that electrons are at least partially

confined, resulting in a favorable probability of ionization collisions with neutral atoms.

In Fig. 1.5, three overlapping regions are shown (not to scale) to portray the major

processes that occur inside the discharge channel of a typical HET. Near the anode, electron

diffusion is high, and the magnetic field is low. Neglecting the anode sheath, which may

span a few Debye lengths near the anode surface, the electric field is also typically small

in the near-anode region. Near the exit of the thruster channel, the electric and magnetic

fields are large, ionization occurs, and ions are accelerated out of the channel to generate

thrust.

1.6.2 Hall Thruster Challenges

Ultimately, the goal of developing HETs from an engineering perspective is to improve

metrics such as thruster performance, efficiency, and lifetime. However, there are several

fundamental, unknown aspects related to their operation. Together with experimental and

theoretical work, modeling efforts may lead to a better understanding of these fundamental

questions. Although not intended to be an exhaustive review, this section outlines some of

the aspects of HETs that affect the device’s key metrics including performance, efficiency,

and lifetime. Comprehensive reviews of HET physics as well as research efforts devoted

to modeling can be found in the literature by Boeuf [25], Goebel and Katz [23], and Hara
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[29], among others.

Thruster performance and stability are affected by a wide range of plasma oscillations,

ranging from narrow-band, coherent waves to broadband turbulence (1 kHz-50 MHz). [30]

Perhaps most ubiquitous to thruster operation is the “breathing mode”, a low frequency

global oscillation ranging from 15-35 kHz that results in a global depletion and replen-

ishment of neutral particles and can vary significantly in amplitude, depending on the

operating condition. [31] The azimuthal spoke oscillation, also a part of the low fre-

quency band, is associated with a perturbed azimuthal electric field and density that are

observed to oscillate in-phase with a rotating spoke. [32] The electron cyclotron drift insta-

bility (ECDI), implicated in electron heating and possibly related to anomalous transport,

is an azimuthal mode associated with an electron density fluctuation and lies in the MHz

frequency range. [33] The high frequency band is associated with both transient-time os-

cillations and Rayleigh-type instabilities. [34]

Thruster efficiency, η = Tve/Pin, where Pin is the input power, is largely determined

by the ionization and acceleration processes, and these processes are primarily dictated

by electron transport. Non-classical, cross-field electron transport, often called anomalous

electron transport, affects the mobility of electrons in the thruster and has been qualitatively

attributed to phenomena including wall collisionality and plasma turbulence. [35] Electron

transport is the subject of a large body of past and current research. For example, theo-

retical and modeling efforts have recently focused on investigating ECDI as a source for

anomalous transport. [36] Recent experimental evidence suggests that electron transport

is directly correlated with the breathing mode; that is, transport profiles indicate that the

anomalous collision frequency fluctuates by several orders of magnitude over the course

of a breathing cycle; [37] and it has been suggested via experimental evidence that the in-

crease in neutral particles due to the finite background pressure in a vacuum test chamber

shifts the location of the acceleration zone, resulting in different thruster behavior on orbit

compared to ground testing, but the reason for this has not yet been established from first
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principles. [38]

The service lifetime of the HET has historically been limited by high rates of erosion

at the thruster channel walls, implying that plasma-wall interactions are very important in

these devices. [39] Due to magnetic shielding in newer thruster configurations, erosion of

the channel walls has been significantly reduced since the electric field intensity near the

walls is lowered, reducing ion bombardment. [40] However, recent studies show that the

movement of the acceleration zone in magnetically shielded thrusters compared to standard

configurations may result in additional erosion of thruster pole pieces since the movement

of the potential contours at the edge of the plasma beam allow for high energy ions to be

accelerated radially toward the pole pieces. [41] Thus, plasma-wall interactions continue

to be an area of interest and importance for the HET.

High fidelity computational models are useful to investigate the physical processes that

affect a thruster’s performance, efficiency, and lifetime limitations. The non-equilibrium

nature of the plasma transport should be resolved so that the flow can be accurately char-

acterized. The primary purpose of the present work is to apply a two-dimensional, deter-

ministic, direct kinetic algorithm to a HET simulation and investigate its ability to capture

complex phenomena compared to a state-of-the art PIC simulation.

1.7 Research Objectives

The goal of this work is to improve the state-of-the art modeling approach for the Hall

effect thruster and to understand the capabilities and limitations of the utilized modeling

techniques. To that end, the following objectives are met in in this work:

• Development of a two-dimensional, hybrid-DK simulation of a Hall thruster channel

and its near-field plume.

• Development of conservative kinetic boundary conditions for particle-wall collisions

in the thruster channel and at the pole pieces.
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• Analysis of injection boundary conditions in the DK simulation.

• Modification and additional development of a two-dimensional, hybrid-PIC simula-

tion, including a study on the limitations of the Monte Carlo collision (MCC) algo-

rithm.

• Development of an anode boundary condition within the electron fluid simulation

framework.

• Benchmarking of the developed hybrid-DK simulation with a comparable hybrid-

PIC simulation, modeling the UM/AFRL P5 Hall thruster.

Relevant to the DK numerical method as well as Hall effect thrusters but distinct from full

HET modeling, a preliminary two-dimensional DK plasma sheath model is also introduced.

Objectives include:

• Development of conservative kinetic boundary conditions, particularly at the plasma

injection site.

• Development, verification, and implementation of a two-dimensional DK plasma

sheath simulation.

The thesis is set up as follows. Chapter II describes the equations that govern the

physics of the discharge plasma in a Hall thruster channel and near-field plume. Chapter

III describes the numerical techniques that are utilized to implement the governing equa-

tions in hybrid-DK and hybrid-PIC simulations. Chapter IV describes the development of

conservative boundary conditions for the two-dimension DK algorithm. Chapter V presents

results for the benchmarking effort, and limitations are discussed for both the DK and PIC

techniques. In Chapter VI, results for a fully two-dimensional, collisionless plasma sheath

are presented. Finally, in Chapter VII, conclusions and future work are discussed.
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CHAPTER II

Governing Equations

“Plasma physics is usually not a precise science. It is rather a web of overlapping

points of view, each modeling a limited range of behavior. Understanding of

plasmas is developed by studying these various points of view, all while keeping

in mind the linkages between the points of view.”

– Paul M. Bellan, Fundamentals of Plasma Physics

This chapter is concerned with the equations that govern the physics of the discharge

plasma in a Hall effect thruster channel and near-field plume. This work models a HET

in two (z, r) spatial dimensions. As shown in Fig. 1.1 of Chapter I, the Debye length in

a HET is on the order of 1 µm - 0.1 mm. Because the plasma Debye length is small

compared to the spatial resolution achieved with the numerical model in this study, the

quasineutral approximation is used, i.e. ne = Zni, where Z is the degree of ionization.

The HET magnetic field configuration and its relationship to the electron simulation grid

is described in Section 2.1. The fluid electron equations are detailed in Section 2.2, and

the kinetic equations that govern more massive ions and neutral particles are discussed

in Section 2.3. Current conservation in the device is detailed in Section 2.4, and particle

collisions and electron transport are described in Section 2.5 and Section 2.6, respectively.

Details regarding the numerical implementation of the governing equations via the DK and

PIC methods are described in Chapter III.
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2.1 Magnetic field

To sufficiently confine electrons inside the thruster channel, the magnetic field in a HET

is optimized via a combination of electromagnets both internal and external to the device.

The magnetic field, B, is governed by Maxwell’s equations, which in differential form are

described by the following expressions:

∇ ·B = 0 Gauss’ Law for Magnetism (2.1a)

∇×B = µ0

(
j + ε0

∂E

∂t

)
Ampère’s Law (2.1b)

where µ0 is the vacuum permeability and j is the current density. Eq. (2.1a) states that the

divergence of the magnetic field is zero everywhere. Because the field is divergence-free, a

magnetic field stream function, λ, that is perpendicular to B may be constructed. One such

possible stream function corresponds to:

∂λ

∂r
= rBz (2.2a)

∂λ

∂z
= −rBr (2.2b)

where z and r denote the axial and radial directions, respectively. The magnetic field

stream function is important for the construction of a quasi-one dimensional electron fluid

solver, as the magnetic field streamlines make up the electron grid. As will be described in

Section 2.2, electron motion perpendicular to the magnetic field is important. Therefore, it

is necessary to calculate the normal derivative to the magnetic field streamlines, ∂
∂n̂

, which
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is described by:

∂

∂n̂
=

∂

∂λ

∂λ

∂n̂
=

∂

∂λ
∇λ (2.3)

The vector normal to B is described by n̂:

n̂ =
Bz

B
r̂ − Br

B
ẑ (2.4)

and the gradient of λ is:

∇λ =
∂λ

∂r
r̂ +

∂λ

∂z
ẑ = rBz r̂ − rBrẑ (2.5)

Combining Eq. (2.4) and Eq. (2.5), Eq. (2.3) can be recast as:

∂

∂n̂
= rB

∂

∂λ
n̂ (2.6)

If variations in the magnetic field due to plasma currents and dynamic electric fields are

assumed to be small compared to the field produced by the electromagnets, Ampère’s law

(Eq. (2.1b)) reduces to:

∇×B = 0 (2.7)

This is a reasonable assumption in a HET, since µ0

(
j + ε0

∂E
∂t

)
≈ 0.02 T/m which is small

compared to magnetic field gradients due to electromagnetics (≈ 0.5 T/m). [42] Therefore,

a magnetic potential function, σ, exists such that

B = ∇σ (2.8)
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and Laplace’s equation must be satisfied in the plasma region, namely:

∂2σ

∂z2
+
∂2σ

∂r2
+

1

r

∂σ

∂r
= 0 (2.9)

The relationship between B, σ, and λ is described by:

Bz =
1

r

∂λ

∂r
=
∂σ

∂z
(2.10a)

Br = −1

r

∂λ

∂z
= −∂σ

∂r
(2.10b)

If sufficient boundary information is available, the vacuum magnetic field can be numeri-

cally obtained by solving Laplace’s equation (Eq. (2.9)). If measured magnetic field data

is provided, it is possible to check how much the field varies from a vacuum condition by

determining the deviation from zero for the following expression:

∇×B =

(
∂Br

∂z
− ∂Bz

∂r

)
θ̂ (2.11)

The magnetic field is assumed to be static for the purposes of the HET simulation (∂B
∂t

=

0). A typical magnetic field configuration for a SPT is shown in Fig. 2.1. Both the two-

dimensional field configuration for an axial-radial thruster cross section as well as the radial

magnetic field magnitude along the thruster channel centerline are displayed. Note that the

Hall parameter is typically largest near the thruster channel exit, where the radial magnetic

field is the largest, indicating that electron confinement is also high at that location.

2.2 Electrons

Since their characteristic time scale is much smaller than that of ions due to the large

difference in mass, electrons are considered to be at steady state on the time scale of ions.
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Figure 2.1: Typical magnetic field configuration in a Hall thruster. On the left,
experimentally-obtained magnetic field lines are shown in z-r geometry. On the right,
the radial magnetic field for the NASA-173Mv1 thruster is shown as a function of axial
position from the anode. Image reproduced from Reference [43].

Along a magnetic field streamline, thermal equilibrium of confined electrons is assumed,

allowing for the approximation of constant electron temperature. Assuming a Maxwellian

distribution for electrons and an isotropic pressure, a quasi-one-dimensional fluid electron

algorithm, similar to the approaches used by Koo and Boyd, Fife, and Hagelaar et al, is

employed. [44, 42, 45]

The conservation of mass, momentum, and energy must be satisfied in the fluid ap-

proach. The conservation equations are derived by taking moments of the kinetic equation

for electrons (Eq. (1.7)). In their general form, the fluid conservation equations are de-

scribed by:

∂n

∂t
+∇ · (nu) = ṅ (2.12)

∂(mnu)

∂t
+∇ · (mnuu + P ) = qn(E + u×B) + R (2.13)
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∂(nε)

∂t
+∇ · (nεu + u · P + q) = j · E− Λ (2.14)

where u is the bulk velocity, ṅ is the particle production and loss rate, P is the pressure

tensor, R is the momentum change due to collisions and shear forces, ε is the total energy,

q is the conductive heat flux, and Λ is the energy loss due to elastic and inelastic collisions.

2.2.1 Electron Momentum Perpendicular to the Magnetic Field

Across lines of force, i.e. perpendicular to magnetic field streamlines, the force balance

on electrons is described by the one-dimensional generalized Ohm’s Law, also known as

the drift-diffusion approximation. [29] This approximation assumes that the time-varying

evolution of physical phenomena is slow compared to low-frequency plasma structures on

the order of the ion and neutral motion. Additionally, the inertia term is neglected, an

appropriate assumption when the bulk velocity is much smaller than the thermal velocity.

These assumptions are valid provided that high-frequency instabilities on the order of the

electron time scales are negligible. The momentum transfer term in Eq. (2.13) is assumed

to follow R = −mnνm(u− uk), where νm is the momentum transfer collision frequency.

The bulk velocity of the other species involved in the collision event, uk ≈ 0. Assuming

an isotropic pressure and applying the ideal gas law, the electron current density can be

written from Eq. (2.13) as:

je,⊥ = eneue,⊥ = eneµ

(
E⊥ −

1

ene
∇⊥pe

)
= eneµE⊥︸ ︷︷ ︸

drift

− eD

kbTe
∇⊥pe︸ ︷︷ ︸

diffusion

(2.15)

where µ is the mobility and D is the diffusivity. Furthermore, the pressure, pe is described

by:

pe = nekbTe (2.16)
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where Te is the electron temperature. The electric field, E⊥, is simply the gradient of the

potential:

E⊥ = −∂φ
∂n̂

(2.17)

The classical electron conductivity across magnetic field lines, σ⊥, is described by:

σ⊥ =
e

meνm

1

1 + Ω2
(2.18)

where me is the electron mass. The mobility is related to the conductivity via:

σ = eneµ (2.19)

and the diffusivity, Dm, and the mobility are related by the Einstein relation:

Dm

µ
=
kbTe
e

(2.20)

Therefore, Eq. (2.15) becomes:

je,⊥ = σ

(
−∂φ
∂n̂

+
1

ene

∂

∂n̂
(nekbTe)

)
(2.21)

Using Eq. (2.6), Eq. (2.21) can be rewritten so that the derivatives are taken with respect to

the magnetic field streamlines. However, it is necessary to first consider thermal equilib-

rium of confined electrons, as described in Section 2.2.2.

2.2.2 Electron Momentum Parallel to the Magnetic Field

The concept of the thermalized potential is one of the most important tenets of the quasi-

one-dimensional electron fluid algorithm. Electron dynamics occur very rapidly along

magnetic streamlines, and diffusion parallel to the magnetic field is much larger than diffu-
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sion perpendicular to it. Thus, using the assumptions from the drift-diffusion approxima-

tion, including no friction, Eq. (2.13) reduces to a balance between electric and pressure

forces and can be written as:

ene
∂φ

∂t̂
− ∂

∂t̂
(nekbTe) = 0 (2.22)

where t̂ is the direction tangent to the magnetic field streamlines. Since electron dynamics

in the parallel direction occur on a timescale much smaller than that in the perpendicu-

lar direction, it is assumed that electrons reach thermal equilibrium along magnetic field

streamlines very rapidly. Due to this isothermal condition, Eq. (2.22) can be reduced to:

ene
∂φ

∂t̂
= kbTe

∂ne

∂t̂
(2.23)

Eq. (2.23) can be integrated with respect to λ to obtain:

φ∗(λ) = φ(λ, r)− kbTe(λ)

e
ln(ne(λ, r)) (2.24)

φ∗ is known as the thermalized potential and was originally introduced by Morozov et al.

[46] Based on Koo and Boyd’s previous work, Eq. (2.24) is modified slightly in the present

work to include a reference plasma density, n∗e, so that the expression reads: [44]

φ∗(λ) = φ(λ, r)− kbTe(λ)

e
ln

(
ne(λ, r)

n∗e

)
(2.25)

Since the reference density is a constant value, the modified expression does not change

the calculation of φ(λ, r) unless ne(λ, r) falls below n∗e. In the simulation, this situation

is avoided by ensuring threshold limits are applied for the minimum plasma density in the

domain.
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2.2.3 Electron Current Density in the λ Grid

Using the expression for the electron current density in Eq. (2.21) in conjunction with the

description of the thermalized potential in Eq. (2.25), an expression for je,⊥(λ, r) can be

determined. Note that Te = Te(λ), φ∗ = φ∗(λ), φ = φ(λ, r), and ne = ne(λ, r). The

gradient of the thermalized potential, ∂φ
∗

∂n̂
, is described by:

∂φ∗

∂n̂
=
∂φ

∂n̂
− kbTe

e

∂ ln(ne)

∂n̂
− kb

e
ln

(
ne
n∗e

)
∂Te
∂n̂

(2.26)

Thus, Eq. (2.21) becomes:

je,⊥ = σ

(
−∂φ

∗

∂n̂

kbTe
e

∂ ln(ne)

∂n̂
− kb

e
ln

(
ne
n∗e

)
∂Te
∂n̂
− 1

ene

∂(nekbTe)

∂n̂

)
(2.27)

Expanding the last term and simplifying, the expression becomes:

je,⊥ = σ

(
−∂φ

∗

∂n̂
−
[
ln

(
ne
n∗e

)
− 1

]
kb
Te

∂Te
∂n̂

)
(2.28)

Finally, Eq. (2.28) can be re-written as a function of λ:

je,⊥ = σrB

(
−∂φ

∗

∂λ
−
[
ln

(
ne
n∗e

)
− 1

]
kb
Te

∂Te
∂λ

)
(2.29)

The electron current across a given magnetic field streamline can be calculated by integrat-

ing the contribution of particles that pass through the λ surface. Thus,

Ie =

ˆ
S

je,⊥∂S (2.30)

2.2.4 Electron Energy

Assuming that kinetic energy is negligible compared to internal energy and that the elec-

trons take on a Maxwellian distribution (which is necessary for the fluid approximation),
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the electron mean energy is described by ε = 3
2
kbTe
e

. The assumption of negligible kinetic

energy is applicable when the electron bulk velocity is much smaller than the electron ther-

mal velocity (low Mach number approximation). Strictly speaking, this assumption is not

valid in the region where E×B drift is large. [29] Mean energy is transported via advection

and diffusion, which are balanced by Joule heating and elastic and inelastic energy losses.

Eq. (2.14) can therefore be recast as:

∂

∂t

(
3

2
nekbTe

)
+∇ ·

(
5

2
nekbTeu + qe

)
= je · E− Λi (2.31)

where Λi is the energy loss term due to inelastic collisions. Elastic energy losses due to

heating via internal pressure gradients cancel with the pressure tensor term on the left hand

side of Eq. (2.14), and Joule heating (je ·E) is the heating term due to collisional drag. [47]

Using the method followed by Koo, the electron energy equation can be further modi-

fied. [48] Heat conduction, qe, is written as:

qe = −Ke∇Te (2.32)

where the thermal conductivity, Ke, is described in terms of the thermal diffusivity, Dh, for

a monatomic specie:

Ke = ρcpDh =
5

2
nekbDh (2.33)

The mass diffusion coefficient, Dm, conforms to the expression described by Eq. (2.20). A

fundamental assumption of this analysis is that heat and mass diffuse by the same mecha-

nism. Therefore, Dh = Dm, and the thermal conductivity can be described as a function of

electron temperature and electron mobility:

Ke =
5nek

2
bTeµe,⊥
2e

(2.34)
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Furthermore, the loss terms on the right hand side of Eq. (2.31) can be written as:

je · E = −neeu · E (2.35)

and

Λi = neeεν(ε) (2.36)

where ν(ε) represents the frequency of electron energy losses. Eq. (2.31) is thus recast in

its final form as:

∂

∂t
(neε) +∇ ·

(
5

3
neεue −

10µe,⊥ε

9
∇ε
)

= −neue · E− neεν(ε) (2.37)

2.3 Ions and Neutral Particles

Since the HET plasma is in a non-equilibrium state, ions and neutral atoms are modeled

using the DK or PIC kinetic techniques. A variety of physical phenomena occur in the

thruster that contribute to the non-Maxwellian nature of the plasma. For example, the

overlap of the ionization and acceleration regions in the channel may lead to a dispersion

in the ion velocity. [49] In the plume, both high and low energy ions are present, with

the latter dominating at large plume angles. [50] Some HET simulation techniques elect

to model neutral particles using a continuum approach, but it has been demonstrated that

neutral atoms play an important role in discharge plasma physics, for example via charge

exchange (CEX), so this work applies a kinetic approach for both ions and neutral particles.

[7, 51]

The DK approach considers the direct solution of the kinetic equation. For singly

charged ions and neutral atoms, the distribution function, f , evolves over time, t, physical
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space, z and r, and velocity space, vz and vr, according to the following kinetic equations:

∂fi
∂t

+ vz
∂fi
∂z

+ vr
∂fi
∂r

+
eEz
mi

∂f

∂vz
+
eEr
mi

∂f

∂vr
= Si (2.38a)

∂fn
∂t

+ vz
∂fn
∂z

+ vr
∂fn
∂r

= Sn (2.38b)

In Eqs. (2.38a) and (2.38b), mi is the particle mass, and subscripts i and n denote ions

and neutral species, respectively. Ions in Eqn. (2.38a) accelerate due to the force from the

electric field, E = (Ez, Er). Since ions have a large gyroradius compared to the diameter

of the channel, they are considered to be unmagnetized; therefore, the magnetic field force

acting on ions is neglected. The general collision term is denoted by S, and it is calculated

as the sum of collisions due to singly charged ionization which is discussed in Section 2.5.

The PIC approach considers the trajectories of each individual macroparticle through

space and over time, effectively tracking the temporal change of the position of particles in

phase space, namely:

dz

dt
= v (2.39a)

dv

dt
=

F

m
(2.39b)

where F is the field force acting on the particle of interest, i.e. Fi = eE and Fn = 0
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2.4 Current Conservation

Assuming there is no charge buildup in the device, the total current, IT , which includes the

sum of the ion and electron contributions, is conserved. IT is thus described by:

IT =

ˆ
S

je,⊥∂S +

ˆ
S

ji,⊥∂S (2.40)

The ion current across a given magnetic field streamline can be calculated by integrating

the contribution of particles that pass through the λ surface. Thus,

Ii =

ˆ
S

ji,⊥∂S =

ˆ
S

eniui,⊥∂S (2.41)

Incorporating the expressions for the electron and ion current contributions, namely

Eq. (2.29) and Eq. (2.41), Eq. (2.40) becomes:

IT = −∂φ
∗

∂λ

ˆ
S

eneµrB∂S −
ˆ
S

eneµrB

[
ln

(
ne
n∗e

)
− 1

]
kb
e

∂Te
∂λ

∂S +

ˆ
S

enivi∂S

(2.42)

Eq. (2.42) can be rearranged to solve for the thermalized potential gradient, and summation

across the domain is performed:

λc∑
λ=λa

∂φ∗

∂λ
dλ = −

λc∑
λ=λa

IT
1´

S
eneµrB∂S

dλ

−
λc∑

λ=λa

´
S
eneµrB

[
ln
(
ne

n∗e

)
− 1
]
kb
e
∂Te
∂λ
∂S´

S
eneµrB∂S

dλ

+
λc∑

λ=λa

´
S
enivi∂S´

S
eneµrB∂S

dλ (2.43)

The total current, IT , is constant across all field lines and can be moved outside of the

sum. If the thermalized potential is known at the anode and cathode, the expression for the
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current simplifies to:

IT =

(
λc∑

λ=λa

dλ´
S
eneµrB∂S

)−1

φ∗(λa)− φ∗(λc)− λc∑
λ=λa

´
S
eneµrB

[
ln
(
ne

n∗e

)
− 1
]
kb
e
∂Te
∂λ
∂S´

S
eneµrB∂S

dλ+
λc∑

λ=λa

´
S
enivi∂S´

S
eneµrB∂S

dλ


(2.44)

2.5 Particle Collisions

Inelastic collisions play an important role in HET operation, as electron impact ionization

of neutral propellant atoms both ignites and sustains the plasma discharge. Xenon is a

noble gas with a large atomic mass and relatively low ionization energy, and for these

reasons, it is commonly used as the propellant in a HET. Singly charged ions are the

dominant ion species, and in this study, only singly charged, direct ionization collisions

(Xe+e− → Xe+ +2e−) are taken into account. However, it is worth noting that doubly and

triply charged ions created via direct and stepwise ionization collisions are also observed in

the HET discharge. For discharge voltages up to 300 V, the number flux fraction of doubly

charged ions is 6-11%, and it is higher for larger discharge voltages. [52] Triply charged

ions make up no more than a few percent of the total ion current in a HET discharge, but

their presence becomes more important with larger discharge voltages and higher electron

temperatures. [53] Furthermore, there is evidence to suggest that these high charged states

are found in magnetically-shielded thrusters. [54]

Although typically not included in HET models (including the present model), some

important excited states of xenon neutral atoms include the metastable state (Xe∗(3P2)) and

radiative state (Xe∗(3P1)), among others. [29] Near the anode, the electron temperature is

on the order of 2-5 eV, allowing for the presence of electronically excited states of xenon

gas. Therefore, stepwise ionization to singly charged ions (Xe∗+ e− → Xe+ + 2e−) in this
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region may occur.

The ionization rate, ṅion, is given by:

ṅion = nnneξ(ε) (2.45)

where the electron density is equal to the ion density due to the quasineutral assumption.

The reaction rate coefficient is a function of the particle energy distribution function of

each reactant species, but because electrons are much less massive than neutral atoms, they

have a much greater thermal velocity, and the rate coefficient can be reduced to a function

of the electron energy distribution function, εe, namely: [53]

ξ =

ˆ ∞
ε0

(
2εe
me

)(1/2)

σi(εe)fe(εe)dεe (2.46)

where ε0 is the activation energy and σi is the collision cross-section. If electrons are

described by a Maxwellian distribution function, then ξ = ξ(Te), and if collision cross-

sections are known, Eq. (2.46) can be integrated to determine the rate coefficient. In this

study, ionization cross-sections come from Puech and Mizzi. [55] For reference, ionization

rates for singly-charged, doubly-charged, and stepwize ionization rates are calculated and

plotted as a function of mean electron energy in Fig. 2.2. The DK method calculates ion-

ization collisions in a deterministic fashion, while the PIC method utilizes the Monte Carlo

Collision (MCC) approach. These numerical methods are described in Chapter III.

In some instances, low-energy neutral atoms and high-energy ions may collide with

one another elastically, and an electron transfer event may occur (Xeslow + Xe+
fast →

Xefast + Xe+
slow). This is known as a charge exchange (CEX) collision. This type of

collision may significantly alter the VDFs, depopulating the high-energy region of the ion

VDF and populating the low energy portion. The opposite happens for the neutral particle

VDF, and thus the CEX collision creates a slow ion and a fast neutral atom. CEX collisions

are known to be important in the plume region where the ionization rate is small. In space-
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Figure 2.2: Xenon ionization rate coefficients. Singly charged ionization: Xe + e− →
Xe+ +2e−; stepwise ionization: Xe+ + e− → Xe++ +2e−; and doubly charged ionization:
Xe + e− → Xe++ + 3e−. Image modified from Reference [48].

craft integration, CEX collisions are especially important, as they may result in vehicle

sputtering and contamination. [56] Since the effects of CEX collisions are relatively small

inside the thruster channel, this type of collision process is neglected in the present work.

2.6 Electron Transport and Energy Loss Mechanisms

The electron conductivity, σ, across magnetic field lines consists of classical and anomalous

contributions. Restated from Eq. (2.18), the electron mobility (µ = σ
ene

) perpendicular to

the magnetic field is a function of the electron momentum transfer frequency, νm, and the

electron cyclotron frequency, ωB,e:

µe,⊥ =
e

meνm

1

1 + Ω2
(2.47)

36



where the Hall parameter, Ω =
ωB,e

νm
. In this study, νm is simply augmented to account

for effects of non-classical electron transport. This is necessary since electron transport

perpendicular to the magnetic field is higher than predicted by classical transport. This

approach of incorporating anomalous transport into the cross-field electron mobility term

results in a modification of the drag term, R, in Eq. (2.13), where Rano = −mnuνano and

νano is the frequency due to anomalous scattering.

The electron momentum transfer frequency is taken to be the frequency of electron-

neutral collisions. Both electron-wall collisions and collisions due to Bohm diffusion are

considered to be anomalous contributions to the overall electron collision frequency. The

electron-neutral collision frequency, electron-wall collision frequency, and the effective

Bohm collision frequency are calculated via the following expressions: [57]

νneut = kmnn (2.48)

νe,wall = 107αw (2.49)

νBohm = αbωB,e (2.50)

where km = 2.5 × 10−13 m-3 s-1 and αb is a coefficient less than 1. An example of cal-

culated collision frequencies for electron-neutral collisions (νneut), electron-ion collisions,

electron-wall collisions (νe,wall), and Bohm collisions (νBohm) in a typical HET channel

and near-field plume is shown in Fig. 2.3.

Energy losses associated with ionization and excitation from the ground state as well

as electron-wall losses are considered based on the computational models of Boeuf and

Garrigues. [57] The expression for the frequency of electron energy loss due to ionization
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Figure 2.3: Collision frequency vs dimensionless axial position along the thruster channel
centerline of a 6 kW Hall thruster for a total vacuum pressure condition (p = 0)

. Image modified from Reference [58].

and excitation from the ground state is described by:

ν(ε)e−Xe = nnke−Xe(ε) (2.51)

where ke−Xe(ε) represents the loss rate due to singly charged ionization from the ground

state. The frequency of electron energy loss to the walls is described by:

ν(ε)walls = 107αw exp

(
−Uloss
ε

)
(2.52)

where Uloss represents the potential barrier due to the formation of a dielectric sheath at the

walls and αw < 1 represents the relative frequency of electron-wall collisions.
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CHAPTER III

Numerical Methods

“All models are wrong, but some are useful.”

– George E. P. Box

In this chapter, the hybrid-DK and hybrid-PIC numerical methods are introduced. The

DK approach solves kinetic equations, such as the Vlasov and Boltzmann equations, in

discretized phase space by evaluating the grid-based VDFs as they evolve over time. This

Eulerian approach is distinct from the Lagrangian PIC approach, which models the trajec-

tories of macroparticles in space and tracks their motion over time. In this work, a quasi-

one-dimensional fluid algorithm is applied for electrons, and the DK and PIC approaches

are used to model comparatively massive ions and neutral particles.

The chapter is set up as follows: DK and PIC methods are compared in Section 3.1, and

existing hybrid-PIC HET simulations are reviewed in Section 3.2. The general simulation

framework is described in Section 3.3, and the fluid electron algorithm is detailed in Sec-

tion 3.4. Finally, kinetic ion and neutral algorithms for both the discretized DK and PIC

models are described in Section 3.5.

3.1 Comparison of Direct Kinetic and Particle Methods

A brief synopsis of the general differences between the DK and PIC approaches is found in

Table 3.1. Additionally, Figure 3.1 displays graphically the distinction between fluid, PIC,
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and DK methods. The Vlasov and Boltzmann equations (Eq. (1.7)) are multidimensional,

first-order, hyperbolic PDEs. The Eulerian DK approach solves these kinetic equations

in discretized phase space by evaluating the grid-based VDFs as they evolve over time

(Eqs. (2.38a), (2.38b)), whereas the Lagrangian PIC approach models the trajectories of

macroparticles in space and tracks their motion over time, considering the set of two first-

order ordinary differential equations (ODEs) of motion (Eqs. (2.39a), (2.39b)) for each

individual macroparticle.

Although PIC techniques are more common, grid-based approaches similar to the DK

method have been used in research areas including space physics, astrophysics, and toka-

mak modeling applications. The first grid-based Vlasov simulation was developed by

Cheng and Knorr, and it utilized a finite difference scheme with cubic spline interpolation.

[59] Other grid-based approaches have since been employed, including the finite volume

method and the semi-Lagrangian technique. [60] The computational memory per physical

cell is Nd
v , where Nv is the number of grid points in velocity space, and d is the number

of dimensions. [7] For large systems, the computational cost may be prohibitive, and the

grid size can be simplified through methods including phase space reduction [61, 62] and

adaptive grid techniques. [63] The method utilized in this work, known as the direct kinetic

(DK) method, was developed by Hara et al [7, 15]. It is a second-order accurate, finite vol-

ume solution technique with a modified Arora-Roe limiter to calculate the numerical flux

of kinetic quantities through each cell interface, and it utilizes a Runge-Kutta method for

time integration. No adaptive grid techniques are employed.

3.1.1 Numerical Error

Numerical errors are present in both the DK and PIC methods. Sources of numerical error

may include rounding error, truncation error, finite statistical sampling, i.e. the use of a

finite number of randomly distributed particles, and finite grid resolution. The advantage

of the DK method compared to the PIC method is that there is no statistical noise in the DK
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Figure 3.1: A graphical distinction between fluid, PIC, and DK numerical methods, consid-
ering the quantities in a single, discretized cell. Fluid models (left) consider the evolution of
macroscopic quantities via conservation equations. A PIC method (middle) models the tra-
jectories of macroparticles, and a DK method (right) considers the distribution of particles
in phase space. Image reproduced from Reference [29].

Table 3.1: Comparison of direct kinetic and particle-in-cell modeling approaches. [12]

Grid-based (DK) Particle-based (PIC)

Description Calculate VDFs in phase space Solve for motion of macroparti-
cles

Specification Eulerian Lagrangian

Equation Hyperbolic partial differential
equation

Ordinary differential equation

Macroscopic
properties

Moments of VDFs Particle information sampling

Collision rate Integral of collision operator Collision probability

Computational
memory per
physical cell

Nd
v (Nv: number of grid points

in velocity space; d: number of
dimensions)

2dNp (Np: number of particles
per cell; d: number of dimen-
sions)

Primary source of
numerical error

Global truncation error: εT ∼
O[N−pv ] (p is the order of accu-
racy of the numerical scheme)

Statistical noise: εs ∼ O[N
−1/2
p ]
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algorithm. The statistical noise associated with the PIC algorithm is nearly irreducible, and

thus the resolution of phase space is poor. [64] Statistical noise becomes problematic if the

physics of interest are in the low density region of phase space or the high-energy tail of the

distribution function. [61] Discrete particle noise has been found to dominate the late-time

decay of electron temperature gradient turbulence as well as the steady-state heat transport

in simulations of plasma microturbulence, implying that conclusions regarding the behavior

of such turbulence result from mistaking the effects of discrete particle noise for turbulence.

[65] In HET simulations of the electron cyclotron drift instability, an instability associated

with high frequency oscillatory behavior, it is found that numerical noise is responsible for

the destruction of the cyclotron resonance if the number of macroparticles per cell is lower

than approximately 1000. [39]

There is a body of literature available on discrete particle noise, [66, 67, 68] and for

some plasma models, numerical noise levels are quantified as code and solution verification

issues. [65, 69, 70] Verification is a process that assesses the correctness with which math-

ematical models are reproduced in a computational simulation. Verification can be con-

ducted for the code itself by simulating problems for which analytic solutions are known,

and solution verification can be applied via numerical error analysis of code responses for

a problem without a known solution. [70] However, the credibility of solution verifica-

tion is built upon a solid foundation of code verification problems. To quantify the level

of numerical noise in a PIC simulation during the solution verification phase, statistical

and discretization uncertainties are typically taken into account. The statistical uncertainty

in the solution can be estimated by repeating the simulation with different pseudorandom

number generator seeds. For the discretization uncertainty, the Richardson extrapolation

can be used to approximate the analytical solution (or otherwise high precision solution

of known accuracy), and the grid convergence may then be used to estimate the relative

discretization uncertainty. [69]

In the present study, an axial-radial hybrid-PIC simulation of a discharge plasma is of
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interest. Although such a HET simulation typically exhibits is a dominant low frequency

mode around 10 kHz, numerical noise is nonetheless present in the model. To the author’s

knowledge, error quantification studies have not been performed at the verification stage for

HET hybrid-PIC simulations. Unfortunately, without knowledge of individual numerical

error calculations, this makes it difficult to accurately quantify the overall level of numeri-

cal noise in a multi-parameter simulation at a later stage. This is supported by the absence

of simulation convergence studies for existing hybrid-PIC HET discharge plasma models in

the literature. In general, provided that the grid discretization is satisfactory (v∆t < ∆x),

it is possible to say that the primary source of numerical error associated with the PIC

technique is statistical noise, εs, as indicated in Table 3.1. The source of statistical noise

is attributed to the use of a finite number of discrete macroparticles, and numerical errors

occur when particle information is sampled using averaging techniques. In the hybrid-

PIC simulation, statistical noise is present due to the use of neutral macroparticles, ion

macroparticles, and a stochastic collision technique. The spatial error due to particle sam-

pling is O(N
−1/2
p ) and can be decreased by increasing the number of macroparticles in the

simulation domain. However, for a dynamic simulation, sampling is required often, and

statistical noise increases with the sampling rate. To mitigate the amount of noise associ-

ated with particle sampling, methods such as moment preserving constrained resampling

(MPCR) have recently been introduced into some PIC numerical schemes. [71]

While the DK method contains no statistical noise, it is important that its overall nu-

merical error be relatively low to justify its usage since the computational cost can be quite

high, particularly for multidimensional simulations. The one-dimensional DK numerical

method was verified and validated in previous work by Hara. [7] For the DK method, trun-

cation error, the source of error associated with numerically solving a differential equation

system, was found to be the dominant source of numerical error. Following the error cal-

culations of Hara for the DK method, the local truncation error is O(hp+1) for a p-th order

method, and the global truncation error, or accumulative error, is O(hp) where h represents
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the grid size. For a given system of size Lv, h = Lv/Nv; therefore, the numerical error for

the grid-based method is proportional to O(N−pv ). Note that the temporal error is neglected

in this calculation. The implication is that the error can be reduced by using a larger number

of grid points or a higher order of accuracy in the numerical scheme. The DK simulation

does not require sampling and is therefore well-suited to model dynamically-changing,

non-equilibrium flows such as the HET discharge plasma.

3.2 Review of Hybrid-PIC Hall Thruster Simulations

The discharge plasma in a HET has been simulated using a variety of fluid [72, 73, 74],

kinetic [75, 76, 77], and hybrid [42, 78, 45, 44] modeling techniques in one, two, and three

dimensions. Since this work discusses a two-dimensional model of the thruster channel

and near-field plume, this section will be limited to a review of simulations with a similar

configuration. These simulations leverage the difference in mass between electrons and

ions to treat the electrons as a continuous fluid while ions and neutral particles are treated

as discrete macroparticles; thus, they are known as “hybrid-PIC” simulations. Historically,

hybrid-PIC simulations have performed well in the sense that, when coupled with a rea-

sonable electron transport model, they have produced experimentally-verified steady-state

trends and macroscopic properties including thrust and Isp.

Perhaps the most well-known hybrid-PIC simulation is HPHall which was originally

developed by Fife in the late 1990s and was the first simulation to reproduce an oscillation

of the same frequency as the HET breathing mode. [42] As a result of ongoing model-

ing improvements and additions, the present-day HPHall contains a number of capabili-

ties. First, Gamero-Castaño and Katz implemented channel erosion and improved existing

sheath models based on Ahedo’s model for a three-species plasma sheath. [79, 80] Later,

Parra et al updated heavy particle integration and weighting as well as the cross-field elec-

tron transport model. [81] Hofer et al further improved the cross-field transport and heavy
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species models, and Huismann added a DSMC module for handling momentum-exchange

and charge-exchange collisions between ions and neutral species. [58, 82, 56] Smith and

Boyd updated collision cross sections and added triply charged ions to the simulation, and

Dragnea and Boyd added the capability to use a two-dimensional electron fluid model in

lieu of the quasi-one-dimensional model, although this feature requires further verification.

[53, 83]

In the early 2000s, several HET models were constructed, primarily with the intention

of investigating anomalous electron transport in the z−r domain. The model of Fernandez

et al is similar to HPHall, although details such as the computational grid, integration

scheme, and treatment of nonlinear terms are different. [78] This model was primarily

used by Scharfe et al to create a cross-field electron transport model based on simulated

plasma properties. [84, 85] Another simulation was created by Hagelaar et al in 2002 which

utilized ad hoc empirical parameters to characterize the cross-field electron mobility and

electron energy losses. [45] Koo and Boyd’s hybrid-PIC simulation is somewhat similar to

that implemented by Hagelaar et al., particularly with respect to the implementation of the

current solver; it also focused on the implementation of an appropriate electron transport

model. [44, 48] In this study, a modified version of Koo and Boyd’s simulation is used

for the hybrid-PIC approach. Its use is justified based on the fact that the hybrid-PIC

simulation is written in a Cartesian coordinate system, enabling one-to-one mapping with

the hybrid-DK simulation, and also because there are no additional physics modules, such

as those included in HPHall’s heavy particle algorithm, to further complicate an initial

benchmarking effort for the hybrid-DK simulation.

3.3 Simulation Framework

The simulation domain includes the thruster channel and near-field plume, as illustrated

in Fig. 3.2. A uniform Cartesian grid is used for the kinetic algorithm, and rotational
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Figure 3.2: Hybrid-kinetic simulation domain.

symmetry about the thruster centerline is assumed. Neutral species are injected into the

simulation at the anode side of the thruster (left hand side of the domain). The order of

operations is very similar for the hybrid-DK and hybrid-PIC simulations. Hence, a general

hybrid-kinetic framework is shown in Fig. 3.3. The electron fluid solver is employed to

calculate the discharge current, electric field, and electron energy. The electron energy is

required for the ionization algorithm, and the electric field is an input for the ion solver

within the kinetic framework. The kinetic solver outputs mean properties including the ion

and neutral densities and velocities, and these are passed to the electron solver as required.
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Figure 3.3: Hybrid-kinetic flowchart for the HET plasma simulation. The fluid electron
algorithm is shown on the left, and the kinetic algorithm for ions and neutral particles is
shown on the right.
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3.4 Modeling Electrons

The quasi-one dimensional electron fluid algorithm is used to solve the equations outlined

in Section 2.2. The present section describes how these equations are numerically solved in

both the hybrid-DK and hybrid-PIC simulations. There are two main modules: the current

solver and the electron energy equation solver.

3.4.1 Electron λ Grid

The electron grid is composed of discrete λ-lines, an example of which is shown in Fig. 3.4.

To generate this grid, the magnetic field stream function is created via Eqs. (2.2a) and

(2.2b). Starting at one corner of the domain,Bz andBr are calculated at each nodal location

via the following relationships:

ˆ
dλ =

ˆ
rBzdr (3.1a)

ˆ
dλ =

ˆ
−rBrdz (3.1b)

where r is measured from the centerline of the thruster, i.e. the bottom of the domain

(r = 0) in Fig. 3.2. The absolute value of λ is not important; rather the reference values are

essential. Therefore, the location where the minimum value of λ is found is set to zero, i.e.

λref = λmin, and all other values of λ are calculated with respect to the minimum value

(λ = λ− λref ). The spacing between λ-lines, dλ, is uniform by default, and the number of

desired λ-lines is determined by the user. It is important that there are a sufficient number

of λ-lines inside the thruster channel so that gradients in electron properties are sufficiently

resolved; in cases where uniform spacing of λ results in very few λ-lines inside the channel,

non-uniform spacing must be used.

The electron algorithm primarily considers the active solution domain, which lies be-
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Figure 3.4: Discretized electron λ grid.

tween the anode λ-line, λa, and the cathode λ-line, λc. The anode and cathode magnetic

field streamlines are offset from the left and right hand sides of the domain as shown in

Fig. 3.5. Outside of the active solution domain, flow properties are extrapolated.

3.4.2 Electron Momentum and Current Conservation

Strictly speaking, some charge accumulation may occur at the dielectric insulating walls

of the thruster; [86] however, the electron and ion currents are assumed to balance at the

walls. Therefore, the total current, IT , is conserved. The final form of the total current is
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calculated in Eq. (2.44) and re-written here:

IT =

(
λc∑

λ=λa

dλ´
S
eneµrB∂S

)−1

φ∗(λa)− φ∗(λc)− λc∑
λ=λa

´
S
eneµrB

[
ln
(
ne

n∗e

)
− 1
]
kb
e
∂Te
∂λ
∂S´

S
eneµrB∂S

dλ+
λc∑

λ=λa

´
S
enivi∂S´

S
eneµrB∂S

dλ


(3.2)

where n∗e is a reference plasma density set to n∗e = 1012 m-3. Numerical integration occurs

across each λ surface between λa and λc using a central differencing scheme. In order to

calculate the total current, the thermalized potential, φ∗, at the anode and cathode λ-lines

must be known. In this model, since the plasma density and electron temperature are not

necessarily fixed at the anode or cathode, φ∗ is assumed to float at these locations, but φ is

fixed.

From the total current, the gradient of the thermalized potential can be calculated via

the following expression:

∂φ∗

∂λ
= −IT

1´
S
eneµrB∂S

−

´
S
eneµe,⊥rB

[
ln
(
ne

n∗e

)
− 1
]
kb
e
∂Te
∂λ
∂S´

S
eneµe,⊥rB∂S

+

´
S
enivi∂S´

S
eneµe,⊥rB∂S

(3.3)

The thermalized potential is then calculated using a forward differencing scheme, and the

two-dimensional potential can be directly computed within the active domain as:

φ(λ, r) = φ∗(λ) +
kbTe
e

ln

(
ne(λ, r)

n∗e

)
(3.4)

Note that φ(λ, r) must be interpolated to the Cartesian grid. The potential is simply extrapo-

lated upstream of λa and downstream of λc, as it is assumed that φ should be approximately

constant in the high electron diffusion region in the vicinity of the anode, and likewise the

potential drop reasonably far into the plume is minimal. One of the downsides of solv-
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Figure 3.5: Electron solution geometry, not drawn to scale.

ing Eq. (3.2) directly is that it is not possible to take into account the potential fall due

to an anode sheath since φ must be fixed at λa. An alternative approach to the solution

methodology outlined here is discussed in Ch. VII.

3.4.3 Electron Energy Conservation

The method described in this section corresponds with the numerical scheme outlined by

Koo in Reference [48], similar to the derivation by Fife. [42] Eq. (2.37) is the differential

equation describing the electron energy along the centerline of the thruster. To account for

the contribution of plasma off the centerline, it is volumetrically integrated over the domain

as follows:

ˆ
V

∂

∂t
(neε)dV +

ˆ
V

∇ ·
(

5

3
neεue

)
dV −

ˆ
V

∇ ·
(

10µe,⊥ε

9
∇ε
)
dV

= −
ˆ
V

neue · EdV −
ˆ
V

neεν(ε)dV (3.5)
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Volume integrals are evaluated over the volume centered at εi, as shown in Fig. 3.5, and S1

and S2 integrals are evaluated at the surfaces marked εi−1/2 and εi+1/2, respectively. The

solution methodology is described in the following subsections.

3.4.3.1 The Electron Velocity and Electric Field

To write an ODE for Eq. (3.5), it is necessary to consider (ue,n̂, En̂) = f(ε). The thermal-

ized potential gradient, ∂φ
∗

∂λ
, is a function of ε as follows:

∂φ∗

∂λ
=
−IT +

´
S
enivi∂S´

S
eneµe,⊥rB∂S

−

´
S
eneµe,⊥rB

[
ln
(
ne

n∗e

)
− 1
]
kb
e

2
3
∂ε
∂λ
∂S´

S
eneµe,⊥rB∂S

= j1 + j2
∂ε

∂λ
(3.6)

where the coefficients j1 and j2 are described by:

j1 =
−IT +

´
S
enivi∂S´

S
eneµe,⊥rB∂S

(3.7a)

j2 = −

´
S
eneµe,⊥rB

[
ln
(
ne

n∗e

)
− 1
]

2
3
∂S´

S
eneµe,⊥rB∂S

(3.7b)

Modifying Eq. (2.29) slightly, the electron velocity is described by:

ue,n̂ = µe,⊥rB

(
∂φ∗

∂λ
+

[
ln

(
ne
n∗e

)
− 1

]
2

3

∂ε

∂λ

)
= k1

∂φ∗

∂λ
+ k2

∂ε

∂λ
(3.8)

where the coefficients k1 and k2 conform to:

k1 = µe,⊥rB (3.9a)
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k2 =
2

3
µe,⊥rB

[
ln

(
ne
n∗e

)
− 1

]
(3.9b)

Substituting Eq. (3.6) into Eq. (3.8), the following expression is obtained for ue,n̂:

ue,n̂ = k1

(
j1 + j2

∂ε

∂λ

)
+ k2

∂ε

∂λ

= k1j1 + (k1j2 + k2)
∂ε

∂λ
(3.10)

Finally, the electric field, En̂, can be calculated as follows:

En̂ = −∂φ
∂n̂

= −∂φ
∗

∂n̂
− 2

3
ε
∂ ln(ne)

∂n̂
− 2

3

∂ε

∂n̂
ln

(
ne
n∗e

)
= −rB∂φ

∗

∂λ
− 2

3
rB

∂ ln(ne)

∂λ
ε− 2

3
rB ln

(
ne
n∗e

)
∂ε

∂λ

= h1
∂φ∗

∂λ
+ h2ε+ h3

∂ε

∂λ
(3.11)

where coefficients h1, h2, and h3 are described by:

h1 = −rB (3.12a)

h2 = −2

3
rB

∂ ln(ne)

∂λ
(3.12b)

h3 = −2

3
rB ln

(
ne
n∗e

)
(3.12c)

Computing the expression for ∂φ∗

∂λ
using Eq. (3.6), Eq. (3.11) simplifies to:

En̂ = h1j1 + (h1j2 + h3)
∂ε

∂λ
+ h2ε (3.13)
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3.4.3.2 Discretized Electron Energy Equation

In this section, the terms in Eq. (3.5) are discretized for the numerical simulation. The time

rate of change of electron energy becomes:

ˆ
V

∂

∂t
(neε)dV =

ˆ
V

ne
∂ε

∂t
dV +

ˆ
V

ε
∂ne
∂t

dV

=
∂ε

∂t

ˆ
V

nedV + ε

ˆ
V

∂ne
∂t

dV

= A1
∂εV
∂t

+ A2εV (3.14)

The second term in Eq. (3.5) is a convective term. To numerically integrate this term, the

divergence theorem is employed, and the expression for ue,n̂ from Eq. (3.8) is used:

ˆ
V

∇ ·
(

5

3
neεue

)
dV =

ˆ
S

(
5

3
neεue

)
· n̂dS

=

ˆ
S

5

3
nek1j1εdS +

ˆ
S

5

3
ne(k1j2 + k2)ε

∂ε

∂λ
dS

=

(ˆ
S1

−5

3
nek1j1dS

)
εS1

+

(ˆ
S1

−5

3
ne(k1j2 + k2)dS

)(
ε
∂ε

∂λ

)
S1

+

(ˆ
S2

5

3
nek1j1dS

)
εS2

+

(ˆ
S2

5

3
ne(k1j2 + k2)dS

)(
ε
∂ε

∂λ

)
S2

= A3εS1 + A4

(
ε
∂ε

∂λ

)
S1

+ A5εS2 + A6

(
ε
∂ε

∂λ

)
S2

(3.15)
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The third term in Eq. (3.5) is a diffusion term, and the divergence theorem is again em-

ployed to obtain:

ˆ
V

∇ ·
(

10µe,⊥ε

9
∇ε
)
dV =

ˆ
S

(
10

9
neµe,⊥ε∇ε

)
· n̂dS

=

ˆ
S

(
10

9
neµe,⊥εrB

∂ε

∂λ
n̂

)
· n̂dS

=

(ˆ
S1

−10

9
neµe,⊥rBdS

)(
ε
∂ε

∂λ

)
S1

+

(ˆ
S2

10

9
neµe,⊥rBdS

)(
ε
∂ε

∂λ

)
S2

= A7

(
ε
∂ε

∂λ

)
S1

+ A8

(
ε
∂ε

∂λ

)
S2

(3.16)

The fourth term in Eq. (3.5) is the ohmic heating term, and the volume integral is evaluated

by substituting in ue,n̂ from Eq. (3.8) and En̂ from Eq. (3.13):

ˆ
V

neue · EdV =

ˆ
V

ne

(
k1j1 + (k1j2 + k2)

∂ε

∂λ

)
·
(
h1j1 + (h1j2 + h3)

∂ε

∂λ
+ h2ε

)
dV

=

ˆ
V

nek1j
2
1h1 + nek1j1(h1j2 + h3) + neh1j2(k1j2 + k2)

∂ε

∂λ

+ ne(k1j2 + k2)(h1j2 + h3)
∂ε

∂λ

∂ε

∂λ
+ neh2(k1j2 + k2)

∂ε

∂λ
ε

+ nek1j1h2εdV

= A9 + A10
∂εV
∂λ

+ A11
∂εV
∂λ

∂εV
∂λ

+ A12

(
∂εV
∂λ

εV

)
+ A13εV (3.17)

The final term in Eq. (3.5) represents inelastic energy losses, and it is evaluated as:

ˆ
V

neεν(ε)dV =

(ˆ
V

neν(ε)dV

)
εV

=

(ˆ
V

ne(ν(ε)e−Xe + ν(ε)walls) + ν(ε)e−Xe+dV

)
εV

= A14ke−Xe(εV )εV + A15ν(εV )wallsεV + A16ke−Xe+(εV )εV (3.18)
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Note that if the mean electron energy lies between two different threshold energy levels,

the energy loss coefficient is linearly interpolated between the two threshold values that

correspond with the distinct energy levels.

Finally, the ODE for the electron energy combines all of the terms and divides by A1

so that the following final form is obtained:

∂εV
∂t

=
−A2

A1

εV

− A3

A1

εS1 −
A4

A1

(
ε
∂ε

∂λ

)
S1

− A5

A1

εS2 −
A6

A1

(
ε
∂ε

∂λ

)
S2

+
A7

A1

(
ε
∂ε

∂λ

)
S1

+
A8

A1

(
ε
∂ε

∂λ

)
S2

− A9

A1

− A10

A1

∂εV
∂λ
− A11

A1

∂εV
∂λ

∂εV
∂λ
− A12

A1

(
ε
∂ε

∂λ

)
V

− A13

A1

εV

− A14

A1

ke−Xe(εV )εV −
A15

A1

ν(εV )wallsεV −
A16

A1

ke−Xe+(εV )εV (3.19)

The loss coefficients (A14-A16) are subcycled and updated at the electron time step (200

electron time steps/global time step) while other coefficients are held constant over the

global time step. However, the entire RHS of Eq. (3.19) is updated at each electron time

step since the mean electron energy, ε, and therefore the gradients in the electron energy,

are updated accordingly. Coefficients A1 through A16 as well as the discretizations used

within the simulation are denoted in Appendix A.

3.5 Modeling Neutral Particles and Ions

The PIC simulation used in this work was originally developed by Koo and Boyd, [44, 48]

and the DK algorithm was originally developed by Hara et al. [7, 15]. In this section,

the DK and PIC algorithms are described. Note that boundary conditions are detailed

separately in Chapter IV. The discretized kinetic grid, shown in Fig. 3.6, is coupled with

the electron λ grid (Fig. 3.4) for the full plasma simulation.
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Figure 3.6: Kinetic simulation domain, highlighting boundary conditions.

Strictly speaking, the DK and PIC dimensionalities differ since the former numerical

method contains two dimensions in physical and velocity space (2D2V) for both ions and

neutral particles, while the latter method models axisymmetric neutral species (2D3V).

Neither simulation considers the azimuthal velocity component for ions since the maxi-

mum ratio of vi×B
E

is very small (≤ 4%) for the conditions of interest [42] It is verified in

Appendix B that the differences between the planar and axisymmetric algorithms for neu-

tral particles are insignificant for the present work. Therefore, the conventional notation to

describe an axial-radial (z, r) domain is used.

3.5.1 Discretized Direct Kinetic Model

In the 2D DK simulation, there are four dimensions: two in physical space and two in ve-

locity space (2D2V). The two species include singly charged ions and neutral atoms, whose

kinetic equations are described by Eqs. (2.38a) and (2.38b), respectively. A depiction of

spatial and velocity grid discretizations is included in Fig. 3.7. Without the source term,
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Figure 3.7: Representative spatial and velocity grid discretizations for neutral atoms and
ions. Drawing not to scale.

the ion kinetic equation is integrated in time using a second-order accurate Runge-Kutta

method without any dimensional splitting:

∂fi
∂t

+ vz
∂fi
∂z

+ vr
∂fi
∂r

+
eEz
mi

∂f

∂vz
+
eEr
mi

∂f

∂vr
= 0

=⇒
∂f

∂t
+ L[f(z, r, vz, vr)] = 0 (3.20)

where L[f(z, r, vz, vr)] consists of the physical and velocity advection terms. The second-

order Runge-Kutta method can be written as:

f ∗ = f q + ∆tL(f q) (3.21)
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so that

f q+1 = f q +
∆t

2
[L(f q) + L(f ∗)] (3.22)

where q indicates the time step. The same technique is applied for neutral atoms.

Spatial integration considers the discretized VDF, f = fkz,kr,jz,jr, where k indicates a

spatial index and j indicates a velocity index. The finite volume solution technique uses

a modified Arora-Roe limiter to calculate the numerical flux of kinetic quantities through

each cell interface. Two computational ghost cells adjacent to each boundary cell are avail-

able for information exchange. At simulation boundaries, zeroth order extrapolation of the

VDF is used, implying that updates at the boundaries are of first order accuracy. The flux

scheme and DK boundary conditions, including the injection technique, are discussed in

detail in Chapter IV.

The source term in Eq. (2.38a) is accounted for via ionization collisions. To account

for DK ionization events, the ionization rate is multiplied by the normalized distribution

function in each Cartesian cell at each time step,

Si(v, z, t) = βṅionf̂n(v) (3.23)

where β is +1 or -1, depending on whether an ion is created or a neutral atom is lost. For

each ionization event, a neutral atom is deleted, and an ion with the identical velocity and

physical location is created, conserving the total number of particles in the system.

For the DK method, mean properties in each cell including the density and velocity are

found by taking moments of the VDF:

n(z, t) =

ˆ +∞

−∞
f(z,v, t)dv (3.24)
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u(z, t) =

ˆ +∞

−∞
vf̂(z,v, t)dv (3.25)

where f̂ is the normalized VDF (f̂ = f/n).

3.5.2 Discretized Particle-in-Cell Model

In the PIC simulation, singly charged ions and neutral atoms are modeled using a technique

that simulates the motion of macroparticles via a second order, classical leapfrog scheme.

Particle positions are calculated on integer time steps while velocities are calculated at half

time steps relative to the particle positions per Eq. (3.26) and Eq. (3.27), respectively,

z(t+ δt) = z(t) + u

(
t+

δt

2

)
∆t (3.26)

u

(
t+

δt

2

)
= u

(
t− δt

2

)
+
eE(t)

mi

∆t (3.27)

Note that velocities are calculated in Cartesian coordinates, so after each position update,

the neutral velocity vector must be rotated back to the (z, r, θ = 0) plane.

Macroparticles are weighted to the nodes of the Cartesian grid in order to evaluate the

particle density. To accomplish this weighting, axial and radial shape factors are used. In

the axial direction, shape factors are obtained via linear interpolation:

Skz =
zkz+1 − z
zkz+1 − zkz

(3.28a)

Skz+1 =
z − zkz

zkz+1 − zkz

= 1− Skz (3.28b)
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Figure 3.8: A typical PIC simulation cycle. Particle-related steps are shown in blue, while
grid-related steps are shown in purple. [66]

In the radial direction, the following shape factors are applied: [48]

Skr =
(rkr+1 − r)(2rkr+1 + 3rkr − r)

2(r2
kr+1 − r2

kr)
(3.29a)

Skr+1 =
(r − rkr)(3rkr+1 + 2rkr − r)

2(r2
kr+1 − r2

kr)

= 1− Skr (3.29b)

At a given node, the particle density is ascertained by taking the product of the macroparti-

cle weight and the two relevant shape factors. A general PIC simulation cycle over a single

time step is depicted in Fig. 3.8. Note that, in the HET simulation, the magnetic field is

prescribed and therefore does not require an update at each time step.

Ionization collisions are calculated using the MCC model. [66] In the MCC model,

source particles collide with a target “cloud”, which implies that energy is not inherently

conserved. However, if the collision frequency is not very high, then the target species
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is negligibly affected by collisions, making the MCC model useful. The MCC algorithm

calculates the probability of an electron-neutral collision from the ground state based on

the local plasma density, electron energy, and time step. If a collision occurs, the neutral

macroparticle is changed into a singly charged ion macroparticle with the same physi-

cal properties at the parent neutral macroparticle. In Koo’s work, it was determined that

in practice, due to the low ionization probability at small time steps, the number of ion

macroparticles generated is too low for acceptable particle statistics, so a collision multi-

plier technique is applied. [48] The modified collision probability, P ∗c , is a function of the

collision multiplier, γ, and the collision probability, PC :

P ∗C = γPC (3.30)

The multiplier can be increased if the total number of ion macroparticles in the domain is

below the target value. The modified value, γ∗, is calculated as:

γ∗ =

√
γPC
PC

(3.31)

and the collision multiplier is modified accordingly. The majority of simulation results

discussed in this work use a collision multiplier, γ = 4, which lies in the recommended

range 2 ≤ γ ≤ 16. [48]

The variable collision multiplier is known to influence the modeled physics to some

extent. [48] Therefore, its usage is reviewed in the present study. The premise for the

utilization of the multiplier is based on the fact that the number of ion macroparticles is

too low for acceptable particle statistics. Therefore, if an acceptable number of neutral

macroparticles are present in the simulation at all times, collision statistics should be ac-

ceptable, and the utility of the collision multiplier will be reduced. This is investigated in

Chapter V.
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CHAPTER IV

Direct Kinetic Boundary Conditions

In this chapter, conservative boundary conditions for the two-dimensional DK simulation

are discussed in detail. DK boundary conditions are fairly straightforward to implement

at open boundaries, but it requires some attention to ensure that the particle count is con-

served at other types of boundaries. For example, in order to accurately calculate particle

recombination at a wall boundary, the ion flux that passes through each individual bound-

ary cell must be calculated accurately, stored, and converted to neutral VDF coordinates for

particle re-entry into the domain. To ensure that the particle flux calculations at boundaries

are straightforward, Section 4.1 reviews the flux calculation in phase space. Section 4.2

discusses DK boundary conditions including wall collisions and particle injection in the

context of a hybrid-DK simulation of a HET discharge plasma. Section 4.3 discusses a

sheath injection boundary condition that is unique to a DK plasma sheath simulation which

is described in Chapter VI.

4.1 Flux Calculation in Phase Space

Considering the advection equation in one dimension, the discretized equation in physical,

axial space can be written as a function of the flux, F , which passes through the kth cell’s
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interfaces, located at k − 1/2 and k + 1/2:

f q+1
k = f qk − (Fk+1/2 − Fk−1/2) (4.1)

where F = vz∆t
∆z

f = cf and c represents the Courant Friedrichs Lewy (CFL) number in

physical space. f is not known at either cell interface, and the monotonic upwind scheme

for conservation laws (MUSCL) become useful in estimating this property and thus calcu-

lating the flux through a cell interface. The MUSCL scheme enables the calculation of flux

terms at higher than first order accuracy and is described in Reference [87]. To achieve

numerical stability in the DK simulation, the CFL condition must be met, i.e. the total CFL

number should always be less than one, namely,

∑
i

(
max |vi|∆t

∆zi
+

max |ai|∆t
∆vi

)
≤ 1 (4.2)

where v is the characteristic velocity, a is the characteristic acceleration, ∆z and ∆v are

cell sizes in physical and velocity space, and i denotes the dimension.

According to the MUSCL scheme, the flux due to positive axial advection through the

interface k-1/2 can be described as:

F+
k−1/2 = cfk−1 +

(1− |c|)c
2

(fk − fk−1)Ψrk−1/2 (4.3)

where Ψ is the nonlinear limiter function, and rk−1/2 is the slope factor, which indicates the

smoothness of the neighboring values. For this positive advection case, rk−1/2 is dependent

on the VDF in the k-th cell and the two adjacent cells upstream, as illustrated in Fig. 4.1.

The slope factor is described by:

rk−1/2 =
fk−1 − fk−2

fk − fk−1

(4.4)

64



Figure 4.1: Finite volume stencil highlighting incoming flux to cell k at interface k− 1/2.

The corresponding value of the Arora-Roe limiter, Ψ, can be described by: [88]

Ψ =
1 + c

3
(r − 1) + 1. (4.5)

The slope factor, r, is used to achieve monotonicity. For example, if r for the positive ad-

vection case is also positive, the second term on the right hand side of Eq. (4.3) contributes

to the positive evolution of f . Otherwise, it acts as an anti-diffusive flux term to limit nu-

merical oscillations. For the DK simulation, the Arora Roe limiter is modified, and there

are three bounds, given by: [7]

Ψ(r) =



0 r < 0

min[2r,Ψ(r)] 0 ≤ r < 1

min[2,Ψ(r)] r ≥ 1

(4.6)

At simulation boundaries, two ghost cells adjacent to each boundary cell are available

for information exchange. At these locations, zeroth order extrapolation of the VDF is

used, implying that updates at the boundaries are of first order accuracy. Since the same
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information is extrapolated to both of the ghost cells adjacent to any boundary, this means

that the slope factor is zero, and the flux through the boundary cell is dependent only on

the VDF in the cell directly adjacent to the boundary. This is important, as it allows one to

ensure strict particle conservation at simulation boundaries. It is worth noting that, if the

electric field is non-negligible at a boundary, the advection in velocity space also becomes

important, as it may significantly affect the VDF evolution in the boundary cell. This topic

is not addressed for boundary condition application in a HET model since a zero-electric

field condition is applied at wall boundaries in the device.

4.2 Boundary Conditions in the Hybrid-DK Simulation

In the hybrid-PIC simulation of a HET discharge plasma, it is relatively straightforward

to implement boundary conditions. Since the method tracks macroparticles in physical

space, it is simple to deduce whether or not a macroparticle has either left the domain or

collided with a wall and requires recombination and/or reflection. DK boundary conditions

are fairly straightforward to implement at open boundaries, but it requires some attention to

ensure that the particle count is conserved during wall collisions. Additionally, it is known

that DK methods resolve thermal distributions well but are not ideally suited for beam-type

distributions unless the velocity discretization is sufficient to resolve the beam distribution

of particles. [12] For this reason, the neutral injection scheme at the anode orifice is also

examined in this section.

In the DK model, four types of boundary conditions are implemented at the edges of

the simulation domain. For reference, the DK grid, highlighting boundary conditions, is

reproduced from Fig. 3.6 and shown in Fig. 4.2. Boundaries include: an outflow condition

for ions leaving the thruster domain; outflow with allowance for inflow of neutral particles

if there is a nonzero background pressure; a specular reflection (zero net flux) boundary

condition at the thruster centerline (r = 0); and wall boundaries at which neutral atoms
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Figure 4.2: DK simulation grid, highlighting boundary conditions.

are diffusely reflected, and ions recombine to reflect diffusely as neutral atoms. Specular

reflection is also allowed at the wall boundaries, but for consistency with the comparable

hybrid-PIC simulation, it is assumed that particles accommodate completely to the wall

temperature for both the DK and PIC simulations. This is considered to be a reasonable

assumption since the surface roughness of the ceramic thruster channel walls tends to ran-

domize the distribution of reflected particles.

For the positive axial outflow condition for ions, shown in Fig. 4.3, VDFs in positive,

axial velocity space are extrapolated to adjacent ghost cells, and VDFs for negative, axial

velocity space in the ghost cells are set to zero. This allows ions to exit across the boundary

and ensures that no ions will re-enter the domain. If a finite background pressure is in-

cluded, a non-zero number of neutral particles are allowed to enter the domain at the open

outflow boundaries. This is accomplished by applying a non-zero VDF to the ghost cells

such that that neutral atoms will enter the domain at the background pressure according to a

biased half Maxwellian distribution at the background temperature, Tbgnd. Considering the
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same velocity space for neutral particles as is shown in Fig. 4.3 with a finite background

pressure, pbgnd, the introduced background density, nbgnd, corresponds to the ideal gas law:

nbgnd =
pbgnd
kbTbgnd

(4.7)

A half Maxwellian VDF biased with axial velocity for vz < 0 corresponds to:

f(vz, vr) =


(

mi

2πkbTbgnd

)
exp

(
− mi

2kbTbgnd
(v2
z + v2

r)
)

vz ≤ 0

0 vz > 0

(4.8)

Eq. (4.8) is normalized as:

f̂(vz, vr) =
f(vz, vr)´ vr,max

vr,min

´ 0

vz,min
f(vz, vr)dvzdvr

(4.9)

and fbgnd = nbgndf̂(vz, vr) is applied to the ghost cells for neutral injection into the system

at each time step to satisfy the finite background pressure requirement. At the thruster

centerline (r = 0), a zero net flux condition is applied, and particles that cross the centerline

are specularly reflected back into the domain. This is accomplished by first extrapolating

the VDF for vr < 0 to the adjacent ghost cells and then performing a coordinate transform

on the same portion of the VDF, mirroring it in positive velocity space.

4.2.1 Modeling Wall Collisions

At wall boundaries, ions recombine to neutral atoms and reflect diffusely, and neutral atoms

simply reflect diffusely. All derivations in this section refer to the conservation of number

density, but in reality, the number of particles in the simulation domain are conserved, since

the calculations are performed in each physical cell. For the sake of simplicity, particle re-

flections at the inner channel wall (r = 0.06 m in Fig. 4.2) are considered for the derivations
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Figure 4.3: Example schematic of VDF extrapolation at an outlet boundary for ions. Posi-
tive ions leave through the boundary, and no particles re-enter the domain.

in this section.

For neutral particles, the outgoing VDF is simply extrapolated to the neighboring ghost

cells so that particles are advected out of the simulation domain, i.e. they collide with

the inner wall according to the first term in Eq. (4.3). The number of particles that fluxes

through the interface over the course of a single time step corresponds to:

Γn,out =

´
t

´ 0

vr,min

´ vz,max

vz,min
|vr|fn,out(vz, vr)dvzdvrdt´

dr
(4.10)

where vz,min and vz,max represent the limits of velocity space in the z-direction, vr,min rep-

resents the lower limit of velocity space in the r-direction, and fn,out is the non-normalized

VDF in the cell inside the domain, adjacent to the boundary. Since particles are advected in

the negative r direction, toward the inner wall of the thruster, only negative velocity space

(vr < 0) is considered. The number of particles that flux out of the system is equal to the

number of particles that re-enter the domain, i.e. Γn,in = Γn,out. The incoming particle flux

is described by:

Γn,in =

´
t

´ vr,max

0

´ vz,max

vz,min
vrfn,in(vz, vr)dvzdvrdt´
dr

(4.11)
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where fn,in is dependent on the reflection (or emission) mechanisms, such as specular and

diffuse reflections, and it conforms to:

fn,in(vz, vr) = nnf̂n,in(vz, vr) (4.12)

where f̂n,in is the normalized, reflected VDF. The reflected VDF into the domain at the

inner channel wall (vr > 0) is described by a half Maxwellian distribution at the wall

temperature, assuming a perfectly diffuse reflection. The VDF can be written as:

fMaxwell(vz, vr) =


(

m
2πkbTw

)
exp

(
− m

2kbTw
(v2
z + v2

r)
)

vr > 0

0 vr ≤ 0

(4.13)

where Tw is the wall temperature. This is normalized as:

f̂n,in(vz, vr) =
fMaxwell(vz, vr)´ vr,max

0

´ vz,max

vz,min
fMaxwell(vz, vr)dvzdvr

(4.14)

Since f̂n,in is known, Eq. (4.12) is simply inserted into Eq. (4.11), and nn is calculated by

setting equal the number of particles that flux out of and into the system.

The ion advection algorithm is conducted prior to the neutral advection algorithm over

the course of a single time step so that the appropriate information can be stored and trans-

ferred to the neutral subroutine, and recombined neutrals can then be introduced into the

simulation domain in the same manner as reflected neutrals. The primary challenge is to

ensure that the number of particles advected out of the domain, subject to the ion CFL con-

dition, is equal to the number of particles that return, subject to neutral advection. Addition-

ally, it is necessary to consider the fact that advection in time conforms to a second-order

Runge-Kutta method. This means that there are two steps for integration, and advection in

r occurs twice over a single time step. The count of fluxed ions, Γi,out, is calculated via the
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Figure 4.4: The sequence of events for ion advection and boundary condition implementa-
tion at the wall boundaries over a course of a single time step, assuming the CFL condition
is met.

expression in Eq. (4.10) using the parameters for ion velocity space. It is summed over two

integration steps and stored. The recombined density introduced to the domain over a full

time step then conforms to:

nn,re =
Γi,out´

t

´ vr,max

0

´ vz,max

vz,min
vr · f̂(vz, vr)dvzdvrdt/

´
dr

(4.15)

so that Γi,out = Γn,re. The recombined neutral density is multiplied by the normalized

distribution function, as in Eq. (4.12), to calculate the reflected VDF. The VDF for all

reflected particles is described by:

fn,in(vz, vr) = (nn + nn,re)f̂n,in (4.16)

The sequence of events for ion advection at the wall boundaries over a single time step is

shown in Fig. 4.4.
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4.2.2 Neutral Injection at the Anode

In early comparisons of hybrid-PIC and hybrid-DK HET simulations, it became apparent

in the results that the injection parameters for the two models may not correspond well

with one another. [89] Thus, a study is conducted to ensure that they do. For the hybrid-

DK simulation, the input parameters for neutral injection at the anode are the mass flow

rate, ṁ, and the radial location of the anode injector, located at an axial position of z = 0.

The anode injector includes an integer number of computational cells. A neutral density

is assigned to the ghost cells adjacent to the inlet assuming that particles are injected at a

thermal velocity corresponding to the anode inlet temperature, i.e.

ninlet =
ṁ

mi < vz > A
(4.17)

where A = π(r2
2 − r2

1) is the cross sectional area of the slit through which the particles

enter, and< vz > is the average velocity of a half Maxwellian distribution biased with axial

velocity at the anode temperature. Strictly speaking, the inlet area should correspond to the

two-dimensional DK domain, but instead it corresponds to that used in the axisymmetric

PIC simulation so that the injection parameters are comparable.

The average input velocity is:

< vz >=

ˆ vr,max

vr,min

ˆ vz,max

0

vz

(
mi

2πkbTa

)
exp

(
− mi

2kbTa
(v2
z + v2

r)

)
dvzdvr (4.18)

where Ta is the anode reservoir temperature. The analytical values for the integrals

in Eq. (4.18) are calculated using I1(a) = 1
2a

and I0(a) = 1
2

(
π
a

) 1
2 where In(a) =

´∞
0
xn exp(−ax2)dx, and the expression simplifies to: [6]

< vz >=

√
kbTa
2πmi

(4.19)
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Thus, the flux of particles through the anode orifice into the simulation domain is:

Γn,inlet =
ninlet

´
t

´ vr,max

vr,min

´ vz,max

0
vz · fMaxwell(vz, vr)dvzdvrdt´
dz

(4.20)

The resultant particle flux correlates exactly with the standard particle flux calculation for

free molecular flow with no stream velocity onto a surface, i.e. Γ = n
4

√
8kbT
πm

per unit area,

per unit time. [2]

In the hybrid-PIC model, the particle flux through the injection cell’s interface is not

directly calculated. Instead, the number of particles that ought to be in the vicinity of the

anode over a single time step is calculated and generated at z = 0, randomly distributed

within the height of the anode. Since the density calculation takes into account the volume

of a cell, which is V = π(r2
2 − r2

1)∆z, the assigned inlet density should be consistent with

that applied to the DK simulation. The most probable speed, cmp, for the incoming particle

distribution is calculated based on the anode reservoir temperature, cmp =
√

2kbTa, and the

standard PIC effusion subroutine ensures that particles are injected according to the method

laid out by Bird et al, where the normal velocity component is in the axial direction, and

the two tangential velocity components that result from this method are used to calculate

vr. [11]

Using the hybrid-DK and hybrid-PIC neutral injection techniques discussed in this sec-

tion, reasonable agreement is obtained between the two models, as demonstrated in Fig. 4.5

which shows the average hybrid-DK and hybrid-PIC neutral densities and axial velocities

along the UM/AFRL P5 HET channel centerline for a neutral-only simulation. Of partic-

ular importance is the agreement in the neutral density near the injection site located at

z = 0. There is a discrepancy in the average axial velocity values, greatest near the an-

ode, and this may be due to the fact that the single-cell DK injector slightly over-calculates

properties at the centerline because the velocity space discretization is not fine enough to

resolve the beam-type distribution accurately. This is described in Section 4.2.3.
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Figure 4.5: Average hybrid-DK and hybrid-PIC (UMHET) neutral densities and axial ve-
locities along the UM/AFRL P5 thruster channel centerline at t = 2.0 ms with a sampling
rate of 1 µs. The channel exit is located at an axial position of z = 0.038 m.

4.2.3 Neutral Injection and Grid Convergence

In this section, the effects of physical and velocity grid discretization in the presence of an

incoming jet of neutral particles are examined. DK methods resolve thermal distributions

well but are not ideally suited for beam-type distributions unless the velocity discretization

is sufficient to resolve the beam distribution of particles. [12] In this section, it is demon-

strated that, if an inlet is small compared to the domain size, the resolution of both physical

and velocity space with respect to the inlet size are important. Cases are considered for

which neutral atoms are injected from the left hand side of the domain through an inlet

with a height of 2 mm. The inlet is comprised of one, two, or three cells with coarse or

fine velocity grid discretization. The cases are referred to as Cases 1, 2, and 3, respectively,

with a denoting coarse velocity bins and b denoting fine velocity bins. The case details

and their associated computational times are shown in Table 4.1. Case 1 has a total of

2515 computational cells. Note that the time step, ∆t, changes with cell size so that the
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Table 4.1: Neutral injection simulation parameters.

∆t ∆z,∆r ∆vz,∆vr Wall time

Case 1a 1× 10−6 s (2, 2) mm (25, 10) m/s 0.3 hr/ms

Case 1b 1× 10−6 s (2, 2) mm (10, 4) m/s 2.0 hr/ms

Case 2a 5× 10−7 s (1, 1) mm (25, 10) m/s 1.3 hr/ms

Case 2b 5× 10−7 s (1, 1) mm (10, 4) m/s 5.8 hr/ms

Case 3a 3.33× 10−7 s (0.66, 0.66) mm (25, 10) m/s 9 hr/ms

Case 3b 3.33× 10−7 s (0.66, 0.66) mm (10, 4) m/s 52.6 hr/ms

CFL number is identical for all cases. All processes are parallelized using Message Passing

Interface (MPI).

It is evident from the wall times in Table 4.1 that the computational time increases sig-

nificantly when either physical or velocity space is refined. Note that Case 1 is run on 24

processors, whereas Cases 2 and 3 are run on 40 processors due to memory requirements.

It is observed that the change from coarse to fine velocity space discretization for the same

physical cell size increases the computational time by an average factor of 5.67 due to the

additional computational load on each processor. However, the impact of increasing phys-

ical cell count on computational time is not linear. Considering the computational time

for the same number of time steps, N , rather than the total wall time per ms of computa-

tional data, it is observed that computational time per N time steps increases by a factor

of approximately 2 for the doubling of cells from Case 1 to Case 2, whereas the compu-

tational time increases by a factor of approximately 9 for the tripling of cells from Case 1

to Case 3 for either coarse of fine velocity bins. Since cases 2 and 3 are run on the same

number of processors, it is likely that the processors are not optimized properly for Case

3 and the serial computational load is greatly increased; thus, additional processors should

be allocated to optimize the simulation time. It is also important to point out that, in a full

plasma simulation, ∆t must be much smaller than the values used here to satisfy the CFL

condition for ions. Therefore, it is essential to select a grid discretization that will allow for
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(a) (b)

(c)

Figure 4.6: Steady-state neutral atom density contours with coarse velocity grid discretiza-
tions. (a) Case 1a with 1-cell injector, (b) Case 2a with 2-cell injector, and (c) Case 3a with
3-cell injector.

reasonable resolution but will not lead to intractable simulation times.

Steady state results for the neutral density contours with coarse velocity space in Cases

1-3 are shown in Fig. 4.6. For all cases with coarse velocity space (Figs. 4.6a, 4.6b, and

4.6c), the neutral density profile is not well resolved at the channel centerline, particularly

in the plume region. For Case 1a with a single cell at the injector location (Fig. 4.6a),

the density at the channel centerline is over-calculated. Particles injected with zero radial

velocity will remain at the centerline, since the radially-adjacent cells do not contain any

neutral particles moving radially toward the centerline to alter the VDF at that location.

For Cases 2a and 3a (Figs. 4.6b and 4.6c), the density at the centerline in the plume region

is under-calculated. Since multiple cells are used for injection, the radial flux between the

cells at the centerline is non-zero, and the resultant number of particles that leave radially

outward from the centerline is slightly over-calculated.

Results from cases 1b, 2b, and 3b with a larger number of velocity bins are shown
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(a) (b)

(c)

Figure 4.7: Steady-state neutral atom density contours with fine velocity grid discretiza-
tions. (a) Case 1b with 1-cell injector, (b) Case 2b with 2-cell injector, and (c) Case 3b with
3-cell injector.

in Figs. 4.7a, 4.7b, and 4.7c, respectively. Case 1b (Fig. 4.7a) actually has more neutral

particles on centerline than the coarse case in Fig. 4.6a, implying that VDF resolution is

not useful for this single-cell injector case. Finer VDFs, however, are useful for Cases 2b

and 3b which are shown in Figs. 4.7b and 4.7c, respectively. The level of improvement

is similar for the 2-cell and 3-cell injector cases. For the 2-cell case, the density at the

centerline is no longer under-calculated (Fig. 4.7b).

To demonstrate the sensitivity to velocity bin size, VDFs in the plume region are com-

pared in Fig. 4.8 for the 3-cell injector (Case 3). For this case, additional velocity bins result

in an improved neutral density profile in Fig. 4.7c. The VDF in Fig. 4.8a corresponds to

the density profile in Fig. 4.6c, and the VDF in Fig. 4.8b corresponds to the density profile

in Fig. 4.7c. It is clear that the more highly resolved VDF in Fig. 4.8b has a much larger

value, centered at (vr = 0), which corresponds with more neutral particles at that location.

Based on the results for the injection cases, it appears that it is preferable to utilize two
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(a) (b)

Figure 4.8: Zoomed-in VDFs (arbitrary units) for the middle cell of the three-cell injector
(∆z = ∆r = 0.66 mm) near the right hand side of the domain at z = 0.96 m. Shown are
(a) ∆vz = 25 m/s, ∆vr = 10 m/s and (b) ∆vz = 10 m/s, ∆vr = 4 m/s.

cells for neutral atom injection in the two-dimensional DK simulation if fine velocity space

discretization for neutrals is possible, since this case (Case 2b) results in a reasonable dis-

tribution of neutral particles in Fig. 4.7b. To ascertain whether or not the two-cell injector

containing cells of 1 mm height is superior to a single-cell injector with the same cell size

(1 mm height), another case is simulated for which the cell size and velocity discretization

from Case 2b are applied; however, only one cell is assigned for the inlet, and it is located

at the centerline of the channel. The results in Fig. 4.9 confirm that the two-cell injector

in Fig. 4.9a (Case 2b) resolves the neutral atom density downstream of the injector more

accurately than the one-cell injector in Fig. 4.9b. Similar to Case 1, the one-cell injector

over-calculates the density at the channel centerline.
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(a)

(b)

Figure 4.9: Neutral density contour comparisons for (a) a two-cell injector (Case 2b) versus
(b) a one-cell injector with identical physical and velocity grid discretizations.

4.3 DK Boundaries for a Plasma Sheath Simulation

In Chapter VI, the theory, numerical method, implementation, and results are discussed

for a two-dimensional plasma sheath model. In this section, the DK boundary conditions

for this model are discussed. Briefly, the simulation domain is bounded by an electrically

inhomogeneous, conducting wall on the left hand side (φ = Vd1 and φ = Vd2) and a

quasineutral plasma at the sheath edge on the domain’s right hand side. Between these two

boundaries, an ion-attracting plasma sheath forms near the wall since there is a potential

drop (Vd < 0). The simulation setup with boundary conditions is shown in Fig. 4.10.

Electrons and ions are injected into the collisionless simulation domain on the right hand

side (plasma sheath edge), and particles are absorbed at the wall on the left hand side, i.e.

there is no secondary electron emission (SEE) or particle reflection back into the plasma.

At the top and bottom of the domain, the plasma is relatively far from the discontinuity
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Figure 4.10: Plasma sheath domain. DK boundary conditions are highlighted in purple.

in the potential at y = W/2. Therefore, it is assumed that the potential has a zero-slope

condition in the y-direction at these boundaries. To ensure that there is minimal impact

from outward streaming particles, a zero net flux condition is set for ions and electrons at

the upper and lower boundaries.

4.3.1 Controlling the Particle Flux at the Sheath Edge

The primary challenge for DK boundary conditions in the context of the plasma sheath

simulation is to ensure that the incoming particle flux at the right hand side of the domain,

i.e. the injection site, is appropriately regulated for both ions and electrons. Ideally, the

injection site at the plasma edge will exhibit quasineutrality (ne = ni) in conjunction with

a zero electric field condition. The electric field at the sheath edge, Es, is determined by
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the charge accumulated by the ion and electron fluxes, given by [7]:

Es =
Q

ε0
= − e

ε0

ˆ t′=t

t′=0

(Jis − Jes)dt′ (4.21)

where Q is the charge accumulated at the sheath edge, Jis is the ion particle flux, and Jes

is the electron particle flux. From Eq. (4.21), it is clear that if the incoming electric field

should be zero, then the incoming particle fluxes must be identical. Ions and electrons enter

the domain at the injection plane with half Maxwellian distributions at their respective ion

and electron temperatures, biased with velocity in the x-direction. Due to their relatively

high temperature and low mass compared to ions, electrons move very quickly. As such, to

balance the fluxes at the entrance plane, a finite number of electrons leave the simulation

domain. It is not possible to control the outgoing flux of electrons, but it is possible to

regulate the incoming flux of electrons so that the net incoming flux of electrons is equal

to the desired incoming flux of ions. Note that, to ensure that a finite electric field will not

grow in the vicinity of this boundary, zeroth order extrapolation of the VDF is used for the

two cells inside the simulation domain, directly adjacent to the boundary.

4.3.1.1 Incoming Ion Flux

The simulation domain is first populated with a quasineutral plasma everywhere. Consider

first the ion species for the flux balance in a cell located at the plane for incoming particles.

The desired total number density of ions in the boundary cell corresponds to ni0. Most ions

travel toward the wall with a negative velocity, but a small portion of ions may leave the

domain through the boundary cell’s right interface, corresponding to:

Γi,out,right =

´
t

´ vyi,max

vyi,min

´ vxi,max

0
vxi · fi,out(vxi, vyi)dvxidvyidt´

dx
(4.22)

where i is the subscript for ions. Ions that leave the domain should be re-injected so that

the electric field cannot grow in the boundary cell. Taking into account the desired sheath
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edge ion density and the density of ions that have fluxed out of the system, the total source

density, ns,i0, assigned to the ghost cell adjacent to the boundary cell at the sheath edge is

described by:

ns,i0 =
Γi,out,right´

t

´ vyi,max

vyi,min

´ 0

vxi,min
|vxi| · f̂i(vxi, vyi)dvxidvyidt/

´
dx

+ ni,0 (4.23)

Thus, the incoming ion flux through the boundary cell interface over a single time step

corresponds to:

Γi,in = ns,i0

´
t

´ vyi,max

vyi,min

´ 0

vxi,min
vxi · f̂i(vxi, vyi)dvxidvyidt´

dx
(4.24)

4.3.1.2 Incoming Electron Flux

In the boundary cell, electrons may enter and exit through the left interface of the cell

(toward the simulation domain), and they may also leave through the cell’s right interface,

exiting the simulation domain. Thus, the net outgoing electron flux from the boundary cell

must consider all of these contributions so that it may be replenished by the appropriate

incoming electron flux. These fluxes are described by the following expressions:

Γe,out,right =

´
t

´ vye,max

vye,min

´ vxe,max

0
vxe · fe,out,right(vxe, vye)dvxedvyedt´

dx
(4.25a)

Γe,out,left =

´
t

´ vye,max

vye,min

´ 0

vxe,min
|vxe| · fe,out,left(vxe, vye)dvxedvyedt´

dx
(4.25b)

Γe,in,left =

´
t

´ vye,max

vye,min

´ vxe,max

0
vxe · fe,in,left(vxe, vye)dvxedvyedt´

dx
(4.25c)
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The net outgoing electron flux adds the contribution from the outgoing fluxes and subtracts

the contribution from the incoming flux through the left interface of the cell. The incoming

electron flux through the right interface of the boundary cell should replace the net loss of

electrons in addition to the contribution of ne0 = ni0 over a single time step. Thus, the

incoming electron flux through the right face of the boundary cell corresponds to:

ns,e0 =
Γe,out,right + Γe,out,left − Γe,in,left´

t

´ vye,max

vye,min

´ 0

vxe,min
|vxe| · f̂e(vxe, vye)dvxedvyedt/

´
dx

+
ni,0
´
t

´ vyi,max

vyi,min

´ 0

vxi,min
|vxi| · f̂i(vxi, vyi)dvxidvyidt/

´
dx´

t

´ vye,max

vye,min

´ 0

vxe,min
|vxe| · f̂e(vxe, vye)dvxedvyedt/

´
dx

(4.26)

where the incoming ion flux (second term on the right hand side of Eq. (4.26)) is trans-

formed from ion velocity space to electron velocity space.

4.4 Summary

This chapter discusses direct kinetic boundary conditions that are critical to the success of

both the hybrid-DK simulation of a discharge plasma in a HET and to a two-dimensional

DK plasma sheath simulation. The boundaries discussed in detail include wall collisions,

particle injection from an anode orifice, and a zero-electric field condition at the edge of

a plasma sheath. The methods discussed for these boundaries all require that the particle

flux is properly calculated and controlled when possible in order to effectively and conser-

vatively regulate the behavior of the plasma at a simulation boundary.
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CHAPTER V

A Two-Dimensional Hybrid-Direct Kinetic

Simulation of a Hall Thruster

The intent of the present chapter is to compare the hybrid-DK simulation with a comparable

hybrid-PIC simulation and demonstrate that the DK algorithm reduces the level of statis-

tical noise in the simulation results while obtaining similar time-averaged results. This

comparison process is known as benchmarking. Benchmarking is useful to ascertain the

performance of a new numerical method compared to an existing method, and it is par-

ticularly important for methods that model physically dynamic systems such as the HET.

[20] Note that the equations and numerical implementation for this effort are discussed in

Chapters II and III, and conservative boundary conditions are introduced in Chapter IV. In

this chapter, the HET configuration is discussed in Section 5.1; the simulation setup and

computational requirements are given in Section 5.2; and in Section 5.3, results are com-

pared and analyzed for the DK and PIC simulations. Concluding remarks are presented in

Section 5.4.

5.1 UM/AFRL P5 Hall Thruster

The P5 Hall thruster, developed jointly by the University of Michigan (UM) and the Air

Force Research Laboratory (AFRL), is a SPT that has been used primarily for fundamen-

tal physics research. [90, 91] Although it has been characterized experimentally at certain
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Figure 5.1: UM/AFRL P5 HET magnetic field along the thruster channel centerline.

operating conditions, it is utilized in the present work because it was the focus of Koo and

Boyd’s previous computational study, and a modified version of their hybrid-PIC simula-

tion is used as the modeling technique to which the DK approach is compared. [44, 48]

Typical SPTs are configured so that the maximum magnetic field is located at or very

near the thruster channel exit; near the anode, the magnetic field is typically very low. [25]

The P5 magnetic field, shown in Fig. 5.1, is distinct because the maximum magnetic field

is located approximately 1 cm axially upstream of the channel exit, and the magnitude

of the field at the anode face is approximately 30% of the maximum value. The bulk of

ionization occurs upstream of the location of the maximum magnetic field, where electron-

neutral collisions are probable and the electron temperature is high enough to promote

ionization. At the location of the maximum magnetic field, the Hall parameter is large,

i.e. electron confinement is high, and the electron momentum transfer frequency is low.

Because the magnetic field is high upstream of the channel exit, the expectation is that the

computed ionization region as well as the maximum electric field for the P5 HET will also

lie somewhat upstream of the channel exit. These assumptions are in part corroborated by

experimental measurements. [90, 92] The P5 experimentally measured properties for a 3

kW power level are compared to those for the 6 kW H6 thruster, a thruster with a more
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typical magnetic field configuration, in Fig. 5.2. The P5 maximum electron temperature

is located upstream of the channel exit compared to the location of maximum electron

temperature for the H6, and the P5 ionization region exhibits two distinct peaks inside the

channel. The P5 plasma potential begins to decrease slightly inside the thruster channel

and, overall, falls off much more gradually than the corresponding H6 potential.

In the present configuration, the thruster has a mass flow rate of 10.2 mg/s and op-

erates at a discharge voltage of 300 V and a current of 10 A which results in a 3 kW

power level. The simulation setup is simplified, as only singly charged ionization colli-

sions are considered, and there is no focused effort to optimize the anomalous electron

transport coefficients. Computed macroscopic thruster properties are not validated with

experimentally-measured properties since the focus of the present work is to benchmark

the two-dimensional hybrid-DK simulation against a comparable hybrid-PIC simulation,

similar to the intent of Hara et al with respect to the one-dimensional DK algorithm. [15]

5.2 Simulation Setup and Computational Cost

As discussed in Chapter III, the DK simulation is computationally intensive compared to

the PIC simulation. The former requires computational memory per cell on the order of

Nv,zNv,r compared to 4Np for the latter, where Nv is the number of grid points in velocity

space and Np is the average number of particles per cell. [7] The DK simulation is paral-

lelized using MPI, and its domain is split into four spatial regions: the channel, the plume

adjacent to the channel, the upper plume, and the lower plume, as shown in Fig. 5.3. Each

region utilizes an identical number of processors, and information is exchanged between

spatially adjacent processors. The simulation results discussed in this work are computed

using a total of 24 processors, and the wall time is approximately 3.4 days per 1 ms of

computational time. The serial PIC simulation takes approximately 14 hours to complete 1

ms of simulation time. Simulations are conducted using the University of Michigan’s high
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(a)

(b)

Figure 5.2: Experimentally measured plasma properties along the thruster channel center-
line for the (a) 3 kW UM/AFRL P5 HET and (b) the 6 kW H6 HET. The plasma potential,
electron temperature, and ion density are shown for each thruster configuration. Image (a)
is reproduced from Reference [92] and Image (b) is reproduced from Reference [58].
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Figure 5.3: MPI processor setup for the hybrid-DK simulation. In this particular case, six
processors are used in each group, and there are a total of four processor groups.

performance computing cluster.

A computational cost analysis can be conducted for the DK and PIC algorithms used

in this work, providing an estimate of the CPU cost requirements for the two different

methods. For the present DK simulation running on 24 processors, a global time step com-

pletes in approximately 2.16 s, as calculated in the data output files. The electron algorithm

takes up approximately 0.4% of the total global time step, the neutral algorithm takes up

approximately 26% of the time (verified in a neutral-only simulation), and the remainder

of the time step is taken up by advection of the ion species, ionization, data storage, and

MPI overhead. Since the physical cell count is identical for ions and neutral particles,

the primary difference between the two lies in the distinct velocity bin counts for the two

species. For neutral particles, there are 108 velocity bins in vz and 240 velocity bins in vr.

For ions, there are 230 velocity bins in vz and 140 velocity bins in vr. Thus, ion velocity

space contains approximately 24% more bins than neutral velocity space, implying that
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the ion algorithm takes up approximately 32% of the total computational time step. Thus,

approximately 43.6% of the global time step is devoted to MPI processes, data storage,

etc. The multidimensional DK simulation always requires finite memory allocation, and

it would be disingenuous to completely ignore the additional overhead cost. Therefore, it

can be stated that the two-dimensional DK algorithm with neutral particles and ions, with

physical and velocity space requirements similar to the case outlined here, uses between

1.2 s and 2.1 s of CPU time per time step, overall. In the simulation domain, there are

2515 physical cells, each containing 58,120 velocity bins. Thus, for the entire simulation,

there are 2515× 58120 = 1.46× 108 total grid points. This implies that the CPU cost per

iteration per grid point is between 8.2× 10−9 s and 1.4× 10−8 s.

The hybrid-PIC simulation is entirely serial and thus does not devote overhead to par-

allelized processes, although there are data storage processes and memory allocation to

consider. Assuming the simulation takes 14 hours to complete, a global time step com-

pletes in approximately 0.5 s. Using the same measure for the electron algorithm as in

the DK case (∆telectron = 0.009 s), the electron algorithm takes up approximately 1.8%

of the global time step. For Case I, which is discussed in Section 5.3.1, a minimum of

600 macroparticles per cell are maintained in the thruster channel region, and a minimum

of 140 macroparticles per cell are maintained in the plume adjacent to the channel. It

is observed that these minimum values, overall, correspond reasonably well with the av-

erage number of particles per cell, particularly since the particle counts decrease below

these values in the upper and lower portions of the plume. Thus, it can be assumed that

there are approximately 370 particles per cell, on average. Assuming that ionization and

computational overhead costs account for a maximum of 20% of the simulation time, the

global PIC CPU cost per time step is between 0.39s and 0.49 s. Assuming there are a

total of 370 × 2515 = 9.3 × 105 macroparticles in the simulation domain, the CPU cost

per macroparticle is between 4.2 × 10−7 s and 5.3 × 10−7 s. Therefore, the CPU cost per

iteration per macroparticle per grid point is between 1.7× 10−10 s and 2.1× 10−10 s. This
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implies that the computational cost of the multidimensional DK simulation is between 40

and 80 times higher than that of the multidimensional PIC simulation.

Simulation parameters of interest are displayed in Table 5.1. When possible, DK and

PIC parameters are identical to ensure that the simulations are comparable. The Debye

length in a HET is λD ≈ 1 µm - 0.1 mm, and in this range, the quasineutral plasma as-

sumption breaks down. The spatial resolution of the model is a fixed, uniform grid cell size

of 2.0 mm × 2.0 mm, which is larger than the Debye length. Thus, Poisson’s equation is

ignored for both the DK and PIC cases, and quasineutrality is assumed everywhere in the

domain. The time step, ∆t = 1.0× 10−8 s, is selected to satisfy the CFL condition for the

DK simulation. An electron subcycling frequency divisor of 200 is utilized, corresponding

to Koo and Boyd’s previous work. [44] Minimum threshold values for the number density

are required for the PIC simulation in case cells become devoid of macroparticles. A large

number of macroparticles (counts are described in the case setups) are used to minimize

the occurrence of this type of event. The minimum threshold density is not a requirement

for the DK simulation, but the same condition is applied for consistency; the threshold

values used correspond to those applied in Koo and Boyd’s previous work. [44] The se-

lected values should not affect the physical response, since they are below the minimum

instantaneous, calculated density values.

For the PIC simulation, a fully-developed neutral flow consisting of approximately

1.8× 105 macroparticles is introduced into the domain at the start of the simulation, and a

total target number of 4×105 ions is set. Unless specified otherwise, three neutral macropar-

ticles are injected into the simulation at the anode boundary at each time step, and the total

neutral macroparticle count cannot exceed 1.5 × 106 at any point in time. Macroparticle

weights are distributed to the nodes of the Cartesian grid using a combination of radial and

axial shape factors that are described Section 3.5.2. The particle count in each cell varies

over time. For reference, instantaneous snapshots of both ion and neutral particle counts

are shown in Fig. 5.4. Generally, the plume contains fewer macroparticles than the channel,
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Table 5.1: Hybrid-DK and PIC simulation parameters.

Parameter Value

Channel length, mm 38

Channel diameter, mm 26

Axial domain length, mm 100

Radial (plume) domain height, mm 146

Cell size (physical space), mm 2.0 x 2.0

Number of cells 2515

Number of λ-lines 21

Global time step, s 1.0× 10−8

Electron time step, s 5.0× 10−11

Minimum plasma density, m-3 5.0× 1012

Minimum neutral density, m-3 5.0× 1015

Anode potential, V 275

Anode mass flow rate, mg/s 10.2
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Figure 5.4: Sample instantaneous neutral and ion macroparticle counts per cell in the PIC
simulation domain.

indicating that flow properties should exhibit the most numerical noise in the plume region.

To obtain reasonable resolution with the PIC simulation using the same time step as the

DK simulation, it is necessary to utilize a relatively large number of macroparticles. The

parameters for DK velocity space are shown in Table 5.2. Note that the discretization for

neutral velocity space matches the coarse discretization discussed in Chapter IV.

In both the DK and PIC simulations, the anode reservoir and channel walls are assumed

to be at a temperature of 750 K, which falls within the range of experimentally measured

temperatures in the acceleration channel and below the maximum design constraint tem-

perature of approximately 970 K for BN-SiO2 in efficient HET operation [93, 94]. It is

presumed that the anode will reach thermal equilibrium at this temperature. At the anode

side of the thruster, incoming neutral atoms are emitted from a slit opening with a height

of 2.0 mm, centered at (z = 0 m, r = 0.073 m). The inlet neutral flow is assumed to be

in the free molecular regime, as the Knudsen number is greater than 7 for a neutral density
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Table 5.2: DK velocity space parameters.

Parameter Value

vn,z (−1.2, 1.5) km/s

∆vn,z 25 m/s

vn,r (−1.2, 1.2) km/s

∆vn,r 10 m/s

vi,z (−16, 30) km/s

∆vi,z 200 m/s

vi,r (−14, 14) km/s

∆vi,r 200 m/s

of 1020 m-3, assuming an injector slit height of 2 mm. The velocity of injected particles is

described by a Maxwellian VDF biased with axial velocity. Note that for the DK and PIC

simulations, wall collisions are not allowed at the inlet opening. If back-streaming particles

travel into the inlet, they simply leave the simulation domain. While this may result in a

slight decrease of mass overall, the inlet opening is quite small, and the resultant decrease

in mass is negligible. For both cases, neutral particles fill up the domain via the anode

injector prior to any plasma generation.

5.2.1 Electron Model Boundary Conditions

The near-anode region of a HET typically displays a relatively low electron temperature

(3-6 eV), little or no electric field, a small applied magnetic field, and relatively high dif-

fusion of electrons. Neutral particles from the anode injector move downstream toward

the ionization region, and back-streaming ions travel toward the anode. [73] However, the

quasi-one-dimensional electron model does not correctly recover the diffusion region. The

model actively solves the electron fluid equations starting at the virtual anode location,

which is slightly offset from the anode face in Fig. 5.5, and information upstream of the

virtual anode is extrapolated.
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Figure 5.5: Representation of the active electron fluid solution domain, not drawn to scale.

Near the anode, the current contribution from electrons should be high compared to that

from ions, since any positively-moving ions are slow, and back-streaming ions contribute

negatively to the total current. The electron current density in Eq. (2.21) can be expressed

as a function of λ as follows:

je,⊥ = eneµrB

(
−∂φ

∗

∂λ
−
[
ln

(
ne
n∗e

)
− 1

]
kb
e

∂Te
∂λ

)
. (5.1)

If the electron temperature does not vary much in the near-anode region, and the potential

is nearly constant, the value calculated via Eq. (5.1) is small, implying that the non-zero

contribution from electron pressure in this region may not be accurately calculated via the

quasi-one-dimensional approach. Of course, the electron current density can be increased

in the near-anode region via a large cross-field electron mobility term, but it is not the pur-

pose of the present work to optimize the electron transport quantities. As such, simulation

boundary conditions that provide solution stability and reasonable plasma evolution are

sought, and a configuration that allows for comparison between hybrid-PIC and hybrid-DK

simulations for both high frequency and low frequency oscillatory responses is obtained.
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It is worth pointing out that hybrid-PIC simulations may experience solution instabili-

ties due to the treatment of the anode boundary condition, since the physics in the vicinity

of the anode are not properly resolved. [78] One approach to limit ionization and tem-

perature fluctuations in the vicinity of the anode is to apply Dirichlet boundary conditions

for both the potential and electron temperature at the virtual anode and cathode locations.

[44, 45] Often, threshold limits are applied to the plasma potential to ensure that it will

not fluctuate beyond the discharge voltage limits at the anode and cathode anywhere in the

domain, and ionization may not be permitted upstream of the anode λ-line. In this work,

the hybrid-DK simulation is found to be sensitive to the applied boundary conditions and

threshold limits, particularly if they are too restrictive, since the plasma properties are well

resolved. If the plasma is constrained due to artificial plasma limiters, it will evolve to a

non-physical solution.

For example, if the potential is constrained to values between the anode and cathode

voltage limits, and a Dirichlet electron temperature boundary condition is applied at the

anode, the solution may become over-constrained, and a small, non-realistic fluctuation in

plasma properties may exist in the vicinity of the anode λ-line. [95] On the other hand, if

a pure Neumann (zero-slope) boundary condition is applied for the electron temperature at

the anode λ-line, the ionization rate may grow in the vicinity of the anode injector, caus-

ing the electron temperature to increase, resulting in more ionization. Without a properly

modeled anode sheath or an energy loss mechanism to decrease the growth of the electron

temperature, the growth will eventually result in simulation divergence.

It is found that a more realistic solution can be obtained, without any threshold values

required for the plasma potential, when a Neumann (finite-slope) boundary condition is

applied to the electron temperature at the anode λ-line. In the simulation’s present config-

uration, the potential is fixed at the virtual anode and cathode locations and assumed to be

constant upstream of the virtual anode and downstream of the virtual cathode. The electron

temperature is fixed to a constant value at the virtual cathode, and a Neumann boundary
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condition is applied at the virtual anode. Upstream of the anode and downstream of the

cathode, the electron temperature decays to maintain a smooth solution and to limit ion-

ization in the vicinity of the anode injector. However, ionization is allowed everywhere in

the domain, whereas in Koo’s original hybrid-PIC simulation, the ionization algorithm was

typically disabled upstream of the anode λ-line. [48]

5.3 Results

To determine the level of agreement between the DK and PIC simulations, cases with both

high and low frequency oscillatory responses are obtained by varying the input parameters.

These sets of parameters (two cases) are chosen so that the DK and PIC simulations can be

benchmarked, and both time-independent and transient plasma behavior can be analyzed.

Although plasma processes are of interest, the primary purpose is to benchmark the hybrid-

DK and hybrid-PIC simulations and demonstrate that the DK algorithm reduces the level of

statistical noise in the simulation results while obtaining similar time-averaged results. For

this reason, the contribution of variable anomalous electron transport is largely ignored, as

it does not directly impact the kinetic algorithms that are under comparison.

Differences between input parameters of interest for the two cases are shown in Ta-

ble 5.3. Within this section, Case I is referred to as the high frequency simulation, as it

exhibits a dominant frequency response around 100 kHz, compared to the low frequency

of approximately 7 kHz exhibited in Case II. The input parameters are selected so that dif-

ferent behavior will be exhibited for the two cases. In Case I, the domain is large and the

Bohm mobility coefficient is constant throughout, so the electric potential falls gradually

and spreads across most of the domain. The electron temperature is fixed at the anode

face in this case and changes gradually with the electric potential, so there is no impetus

for periodic ionization bursts and neutral replenishment which accompany a low-frequency

mode. The solution domain for Case II is smaller than that for Case I to ensure that the axial
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Table 5.3: Simulation benchmarking input parameters.

Case I Case II

Anode λ-line location z ≈ 1.3 cm z ≈ 1.3 cm

Cathode λ-line location z ≈ 8.6 cm z ≈ 5.0 cm

Te at z = 0 1.33 eV Neumann

Te at cathode λ-line 0.67 eV 3.35 eV

αw 0.4 0.2

αb 0.006 0.0

electric field will be large, and Bohm mobility is not considered. A finite slope condition

is applied to the electron temperature at the anode face in Case II, and the electron temper-

ature is higher inside the channel, promoting cyclical ionization bursts, neutral depletion,

and low frequency oscillations.

5.3.1 Case I: High Frequency Simulation

Since this case exhibits a high frequency response, it is used to examine the effect of nu-

merical noise on the discharge current. Additionally, this case is utilized to determine the

impact that a variable collision multiplier, discussed in Section 3.5.2, has on hybrid-PIC

results.

5.3.1.1 Case I Simulation Setup

In Case I, the electron temperature between z = 0 and the anode λ-line is linearly interpo-

lated. It is fixed to 1.33 eV at z = 0, and a Neumann boundary condition is applied to the

electron temperature at the anode λ-line (located at approximately 1.3 cm). The maximum

electron temperature at the anode λ-line is limited ((ελanode+1)max = 10 eV), which is nec-

essary so that neither simulation will diverge to high, non-physical electron temperatures.

Electron-wall collisions and Bohm mobility (αb = 0.006) are considered throughout the
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Table 5.4: Sub-cases to examine the effects of the collision multiplier and macroparticle
count on hybrid-PIC simulation results for Case I.

Sub-case Injected macroparticles/∆t γmin γmax

Ia 3 4
√

(4PC)

PC

Ib 200 4
√

(4PC)

PC

Ic 200 1 1

domain. Since αb is fixed, the Bohm mobility acts to increase the overall electron current

everywhere in the domain.

5.3.1.2 Collision multiplier effects

As discussed in Section 3.5.2, a multiplier, γ, is implemented in the PIC collision algo-

rithm so that a sufficient number of ion macroparticles are generated to achieve acceptable

particle statistics. It follows that, if it is possible to generate a sufficient number of ion

macroparticles without a multiplier, then its presence should not be required. In this sec-

tion, the effects of the collision multiplier, γ, are examined in conjunction with the injected

neutral macroparticle count to determine their impact on the resultant discharge current.

The sub-cases used for this effort are highlighted in Table 5.4. γmin represents the min-

imum value of the collision multiplier. If the total number of ion macroparticles in the

domain is below the ion target, the multiplier is increased to γmax.

In Fig. 5.6, the effects of eliminating the multiplier for Case I are elucidated. Case Ia

is the base case, for which 3 neutral macroparticles are injected into the domain at each

time step (3/∆t), and the prescribed collision multiplier is γmin = 4. When the injected

neutral macroparticle count is increased to 200/∆t in Case Ib, the level of numerical noise

in the current amplitude as a function of time decreases, as shown in Fig. 5.6a and further

highlighted in Fig. 5.6b. The numerical noise appears to decrease slightly between Cases

Ib and Ic when the collision multiplier is removed altogether, as shown in Fig. 5.6a, but

the effect of noise on the current is not notably different for either case in Fig. 5.6c. This
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Figure 5.6: Case I discharge current vs time for three different sub-cases to view the effect
of the variable collision multiplier on simulation results. In (a), the overall response for
all three sub-cases is shown. In (b), highlighted current oscillations for the original case Ia
(red) are compared to Case Ib (blue). In (c), Case Ib (blue) is compared to Case Ic (black).

indicates that the number of macroparticles in sub-cases Ib and Ic is statistically significant,

and the collision multiplier does not have much of an effect on the response; therefore, it

is not required. For reference, sub-case Ic contains at least 500 neutral macroparticles

per cell inside the channel and 100 neutral macroparticles per cell in the plume region

directly adjacent to the channel. Except for near the channel walls, a minimum of 100 ion

macroparticles per cell is maintained inside the channel, and at least 40 ion macroparticles

per cell are found in the plume adjacent to the channel. The macroparticle count decreases

in the upper and lower portions of the plume, and the implications of this are discussed in

Section 5.3.1.3.

According to the results for this case study, it is more accurate to include a sufficient

number of neutral macroparticles in the domain for ionization collisions than it is to use a

variable collision multiplier. However, if there are large scale fluctuations in the plasma re-

sponse, a collision multiplier may be required in locations where neutral macroparticles are
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largely depleted due to ionization and cannot be replenished in a timely manner. For such

a case, γ should be allowed to vary as a function of macroparticle count locally rather than

globally, and used with caution. A variable collision multiplier adds a factor of uncertainty

and source of noise to the simulation beyond the statistical nature of the PIC algorithm

itself and deserves further attention. However, additional efforts related to this are beyond

the scope of this study.

5.3.1.3 Case I Results

Since Case Ic from Section 5.3.1.2 does not contain stochastic noise due to usage of a

variable collision multiplier, it is used as the comparative PIC technique for the Case I

benchmarking effort. The discharge current profiles shown in Fig. 5.7 have slightly differ-

ent mean values of approximately 8.6 A and 9.0 A for DK and PIC results, respectively.

The PIC response in Fig. 5.7b shows some deviation in the current amplitude, while the

DK results oscillate coherently about the mean value. The PIC results have a primary fre-

quency around 125 kHz, and the DK results exhibit two distinct oscillatory frequencies at

97 kHz and 194 kHz.

The power spectral density (PSD) values for the calculated DK and PIC discharge cur-

rents are compared in Fig. 5.8. If X(f) is the one-dimensional discrete Fourier transform

of a time-series x(t) with length N , then the spectral estimate of the signal, SN(f), is: [31]

PSD(f) = SN(f) =
1

N
X∗(f)X(f) (5.2)

Without proper scaling on Eq. (5.2), the units are listed as Arbitrary units/Hz. At intermedi-

ate frequencies (105− 106 Hz), the DK results exhibit sharp, relatively narrow peaks in the

data. High frequency data is somewhat scattered. The PIC results exhibit a scattered signal

for nearly all of frequency space, although the data is less scattered at the location of the

dominant frequency mode (125 kHz). For DK results beyond the primary frequency values
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Figure 5.7: (a) Case I discharge current over 2.5 ms. (b) Zoomed discharge current over
0.1 ms.

of 97 kHz and 194 kHz, the distinct frequency modes with a lower PSD may be caused

by numerical oscillations associated with DK-electron algorithm coupling as well as the

finite discretization of both the physical and velocity grids. For example, it is known that

undamped, high frequency numerical errors may occur due to the coupling of the electron

pressure and ion pressure terms in a quasineutral plasma using the drift-diffusion approxi-

mation for the electron flux. [47] Since the electron algorithm is the same for the hybrid-DK

and hybrid-PIC approaches, the expectation is that such frequencies would also be present

in the PIC data. However, it appears that statistical noise tends to damp out the higher fre-

quency modes in the PIC data. In some ways, this is advantageous; distinct modes due to

grid-based noise are not necessarily present in the hybrid-PIC results. However, the level

of statistical noise is quite high at at both low and high frequency levels. The DK method,

on the other hand, does not damp out numerical noise due to numerical discretization or

algorithm coupling, but it is capable of capturing high frequency modes that are attributed
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Figure 5.8: Case I discharge current oscillation spectra for hybrid-DK and hybrid-PIC
data.

to physical processes.

The primary hybrid-DK (97 kHz and 194 kHz) and hybrid-PIC (125 kHz) frequencies

are associated with the evolution of the thermalized potential at the anode and cathode λ-

lines, which is shown in Fig. 5.9. The frequency response of the varying potential matches

the frequency of the discharge current response. For both the DK and PIC cases, the ther-

malized potential at the anode λ-line in Fig. 5.9 oscillates, but its minimum value becomes

limited at approximately 198 V. The limited potential corresponds with the saturation of

the electron temperature (εmax = 10.0 eV). This limiting behavior is due to the numerical

constraint in the electron temperature at the anode λ-line. However, the interesting point

is that the DK and PIC solutions respond differently to the constraint. The thermalized

potential, φ∗, is a function of the two-dimensional potential, the plasma density, and the

electron temperature. Since both the two-dimensional potential and electron temperature

are fixed at the cathode λ-line, φ∗ at the cathode can vary only with plasma density. For the
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Figure 5.9: (a) Hybrid-PIC and (b) Hybrid-DK thermalized potential values at the anode
and cathode λ-lines. Note that numerical scales for the potential values are distinct.
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DK solution in Fig. 5.9b, the thermalized potential at the cathode λ-line undergoes a high-

frequency oscillation to accommodate a sudden change in the plasma density at the cath-

ode. This change in density at the cathode reflects the travel of ions from a small, secondary

ionization zone created near the anode λ-line to accommodate local electron temperature

saturation. Although the oscillatory behavior is generated via a numerical constraint, the

high frequency behavior could be described by the ion transit time-oscillation. [96, 97] The

oscillation, typically in the 100-500 kHz range, has a period on the order of the transit time

of ions passing through the acceleration region and is associated with an oscillating electric

field and the formation of a tail in the ion energy distribution function. The PIC solution

in Fig. 5.9a does not exhibit the same behavior as the DK response. There is no distinct

change in the cathode potential that corresponds to a change in behavior at the anode. The

difference between the DK and PIC solutions may be attributed to the inability of the PIC

simulation to capture rapid, localized changes in the plasma density, due to its stochastic

nature.

The 194 kHz mode in the DK results is better understood through examination of the in-

stantaneous plasma response. As mentioned previously, the mode is associated with a sec-

ondary ionization zone near the anode λ-line. This zone can be seen clearly in Fig. 5.10a,

which shows the varying ionization rate at the channel centerline over the course of a single

(97 kHz) oscillation. The secondary ionization zone forms in the vicinity of z = 0.2 m.

The PIC response in Fig. 5.10b includes an an increase in the ionization rate at the same

location, but there is no secondary zone associated with a high frequency mode. Both data

sets have a sampling interval of 0.1 τ , where τ is the period of the oscillation. The dif-

ference between the DK and PIC responses is further demonstrated in contours showing

the evolution of the axial electric field and electron temperature in Figs. 5.11 and 5.12, re-

spectively. At approximately 0.2 τ in Fig. 5.11a, the DK electric field in the vicinity of the

anode (z < 0.02 m) decreases abruptly. This is because the thermalized potential at this

time instance becomes limited, thereby limiting the local potential and decreasing the local
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Figure 5.10: (a) Hybrid-DK and (b) hybrid-PIC ionization rate along the thruster channel
centerline over the course of a single (97 kHz) oscillation.

electric field. When the electric field decreases locally, slow ions contribute to an increase

in the ionization rate, and the electron temperature in Fig. 5.12a must accommodate to local

changes. The PIC response in the electric field, shown in Fig. 5.11b, is more subtle, and

the electron temperature in Fig. 5.12b accommodates slightly.

Time-averaged hybrid-DK and hybrid-PIC plasma properties are shown in Fig. 5.13.

A sampling interval of 1 µs is used for data collection. The PIC neutral and ion density

profiles at the thruster channel centerline in Fig. 5.13a show reasonable agreement with cor-

responding DK properties. Ionization rates in Fig. 5.13b are nearly identical. The average

electron temperature and potential profiles for the two simulations in Fig. 5.13c also exhibit

similar trends, although the DK electron temperature is slightly higher near the channel

exit and in the plume region. There is a small discrepancy in the average axial ion velocity,

which is shown at two locations (channel centerline, centerline-5.0 mm) in Fig. 5.13d, and

this difference corresponds with the slight difference in the potential profiles in Fig. 5.13c.
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Figure 5.11: (a) Hybrid-DK and (b) hybrid-PIC axial electric field along the thruster chan-
nel centerline over the course of a single (97 kHz) oscillation.

Figure 5.12: (a) Hybrid-DK and (b) hybrid-PIC electron temperature along the thruster
channel centerline over the course of a single (97 kHz) oscillation.
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Some of the differences in the DK and PIC plasma response, particularly in the down-

stream properties, may be attributed to the lack of resolution of PIC ions in the plume,

adjacent to the thruster pole pieces. Adjacent to the pole pieces, the potential often falls

somewhat below 0 V. This is due to the dependence of the two-dimensional potential on the

electron temperature and plasma density at this location, i.e. φ(λ, r) = f(Te(λ), ne(λ, r)).

The plasma density near the pole pieces is typically low compared to the plasma density

along the centerline of the thruster channel, i.e. in the plume adjacent to the channel.

However, the electron temperature near a pole piece decreases and increases in accordance

with the electron temperature at the thruster channel centerline since it is constant along

a λ-streamline. If the electron temperature is small, the two-dimensional potential in the

vicinity of the pole piece may become negative if the plasma density is also low, resulting

in a negative electric field that causes ions to stream toward the pole piece. Although the

evolution of the electric field at this location is not markedly different for DK and PIC re-

sponses, the PIC simulation often reaches its minimum threshold ion density near the pole

piece and cannot sufficiently resolve the effects of the electric field at that location. This

is demonstrated by the low PIC ion density in Fig. 5.14b compared to the DK ion density

in Fig. 5.14a. The low ion density adjacent to the pole piece is associated with a lack of

ion macroparticles. In response to the axially-moving ions traveling toward the pole piece

in the DK case, the losses increase, and the electron temperature also increases. Since the

electron temperature is constant along magnetic field stream lines, the changes at the pole

piece are coupled to the changes along the centerline of the thruster outside the channel

exit, and this contributes to the higher DK electron temperature along the centerline in

Fig. 5.13c.

Case I does not necessarily emulate the behavior of a typical HET. However, this case

benchmarks a high-frequency hybrid-DK simulation with a hybrid-PIC simulation and

highlights the clarity of the output in the DK results compared to the PIC results, particu-
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Figure 5.13: Case I DK and PIC average properties along the thruster channel centerline
at t = 2.5 ms. Shown are (a) neutral and ion densities, (b) ionization rates, (c) potential
and electron temperature profiles, and (d) ion axial velocities along the thruster channel
centerline and 5 mm below the centerline.
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Figure 5.14: (a) Hybrid-DK and (b) hybrid-PIC ion density along the upper pole piece
over the course of a single (97 kHz) oscillation.

larly evident in the discharge current, in which coherent oscillations are clearly seen in the

DK response due to the lack of stochastic noise. With a large macroparticle count, the nu-

merical noise in the PIC algorithm is greatly reduced, but it is not eliminated. Furthermore,

this case highlights the sensitivity of the DK algorithm compared to the PIC algorithm,

as evidenced by a second high frequency mode, and it also highlights the importance of

sufficient resolution of plasma properties not only in the primary location for the plasma

discharge but also in the plume of the thruster, adjacent to the pole pieces.

5.3.2 Case II: Low Frequency Simulation (<10 kHz)

HETs typically exhibit repetitive, low frequency oscillations known as breathing mode

oscillations. Electron dynamics are known to play an important role in this mode. Hara et

al. examined the role of the electron temperature in this process, [29] and Dale and Jorns

experimentally observed the relationship between anomalous electron transport and the
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low frequency mode and determined that the anomalous collision frequency profile varies

significantly over a breathing cycle. [37] During a breathing mode cycle, neutral particles

are depleted as ionization occurs. The current remains low until there is a sufficient ion

population inside the channel, and then ions are accelerated out of the thruster, increasing

the ion current. As ions leave the channel, the electron temperature decreases in the thruster,

neutral particles are replenished by gas injection, and the cycle repeats.

5.3.2.1 Case II Simulation Setup

For Case II, numerical parameters are selected to generate a breathing mode oscillation. In

theory, a variable electron transport model may be useful to this end. However, to simplify

this case, Bohm transport is neglected, and only electron-wall collisions are considered. To

ensure that the potential drop does not spread too far downstream, the cathode is shifted

closer to the channel exit compared to Case I, as described in Table 5.3.

A simple anode sheath model is considered, similar to that used by Fife, and the Boltz-

mann relation is applied for the calculation of the electron density inside the sheath. [42]

Using classical electrode theory in the limit of a collisionless, thin sheath, the total current

can be written as a function of the sheath potential:

IT = Aene

[
exp

(
eφa
kbTe

)√
kbTe
2πme

− exp

(
−1

2

)√
kbTe
mi

]
, (5.3)

where A is the anode area, and φa is the potential drop at the anode. This expression

assumes that the ion Bohm condition is met at the sheath edge. Rearranging the expression

in Eq. (5.3), the sheath potential drop at the anode can be written as:

φa =
−kbTe
e

ln

 IT

Aene

√
kbTe
2πme

+ exp

(
−1

2

)√
2πme

mi

. (5.4)

It is further assumed that the sheath is one-dimensional. Sufficient oscillatory behavior is
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achieved when the electron temperature upstream of the anode λ-line corresponds to the

relationship in Eq. (5.5):

Te(λ) = Te(λa) exp(−0.1(λa − λ)). (5.5)

This relationship ensures that the temperature will decay slightly upstream of the anode λ-

line. This condition promotes variation in the electron temperature over time and in space

for this particular thruster setup, promoting cyclical ionization sufficient for benchmarking.

It is likely that the anode sheath is important to limit the electron current in Case II. It

is observed that the hybrid-PIC simulation becomes devoid of neutral macroparticles in-

side the channel at certain instances in time without applying such an anode sheath model,

rendering the PIC results non-physical. Since the simplified anode sheath model allows

for back-streaming ions and limits the ionization rate in the near-anode region, it is imple-

mented in the boundary cells at the left hand side of the domain in Case II.

Additionally, the electron-wall collision frequency is lowered from αw = 0.4 to

αw = 0.2, and although not shown here, this promotes greater variation in the discharge

current amplitude, indicating that the balance between the electron collision frequency and

inelastic energy losses is important. Note that hybrid-PIC results in this section use a vari-

able collision multiplier which is necessary to ensure that, with the cyclical creation and

depletion of ion macroparticles, there are always a sufficient number of macroparticles in

the domain.

5.3.2.2 Case II Results

In Fig. 5.15a, two oscillations are highlighted for the hybrid-DK and hybrid-PIC discharge

current responses. The time instances are shifted between the hybrid-PIC and hybrid-DK

results so that dynamic oscillations are comparable. A Fourier analysis of the total data

reveals a low frequency of 6.4 kHz in the DK case, whereas the PIC data exhibits a low
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frequency oscillation around 7.0 kHz. The mean DK current for the data set is 6.3 A, while

the PIC current is slightly higher at 6.8 A. The ion and electron contributions to the current

are compared in Fig. 5.15b over three oscillatory periods. There is no significant difference

between the DK and PIC data. The peaks and troughs of the DK current are slightly more

pronounced than in the PIC results, and the difference in the average current indicates that

the troughs in the DK current are consistently of lower amplitude than the troughs in the

PIC current. This may be attributed to the fact that the neutral macroparticle count in the

channel is relatively low following an increase in ion current, since neutral particles have

been largely ionized. This, coupled with the usage of a variable collision multiplier, may

artificially increase the ion current when it should be low.

Time-averaged DK and PIC plasma properties are shown in Fig. 5.16 with a sampling

interval of 1 µs. The DK and PIC densities in Fig. 5.16a and electron properties in Fig.

5.16b are similar, overall. For the DK results, it appears that the location of the anode

and cathode λ-lines, the extrapolation of plasma properties outside of the active solution

domain, and possibly behavior near the pole pieces slightly affect the evolution of plasma

properties on the channel centerline, as evidenced by the difference in shape of the average

electron temperature profile between DK and PIC results in Fig. 5.16b. Inside the chan-

nel, the PIC ion density is lower than the corresponding DK ion density, even though the

depletion rate of PIC neutral particles is slightly larger. The smaller PIC density is sup-

ported by the fact that the ionization rate near the anode face is higher for the PIC case (as

reflected by the ion densities near the anode in Fig. 5.16a), meaning that there are more

backstreaming ions to the anode sheath and thus, larger losses. Since the average potential

drop in Fig. 5.16b is the same for the DK and PIC cases, the conclusion is that the PIC

algorithm does not sufficiently resolve the ion density gradient in the vicinity of the anode

sheath, likely due to the usage of a collision multiplier in conjunction with a finite number

of macroparticles.

To highlight the deterministic nature of the DK algorithm, the evolution of DK and PIC
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Figure 5.15: Case II discharge current vs time. In (a) two distinct discharge oscillations
are shown, with time instances highlighted for one oscillation. In (b), the electron and ion
current components are shown for three oscillations.
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Figure 5.16: Case II DK and PIC time-averaged properties along the thruster channel
centerline at 3.0 ms. Shown in (a) are neutral and ion densities and in (b) the potential and
electron temperature.
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neutral and plasma densities are compared over a single current oscillation. The time in-

stances for comparison (points 1-5) are shown in Fig. 5.15a. In Fig. 5.17, neutral particles

inside the channel are depleted at different rates for each time instance, with maximum

particle depletion occurring at slightly different radial locations along the thruster channel

centerline. The values of the neutral density should not be identical between the two cases

since the current response is not exactly the same. Point 4 shows the lowest number of

neutral particles for both the DK and PIC cases, and this corresponds well with an initial

decay in the discharge current after the ionization burst occurs in Fig. 5.15a. The neutral

particles are replenished inside the channel when the current is low. PIC results are rea-

sonably free of noise inside the channel where the macroparticle count is high, but there

is some numerical noise present in the plume, whereas corresponding DK results are free

from numerical noise. The corresponding evolution of the ion density at the centerline is

shown in Fig. 5.18. Numerical noise is especially evident in the PIC response in Fig. 5.18b.

The PIC ion density trends exhibit smoothing inside the channel, which may be an artifact

of excess numerical viscosity, a known issue for the PIC method. [98]

5.4 Summary and Conclusion

In this chapter, a two-dimensional, hybrid-direct kinetic (DK) simulation is benchmarked

against a hybrid-particle-in-cell (PIC) simulation with an identical quasi-one-dimensional

fluid electron algorithm. Both the discharge current profiles and the plasma properties

match reasonably well between the two simulations, indicating that the benchmarking ef-

fort is successful, and that the performance of the two-dimensional DK algorithm is accept-

able compared to the PIC algorithm.

To achieve simulation agreement, a boundary condition for the DK simulation that

satisfies particle conservation at wall boundaries is developed in Chapter IV. The DK sim-

ulation is found to be more sensitive than the PIC simulation due to the anode boundary
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Figure 5.17: (a) Hybrid-DK and (b) hybrid-PIC neutral densities along the thruster channel
centerline at different time instances.
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Figure 5.18: (a) Hybrid-DK and (b) hybrid-PIC ion densities along the thruster channel
centerline at different time instances.
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condition, since the plasma properties are well-resolved at the anode location. Even with a

large number of macroparticles in the PIC simulation, the DK simulation is comparatively

more computationally intensive and has a computational wall time approximately six times

larger than that for the PIC simulation.

Results indicate that the DK algorithm greatly reduces the level of statistical noise pro-

duced by the PIC kinetic method. This is particularly evident in the lack of stochastic noise

in the DK discharge current profile compared to the PIC current profile for a highly oscil-

latory case. Furthermore, the DK simulation captures a high frequency response that is not

present in the PIC simulation, indicating that it is capable of responding to small changes

in the electron dynamics. Lastly, the transient evolution of DK plasma properties in a low

frequency case is more distinct, and plasma gradients are better resolved when compared

to similar evolution of PIC plasma properties. In the future, efforts are required to validate

the hybrid-DK simulation against experimental results, and to do so, it will be necessary to

increase the fidelity of the quasi-one-dimensional electron algorithm to account for variable

anomalous electron transport and secondary electron emission at the thruster channel walls,

taking into account a variable sheath potential at the dielectric channel walls. Also, a more

physically accurate description of the near-anode region will be required. Due to its high

computational cost, the value of the DK simulation may partially lie in its ability to inform

the required resolution of a PIC simulation to adequately model physical phenomena that

are of interest.
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CHAPTER VI

Two-Dimensional Plasma Sheath Model

6.1 Introduction and Motivation

In traditional SPTs, the anode is composed of a conducting material such as stainless steel,

and channel walls are made of an insulating material such as boron nitride. Often, the

anode surface is coated with a dielectric material which results in a change in the electrical

properties in the near-anode region of the thruster channel. [99] While a plasma sheath,

or a layer of non-zero electrical charge, forms at both conducting and insulating surfaces,

the behavior of the sheath is inherently different at these two locations. At an insulating

surface, the potential floats, and the net current to the surface is zero. A conducting surface,

however, can draw a net current, and the potential is fixed. The emission characteristics of

these two types of materials are very different, i.e. secondary electron emission (SEE)

is lower for conducting materials than it is for insulating materials due to a lack of free

electrons in the insulating material. With fewer free electrons, there are fewer electron-

electron interactions, resulting in a larger mean escape depth for insulators (≈ 10− 50 nm)

than for conductors (≈ 0.5− 1.5 nm). [100]

Plasma-wall interactions are very important in the Hall thruster, in part because high

rates of erosion at the channel walls have historically limited the service lifetime of the

device. [39] Due to magnetic shielding in newer thruster configurations, erosion of the

channel walls has been significantly reduced. This is due to the fact that the electric field
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intensity near the walls is lowered, reducing ion bombardment. [40] That said, recent stud-

ies show that the movement of the acceleration zone in magnetically shielded thrusters may

result in increased erosion of thruster pole pieces, since the movement of the potential con-

tours at the edge of the plasma beam causes high energy ions to accelerate radially toward

the pole pieces. [41] Furthermore, the adaptive thruster has recently been proposed. This

device would be capable of changing the main discharge type by actively adapting the chan-

nel wall parameters. Theoretically, this would be accomplished by synthesizing required

nanomaterials in the thruster’s own discharge and then depositing them onto specific lo-

cations inside the channel, modifying the channel wall surface characteristics by direct

interactions with its own channel plasma. [101] As additional complexities are added to

HET materials, it is important to characterize plasma-wall interactions accurately so that

spatial and temporal plasma properties in the vicinity of the thruster surfaces are well un-

derstood. While a large body of work has been conducted for one-dimensional kinetic

plasma sheath models, [12, 102, 103, 104] the insight into two-dimensional kinetic effects

due to the variation of plasma properties in the vicinity of the sheath is limited.

The intent of this chapter is to provide a proof-of-concept two-dimensional DK model

of a plasma sheath that highlights slight spatial differences inside the sheath as a result of

electrically disparate, adjacent materials. Although the setup is not identical, inspiration

for this work is drawn from Kim and Economou’s work for a combined fluid/Monte Carlo

simulation of a two-dimensional radio frequency (RF) sheath over a flat surface with an in-

sulator/conductor interface in contact with a high density plasma. [105] While relevant to

HETs, a non-uniform plasma sheath may also form in a number of other device, for exam-

ple at the interface between a silicon wafer and the substrate holding the wafer in a plasma

reactor. Section 6.2 provides a brief overview of plasma sheath theory. In Section 6.3, a

one-dimensional plasma sheath is modeled within the two-dimensional DK framework to

verify that the simulation is set up properly, and results correspond reasonably well with an-

alytical predictions. Section 6.4 provides a proof-of-concept model of the two-dimensional
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plasma sheath, and Section 6.6 comments on the challenges that are encountered in this

work. Inclusion of additional physics of interest, such as secondary electron emission, is

left for future work.

6.2 Theory

A sheath forms over any surface in contact with a plasma to balance the electron and ion

currents lost from the plasma. For a conducting material, the potential of the material is

fixed due to an internal electrical circuit, and the difference between the plasma potential

and the material, or wall, potential determines the current balance. For an insulating ma-

terial, the total current at each surface point must be zero, and a plasma sheath forms to

maintain the appropriate charge balance to satisfy this condition at the surface. Plasma

sheaths may be either ion-attracting or electron-attracting. In the former case, the wall

potential is negative with respect to the plasma potential, attracting ions and repelling elec-

trons, whereas in the latter case, the wall potential is positive, thereby attracting electrons

and repelling ions. Electron-attracting sheaths are more rare than ion-attracting sheaths

since electron extraction typically leads to an increase in the plasma potential, causing the

sheath to become electron-repelling. However, a stable electron-attracting sheath may form

in some devices including hollow-anode plasma sources, wire discharges, and possibly Hall

thrusters. [106]

For any plasma sheath, SEE is an important phenomenon that occurs when ions, elec-

trons, or photons impact the surface with sufficient energy to result in the emission of a

secondary electron from the surface. In the case of a monotonic, ion-attracting sheath with

electron emission, the total current will saturate when the ratio of secondary to primary

electron flux reaches a certain, critical value. As a result, a potential well forms next to the

wall, reducing the flux of primary electrons to the wall and reflecting back to the wall a

portion of secondary electrons, thus limiting the electron emission and resulting in a non-
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monotonic sheath structure. [50] This region of alternating positive and negative space

charge is known as a space charge limited (SCL) sheath and is sometimes also referred to

as a double sheath. [107]

In a plasma, the electric field can be written as E = −∇φ, and Gauss’s Law reduces to

the Poisson equation which describes the potential field as a result of the charge distribu-

tion. If the permittivity is constant, the Poisson equation is described by:

∇2φ =
−e(ni − ne)

ε0
. (6.1)

When coupled with the appropriate boundary conditions, Eq. (6.1) is used to evaluate the

potential and therefore the electric field everywhere in the domain. The positive electric

field accelerates ions and electrons in different directions; it is inserted into the collisionless

Vlasov equations for ion and electron species, and VDFs can be evaluated in phase space.

In two dimensions, the kinetic expressions for ions and electrons are described by:

∂fi
∂t

+ vx
∂fi
∂x

+ vy
∂fi
∂y

+
eEx
mi

∂fi
∂vx

+
eEy
mi

∂fi
∂vy

= 0 (6.2a)

∂fe
∂t

+ vx
∂fe
∂x

+ vy
∂fe
∂y
− eEx

me

∂fe
∂vx
− eEy

me

∂fe
∂vy

= 0 (6.2b)

where i and e are subscripts for ions and electrons, respectively. Since there are no colli-

sions, the ion and electron fluxes are constant throughout the sheath.

6.2.1 One Dimensional Plasma Sheath

For analytical purposes, consider a one-dimensional, ion-attracting sheath for which x = 0

is the wall and x = L is the sheath edge. At the sheath edge, ions attain a speed greater than

or equal to the sonic condition. This is known as the Bohm criterion, and the ion speed,

u0, is greater than or equal to the ion acoustic speed, cs =
√
kbTe/mi. Assuming that the
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plasma density at the sheath edge, n0, is constant, the following relationship for the ion

density applies:

ni = n0

(
1− 2eφ

kbTeM2

)−1/2

(6.3)

where M = u0
cs

is the ion Mach number. Eq. (6.3) can be derived from the ion continuity

and energy conservation equations. The ion flux, Ji = nou0, is constant since there are

no collisions. The analytical ion VDFs in the sheath are obtained from a Bohm-velocity

shifted Maxwellian distribution, namely: [7]

fi(x, vx) =


n0

(
mi

2πkbTi

)1/2

exp

[
− mi

2kbTi

(√
v2
x + 2eφ

mi
− u0

)2
]

vx ≤ −
√

2e|φ|
mi

0 vx > −
√

2e|φ|
mi

(6.4)

Electrons travel much more quickly than ions due to their relatively low mass and typ-

ically higher temperature. For |eφw/kbTe| � 1, the quasineutral condition holds at the

sheath edge, ne0 ≈ n0, and the electron density can be approximated to follow the Boltz-

mann relation:

ne = n0 exp

(
eφ

kbTe

)
(6.5)

The electron VDF inside the sheath can be given as: [7]

fe(x, vx) =


ne0

(
me

2πkbTe

)1/2

exp

[
− me

2kbTe

(√
v2
x + 2eφ

me

)2
]

vx ≤ vc

0 vx > vc

(6.6)

where ne0 is the electron density at the sheath edge, vc =
√

2e(φ− φw)/me is the cutoff
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velocity of truncated electrons due to the potential drop in the sheath, and the wall potential,

φw < 0. While ion velocities are typically less than zero (i.e. ion species travel exclusively

toward the wall), electrons take on a range of both negative and positive velocities to satisfy

the potential drop in the sheath. For a conducting surface, φw < 0 is fixed, and the total

current density, or the flux of the charge density, can be evaluated as jtot = ji + je = eJi−

eJe, assuming that only singly charged ions are present in the plasma. For an insulating

surface, Je = Ji, and φw is obtained via the flux balance of charges as:

φw = −kbTe
e

ln

(
1√

2πme/mi

)
(6.7)

6.3 Quasi-One Dimensional Plasma Sheath

To verify that the two-dimensional sheath simulation is set up properly, a conducting, ion-

attracting plasma sheath without any variation of properties in the y-direction is simulated.

It requires some care to implement conservative boundary conditions for the DK solver,

particularly at the injection site; thus the DK boundary conditions are discussed in detail in

Chapter IV.

6.3.1 Quasi-One Dimensional Plasma Sheath Simulation Setup

At the plasma edge of the sheath (x = L), the potential is set to zero, and φ = (φw < 0)

is applied at the wall (x = 0). The non-dimensionalized potential, Φw = eφ/(kbTe) =

−1.56 V. The top and bottom of the domain are set with periodic boundary conditions for

both the potential solver and the DK solver. HYPRE, a library of linear solvers available

for parallelized processes, is used to calculate the potential everywhere in the domain. The

rectangular simulation domain for this case, discretized by processor number, is shown in

Fig. 6.1. The computational domain is L = 30λD and W = 0.2λD. The grid is discretized

as ∆x = 0.17λD and ∆y = 0.10λD; ∆vx,i = 0.025cs and ∆vy,i = 0.100cs for ions; and
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Figure 6.1: Quasi-one-dimensional plasma sheath domain highlighting processor arrange-
ment. Image not to scale.

∆vx,e = 0.020vth,e and ∆vy,e = 0.100vth,e for electrons. Note that vth,e =
√

kbTe
me

is the

electron thermal speed, and while properties in the y-direction must be discretized, it is

not necessary to satisfy the ion CFL condition spatially in y since properties are fixed, and

the VDF is not transported in this direction. Velocity space extents are (vxi,min, vxi,max) =

(−10cs, 2cs) and (vxe,min, vxe,max) = (−6vth,e, 5vth,e), and the time step is ωpe∆t = 8 ×

10−3, where ωpe is the electron plasma frequency. Injected ions are hydrogen molecules and

are relatively close in temperature to electrons, i.e. Ti = (2/3)Te. However, the plasma has

a low overall temperature with Te = 1.5 eV.

Particles are injected into the simulation domain with a Maxwellian distribution biased

in the x-direction at the respective species’s temperature at x = L. A zero-electric-field

boundary condition is applied (discussed in Chapter IV), and quasineutrality is reasonably

maintained (ni ≈ ne ≈ 1016m-3) in the boundary cells. Particles that reach the wall are

absorbed, and nothing is reflected back into the simulation domain. The potential solver is
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of second-order accuracy and utilizes a five-point stencil. Thus, Eq. (6.1) becomes:

∂2φ

∂x2
+
∂2φ

∂y2
= − e

ε0
(ni − ne) (6.8)

and is discretized as follows:

∂2φ

∂x2
≈ φ(k − 1, j)− 2φ(k, j) + φ(k + 1, j)

∆x2
(6.9a)

∂2φ

∂y2
≈ φ(k, j − 1)− 2φ(k, j) + φ(k, j + 1)

∆y2
(6.9b)

where k represents the index in x and j represents the index in y. The Cartesian domain is

discretized in an identical fashion for both the DK and Poisson solvers so that information

exchange between the two solvers is straightforward. Both solvers calculate cell-centered,

macroscopic quantities, and the Poisson solver uses a parallel semicoarsening multigrid

(SMG) solver to solve the linear system of equations. [108] The simulation runs on a total

of eight processors to t ≈ 21/ωpi, where ωpi is the ion plasma frequency, with a wall time

of approximately 69 hours.

6.3.2 Quasi-One Dimensional Plasma Sheath Simulation Results

Time-varying, non-dimensionalized profiles of the ion velocity in x, electron and ion den-

sities, and the plasma potential are shown as a function of x-position in Figs. 6.2, 6.3, and

6.4, respectively. These properties are shown at {50000, 100000, 150000} iterations, which

corresponds to {7/ωpi, 14/ωpi, 21/ωpi}. The last time instance (150,000 iterations) is de-

termined to be near steady state since the variation in the velocity in the location at which

ions achieve the sonic condition is less than 0.8% over a 5000 time step interval. For ref-

erence, early in the simulation, the variation in velocity was approximately 15% over the

same time interval.
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Figure 6.2: Time-varying ion velocity as a function of x-position in the quasi-1d plasma
sheath.

Figure 6.3: Time-varying ion and electron densities as a function of x-position in the
quasi-1d plasma sheath.
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Figure 6.4: Time-varying potential as a function of x-position in the quasi-1d plasma
sheath.

It is observed that the zero-field boundary condition works reasonably well at x = L,

as there is negligible variation in the potential at that location, and the species’ densities in

Fig. 6.3 are within 1.0% of n0. From Fig. 6.2, it is apparent that ions enter from the edge

of the domain at x = L with an average speed of approximately 0.65cs. Because ions enter

the domain with a velocity below the ion acoustic speed, the sheath edge is not located at

x = L. Instead, ions accelerate through a presheath-type structure, for which the plasma is

nearly quasineutral (as shown in Fig. 6.3), and attain the Bohm velocity around x = 8λD at

steady state. The plasma potential in Fig. 6.4 decreases slightly up to the sheath edge (x >≈

8λD) and then falls off abruptly inside the sheath. It is worth noting that the majority of

this presheath-type structure has been avoided in one-dimensional simulations by Hara and

Hanquist, perhaps due to the fact that their sheath simulations applied particle conservation

within the domain. Hence, rather than injecting a density of n0 at x = L, ions that passed

through the boundary at x = 0 were re-injected at the subsequent time step. [12] As a
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result, a source-type structure near x = L formed, and ions were more quickly accelerated

to reach the Bohm condition. This approach was not selected for the present work because

of concern that the flux at the injection plane for the full two-dimensional case would

vary spatially in the y-direction due to disparate wall fluxes caused by a variable wall

potential. However, it is likely that such an approach is preferred for the one-dimensional

case. Alternatively, it may be possible to shift the boundary cell VDF by the Bohm velocity

so that particles enter the domain in a pre-accelerated state.

Because of the existence of a presheath-type structure in the results, it is somewhat

difficult to compare computational results directly with plasma sheath theory. However, it

is possible to verify that the electron flux to the wall is within a reasonably expected range

and also that the truncated electron VDF corresponds with theoretical expectations. In each

wall boundary cell, the electron flux to the wall (per unit area, per unit time) is calculated

as Je ≈ 4.10 × 1020 m-2s-1. The analytical value of of the electron flux is calculated by

taking the moment of the truncated electron VDF in Eq. (6.6):

Je =
ne0
4

√
8kbTe
πme

exp

(
eφw
kbTe

)
(6.10)

From Eq. (6.10), the electron flux is calculated as approximately Je ≈ 4.17 × 1020 m-2s-1,

indicating that the computational results agree with the theory within 2%.

Ion and electron VDFs are captured at a location near the wall (x ≈ 0.25λD) and also

at a location slightly removed from the wall (x ≈ 2.2λD). These results are displayed in

Fig. 6.5 and Fig. 6.6, respectively. Although the y-velocity is not particularly relevant for

the problem at hand, it is also included to display the full two-dimensional output. It is clear

from the plots that electrons take on a truncated VDF at both locations, as some electrons

are repelled from the wall, and ions move only in the −x direction toward the wall, as

expected. Ions at x ≈ 0.25λD travel with a velocity that exceeds the acoustic speed.

According to plasma theory, the truncated electron velocity, ṽc = vc/vth,e =
√

2(Φ− Φw),
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Figure 6.5: VDFs with arbitrary units at x ≈ 0.25λD. In (a), the electron VDF is shown,
and in (b), the ion VDF is shown.

where all properties are non-dimensionalized. The maximum electron VDF in Fig. 6.5 is

located at an x-velocity of vxe/vth,e = 0.53, which corresponds exactly with the theory,

using Φ(x) = −1.42 V and Φw = −1.56 V.

6.4 Two Dimensional Plasma Sheath

With reasonable results obtained for the quasi-one-dimensional case, a full two-

dimensional simulation is constructed with a slight variability in the wall potential. Limi-

tations based on available computational power and memory are encountered for this full

kinetic case, limiting the scope of the physical parameters. However, it is intended to be a

proof-of-concept model, and the results contain information of interest.
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Figure 6.6: VDFs with arbitrary units at x ≈ 2.2λD. In (a), the electron VDF is shown,
and in (b), the ion VDF is shown.

6.4.1 Two Dimensional Plasma Sheath Simulation Setup

Due to discretization in y, the two-dimensional case requires substantially more physical

and velocity bins than the quasi-one-dimensional case. Therefore, to satisfy memory re-

quirements, the domain is decomposed in both the x and y directions, i.e. there are several

processors used in both the x and y directions, and information must be exchanged between

all adjacent processors. The boundary conditions are similar to those for the quasi-one-

dimensional case, but there are some differences that are highlighted in Fig. 6.7. Namely,

the wall potential is distinct between the top and bottom half of the wall on the left hand

side. A pure Neumann (zero-slope) boundary condition in y is applied for the potential

values calculated at the top and bottom of the domain, as it is assumed that the plasma

there is far enough from the potential discontinuity located at W/2 that the radial electric

field is negligible. To avoid odd behavior in the potential at the corners of the boundaries,

a first-order accurate boundary condition is applied to the potential at x = 0 and x = L;
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Figure 6.7: Two-dimensional plasma sheath domain, highlighting boundary conditions.
Image not to scale.

at the top and bottom of the domain (y = 0 and y = W ), second-order accurate boundary

conditions are applied for the potential. Rather than apply a periodic boundary condition

for the ion and electron VDFs at y = 0 and y = W , a zero-net flux condition is applied so

that any particles that leave the domain are specularly reflected back into the domain. Since

the top and bottom boundaries are located far from the discontinuity in the potential and the

radial electric field is zero at the top and bottom boundaries, it is not expected that many

particles with significant components of y-velocity will reach these locations. Provided

that the y-velocity components are relatively small, the specular reflection mechanism will

ensure that particles continue to travel in the x-direction toward the wall.

Unfortunately, memory requirements for the full case are prohibitive. As such, two-

dimensional case parameters that are similar to those used in the quasi-one-dimensional

case are applied when possible, but some differences are necessary. At the sheath edge

(x = L), the potential is set to zero; φ = Vd2 is applied at (x = 0, y < W/2), and
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φ = Vd1 = 0.9Vd2 is applied at (x = 0, y ≥ W/2). The computational domain is L =

15λD and W = 10λD. The grid is discretized as ∆x = 0.18λD and ∆y = 0.16λD;

∆vx,i = 0.025cs and ∆vy,i = 0.025cs for ions; and ∆vx,e = 0.025vth,e and ∆vy,e =

0.020vth,e for electrons. Velocity space extents in x are: (vxi,min, vxi,max) = (−6cs, 2cs)

and (vxe,min, vxe,max) = (−6vth,e, 3vth,e). In y, velocity extents are: (vyi,min, vyi,max) =

(−2cs, 2cs) and (vye,min, vye,max) = (−3vth,e, 3vth,e). The time step is ωpe∆t = 8 × 10−3.

Ions are hydrogen molecules, and Ti = (1/2)Te with Te = 1.0 eV.

6.4.2 Two Dimensional Plasma Sheath Simulation Results

The two-dimensional DK simulation is run on a total of 96 processors, utilizes approxi-

mately 180 GB of memory, and is run up to t ≈ 40/ωpi in approximately 11.5 days of wall

time. Domain parameters, including the physical domain size, temperature range, and sim-

ulation memory allocation, have been optimized as much as possible to obtain the present

results. The simulation is not yet at total steady state in these results, mainly due to the

fact that numerical diffusion in velocity space is high. This is in part because y-velocity

space has a somewhat coarse discretization. The coarse discretization in velocity space

causes electrons to take on a large range of velocities initially (i.e. many electrons near

the sheath edge have a large, positive velocity in x), and due to insufficient resolution of

velocity space, it takes much more time for the sheath structure to form compared to the

quasi-one-dimensional case. It should be noted that the overall simulation results do move

toward a steady state condition, but because the average electron velocity at x = L is still

positive at t ≈ 40/ωpi, it is not possible to say with certainty when a steady state condition

will be reached. Particles are injected into the domain at x = L with a Maxwellian distri-

bution at the particle temperature, biased with x-velocity. The implication is that y-velocity

space must span a range large enough to accommodate the VDF. However, since there is no

electric field in y at the sheath edge, the VDFs require a very fine velocity discretization to

accommodate small changes in in velocity in the y-direction. With the present memory re-
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Figure 6.8: Instantaneous potential contour plot for the two-dimensional plasma sheath at
t ≈ 40/ωpi. The potential is normalized by the maximum potential in the domain.

quirements and computational limitations, it is not possible to achieve the desired velocity

grid size in y with fixed velocity bin sizes.

In spite of computational limitations that hinder the desirable resolution of plasma prop-

erties, results are reasonable enough to warrant analysis and discussion. The instantaneous,

normalized potential contours at t ≈ 40/ωpi are shown in Fig. 6.8. For this case, there is a

slight source sheath located near x = L. The potential is reasonably constant throughout

the remainder of the simulation domain to a point near the wall, where the potential falls

to satisfy the ion-attracting sheath condition. The potential fall is somewhat gradual, as a

steady state condition has not been completely obtained.

In Fig. 6.9, ions in the vicinity of the potential discontinuity at y = W/2 can be seen

streaming slightly downward, toward the more negative potential Vd2, located at y < W/2.

In this figure, instantaneous ion velocity streamlines are overlaid on a contour plot of the

radial electric field at t ≈ 40/ωpi. Since the potential difference between Vd1 and Vd2 is

small (Vd1 = 0.9Vd2), the ion radial velocity in Fig. 6.9 is multiplied by a factor of ten to
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Figure 6.9: Ion velocity streamlines overlaid on a contour plot of the radial electric field.
To exaggerate the effect, since the potential difference is small, vyi is multiplied by a factor
of ten. Note that y/λD = 5 corresponds to y = W/2.

exaggerate the effect of the larger sheath potential located at y < W/2. At approximately

y/λD = 8, velocity streamlines have little to no component of negative y-velocity, indicat-

ing that the two-dimensional effects have a span of approximately 3λD in y for this case.

As expected, the radial electric field is largest in the vicinity of the potential discontinuity.

Electron and ion VDFs located near the potential discontinuity (x = 0.27λD, y = W/2)

are extracted from the location highlighted in Fig. 6.9 and shown in Fig. 6.10. Note that

the top half of the physical cell is located above y = W/2, and the lower half of the cell

is located below y = W/2, where the potential discontinuity is located. Particularly for

the electron VDF in Fig. 6.10a, it is possible to see that the portion of the VDF in nega-

tive y-velocity space (i.e. particles traveling downward, toward the more negative potential)

displays a larger spread of velocities for vx > 0 compared to the VDF in positive y-velocity

space, since the larger potential drop for y < W/2 corresponds with more repelled elec-

trons. Since particles are located very near the wall, the ion VDF in Fig. 6.10b displays
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Figure 6.10: VDFs with arbitrary units at (x = 0.27λD, y = W/2), i.e. located near the
potential discontinuity. In (a), the electron VDF is shown, and in (b), the ion VDF is shown.

velocities with magnitudes greater than the ion acoustic velocity, as particles must be ac-

celerated sufficiently to enter the sheath at this location. The spread of velocities in x is

also slightly larger for ions in negative y-velocity space.

Electron and ion VDFs are also sampled directly downstream of the potential discon-

tinuity at (x = 2.0λD, y = W/2). These results, displayed in Fig. 6.11, indicate that the

electron and ion VDFs are not heavily influenced by two-dimensional effects at this loca-

tion, as they are mostly symmetric in velocity space. There is some distortion in both the

electron and ion VDFs, i.e. the VDFs are not perfectly symmetric about vy = 0, and while

some of the distortion is likely numerical, it may also indicate that the VDF is beginning to

evolve at this spatial location so that it will match the one shown near the wall in Fig. 6.10.

Numerical distortion is primarily present in the macroscopic plasma properties themselves.

For example, the normalized electron density in Fig. 6.12, while overall reasonable, ex-

hibits some numerical artifacts in the y-direction. The numerical artifacts are primarily

exhibited in the form of density oscillations in the y-direction.
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Figure 6.11: VDFs with arbitrary units at (x ≈ 2.0λD, y = W/2), i.e. directly downstream
of the potential discontinuity. In (a), the electron VDF is shown, and in (b), the ion VDF is
shown.

Figure 6.12: Instantaneous electron density contours for the two-dimensional plasma
sheath at t ≈ 40/ωpi. The density is normalized by the maximum density in the domain.
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6.5 Summary

The chapter is intended to provide a proof-of-concept model of a two-dimensional DK

plasma sheath that highlights slight spatial differences inside the sheath as a result of elec-

trically different, adjacent materials. To accomplish this goal, a one-dimensional sheath is

first built in the two-dimensional DK framework, and results are verified with theoretical

expectations. Then, the full two-dimensional sheath is modeled. A proof-of-concept model

shows that two-dimensional effects are present in the vicinity of the discontinuous plasma

potential, resulting in a finite quantity of ions that gain a y-component of velocity and

stream toward the more negative wall potential. The electron and ion VDFs both clearly

exhibit changes due to two-dimensional effects.

6.6 Discussion of Challenges that were Encountered

Computational requirements make it challenging to fully resolve the two-dimensional ki-

netic plasma sheath. Results indicate that it is necessary to make some alterations to the

model in order to consider full plasma sheath physics, including SEE processes, which

would require the addition of another electron species. Specifically, the simulation allo-

cates a large amount of memory to velocity space discretization for each species. This, in

conjunction with a large number of serial operations to update the VDFs on each processor,

results in an intractable simulation at large scales.

In Chapter IV, it is observed that the simulation time increases significantly for a

neutral-only HET simulation if processors are not doubled when the Cartesian cell count

is doubled (and the velocity bin size is unchanged). If, on the other hand, the processor

count is doubled when the physical cell count is doubled, the simulation time for an iden-

tical number of computational steps (not total t), also doubles. This implies that the serial

computational load increases by a factor of approximately two when the physical cell count

doubles, assuming that the processor count is close to optimal. Therefore, to achieve the
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same simulation time, i.e. adjusting the CFL condition, the optimized simulation time in-

creases by a factor of approximately four (when the physical cell count is doubled). For the

same test cases, it is observed that halving the size of each velocity bin (without changing

the processor count) increases the total computational load and time by a factor of approx-

imately six. For this reason, sufficient but somewhat coarse physical and velocity grids are

selected for the full plasma simulation in Chapter V.

The two-dimensional plasma sheath simulation contains 320 × 160 = 51200 velocity

bins for ions in each cell and 360 × 300 = 108000 velocity bins for electrons, resulting in

a total of 159200 velocity bins. Each physical sub-domain contains 7 × 8 = 56 physical

cells. The HET hybrid-DK simulation discussed in Chapter V contains 108×240 = 25920

velocity bins for neutral atoms and 230 × 140 = 32200 velocity bins for ions, resulting in

a total of 58120 velocity bins. The size of each physical sub-domain varies slightly, but

inside the channel, each processor is allocated 3×13 = 39 physical cells. Thus, the plasma

sheath velocity bin count is higher by a factor of approximately 2.75, and the physical cell

count is also higher by a factor of approximately 1.4. Thus, if the sheath simulation in its

present state were to achieve a performance similar to the HET simulation (not accounting

for the extra serial load that is incurred by doubling the cell count), the processor count

would need to be at least doubled from 96 processors to 192 processors.

However, one of the primary challenges with the DK sheath simulation results is re-

lated to present velocity discretization, which is not fine enough to account for small y-

velocities. Rather than applying a finer discretization to all of velocity space, one possible

solution may be to utilize adaptive meshing techniques, which were briefly mentioned in

Chapter III. Adaptive mesh refinement (AMR) has been used in a variety of systems to

minimize computational overhead. [63, 109] Such techniques utilize an adaptive mesh that

evolves as the characteristic of the VDF develops, allowing for higher resolution in those

parts of phase space that require it to achieve the desired accuracy. High order numerical

schemes ensure that regions with a coarse mesh are still well-resolved. Furthermore, work
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by Wettervik et. al demonstrated a typical speed-up factor of approximately seven for a

one-dimensional system. [63] Such techniques are promising for the two-dimensional DK

simulation but will be left for future work.
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CHAPTER VII

Conclusions

This thesis has been primarily concerned with the two-dimensional modeling of a discharge

plasma via the direct kinetic (DK) method. This chapter provides a summary of the work

contained in this thesis and presents the most important conclusions from each chapter.

Then, the author’s unique contributions are recorded, and future studies that may enhance

the presented work through further research are recommended.

7.1 Dissertation Summary

In Chapter I, the general motivation for this dissertation was provided, and the character-

istics of a plasma were introduced. An overview of numerical modeling techniques for

gases and plasmas was presented, and the concept of space propulsion was reviewed. The

physical processes surrounding the Hall effect thruster were detailed, and present research

challenges associated with the device were highlighted. Specific research objectives for

the dissertation work were outlined, and the goal of the thesis was made clear: to improve

the state-of-the art modeling methods for the Hall effect thruster and to better understand

the capabilities and limitations of the herein utilized modeling techniques, which include

hybrid-DK and hybrid-PIC methods.

In Chapter II, the equations that govern the motion of the species that make up the dis-

charge plasma in a HET were derived. The magnetic field configuration and its relationship

to the electron simulation grid was described, and the electron fluid equations were detailed
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at length. Kinetic equations that govern more massive ions and neutral particles were also

discussed. Other important concepts including current conservation, relevant particle col-

lisions, and electron transport mechanisms were outlined.

In Chapter III, techniques for solving the equations from Chapter II were described.

The hybrid-DK and hybrid-PIC numerical methods were introduced, and these distinct

Eulerian and Lagrangian methods were described in detail. The DK and PIC methods were

compared and contrasted, highlighting areas of importance including computational size

requirements and numerical error. Existing hybrid-PIC HET simulations were reviewed,

and the general simulation framework was described. Then, the fluid electron algorithm

was detailed, and finally, kinetic ion and neutral algorithms for both the discretized DK and

PIC models were characterized.

Chapter IV discussed the development and implementation of conservative boundary

conditions for the two-dimensional DK simulation. Specifically, wall collisions and particle

injection were considered with respect to the hybrid-DK simulation of the discharge plasma

in a Hall effect thruster. A sheath injection boundary condition, unique to a DK plasma

sheath simulation, was also described in detail. The methods discussed for these boundaries

all required that the particle flux be accurately calculated for each species in question,

controlled when required, and that transformation in velocity space for different species be

applied properly, taking into account the specific numerical integration scheme.

In Chapter V, a hybrid-DK simulation was benchmarked with a comparable hybrid-PIC

simulation, and it was demonstrated that the DK algorithm reduced the level of statistical

noise in the simulation results while obtaining similar time-averaged results compared to

the PIC simulation. The equations from Chapter II and numerical methods from Chap-

ter III, in conjunction with newly developed, conservative boundary conditions from Chap-

ter IV, culminated in a two-dimensional, hybrid-DK simulation of a Hall effect thruster

discharge plasma. Both the DK and PIC discharge current profiles and the time-averaged

plasma properties matched reasonably well between the two simulations, indicating that
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the benchmarking effort was successful, and that the performance of the two-dimensional

DK algorithm was acceptable compared to the PIC algorithm. The DK simulation was

found to be more sensitive than the PIC simulation to electron boundary conditions since

the plasma properties are well-resolved everywhere in the domain. Furthermore, the DK

simulation captured a high frequency response that was not present in the PIC simulation,

indicating that it is capable of responding to small changes in electron dynamics. Even

with a large number of macroparticles in the PIC simulation, the DK simulation was com-

paratively more computationally intensive, with a wall time approximately six times larger

than that for the PIC simulation. It was predicted that the computational cost of the two-

dimensional DK algorithm itself was nearly two orders of magnitude higher than that of

the PIC algorithm. Due to its high computational cost, the value of the DK simulation was

determined to lie at least partially in its ability to inform the required resolution of a PIC

simulation to adequately model physical phenomena that are of interest.

Chapter VI considered the verification and development of a two-dimensional DK

model for a collisionless plasma sheath. Such a sheath may form in a HET plasma as

well as in a variety of other discharge plasmas. The intent of this chapter was ultimately to

provide a proof-of-concept model of a two-dimensional DK plasma sheath that highlighted

slight spatial differences inside the sheath as a result of electrically different, adjacent wall

materials. After discussing plasma sheath theory, a verification case for a one-dimensional

plasma sheath was modeled, and results corresponded reasonably well with analytical pre-

dictions. A proof-of-concept, two-dimensional plasma sheath model indicated a capability

for high resolution results and showed expected slight differences in plasma properties due

to an electrically-inhomogeneous surface. However, the simulation was both computation-

ally intensive as well as expensive, and it was not possible to attain the desired resolution

for the velocity space discretization everywhere due to DK memory requirements. For this

reason, it was recommended that such a simulation undergo adaptive grid modification in

future work.

143



7.2 Contributions

This dissertation work was ultimately focused on furthering state-of-the-art Hall thruster

models, utilizing a high fidelity, two-dimensional, direct kinetic simulation technique.

High-fidelity modeling is an important component of HET research since such compu-

tational models are useful and necessary to investigate the physical processes that affect

a thruster’s performance, efficiency, and lifetime limitations. To that end, the following,

specific contributions are included in this dissertation:

• A two-dimensional, hybrid-DK simulation of a Hall thruster channel and its near-

field plume was created and developed. This massively parallelized simulation was

computationally intensive to test. Based on sensitivities to the electron algorithm,

including boundary conditions and electron transport coefficients, many test simula-

tions and parameter updates were conducted to achieve a stable simulation.

• An existing two-dimensional, hybrid-PIC simulation was modified for a comparative

DK-PIC study, and some corrections were made to the existing hybrid-PIC model.

Extensive test cases were simulated to ensure that macroparticle counts were suf-

ficient for reasonable comparison with deterministic DK results. A study on the

limitations of the MCC collision algorithm was conducted.

• Conservative kinetic boundary conditions for the DK algorithm were developed and

implemented for particle-wall collisions in a Hall thruster. At a wall boundary, an

accurate particle flux was calculated for each species, controlled when required, and

a transformation in velocity space was applied for recombination, taking into account

the numerical integration scheme. Additionally, DK particle injection techniques and

limitations were examined and modified to ensure that said techniques were consis-

tent with PIC injection techniques.

• To the extent possible within the quasi-one-dimensional electron simulation frame-
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work, anode boundary conditions were developed. This was necessary to provide

solution stability and reasonable plasma evolution for both the DK and PIC simula-

tions since the resolution of the near-anode region was increased from prior hybrid-

PIC simulations.

• The hybrid-DK simulation was benchmarked with a comparable hybrid-PIC simu-

lation, using the UM/AFRL P5 Hall thruster, and it was demonstrated that the DK

algorithm reduced the level of statistical noise in the simulation results while obtain-

ing similar time-averaged results compared to the PIC simulation. The DK simula-

tion captured a high frequency response that was not present in the PIC simulation,

indicating that it is capable of responding to small changes in the electron dynamics.

• A two-dimensional, collisionless DK plasma sheath model was created, verified, and

developed. To that end, a conservative kinetic boundary condition was developed for

particle injection at the sheath edge. Limitations of the two-dimensional algorithm

due to computational memory requirements were encountered and discussed.

7.3 Future Work

Although the state-of-the-art HET simulation technique was improved in this work, there is

much that can be done in the future to further the DK approach to HET modeling. A seem-

ingly natural step is to expand the HET benchmarking study into a simulation validation,

i.e. comparing simulation results to experimentally-measured plasma properties in a HET.

There are several steps that are required to achieve this. Some of these steps were carried

out over the course of this work, but the author chose not to pursue them further for some

important reasons which will be described later in this section. Nonetheless, if the existing

hybrid-DK simulation were to be used for validation purposes, the following items would

be desirable to complete the validation process:
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• The method to calculate the current discussed in Chapter II assumes that the poten-

tial is fixed at the virtual anode and cathode locations. Strictly speaking, the anode

potential is not fixed, since a potential drop is often present due to the formation of

a plasma sheath. A Newton-Raphson solver can be used to implement a solution

technique for the discharge current that is dependent on the value of the anode sheath

potential, as outlined in Reference [110].

• It is necessary to include the contribution of the wall plasma sheaths inside the HET

channel, as they affect the behavior of the plasma discharge. This will likely involve

a modification of DK boundary conditions.

• Additional species and collision types may be added to the simulation, i.e. doubly

charged ions and neutrals excited via charge exchange collisions. It is important to

note that each of these additional species requires its own velocity space discretiza-

tion and therefore increases the computational memory requirements for the overall

simulation.

• A parameterization study may be performed to examine the impact that the variation

in anode potential, gas flow rate, and other input parameters have on dynamic DK

properties, such as the ion VDFs.

In the present work, the indication was that the quasi-one-dimensional fluid electron

algorithm was of low fidelity compared to the two-dimensional DK algorithm used for ions

and neutral atoms, and it was challenging to impose effective electron boundary conditions

that did not lead to non-physical behavior in the DK domain. As such, it was determined

that further evolution of the DK portion of the hybrid simulation may not be advisable.

Instead, the electron algorithm should be upgraded to a fully two-dimensional model, en-

abling the proper resolution of near-anode plasma properties. Since it is likely that the DK

method is capable of capturing highly oscillatory behavior caused by electron motion, a

higher order electron algorithm is a particularly reasonable measure. Then, some of the
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above listed measures can be incorporated into the simulation. Additionally, it is important

to note that many hybrid-PIC simulations have applied time-averaged, variable electron

transport models and effectively tuned these models until they closely matched experimen-

tal measurements. Based on the high computational cost for the DK model, this kind of

tuning method does not make sense unless a good machine learning technique can be ap-

plied. It is also worth noting that, if dynamic electron transport processes are assumed

for future simulations, it may be necessary to consider the DK method rather than the PIC

method so that high frequency oscillations due to the electron algorithm are not damped

out by statistical noise due to the PIC algorithm. Although it is computationally costly, the

DK method is capable of capturing highly oscillatory behavior.

Aside from the HET study, a two-dimensional DK plasma sheath simulation was veri-

fied and developed. The eventual intent of this work is to obtain noiseless results that can

be used to extract interesting information about the two-dimensional kinetic effects in the

vicinity of a plasma sheath. However, results indicated that it is necessary to make some

alterations to the model in order to consider full plasma sheath physics, including SEE pro-

cesses, which would require the addition of another electron species. One of the primary

challenges with the DK sheath simulation was related to the discretization of velocity space.

Rather than applying a finer discretization to all of velocity space, one solution might be to

utilize adaptive meshing techniques for the multi-dimensional DK method in the future.

AMR has been used in a variety of systems to minimize computational overhead.

[63, 109] The general idea of adaptivity is to represent a complex system by reducing

the number of elements, thereby decreasing computational time and memory requirements

for the simulation. This typically requires a trade-off between numerical volume (computer

memory, number of operations, etc) and implementation complexity (data structures and

algorithms). [111] For grid-based methods, AMR techniques typically utilize an adaptive

mesh that evolves as the characteristic of the VDF develops, allowing for higher resolu-

tion in those parts of phase space that require it. High order numerical schemes ensure
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that regions with a coarse mesh are still well-resolved. In recent years, AMR techniques

have undergone development for simulations that model weakly collisional plasmas, but

ultimately, it is a relatively new area of research. Challenges of extending such techniques

from simulations of gas dynamics to weakly collisional plasma simulations are primarily

associated with distinct scales between electron and heavy particle transport. [112] Work

by Wettervik et. al demonstrated a typical speed-up factor of approximately seven for a

one-dimensional system of a collisionless plasma. [63] Roytershteyn and Delzanno intro-

duced a parallelized, three-dimensional spectral plasma solver and applied the method to

a problem of turbulence in weakly collisional plasmas, reproducing the expected statisti-

cal properties of magnetic and electron fluctuations observed in PIC simulations. [113]

The DK simulation is capable of providing excellent resolution of plasma properties, but

it is computationally expensive. Therefore, it may benefit from the application of a tech-

nique such as AMR. Once could even imagine a fully adaptive DK simulation of a HET in

which the hybrid fluid-kinetic approach is not utilized; the simulation would instead adapt

between fluid and direct kinetic techniques for all the involved species, utilizing adaptive

mesh and algorithm refinement methods. Such a model certainly would not be a trivial

undertaking, but algorithm development techniques in conjunction with the availability of

computational power may make such a project realizable in the future.

148



APPENDIX A

Terms and Discretizations in the Electron

Energy Fluid Equation

Tables A.1 and A.2 list the various terms and discretizations that are incorporated into

the discretized electron energy equation, discussed in Chapter III. Note that the fully dis-

cretized electron energy equation is described by the following expression:

∂εV
∂t

=
−A2
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εV

− A3

A1

εS1 −
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(
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Table A.1: Terms in the Electron Fluid Energy Equation

Term Value

A1

´
V
nedV

A2

´
∂ne

∂t
dV

A3

´
S1
−5

3
nek1j1dS

A4

´
S1
−5

3
ne(k1j2 + k2)dS

A5

´
S2

5
3
nek1j1dS

A6

´
S2

5
3
ne(k1j2 + k2)dS

A7

´
S1
−10

9
neµe,⊥rBdS

A8

´
S2

10
9
neµe,⊥rBdS

A9

´
V
nek1j

2
1h1dV

A10

´
V
nek1j1(h1j2 + h3) + neh1j2(k1j2 + k2)dV

A11

´
V
ne(k1j2 + k2)(h1j2 + h3)dV

A12

´
V
neh2(k1j2 + k2)dV

A13

´
V
nek1j1h2dV

A14

´
V
nenadV

A15

´
V
nedV

A16

´
V
nenXe+dV

Table A.2: Discretizations in the Electron Fluid Energy Equation

Term Discretization

εV εi

εS1

εi+εi−1

2

εS2

εi+εi+1

2(
ε ∂ε
∂λ

)
S1

εi+εi−1

2
εi−εi−1

λ(
ε ∂ε
∂λ

)
S2

εi+εi+1

2
εi+1−εi

λ

∂εV
∂λ

εi+1−εi
2λ
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APPENDIX B

Neutral Atom Simulations in Planar and

Axisymmetric Domains

The hybrid-DK simulation utilizes two dimensions in velocity space for both neutral par-

ticles and ions. Since the hybrid-PIC simulation uses an axisymmetric configuration for

neutral particles (2D3V), it is verified that the alternate approaches are compatible for

benchmarking. Planar (2D2V) and axisymmetric (2D3V) neutral atom simulations are

performed using MONACO, a DSMC solver. The simulation domain is nearly identical

to that used to model the UM/AFRL P5 Hall thruster in Chapter V. The thruster channel

has a length of 3.8 cm, and particles are injected into the domain at the thruster channel

centerline (r = 7.25 cm).

Results in Figs. B.1 and B.2 exhibit flow properties at a steady state condition. In

Fig. B.1, there is a small difference in the neutral density near the axis of symmetry for the

domain (r = 0). However, the velocity streamlines overlaid on the simulation domain are

very similar between the two domains. In Fig. B.2, there is good agreement between the

average properties along the thruster channel centerline. The normalized average root mean

square (RMS) error between the data sets is approximately 1.0% for the density and 2.1%

for the axial velocity. This is the most important result, since the main area of concern

for the HET simulation is the thruster channel and adjacent near-field plume. Thus, the

conclusion is that the DK 2D2V approach can be used for the UM/AFRL P5 HET domain;

results may be directly compared with those obtained via the PIC 2D3V approach.
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Figure B.1: Average neutral atom density contours overlaid with neutral velocity stream-
lines. (Left) planar simulation domain. (Right) axisymmetric simulation domain.

Figure B.2: Average planar (2d2v) and axisymmetric (2d3v) neutral properties along the
thruster channel centerline for the UM/AFRL P5 HET domain.
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