
Numerical Simulation of Transitional,
Hypersonic Flows using a

Hybrid Particle-Continuum Method

by

Ashley Marie Verhoff

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in The University of Michigan
2015

Doctoral Committee:

Professor Iain D. Boyd, Chairperson
Research Professor Michael R. Combi
Professor Kenneth G. Powell
Associate Professor Thomas E. Schwartzentruber, University of Minnesota



“I know the plans I have for you,” declares the Lord,
“plans to prosper you and not to harm you,

plans to give you hope and a future.”

Jeremiah 29:11

“For my part I know nothing with any certainty,
but the sight of the stars makes me dream.”

Vincent van Gogh



c© Ashley Marie Verhoff 2015

All Rights Reserved



For my mother,

and in loving memory of my father.

ii



ACKNOWLEDGEMENTS

This dissertation represents much more than my own personal efforts over the last

several years. Without the love, encouragement, and support of so many others, I

may not have even had the opportunity to attend graduate school, let alone complete

my doctoral degree. I realize now that if I were to thank everyone who has helped

me reach this point in my academic career, the length of this section would surely

surpass the actual dissertation.

I would first like to thank my advisor, Professor Iain Boyd, for accepting me into

his research group, and mentoring me through the triumphs and detours of the past

five years. No matter my state of confusion or frustration before going into his office

for a meeting, I always knew that I would feel better when I walked out. I’m grateful

to have had an advisor with such patience and understanding in both research and

personal matters. I would also like to thank Professor Michael Combi, Professor

Ken Powell, and Professor Tom Schwartzentruber for making the time in their busy

schedules to serve on my doctoral committee, and for their feedback and advice.

I am especially grateful for Tom’s willingness and ability to discuss even my most

detailed questions and concerns regarding the MPC method. In addition, I thank

Professor Krzysztof Fidkowski for always making himself available to discuss my CFD-

related questions. Finally, this section would not be complete without recognizing the

dedicated efforts of Denise Phelps, Dave McLean, Cindy Enoch, Chris Chartier, and

Tom Griffin. I will miss their friendly faces and conversation.

During my first summer as a graduate student, I was very fortunate to have had

iii



the opportunity to work with Eswar Josyula at the Air Force Research Laboratory.

It was an extremely rewarding experience; I always look forward to seeing Eswar at

conferences, and am appreciative of his continued mentorship. In addition, I attribute

almost all of my Linux and command line knowledge to Dr. C. J. Suchyta, also from

AFRL, who was very patient while I climbed that steep learning curve. I’m also very

grateful for the helpful experts at NASA’s Advanced Supercomputing Division and

the University of Michigan’s Center for Advanced Computing (CAC); I have yet to

encounter a computer or programming problem that they haven’t been able to solve. I

would also like to acknowledge the NASA Constellation University Initiatives Project,

the National Defense Science and Engineering Graduate Fellowship Program, and the

National Science Foundation Graduate Research Fellowship Program for funding my

research efforts. I am very honored to have had these agencies invest in my ideas and

potential.

I have claimed many times that there are two people who could be “co-authors”

of my dissertation, and they deserve special recognition for being such amazing col-

leagues, mentors, and friends. I am indebted to Marco Ceze, who has answered

countless programming questions over the years, and is not only willing to listen to

my problems, but also eager to offer advice. Erin Farbar has been a constant source

of support and encouragement during my time at Michigan. Our coffee/tea/chocolate

breaks at Pierpont Commons have always led to new perspectives on my research,

career plans, and other concerns. I’m convinced that I would have left without my

Ph.D. had it not been for Marco and Erin.

Between the friends that I’ve made in graduate school and those who have been by

my side even longer, I am truly blessed. Zachary Kier and I have been through so much

together, from pulling all-nighters during our senior design project at the University of

Cincinnati, to navigating graduate school. Now that I’m moving on without a familiar

face beside me, I’m realizing even more how much I value our friendship. There are

iv



also a few other “bearcats” who remain some of my closest friends: Rachel Edgerly,

Ryan Noble, Melissa LaBarbera, and Molly Finn Petre. You are all proof that true

friendship knows no distance. In addition, graduate school would not have been nearly

as enjoyable were it not for the past and present members of the Nonequilibrium Gas

and Plasma Dynamics Laboratory (too many to count!), the “TacocaT” trivia team

(Brandon Smith, Jon and Michelle Wiebenga, Luke Hansen, and Lauren Mackey),

my former officemates (Paul Giuliano and Tim Eymann), my current officemates

(Horatiu Dragnea, Kyle Hanquist, and Steve Kast), my fellow tailgaters (Eric and

Lisa Muir), and my Small Church Community (especially Steve and Sarah DeWitt,

and Cyril Galitzine). I am especially grateful to Cyril for taking the time to review

my dissertation and provide comments; this was no easy nor short task! And who

could forget firing-up the meat smoker, making cornhole boards, and painting the

Michi-Van (Matt Holzel, Bojana Drincic, and Tony D’Amato)?

Lastly, I can’t begin to describe how much gratitude I have for my parents and my

brother, Alan. They have always believed in me, even when I didn’t believe in myself.

I learned the personal pride that work can bring from my father, who worked long

hours on the General Motors factory floor for more than 35 years, and my mother,

who worked extra hours on weekends to make her office run more smoothly during

the week. They were my first teachers, and I owe every success to them.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Multiscale Nature of Transitional, Hypersonic Flows . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Scope of Dissertation . . . . . . . . . . . . . . . . . . . . . . 11

II. Mathematical Modeling and Numerical Simulation of
Transitional, Hypersonic Flows . . . . . . . . . . . . . . . . . . . 15

2.1 The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Equilibrium Solution . . . . . . . . . . . . . . . . . 19

2.2 Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . 22
2.4 Alternative Solution Methods . . . . . . . . . . . . . . . . . . 28
2.5 Direct Simulation Monte Carlo Method . . . . . . . . . . . . 29
2.6 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . . . 32

III. A Modular Particle-Continuum Method . . . . . . . . . . . . . 37

3.1 Simulation Modules . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.1 CFD . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 DSMC . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



3.2 Continuum Breakdown . . . . . . . . . . . . . . . . . . . . . 44
3.3 Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Coupling Procedures . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Hybrid Method Organization and Algorithm . . . . . . . . . 62
3.6 Interim Conclusions . . . . . . . . . . . . . . . . . . . . . . . 66

IV. Consistent Modeling of Physical Processes . . . . . . . . . . . 67

4.1 Transport Properties . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.1 Simple Gases . . . . . . . . . . . . . . . . . . . . . . 68
4.1.2 Gas Mixtures . . . . . . . . . . . . . . . . . . . . . 71

4.2 Thermal Nonequilibrium . . . . . . . . . . . . . . . . . . . . . 83
4.2.1 Translational-Rotational Energy Exchange . . . . . 84
4.2.2 Translational-Vibrational Energy Exchange . . . . . 98

4.3 Interim Conclusions . . . . . . . . . . . . . . . . . . . . . . . 104

V. A Comprehensive Assessment of the MPC Method . . . . . . 108

5.1 A Detailed Accuracy Evaluation . . . . . . . . . . . . . . . . 109
5.2 Improved Consistency of Boundary Conditions . . . . . . . . 118

5.2.1 Supersonic Outflow . . . . . . . . . . . . . . . . . . 118
5.2.2 Hybrid Interfaces . . . . . . . . . . . . . . . . . . . 123

5.3 Baseline Accuracy and Computational Performance . . . . . . 127
5.4 Investigation of Remaining Errors . . . . . . . . . . . . . . . 141
5.5 Interim Conclusions . . . . . . . . . . . . . . . . . . . . . . . 146

VI. Accurate Prediction of Rotational Nonequilibrium Effects . . 148

6.1 A New Rotational Nonequilibrium Detection Parameter . . . 150
6.2 Initial Placement of Hybrid Interfaces . . . . . . . . . . . . . 152

6.2.1 Simple Gas Study . . . . . . . . . . . . . . . . . . . 152
6.2.2 Gas Mixture Study . . . . . . . . . . . . . . . . . . 160
6.2.3 Conclusions from Simple Gas and Gas Mixture

Studies . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3 MPC Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3.1 Flow Field Properties . . . . . . . . . . . . . . . . . 171
6.3.2 Surface Properties . . . . . . . . . . . . . . . . . . . 181
6.3.3 Computational Performance . . . . . . . . . . . . . 182

6.4 Interim Conclusions . . . . . . . . . . . . . . . . . . . . . . . 186

VII. Hybrid Simulations of Mixtures of Chemical Species . . . . . 188

7.1 Multispecies Considerations . . . . . . . . . . . . . . . . . . . 189
7.2 Verification of the MPC Method: 50% N2/50% N . . . . . . 191

7.2.1 Flow Field Properties . . . . . . . . . . . . . . . . . 192

vii



7.2.2 Surface Properties . . . . . . . . . . . . . . . . . . . 198
7.2.3 Computational Performance . . . . . . . . . . . . . 204

7.3 Verification of the MPC Method: 80% N2/20% O2 . . . . . . 205
7.3.1 Flow Field Properties . . . . . . . . . . . . . . . . . 207
7.3.2 Surface Properties . . . . . . . . . . . . . . . . . . . 214
7.3.3 Computational Performance . . . . . . . . . . . . . 216

7.4 A Challenge for the MPC Method: 50% N2/50% H . . . . . . 216
7.5 Interim Conclusions . . . . . . . . . . . . . . . . . . . . . . . 221

VIII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.1 Summary of Dissertation . . . . . . . . . . . . . . . . . . . . 223
8.2 Unique Contributions . . . . . . . . . . . . . . . . . . . . . . 229
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.3.1 VSS Collision Model . . . . . . . . . . . . . . . . . 232
8.3.2 Generalized Chapman-Enskog Distribution . . . . . 232
8.3.3 Continuum Breakdown . . . . . . . . . . . . . . . . 233
8.3.4 Mesh Refinement Algorithm . . . . . . . . . . . . . 234
8.3.5 Chemical Reactions . . . . . . . . . . . . . . . . . . 235
8.3.6 Three-Dimensional Geometries . . . . . . . . . . . . 235

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

viii



LIST OF FIGURES

Figure

1.1 Shadowgraph image of a manned re-entry capsule concept (Great
Images in NASA, GPN-2000-001938). . . . . . . . . . . . . . . . . . 8

1.2 Contours of KnGLL for the Mach 12, Kn∞ 0.01 flow of N2 over a
two-dimensional cylinder. . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Cumulative cost of simulating the Mach 12, Kn∞ 0.01 flow of N2

over a two-dimensional cylinder using DSMC. . . . . . . . . . . . . 10

3.1 Illustration of hybrid interface, before refinement. . . . . . . . . . . 49

3.2 Gradient-based refinement of continuum cell [64]. . . . . . . . . . . 51

3.3 Illustration of hybrid interface, after refinement. . . . . . . . . . . . 52

3.4 Particle-continuum coupling approaches. . . . . . . . . . . . . . . . 58

3.5 Modular organization of CFD, DSMC, and MPC hybrid functions
and data structures [64]. . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Viscosity collision integral dependence on translational temperature
for N2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Variation of viscosity with N2/N mixture composition. . . . . . . . 74

4.3 Velocity profile from a typical DSMC simulation of Couette flow. . . 76

4.4 Comparisons of viscosities obtained using the Gupta Mixing Rule
(CFD) and the VHS collision model (DSMC). . . . . . . . . . . . . 77

4.5 Variation of viscosity with N2/H mixture composition. . . . . . . . 78

ix



4.6 Rotational temperature relaxation of N2 as predicted by CFD and
DSMC, with φrot (Ecoll). . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Rotational collision number profiles of N2 as predicted by CFD and
DSMC, with φrot (Ecoll). . . . . . . . . . . . . . . . . . . . . . . . . 91

4.8 Rotational temperature relaxation of 50% N2/50% N as predicted by
CFD and DSMC, using φrot (Ecoll). . . . . . . . . . . . . . . . . . . 93

4.9 Rotational collision number profiles of 50% N2/50% N as predicted
by CFD and DSMC, using φrot (Ecoll). . . . . . . . . . . . . . . . . . 94

4.10 Rotational temperature relaxation of N2 as predicted by CFD and
DSMC, using φrot (Erel). . . . . . . . . . . . . . . . . . . . . . . . . 95

4.11 Rotational collision number profiles of N2 as predicted by CFD and
DSMC, using φrot (Erel). . . . . . . . . . . . . . . . . . . . . . . . . 95

4.12 Rotational temperature relaxation of 50% N2/50% N as predicted by
CFD and DSMC, using φrot (Erel). . . . . . . . . . . . . . . . . . . . 96

4.13 Rotational collision number profiles of 50% N2/50% N as predicted
by CFD and DSMC, using φrot (Erel). . . . . . . . . . . . . . . . . . 96

4.14 Rotational temperature relaxation of 80% N2/20% O2 as predicted by
CFD and DSMC, using φrot (Erel) and the particle selection method-
ology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.15 Rotational collision number profiles of 80% N2/20% O2 as predicted
by CFD and DSMC, using φrot (Erel) and the particle selection method-
ology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.16 Vibrational temperature relaxation of N2 as predicted by CFD and
DSMC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.17 Vibrational temperature relaxation of 50% N2/50% N as predicted
by CFD and DSMC. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.18 Vibrational temperature relaxation of 80% N2/20% O2 as predicted
by CFD and DSMC. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Illustration of continuum cell and constituent particle cells. . . . . . 110

x



5.2 Contours of translational temperature errors of previous MPC results
relative to full DSMC for the Mach 12, Kn∞ 0.01 flow of N2 over a
two-dimensional cylinder; hybrid interfaces are shown as black lines. 113

5.3 Contours of rotational temperature errors of previous MPC results
relative to full DSMC for the Mach 12, Kn∞ 0.01 flow of N2 over a
two-dimensional cylinder; hybrid interfaces are shown as black lines. 113

5.4 Contours of velocity magnitude errors of previous MPC results rel-
ative to full DSMC for the Mach 12, Kn∞ 0.01 flow of N2 over a
two-dimensional cylinder; hybrid interfaces are shown as black lines. 114

5.5 Contours of mass density errors of previous MPC results relative
to full DSMC for the Mach 12, Kn∞ 0.01 flow of N2 over a two-
dimensional cylinder; hybrid interfaces are shown as black lines. . . 114

5.6 Comparisons of probability distribution functions predicted by full
DSMC and equilibrium theory in cell A of Fig. 5.2. . . . . . . . . . 116

5.7 Comparisons of probability distribution functions predicted by full
DSMC and equilibrium theory in cell B of Fig. 5.2. . . . . . . . . . 117

5.8 Translational temperature along the stagnation streamline of the
Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder. . . 119

5.9 Translational temperature along the y = 0.13m extraction line of the
Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder. . . 120

5.10 Illustration of a Maxwellian VDF at the outflow boundary, where un
is the directed velocity aligned with an inward-pointing normal. . . 121

5.11 Contours of Mach number for the Mach 12, Kn∞ 0.01 flow of N2 over
a two-dimensional cylinder. . . . . . . . . . . . . . . . . . . . . . . . 121

5.12 Mesh and streamtraces near hybrid interfaces. . . . . . . . . . . . . 125

5.13 Contours of translational temperature errors of the current MPC re-
sults relative to full DSMC for the Mach 12, Kn∞ 0.01 flow of N2

over a two-dimensional cylinder; hybrid interfaces are shown as black
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.14 Contours of rotational temperature errors of the current MPC results
relative to full DSMC for the Mach 12, Kn∞ 0.01 flow of N2 over a
two-dimensional cylinder; hybrid interfaces are shown as black lines. 128

xi



5.15 Contours of velocity magnitude errors of the current MPC results
relative to full DSMC for the Mach 12, Kn∞ 0.01 flow of N2 over a
two-dimensional cylinder; hybrid interfaces are shown as black lines. 129

5.16 Contours of mass density errors of the current MPC results relative
to full DSMC for the Mach 12, Kn∞ 0.01 flow of N2 over a two-
dimensional cylinder; hybrid interfaces are shown as black lines. . . 129

5.17 Contours of translational temperature errors between two full DSMC
simulations of the Mach 12, Kn∞ 0.01 flow ofN2 over a two-dimensional
cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.18 Contours of rotational temperature errors between two full DSMC
simulations of the Mach 12, Kn∞ 0.01 flow ofN2 over a two-dimensional
cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.19 Contours of velocity magnitude errors between two full DSMC simu-
lations of the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional
cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.20 Contours of mass density errors between two full DSMC simulations
of the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder.132

5.21 Surface pressure coefficient along the cylinder surface for the Mach
12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder. . . . . . . 134

5.22 Heat transfer coefficient along the cylinder surface for the Mach 12,
Kn∞ 0.01 flow of N2 over a two-dimensional cylinder. . . . . . . . . 135

5.23 Shear stress coefficient along the cylinder surface for the Mach 12,
Kn∞ 0.01 flow of N2 over a two-dimensional cylinder. . . . . . . . . 135

5.24 Relative errors of surface pressure coefficient along the cylinder sur-
face for the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional
cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.25 Relative errors of heat transfer coefficient along the cylinder surface
for the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder.137

5.26 Relative errors of shear stress coefficient along the cylinder surface
for the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder.138

5.27 Time history of translational temperature along the y = 0.13m ex-
traction line of the Mach 12, Kn∞ 0.01 flow of N2 over a two-
dimensional cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xii



5.28 Translational temperature along the y = 0.13m extraction line, be-
fore and after the particle domains have been updated from an initial,
full DSMC solution of the Mach 12, Kn∞ 0.01 flow of N2 over a two-
dimensional cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1 Computational domain and data extraction lines. . . . . . . . . . . 153

6.2 Errors between full CFD and full DSMC results along the stagna-
tion streamline for the Mach 12, Kn∞ 0.01 flow of N2 over a two-
dimensional cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3 Continuum breakdown parameters based on a full CFD solution along
the stagnation streamline for the Mach 12, Kn∞ 0.01 flow of N2 over
a two-dimensional cylinder. . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 Errors between full CFD and full DSMC results along the 45◦ extrac-
tion line for the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional
cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.5 Continuum breakdown parameters based on a full CFD solution along
the 45◦ extraction line for the Mach 12, Kn∞ 0.01 flow of N2 over a
two-dimensional cylinder. . . . . . . . . . . . . . . . . . . . . . . . . 158

6.6 Errors between full CFD and full DSMC results along the 90◦ extrac-
tion line for the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional
cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.7 Continuum breakdown parameters based on a full CFD solution along
the 90◦ extraction line for the Mach 12, Kn∞ 0.01 flow of N2 over a
two-dimensional cylinder. . . . . . . . . . . . . . . . . . . . . . . . . 161

6.8 Errors between full CFD and full DSMC results along the stagnation
streamline for the Mach 10, Kn∞ 0.01 flow of 50% N2/50% N over
a two-dimensional cylinder. . . . . . . . . . . . . . . . . . . . . . . . 163

6.9 Continuum breakdown parameters based on a full CFD solution along
the stagnation streamline for the Mach 10, Kn∞ 0.01 flow of 50%
N2/50% N over a two-dimensional cylinder. . . . . . . . . . . . . . 163

6.10 Errors between full CFD and full DSMC results along the 45◦ extrac-
tion line for the Mach 10, Kn∞ 0.01 flow of 50% N2/50% N over a
two-dimensional cylinder. . . . . . . . . . . . . . . . . . . . . . . . . 165

xiii



6.11 Continuum breakdown parameters based on a full CFD solution along
the 45◦ extraction line for the Mach 10, Kn∞ 0.01 flow of 50%
N2/50% N over a two-dimensional cylinder. . . . . . . . . . . . . . 165

6.12 Errors between full CFD and full DSMC results along the 90◦ extrac-
tion line for the Mach 10, Kn∞ 0.01 flow of 50% N2/50% N over a
two-dimensional cylinder. . . . . . . . . . . . . . . . . . . . . . . . . 167

6.13 Continuum breakdown parameters based on a full CFD solution along
the 90◦ extraction line for the Mach 10, Kn∞ 0.01 flow of 50%
N2/50% N over a two-dimensional cylinder. . . . . . . . . . . . . . 167

6.14 Initial (upper pane) and final (lower pane) hybrid interfaces, where
Knrot interfaces are shown blue, andKnROT−NEQ interfaces are shown
in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.15 Contours of translational temperature, with DSMC results shown as
flooded contours, MPC results where Knrot is used as lines in the
upper pane, and MPC results where KnROT−NEQ is used as lines in
the lower pane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.16 Contours of rotational temperature, with DSMC results shown as
flooded contours, MPC results where Knrot is used as lines in the
upper pane, and MPC results where KnROT−NEQ is used as lines in
the lower pane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.17 Translational and rotational temperatures along the stagnation stream-
line, with MPC results obtained using the original KnROT−NEQ pa-
rameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.18 Translational and rotational temperatures along the stagnation stream-
line, with MPC results obtained using the new Knrot parameter. . . 175

6.19 Translational and rotational temperatures along the stagnation stream-
line, with MPC results obtained using the original KnROT−NEQ pa-
rameter, near the post-shock hybrid interface. . . . . . . . . . . . . 176

6.20 Translational and rotational temperatures along the stagnation stream-
line, with MPC results obtained using the new Knrot parameter, near
the post-shock hybrid interface. . . . . . . . . . . . . . . . . . . . . 176

6.21 Translational and rotational temperatures along the stagnation stream-
line, with MPC results obtained using the original KnROT−NEQ pa-
rameter, near the pre-boundary layer hybrid interface. . . . . . . . . 177

xiv



6.22 Translational and rotational temperatures along the stagnation stream-
line, with MPC results obtained using the new Knrot parameter, near
the pre-boundary layer hybrid interface. . . . . . . . . . . . . . . . . 177

6.23 Contours of translational temperature errors of the MPC method
relative to full DSMC when Knrot is used, with hybrid interfaces
shown as black lines. . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.24 Contours of rotational temperature errors of the MPC method rela-
tive to full DSMC when Knrot is used, with hybrid interfaces shown
as black lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.25 Contours of velocity magnitude errors of the MPC method relative
to full DSMC when Knrot is used, with hybrid interfaces shown as
black lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.26 Contours of mass density errors of the MPC method relative to full
DSMC when Knrot is used, with hybrid interfaces shown as black lines.180

6.27 Surface pressure coefficient along the cylinder surface for the Mach
12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder. . . . . . . 182

6.28 Heat transfer coefficient along the cylinder surface for the Mach 12,
Kn∞ 0.01 flow of N2 over a two-dimensional cylinder. . . . . . . . . 183

6.29 Shear stress coefficient along the cylinder surface for the Mach 12,
Kn∞ 0.01 flow of N2 over a two-dimensional cylinder. . . . . . . . . 183

6.30 Surface pressure coefficient errors of the MPC method relative to full
DSMC when Knrot is used. . . . . . . . . . . . . . . . . . . . . . . . 184

6.31 Heat transfer coefficient errors of the MPC method relative to full
DSMC when Knrot is used. . . . . . . . . . . . . . . . . . . . . . . . 184

6.32 Shear stress coefficient errors of the MPC method relative to full
DSMC when Knrot is used. . . . . . . . . . . . . . . . . . . . . . . . 185

7.1 Illustration of two different VDFs, where the molecular weight of
particles represented by the red line is less than that of the particles
represented by the blue line. . . . . . . . . . . . . . . . . . . . . . . 191

7.2 Initial and final hybrid interfaces for the Mach 10, Kn∞ 0.01 flow of
50% N2/50% N over a two-dimensional cylinder. . . . . . . . . . . . 192

xv



7.3 Contours of velocity magnitude for the Mach 10, Kn∞ 0.01 flow of
50% N2/50% N over a two-dimensional cylinder. . . . . . . . . . . . 194

7.4 Contours of translational temperature for the Mach 10, Kn∞ 0.01
flow of 50% N2/50% N over a two-dimensional cylinder. . . . . . . . 195

7.5 Contours of rotational temperature for the Mach 10, Kn∞ 0.01 flow
of 50% N2/50% N over a two-dimensional cylinder. . . . . . . . . . 196

7.6 Contours of translational temperature errors of the MPC method rel-
ative to full DSMC for the Mach 10, Kn∞ 0.01 flow of 50% N2/50% N
over a two-dimensional cylinder; hybrid interfaces are shown as black
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.7 Contours of rotational temperature errors of the MPC method rela-
tive to full DSMC for the Mach 10, Kn∞ 0.01 flow of 50% N2/50% N
over a two-dimensional cylinder; hybrid interfaces are shown as black
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.8 Contours of velocity magnitude errors of the MPC method relative
to full DSMC for the Mach 10, Kn∞ 0.01 flow of 50% N2/50% N
over a two-dimensional cylinder; hybrid interfaces are shown as black
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.9 Contours of N2 mass density errors of the MPC method relative to
full DSMC for the Mach 10, Kn∞ 0.01 flow of 50% N2/50% N over
a two-dimensional cylinder; hybrid interfaces are shown as black lines. 200

7.10 Contours of N mass density errors of the MPC method relative to
full DSMC for the Mach 10, Kn∞ 0.01 flow of 50% N2/50% N over
a two-dimensional cylinder; hybrid interfaces are shown as black lines. 201

7.11 N2 mole fraction along the stagnation streamline for the Mach 10,
Kn∞ 0.01 flow of 50% N2/50% N over a two-dimensional cylinder. . 202

7.12 Surface pressure coefficient along the cylinder surface for the Mach
10, Kn∞ 0.01 flow of 50% N2/50% N . . . . . . . . . . . . . . . . . 202

7.13 Heat transfer coefficient along the cylinder surface for the Mach 10,
Kn∞ 0.01 flow of 50% N2/50% N . . . . . . . . . . . . . . . . . . . . 203

7.14 Shear stress coefficient along the cylinder surface for the Mach 10,
Kn∞ 0.01 flow of 50% N2/50% N . . . . . . . . . . . . . . . . . . . . 203

xvi



7.15 Initial and final hybrid interfaces for the Mach 10, Kn∞ 0.01 flow of
80% N2/20% O2 over a two-dimensional cylinder. . . . . . . . . . . 206

7.16 Contours of velocity magnitude for the Mach 10, Kn∞ 0.01 flow of
80% N2/20% O2 over a two-dimensional cylinder. . . . . . . . . . . 208

7.17 Contours of translational temperature for the Mach 10, Kn∞ 0.01
flow of 80% N2/20% O2 over a two-dimensional cylinder. . . . . . . 209

7.18 Contours of rotational temperature for the Mach 10, Kn∞ 0.01 flow
of 80% N2/20% O2 over a two-dimensional cylinder. . . . . . . . . . 210

7.19 Contours of translational temperature errors of the MPC method rel-
ative to full DSMC for the Mach 10, Kn∞ 0.01 flow of 80%N2/20%O2

over a two-dimensional cylinder; hybrid interfaces are shown as black
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.20 Contours of rotational temperature errors of the MPC method rela-
tive to full DSMC for the Mach 10, Kn∞ 0.01 flow of 80% N2/20% O2

over a two-dimensional cylinder; hybrid interfaces are shown as black
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.21 Contours of velocity magnitude errors of the MPC method relative
to full DSMC for the Mach 10, Kn∞ 0.01 flow of 80% N2/20% O2

over a two-dimensional cylinder; hybrid interfaces are shown as black
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.22 Contours of N2 mass density errors of the MPC method relative to
full DSMC for the Mach 10, Kn∞ 0.01 flow of 80% N2/20% O2 over
a two-dimensional cylinder; hybrid interfaces are shown as black lines. 212

7.23 Contours of O2 mass density errors of the MPC method relative to
full DSMC for the Mach 10, Kn∞ 0.01 flow of 80% N2/20% O2 over
a two-dimensional cylinder; hybrid interfaces are shown as black lines. 213

7.24 Surface pressure coefficient along the cylinder surface for the Mach
10, Kn∞ 0.01 flow of 80% N2/20% O2. . . . . . . . . . . . . . . . . 214

7.25 Heat transfer coefficient along the cylinder surface for the Mach 10,
Kn∞ 0.01 flow of 80% N2/20% O2. . . . . . . . . . . . . . . . . . . 215

7.26 Shear stress coefficient along the cylinder surface for the Mach 10,
Kn∞ 0.01 flow of 80% N2/20% O2. . . . . . . . . . . . . . . . . . . 215

xvii



7.27 Translational temperature along the stagnation streamline for the
Mach 10, Kn∞ 0.002 flow of 50% N2/50% H. . . . . . . . . . . . . 218

7.28 Rotational temperature along the stagnation streamline for the Mach
10, Kn∞ 0.002 flow of 50% N2/50% H. . . . . . . . . . . . . . . . . 219

7.29 Surface pressure coefficient along the cylinder surface for the Mach
10, Kn∞ 0.002 flow of 50% N2/50% H. . . . . . . . . . . . . . . . . 219

7.30 Heat transfer coefficient along the cylinder surface for the Mach 10,
Kn∞ 0.002 flow of 50% N2/50% H. . . . . . . . . . . . . . . . . . . 220

7.31 Shear stress coefficient along the cylinder surface for the Mach 10,
Kn∞ 0.002 flow of 50% N2/20% H. . . . . . . . . . . . . . . . . . . 220

xviii



LIST OF TABLES

Table
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ABSTRACT

Numerical Simulation of Transitional, Hypersonic Flows
using a Hybrid Particle-Continuum Method

by

Ashley Marie Verhoff

Chairperson: Iain D. Boyd

Analysis of hypersonic flows requires consideration of multiscale phenomena due

to the range of flight regimes encountered, from rarefied conditions in the upper

atmosphere to fully continuum flow at low altitudes. At transitional Knudsen numbers

there are likely to be localized regions of strong thermodynamic nonequilibrium effects

that invalidate the continuum assumptions of the Navier-Stokes equations. Accurate

simulation of these regions, which include shock waves, boundary and shear layers,

and low-density wakes, requires a kinetic theory-based approach where no a priori

assumptions are made regarding the molecular distribution function. Because of the

nature of these types of flows, there is much to be gained in terms of both numerical

efficiency and physical accuracy by developing hybrid particle-continuum simulation

approaches.

The focus of the present research effort is the continued development of the Modu-

lar Particle-Continuum (MPC) method, where the Navier-Stokes equations are solved

numerically using computational fluid dynamics (CFD) techniques in regions of the

flow field where continuum assumptions are valid, and the direct simulation Monte

xxi



Carlo (DSMC) method is used where strong thermodynamic nonequilibrium effects

are present. Numerical solutions of transitional, hypersonic flows are thus obtained

with increased physical accuracy relative to CFD alone, and improved numerical effi-

ciency is achieved in comparison to DSMC alone because this more computationally

expensive method is restricted to those regions of the flow field where it is necessary

to maintain physical accuracy.

In this dissertation, a comprehensive assessment of the physical accuracy of the

MPC method is performed, leading to the implementation of a non-vacuum supersonic

outflow boundary condition in particle domains, and more consistent initialization of

DSMC simulator particles along hybrid interfaces. The relative errors between MPC

and full DSMC results are greatly reduced as a direct result of these improvements.

Next, a new parameter for detecting rotational nonequilibrium effects is proposed and

shown to offer advantages over other continuum breakdown parameters, achieving

further accuracy gains. Lastly, the capabilities of the MPC method are extended to

accommodate multiple chemical species in rotational nonequilibrium, each of which

is allowed to equilibrate independently, enabling application of the MPC method to

more realistic atmospheric flows.
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CHAPTER I

Introduction

National interest in space exploration has resurged in recent years, due in large

part to the successful use of several commercially-developed launch vehicles and un-

manned capsules to resupply the International Space Station. NASA’s current efforts

to replace the retired Space Shuttle with a Space Launch System heavy-lift rocket and

Orion crew capsule are being paralleled by other independent ventures funded mostly

by private companies. Many of these companies have also chosen the launch vehicle

and re-entry capsule architecture inspired by Apollo heritage over the winged, lifting-

body configuration of the Space Shuttle. Despite this, the importance of technological

advancements made in support of the Space Shuttle program, specifically in terms of

aerothermodynamic modeling of the re-entry environment, cannot be overstated.

The objective of designing a reusable thermal protection system (TPS) for a more

complex geometry than its predecessors demanded a high-fidelity definition of the

integrated heat loads incurred by the Space Shuttle throughout its entire re-entry

trajectory, a larger portion of which was spent under rarefied conditions in the upper

atmosphere. Wind tunnel data, although collected at much lower enthalpies than

would be experienced in flight, provided the foundation for the design methodology,

while small-scale numerical simulations were used to guide the scaling of this wind

tunnel data and provide some insight into the effects of finite-rate chemistry on the
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flow field [61]. In contrast, following the loss of the Columbia vehicle during re-

entry, full-scale, three-dimensional numerical simulations including real gas effects

were the standard, and could be performed during the course of a single mission

in order to determine whether or not the TPS had withstood catastrophic damage

during launch [55]. Increased availability of computational resources and a deeper

understanding of hypersonic aerothermodynamics through comparisons between flight

data and design predictions have enabled a revolution in re-entry vehicle design, which

is now heavily reliant on numerical simulations as an alternative to experimental

measurements.

With the commercialization of spaceflight, there is widespread need to accurately

simulate complex flow fields that span a range of flight regimes, from rarefied con-

ditions at the beginning of a re-entry trajectory to fully continuum flow near the

end. Even as modeling and simulation become more involved, the desire for timely

solutions continues, so that there is also a need to increase the efficiency of these

numerical algorithms by decreasing the computational resources required to obtain a

given solution. This becomes even more important for private companies, which usu-

ally do not have access to the supercomputers that are commonplace at government

and academic institutions. Therefore, it is the objective of this dissertation to detail

the recent developments of a computational approach to enable physically accurate

and numerically efficient simulations of transitional, hypersonic flows encountered by

re-entry vehicles.

1.1 Multiscale Nature of Transitional, Hypersonic Flows

The major source of complexity associated with accurately simulating the flow

field surrounding a re-entry vehicle is the multiscale nature of the physical phenomena

that must be considered. At sea level conditions, there are approximately 2.5× 1019

individual molecules of N2, O2, and other trace species in every cubic centimeter of
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air. Each molecule moves, on average, 50 nanometers before colliding with another

molecule, and this happens approximately once every 0.1 nanoseconds [8]. These

length and time scales are much smaller than those that can be distinguished by

human perception, so that air at these conditions appears to be continuous. In

other words, the discrete nature of these air molecules can be ignored and is indeed

replaced by macroscopic fluid properties such as temperature, pressure, and density

that are assumed to change continuously throughout space. Conversely, in the upper

atmosphere where a re-entry vehicle begins its descent trajectory, there are very few

gas molecules. At an altitude of 100km, there are approximately 6.1×1012 molecules

per cubic centimeter [2]. The concept of a continuous fluid is no longer valid, as the

role of each individual gas molecule in a given volume becomes very important to any

average of molecular properties. Therefore, a re-entry vehicle experiences a decrease

in density of over six orders of magnitude throughout the course of its trajectory, and

the critical question of whether a microscopic or macroscopic view of the surrounding

gas is more appropriate must be answered.

Analysis of multiscale problems begins with examining the relative sizes of length

and time scales that are of interest. When considering any sort of fluid, one of the

relevant length scales will always be the mean distance a molecule of that fluid travels

between collisions. This is because molecular collisions and subsequent scattering and

energy transfer are the means by which all change is propagated throughout a fluid.

The atmosphere can be considered a dilute gas, meaning that the vast majority of

collisions are binary and the average distance a molecule travels between collisions, i.e.

the mean free path, is much larger than the diameters of the molecules themselves [8].

Therefore, molecules of a dilute gas spend much of their time traveling unimpeded,

outside of the influence of other molecules’ potential fields. The most common way

of identifying the relative importance of the mean free path is the global Knudsen

number, given by
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Kn∞ =
λ∞
L
. (1.1)

In Eq. 1.1, λ∞ is the freestream mean free path and L is a characteristic length

scale of a vehicle or phenomenon of interest. This global parameter takes on a large

value when the mean free path is relatively large, such as when considering the flow

field surrounding a re-entry vehicle in the upper atmosphere. The global Knudsen

number can also be large even if the mean free path is small; such is the case in

microelectromechanical systems (MEMS) and processes. In both cases, the flow is

termed rarefied because relative to the characteristic dimension, L, the gas appears

to have a low density. This relative size of length scales can be seen as indicating

how disruptive a hypersonic vehicle is to the unobstructed movement of and colli-

sions between gas molecules. As Kn∞ → 0, collisions among gas molecules occur so

frequently that the flow field instantaneously adjusts to any perturbation. From the

perspective of the vehicle or flow feature of length scale L, the surrounding fluid is

in constant equilibrium. On the contrary, a large global Knudsen number implies a

greater likelihood of a given flow field being in translational nonequilibrium.

More specifically, the Knudsen number indicates how far the velocity distribution

function (VDF) of molecules in a gas deviates from a normal, or Gaussian, distribution

function. If the molecules of a gas are distributed according to a Gaussian, that gas is

said to be in a state of translational equilibrium. Small deviations can be accounted

for by assuming the physical validity of certain linear constitutive relations between

transport processes and gradients of macroscopic fluid properties. If the VDF deviates

too far from a Gaussian distribution, however, these continuum assumptions fail and

the microscopic nature of the fluid must be considered. More about the details of

translational and other subsets of equilibrium will be presented in Chapter II.

It is important to note that even if the global Knudsen number is small, the

local Knudsen number may still be quite large in specific regions of the flow field.
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A common example of this is the flow through a strong shock wave formed by a

vehicle moving at hypersonic speed. The global, pre-shock conditions may result in a

reasonably low global Knudsen number. However, the length scales associated with

the extremely large gradients in the shock wave may be much smaller than the local

mean free path. Such mixed rarefied/continuum flow fields are very likely to occur

at transitional Knudsen numbers between 0.001 and 1.

The Knudsen number can be manipulated to yield another characterization pa-

rameter, the Damköhler number. Rather than a ratio of length scales, the Damköhler

number is a ratio of the time scale associated with the convection of a fluid, and the

time scale associated with a given physical or chemical process occurring in that fluid.

This physical process may simply be collisions among gas molecules, so that starting

with the Knudsen number, the Damköhler number is given by

Dac =
1

Kn

c

V
=
L

λ

c

V
=
τf
τc
, (1.2)

where

c =

√
8kBTtrans
πm

(1.3)

is the average thermal speed of the gas molecules. In Eq. 1.2, V can be either a

local or a global flow speed, τc is the mean collision time, i.e. the mean time elapsed

between consecutive molecular collisions, and τf is a characteristic fluid convection

time. In Eq. 1.3, kB is the Boltzmann constant, Ttrans is the translational temper-

ature, and m is the mass of each individual gas molecule. The Damköhler number

written in this way is indicative of translational nonequilibrium. However, unlike the

Knudsen number, small Damköhler numbers generally imply a greater likelihood of

translational nonequilibrium.

Use of the Damköhler number is more commonplace when considering finite-rate

processes that drive thermal and chemical equilibrium. Again considering the strong
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shock wave formed by a hypersonic vehicle, the kinetic energy once possessed by

the gas prior to passing through the shock is converted almost directly into random

thermal energy, leading to a high post-shock translational temperature. This energy

must then be redistributed among all internal energy modes, and can also promote

dissociation of polyatomic molecules and ionization. The physical mechanism for all

of these processes is collisions among molecules. In general, the relative magnitudes

corresponding to common thermal relaxation and chemical processes are as follows:

τc ≈ τtrans < τrot � τvib < τd < τi,

where τrot is the characteristic relaxation time of the rotational energy mode, τvib is the

characteristic relaxation time of the vibrational energy mode, τd is the characteristic

time for a dissociative reaction to occur, and τi is the characteristic time for an

ionization reaction to occur. The Damköhler number is, thus, generalized to be

Da =
τf
τ
. (1.4)

The time scale, τ , in Eq. 1.4 now represents the characteristic time of relaxation

of an internal energy mode, or the characteristic time of a chemical reaction. As

Da → ∞, equilibration of internal energy modes and chemical reactions occur in-

stantaneously so that the fluid is always in a state of thermochemical equilibrium.

However, as Da → 0, the flow is commonly deemed “frozen” in its original state

because the time required for any sort of physical or chemical process to occur is

exceedingly long relative to the time available.

The computational approach that is the focus of this dissertation is applicable to

steady flows only. Therefore, the local Knudsen number provides a better indication

of whether a microscopic or macroscopic view of the gas is the most appropriate.

Regardless of the local Knudsen number, finite-rate thermal relaxation processes are

considered everywhere. This is because of the inherently small residence times of
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the atmospheric gas relative to a typical hypersonic, re-entry vehicle. However, any

chemical reactions that would naturally occur in the cases studied here are ignored.

1.2 Motivation

During initial development of blunt-body, re-entry capsules in support of the Mer-

cury, Gemini, and Apollo missions, shadowgraph images were taken in order to vi-

sualize the flow fields surrounding various manned capsule concepts. Shadowgraphs

are particularly useful in acquiring a qualitative understanding of where large density

gradients occur in a flow field. In this technique, light is passed through a flowing

fluid and, because light is refracted most through regions of large density gradients,

they appear dark in the resulting images. Figure 1.1 shows one such shadowgraph

in which several hallmark features of transitional, hypersonic flows are visible. The

strong bow shock wave produced by the blunt-body vehicle is labeled 1. Contrary to

engineering intuition at the time, in 1951 H. Julian Allen proposed the revolution-

ary idea that aerodynamic heating experienced during re-entry could be minimized

through the use of a blunt, rather than a slender, vehicle [3]. Instead of the weak,

attached shock wave produced by slender vehicles, a blunt-body vehicle produces a

strong, detached shock wave that deposits more energy into the surrounding air than

the vehicle surface. As mentioned previously, because of the extremely large gradients

in the shock wave produced by a blunt-body, hypersonic vehicle, and the fact that

these gradients occur over a few mean free paths of the gas, it is expected that a

continuum approach to simulating the shock region would yield inaccurate results.

Another region of very large gradients is the boundary layer along the forebody of

the vehicle, labeled 2 in Fig. 1.1. Most re-entry vehicle shapes are characterized by a

large-radius sphere in the forebody that transitions to a cone in the aftbody. The point

where the forebody and aftbody meet is referred to as the shoulder. As the gas flows

around the capsule shoulder, it must abruptly expand into the void created by the

7



Figure 1.1: Shadowgraph image of a manned re-entry capsule concept (Great Images
in NASA, GPN-2000-001938).

vehicle, leading to expansion waves and shear layers, labeled as 3 and 4, respectively.

Because of this expansion, the wake of the re-entry vehicle has a much lower density

and may include a recirculation region as marked by 5 in Fig. 1.1. Flow gradients in

the wake, although not as large as in the shock or boundary layer, are still likely to be

on the order of the local mean free path in that region. Finally, further downstream,

a recompression shock may form so that the wake flow can reaccommodate to that

in the far wake; this is labeled as 6. In all of these highlighted regions, there exists

the potential for the continuum fluid assumptions to be physically inaccurate.

The computational approach that is the focus of this dissertation was developed

in order to accurately and efficiently simulate transitional, hypersonic flows that are

of the same mixed rarefied/continuum nature visualized in Fig. 1.1. For example, one

test case that is studied extensively as part of the current development effort is that

of a Mach 12 flow of N2 over a two-dimensional cylinder at a global Knudsen number

of 0.01. Even though simulation of hypersonic flow over a two-dimensional cylinder

is a simplification relative to that over an actual blunt-body, re-entry vehicle, this
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Figure 1.2: Contours of KnGLL for the Mach 12, Kn∞ 0.01 flow of N2 over a two-
dimensional cylinder.

geometry still produces many of the same physical phenomena and facilitates a more

generalized analysis. Figure 1.2 illustrates contours of the local Knudsen number

based on gradient length scales throughout this flow field. More details about this

gradient-length local Knudsen number will be given in Chapter III, where a value

of 0.05 is proposed as the threshold between nonequilibrium and near-equilibrium

regions of a flow field [14]. The same flow features that were so evident in Fig. 1.1 are

also shown as having large local Knudsen numbers in Fig. 1.2, indicating that these

regions are in a state of translational nonequilibrium. Therefore, according to this

metric, the bow shock wave, boundary layer, and wake should be simulated using a

microscopic approach, since a macroscopic analysis in which the gas is assumed to be

continuous will likely be physically inaccurate.

Theoretically, a microscopic approach could be employed to simulate the entire

computational domain shown in Fig. 1.2. However, microscopic approaches, as will be

explained in the next chapter, are usually much more computationally intensive than a
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Figure 1.3: Cumulative cost of simulating the Mach 12, Kn∞ 0.01 flow of N2 over a
two-dimensional cylinder using DSMC.

macroscopic approach. The most popular of these microscopic approaches is the direct

simulation Monte Carlo (DSMC) method pioneered by G. A. Bird [8]. In the DSMC

method, a large number of “simulator” particles move deterministically and collide

stochastically with one another in order to mimic the movement and interactions

among real gas molecules. A typical DSMC simulation involves millions of simulator

particles, and the location, velocity, and internal energies of each must be tracked. In

the case of the DSMC code used in this dissertation, the computational cost scales

linearly with the number of simulator particles employed in a simulation. If the flow

field shown in Fig. 1.2 were simulated using the DSMC method, approximately 30

million simulator particles would be needed. However, over 80% of these simulator

particles are located in near-equilibrium regions of the flow field, where the local

Knudsen number is less than 0.05. This is illustrated in Fig. 1.3, where the cumulative

cost of this DSMC simulation is plotted against the local Knudsen number in each

computational cell.
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In contrast, numerical solution of the Navier-Stokes equations using computa-

tional fluid dynamics (CFD) is computationally efficient, but physically accurate in

near-equilibrium regions of the flow field only. Rather than accounting for millions

of simulator particles as is done in the DSMC method, a system of conservation

equations is solved for macroscopic properties of mass, momentum, and energy in

each computational cell of the domain of interest. Thus, because of the mixed rar-

efied/continuum nature of transitional, hypersonic flows, such as that illustrated by

this example, there is much to be gained by developing a hybrid approach, where

the DSMC method is used to obtain a physically accurate solution in nonequilib-

rium regions of the flow field, and CFD is used in near-equilibrium regions, where

it is both physically accurate and numerically efficient. The development of hybrid

particle-continuum methods, in which the computational domain is divided into dis-

tinct regions identified by a continuum breakdown parameter such as a local Knudsen

number, and information is exchanged as the simulation evolves, is of current research

interest because they provide a desirable alternative, in terms of both numerical effi-

ciency and physical accuracy, to either DSMC or CFD alone.

1.3 Scope of Dissertation

The accurate and efficient simulation of transitional, hypersonic flows is a problem

rich in physics and engineering challenges. The mixed rarefied/continuum nature of

these types of flow fields requires consideration of a wide range of length and time

scales. While computationally efficient, a macroscopic approach through numerical

solution of the continuum conservation equations does not provide microscopic details

that may be required to accurately resolve certain flow features. A molecular descrip-

tion of the entire flow field, however, is usually not necessary and, in many cases,

proves computationally intractable. Because of this, the goal of the present research

effort is the continued development and verification of a hybrid particle-continuum
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method for simulating transitional, hypersonic flows.

In Chapter II, the governing equations of fluid flow are presented as a progression

from first principles to the current state of research in the area of hybrid simulation

techniques. The Boltzmann equation, which describes the evolution of the molecular

distribution function in time and space is introduced, along with its analytical solution

for equilibrium flow. In particular, emphasis is placed on the simulation of mixtures

of chemical species with internal degrees of freedom. By taking moments of the

Boltzmann equation, the Euler equations of inviscid flow are derived, followed by the

Navier-Stokes equations that describe the behavior of near-continuum flow. Whereas

many CFD methods exist for numerical solution of the Navier-Stokes equations, there

is no general, analytical solution of the Boltzmann equation. Therefore, the DSMC

method [8] is presented as the most mature option for simulating flow fields at any

Knudsen number. Alternatives to the Navier-Stokes equations and DSMC are also

discussed, and this chapter concludes with a review of various hybrid simulation

approaches that have been proposed in the literature.

A comprehensive description of the Modular Particle-Continuum (MPC) method,

which is the focus of this work, is presented in Chapter III. The MPC method is a

hybrid framework that loosely couples state-of-the-art DSMC and CFD codes that

serve as independent particle and continuum simulation modules. This modularity

enables efficient extension of the existing capabilities of these component codes to

the hybrid method. The functional organization of these simulation modules and the

hybrid framework is illustrated in this chapter. In order to identify the computational

domains where DSMC is required for physical accuracy and where CFD can be used

for improved computational efficiency, several measures of continuum breakdown are

employed in the MPC method. These are discussed, as well as the automatic mesh

refinement algorithm used in the particle domains of the flow field. The coupling

procedures required to exchange updated solution information across hybrid interfaces

12



are also presented, including mathematical formulae for averaging simulator particle

information to yield macroscopic fluid properties, and algorithms for sampling particle

information from distribution functions defined by macroscopic fluid properties. The

numerical cycle of a typical hybrid simulation is also presented.

The physical models that are employed in the continuum and particle domains of

an MPC hybrid simulation are discussed and verified to be consistent in Chapter IV.

These physical models include the collision model that is used in full DSMC simula-

tions and in the particle domains of hybrid simulations, and the explicit calculations

of diffusion, viscosity, and heat conduction needed in full CFD simulations and in

the continuum domains of hybrid simulations. In addition, models for simulating

translational-rotational and translational-vibrational energy exchange processes are

also presented. It is imperative that CFD and DSMC give the same solution along the

domain interfaces in a hybrid simulation, which should be placed in near-equilibrium

regions of the flow field. Therefore, the emphasis of this chapter is verification of the

consistency of these physical models in near-equilibrium flows of both simple gases

and mixtures of chemical species.

A comprehensive assessment of the physical accuracy and computational efficiency

of the MPC method is presented in Chapter V. The case of a transitional, hypersonic

flow over a two-dimensional cylinder is used to evaluate the MPC method relative to

a full DSMC simulation in terms of cell-by-cell comparisons of flow field properties,

in addition to surface properties and computational performance statistics. A num-

ber of improvements are made regarding the consistent definition of the supersonic

outflow boundary condition in CFD and DSMC simulations, and the consistent ex-

change of information across hybrid interfaces. These changes are shown to improve

the accuracy of the MPC method relative to full DSMC. However, notable discrep-

ancies remain, and their possible causes are investigated further. For the first time,

the physical accuracy of the MPC method is evaluated in the context of the statis-
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tical errors between two independent, full DSMC simulations, which provides more

reasonable expectations for the accuracy of the MPC method moving forward.

In Chapter VI, a new continuum breakdown parameter for predicting rotational

nonequilibrium effects is proposed and evaluated alongside other continuum break-

down parameters that are currently employed by the MPC method. Detailed com-

parisons between full CFD and full DSMC results for hypersonic, blunt-body flows

of both a simple gas and a mixture of chemical species are undertaken. The newly

proposed rotational nonequilibrium parameter is shown to offer advantages where

existing continuum breakdown parameters fail. This new parameter is then incorpo-

rated in the MPC hybrid method, and the resulting physical accuracy is compared

to that of previous MPC simulation results in the context of a simple gas.

Extension of the MPC hybrid method to include mixtures of chemical species

is described in Chapter VII. This not only enables the MPC method to simulate

more realistic atmospheric flows, but is also a necessary first step towards eventually

simulating chemical reactions using a hybrid method. The required modifications to

the MPC method are evaluated for the hypersonic flow of a mixture of molecular and

atomic nitrogen over a two-dimensional cylinder at a transitional Knudsen number.

A similar case is also explored in which a mixture of molecular nitrogen and molecular

oxygen is simulated. In this latter case, both constituent species experience rotational

nonequilibrium effects, and are allowed to equilibrate at different rates. Finally, the

case of a mixture comprised of species with widely disparate molecular weights is

examined, which highlights the challenges that remain for the automatic hybrid cycle

described in Chapter III.

Chapter VIII provides a summary of the conclusions drawn from the work pre-

sented in this dissertation, and the specific contributions made to the ongoing de-

velopment of the MPC method and hybrid particle-continuum methods in general.

Recommendations for the focus of future research efforts are also presented.

14



CHAPTER II

Mathematical Modeling and Numerical Simulation

of Transitional, Hypersonic Flows

In this chapter, the governing equations of fluid flow and their underlying assump-

tions are discussed, along with various approaches to either analytically or numerically

solve these equations. As introduced in Chapter I, the local Knudsen number plays

a critical role in the physical validity of the assumptions made in deriving the Euler

and Navier-Stokes equations of continuum flow from the Boltzmann equation, which

is the kinetic underpinning of any mathematical model describing a dilute gas. In

addition to discussing these individual mathematical models and numerical simula-

tion techniques, a review of recent work in the development of hybrid approaches to

simulate mixed rarefied/continuum flow fields is presented.

2.1 The Boltzmann Equation

The Boltzmann equation was first derived from kinetic theory by physical reason-

ing [8]. Whereas it is generally infeasible to deterministically track every molecule and

its properties in a flow field of interest, the probability distribution functions (PDFs)

of molecular properties, such as velocity and internal energies, serve as quantities that

evolve in a manner that can be modeled mathematically. If a simple, monatomic gas
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is first considered, the Boltzmann equation is given by

∂

∂t
[nf ] + cj

∂

∂xj
[nf ] +

∂

∂cj
[Fjnf ] =

{
∂

∂t
[nf ]

}
coll

, (2.1)

which describes the rate of change of the single-particle PDF, f (c,x, t), in a six-

dimensional phase space that includes three physical and three velocity dimensions.

The first term in Eq. 2.1 describes the time rate of change of the number of molecules

of class c, i.e. with velocities that deviate very slightly from c, where n is the number

density. This quantity is nonzero as the result of three possible actions. If molecules

are convected into or out of an infinitesimal volume in physical space, the number

of molecules of class c in that volume changes, as modeled by the second term in

Eq. 2.1. Likewise, if molecules are “convected” into or out of an infinitesimal volume

in velocity space due to an acceleration, F , the number of molecules of class c also

changes; this is modeled by the third term in Eq. 2.1, and is ignored in the present

work. The fourth term describes the time rate of change of the number of molecules

of class c due to collisions with other molecules, and is modeled by

{
∂

∂t
[nf ]

}
coll

=

+∞∫
−∞

4π∫
0

n2 [f (c′,x, t) f (ζ ′,x, t)− f (c,x, t) f (ζ,x, t)] gσdΩdζ, (2.2)

where f (ζ) is the PDF associated with a collision partner of class ζ, and the post-

collision PDFs are given by f (c′) and f (ζ ′). In Eq. 2.2, g is the relative velocity

of colliding molecules, and σdΩ is the differential collision cross-section, which is,

in general, a function of the molecular potential of the collision partners and their

relative velocity [8]. This collision term incorporates the effects of collisions with

molecules of all other classes, and includes all possible differential cross-sections by

integrating over the entire unit sphere.

As suggested by the collision term of the Boltzmann equation, collisions have been

limited to binary interactions. This is a reasonable assumption for dilute gases, as
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defined in Chapter I. In addition, derivation of the collision term requires the principle

of molecular chaos, in which the PDFs of two molecules are assumed to be statistically

independent of one another. This allows the probability of two molecules colliding to

be mathematically represented by the product of their individual PDFs [8].

The integro-differential nature of the Boltzmann equation presents a challenge

to general solution. This is neglecting the fact that, in the case of a gas mixture,

a separate Boltzmann equation must be defined for each constituent species. In

addition, description of a polyatomic species requires additional dimensions to account

for the internal energy states of the molecules both before and after collision. For

example, from Chang and Uhlenbeck [16], the Boltzmann equation describing the

rate of change of a single-particle PDF in rotational state α, f (c,x, t, εrot,α), is given

by

∂

∂t
[nαfα]+cj

∂

∂xj
[nαfα] =

∞∑
β=0

∞∑
α′=0

∞∑
β′=0

+∞∫
−∞

4π∫
0

(nα′fα′nβ′fβ′ − nαfαnβfβ) gα,βσ
α′,β′

α,β dΩdζ.

(2.3)

Upon comparing Eqs. 2.1 and 2.3, it is evident that the complexity of the Boltz-

mann equation increases drastically when polyatomic species are considered, as the

righthand side is now a triple summation over all possible rotational energy states,

β, of the collision partner, and all possible post-collision rotational energy states.

In addition to the differential collision cross-section being dependent on the relative

velocity of the colliding molecules and their molecular potentials, it is now also de-

pendent on their pre- and post-collision rotational energy states. This differential

cross-section is the means by which energy is transferred between the rotational and

translational energy modes. It is possible for the relative translational energy to re-

main unchanged by a collision while still allowing rotational energy to be exchanged

between molecules. However, because of the quantum spacing between rotational

energy levels, and since this spacing increases with quantum number [40], the likeli-
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hood of two molecules experiencing a rotationally inelastic collision and being able

to exchange equal amounts of quantized energy is very low. Therefore, in the current

work, rotational energy is only allowed to be exchanged with the relative translational

energy of the collision.

Even so, for other purposes, the rotational energy distribution function (EDF) can

be assumed continuous except at cryogenic temperatures. The characteristic temper-

ature of the rotational energy mode, θrot, is typically quite small, and the energy level

spacing is of the order of θrotkB, where kB is the Boltzmann constant. For example,

in the case of molecular nitrogen, θrot = 2.88K. Therefore, temperatures of interest

in this work are at least an order of magnitude larger than θrot, so that assuming the

rotational EDF to be continuous is valid. In addition, for large temperatures relative

to θrot, the rotational energy mode is fully activated, which for diatomic molecules

means that rotation contributes two degrees of freedom to the total energy content of

the gas. As a result of assuming the rotational energy mode to be continuous, Eq. 2.3

can be re-written as

∂

∂t
[nαfα] + cj

∂

∂xj
[nαfα] =

+∞∫
0

+∞∫
0

+∞∫
0

+∞∫
−∞

4π∫
0

(nα′fα′nβ′fβ′ − nαfαnβfβ) gα,βσ
α′,β′

α,β dΩdζdβdα′dβ′,

(2.4)

where the summations have been approximated by integrals. In the case of the vibra-

tional energy mode, for air molecules, the characteristic temperature, θvib, is typically

three orders of magnitude larger than θrot. For molecular nitrogen, θvib = 3395K.

As such, even at relatively high temperatures, the vibrational mode is only partially

activated, and the quantized nature of the vibrational EDF must be simulated. If

the vibrational and rotational energy modes are assumed to be independent of one

another, the same approach used to derive Eq. 2.3 can be used to derive the form of

the Boltzmann equation for which the possibility of both rotational and vibrational
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energies are accounted. As with rotational energy, upon collision, vibrational energy

is only allowed to be exchanged with the relative translational energy of the colliding

pair of molecules. Because of the larger quantum energy spacing, which is constant in

accordance with the simple harmonic oscillator model, the physical reasoning behind

this assumption is even more justified. In reality, the energy spacing between vibra-

tional energy levels decreases with increasing quantum number until the dissociation

energy is reached. However, chemical reactions are ignored in the present work, and

the vibrational temperatures are such that the upper vibrational energy levels are not

substantially populated, if at all.

2.1.1 Equilibrium Solution

Analytical solution of the Boltzmann equation is only feasible for the simplest of

flow fields, namely, for a gas in equilibrium. In this case, the entire lefthand side

of the Boltzmann equation is zero because the solution is steady, and there are no

external forces or spatial gradients. The necessary and sufficient condition for the

integral on the righthand side of Eq. 2.2 to be zero is for the single-particle PDF to

have the following form:

f [0] (cx, cy, cz) =

(
m

2πkBT

)3/2

exp

{
−m

2kBT

[
(cx − u)2 + (cy − v)2 + (cz − w)2

]}
.

(2.5)

This result is known as the Maxwellian distribution function. In Eq. 2.5, c =

[cx, cy, cz] is the molecular velocity vector, while u = [u, v, w] is the directed velocity

vector of the gas as a whole. Following the same derivation presented by Vincenti

and Kruger [82] for Eq. 2.5, a more general form can be found for polyatomic species,

which may possess rotational and vibrational energies. This is given by
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f [0] (cx, cy, cz, εrot,α, εvib,β) =

(
m

2πkBT

)3/2
grot,α

QrotQvib

×

exp

{
−m

2kBT

[
(cx − u)2 + (cy − v)2 + (cz − w)2

]
− 1

kBT
[εrot,α + εvib,β]

}
.

(2.6)

In Eq. 2.6, εrot,α is the rotational energy of a molecule in quantized level α, εvib,β

is the vibrational energy of a molecule in quantized level β, and Qrot and Qvib are the

partition functions for the rotational and vibrational modes, respectively. The degen-

eracy of the rotational level α is given by grot,α; the vibrational levels are not degen-

erate. Close inspection reveals that this expression is the product of the Maxwellian

velocity distribution function (VDF) and an equilibrium, or Boltzmann, energy dis-

tribution function (EDF) for each internal energy mode, given by

f [0] (εα) =
gα
Q

exp

{
− εα
kBT

}
. (2.7)

It should be noted that only one temperature is referenced here because the so-

lution is that of thermal equilibrium. Again, a separate Maxwellian distribution

function is needed to describe each constituent species in a gas mixture.

2.2 Euler Equations

The more familiar conservation equations of continuum flow can be derived by

taking moments of the Boltzmann equation. Consider a molecular property, Q, that

is either constant or a function of the molecular velocity, c, only. Multiplying Eq. 2.1

by Q and then integrating over all of velocity space yields the following equation of

change:

∂

∂t

(
nQ
)

+∇ ·
(
ncQ

)
= ∆ [Q] . (2.8)

For ease of demonstration, and because the inclusion of internal energy is not
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required at this point in the derivation, the version of the Boltzmann equation for

monatomic gases has been employed. The righthand side of Eq. 2.8 is known as the

collision integral, and is given by

∆ [Q] =

+∞∫
−∞

+∞∫
−∞

4π∫
0

n2Q [f (c′) f (ζ ′)− f (c) f (ζ)] gσdΩdζdc, (2.9)

where the dependence of the distribution functions on physical space and time are

implied. There are several symmetries associated with the collision integral that may

be used to cast Eq. 2.9 in other forms. For example, ∆ [Q] is unchanged if any of the

following variable exchanges are made:

c↔ ζ and Q (c)↔ Q (ζ); or

c′ ↔ ζ ′ and Q (c′)↔ Q (ζ ′); or

Q (c)↔ Q (c′), c↔ c′, ζ ↔ ζ ′, f (c)↔ f (c′), and f (ζ)↔ f (ζ ′); or

Q (ζ)↔ Q (ζ ′), c↔ c′, ζ ↔ ζ ′, f (c)↔ f (c′), and f (ζ)↔ f (ζ ′).

Incorporation of these symmetries in Eq. 2.9 and subsequent combination of the

resulting forms as described by Bird [8] yields

∆ [Q] =
1

2

+∞∫
−∞

+∞∫
−∞

4π∫
0

n2 [Q (c′) +Q (ζ ′)−Q (c)−Q (ζ)] f (ζ) f (c) gσdΩdζdc. (2.10)

If the molecular quantity Q is taken to be either the mass, momentum, or energy,

which are all conserved during a collision, ∆ [Q] is zero. Evaluating the averages in

Eq. 2.8 for each of these collision invariants by assuming a Maxwellian distribution

function then gives

∂

∂t
ρ+∇ · (ρu) = 0, (2.11)

∂

∂t
(ρu) +∇ · (ρuu) +∇p = 0, (2.12)
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and

∂

∂t
(ρE) +∇ · (u (ρE + p)) = 0, (2.13)

which are the Euler equations of mass, momentum, and energy conservation, respec-

tively. In Eqs. 2.11 through 2.13, ρ is the mass density, p is the pressure, and E is

the mass specific total energy.

2.3 Navier-Stokes Equations

Even though the assumption of thermodynamic equilibrium yields an analytical

solution for the Boltzmann equation that can then be used to derive the Euler equa-

tions of continuum flow, such an approach is only physically valid in the limit as

Kn → 0. In order to obtain a more useful set of governing equations for analyzing

continuum fluid flow, a small perturbation of the Maxwellian distribution function

must be assumed. This approximate solution to the Boltzmann equation, called the

Chapman-Enskog distribution function, was developed independently by S. Chapman

(1916) and D. Enskog (1917) [17]. First consider the distribution function for a sim-

ple, monatomic gas. This distribution can be assumed to have a series representation

given by

f = f [0] + εf [1] + ε2f [2] + · · · , (2.14)

so that when the perturbation parameter, ε, is small, the actual distribution is well ap-

proximated by the Maxwellian distribution function. To a first-order approximation,

the distribution function can be re-written as

f = f [0] + εf [1] = f [0] [1 + Φ] , (2.15)

where Φ is an unknown function. The form of Φ can be obtained by substituting

Eq. 2.15 into the Boltzmann equation, simplifying, and assuming that the shear
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stress tensor and heat flux vector are linear functions of the velocity and temperature

gradients, respectively. These are the linear, constitutive relations of the Navier-

Stokes equations, and are given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (2.16)

and

qi = −κ∂Ttrans
∂xi

, (2.17)

where µ and κ are the familiar coefficients of viscosity and thermal conductivity, and

δij is the Kronecker delta. The rigorous derivation of these coefficients is quite in-

volved mathematically, and is described in several texts, such as Refs. [17], [37], and

[82]. A closed-form solution is available only for Maxwell molecules, which comprise a

physically hypothetical gas where the coefficient of viscosity is a linear function of the

temperature [82]. Determination of these coefficients for real gases usually involves

integrating over an infinite series of Sonine polynomials. Fortuitously, accurate ap-

proximate solutions can be obtained by considering only the first few terms in these

series.

Chapman and Cowling [17] give the first-order approximate solution to the Boltz-

mann equation for a simple, monatomic gas as

f (c) = f [0] (c)

[
1 +

(
q∗xCx + q∗yCy + q∗zCz

)(2

5
C2 − 1

)
− 2

(
τ ∗xyCxCy + τ ∗xzCxCz + τ ∗yzCyCz

)
− τ ∗xxC2x − τ ∗yyC2y − τ ∗zzC2z

]
,

(2.18)

where C is the molecular thermal velocity normalized as

C = C

√
m

2kBTtrans
, (2.19)

and the normalized shear stress and heat flux are given by
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τ ∗ij =
1

p
τij (2.20)

and

q∗i =
1

p

√
2m

kBTtrans
qi. (2.21)

For a gas mixture that may include polyatomic species, the additional effects of

mass diffusion and internal heat fluxes must also be considered. Like the shear stress

and translational heat flux, the mass diffusion is normalized as

D∗i,s =

√
ms

2kBTtrans

Ji,s
ρs
, (2.22)

where Ji,s is the i-component of the diffusion flux vector for species s. The diffusion

flux vector is given by

Js = −ρDsm∇Ys + Ys

NS∑
i=1

ρDim∇Yi. (2.23)

In Eq. 2.23, Ys and Dsm are, respectively, the mass fraction and effective diffusion

coefficient of species s. It should also be noted that Eq. 2.23, which is known as

the self-consistent effective binary diffusion (SCEBD) model [60], guarantees the sum

of the diffusion fluxes will be zero. Further discussion of how the effective diffusion

coefficient is calculated will be provided in Chapter IV. The rotational and vibrational

heat fluxes are normalized as

(
q∗rot,i

)
s

=
1

ρs (cv,rot)s Trot

√
2ms

kBTtrans
(qrot,i)s (2.24)

and

(
q∗vib,i

)
s

=
1

ρs (cv,vib)s Tvib

√
2ms

kBTtrans
(qvib,i)s , (2.25)

where cv,rot and cv,vib are, respectively, the mass specific heats of the rotational and

vibrational energies at constant volume, Trot is the temperature that characterizes
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the energy in the rotational mode, and Tvib is the temperature that characterizes the

energy in the vibrational mode. Using these normalized transport quantities, the

generalized Chapman-Enskog distribution function [53, 75] for a single species s in a

mixture is then given by

fs (cs, εrot,s, εvib,s) = f [0]
s (cs, εrot,s, εvib,s)

[
1 + 2

(
D∗x,sCx,s +D∗y,sCy,s +D∗z,sCz,s

)
+
(
q∗x,sCx,s + q∗y,sCy,s + q∗z,sCz,s

)(2

5
C2s − 1

)
− τ ∗xx,sC2x,s − τ ∗yy,sC2y,s − τ ∗zz,sC2z,s

+
((
q∗rot,x

)
s
Cx,s +

(
q∗rot,y

)
s
Cy,s +

(
q∗rot,z

)
s
Cz,s
)(εrot,s − εrot,s

kBTrot

)
+
((
q∗vib,x

)
s
Cx,s +

(
q∗vib,y

)
s
Cy,s +

(
q∗vib,z

)
s
Cz,s
)(εvib,s − εvib,s

kBTvib

)
− 2

(
τ ∗xy,sCx,sCy,s + τ ∗xz,sCx,sCz,s + τ ∗yz,sCy,sCz,s

)]
.

(2.26)

As was done in the derivation of the Euler equations, the Navier-Stokes equations

of mass, momentum, and energy conservation are derived by evaluating Eq. 2.8 for the

collision invariants, assuming a generalized Chapman-Enskog distribution. Separate

rotational and vibrational energy equations can also be derived to allow for nonequi-

librium between energy modes [16]. The resulting set of Navier-Stokes equations that

is used in the current work is given by

∂

∂t
U +

∂

∂x
(F − Fv) +

∂

∂y
(G−Gv) = S, (2.27)

where

U =

[
ρ1 · · · ρNS ρu ρv ρE ρerot ρevib

]T
(2.28)

is the vector of conserved variables. The mass densities of all species in the gas

mixture are defined by ρ1 · · · ρNS, and the mass specific rotational and vibrational

energies are defined as
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erot =
NS∑
i=1

ρi
ρ
cv,rot,iTrot (2.29)

and

evib =
NS∑
i=1

ρi
ρ
cv,vib,iTvib. (2.30)

The total energy per unit volume is then given by

ρE =
NS∑
i=1

ρi (cv,trans)i Ttrans +
1

2
ρ
(
u2 + v2

)
+

NS∑
i=1

ρih
0
i + ρerot + ρevib, (2.31)

where (cv,trans)i is the mass specific heat of the translational energy at constant volume

for species i, and h0i is the enthalpy of formation for this species. The vector of source

terms, S, is given by

S =

[
0 · · · 0 0 0 0 Strans−rot Strans−vib

]T
. (2.32)

More about the translational-rotational and translational-vibrational source terms

will be discussed in Chapter IV. The inviscid flux vector, F , and diffusive flux vector,

Fv, in the x direction are defined as follows, where the flux vectors in the other

directions are defined in a similar manner:

F =



ρ1u

...

ρNSu

ρu2 + p

ρuv

(ρE + p)u

ρerotu

ρevibu



(2.33)
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Fv =



−Jx,1
...

−Jx,NS

τxx

τxy

τxxu+ τxyv − qtrans,x − qrot,x − qvib,x −
NS∑
i=1

(Jx,ihi)

−qrot,x −
NS∑
i=1

(Jx,ierot,i)

−qvib,x −
NS∑
i=1

(Jx,ievib,i) .



(2.34)

Using computational fluid dynamics (CFD) techniques, the above Navier-Stokes

equations can be discretized and numerically integrated to yield a flow field solution

that is accurate within the constraints of the previously stated continuum assump-

tions. Specifically, CFD is a physically appropriate simulation method for low Knud-

sen numbers only, where the molecular properties can be accurately described by a

Chapman-Enskog distribution function. Their range of applicability can be extended

through the use of boundary conditions that allow for the higher Knudsen number

effects of velocity slip and temperature jump [47]. However, such measures serve to

correct for strong nonequilibrium effects near a wall only, leaving the continuum pre-

diction of other flow features lacking in accuracy, such as the internal structure of a

strong bow shock wave. Despite the limitations of the Navier-Stokes equations, ob-

taining numerical solutions of these equations using CFD has been well studied and is

computationally efficient. In addition, for most transitional, hypersonic flow fields of

interest, CFD yields a reasonable solution throughout the majority of the simulation

domain. More details about the methods used to obtain numerical solutions of the

Navier-Stokes equations in the present work will be presented in Chapter III.
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2.4 Alternative Solution Methods

Continuing with a second- and third-order perturbation of the Maxwellian equi-

librium distribution function yields the Burnett and super-Burnett equations, respec-

tively. However, derivation of these distribution functions and corresponding extended

hydrodynamic equations is even more mathematically esoteric, involving higher-order

constitutive closure relations [37]. In addition, these equations have been shown to

provide only marginal improvement over the Navier-Stokes equations, and the nature

of the series expansion limits their applicability to regions where a first-order approx-

imation is already adequate [17, 82]. Therefore, higher-order approximate solutions

to the Boltzmann equation are not widely used.

Grad [31] proposed an alternative series expansion to that assumed in the previous

section. For small Knudsen numbers, Grad’s Thirteen Moment equations are equiv-

alent to the Burnett equations, but only yield an accurate approximation of the true

molecular distribution function at relatively small Mach numbers [17]. For solution

of the internal structure of strong, one-dimensional shock waves, Mott-Smith [52]

suggested that the distribution function be described by a linear combination of

Maxwellian distribution functions characterized by the upstream and downstream

conditions. Although fairly successful for a limited number of applications, the

complexity associated with these moment methods, both in their formulation and

numerical solution, usually outweighs any potential benefits over the Navier-Stokes

equations.

Approaches to analytically solve modified versions of the Boltzmann equation have

also been proposed, many of which assume a simplified form of the collision term in

Eq. 2.2. For example, Bhatnagar, Gross, and Krook [5] proposed that the collision

term be modeled as {
∂

∂t
[nf ]

}
coll

= nν
(
f [0] − f

)
, (2.35)
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which is known as the B-G-K approximation, and describes the relaxation of a

nonequilibrium distribution towards a local Maxwellian. In Eq. 2.35, ν is a colli-

sion frequency that is often defined as the ratio between the pressure and coefficient

of viscosity [17, 82]. Although the B-G-K approximation simplifies the Boltzmann

equation significantly, it remains an integro-differential equation. If a series repre-

sentation is again assumed for the distribution function and substituted into this

modified Boltzmann equation, as was done in the derivation of the Chapman-Enskog

distribution function, the result is very similar except that the Prandtl number is

found to be unity. For real monatomic gases, the Prandtl number is closer to 2/3.

2.5 Direct Simulation Monte Carlo Method

Because of the limited success achieved in attempting to extend the Navier-Stokes

equations, and the intractability of obtaining an analytical, nonequilibrium solution

of the Boltzmann equation, this section describes a reliable numerical approach for

simulating higher Knudsen number flows. The obvious choice for numerical solution of

the Boltzmann equation is to employ CFD techniques to discretize all pertinent phase

space dimensions and integrate to obtain the evolution of the distribution function,

which is the lone dependent variable. However, there are a number of difficulties asso-

ciated with this approach in terms of both numerical formulation and computational

requirements. For example, accounting for the dimensions of physical and velocity

space that must be simulated, and, as noted in Section 2.1, the complexity and num-

ber of simultaneous Boltzmann equations that must be solved when any real gas is

considered, the problem quickly becomes unmanageable. As expected, evaluation of

the collision term is especially involved.

Advantage of the molecular nature of gases was taken by G. A. Bird when he

proposed the direct simulation Monte Carlo (DSMC) method in 1963 [6, 8]. In the

DSMC method, the movement of and collisions between the real molecules in a gas
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are simulated by the deterministic movement of and probabilistic collisions between

a large number—usually millions—of representative simulator particles. These par-

ticles have associated positions, velocities, and internal energies. The Boltzmann

equation is not solved directly, but even so, in the limit of an infinite number of

simulator particles, the DSMC method has been shown to yield flow field predictions

that converge to the true solutions of the Boltzmann equation [85]. The primary

assumption of the DSMC method is that the movement of these simulator particles

can be decoupled from their collisions. For this assumption to be valid, simulator

particles are moved along their individual velocity vectors through a time step that is

less than the local mean collision time. As in CFD, physical space is discretized into

computational cells through which particle movement is tracked. After the particles

are moved and boundary conditions are applied, potential collision partners are se-

lected from within the same computational cell. Therefore, in addition to requiring

that the time step be less than the local mean collision time, the dimensions of each

computational cell must be less than the local mean free path. The collision selection

process is grounded in kinetic theory and, as such, the DSMC method is also limited

by the same underlying assumptions of the Boltzmann equation. Specifically, these

include the assumption of molecular chaos and a dilute gas.

In a collision, mass, momentum, and energy are conserved. Collisions that occur

such that there is no exchange of energy between the translational motion of the

particles and their rotational and vibrational modes are defined as elastic collisions.

In the case of an inelastic collision, momentum is conserved in that the velocity of the

center of mass of the colliding pair remains unchanged, while there is a redistribution

of the relative translational and internal energies. As the simulator particles move

and collide over many time steps, the local distribution function of particle properties

evolves from an initially prescribed state to one that is physically representative of

the true flow field. Thus, there are no a priori assumptions about the shape of the
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distribution function relative to a Maxwellian, as is done in the derivation of the

Navier-Stokes equations.

Although inherently unsteady, a steady flow field solution is obtained with the

DSMC method by waiting until the total number of simulator particles reaches a

steady state and then collecting samples of particle properties within each computa-

tional cell. Macroscopic fluid properties are then calculated as averages of these parti-

cle properties, where the statistical scatter is inversely proportional to the square root

of the number of samples. In general, the accuracy of the DSMC method is depen-

dent on both the number of particles in each computational cell and the total number

of time steps over which samples are collected. Fallavollita, et al. [24] found that

the error associated with a DSMC simulation asymptotes as the number of samples

increases towards infinity, where the asymptotic value decreases with an increasing

number of particles per cell. This is very dependent on whether or not the simula-

tor particles possess statistically independent properties. It is usually recommended

that each computational cell contain at least 20 particles per cell [8, 18]. It should

also be noted that, because the time step and computational cell size greatly impact

the validity of the assumptions made in the formulation of the DSMC method, their

values relative to the local mean collision time and mean free path, respectively, play

a critical role in the physical accuracy of a DSMC simulation.

Like the Boltzmann equation, the DSMC method is physically appropriate for

analyzing the complete range of Knudsen numbers. However, because of the restric-

tions on both time step and cell size, the DSMC method becomes computationally

demanding in highly collisional flow fields. Most of the computational time required

to perform a DSMC simulation is spent in collision partner selection and collision

mechanics. As will be further discussed in Chapter III, the computational cost of the

specific implementation of the DSMC method used in this work is directly propor-

tional to the number of simulator particles.
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2.6 Hybrid Approaches

As can be surmised from the mathematical models and numerical simulation tech-

niques described thus far in this chapter, there are advantages and disadvantages

that must be reconciled in each case. The mixed rarefied/continuum nature of transi-

tional, hypersonic flows makes the choice of which approach to use even more difficult.

Whereas numerical solution of the Navier-Stokes equations throughout the entire flow

field is computationally efficient, the nonequilibrium effects that are present where the

local Knudsen number is relatively large invalidate the linear constitutive relations

assumed in Section 2.3. However, even if it is computationally feasible to simulate an

entire flow field of this type with the DSMC method, this is not an efficient use of com-

putational resources. In many regions of the flow field, the local molecular property

distribution function predicted by the DSMC method can be accurately approximated

by a Chapman-Enskog distribution and, therefore, more efficiently simulated using

CFD. Because of this, the development of hybrid methods for simulating transitional,

hypersonic flows is an active area of current research.

The most prevalent hybrid approach in the literature involves coupling the numeri-

cal solution of the Navier-Stokes equations using CFD in near-equilibrium regions of a

flow field with the DSMC method in regions of thermodynamic nonequilibrium. Both

CFD and DSMC are well developed and reliable simulation techniques, and models ex-

ist for both methods that encompass a wide range of physical phenomena. Therefore,

although they are very different approaches, their relative maturity makes these meth-

ods strong candidates for implementation in a hybrid framework. Wadsworth and

Erwin [83, 84] proposed a strongly-coupled, hybrid particle-continuum method which

they demonstrated for both one-dimensional shock waves and the two-dimensional,

pressure-driven flow through a slit. The strongly-coupled qualifier is used here because

boundary values for each computational method were updated and employed by the

other method during each global time step. However, as expected, some amount of
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time-averaging of the DSMC solution was required to prevent spurious propagation of

statistical scatter into the continuum domains. For simplicity, the boundaries between

computational domains were static throughout the simulation, although the value of

the shear stress was proposed as an indicator of nonequilibrium effects. Emphasis

was placed on exploring the consistent and conservative exchange of flux-based infor-

mation across these boundaries. Gains in computational efficiency over full DSMC

simulations were observed in both one-dimensional and two-dimensional cases; these

gains were strongly dependent on the relative sizes of the DSMC domains used.

Hash and Hassan [35, 36] explored the advantages and disadvantages of different

coupling techniques in the context of a loosely-coupled, hybrid particle-continuum

method. Although more details regarding these studies will be provided in Chap-

ter III, the flux-based coupling approach was found to be problematic along hybrid

interfaces that are either aligned with the macroscopic velocity or located in low Mach

number regions of the flow field. This is due to the level of statistical scatter that

is passed from the DSMC domains to the CFD domains. A novel coupling approach

proposed by Roveda, et al. [62] employs several layers of ghost cells along hybrid

interfaces in order to reduce the level of statistical scatter. Although the cloning of

particles for each layer of ghost cells does not result in additional statistically in-

dependent samples, if a large number of ghost cells are used such that independent

collisions can occur on each level, the cloned particles quickly lose their identities.

Statistical scatter is a drawback inherent to the DSMC method, and becomes even

more challenging to overcome when attempting to incorporate the DSMC method in

a hybrid simulation approach. Because of this, an “information preserving” DSMC

(IP-DSMC) method has been proposed where each particle is assigned an average

velocity in addition to its own molecular velocity [25]. By tracking a macroscopic

velocity, a significant reduction in statistical scatter is achieved. Wang and Boyd [87]

developed a hybrid approach that strongly couples this IP-DSMC method and a CFD
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Navier-Stokes solver. Hybrid results for the cases of hypersonic flow over a blunted

cone tip, and hypersonic external flow around a hollow-cylinder flare were compared

to full CFD and full DSMC simulations. Because of the presence of shock waves and

other strong nonequilibrium effects, and the limitations of the IP-DSMC method, the

hybrid approach was not able to reproduce the full DSMC results. The IP-DSMC

method was later modified to enable more accurate simulation of nonequilibrium

effects [86], but the computational expense of this hybrid approach was found to be,

at best, on the order of a full DSMC simulation, and actually required more memory,

making it unpractical.

Similarities between the coupling procedures used across different levels of adap-

tive mesh refinement (AMR) algorithms and those required in a hybrid particle-

continuum method were recognized by Garcia, et al. [27] when developing an adaptive

mesh and algorithm refinement (AMAR) method. In this approach, CFD is employed

throughout the simulation domain and some estimate of numerical error is used to

automatically refine the computational mesh. The DSMC method is then used at the

level of highest refinement, where computational cell dimensions may be comparable

to the local mean free path of the flow. A buffer region surrounds the DSMC domain,

and new simulator particles are generated using macroscopic information obtained

from CFD cells in this region. Simulator particles that cross hybrid interfaces while

the DSMC domain is being updated, in turn, provide the flux information required

by the CFD domain. This enables a strongly-coupled scheme that is algorithmically

very similar to AMR procedures, and facilitates the straightforward development of

a hybrid method from an existing AMR framework.

A loosely-coupled, hybrid particle-continuum method that is applicable to three-

dimensional, unstructured computational meshes was proposed and demonstrated by

Wu, et al. [91]. This hybrid method was shown to reproduce full DSMC results for

the hypersonic flow over a two-dimensional wedge. Excellent agreement was also
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achieved for the three-dimensional simulation of two parallel jets exhausting into a

near-vacuum when results were compared to published experimental measurements.

However, simulation of the former test case using the proposed hybrid method re-

quired a larger computational expense than the corresponding full DSMC simulation.

As noted by Schwartzentruber [64], this may be due to the fact that after being ini-

tialized by a full Navier-Stokes solution, simulator particles are allowed to move and

collide in the DSMC regions until a steady-state is reached, after which samples are

collected until statistical fluctuations have been substantially reduced. Although this

is one way of providing steady boundary conditions to the CFD domains, it does

not promote numerical efficiency. An alternative approach to reducing this statistical

scatter will be described in Chapter III.

Another subtle, yet potentially problematic, characteristic of the hybrid cycle pro-

posed by Wu, et al. [91] is that after the DSMC domains are updated, information

is provided to the CFD domains in the form of updated boundary conditions before

re-positioning of the hybrid interfaces. During the initial development of the hybrid

method that is the focus of this dissertation, Schwartzentruber [64] found that trans-

ferring information from the DSMC domains to the CFD domains before verifying

that the hybrid interfaces are placed in near-equilibrium regions of the flow can lead

to incorrect predictions of post-shock flow properties. It’s also interesting to note that

in this hybrid approach, newly generated particles along hybrid interfaces are sampled

from a Maxwellian distribution function, even though the CFD domains are simu-

lated using a Navier-Stokes solver. Although sampling from a Maxwellian is simpler

and requires fewer operations, this severely restricts the placement of hybrid inter-

faces to regions of the flow field that can accurately be described by an equilibrium

distribution function.

In an uncoupled hybrid particle-continuum approach very similar to that pre-

sented in this dissertation, Stephani, et al. [73] initialized a local DSMC simulation
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with a three-dimensional CFD solution of a hypersonic flow over a flat plate with

discrete surface roughness. DSMC simulator particle information was sampled from

generalized Chapman-Enskog distributions for a five-species air mixture exhibiting

both rotational and vibrational nonequilibrium. In addition, a detailed comparison

of transport coefficients predicted by the continuum and particle models was per-

formed in order to verify consistency of the information transferred from the initial

Navier-Stokes solution to the DSMC domain. However, because of the uncoupled

nature of this approach, where the locations of the hybrid interfaces were predeter-

mined and stationary throughout the simulation, and updated boundary information

did not have to be transferred from the DSMC domain to the CFD domain, many

of the potential issues associated with an automated and adaptive hybrid approach

were avoided. Although this hybrid approach is not readily applicable to general flow

fields, the investigations regarding consistent physical models and particle generation

are of importance to any hybrid particle-continuum method.
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CHAPTER III

A Modular Particle-Continuum Method

In the case of hypersonic, blunt-body flows at transitional Knudsen numbers,

there are likely to be localized regions of thermodynamic nonequilibrium effects that

invalidate the continuum assumptions of the Navier-Stokes equations. Accurate sim-

ulation of these regions, which may include strong shock waves, boundary and shear

layers, and low-density wakes, requires a kinetic theory-based approach where no a

priori assumptions are made regarding the VDF or internal EDFs of the constituent

molecules. The most popular of these approaches is the DSMC method [8]. Although

the DSMC method is physically accurate for all Knudsen numbers, restrictions on

both time step and cell size make the approach computationally demanding for high-

density regions of the flow field. However, it is in these high-density, near-continuum

regions of the flow field where CFD techniques are well suited for efficient numerical

solution of the Navier-Stokes equations. Because of the mixed rarefied/continuum

nature of hypersonic, transitional Knudsen number flows, it is advantageous in terms

of both numerical efficiency and physical accuracy to develop and employ a hybrid

particle-continuum method.

The purpose of this dissertation is to describe recent efforts to verify and further

develop the Modular Particle-Continuum (MPC) method, which was first introduced

and demonstrated by Schwartzentruber, et al. [66]. The MPC method is a hybrid
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framework that loosely couples the LeMANS finite volume CFD solver [50] with the

MONACO DSMC code [23]. Because of the modular nature of the MPC code, almost

all modifications required to extend the capabilities of the method have been limited

to the hybrid data structure and functions. This has allowed for both LeMANS and

MONACO to be maintained separately from the hybrid code, and enables many of

the state-of-the-art capabilities of each of the simulation modules to be incorporated

in the MPC method.

The MPC method is initialized with a full CFD solution from LeMANS, from

which several continuum breakdown parameters that indicate failure of the Navier-

Stokes equations are computed. Based on the values of these continuum breakdown

parameters, the simulation domain is divided into distinct particle and continuum

regions where DSMC and CFD are used sequentially to obtain a numerically efficient

and physically accurate solution. Information is exchanged between particle and

continuum regions in the form of updated boundary conditions as the solution evolves.

Because use of the DSMC method is restricted to regions of the flow field where

it is necessary to maintain physical accuracy, it has been the goal of this hybrid

approach to achieve solutions of hypersonic, transitional Knudsen number flows that

are accurate to within ±5% of a full DSMC solution, and to do so at a reduced

computational cost.

During the initial development of the MPC hybrid method, Schwartzentruber,

et al. demonstrated its numerical efficiency and physical accuracy relative to full

DSMC and full CFD in a number of applications, including one-dimensional shock

waves [65], two-dimensional and axisymmetric, steady, hypersonic, blunt-body flows

[66, 68], and shock-boundary layer interaction flows [67]. All of these simulations

were performed in serial, and were limited to simple gases. The MPC method was

later parallelized by Deschenes and Boyd [20] by using the Message Passing Interface

(MPI) and METIS [43] graph partitioning. For optimal parallel efficiency, each com-
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putational cell is assigned a weight based on the number of particles per cell prior

to simulation of the particle domains. A different weighting scheme is used prior to

simulating the continuum domains, where cells that will be updated or are otherwise

involved are given a weight of unity, and particle cells are given a weight of zero. The

ability to simulate rotational nonequilibrium effects in simple gases and vibrationally

excited single-species flows was also incorporated in the MPC method by Deschenes,

et al. [21, 22]. These were the capabilities of the MPC method prior to the contribu-

tions of this dissertation, and the details presented in this chapter represent the state

of the code at that time unless explicitly stated.

This chapter first describes the individual CFD and DSMC simulation modules

that comprise the MPC hybrid method. Details of how regions of nonequilibrium

are identified from an initial, continuum solution, subsequent mesh refinement of the

particle regions, and consistent exchange of information between the particle and

continuum regions are also presented. Finally, the organizational structure of the

MPC method, and the hybrid cycle that is typical of the simulations presented in

this dissertation are described.

3.1 Simulation Modules

As with the MPC hybrid method, the LeMANS finite volume CFD solver and

the MONACO DSMC code continue to be developed at the University of Michi-

gan. Additional details of each of these codes, which serve as independent simulation

modules of the MPC method, are provided in this section. LeMANS and MONACO

themselves are also used to generate full CFD and full DSMC simulation results for

comparison with MPC hybrid results.
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3.1.1 CFD

LeMANS is a finite volume CFD code capable of numerically solving the steady,

laminar Navier-Stokes equations on axisymmetric, two-dimensional, and three-

dimensional, body-fitted meshes. All simulations presented in this dissertation em-

ploy structured meshes because of the requirements of the MPC method, even though

LeMANS is formulated to handle unstructured meshes. Parallel simulations are per-

formed using the Message Passing Interface (MPI) and METIS [43] graph partitioning.

The Steger-Warming Flux Vector Splitting (FVS) scheme [72] is used to discretize

the inviscid fluxes of the Navier-Stokes equations for proper upwinding of charac-

teristic information. In order to achieve second-order spatial accuracy, the linear

variation of primitive variables in each cell is reconstructed according to the MUSCL

approach [78]. The minmod limiter is used to prevent oscillatory behavior near shock

waves. Because the original Steger-Warming FVS scheme is quite dissipative, a mod-

ified approach is employed everywhere except in the vicinity of shock waves [49]. A

pressure switch enables automatic and seamless transition between the original and

modified schemes. The viscous fluxes are discretized according to a central difference

scheme that uses both cell-centered macroscopic properties and information interpo-

lated to cell nodes to calculate face-based derivatives [41].

Temporal integration is performed using the Backward Euler scheme and either

a point- or line-implicit relaxation method. Because of improved convergence rates,

the line-implicit method is used in the full CFD simulations presented in this disser-

tation. However, point-implicit time integration is used in the continuum regions of

MPC hybrid simulations. Not only is the improvement in convergence rate negligible

when the line-implicit method is used in the MPC simulations, but the point-implicit

method allows the particle domains to be completely ignored while the continuum

domains are being updated. In the case of a full CFD simulation, the time step is

initialized to a relatively small value and incremented each iteration as long as the
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L2 norm decreases and until a maximum Courant-Friedrichs-Lewy (CFL) number is

reached. Because the boundary conditions of the continuum domains are changed

during every cycle of a hybrid simulation, this incrementing procedure is repeated

each time the continuum domains are updated.

LeMANS is capable of simulating weakly ionized, hypersonic flows, accounting for

excitation of vibrational energy modes and rotational nonequilibrium effects. Finite-

rate chemistry is another capability of the LeMANS code. Although this functionality

is not explored in the present work, it will be important for future development of the

MPC hybrid method. More details regarding the physical models employed in the

continuum domains of hybrid simulations and in full CFD simulations will be given

in Chapter IV, and more information on the development of the LeMANS code itself

can be found in Ref. [63].

3.1.2 DSMC

MONACO is a general, cell-based implementation of the DSMC method capable

of using axisymmetric, two-dimensional, and three-dimensional, body-fitted meshes.

Cell-based particle weights and local time-stepping can be used in order to reduce

the computational cost of simulating a flow field that may include a wide range of

densities. However, a constant time step is specified throughout the entire simulation

domain, and cell-based particle weighting is limited to avoid reliance on dependent

samples in full DSMC simulations and in particle regions of MPC hybrid simulations

presented here. MONACO is also parallelized using the Message Passing Interface

(MPI), and graph partitioning with METIS [43] is optimized for the number of par-

ticles in each computational cell.

At the start of each full DSMC simulation, the computational domain is populated

according to a Maxwellian VDF defined by ambient macroscopic properties provided

by the user. The number of particle pairs in each cell selected to be tested for collision
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is calculated using Bird’s No Time Counter (NTC) method [8]. Because a limited

number of potential collision pairs are analyzed in each particle cell, the computational

cost of a DSMC simulation using the NTC method is directly proportional to the

number of simulator particles rather than its square. According to the NTC method,

the number of particle pairs selected to be tested for collision is given by

Npairs =
1

2
NNWc (σTg)max

∆t

Vc
. (3.1)

In Eq. 3.1, N is the instantaneous number of particles in a given cell, N is the

time-averaged number of particles, Wc is the number of real molecules represented

by each simulator particle, ∆t is the time step, and Vc is the volume of the cell.

The parameter (σTg)max represents the maximum volume swept out by two colliding

particles’ total cross-section per unit time. However, this parameter does not affect

the collision rate because the probability of each of these pairs actually colliding is

calculated as

Pcoll =
σTg

(σTg)max
, (3.2)

so that this parameter is eventually canceled. In practice, this parameter is initialized

to a relatively large value and updated if it is exceeded by any value of σTg encountered

in the simulation. The total collision cross-section and other collision parameters will

be further discussed in Chapter IV.

Once the number of potential collision pairs is determined, particles are randomly

paired within a computational cell, hence, the requirement of DSMC cells having

dimensions less than the local mean free path. MONACO employs subcells to fa-

cilitate collision pair selection. Subcells are created in each particle cell as needed,

such that the dimensions of each subcell are a fraction of the local mean free path.

Preference for a particle’s potential collision partner is given to those particles that

are co-located in the same subcell, with particles in adjacent subcells being considered
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next if needed. Thus, even if the actual computational cell is larger than the local

mean free path, the accuracy of the collision selection process is maintained. The

probability of a given pair colliding is compared to a random fraction as part of an

acceptance-rejection procedure. If the random fraction is less than Pcoll, the collision

occurs.

Colliding particle pairs that include at least one molecular species may undergo

either elastic or inelastic collisions. In both cases, the velocity of the center of mass

of the collision pair is conserved during collision. However, if a collision is inelastic,

there is an exchange of energy between internal energy mode(s)—either rotational

or vibrational or both—and the relative translational energy of the colliding pair.

An acceptance-rejection procedure is again used in conjunction with internal energy

exchange probabilities determined by models that will be described in Chapter IV.

If a collision pair is selected to undergo an inelastic collision, energy is redistributed

according to the Borgnakke-Larsen internal energy exchange model [10], which acts to

equilibrate the translational and internal energy modes according to their respective

degrees of freedom.

For the DSMC simulations presented in this dissertation, the resultant relative

translational energy is used to scatter the particles isotropically, in accordance with

the Variable Hard Sphere (VHS) collision model. Angular preference of the post-

collision relative translational energy may be incorporated by using the Variable Soft

Sphere (VSS) collision model instead, which is another option in MONACO. After

the collision step of the DSMC method is complete, the particles are then advected

according to their individual velocity vectors, boundary conditions are enforced, and

the cycle is repeated. Once the total number of simulator particles in the simu-

lation reaches a steady state, samples of particle properties are collected in each

computational cell so that macroscopic properties may be calculated. More detailed

information about MONACO can be found in Ref. [23].

43



3.2 Continuum Breakdown

Accurate determination of continuum breakdown is the mechanism for achieving

the optimal balance between physical accuracy and numerical efficiency that is the

underlying goal of the MPC hybrid method. If hybrid interfaces are not located in

regions of near-equilibrium, the CFD module will be used beyond its range of appli-

cability and physical accuracy will deteriorate. In contrast, being too conservative in

the placement of the hybrid interfaces leads to excessive use of the DSMC method

in regions that can be accurately simulated using a more economical continuum ap-

proach.

The MPC method is initialized with a mesh-independent CFD solution obtained

with LeMANS. Although this continuum solution is known to be inaccurate in certain

regions of the flow field, it serves as an initial guess that can be obtained efficiently

with CFD. Starting with a solution that is close to the correct DSMC result also cir-

cumvents the initial transient period that is needed in full DSMC simulations before

sampling can begin. Several continuum breakdown parameters are then calculated

using this initial continuum solution in order to determine which regions of the flow

field should be simulated using DSMC to achieve the desired level of physical ac-

curacy, and which regions are more efficiently simulated using CFD. Again, even if

these indicators of continuum breakdown were perfect, this initial identification of

particle and continuum domains would be imperfect. However, this is mitigated by

periodically recalculating these continuum breakdown parameters as the solution is

updated throughout the course of the hybrid simulation. This will become evident in

the description of the hybrid cycle presented in Section 3.5.

Various continuum breakdown parameters have been proposed in the literature,

most of which rely upon gradients of macroscopic properties obtained from a contin-

uum solution. The physical basis for these continuum breakdown parameters origi-

nates in the Chapman-Enskog approximate solution of the Boltzmann equation. The
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Chapman-Enskog distribution function is a first-order perturbation of the Maxwellian

equilibrium distribution function, and this perturbation, for a mixture of chemical

species with internal energy modes, contains terms involving gradients of composi-

tion, temperature, and velocity. These gradients drive the physical processes of mass

diffusion, thermal conduction, and viscosity, respectively. When these nonequilib-

rium phenomena occur over length scales of the order of the local mean free path, a

Chapman-Enskog distribution function cannot be maintained and the Navier-Stokes

equations can no longer accurately represent the state of the flow field.

For detecting the onset of nonequilibrium effects in expanding flows, Bird [7]

proposed the following parameter:

P = τc

∣∣∣∣D (ln ρ)

Dt

∣∣∣∣ . (3.3)

In Eq. 3.3, τc is the mean collision time, ρ is the mass density, and D () /Dt is the

substantial derivative. Simplifying this expression for steady flows yields

P = M

√
πγ

8

λ

ρ

∣∣∣∣dρds
∣∣∣∣ , (3.4)

where M is the local Mach number, γ is the ratio of specific heats, λ is the local

mean free path, and s is the distance along a streamline. A strong correlation was

found between this parameter and the degree of nonequilibrium exhibited by several

expanding nozzle flow cases. This correlation also suggested a threshold value of 0.05,

so that when P ≥ 0.05, the normal and parallel translational temperatures in the gas

expansion deviated by more than 10%. Boyd, et al. [14] later suggested the use of

a local Knudsen number to determine the physical applicability of the Navier-Stokes

equations, and compared the efficacy of this new parameter to Bird’s P parameter in

both one-dimensional shock waves and hypersonic, blunt-body flows. This gradient-

length local Knudsen number is calculated as
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KnGLL−Q = λ

∣∣∣∣∇QQ
∣∣∣∣ , (3.5)

where Q was initially either translational temperature or mass density. Both con-

tinuum breakdown parameters were found to accurately indicate the failure of the

Navier-Stokes equations within the one-dimensional shock waves. However, Bird’s

P parameter was unable to predict the nonequilibrium effects near the stagnation

point of the two-dimensional cylinder case examined. Comparison of Eqs. 3.4 and 3.5

reveals that they are approximately equal when Q is taken to be the mass density

except for the factor involving the Mach number in Bird’s P parameter. No matter

how large the gradients in the boundary layer of the cylinder or near its stagnation

point, the velocities near the surface decrease to zero and so does Bird’s P parameter.

As part of their proposed method for sampling particle velocities from a Chapman-

Enskog VDF, Garcia and Alder [26] used the following breakdown parameter:

B = max
(∣∣τ ∗ij∣∣ , |q∗i |) , (3.6)

where τ ∗ij and q∗i are the normalized stress tensor and heat flux, respectively, that

were introduced in Chapter II. Stephani, et al. [75] later included normalized mass

diffusion and internal heat fluxes in the B parameter formulation when proposing

an extension of this particle property sampling procedure to gas mixtures with in-

ternal energies. Entropy generation was also investigated as a possible indicator

of continuum breakdown by Camberos and Chen [15]. The disadvantage of all of

these parameters, however, is their reliance on an empirically-determined threshold

value. A truly rigorous procedure for predicting failure of the Navier-Stokes equa-

tions would involve comparison of the actual particle distribution function with the

Chapman-Enskog distribution function. However, for a hybrid approach such as the

MPC method, this would negate any potential efficiency gains. A larger portion—

if not the entirety—of the computational domain would need to be populated with
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DSMC simulator particles and, after waiting for steady state to be reached, many

samples would be needed to obtain a smooth representation of the actual molecular

distribution function in each cell.

Since the gradient-length local Knudsen number has been vetted against Bird’s P

parameter, and has been the focus of numerous independent studies, such as those

presented in Refs. [39], [46], and [88], the gradient-length local Knudsen number is

used to predict failure of the Navier-Stokes equations in the MPC hybrid method.

Wang and Boyd [88] expanded the definition of the gradient-length local Knudsen

number to include the velocity magnitude. However, in this work, rather than nor-

malizing the gradient of the velocity magnitude by the velocity, which will approach

zero near solid boundaries, the following formulation is used, where a is the local

speed of sound:

KnGLL−|V | = λ

∣∣∣∣ ∇|V |
max (a, |V |)

∣∣∣∣ . (3.7)

By careful comparison of full CFD and full DSMC simulation results, it was de-

termined that when the maximum value of the gradient-length local Knudsen number

based on translational temperature, mass density, and velocity magnitude exceeds a

threshold of 0.05, the difference between the predicted solutions exceeds ±5% [14, 88].

Therefore, since the first efforts to develop the MPC hybrid method, the goal has been

to obtain hybrid results that are accurate to within ±5% of a full DSMC solution. In

addition to the gradient-length local Knudsen number, Schwartzentruber, et al. [66]

found that it was necessary to use another continuum breakdown parameter specif-

ically indicative of rotational nonequilibrium in the post-shock region of hypersonic,

blunt-body flows. This supplementary parameter is given by

KnROT−NEQ =
1

2

Ttrans − Trot
Trot

, (3.8)

and is a relative difference between the translational and rotational temperatures,
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with a coefficient determined by Deschenes, et al. [22] such that the same threshold

value of 0.05 could continue being used. As shown, this parameter is non-negative

only when the translational temperature exceeds the rotational temperature, which

occurs in the post-shock region of a blunt-body flow where the kinetic energy is

first converted to random thermal energy prior to relaxation of the internal energy

modes. It is necessary to consider this additional breakdown parameter because of the

rapid relaxation processes in the forebody, while the relatively slow expansion in the

wake prevents substantial rotational nonequilibrium effects in that region. When the

MPC method was extended to be able to simulate rotational nonequilibrium effects

and vibrational excitation in simple gases, Deschenes, et al. [21, 22] also included

the gradient-length local Knudsen numbers based on the rotational temperature and

vibrational energy.

Therefore, prior to the work performed in this dissertation, continuum breakdown

was determined by calculating

Br =

max
(
KnGLL−Ttrans , KnGLL−ρ, KnGLL−|V |, KnGLL−Trot , KnROT−NEQ, KnGLL−evib

)
(3.9)

in each computational cell. If Br exceeds the threshold value of 0.05, then the solu-

tion in that particular computational cell is obtained using DSMC. Otherwise, CFD

is used in that cell because the solution should be within acceptable error of the cor-

responding DSMC solution. In practice, after the continuum breakdown parameters

are calculated, the computational cells are labeled and a smoothing procedure is per-

formed in an attempt to remove any small, isolated particle or continuum regions in

the flow field. Although the empirical nature of these continuum breakdown parame-

ters allows for some flexibility in the placement of the hybrid interfaces that separate

particle and continuum domains, five additional layers of particle cells are included

in the interest of hybrid simulations being conservative rather than inaccurate.
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Figure 3.1: Illustration of hybrid interface, before refinement.

The particle domain is then extended into the continuum domain by a user-defined

number of “buffer” cells. This not only provides more confidence in the boundary

conditions provided to the DSMC module, but also enables the particle regions to

expand by updating the solution in regions more extensive than indicated by the

continuum breakdown parameters. An illustration of the hybrid interface and associ-

ated terminology is shown in Fig. 3.1. Typically, two layers of DSMC boundary, i.e.

reservoir, cells are created on the continuum side of the buffer cells in order to gener-

ate simulator particles that will either travel into the particle domain or be removed

after each time step. One layer of ghost cells is also created on the particle side of

the hybrid interface so that boundary conditions can be provided to the continuum

module in a manner that is consistent with the standard LeMANS code.

3.3 Mesh Refinement

The MPC method relies on two layers of computational meshes. The continuum

mesh layer is the same mesh on which the initial CFD solution is obtained, and is

usually much coarser than what is required by the DSMC method. Therefore, once the

continuum breakdown parameters are calculated and each cell is assigned to either a

particle or continuum domain, this coarse mesh must be selectively refined. Because

49



the advection and collision steps of simulator particles in the DSMC method are

decoupled, the computational mesh must be comprised of cells that have dimensions

that are less than the local mean free path. This requirement is most important in

the direction of macroscopic gradients in the flow field. Therefore, in the interest of

computational efficiency, refinement of cells along the dimension that is perpendicular

to the steepest gradients is relaxed slightly. Schwartzentruber, et al. [68] used the

following equation to dictate the refinement of computational cells in particle regions

of a hybrid simulation:

rf = lf

[
Fλ

(
3

∣∣∣∣n̂f · ∇Q|∇Q|
∣∣∣∣+ 1

)]−1
. (3.10)

In Eq. 3.10, rf is the refinement factor of cell face f , which has length lf and unit

normal n̂f . The macroscopic property Q is the same macroscopic property identified

to give the largest value for the gradient-length local Knudsen number. By calculating

the dot product of the face unit normal vector and the normalized gradient vector, the

alignment of the cell face relative to flow field gradients is determined. Consider the

computational cell in Fig. 3.2. The gradient vector of property Q is pointing nearly

opposite the face normal vector n̂1 so that the refinement factor r1, when rounded to

the nearest integer, becomes l1 (4Fλ)−1. If the user-defined constant F has a value

of unity, this continuum cell will be refined to include two particle cells along the

face with dimension l1. Following the same procedure for the face with dimension

l2, it can be shown that this face will have a refinement factor, r2, of four. Because

the DSMC module of the MPC hybrid method employs subcells for collision partner

selection if a particle cell is deemed too large, the factor F used in the simulations

presented here has a value of 1.5.

Neither LeMANS nor MONACO can accommodate hanging nodes in computa-

tional meshes. Therefore, once each continuum cell is assigned a refinement factor

along each dimension, the refinement factors associated with all of its neighboring
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Figure 3.2: Gradient-based refinement of continuum cell [64].

cells are examined and the largest refinement is used along each line of cells in the

mesh. This eliminates any hanging nodes at the expense of over-refining the particle

mesh in some areas. It should also be noted that the continuum mesh undergoes this

refinement procedure only once at the beginning of a hybrid simulation. In terms of

numerical efficiency, a hybrid particle-continuum approach is a viable alternative to

full DSMC only for a specific class of simulations, namely, transitional, hypersonic

flows. If the MPC method were employed to simulate a flow field that is considered

nonequilibrium throughout the majority of the domain, there may be no reduction

in computational cost. For optimal efficiency, the MPC method should be viewed as

a correction to the initial continuum solution, where CFD is capable of accurately

simulating the entire flow field except for isolated regions such as the shock wave,

boundary layer, and wake. Thus, the assumption that the continuum mesh need only

be refined once is substantiated for simulations of interest.

The result of this refinement process is a fine, particle mesh layer as illustrated

in Fig. 3.3. The MPC method employs both mesh layers by numerically solving

the Navier-Stokes equations on the coarser mesh in the continuum domains, and by

moving and colliding simulator particles and sampling on the fine mesh in the particle

domains. The particle mesh layer is also exported to be used to obtain a consistent,
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Figure 3.3: Illustration of hybrid interface, after refinement.

full DSMC solution for verification of the hybrid method. These mesh layers allow

for direct cell-by-cell comparisons of CFD, DSMC, and MPC hybrid results, as will

be discussed in Chapter V.

3.4 Coupling Procedures

Once the particle domains of the initial CFD solution are identified, the macro-

scopic information in these regions must be consistently translated into simulator

particle information for use in the DSMC method. As discussed in Chapter II, the

Navier-Stokes equations can be derived by assuming a first-order perturbation of

the Maxwellian distribution function, substituting into the Boltzmann equation, and

approximating the solution using various constitutive relations. This first-order per-

turbation of a Maxwellian distribution function is the Chapman-Enskog distribution

function, and for a simple, monatomic gas, this distribution function is completely de-

fined by the translational temperature, directed velocity components, mass density,

temperature gradient, stress tensor, viscosity coefficient, and coefficient of thermal
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conductivity. By sampling velocities from a Chapman-Enskog distribution defined

in each continuum cell, and assigning these velocities to newly generated simulator

particles, the DSMC method is initialized in the particle regions with the full CFD

solution.

Garcia and Alder [26] proposed an efficient procedure for sampling particle veloc-

ities from a known Chapman-Enskog distribution function, and this is the approach

taken in the MPC hybrid method. For ease of explanation, the Chapman-Enskog

distribution function is repeated here as

f (c) = f [0] (c) Γ (C) , (3.11)

where f [0] (c) is the Maxwellian distribution function, and

Γ (C) =

[
1 +

(
q∗xCx + q∗yCy + q∗zCz

)(2

5
C2 − 1

)
− 2

(
τ ∗xyCxCy + τ ∗xzCxCz + τ ∗yzCyCz

)
− τ ∗xxC2x − τ ∗yyC2y − τ ∗zzC2z

]
.

(3.12)

Given the macroscopic properties from an initial CFD solution, Garcia and Alder’s

B parameter is calculated, followed by an amplitude parameter, A, given by

A = 1 + 30B. (3.13)

A candidate thermal velocity, Ctry, is sampled from the corresponding Maxwellian

VDF, and using the acceptance-rejection method, is tested against a random fraction,

Rf . The candidate thermal velocity is only accepted if

Rf ≤
Γ (Ctry)

A
, (3.14)

and when this condition is met, the newly generated particle is assigned the following

velocity:

c = u+

(
2kBTtrans

m

)1/2

Ctry. (3.15)
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In a similar manner, rotational energies are sampled from a Boltzmann energy

distribution defined by a macroscopic temperature. If the rotational energy mode

is assumed to be in equilibrium with the translational energy mode, particles are

assigned rotational energies calculated from

εrot = −kBTtrans ln (Rf ) . (3.16)

Otherwise, the rotational temperature is used in place of the translational temper-

ature. Whereas the rotational energy distribution function can be assumed continuous

except at cryogenic temperatures, due to the large quantum spacing between vibra-

tional energy levels, the discrete nature of the vibrational energy distribution function

cannot be ignored. This large quantum spacing also leads to a high level of statistical

scatter when attempting to sample particle vibrational energies in regions exhibiting

low temperatures. Therefore, rather than sampling from a Boltzmann distribution,

newly generated simulator particles are assigned the average vibrational energy cor-

responding to the continuum solution. If a simple harmonic oscillator is assumed,

and Nmax vibrational levels are considered, the partition function for the vibrational

energy mode is written as

Qvib =
Nmax∑
i=0

exp (−iθvib/Tvib) . (3.17)

The mass specific vibrational energy is then obtained by

evib =
kBT

2
vib

m

∂ln (Qvib)

∂Tvib
=
kBθvib
m

[
(1− exp

(
−θvib
Tvib

)]Nmax∑
i=0

i exp

(
−iθvib
Tvib

)
. (3.18)

In Eqs. 3.17 and 3.18, θvib is the characteristic temperature of the vibrational

energy mode, and Nmax is determined such that the probability of a simulator particle

being in a higher level is less than 1× 10−8.

In addition to populating newly labeled particle cells according to macroscopic

properties from the continuum solver, simulator particles must also be generated
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along the boundaries of particle regions. This provides a means for transferring

boundary condition information from the continuum regions to the particle regions in

a hybrid particle-continuum method. In DSMC, there are two approaches commonly

used to generate particles along a computational boundary. Particles can be created

along the cell faces adjacent to the boundary, with velocities sampled from a biased

VDF such that the correct particle flux is achieved. During the advection step of the

DSMC algorithm, particles are then moved by random fractions of the full time step.

This is how particles are generated at the inflow boundary of a full DSMC simula-

tion using MONACO. Particle velocities here are sampled from a biased Maxwellian

VDF because of the uniform, freestream conditions specified at the inflow boundary.

Alternatively, several “reservoir” cells can be created adjacent to the boundary, and

populated with particles whose velocities are sampled from an unbiased VDF. These

particles are then moved a complete time step along with all other particles in the

simulation, and any particles that reside in these reservoir cells at the end of the

advection step are removed from the simulation. This reproduces the correct flux of

particles into the computational domain.

Because both approaches are equivalent, and the algorithm for populating entire

cells with new simulator particles is also required for the initialization of particle

domains at the onset of the simulation, the latter approach is employed in the MPC

method. In general, two continuum cells adjacent to the buffer region are labeled

as DSMC boundary/reservoir cells, as illustrated in Fig. 3.3. The time step used

in the particle regions is specified such that simulator particles are unlikely to cross

multiple cells during a given time step. However, particles with velocities sampled

from the high-energy tails of the VDF may travel beyond the immediate neighbors of

the cell in which they are generated. In order to accurately capture the effect of such

particles on the influx at hybrid interfaces, two reservoir cells are used. The likelihood

of a particle traversing more than two cells in a single time step is extremely rare,
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so it is generally unnecessary to include more than two reservoir cells. It should also

be noted that these reservoir cells are the continuum cells, which are usually much

coarser than the particle cells.

Given the acceptance-rejection procedure proposed by Garcia and Alder [26],

the transfer of information from the continuum domains to the particle domains

is achieved in a straightforward manner. Because of the statistical scatter inherent

to the DSMC method, the transfer of information from the particle domains to the

continuum domains is more challenging. Hash and Hassan [35] investigated the use of

several coupling approaches in the context of a hybrid DSMC/Navier-Stokes method.

The Marshak condition [30], which was the first documented mechanism for coupling

the DSMC method and a Navier-Stokes solver, involves the summation of the half-

fluxes calculated on each side of a hybrid interface and subsequent solution for the net

flux. Two other candidate coupling approaches involve extrapolation of either the net

fluxes or flow properties to the hybrid interfaces [83, 84]. Because extrapolation of

net fluxes involves calculating higher-order moments of DSMC particle information,

which are highly susceptible to statistical scatter, Hash and Hassan [35] focused on

comparing the Marshak condition and flow property extrapolation procedure. For

one-dimensional Couette flow simulations, the Marshak condition was found to be

more efficient and less sensitive to the number of DSMC simulator particles per cell

than the flow property extrapolation technique. However, a later study involving

simulations of hypersonic flow over an axisymmetric planetary probe revealed addi-

tional problems for the Marshak condition [36]. When a hybrid interface is located

in a region of the flow where the Mach number is low, the flux across that hybrid

interface is also small and may be of the order of the statistical scatter of the DSMC

method itself. Even at high Mach numbers, fluxes across hybrid interfaces that are

aligned with the directed velocity of the flow will also be susceptible to relatively high

statistical scatter.
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The work performed by Hash and Hassan [35, 36] highlights one of the major

difficulties of developing a hybrid particle-continuum method, and exemplifies the

disadvantages of employing flux-based coupling schemes. The use of state-based cou-

pling, which is analogous to the reservoir particle generation approach previously

described, is favored over flux-based coupling because of the decreased level of statis-

tical scatter associated with volume-based averages as compared to fluxal quantities.

The flux-based and state-based coupling approaches are illustrated in Figs. 3.4(a) and

3.4(b), respectively.

Hadjiconstantinou, et al. [34] determined the relationship between the error asso-

ciated with fluxal quantities, Eflux, and that associated with volume-based averages,

Estate, as being

Eflux ∝
Estate
Kn

. (3.19)

Since the local Knudsen number at the hybrid interfaces will be approximately

0.05, the error incurred by using flux-based coupling is estimated to be over an order

of magnitude greater than if state-based coupling is used. An additional benefit of

a state-based coupling approach is that it is aligned with the modular nature of the

MPC method. Particle information is sampled in order to update the macroscopic

solution in each CFD boundary cell. These boundary cells then serve the same

purpose as the “ghost” cells that are employed to enforce boundary conditions in

the LeMANS code. Thus, no modifications of the LeMANS boundary condition

algorithms are required for them to be used in the MPC hybrid method.

The mass density of each species in a given cell is calculated in DSMC as

ρi =
NiMiWc

VcNA

, (3.20)

where Ni is the number of simulator particles of species i in the cell, Mi is the

molecular weight, and NA is Avogadro’s number. Note that even though extension
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Figure 3.4: Particle-continuum coupling approaches.
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of the MPC hybrid method to include mixtures of chemical species is an objective

of the current work, the equations presented here for averaging particle properties

have been generalized in anticipation of the developments that will be described in

Chapter VII. The x-component of the average velocity for each species is given in

DSMC by

ui =

Ni∑
j=1

cx,j

Ni

. (3.21)

In Eq. 3.21, cx,j is the x-component of the velocity of each individual simulator par-

ticle. If a gas mixture comprised of NS species is being considered, the x-component

of the mixture average velocity is then calculated as

u =

NS∑
i=1

NiMiui

NS∑
i=1

NiMi

. (3.22)

The remaining velocity components are calculated in a similar manner. The trans-

lational temperature is obtained in DSMC from the following:

Ttrans =

(
Ns

Ns − 1

)
1

3RuN


NS∑
i=1

MiNi




Ni∑
j=1

c2x,j + c2y,j + c2z,j

Ni

− u2i − v2i − w2
i


 .

(3.23)

In Eq. 3.23, Ru is the universal gas constant, N is the total number of particles

in the cell, and Ns is the total number of samples, that is, the sum of all particles

of all species taken over all sampling time steps. Roveda, et al. [62] proposed the

coefficient Ns/ (Ns − 1) in order to combat the effect of a small number of DSMC

samples artificially decreasing the translational temperature. This is a general result

for correcting a variance calculated for a sample rather than an entire population,

and is necessary because the DSMC method is only simulating a fraction of the real
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molecules in a gas. The rotational temperature of molecular species is calculated in

DSMC as

Trot =

NS∑
i=1

i=mol.

Mi

(
Ni∑
j=1

erot,j

)

Ru

NS∑
i=1

i=mol.

Ni

, (3.24)

where erot is the mass specific rotational energy, and the summations include molec-

ular species only. Similarly, the vibrational temperature is calculated as

Tvib =

 NS∑
i=1

i=mol.

Niθvib,i

ln
(

1 +
θvib,iRi

evib,i

)

 NS∑

i=1
i=mol.

Ni


−1

, (3.25)

where the mass specific vibrational energy of species i is given by

evib,i =

Ni∑
j=1

evib,j

Ni

. (3.26)

As the hybrid solution evolves from the initial continuum solution, updated bound-

ary conditions must be provided to the continuum domains after relatively few DSMC

time steps. Macroscopic properties in the particle domains must also be used to

periodically recalculate the continuum breakdown parameters so that the hybrid in-

terfaces may be adjusted according to the most current flow field solution. In order

to reduce the statistical scatter associated with the macroscopic averages of particle

properties, the subrelaxation average proposed by Sun and Boyd [76] is employed.

This subrelaxation average is calculated as

Qj = (1− θ)Qj−1 + θQj. (3.27)

In Eq. 3.27, Qj is an instantaneous average over a computational cell at time step j,

and Qj−1 is the subrelaxation average at the previous time step. This latter quantity

is initialized with the full CFD solution obtained with LeMANS. For simulations
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presented here, θ is assigned a value of 0.001, which has been shown to effectively

reduce the fluctuations in macroscopic fluid properties that must be passed from the

particle domains to the continuum domains [65]. However, the subrelaxation average

may be polluted by the same time history that reduces its statistical scatter. Because

of this, Qj is corrected every 1/θ time steps as follows:

Q
′
j = Qj +

(1− θ)1/θ

1− (1− θ)1/θ
(
Qj −Qj−1/θ

)
. (3.28)

The subrelaxation average of mass density, directed velocity, translational temper-

ature, and rotational temperature are calculated at every DSMC time step until the

hybrid interfaces stop moving and a steady state is reached. Deschenes [19] demon-

strated that use of the subrelaxation average to update the vibrational temperature

leads to random walk errors that tend to amplify the statistical scatter in this quan-

tity. The statistical scatter associated with the vibrational energy mode is already

high relative to the translational and rotational energy modes because of the quan-

tized nature of its probability distribution function. Therefore, the subrelaxation

average must be calculated for the vibrational energy instead of the temperature.

It should be noted that whether transferring information from the continuum

domains to the particle domains or vice versa, all state variables are specified without

regard to the Mach number of the flow normal to the hybrid interface. This has

the potential to cause problems when the interface is located in subsonic regions

of the flow field by disallowing flow transients to exit the numerical domain. Hash

and Hassan [36] noted such issues in their loosely-coupled hybrid simulations of an

axisymmetric planetary probe. However, in their work, the most accurate results were

eventually obtained when a blend of over-constrained and characteristic boundary

conditions were used. These problems are not observed in results obtained using the

MPC method, and this is believed to be due to the use of a flux vector splitting scheme

in the continuum module. Since the direction in which characteristic information is
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propagating is inherently considered in this scheme, as long as the properties in

the CFD boundary cells are close to their correct values, specifying the full state

should be a reasonable alternative to employing subsonic boundary conditions. As

for the particle domains, the subrelaxation average tends to dampen any numerical

oscillations that may result from specifying all boundary variables.

3.5 Hybrid Method Organization and Algorithm

Great importance has been placed on the modularity of the MPC hybrid method

throughout its development. As the independent MONACO and LeMANS codes

continue to be developed and maintained as state-of-the-art simulation tools, so do

the DSMC and CFD modules of the MPC method, with the capabilities of the hybrid

framework advancing in succession. The modular organization of the functions and

data structures of the DSMC and CFD modules, and of the hybrid framework that

serves to couple them in the MPC method, is illustrated in Fig. 3.5.

In the continuum module, computational mesh and solution information is stored

in face, node, and cell data structures. The MPC method is initialized by a CFD

solution and mesh that are imported in this manner. For each coarse, continuum cell,

there is a corresponding hybrid data cell that stores additional information that is

pertinent to the MPC method. This information includes the cell’s identity—whether

it is in a (p)article or (c)ontinuum domain, if it is a boundary cell, or if it is a buffer

cell—along with the refinement level of each cell dimension, which can be used to

determine the number of particle cells in that continuum cell, and the indices of its

constituent particle cells. In addition, macroscopic properties required for updating

the subrelaxation average in each continuum cell is also stored in this data structure.

Therefore, given any continuum cell, its hybrid data cell can be accessed for use in

the MPC method.

Each particle cell has its own data structure in accordance with the MONACO
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Figure 3.5: Modular organization of CFD, DSMC, and MPC hybrid functions and
data structures [64].

code, which includes cell geometry, connectivity, and sampled particle information.

The DSMC simulator particles located in each particle cell are organized by a linked

list of pointers. A separate array outside of the particle cell data structure is used

to identify the continuum cell to which a given particle cell belongs. In this way,

whether the particle or continuum regions of the flow field are being updated, the

hybrid data cell to which each computational cell corresponds is easily accessible.

A standard hybrid simulation using the MPC method proceeds as follows:

1. Obtain a grid-independent CFD solution of the flow field using LeMANS.

2. Calculate the continuum breakdown parameters, Br, based on the initial CFD
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solution in each computational cell. If Br ≥ 0.05, assign the cell to the particle

domain; otherwise, assign the cell to the continuum domain.

3. Smooth hybrid domain interfaces, and extend particle regions an additional five

cells in all directions. Assign buffer cells, DSMC boundary/reservoir cells, and

CFD boundary cells.

4. Populate newly labeled particle cells with DSMC simulator particles consistent

with the continuum solution. Allow these particles to move and collide for

1,010 time steps while updating the subrelaxation average at each time step.

Note that this number of time steps must be greater than 1/θ so that the old

time history can be removed from the subrelaxation average before continuum

breakdown parameters are recalculated.

5. Copy the subrelaxation average to the CFD data structure. Recalculate the

continuum breakdown parameters based on the updated solution, and adjust

the hybrid interfaces accordingly.

IF the continuum domains have not been updated yet, AND the relative num-

ber of DSMC cells changes by less than 1%, continue to Step 6.

ELSE IF the continuum domains have been updated AND the relative num-

ber of DSMC cells changes by less than 1%, skip to Step 7.

ELSE return to Step 4 for another update of the particle domains.

6. Update continuum domains with 400 iterations, using the most recent solution

in CFD boundary cells. Recalculate the continuum breakdown parameters and

adjust hybrid interfaces accordingly. Return to Step 4 .

7. Remove buffer cells and lock hybrid interfaces because the hybrid solution has

reached a steady state.

8. Update particle domains while sampling particle information as in a standard
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DSMC simulation, i.e. without using the subrelaxation average, for 10,000 time

steps.

9. Copy the sampled particle information to the CFD data structure. Update

continuum domains with 200 iterations. Note that the purpose of this step is

to allow any statistical scatter previously introduced by the particle domains to

leave the continuum domains.

IF the desired number of samples have been accrued in the particle domains,

the simulation is finished.

ELSE return to Step 8 for additional sampling.

This automated hybrid algorithm differs slightly from that used previously by De-

schenes [19] by requiring fewer user-defined parameters to influence the course of the

simulation. For example, the hybrid interfaces are locked automatically after they

stop moving upon recalculation of the continuum breakdown parameters, whereas

this was previously dictated by the user. The number of implicit CFD iterations

performed in each hybrid cycle continues to be a simulation input. This is because,

in terms of efficiency, the number of processors requested for a hybrid simulation is

usually better suited for the number of DSMC simulator particles rather than the

number of CFD cells. As such, the time spent performing interprocessor communi-

cation begins to overrun the time spent actually updating the continuum domains,

leading to each CFD iteration requiring more computational effort than each DSMC

time step. Therefore, the efficiency of the MPC method can quickly diminish if too

many CFD iterations are performed. By monitoring the L2 norm during continuum

domain updates, it can be seen that, in the cases presented here, a two order-of-

magnitude reduction occurs within the first 400 iterations, but it usually takes many

more iterations to achieve a further order-of-magnitude decrease. The number of CFD

iterations performed during each hybrid cycle could very easily be automatically de-

termined by tracking the L2 norm, but with the numerical efficiency of the MPC
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method being very sensitive to the total number of CFD iterations, this continues to

be defined by the user.

3.6 Interim Conclusions

Recent efforts to improve the physical accuracy of the MPC hybrid method and

extend its capabilities to more realistic atmospheric flows are described in the re-

maining chapters of this dissertation. Although the overall algorithm remains largely

unchanged, to enable these improvements, a number of significant modifications have

been made to the CFD and DSMC modules and the hybrid framework presented

here. Where appropriate, these most recent developments will be discussed in detail,

and evaluated against previous results.
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CHAPTER IV

Consistent Modeling of Physical Processes

The accurate exchange of information across hybrid interfaces requires the use

of consistent physical models in the particle and continuum domains of a hybrid

simulation. Hybrid interfaces are placed in near-equilibrium regions of the flow field,

where both CFD and DSMC are appropriate simulation methods. As such, it is

imperative that the manner in which a physical process is modeled in the continuum

module gives results that are consistent with the corresponding model in the particle

module, and vice versa, along the hybrid interfaces. The use of consistent physical

models helps to ensure accurate information exchange, so that any differences between

results obtained using CFD, DSMC, and the MPC hybrid method are due to the

limitations of the numerical approaches only.

In this chapter, models for simulating various physical processes in CFD and

DSMC are discussed and verified to be consistent in near-equilibrium flows of both

simple gases and mixtures of chemical species. As is evident from Chapter III, CFD

and DSMC are two very different simulation techniques. Physically accurate models

are employed when possible. However, the ability to simulate physical processes in a

consistent manner and, therefore, obtain meaningful comparisons among hybrid, full

DSMC, and full CFD results takes precedence.
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4.1 Transport Properties

A gas that is in thermodynamic equilibrium exhibits no spatial or temporal vari-

ations in its macroscopic properties. This is an idealized view, however, as any flow

field of practical interest will include a vehicle or disturbance that imposes gradi-

ents in the composition of the gas, its directed velocity, and/or temperature. On

a microscopic level, molecules facilitate the transport of mass, momentum, and en-

ergy from one region of the flow field to another through their motion and collisions,

leading to the macroscopic transport phenomena of diffusion, viscosity, and heat con-

duction. As described in Chapter II, closure of the Navier-Stokes equations requires

the assumption of several constitutive relations involving these transport processes.

Whereas the diffusivity, viscosity, and heat conduction are explicitly calculated in

CFD simulations, molecular transport is an indirect result of collision models used

in the DSMC method. This section describes the choice of macroscopic transport

models and particle collision models used in CFD, DSMC, and MPC simulations of

both simple gases and mixtures of chemical species.

4.1.1 Simple Gases

The Variable Hard Sphere (VHS) collision model proposed by Bird [8] is used in

the full DSMC simulations and in the particle module of MPC hybrid simulations

presented in this dissertation. Colliding particles are assumed to scatter isotropically,

and unlike the hard sphere collision model, the VHS model allows the collision cross-

section to vary with the translational temperature, Ttrans, as follows:

σT = σT,ref

(
Tref
Ttrans

)ω−1/2
. (4.1)

In Eq. 4.1, σT,ref is a reference collision cross-section that is calculated at a refer-

ence translational temperature, Tref . The temperature exponent, ω, is unique to each
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collision class, and will be discussed extensively throughout this section. In practice,

Eq. 4.1 is not explicitly calculated in a DSMC simulation; the collision cross-section is

calculated as a function of the relative collision velocity, which, in turn, is a function

of the translational temperature. The actual equation that is used to determine the

collision cross-section of a particle pair will be presented later in this chapter. The

collision cross-section can also be written in terms of the collision diameter, d, as

σT = πd2. (4.2)

Except at very low temperatures, the collision cross-sections of molecules that

comprise a real gas decrease as the relative velocity between colliding molecules in-

creases [8]. By allowing the collision cross-section to vary as shown in Eq. 4.1, the

VHS model serves to reproduce the dependence of the macroscopic viscosity on the

translational temperature. This power law relationship is given by

µ = µref

(
Ttrans
Tref

)ω
, (4.3)

where µref is the viscosity at Tref . In the case of simple gases, Eq. 4.3 is used to

calculate the viscosity in the continuum module of the MPC method and in full CFD

simulations, where the reference viscosity is calculated from

µref =
15 (mkBπTref )1/2

2 (5− 2ω) (7− 2ω)σT,ref
. (4.4)

In Eq. 4.4, m is the mass of each individual molecule, and kB is the Boltzmann

constant. The reference temperature in these equations can be chosen arbitrarily as

long as a reference viscosity can be calculated with confidence at that temperature.

For all collision classes simulated here, a reference temperature of 300K is chosen.

A physically accurate value for the ω parameter in the above equations can be

obtained from the relationship between the viscosity collision integrals, Ω(2,2), and the

translational temperature. As will soon be shown, collision integrals provide the con-
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Figure 4.1: Viscosity collision integral dependence on translational temperature for
N2.

nection between molecular collision dynamics and macroscopic transport properties.

Collision integrals for a 13-species air mixture were compiled from various sources by

Wright, et al. [90]. The errors associated with the collision integral data for the N2-N2

collision class, which are used in several simple gas and gas mixture simulations in

this dissertation, are estimated to be less than 10% for temperatures between 300K

and 10,000K. A log-log plot of these data against translational temperature is shown

in Fig. 4.1, and it is no coincidence that the trend follows a power law similar to

Eq. 4.3. A first-order Chapman-Enskog approximation to the rigorous derivation of

viscosity from kinetic theory is given by

µ =
5

16

√
kBTtransm

π

1

Ω(2,2) (Ttrans)
. (4.5)

The derivation of Eq. 4.5 is given by Hirschfelder, et al. [37], but the viscosity

collision integral notation used here is that of Wright, et al. [90]. If the power law
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relationship from Eq. 4.3 is substituted into Eq. 4.5, close inspection reveals that

the sum of ω for the N2-N2 collision class and the slope of the trendline in Fig. 4.1

is equal to 0.5. This is true of all simple gases, so that a physically realistic ω is

obtained directly from known viscosity collision integral data. The reference viscosity

is then calculated using Eq. 4.5, and the reference collision cross-section is calculated

using Eq. 4.4. These VHS model parameters are used in DSMC, CFD, and MPC

simulations to ensure consistent calculation of viscosity, and are given for all collision

classes relevant to this work in Appendix A.

As is the case with viscosity, there is no explicit calculation of heat conduction

in the DSMC method. Energy is transferred within a gas, and between a gas and a

surface, through molecular collisions. Full thermal accommodation is assumed in all

DSMC simulations presented here. In CFD, the thermal conductivity for each energy

mode is calculated from Eucken’s relation [82] as

κtrans =
5

2
µcv,trans, (4.6)

κrot = µcv,rot, (4.7)

and

κvib = µcv,vib. (4.8)

In Eqs. 4.6 through 4.8, cv,trans, cv,rot, and cv,vib are, respectively, the mass specific

heats of the translational, rotational, and vibrational energies at constant volume.

4.1.2 Gas Mixtures

In the case of gas mixtures, the use of the VHS collision model in DSMC is

not strictly correct. Although this model has been shown to reproduce the correct

macroscopic viscosity coefficient, an additional scattering parameter that leads to the
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Variable Soft Sphere (VSS) collision model [8] is required to accurately reproduce the

diffusion coefficient in gas mixtures. The inclusion of this additional parameter in-

creases the complexity of the matching procedure used to obtain consistent viscosity

results in CFD and DSMC. Because this work represents an initial effort in extending

the MPC method to include gas mixtures, results presented here are obtained using

the VHS collision model rather than the VSS collision model. As will become clear in

Chapter VII, at least for the gas mixtures examined in this dissertation, minimal dif-

fusion effects are observed and are generally limited to the shock wave and boundary

layer.

In CFD, a mass diffusion flux for each component species of a gas mixture is

modeled using a modified form of Fick’s Law. An “effective” diffusion coefficient can

be calculated for each species i as if species i were interacting with only one other

imaginary species. This imaginary species represents an average of the remaining

components of the gas mixture. An approximation for the effective diffusion coefficient

of a given species i is given by Bird, et al. [9] as

1− xi
Dim

=
NS∑
j 6=i

xj
Dij

, (4.9)

and is used here. In Eq. 4.9, xi is the mole fraction of species i, Dim is the effective

diffusion coefficient of species i within the mixture of NS species, and Dij is the binary

diffusion coefficient of the i-j species pair. This approximation and the diffusion flux

calculation given in Eq. 2.23 were shown by Sutton and Gnoffo [77] to give accurate

results for Earth re-entry simulations. The binary diffusion coefficient of the i-j

species pair is obtained, to a first-order Chapman-Enskog approximation, from

Dij =
kBTtrans

p∆
(1)
ij (Ttrans)

, (4.10)

where p is the pressure and
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∆
(1)
ij (Ttrans) =

8

3

√
2MiMjπ

RuTtrans (Mi +Mj)
Ω

(1,1)
ij (Ttrans) . (4.11)

In Eq. 4.11, Mi and Mj are the molecular weights of species i and j, respectively,

Ru is the universal gas constant, and Ω
(1,1)
ij (Ttrans) is the diffusion collision integral

for the i-j collision class at Ttrans.

The Gupta Mixing Rule [32], which was derived for weakly or nonionized flows,

is used to approximate the viscosity and thermal conductivities of gas mixtures in

CFD. This relatively simple formulation was shown by Palmer and Wright [57] to be

both computationally efficient and physically accurate in the temperature range of

interest relative to the mixture viscosity derived from a first-order Chapman-Enskog

approximation. The Gupta Mixing Rule for mixture viscosity is given by

µ =
NS∑
i

mixi
NS∑
j=1

xj∆
(2)
ij (Ttrans)

, (4.12)

where

∆
(2)
ij (Ttrans) =

16

5

√
2MiMjπ

RuTtrans (Mi +Mj)
Ω

(2,2)
ij (Ttrans) . (4.13)

The Gupta Mixing Rule reduces to Eq. 4.5 in the case of a simple gas, and similar

to Eq. 4.11, Eq. 4.13 requires viscosity collision integral data for each collision class in

the mixture. The VHS collision model is still used in the particle module of the MPC

method and in full DSMC simulations of gas mixtures, and the model parameters for

collision classes involving like molecules can be determined by following the procedure

detailed for simple gases. However, the increased complexity of the Gupta Mixing

Rule in CFD requires modification to the matching procedure for collision classes

involving different species.

By inspection of Eqs. 4.12 and 4.13, it is clear that there is no longer a straight-

forward relationship between the VHS model parameter ω and the viscosity collision
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Figure 4.2: Variation of viscosity with N2/N mixture composition.

integral data. To further illustrate, the viscosities of several mixtures of N2 and N are

plotted versus temperature in Fig. 4.2. Given the variation of line slope with mixture

composition, the slope of the 50%/50% molar concentration is chosen to provide the

ω value for the N2-N collision class that is required for any mixture of N2 and N .

With this ω value and a reference viscosity calculated from Eq. 4.12, the reference

cross-section for the N2-N collision class is calculated by assuming an average particle

mass for m in Eq. 4.4.

Because of the heuristic nature of this procedure, further verification is sought

to ensure that these VHS model parameters produce viscosity results in DSMC that

are consistent with those predicted by the Gupta Mixing Rule in CFD. For a 50%

N2/50% N (by mole) mixture, DSMC is used to simulate a number of Couette flows

at various temperatures in the range of interest for this work. In performing these

DSMC simulations, the VHS model parameters are indirectly verified by comparing

the “measured” viscosities to the corresponding viscosities calculated in CFD. The
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shear stress of the gas in each of these Couette flow simulations is determined by

collecting momentum data from the DSMC simulator particles that cross each hor-

izontal cell face. The viscosity can then be deduced from this shear stress and the

imposed velocity gradient.

In order to perform a true comparison of the viscosities obtained from these DSMC

simulations, which inherently allow for velocity slip, and viscosities calculated using

the Gupta Mixing Rule, a slight adjustment must be made. As illustrated by Vincenti

and Kruger [82], the slope of the velocity profile in a Couette flow (dy/du) where

velocity slip is ignored is smaller than that in a real gas. Therefore, following their

suggested correction, the viscosities determined in these Couette flow simulations are

related to the viscosities predicted by the Gupta Mixing Rule by

µCFD ≈ µDSMC (1 + 2Kn∞) . (4.14)

As illustrated by one example in Fig. 4.3, the velocity profiles in these Couette

flow simulations are nearly linear. In each simulation, the wall velocities are specified

such that the Mach numbers of these flows are approximately 0.1. At such low Mach

numbers, it is reasonable to assume that the temperature and density remain constant

throughout the channel. Full momentum accommodation is assumed at the channel

walls. In addition, the Knudsen number of each of these Couette flow simulations, as

defined by the channel height, h, is maintained at a value of 0.01. In order to minimize

nonequilibrium effects near the channel walls, it would be preferable to perform these

simulations at a lower Knudsen number. However, the computational expense of these

simulations is already quite large, and further increasing the density of the flow would

make them unmanageable as a verification tool. Statistical errors are calculated in

order to estimate the uncertainty associated with a finite number of particles and

sampling time steps. Formulae for the velocity and shear stress errors are given by

Sun and Boyd [76] and Hadjiconstantinou, et al. [34], and these uncertainties are
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then propagated throughout the calculation to yield an overall error associated with

the DSMC viscosity. The results from this verification study are plotted in Fig. 4.4,

where it is shown that this procedure for determining VHS model parameters yields

viscosity results that are consistent with the Gupta Mixing Rule for this 50% N2/50%

N mixture.

Although this simple approach to matching VHS model parameters in DSMC to

the Gupta Mixing Rule in CFD is accurate for the 50% N2/50% N mixture, the

same may not be true for other gas mixtures. For example, another gas composition

that will be examined in the context of the MPC hybrid method is a mixture of

50% N2/50% H (by mole). Whereas molecular and atomic nitrogen have molecular

weights that differ by a factor of two, the ratio of the molecular weight of N2 to that of

H is 28. A mixture of chemical species with such disparate molecular weights further

tests the modifications made to the MPC method to accommodate gas mixtures,

which will be described in Chapter VII.
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The first indication that this mixture may pose challenges for the simplified ap-

proach is a comparison between the Gupta Mixing Rule viscosities calculated for N2,

H, and a 50% N2/50% H mixture. This comparison is plotted in Fig. 4.5. Unlike

the 50% N2/50% N mixture viscosity, which is bounded by the viscosities of its con-

stituents, the viscosity of the 50% N2/50% H mixture is very close to the viscosity of

pure N2 over the temperature range of interest. At higher temperatures, the viscosity

of the mixture exceeds that of both N2 and H. It is questionable whether the same

assumptions that are made when deriving VHS model parameters for the N2-N col-

lision class remain valid for the N2-H collision class. These suspicions are confirmed

by performing simulations of Couette flows comprised of 50% N2/50% H using the

VHS parameters obtained in the same way as described for the N2/N mixture. It

should also be noted that the viscosity collision integral data for the N2-H and H-H

collision classes do not follow the temperature power law relationship as closely as the

viscosity collision integral data for the N2-N2, N2-N , and N -N collision classes. This

leads to the slightly nonlinear behavior of the pure H and N2/H mixture viscosities
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plotted in Fig. 4.5. Despite this, Stallcop, et al. [70] claim that the viscosity colli-

sion integral data for the H-H collision class are accurate to three or four significant

figures. No numerical accuracy estimate is provided for the N2-H viscosity collision

integral data [71].

A more rigorous approach to calculating VHS model parameters that are consis-

tent with the Gupta Mixing Rule is explored for the collision classes referenced in this

work. Stephani, et al. [74] outlined such an approach by employing the Nelder-Mead

simplex algorithm [54] to obtain VHS model parameters for a five-species air mix-

ture. The Nelder-Mead simplex algorithm minimizes a given function of n variables

by evaluating that function at n+ 1 points in space, forming a simplex whose shape

is then altered as new points are tested and the minimum is approached.

First, an equation that relates the viscosity collision integrals for each collision

class to their corresponding VHS model parameters must be derived. The definition

of the viscosity collision integral as given by Hirschfelder, et al. [37], but again re-cast
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in the notation of Wright, et al. [90], is

Ω(2,2) =
1

2π

∞∫
0

{
exp

[
−γ2

]
γ7Q(2) (g)

}
dγ, (4.15)

where

γ =

[ 1
2
m∗g2

kBTtrans

]1/2
(4.16)

and

Q(2) (g) = 2π

∞∫
0

{[
1− cos2 (χ (g, b))

]
b
}
db. (4.17)

In the above equations, g is the relative collision velocity, and m∗ is the reduced

mass defined by

m∗ij =
mimj

mi +mj

. (4.18)

Although the subscripts are omitted in Eq. 4.16, m∗ is understood to be a collision-

specific parameter. The parameter Q(2) is better known as the viscosity cross-section

[8]. In Eq. 4.17, χ is the collision deflection angle and is, in general, a function of g

and the impact parameter, b, which is the distance of closest approach of the centers

of two colliding particles. However, in the case of the VHS collision model, this is

greatly simplified to

Q(2) =
2

3
σT . (4.19)

The viscosity collision integrals are thus seen to be a function of various collision

parameters through the relationship given in Eq. 4.15, but what is still needed is a

link between these collision parameters and the reference diameter and ω temperature

exponent specified in the VHS collision model. As previously mentioned, the VHS

collision model is able to reproduce the macroscopic viscosity of a real gas by allowing

the collision cross-sections of DSMC simulator particles to vary with the relative
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collision velocity. The explicit relationship between the collision diameter of class i-j

and the relative velocity between colliding particles is given as

dij =

[
d2ref,ij

(
2kBTref
m∗g2

)ωij−1/2 1

Γ (5/2− ωij)

]1/2
. (4.20)

A direct relationship between the viscosity collision integrals and VHS model pa-

rameters can now be derived by differentiating Eq. 4.16 with respect to g, substituting

this result and Eq. 4.20 into Eq. 4.15, and integrating. Accounting for differences in

notation, this result matches that derived by Stephani, et al. [74] and is as follows:

Ω
(2,2)
ij =

d2ref,ij
6

(
Tref
Ttrans

)ωij−1/2 Γ (9/2− ωij)
Γ (5/2− ωij)

. (4.21)

It is the objective of the Nelder-Mead simplex algorithm to find a minimum of a

given function. Thus, the function to be minimized in order to find the optimal VHS

model parameters is

f (dref,ij, ωij) =

∣∣∣∣(Ω
(2,2)
ij

)
analytical

−
(

Ω
(2,2)
ij

)
observed

∣∣∣∣ , (4.22)

where the analytical viscosity collision integral is that calculated using Eq. 4.21 and

candidate values of dref,ij and ω, and the observed viscosity collision integral is that

obtained through observation, whether experimental or otherwise. In fact, viscosity

collision integral data over the entire range of temperatures of interest in this work

should be incorporated in the minimization. Therefore, the final function to be mini-

mized is actually obtained by summing the values of Eq. 4.22 at every available data

point in the temperature range of interest. This approach can be thought of as min-

imizing the distance between a vector comprised of the analytical viscosity collision

integral data and a vector comprised of the observed data. Stephani, et al. [74] found

that employing the actual mixture transport coefficients as elements in these vectors

achieved more consistent results than when the collision integrals themselves were

used. However, this results in the calculation of slightly different optimal VHS model
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Table 4.1: Comparisons of dref [Å] obtained using the simple approach and the
Nelder-Mead simplex algorithm.

Collision Class Simple Approach Nelder-Mead Error
N2-N2 3.99 4.00 0.25%
N -N 3.36 3.35 0.30%
N2-N 3.69 3.65 1.10%
H-H 3.35 3.44 2.62%
N2-H 3.51 3.58 1.96%
O2-O2 3.85 3.76 2.39%
N2-O2 3.79 3.68 2.99%

parameters for each mixture composition. In reality, the binary collision interactions

between gas molecules, and, in turn, the collision integrals, should be independent of

macroscopic mixture composition.

The implementation of the Nelder-Mead simplex algorithm used in this work ini-

tializes dref,ij to a random number between two and four angstroms, which should

encompass a physically realizable range for the collision diameter, and initializes ωij

to a random number between 0.5 (hard sphere molecule) and one (Maxwell molecule).

The same results are repeatedly obtained after numerous calls to the simplex algo-

rithm, indicating the final, optimized VHS model parameters are independent of their

starting points. This also lends confidence to the assumption that the minimum found

by the algorithm is global rather than local.

Table 4.1 compares the reference diameters calculated using the simple approach

initially used for the N2-N collision class, and those calculated using the more rigorous

Nelder-Mead simplex algorithm. The relative errors between these results are also

presented, indicating that even for the N2-H collision class, the simple approach is

quite accurate. Table 4.2 compares the ω temperature exponents calculated using each

method, where the necessity of a rigorous approach such as the Nelder-Mead simplex

algorithm is demonstrated by the large error associated with the N2-H collision class.

For all other collision classes, there is fairly close agreement between the temperature

exponents obtained using the different approaches. In general, curve-fitting a linear
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Table 4.2: Comparisons of ω obtained using the simple approach and the Nelder-Mead
simplex algorithm.

Collision Class Simple Approach Nelder-Mead Error
N2-N2 0.675 0.679 0.59%
N -N 0.746 0.737 1.22%
N2-N 0.701 0.700 0.14%
H-H 0.801 0.799 0.25%
N2-H 0.716 0.793 9.71%
O2-O2 0.683 0.677 0.89%
N2-O2 0.690 0.713 3.23%

trendline to the viscosity collision integral data plotted on a logarithmic scale is found

to be quite sensitive to scatter and the data points that are included.

As a result of these comparisons, both the temperature exponent and the reference

diameter as calculated with the Nelder-Mead simplex algorithm for the N2-H collision

class are used here. The VHS model parameters for the remaining collision classes

are those calculated using the simple approach. The VHS model parameters for all

collision classes simulated in this dissertation are given in Appendix A. In addition,

since the simple approach agrees with the Nelder-Mead simplex algorithm for the

N2-N2, N2-N , and N -N collision classes, and mixtures involving these VHS model

parameters are verified to be consistent with the Gupta Mixing Rule through DSMC

simulations of Couette flows, it is assumed the same is true for the remaining collision

classes. This is a reasonable assumption, and obviates the need to perform additional

costly Couette flow simulations.

The Gupta Mixing Rule is also used to approximate the thermal conductivity

of each energy mode of a gas mixture. Palmer and Wright [56] compared several

methods for calculating mixture thermal conductivities and found that the Gupta

Mixing Rule was both computationally efficient and physically accurate relative to

both first- and second-order approximate solutions of the Boltzmann equation. The

mixture thermal conductivity of the translational energy mode is given by
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κtrans =
15

4
kB

NS∑
i=1

xi
NS∑
j=1

αijxj∆
(2)
ij (Ttrans)

, (4.23)

where

αij = 1 +

(
1− Mi

Mj

)(
0.45− 2.54Mi

Mj

)
(

1 + Mi

Mj

)2 , (4.24)

and ∆
(2)
ij is again calculated as in Eq. 4.13. The mixture thermal conductivities for

the rotational and vibrational energy modes are calculated as

κrot = kB

NS∑
i=1

xi
NS∑
j=1

xj∆
(1)
ij (Ttrans)

, (4.25)

and

κvib =
kB
Ru

NS∑
i=1

(cv,vib)iMixi
NS∑
j=1

xj∆
(1)
ij (Ttrans)

. (4.26)

4.2 Thermal Nonequilibrium

As described in Chapter I, due to the small residence times of a hypersonic flow

relative to a vehicle or phenomenon of interest, accurate simulation may require con-

sideration of the finite rates at which thermal relaxation occurs. For instance, consider

a strong shock wave caused by a hypersonic vehicle. After passing through the shock,

the kinetic energy once possessed by the gas is converted into random thermal en-

ergy, leading to a high post-shock translational temperature. Subsequent collisions

between gas molecules then enable distribution of this energy among the internal

energy modes until thermal equilibrium is reached. However, this relaxation process

requires a finite amount of time, during which other temperature-dependent processes

may occur, such as chemical reactions. Therefore, as the physics of a hypersonic flow
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field increase in complexity, the importance of accurately simulating thermal relax-

ation also increases. In this section, the CFD and DSMC models used to simulate the

exchange of energy between the translational and internal energy modes are discussed.

4.2.1 Translational-Rotational Energy Exchange

Translational-rotational energy exchange models have been investigated for simple

gases in the context of the MPC hybrid method by Deschenes, et al. [22]. However,

more detailed comparisons have led to the current choice of translational-rotational

energy exchange models not only for simple gases, but also for mixtures of chemical

species. Rotational nonequilibrium is simulated in CFD by solving a rotational energy

conservation equation in addition to the standard set of Navier-Stokes equations.

Energy transfer between the translational and rotational energy modes is usually

modeled using Jeans’ equation [42] given by

dErot
dt

=
E∗rot − Erot
Zrotτc

. (4.27)

In Eq. 4.27, E∗rot is the energy of the rotational mode if it were in equilibrium with

the translational mode, Erot is the instantaneous rotational energy, and Zrot is the

rotational collision number. The denominator of the righthand side of this equation

is equivalent to the characteristic relaxation time of the rotational energy mode,

τrot. Jeans’ equation can be rewritten in terms of the translational and rotational

temperatures to yield the following source term for a gas comprised of NS species,

to be used in the rotational energy conservation equation:

Strans−rot =
NS∑
i=1

ρi (cv,rot)i
Ttrans − Trot
Zrot,iτc,i

. (4.28)

The continuum module of the MPC method and full CFD simulations employ

Parker’s model [59] to calculate the rotational collision number for use in Eq. 4.28.

In this model, the rotational collision number is assumed to be a function of the
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translational temperature only, and is calculated as

Zrot =
(Zrot)∞

1 + π3/2

2

(
T ∗

Ttrans

)1/2
+
(
π2

4
+ π
)

T ∗

Ttrans

, (4.29)

where (Zrot)∞ and T ∗ are species-specific constants. The values used for the molecular

species simulated in this dissertation are given in Appendix A.

Prior to discussing the use of a consistent translational-rotational energy exchange

model in DSMC, an important distinction must be made between the rotational

collision number defined in the context of continuum methods and the rotational

collision number defined in the context of particle methods. Whereas Zrot is defined

as described above for continuum methods, i.e.

Zcont
rot =

τrot
τc
, (4.30)

the rotational collision number has a slightly different interpretation in DSMC. In

the Borgnakke-Larsen internal energy exchange model [10] used in DSMC, colliding

simulator particles are chosen to undergo a translational-rotational energy exchange

event with average probability 〈φrot〉. Intuitively, Eq. 4.30 suggests that, on average,

Zcont
rot collisions are required prior to a given particle being selected to relax and,

therefore, 〈φrot〉 should be the reciprocal of Zcont
rot . However, due to the inefficiency of

the equilibration process achieved by the Borgnakke-Larsen internal energy exchange

model, 〈φrot〉 must be greater than 1/Zcont
rot to ensure that the actual fraction of

particles that experiences a relaxation event is 1/Zcont
rot [33]. The relationship between

the probability and the fraction of particles that undergoes internal energy relaxation

is also dependent on the selection methodology, as will become apparent.

Lumpkin, et al. [48] recognized this discrepancy and derived the following conver-

sion factor, where ζrot is the number of rotational degrees of freedom:

Zpart
rot,ij =

1

〈φrot,ij〉
= Zcont

rot,i

(
1 +

ζrot,i + ζrot,j
5− 2ωij

)−1
. (4.31)
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This conversion factor is valid for relating Zcont
rot,i to the probability used in a pair

selection procedure, where both colliding particles are chosen to either undergo inter-

nal energy relaxation or experience an elastic collision. This is the type of selection

methodology originally implemented in MONACO. Haas, et al. [33] derived a different

conversion factor to be used in DSMC codes in which the probability of a rotationally

inelastic collision is used to either accept or reject each particle individually. This lat-

ter particle selection methodology enables different molecular species in a gas mixture

to relax at different rates. If the pair selection procedure were used to simulate the

rotational relaxation of a mixture of N2 and O2, for example, the question would arise

as to which Zcont
rot should be used in Eq. 4.31, since both particles will exchange ro-

tational energy with the translational energy mode. The particle selection procedure

that is implemented in MONACO to allow for constituent species in a gas mixture

to relax independently of one another is discussed later in this section.

In order to achieve consistency with Parker’s model in CFD, Boyd proposed a

variable probability rotational relaxation model [12] to be used in DSMC simulations.

This particular model was derived by assuming that the instantaneous probability of a

simulator particle undergoing a translational-rotational energy exchange event due to

a collision is a function of the relative translational energy of the colliding pair, Erel.

Given that Parker’s model relates the rotational collision number to the translational

temperature only, this is a reasonable assumption. A DSMC model that is consistent

with Parker’s model must, on average, reproduce the same Zcont
rot given by Eq. 4.29

under equilibrium conditions. In mathematical terms, and assuming perfect efficiency

for the Borgnakke-Larsen internal energy exchange model, the following relationship

must hold:
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〈φrot〉 =
1

Zcont
rot

=

1

Γ (5/2− ω)

[
1

kBTtrans

]5/2−ω ∞∫
0

{
φrotE

3/2−ω
rel exp

[
−Erel
kBTtrans

]}
dErel.

(4.32)

In the interest of clarity, a simple gas has been considered and the collision-class

subscripts removed. Since the instantaneous probability of translational-rotational

energy exchange, φrot, is assumed to be a function of the relative translational energy

of the colliding pair, it is part of the integrand on the righthand side of Eq. 4.32.

By integrating over the equilibrium distribution function for relative translational

energy, as biased by the collision selection process in DSMC, an average probability

〈φrot〉 under equilibrium conditions is obtained. If Zcont
rot as defined in Eq. 4.29 is then

substituted into Eq. 4.32, the instantaneous probability is given by

φrot =
1

(Zrot)∞
×[

1 +
Γ
(
1
2
ζ
)

Γ
(
1
2
ζ − 1

2

) (kBT ∗
Erel

)1/2
π3/2

2
+

Γ
(
1
2
ζ
)

Γ
(
1
2
ζ − 1

) kBT ∗
Erel

(
π2

4
+ π

)]
.

(4.33)

In Eq. 4.33, ζ is the number of degrees of freedom corresponding to the relative

translational energy, as biased by the collision selection process, which is equal to

5− 2ω in this formulation. However, because the probability of internal energy re-

laxation is not equivalent to the fraction of particles that must relax, Eq. 4.33 must

include the aforementioned conversion factor. The final form of the instantaneous

probability of translational-rotational energy exchange to be used in DSMC simula-

tions in order to be consistent with Parker’s model in CFD is then calculated as
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φrot,ij =

(
1 +

ζrot,i + ζrot,j
5− 2ωij

)
1

(Zrot)∞
×[

1 +
Γ
(
1
2
ζ
)

Γ
(
1
2
ζ − 1

2

) (kBT ∗
Erel

)1/2
π3/2

2
+

Γ
(
1
2
ζ
)

Γ
(
1
2
ζ − 1

) kBT ∗
Erel

(
π2

4
+ π

)]
.

(4.34)

This equation is written in terms of a general gas mixture where a particle of

species i and a particle of species j may undergo rotational energy relaxation upon

colliding with one another. With the appropriate subscripts, this same equation

is used to calculate the translational-rotational energy exchange probabilities of all

collision pairs in a gas mixture.

The drawback of Boyd’s DSMC model is that equipartition of energy is not inher-

ently maintained because of the preferential acceptance of collision pairs with lower

relative translational energies to undergo rotational-translational energy exchange.

Since this preferential treatment does not include the rotational energy mode, the

Borgnakke-Larsen internal energy exchange model [10] tends to redistribute more of

the energy to the translational mode than is appropriate to maintain equipartition

of energy. Thus, the cell-based average of these instantaneous probabilities, calcu-

lated for each collision class from all pairs regardless of actual translational-rotational

energy exchange, must be used.

This averaging procedure is not necessary if the instantaneous probabilities are

assumed to be functions of the total collision energy of the particle pair. Boyd,

therefore, proposed an alternative translational-rotational energy exchange model,

the derivation of which is quite similar to the previous with the exception that the

equilibrium distribution function for the total collision energy is used instead of that

for the relative translational energy in Eq. 4.32 [11]. The instantaneous probability

defined in this way has the same form as Eq. 4.34 except Erel is replaced by Ecoll, i.e.

the sum of the relative translational energy of the colliding pair and the rotational
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energies of both particles, and ζ is now 5− 2ωij + ζrot,i + ζrot,j.

The latter of these DSMC models was successfully used in past MPC simulations

of simple gases exhibiting rotational nonequilibrium [22]. In the interest of being

thorough, isothermal heat bath simulations of N2 are again performed to verify con-

sistency of this DSMC model and Parker’s model in CFD. It is important to note

that in the DSMC heat bath simulations, the particle velocities are re-sampled from

a Maxwellian VDF at the beginning of each time step. This additional consideration

enables a better approximation of the continuous VDF by a finite number of simu-

lator particles and, in turn, yields a constant translational temperature of 10,000K

throughout the simulation. The rotational temperature is initialized to 1,000K, and

particle collisions enable the eventual equilibration of the rotational energy mode at

a rate dictated by the translational-rotational energy exchange model. Excitation of

the vibrational energy mode is neglected in these heat bath simulations. Figure 4.6

shows a comparison of the rotational temperature relaxation process predicted by

Parker’s model in CFD and that predicted by Boyd’s φrot (Ecoll) model in DSMC.

The greatest difference between these two profiles is approximately 207K, or 3.2%

of the CFD rotational temperature at that time of 6,429K. This is sizable consider-

ing the simplicity of the current simulation relative to simulations of interest, which

include mixtures of chemical species in rotational and vibrational nonequilibrium.

This discrepancy is further investigated by comparing the profiles of the rota-

tional collision numbers used in each of the isothermal heat bath simulations. These

results are plotted in Fig. 4.7. Because this particular DSMC model assumes that

the probability of translational-rotational energy exchange is a function of the to-

tal collision energy of the particle pair, there is a degree of ambiguity in the choice

of an appropriate average temperature to be used in Parker’s model. Three logical

approaches to incorporate both the translational and rotational temperatures in an

average temperature to be used in Eq. 4.29 are explored. The first, which is given by
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Figure 4.6: Rotational temperature relaxation of N2 as predicted by CFD and DSMC,
with φrot (Ecoll).

Tave,1 =
(5− 2ωij)Ttrans + 2Trot

7− 2ωij
, (4.35)

is a weighted average based on the degrees of freedom of the relative translational

energy and the average number of rotational degrees of freedom between the colliding

pair. The second approach is similar, but the weight of the rotational temperature is

based on the total number of degrees of freedom in the rotational energy mode. This

average temperature is calculated as

Tave,2 =
(5− 2ωij)Ttrans + 4Trot

9− 2ωij
. (4.36)

A final approach to calculate a relevant average temperature is given by

Tave,3 =
3Ttrans + 2Trot

5
, (4.37)

where the degrees of freedom in the translational energy mode are no longer biased

by the collision selection process in DSMC. The results of each of these approaches
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Figure 4.7: Rotational collision number profiles of N2 as predicted by CFD and
DSMC, with φrot (Ecoll).

are labeled as CFD (1), CFD (2), and CFD (3), respectively, in Fig. 4.7.

As is evident, the rotational collision number profiles predicted by Parker’s model

in CFD and Boyd’s φrot (Ecoll) model in DSMC cannot be brought into agreement,

even for a simple gas. None of the proposed average temperatures are found to be

capable of replicating the complex relationship between the total collision energy

and rotational collision number exhibited by Boyd’s φrot (Ecoll) model. The use of

different average temperatures yields a negligible effect on the rotational temperature

relaxation process, which is why there is only one CFD profile shown in Fig. 4.6.

Because one of the aims of the current work is to advance the capability of the

MPC hybrid method to include mixtures of chemical species, isothermal heat bath

simulations of 50% N2/50% N (by mole) are also performed. For the sake of clarity,

the characteristic rotational relaxation time of species i, which results from that

species’ molecules undergoing relaxation events with all other atoms and molecules

in the mixture, is calculated as
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τrot,i =

[
NS∑
j=1

νij
Zrot,ij

]−1
, (4.38)

where νij is the collision rate between particles of species i and particles of species

j. Note that in Eq. 4.38, the possibility of having Zrot vary with different collision

partners has been included for generality. This definition is derived directly from

writing Eq. 4.27 for each species in a mixture:

dErot,i
dt

=
E∗rot,i − Erot,i

τrot,i
= ρi (cv,rot)i (Ttrans − Trot)

NS∑
j=1

1

Zrot,ijτc,ij
. (4.39)

The mixture average rotational relaxation time can then be given by

τrot =

NS∑
i=1

i=mol.

xi

NS∑
i=1

i=mol.

xi/τrot,i

, (4.40)

which is of the same form suggested by Gnoffo, et al. [29] for the vibrational energy

mode. Only polyatomic species are included in the summations in Eq. 4.40. The

mixture average rotational collision number is then calculated by dividing this overall

rotational relaxation time by the mean collision time of polyatomic species only. Thus,

the collision numbers that are plotted in the following figures showing the rotational

relaxation process of a gas mixture are calculated as

Zrot =

NS∑
i=1

i=mol.

xi/τc,i

NS∑
i=1

i=mol.

xi/τrot,i

. (4.41)

In Fig. 4.8, the rotational temperature relaxation predicted by Parker’s model is

compared to that predicted by Boyd’s φrot (Ecoll) model for a mixture of 50% N2/50%

N (by mole). In the simple gas case, the use of an average temperature in Parker’s

model based on the degrees of freedom of the relative translational energy and the
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Figure 4.8: Rotational temperature relaxation of 50% N2/50% N as predicted by
CFD and DSMC, using φrot (Ecoll).

total number of rotational degrees of freedom yields the best agreement with DSMC.

Therefore, Eq. 4.36 is used to calculate the relevant temperature for N2-N2 collisions,

and Eq. 4.35 is used to calculate the relevant temperature for N2-N collisions. The

maximum error is approximately 207K, or 3.7% of the rotational temperature at that

time (5,534K), so the level of agreement between CFD and DSMC that was seen in

the simple gas is maintained for the gas mixture. Again, large errors in the rotational

collision number profiles are exhibited, as seen in Fig. 4.9.

With the objective of reducing these errors, Boyd’s original model, which assumes

that the probability of translational-rotational energy exchange is a function of the

relative translational energy only, is revisited. Again, isothermal heat bath simula-

tions of N2 are performed in order to verify consistency with Parker’s model in CFD.

The rotational temperature relaxation processes are shown in Fig. 4.10, along with

the theoretical result as found by integrating Eq. 4.27. In this case, the maximum

error has been reduced to approximately 29K, or 2.6% of the CFD rotational tem-
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Figure 4.9: Rotational collision number profiles of 50% N2/50% N as predicted by
CFD and DSMC, using φrot (Ecoll).

perature at that time (1,108K). In addition, the rotational collision number profiles

predicted by DSMC and CFD are in much better agreement, as shown in Fig. 4.11,

because the relevant temperature in Parker’s model is the translational temperature.

In order to verify that this level of agreement is maintained for mixtures of chem-

ical species, isothermal heat bath simulations of 50% N2/50% N (by mole) are also

performed. Comparisons of Parker’s model in CFD and Boyd’s φrot (Erel) model

in DSMC are shown in terms of the rotational temperature and collision number

in Figs. 4.12 and 4.13, respectively. Again, the theoretical rotational temperature

relaxation process according to Eq. 4.27 is plotted alongside the CFD and DSMC re-

sults, and all are in excellent agreement. The maximum error between the CFD and

DSMC results in this case is approximately 33K, which is 0.4% of the CFD rotational

temperature at that time (9,340K).

Because of the improved consistency achieved in these latter results, all subsequent

hybrid simulations in which rotational nonequilibrium effects are present employ
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Figure 4.10: Rotational temperature relaxation of N2 as predicted by CFD and
DSMC, using φrot (Erel).
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Figure 4.11: Rotational collision number profiles of N2 as predicted by CFD and
DSMC, using φrot (Erel).
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Figure 4.12: Rotational temperature relaxation of 50% N2/50% N as predicted by
CFD and DSMC, using φrot (Erel).
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Figure 4.13: Rotational collision number profiles of 50% N2/50% N as predicted by
CFD and DSMC, using φrot (Erel).
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Boyd’s model in particle domains, where the probability of rotational-translational

energy exchange is assumed to be a function of the relative translational energy only.

Such a model will provide better agreement with CFD at the hybrid interfaces in

terms of the macroscopic rotational temperature and rotational collision number,

and will alleviate concerns about inconsistency between the translational-rotational

energy exchange models. This is important not only in its own right, but also when

moving forward to flows with more complex physics in the future.

In order to simulate general gas mixtures in which several species may be in ro-

tational nonequilibrium and equilibrate at different rates, the particle selection pro-

cedure proposed by Zhang and Schwartzentruber [92] is implemented in MONACO.

This procedure is equivalent to that proposed by Haas, et al. [33], but is simpler to

implement and is more recognizable as playing the same role for the particle selec-

tion methodology that Eq. 4.31 plays for the pair selection methodology. As detailed

in Ref. [92], each individual particle in a collision pair is sequentially examined to

determine whether or not a translational-rotational energy exchange event occurs.

Both particles have an equal probability of being examined first, which is important

because double relaxation is prohibited. In other words, if the first particle is deter-

mined to undergo rotational energy relaxation, then the second particle is not even

considered. The first particle is accepted to relax with probability given by

φrot,1 =
1

Zcont
rot,1

(
1 +

ζrot,1
5− 2ω12

)
. (4.42)

Similarities between Eq. 4.31 and Eq. 4.42 are evident. In the case of Eq. 4.42,

however, the subscripts correspond to the first and second particles in a colliding

pair rather than the species numbers. Using the acceptance-rejection method, if this

first particle is chosen to undergo a rotational energy relaxation event, the Borgnakke-

Larsen internal energy exchange model is employed to redistribute the relative transla-

tional energy between colliding particles and the rotational energy of the first particle
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only. If the first particle is not chosen, the second particle is accepted to relax with

probability given by

φrot,2 =
1

Zcont
rot,2

(
1 +

ζrot,2
5− 2ω12

)(
1

1− φrot,1

)
, (4.43)

which is the conditional probability given that the first particle was not chosen to un-

dergo rotational relaxation. If the second particle is chosen to be examined first, then

Eq. 4.42 and Eq. 4.43 are also used in sequence, but with the subscripts exchanged.

The particle and pair selection methodologies are verified to yield the same relax-

ation rates for the isothermal heat bath simulations of N2 and the mixture of 50%

N2/50% N (by mole) that were already presented. To verify that the particle selection

methodology is consistent with Parker’s model in CFD for a mixture of species that

relax independently of one another, the rotational relaxation of an 80% N2/20% O2

(by mole) mixture is simulated under the same initial conditions that were specified

for the previous heat bath simulations. Figure 4.14 illustrates this relaxation process

as simulated using CFD and DSMC. Both profiles are in excellent agreement with

each other, exhibiting a maximum rotational temperature difference of approximately

26K, which is 1.4% of the CFD rotational temperature at that time (1,913K). For

reference, the theoretical rotational relaxation profile is also shown in Fig. 4.14. The

agreement between the rotational collision numbers plotted in Fig. 4.15 reiterates

that the particle selection methodology has been implemented correctly and yields

DSMC results that are consistent with CFD.

4.2.2 Translational-Vibrational Energy Exchange

Consistent simulation of translational-vibrational energy exchange in CFD and

DSMC for simple gases was previously investigated by Deschenes and Boyd [21].

Therefore, this section provides a review of these models as they apply to simple

gases, and a discussion of how they are extended to mixtures of chemical species. As
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Figure 4.14: Rotational temperature relaxation of 80% N2/20% O2 as predicted by
CFD and DSMC, using φrot (Erel) and the particle selection methodol-
ogy.
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was the case for rotational nonequilibrium, vibrational excitation in CFD is simulated

by solving a separate vibrational energy equation along with the standard Navier-

Stokes conservation equations. The source term accounting for the exchange of energy

between the vibrational and translational modes is based on the theory presented

by Landau and Teller [44]. Although developed independently, the Landau-Teller

equation, as given by

dEvib
dt

=
E∗vib − Evib

τvib
, (4.44)

is of the exact same form as Jeans’ equation [42] given by Eq. 4.27. For a gas mixture

comprised of NS species, this source term is written as

Strans−vib =
NS∑
i=1

ρi
e∗vib,i − evib,i

τvib,i
. (4.45)

The procedure for calculating τvib,i such that contributions from all collision classes

are included is given later in this section. Unlike the rotational energy mode, where

a constant number of degrees of freedom can be assumed for all temperatures ex-

cept cryogenic, the number of degrees of freedom in the vibrational energy mode is

temperature-dependent. For a simple harmonic oscillator, the number of vibrational

degrees of freedom is calculated as

ζvib (Tvib) =
2θvib/Tvib

exp [θvib/Tvib]− 1
, (4.46)

where Tvib is the vibrational temperature and θvib is the characteristic temperature of

the vibrational energy mode. For the molecular species considered in this dissertation,

characteristic vibrational temperatures are given in Appendix A. Because of this

nonlinear relationship between the degrees of freedom and temperature, Eq. 4.31

cannot be used to convert between the continuum and particle definitions of the

vibrational collision number as was done for the rotational energy mode. Instead,

Gimelshein, et al. [28] proposed the following relationship between Zcont
vib and Zpart

vib :
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Zpart
vib,ij = Zcont

vib,ij

[
1 +

[ζvib (Ttrans)]
2 exp [θvib/Ttrans]

2 (5− 2ωij)

]−1
. (4.47)

Using the theory developed by Landau and Teller and available experimental

data up to temperatures of approximately 8,000K, Millikan and White [51] devel-

oped curve-fits to calculate vibrational relaxation times as a function of pressure and

translational temperature. These relaxation times are used in the continuum module

of the MPC simulations and in full CFD simulations presented in this dissertation,

and are calculated as

τMW
vib,ij =

1

p[atm]
exp

[
Aij

(
T
−1/3
trans −Bij

)
− 18.42

]
, (4.48)

where

Aij = 1.16 · 10−3θ
4/3
vib

√
M∗

ij (4.49)

and

Bij = 0.015
(
M∗

ij

)1/4
. (4.50)

In the previous equations, M∗ is the reduced mass, but calculated with molecu-

lar weights rather than particle masses. When temperatures exceed approximately

5,000K, the vibrational relaxation times predicted by Millikan and White begin to

under predict experimental data. In order to decrease the rate of vibrational relax-

ation at high temperatures, Park proposed the following additive correction [58] to

Eq. 4.48:

τPi =
1

ni (5.81 · 10−21)
√

8kBTtrans/ (πmi)
. (4.51)

Similar to Eq. 4.38 for the rotational energy mode, the overall vibrational relax-

ation time of a given species i to be used in Eq. 4.45 is then given by
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τvib,i =

[
NS∑
j=1

1

τMW
vib,ij + τPi

]−1
. (4.52)

The manner in which the contributions of other species are included when de-

termining the vibrational relaxation time of an individual species differs from those

proposed by other researchers, such as in Refs. [29] and [45]. Here, Park’s correction

term is added to the relaxation time associated with each collision class and then an

overall relaxation time is calculated. Other approaches have been proposed in which

a “mixture rule” is used to calculate the overall relaxation time of a given species and

only then is Park’s correction term added. However, as will be illustrated shortly, the

current procedure yields vibrational relaxation times that are consistent with DSMC.

In addition, this procedure parallels that used to calculate rotational relaxation times

for a gas mixture.

To be consistent with the Millikan and White curve-fit data in CFD, Boyd pro-

posed a translational-vibrational energy exchange model for DSMC by assuming the

probability of a vibrationally inelastic collision is a function of the relative veloc-

ity between colliding particles [13]. However, adiabatic heat bath simulations of N2

performed by Deschenes and Boyd [21] showed large errors between the vibrational

relaxation process predicted by the Millikan and White curve-fit data and that of

Boyd’s DSMC model. Such errors are attributed to mathematical approximations

that were required to derive the DSMC model. As a result of these discrepancies,

Deschenes, et al. [21] proposed using a cell-based pressure and translational temper-

ature in DSMC to calculate the vibrational relaxation time for each collision class

according to Millikan and White curve-fit data. The sum of this relaxation time and

Park’s correction factor for the collision partner undergoing vibrational relaxation is

then converted to a particle-based vibrational relaxation time with the Gimelshein

correction factor as follows:
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τ partvib,ij =
(
τMW
vib,ij + τPi

) [
1 +

[ζvib (Ttrans)]
2 exp [θvib/Ttrans]

2 (5− 2ωij)

]−1
. (4.53)

The probability that a particle of species i will undergo a translational-vibrational

energy exchange event by colliding with a particle of species j is then given by

〈φvib,ij〉 =
1

τ partvib,ijνij
, (4.54)

and this is used instead of a collision-dependent probability. This model is shown to

give good agreement with CFD when used in DSMC simulations of adiabatic heat

baths of N2. In MONACO, a particle selection methodology that allows for double

relaxation is employed to determine whether or not colliding particles undergo a

translational-vibrational energy exchange event, in accordance with the procedure

proposed by Bergemann and Boyd [4].

For completeness, just as was done for verification of the translational-rotational

energy exchange models, isothermal heat bath simulations of N2 are again performed,

assuming that the translational and rotational energy modes are in equilibrium with

one another at 10,000K. The relaxation process that occurs as the vibrational tem-

perature is equilibrated from its initial value of 1,000K is shown in Fig. 4.16. The

CFD and DSMC results are in excellent agreement; the maximum error is calculated

to be 25K, which is approximately 0.3% of the CFD vibrational temperature at that

time (7,836K). Comparison of these results and Fig. 4.10 illustrates the order-of-

magnitude difference between the relaxation rates exhibited by the rotational and

vibrational energy modes. In addition, isothermal heat bath simulations of two gas

mixtures that are considered in this dissertation are also performed to verify consis-

tency for gas mixtures. The results for the 50% N2/50% N (by mole) mixture are

plotted in Fig. 4.17, where the continuum and particle models are shown to yield

consistent results. In this case, the maximum error is calculated to be 32K, which is

approximately 0.3% of the CFD vibrational temperature at that time (9,178K). Like-
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Figure 4.16: Vibrational temperature relaxation of N2 as predicted by CFD and
DSMC.

wise, the vibrational relaxation processes predicted by CFD and DSMC for an 80%

N2/20% O2 (by mole) mixture are in excellent agreement, as shown in Fig. 4.18. The

largest difference between CFD and DSMC is calculated to be 31K, which is approxi-

mately 1.2% of the CFD vibrational temperature at that time (2,629K). Theoretical

results obtained by integrating Eq. 4.44 are also shown in Figs. 4.16 and 4.17, and

lend confidence to the numerical results. Theoretical results are not included for

the 80% N2/20% O2 mixture results because there is not an analytical result for the

vibrational temperature in this case.

4.3 Interim Conclusions

In this chapter, the physical models used for simulating transport and thermal

relaxation processes in CFD, DSMC, and the MPC method were discussed. Most

importantly, these models were verified to be consistent in near-equilibrium flows of

both simple gases and mixtures of chemical species. First, a review of the VHS col-
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Figure 4.17: Vibrational temperature relaxation of 50% N2/50% N as predicted by
CFD and DSMC.
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Figure 4.18: Vibrational temperature relaxation of 80% N2/20% O2 as predicted by
CFD and DSMC.
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lision model used in DSMC, and the explicit calculations of viscosity and thermal

conductivities required in CFD, were presented as they apply to simple gases. For

the simulation of gas mixtures using CFD, the explicit calculation of the diffusion flux

was discussed, along with the Gupta Mixing Rule, which is used to approximate the

mixture viscosity and thermal conductivities. An in-depth discussion was presented

regarding how VHS collision model parameters should be determined so as to give

viscosity predictions that are consistent with the Gupta Mixing Rule. A simple ap-

proach was proposed and shown through DSMC simulations of various Couette flows

to yield consistent viscosity results for a number of simple gases and gas mixtures.

However, this simple approach failed when a mixture comprised of species with very

different molecular weights was considered; this was confirmed through comparisons

with a more rigorous approach that employs the Nelder-Mead simplex algorithm.

As such, this more rigorous approach is recommended for calculating VHS and VSS

collision model parameters in the future.

Models for the consistent simulation of thermal nonequilibrium effects were also

discussed. Previous MPC simulations employed a DSMC model for translational-

rotational energy exchange in which the probability of two colliding particles expe-

riencing an inelastic collision was assumed to be dependent on the total collision

energy. To achieve utmost consistency with Parker’s model in CFD, however, it was

shown that this probability should be a function of the relative collision energy only.

This was verified through isothermal heat bath simulations of N2 and a mixture of

N2 and N . Extension of the MPC method to accurately simulate mixtures of poly-

atomic species in rotational nonequilibrium, and to allow these constituent species

to equilibrate independently of one another, was also discussed. The pair selection

procedure for determining which colliding pairs will experience an inelastic collision

was replaced with a more versatile particle selection methodology. Again, subsequent

isothermal heat bath simulations of a mixture of N2 and O2 using DSMC and CFD
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were verified to be consistent. Translational-vibrational energy exchange models and

their associated “mixture rules” were also verified to be consistent through isothermal

heat bath simulations of the aforementioned simple gas and gas mixtures.
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CHAPTER V

A Comprehensive Assessment of the MPC Method

Prior to extending the capabilities of the MPC hybrid method, a detailed and

consistent evaluation of its physical accuracy relative to a full DSMC simulation

is performed. Previously reported comparisons between the MPC method and full

DSMC simulation results were made along streamlines and other flow field extraction

lines only, leading to accuracy verification that is quite limited in scope. A preferred

approach for evaluating the errors incurred by employing the MPC method rather

than performing a full DSMC simulation is to compare macroscopic fluid properties

on a cell-by-cell basis. Such comparisons are presented and discussed here for a

transitional, hypersonic flow over a two-dimensional cylinder. This provides a more

comprehensive understanding of both the location and magnitude of errors that are

occurring in the flow field, and therefore, more insight into what challenges remain

unresolved.

As a result of this detailed accuracy assessment, several improvements are made to

the MPC method that was described in Chapter III. These improvements specifically

address the consistent treatment of the outflow boundary conditions imposed in the

MPC and full DSMC simulations, and the consistent exchange of information across

the interfaces that separate particle and continuum domains in a hybrid simulation.

New simulation results are generated and evaluated in terms of physical accuracy.
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Further investigation into the potential causes of remaining errors, and the level of

error that should be expected in these simulations is also presented. In addition,

the MPC hybrid method is also compared to full DSMC and full CFD in terms of

computational performance metrics, including memory usage requirements that are

reliably obtained using commercial profiling software.

5.1 A Detailed Accuracy Evaluation

As described in Chapter III, the MPC method employs two computational mesh

layers by numerically solving the Navier-Stokes equations on a coarse mesh in the

continuum domains, and by moving and colliding simulator particles and sampling

on a fine mesh in particle domains. Because the particle mesh is merely a refined

version of the continuum mesh, a direct comparison between MPC simulation results

and those from full DSMC is obtained in a straightforward manner by mapping the

CFD solution on to the fine mesh in the continuum domains of the flow field. For

example, consider the continuum cell C1, which is comprised of four particle cells after

refinement of the original CFD mesh, as illustrated in Fig. 5.1. If cell C1 is labeled

as being part of the continuum domain in a hybrid simulation, and has therefore

been refined only to eliminate hanging nodes in the computational mesh, the final

MPC hybrid solution is constant across this cell. The solution can then be copied

to each of the constituent particle cells without interpolation or loss of accuracy. By

repeating this for all cells in the continuum domains of the hybrid simulation, these

results can be compared to the full DSMC simulation results on a cell-by-cell basis

without confining the MPC method to using the same mesh as that used in the full

DSMC simulation. Although this type of comparison is usually forgone for a global

mathematical norm, such a detailed accuracy evaluation is critical while developing

a new numerical technique.

Using this procedure, a detailed accuracy evaluation of the MPC method is per-
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Figure 5.1: Illustration of continuum cell and constituent particle cells.

formed by simulating a Mach 12 flow of N2 over a two-dimensional cylinder at a global

Knudsen number of 0.01. This case was previously simulated using the MPC hybrid

method in Ref. [22]. Although excitation of the vibrational energy mode is neglected

in this simulation, rotational energy nonequilibrium is allowed. The global Knudsen

number is based on the freestream VHS mean free path so that the freestream density

is 7.752× 10−5kg/m3. The freestream velocity is 3,608m/s, the freestream tempera-

ture is 217.45K, and an isothermal wall boundary condition is used with a specified

temperature of 1,000K. In the full DSMC simulation, a constant numerical weight of

3× 1012 is required in order to maintain a minimum of 20 particles per cell through-

out the computational domain. However, reduced cell-based numerical weights are

used near the cylinder surface so that a larger number of particles collide with the

cylinder, thus reducing the statistical scatter in the surface properties. This is espe-

cially problematic in the low-density wake. In order to make consistent comparisons

of computational requirements and to ensure that the same level of statistical scatter

is present in both simulations, these same cell-based weights are used in the hybrid

simulation, and sampling of particle properties occurs over the same number of time

steps in both simulations.

A constant time step of 1 × 10−8s is used in the full DSMC simulation and in

particle regions of the hybrid simulation. This is, at most, one-third of the local mean
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collision time, and a local CFL number is calculated in each particle cell to verify that

no simulator particle traverses more than one cell in a given time step. The maximum

time step used in the continuum regions of the hybrid simulation is ten times larger

than that in the particle regions. Subcells are used in the full DSMC simulation and

in the particle domains of the MPC simulation, mitigating any shortcomings of the

gradient-based mesh refinement procedure described in Section 3.3. In addition to

verifying that these numerical parameters are aligned with the “best practices” of

the DSMC method, consistent physical models are used to achieve the best possible

agreement between MPC and full DSMC results. These models were detailed in

Chapter IV. Finally, as was commonplace in previous MPC simulations, DSMC is

forced to be used within 5mm of the cylinder surface in order to expand the particle

regions automatically identified by the continuum breakdown parameters described

in Chapter III. This additional requirement will be eliminated upon development of

a new rotational nonequilibrium parameter that will be the focus of Chapter VI.

The relative errors between MPC and full DSMC results for this case are calculated

as

ε =
QMPC

QDSMC

− 1, (5.1)

where Q represents relevant macroscopic properties. As illustrated by the error con-

tours in Figs. 5.2 through 5.5, although the majority of the flow field is in excellent

agreement with full DSMC, there remain localized regions of errors in excess of the

aforementioned goal of ±5%. The labels in Fig. 5.2 indicate that DSMC is used

in the region surrounding the bow shock wave, and in the region surrounding the

boundary layer and low-density wake; CFD is used in the remainder of the compu-

tational domain. Although these labels are not included in subsequent plots of flow

field properties, the regions where DSMC and CFD are employed can be inferred by

comparison with Fig. 5.2. Due to the small velocity magnitudes near the stagnation
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point and in the wake, even small discrepancies between MPC and full DSMC appear

as sizable errors. Therefore, it is not surprising to see such large errors between the

velocity magnitudes in these regions. In addition, because of the very steep flow field

gradients in the bow shock wave, even small differences in the location of the shock

may lead to large relative errors. The disagreement between the rotational tempera-

tures predicted by the MPC method and full DSMC in the far wake is unexpected.

However, although this disagreement appears extensive, the errors in this region do

not exceed 6%. The disagreement exhibited in both velocity magnitude and mass

density along the outflow boundary near the axis of symmetry is also surprising, as

this should be a relatively benign area of the flow field. The full ranges of errors

for various macroscopic fluid properties are given under the “Previous MPC Results”

heading in Table 5.1. For comparison, the ranges of errors calculated from the results

of a full CFD simulation are also included in this table. In addition to the error

defined in Eq. 5.1, the relative error measured in the L2 norm is given by

(ε)L2
=
||Q−QDSMC ||L2

||QDSMC ||L2

, (5.2)

where the L2 norm is defined as

||Q||L2 =

√√√√NC∑
i=1

Q2
i . (5.3)

In Eq. 5.3, NC is the total number of computational cells. This measure of error

provides a single, average value that is indicative of the overall agreement between two

flow field solutions. For various macroscopic fluid properties of interest, this relative

error is calculated and provided in Table 5.2. Again, the relative error measured in

the L2 norm is also calculated for the full CFD solution.

Before exploring other causes for the higher than anticipated errors, the possi-

bility of shock unsteadiness is first eliminated in both the full DSMC solution and
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Figure 5.2: Contours of translational temperature errors of previous MPC results
relative to full DSMC for the Mach 12, Kn∞ 0.01 flow of N2 over a two-
dimensional cylinder; hybrid interfaces are shown as black lines.
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Table 5.1: Ranges of previous MPC and CFD errors relative to full DSMC for the
Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder.

Property Previous MPC Results CFD Results
Ttrans -0.43 ≤ ε ≤ 0.07 -0.72 ≤ ε ≤ 0.81
Trot -0.34 ≤ ε ≤ 0.06 -0.71 ≤ ε ≤ 0.13
ρN2 -0.38 ≤ ε ≤ 0.07 -0.08 ≤ ε ≤ 0.66

Table 5.2: Relative errors of previous MPC and CFD results measured in the L2 norm
for the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder.

Property Previous MPC Results CFD Results
Ttrans 0.012 0.037
Trot 0.015 0.072
|V | 0.006 0.034
ρN2 0.013 0.088

the CFD solution used to initialize the MPC simulation. In addition, because of the

empirical nature of the continuum breakdown parameters, it is also prudent to verify

that the hybrid interfaces are placed in regions of near-continuum. Velocity and rota-

tional energy samples are collected from a full DSMC simulation at the two locations

indicated by letters A and B in Fig. 5.2. The particle cell labeled A lies adjacent

to the pre-shock hybrid interface, and cell B lies adjacent to the post-shock hybrid

interface. The probability distribution functions, as derived from DSMC simulator

particle samples collected in each cell, are shown in Figs. 5.6 and 5.7, respectively.

At both locations, the sampled VDFs and rotational EDFs are in excellent agree-

ment with the calculated equilibrium distributions. Therefore, it is concluded that

the hybrid interfaces are conservatively placed in the upper shock wave region. In

addition, the number of DSMC boundary/reservoir cells is also increased from two to

ten with negligible change to the solution. With these potential sources of error elim-

inated, the assumptions of certain boundary conditions, specifically, those imposed

along the computational domain outflow and the hybrid interfaces, are examined for

consistency.
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Figure 5.6: Comparisons of probability distribution functions predicted by full DSMC
and equilibrium theory in cell A of Fig. 5.2.
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5.2 Improved Consistency of Boundary Conditions

To enable valid comparisons between results obtained using the MPC method and

those obtained using full DSMC, every effort must be made to maintain as much con-

sistency between simulation techniques as possible. This not only points towards the

use of consistent physical models, as was the focus of Chapter IV, but the consistent

enforcement of numerical boundary conditions along the boundaries of the computa-

tional domain and hybrid interfaces. Because of the fundamental differences between

CFD and DSMC, this is not always trivial.

5.2.1 Supersonic Outflow

Along the stagnation streamline, the MPC method is able to accurately predict the

location of the bow shock wave, as seen by comparing the translational temperature

profiles in Fig. 5.8. The shock wave is at its maximum strength when it intersects the

stagnation streamline, which means that the limitations of the continuum assumptions

of the Navier-Stokes equations are especially pronounced in this region of the flow

field. This might also suggest an increased level of difficulty in obtaining an accurate

solution with the MPC method. However, in the forebody flow, the shock wave

is stabilized by the two-dimensional cylinder. The high density in this region and

resulting high rate of collisions among gas molecules also enables the post-shock flow

to equilibrate rapidly. As the flow expands after accommodating the body, the bow

shock curves due to its interaction with the expansion waves formed in the wake. The

interaction of the shock wave and expansion waves results in the upper shock wave

region being a challenge for the MPC method to simulate accurately.

As the path of the bow shock wave is traced from the axis of symmetry upward,

the MPC method predicts a shock wave location that is further downstream of that

predicted by the full DSMC simulation. This shift in shock wave location is shown

in Fig. 5.9, where the translational temperature profiles have been extracted along
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Figure 5.8: Translational temperature along the stagnation streamline of the Mach
12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder.

a horizontal line at y = 0.13m. Differences between the bow shock wave locations

predicted by the MPC method and full DSMC, which lead to the large errors in the

upper shock wave regions of Figs. 5.2 through 5.5, along with those errors observed

along the outflow boundary near the axis of symmetry, indicate that the inconsis-

tent treatment of the outflow boundary may be more problematic than previously

assumed.

Prior to this work, the full DSMC simulations used for comparison with MPC

results imposed a vacuum outflow boundary condition. Such a condition stipulates

that any simulator particles that encounter the outflow boundary be removed from

the simulation and no new particles be generated. If the average velocity magnitude

of outgoing particles is sufficiently high, this is a valid assumption because the prob-

ability of particles entering the domain through the exit is low. Simulator particles

that are generated along an inflow or outflow domain are sampled from a biased

Maxwellian VDF. In order to truncate the low-probability tails of this distribution,
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Figure 5.9: Translational temperature along the y = 0.13m extraction line of the
Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder.

samples are limited to

un − 3β ≤ ci ≤ un + 3β,

where un is the directed velocity of the gas aligned with an inward-pointing normal,

β is the most probable particle speed,
√

2RTtrans, and ci is a given velocity sample.

Therefore, if the directed velocity aligned with an inward-pointing normal is greater

than −3β, as depicted in Fig. 5.10, then there should be particles entering the domain

along the outflow boundary because positive velocities are then included in the trun-

cated distribution. Even though there are particles entering the outflow, this is not

equivalent to a subsonic boundary condition where characteristic information must

be specified at the outflow boundary. The flow is supersonic along the entire outflow

boundary, as seen by the contours of Mach number in Fig. 5.11.

For the case presented here, the Mach number of the flow near the axis of symme-

try is low enough such that there should be simulator particles that enter the outflow
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boundary. Use of a vacuum outflow boundary condition is even more suspect when

considering the normal velocity along the entire outflow boundary is lower than the

Mach number would suggest. In addition to being physically questionable, neglecting

the particles that enter through the outflow is inconsistent with the CFD module of

the MPC method, which employs a zeroth-order extrapolation of macroscopic prop-

erties along the outflow boundary. Intuitively, incorrect simulation of the outflow as

a vacuum in DSMC would have the effect of moving the shock wave downstream of

that predicted by CFD, as shown in Fig. 5.9. Although the shock wave is located

even further downstream in the MPC results, this may be due to compounding ef-

fects of initializing the hybrid simulation with the CFD solution and then correcting

the nonequilibrium regions with a DSMC module that assumes a vacuum outflow

boundary condition. However, the greatest improvement resulting from the use of a

consistent outflow boundary condition in DSMC is expected to be seen near the axis

of symmetry where the Mach number is lowest.

To predict the flux of particles entering the domain through the outflow bound-

ary, cell-based averages of particle properties, including translational temperature,

directed velocity, and number density, are calculated. Cell-based translational tem-

peratures are already calculated throughout the flow field for use in the translational-

vibrational energy exchange model described in Section 4.2.2. Using these cell-based

averages along the domain outflow, the number of new particles entering the domain

is then given by

Γs =
∆tAns
Wc

√
kBTtrans

2πms

[
sn
√
π (1− Erf (−sn)) + e−s

2
n

]
. (5.4)

In Eq. 5.4, ∆t is the time step, A is the area of the cell face along the outflow

boundary, ns is the number density of species s, Wc is the numerical weight of each

simulator particle, kB is the Boltzmann constant, ms is the particle mass of species

s, sn is the ratio of un and the most probable particle speed, and Erf() is the error
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function. Once the number of new particles is known, properties are sampled from a

biased Maxwellian VDF and Boltzmann internal EDFs, again defined using cell-based

averages of macroscopic properties along the outflow boundary.

5.2.2 Hybrid Interfaces

A further improvement made to the MPC hybrid method concerns the bound-

ary conditions along the hybrid interfaces. The consistent transfer of information

across the hybrid interfaces is achieved not only through the placement of the hybrid

interfaces and the use of consistent physical models, but also the mechanics of how in-

formation is communicated between the continuum and particle domains. In an MPC

simulation, the particles entering the domain along the hybrid interfaces should be

indistinguishable from those that would have crossed an imaginary interface placed

in the same position in a full DSMC simulation. Even when the hybrid interfaces are

accurately positioned and consistent physical models are used, however, because the

particle mesh is more refined than the continuum mesh, there remain subtle differ-

ences between a full DSMC simulation and an MPC simulation.

For instance, compare Fig. 5.12(a), which shows the mesh along a hybrid interface

that intersects the stagnation streamline, to Fig. 5.12(b), which gives a view of the

mesh in the upper shock wave region where the aforementioned errors are particularly

pronounced. In both figures, the hybrid interface, shown as the black line, is aligned

with the shock wave. When new particles are generated in the DSMC boundary cells,

the macroscopic properties used to define the Chapman-Enskog VDF from which

their velocities are sampled are taken from the larger, continuum cells. In addition,

internal energies are sampled from Boltzmann distributions defined by macroscopic

temperatures from these cells. Inherent to this procedure is the assumption that these

macroscopic properties do not vary substantially across the continuum cells, even if

they were comprised of smaller particle cells as in a full DSMC simulation. This
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assumption is more acceptable near the axis of symmetry, where the streamtraces are

aligned with the flow field gradients and macroscopic properties are not expected to

vary as much in the vertical direction. However, this is not true in the upper shock

wave region, where, in addition to the gradients perpendicular to the bow shock, the

strength of the shock wave is decreasing with distance away from the cylinder due

to its interaction with the expanding flow in the wake. Therefore, in order to make

the manner in which new particles are generated along the hybrid interfaces more

consistent with full DSMC, the gradients of the flow in the DSMC boundary cells

must be considered.

In the case of a full DSMC simulation, macroscopic properties would be allowed

to vary over distances characterized by the more refined particle mesh layer. On the

continuum side of the hybrid interfaces, however, knowledge of the solution is limited

to constant macroscopic properties in each continuum cell and their corresponding

gradients. In order to improve the consistency of the particle generation procedure in

the MPC method relative to what would naturally occur in a full DSMC simulation,

macroscopic properties in the DSMC boundary cells are interpolated to the smaller

particle cells that comprise them in the refined mesh layer. Consider again the con-

tinuum cell shown in Fig. 5.1, which has been refined to include four particle cells.

Macroscopic properties known at C1 and their gradients centered around this point

can be used to linearly interpolate for properties at the center of each constituent

particle cell. For example, the mass density at P3 is calculated from

ρP3 = ρC1 + (xP3 − xC1)
∂ρC1

∂x
+ (yP3 − yC1)

∂ρC1

∂y
. (5.5)

Using the translational temperature, mass density, and velocity components cen-

tered at P3, velocities can then be assigned to newly generated particles using the

procedure outlined by Garcia and Alder [26]. In the case presented here, the rota-

tional temperature is also linearly interpolated for use in assigning rotational energies
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to new particles. The gradient of mass density is also employed to bias the probability

expression for determining the location of newly generated particles. For example,

the x location of a new particle generated in cell P3 is calculated according to the

following probability, which is comprised of a uniform distribution (first term) and

that imposed by the density gradient (second term):

P (x)dx =

[
1

d1
+
∂ρC1

∂x

1

ρP3d1
(x− xP3)

]
dx. (5.6)

The dimensions of the particle cell P3 are labeled in Fig. 5.1, and it should be

noted that when the density gradient is zero, the uniform distribution is recovered.

This probability is the same as referenced by Wijesinghe [89]. As is standard practice,

the cumulative distribution function is then obtained by integrating Eq. 5.6 from one

side of cell P3, which is at x = 0, to the x-coordinate of a candidate particle location,

xi. This cumulative distribution function is given by

F (xi) =
xi
d1

+
∂ρC1

∂x

1

ρP3d1

(xi
2
− xP3

)
xi. (5.7)

Upon generating a random fraction, Rf , the x-coordinate of a newly generated

simulator particle is found to be

xi =
d1
γx

{
γx
2
− 1 +

[(
1− γx

2

)2
+ 2γxRf

]1/2}
, (5.8)

where

γx =
∂ρC1

∂x

d1
ρP3

. (5.9)

The y-coordinate is calculated in a similar manner. With this procedure, and the

example geometry shown in Fig. 5.1, if the gradient of density is positive in the x

direction, then ρP3 ≤ ρC1 and ρC1 ≤ ρP4. Therefore, more particles are generated in

particle cell P4 than in particle cell P3, and a newly generated particle is more likely

to be placed on the righthand side of particle cell P3 than on the lefthand side.
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Table 5.3: Ranges of current MPC and independent DSMC errors relative to full
DSMC for the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional
cylinder.

Property Current MPC Results Other DSMC Results
Ttrans -0.26 ≤ ε ≤ 0.07 -0.04 ≤ ε ≤ 0.05
Trot -0.19 ≤ ε ≤ 0.06 -0.03 ≤ ε ≤ 0.03
ρN2 -0.23 ≤ ε ≤ 0.03 -0.02 ≤ ε ≤ 0.02

5.3 Baseline Accuracy and Computational Performance

With these improvements made to the MPC hybrid method and the DSMC code

to which hybrid results are compared, the test case presented earlier is repeated.

The error contours from this new simulation are presented in Figs. 5.13 through

5.16, and the numerical ranges are given under the “Current MPC Results” heading

in Table 5.3. Both the ranges of errors seen in this most recent simulation and

their extent in the upper shock region have been reduced substantially relative to

the previous results. The relative errors measured in the L2 norm have also been

reduced, as shown in Table 5.4. The region of excessive positive error in Trot near the

outflow boundary remains, despite the improved consistency of the outflow boundary

conditions and hybrid interfaces. Again, the relative errors in this region do not

exceed 6%. The improved agreement in the upper shock region is due in large part

to the improved consistency of the coupling procedures along the hybrid interfaces,

whereas the use of consistent outflow boundary conditions reduced the errors along

the outflow boundary near the axis of symmetry, where the Mach number is lowest.

However, the level of accuracy achieved by the MPC method for this test case still

does not meet the original objective of allowing no more than ±5% error relative to

full DSMC. An investigation of these remaining errors is presented in the next section.

Inherent to the DSMC method is a certain level of statistical scatter resulting from

the use of a relatively small number of simulator particles to represent all molecules

that would be present in a real gas, and the finite number of samples that are collected
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Figure 5.13: Contours of translational temperature errors of the current MPC results
relative to full DSMC for the Mach 12, Kn∞ 0.01 flow of N2 over a
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Figure 5.14: Contours of rotational temperature errors of the current MPC results
relative to full DSMC for the Mach 12, Kn∞ 0.01 flow of N2 over a
two-dimensional cylinder; hybrid interfaces are shown as black lines.
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Table 5.4: Relative errors of current MPC and independent DSMC results measured
in the L2 norm for the Mach 12, Kn∞ 0.01 flow of N2 over a two-
dimensional cylinder.

Property Current MPC Results Other DSMC Results
Ttrans 0.009 0.002
Trot 0.013 0.002
|V | 0.005 0.001
ρN2 0.007 0.001

from which macroscopic averages may be calculated. Therefore, the errors plotted in

Figs. 5.13 through 5.16 should be contextualized by the level of statistical error that

can be expected in the given DSMC simulation. Quantification of this statistical error

is obtained by repeating the full DSMC simulation of the current test case, but with a

different sequence of random numbers. Comparison of the two full DSMC simulation

results yields the error contours plotted in Figs. 5.17 through 5.20. The numerical

ranges of these errors are also included in Table 5.3, and the relative errors measured

in the L2 norm are given in Table 5.4. Although the differences between the MPC

hybrid results and those obtained using DSMC cannot be explained by statistical

scatter alone, these results do suggest that the original goal of the MPC method to

maintain a physical accuracy of ±5% is too stringent to be met under what would be

considered standard simulation conditions.

Despite these flow field errors, the first priority of the MPC hybrid method has

always been the accurate prediction of surface properties. After all, these are the

simulation results that are most useful to designers of hypersonic vehicles as they

determine the requirements of the thermal protection system, vehicle structure, and

control surfaces. In a previous study of two-dimensional, blunt-body flow using the

MPC method, accurate simulation of the shock wave structure with DSMC was for-

gone because the resulting surface properties were found to be unaffected [67]. This,

in turn, led to a reduction in computational cost because the particle regions were

limited to the boundary layer and wake. Therefore, the fact that there remain re-
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Figure 5.17: Contours of translational temperature errors between two full DSMC
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Figure 5.18: Contours of rotational temperature errors between two full DSMC sim-
ulations of the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional
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Figure 5.19: Contours of velocity magnitude errors between two full DSMC simu-
lations of the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional
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gions of large error in the flow field may not be a critical detriment to the continued

development of the MPC hybrid method, as long as the surface properties retain an

acceptable level of accuracy. The surface properties that are calculated to evaluate

the physical accuracy of the MPC method include the surface pressure coefficient,

Cp, the heat transfer coefficient, Ch, and the shear stress coefficient, Cτ , which are

calculated as follows:

Cp =
p

1
2
ρ∞V∞

2 , (5.10)

Ch =
q

1
2
ρ∞V∞

3 , (5.11)

Cτ =
|τ |

1
2
ρ∞V∞

2 . (5.12)

The surface properties predicted by full CFD, full DSMC, and MPC hybrid sim-

ulations of this test case are plotted in Figs. 5.21 through 5.23, where an angular

position of 0◦ corresponds to the front stagnation point. Qualitatively, there is very

good agreement between MPC and full DSMC results. The profile of surface pres-

sure coefficient predicted by DSMC appears to be almost exactly reproduced by the

MPC method. The results obtained using CFD agree reasonably well with DSMC

and MPC until an angular position of approximately 80◦, after which point CFD over

predicts the surface pressure coefficient. As expected, Fig. 5.22 shows that the profile

of heat flux coefficient predicted by full CFD is everywhere greater than that given

by full DSMC. The continuum approach forces the temperature near the cylinder

wall to match the isothermal boundary condition, which leads to higher temperature

gradients and, in turn, larger heat fluxes. The MPC method seems to slightly under

predict the heat flux coefficient in the wake. Figure 5.23 illustrates that, because of

the no-slip condition enforced by CFD, the continuum prediction of the shear stress
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Figure 5.21: Surface pressure coefficient along the cylinder surface for the Mach 12,
Kn∞ 0.01 flow of N2 over a two-dimensional cylinder.

coefficient exceeds those of the full DSMC and hybrid simulations, starting at an

angular position of approximately 60◦. The size of the wake region is also predicted

to be larger in the continuum solution, as is evident by the sudden change in slope of

the shear stress coefficient profile, which is based on the absolute value of wall shear

stress. The MPC method is able to accurately reproduce the location of incipient

separation in the wake, which is predicted by DSMC to occur at an angular position

of approximately 163◦.

Like the flow field properties, however, a quantitative comparison of these surface

properties illustrates what are in some locations sizable differences between MPC

and full DSMC. The errors in the surface properties predicted by the MPC method,

calculated relative to the full DSMC results using Eq. 5.1, are plotted in Figs. 5.24

through 5.26. Again, so that these errors may be viewed in the proper context, the

errors between surface properties predicted by the two independent DSMC simula-
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Figure 5.22: Heat transfer coefficient along the cylinder surface for the Mach 12, Kn∞
0.01 flow of N2 over a two-dimensional cylinder.
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Figure 5.23: Shear stress coefficient along the cylinder surface for the Mach 12, Kn∞
0.01 flow of N2 over a two-dimensional cylinder.
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tions are also shown in these figures. Figure 5.24 indicates that the highest level of

accuracy that should be expected for the surface pressure coefficient is ±2%. The

MPC method is able to achieve this level of accuracy in the forebody and in the wake,

but predicts a systematically lower pressure coefficient between the angular positions

of 60◦ and 150◦. In the case of the heat transfer coefficient, the level of error between

the two independent DSMC simulations increases slightly for increasing angular po-

sition, as seen in Fig. 5.25. This is to be expected because there are fewer particles

colliding with the cylinder surface in the low-density wake than in the forebody. Also,

the level of statistical scatter is observed to be greater for the heat transfer coefficient

than for the surface pressure coefficient. This is also not surprising, as calculation

of the heat transfer coefficient requires higher-order moments of particle thermal ve-

locities. Like the surface pressure coefficient, the MPC method yields a systematic

underprediction of the heat transfer coefficient after an angular position of approxi-

mately 80◦. In Fig. 5.26, very large errors are seen between the shear stress coefficient

profiles predicted by the two independent DSMC simulations, and between the MPC

hybrid method and full DSMC simulation results. These surface property errors are

a direct result of the large velocity errors plotted in Figs. 5.15 and 5.19. Near the

stagnation point and in the wake, the directed velocity of the flow approaches zero,

leading to statistical scatter that is of the same order of magnitude as the sampled

average itself. This results in extremely large errors, whether considering full DSMC

or the MPC hybrid method. Possible causes for the increased level of error associated

with the MPC method relative to full DSMC will be discussed in the next section of

this chapter.

By limiting the use of the DSMC method to nonequilibrium regions of the flow

field, the MPC hybrid method achieves a solution for this test case at a reduced

computational cost. Whereas a full DSMC simulation requires approximately 28.5

million particles, the particle domains of the hybrid solution require approximately
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for the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder.
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Figure 5.26: Relative errors of shear stress coefficient along the cylinder surface for
the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional cylinder.

12.2 million particles. It should be stressed that the same cell-based numerical weights

are used in both the full DSMC and MPC simulations, and in both cases, particle

information is sampled for 100,000 time steps. If the computational cost of updating

the continuum regions of the flow field is assumed to be negligible compared to sim-

ulating the particle regions, and since the computational cost of a DSMC simulation

is directly proportional to the number of simulator particles, this results in an ideal

speedup factor of 2.34.

Simulation of this test case using DSMC requires approximately 34.7 hours of

computing time on 22 processors, which equates to a total computational cost of 763

hours. Using nearly the same number of particles per processor, the MPC hybrid

simulation requires approximately 31.2 hours of computing time on 10 processors, re-

sulting in a total computational cost of 312 hours. After taking into account the cost

of the initial CFD simulation obtained prior to the hybrid simulation, which requires

approximately 5.7 hours of computing time on four processors prior to convergence of
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the L2 norm, the actual speedup factor of the MPC simulation is 2.27. This is slightly

less than the ideal speedup factor. Even though the hybrid interfaces are automati-

cally locked after only 4,040 DSMC time steps, whereas the DSMC simulation must

run for 80,000 time steps before a steady state is reached and sampling commences,

the computational cost of updating the continuum domains is not negligible.

As suggested by the number of processors used to obtain the full CFD and full

DSMC simulation results, different parallel scaling metrics are important for each sim-

ulation technique. For example, Scalabrin [63] found that the LeMANS CFD solver

maintains nearly ideal parallel efficiency as long as each processor is assigned at least

10,000 cells. The MONACO DSMC code maintains nearly ideal parallel efficiency

when each processor is assigned at least one million simulator particles. Therefore,

in a case such as the one examined here, where a grid-independent CFD solution

requires approximately 41,100 cells, and more than 28 million particles are needed

for a full DSMC simulation, the number of processors required to efficiently obtain

a hybrid solution may be uncertain. As was suggested by Deschenes and Boyd [20],

the number of processors requested is such that the same number of DSMC simulator

particles per processor is used in both the MPC and full DSMC simulations. However,

what was not previously noted is that this may result in a reduced parallel efficiency

when updating the continuum domains of a hybrid simulation. For example, in the

MPC hybrid simulation discussed here, the continuum regions include approximately

21,000 cells so that each processor is assigned half as many cells than is required for

optimal parallel efficiency. This results in the computational cost of each iteration

performed by the CFD module being larger than the cost of each DSMC time step.

The computational benefits of the MPC method are expected to be even more

pronounced for three-dimensional simulation domains. For example, it is estimated

that more than 14 million cells would be required to perform a three-dimensional sim-

ulation of the current test case using DSMC. This is calculated by determining the
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Table 5.5: Computational performance statistics for the Mach 12, Kn∞ 0.01 flow of
N2 over a two-dimensional cylinder.

CFD DSMC MPC
Normalized CPU Time 1.0 33.2 14.6
Normalized Memory 1.0 11.5 6.51
# Particles - 28.5× 106 12.2× 106

# Continuum Cells 41,122 - 20,967
# Particle Cells - 58,809 32,775
# Processors 4 22 10
Sampling/Total DSMC Steps - 100,000/180,000 100,000/104,040

dimensions of a comparable square domain from the number of particle cells needed

in the two-dimensional simulation, and cubing this result to obtain the number of

cells in the corresponding volume. If the average number of simulator particles per

cell in the current full DSMC simulation is maintained in the three-dimensional sim-

ulation, approximately 7 billion particles would be required. Based on the number of

particle cells in the current MPC simulation, this same estimation procedure predicts

that approximately 2 billion particles would be needed in the corresponding three-

dimensional simulation. Therefore, it is reasonable to expect a speedup factor of 3.5

if this test case were simulated in three dimensions, a further improvement over the

current speedup factor in two dimensions.

In order to obtain accurate measurements of the memory requirements of full

CFD, full DSMC, and MPC hybrid simulations of this test case, the Allinea MAP [1]

parallel memory profiling software was employed. The MPC hybrid method is found

to use a maximum of approximately 1.84GB of memory throughout the course of

this simulation, while the full DSMC simulation required a maximum of 3.24GB of

memory—a reduction of 43%. A summary of various computational performance

metrics for those simulations presented in this section is given in Table 5.5.
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5.4 Investigation of Remaining Errors

In this section, the remaining errors between the full DSMC and MPC hybrid

solutions are further investigated. Although the developments discussed in Section 5.2

have improved the accuracy of the MPC method relative to full DSMC, there are

a number of factors that may prevent the MPC method, or any hybrid particle-

continuum method for that matter, from achieving the same level of accuracy as

a full DSMC simulation. Making use of all available continuum information in the

DSMC boundary cells to interpolate macroscopic properties to the constituent particle

cells and, in turn, position newly generated particles, did improve the consistency of

the information exchange across the hybrid interfaces. However, this is merely an

approximation to what would naturally occur in a full DSMC simulation. Solution

of this problem would require the same computational mesh to be used by CFD,

DSMC, and MPC hybrid simulations, which would severely diminish the numerical

efficiency of the hybrid approach. The use of subcells, which is commonplace in

DSMC simulations, further adds to the computational mesh size discrepancy along

the hybrid interfaces. In addition, on a practical level, because of the large gradients

in the bow shock waves of these hypersonic, blunt-body flows, even small differences

in their positions can lead to surprisingly large errors. Likewise, relatively low values

for properties such as the velocity magnitude near the stagnation point and in the

wake will lead to large statistical errors not only in the flow field properties in these

regions, but also in surface properties, such as the shear stress coefficient.

To investigate potential causes for the large errors in the upper shock region, this

Mach 12, Kn∞ 0.01 case is again simulated using the MPC hybrid method, but with

the continuum breakdown threshold value reduced from 0.05 to 0.01. This results in

the entire domain, except for the freestream before the shock wave, being simulated

using DSMC. The final MPC results of this test compare very well with full DSMC

simulation results, with errors on the order of the statistical scatter, suggesting that
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the source of the remaining flow field errors lies in the post-shock hybrid interface. It

was initially believed that subsonic boundary conditions may be required along this

post-shock hybrid interface. However, the fact that these large errors predominantly

occur in the upper shock and not in the forebody region, where the shock wave is

strongest, indicates this is not a problem, unless errors near the forebody are being

propagated upwards along the shock wave.

Further analysis of the evolution of this hybrid simulation, where DSMC is used

everywhere downstream of the shock wave, reveals what appears to be a different path

to steady state than that observed with the simulation results presented here. A time

history of the evolving translational temperature along a horizontal extraction line

at y = 0.13m is shown in Fig. 5.27. When there is no post-shock continuum region

and the particle region is allowed to evolve without any post-shock hybrid interface

imposing a boundary condition, the translational temperature first fluctuates (profile

MPC t1), and then attains values greater than in the initial solution provided by

CFD (profile MPC t2), before finally decreasing to its final value as more samples

are taken (profile MPC Final). The final MPC profile plotted in Fig. 5.27 is in

excellent agreement with that obtained from a full DSMC simulation. When there

is a post-shock continuum region, however, with a fixed DSMC boundary condition

downstream of the shock, this same transient process is not allowed.

To verify the information exchange procedures along the hybrid interfaces, espe-

cially downstream of the shock wave, a series of additional tests are performed. First,

the transfer of updated boundary condition information from the particle regions to

the continuum regions is evaluated. The MPC hybrid method is initialized with a

full CFD solution, and particle and continuum simulation domains are identified ac-

cording to the standard algorithm. The particle regions are held constant, however,

while the continuum domains are updated. As expected, there is no change to the

solution in the continuum domains, indicating accurate implementation of the CFD
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Figure 5.27: Time history of translational temperature along the y = 0.13m extrac-
tion line of the Mach 12, Kn∞ 0.01 flow of N2 over a two-dimensional
cylinder.

boundary conditions along the hybrid interfaces.

The second test required initializing the MPC hybrid method with a full DSMC

solution of the flow field, and identifying particle and continuum domains from this

solution. Unlike the normal manner in which the MPC method is initialized, place-

ment of these hybrid interfaces is determined by the trusted full DSMC solution, and

should therefore enable consistent information exchange between continuum and par-

ticle domains. The particle regions are then updated while the continuum regions are

held constant, which allows the transfer of updated boundary condition information

from the continuum regions to the particle regions to be verified. It should be noted

that the computational mesh used to obtain the initial DSMC solution is refined no

further by the MPC hybrid method. The DSMC simulator particles are allowed to

move and collide for approximately 4,000 time steps in the regions identified to be

in nonequilibrium, and then particle properties are sampled for an additional 10,000
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time steps. Ideally, this procedure would result in an unchanged solution in the up-

dated particle domains, as was seen for the continuum domains in the previous test.

However, the solution in the particle regions does change, and in a manner that can-

not be explained by statistical scatter alone. For example, consider Fig. 5.28, which

shows the translational temperature extracted along a horizontal line at y = 0.13m.

The red line represents the initial, full DSMC simulation result, whereas the black line

represents the translational temperature after the particle domains have been further

updated. There is a noticeable decrease in the post-shock translational temperature,

which also shifts the shock wave location downstream.

Figure 5.28 illustrates the mechanism by which the MPC method under predicts

the post-shock translational temperature relative to a full DSMC solution. This

under prediction is much more noticeable in a typical MPC simulation, where the

solution is initialized with CFD, the mesh in the particle regions is refined, and

subcells are used, as illustrated previously in Fig. 5.9. However, even when the MPC

method is initialized with a full DSMC solution, subsequent updating of the particle

regions changes that solution. This is believed to be due to a number of factors.

Although there is no change in the computational cell size across hybrid interfaces

in this test, the use of subcells in the particle domains does cause a virtual change

in the level of grid refinement between the DSMC boundary cells and the interior

cells of the particle domain. Also, determination of a steady state during a standard

MPC hybrid simulation involves tracking the change in the locations of the hybrid

interfaces. Initially, the number of cells that comprise the particle domains increases

upon recalculation of the continuum breakdown parameters until there is little change,

after which point the hybrid interfaces are locked. Such an approach is less effective in

areas of the flow field that evolve more slowly due to the inherently transient nature

of the DSMC method. For example, the locations of the hybrid interfaces may not

change in a given area because the DSMC solution is evolving on a longer time scale.
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Figure 5.28: Translational temperature along the y = 0.13m extraction line, be-
fore and after the particle domains have been updated from an initial,
full DSMC solution of the Mach 12, Kn∞ 0.01 flow of N2 over a two-
dimensional cylinder.

Flow field errors that remain in the wake and in the upper shock region are most

likely due to this effect.

On the topic of coupling procedures, there is also concern regarding the smooth-

ness of the hybrid interfaces themselves. Although a smoothing procedure is employed

to eliminate isolated particle and continuum regions, the hybrid interfaces may still

exhibit sharp features that would not be encountered along a typical inflow or out-

flow boundary. Every effort has been made to align the computational mesh with

the bow shock wave, which in turn, promotes smooth hybrid interfaces in this region.

However, as illustrated by the hybrid interface encompassing the boundary layer and

wake, mesh topology alone is not a reliable solution. In the future, additional it-

erations of the smoothing algorithm should mitigate this effect, but most likely, a

more sophisticated smoothing algorithm will be needed to adjust the initial hybrid
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interfaces such that there is a smooth transition between particle and continuum

simulation domains.

5.5 Interim Conclusions

In this chapter, the accuracy and computational performance of the MPC hybrid

method relative to full DSMC was evaluated in a detailed and consistent manner.

By mapping the continuum solution on to the more refined particle mesh layer and

making cell-by-cell comparisons between flow field solutions obtained using DSMC

and the MPC method, a comprehensive understanding of both the location and mag-

nitude of errors is achieved. Higher than anticipated errors in the upper shock wave

region and along the outflow boundary near the symmetry axis in a test case of

hypersonic, blunt-body flow suggested several improvements should be made to the

original hybrid method. Specifically, these improvements involved the implementa-

tion of consistent supersonic outflow boundary conditions, and the use of additional

continuum information in the DSMC boundary cells along hybrid interfaces for more

accurate particle generation. These improvements were shown to decrease both the

range and extent of errors throughout the flow field. Further investigation of the

statistical scatter associated with the full DSMC solution of this particular flow field

indicates that the original goal of obtaining MPC hybrid results that are accurate to

within ±5% is unreasonable. Instead, the goal of the MPC hybrid method should be

to achieve a physical accuracy that is within the statistical scatter associated with a

corresponding full DSMC simulation.

The level of error that remains after the aforementioned improvements were made

cannot be substantiated by statistical scatter alone, and may be attributed to several

other factors. These include differences in mesh refinement between the particle and

continuum domains along the hybrid interfaces, where information must be exchanged

between the DSMC and CFD modules of the MPC method. The use of more refined
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cells and subcells in the particle regions allows macroscopic fluid properties to vary

over much smaller distances than what is possible in the adjacent continuum cells. In

addition, the transient nature of the DSMC method itself poses challenges for the au-

tomated MPC algorithm, especially in regions of the flow field that evolve more slowly

due to reduced collisionality of simulator particles, such as the wake. Nevertheless,

the accuracy achieved by the MPC method is on the order of the statistical scatter

of DSMC throughout the majority of the flow field. In terms of surface properties,

the MPC method is able to reproduce full DSMC results to within ±10% except in

regions where statistical scatter overshadows the particle average of interest, as is the

case near the stagnation point and in the wake.
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