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CHAPTER I 

INTRODUCTION 

Micro-scale gas flow is a new research field driven by microsystems technology. 

Experiments have shown that fluid mechanics of micro-scale gas flows are not the same 

as those experienced in the macroscopic world. In order to understand micro-scale gas 

flows, many numerical methods have been developed. However, these methods either 

lack on physics or are numerically expensive. In this thesis, a general-purpose numerical 

approach is developed for modeling micro-scale gas flows with reasonable efficiency and 

accuracy. First, a particle approach called the “information preservation” (IP) method is 

developed that has a relatively low numerical cost for a kinetic method. Second, a hybrid 

approach is introduced that couples the IP method and a continuum approach, which 

limits the numerical cost by using the continuum approach in continuum regions and 

maintains the physical accuracy by applying the IP method in the other computational 

regions. Finally, an application of the hybrid approach to study micro-scale gas flows is 

included in this thesis.  

 

1.1 Background 

Micro-scale gas flow is a rapidly growing research field being driven by 

microsystems technology (Senturia, 2001). This technology is opening doors to a micro 

scale world and is generating numerous topics for almost all engineering fields (Epstein 

and Senturia, 1997), including aerospace, biological, chemical, electrical, material, and 

mechanical engineering. 
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Microsystems, or microelectromechanical systems (MEMS), are devices that have 

a characteristic length of less than 1 millimeter but more than 1 micron, that combine 

mechanical and electrical components, and that are fabricated using integrated circuit 

batch processing technologies. These systems have many advantages due mainly to their 

small size. They can be batch-manufactured with very low costs. They require little 

energy to operate. They miniaturize systems and improve their performance. 

Microsystems also enable new functions in some areas. Because of these advantages, 

microsystems are finding increased applications in a variety of industrial and medical 

fields, with a potential worldwide market in the billions of dollars (French, 2000; Ehrfeld 

and Ehrfeld, 2001).  

Many applications of microsystems involve gas flows. Typical of such 

applications include micro-turbines (McNeely, 1998; Blankinship, 2001), chemical 

sensors (Hagleitner et al., 2001), micro-propulsion for spacecraft (Rossi et al., 2001), 

micro sensors and micro actuators to sense and control small-scale vortex structure for 

increasing the aerodynamic efficiency and maneuverability of aircraft (Lofdahl and Gad-

el-Hak, 1999; Gad-el-Hak, 2001; Choi et al., 2002), and hand-held gas chromatography 

systems for the detection of trace concentrations of air-borne pollutants (Kolesar and 

Reston, 1998). 

However, our understanding of micro-scale gas flows lags far behind the rapid 

progress in the fabrication and application of microsystems (Ho and Tai, 1998; Gad-el-

Hak, 1999; Beskok, 2001; Karniadakis and Beskok, 2002). Experiments have shown that 

the fluid mechanics of micro-scale gas flows are not the same as those experienced in the 

macroscopic world. For instance, the pressure distribution in a long micro-channel was 

observed to be nonlinear (Pong et al., 1994), and the measured flowrate in a micro-

channel was higher than that predicted from a conventional continuum flow model 

(Arkilic, 1997). The frictional force between the rotor and the substrate of a micro motor 

(Fan et al., 1988) is found to be a function of the contact area instead of the normal force 
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(Ho and Tai, 1998).  The dynamic response of micromachined accelerometers operating 

at atmospheric conditions was observed to be over-damped (Gad-el-Hak, 1999).  

Therefore, it is necessary to investigate the fluid mechanics of micro-scale gas 

flows, to better understand microsystems and optimize their performance. First, 

theoretical analysis can use the Boltzmann equation to explain basic physics of micro-

scale gas flows because this equation is considered the governing equation for such 

flows. However, this equation is far too complicated to analyze practical micro-scale gas 

flows. Therefore, drastic approximations are often made to the Boltzmann equation. Thus 

analytic results obtained from these approximations can only qualitatively predict micro-

scale gas flows. Second, experiments have been used to study simple geometry problems, 

including flows in micro-channels and micro-nozzles (Harley et al., 1995; Bayt, 1999). 

Experiments on complicated geometries (Freeman et al., 1998), however, are focused on 

overall performance of microsystems, because the small physical dimensions of 

microsystems make detailed studies about flow fields difficult. Therefore, such study is 

not sufficient to optimize microsystems because of the lack of detailed information. 

Finally, an effective method of studying micro-scale gas flows is numerical simulation. 

Conventional continuum-based computational techniques have extended their validity by 

adopting slip boundary conditions. Kinetic approaches are also used because continuum 

methods are not valid for many micro-scale gas flows. However, conventional kinetic 

approaches are numerically too expensive to simulate most practical micro-scale gas 

flows. Therefore, it is necessary to reduce the computational cost for kinetic approaches 

or even to combine a less expensive kinetic approach with a continuum method for 

simulating micro-scale gas flows. 

 

1.2 Fluid Mechanics of Micro-Scale Gas Flows 

We mentioned above that fluid mechanics at micro scales behave differently from 

those at macro scales. This behavior follows because the characteristic length or the scale 
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of a flow is an important parameter for many physical phenomena, including flow 

regimes, surface forces, and surface effects.  

Flows can be characterized by the Knudsen number ( Kn ), which is the ratio of 

the mean free path of the gas molecules to the smallest characteristic length of the flow. 

Generally speaking, when the Knudsen number is less than 0.01, the flow is in the 

continuum regime. When the Knudsen number is between 0.01 and 0.1, the flow is in the 

slip regime. In this slip regime, a flow can still be described by continuum equations 

except that a slip velocity, or a temperature jump boundary condition, or both, should be 

adopted. This requirement is due to an insufficient number of collisions between incident 

and reflected molecules relative to the wall. When the Knudsen number is between 0.1 

and 10, the flow is in the transitional regime where intermolecular collisions and 

collisions between molecules and walls are of the same importance. When the Knudsen 

number exceeds 10, however, the flow is in the free-molecular regime where collisions 

between molecules are rare. 

For air at standard conditions, the equilibrium mean free path length is roughly 65 

nanometer. If a macro-scale gas flow having a characteristic length of 1 meter is 

considered, then the Knudsen number of the flow is much less than 0.01 and the flow can 

be described by continuum equations. However, if the flow is a micro-scale gas flow 

having a characteristic length of 1 micron, then the Knudsen number is on the order of 

0.1, and rarefied effects are important and must be included in modeling micro-scale gas 

flows. 

Surface forces are prominent when the flow scale is small, which can be 

characterized by the surface-to-volume ratio ( LLLVolS 132 =≈ ). This ratio changes 

from 1 m-1 to 106 m-1 as the characteristic length scale of a system is varied from 1 meter 

to 1 micron. As a result, if a surface force acts on a flow, then the force is more important 

at micro scales. Therefore, surface force effects play important roles at micro scales. 

Surface roughness and inhomogeneities also are significant for micro-scale gas flows. 
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The momentum and thermal accommodation coefficients of the surface become two 

dominant parameters when describing micro-scale gas flows. 

Therefore, a length in the micro-scale is the main characteristic of micro-scale gas 

flows. Methods to study such flows must be able to capture the main physics of these 

flows. Another characteristic of these flows is that such flows are generally slow, which 

means that variations of flow fields are not always prominent. Therefore, valid methods 

must have the ability to reduce the numerical error or the statistical scatter. 

 

1.3 Previous Related Studies 

In order to understand micro-scale gas flows, many numerical approaches have 

been developed. They can be categorized into three types of approach as follows: 

continuum approach, particle approach, and hybrid approach. 

Continuum approaches for modeling micro-scale gas flows involve the solution of 

continuum equations with slip boundary conditions. Many conventional computational 

fluid techniques can be used to solve continuum equations, including the finite volume 

method (Versteeg and Malalasekera, 1996) and the finite element method (Reddy and 

Gartling, 1994). Because micro-scale gas flows generally exhibit rarefied phenomena, a 

wall boundary condition having a slip velocity, or a temperature jump, or both, is 

generally required to extend the application of continuum approaches to model flows in 

the slip regime.  

Professor Karniadakis’ group developed a Navier-Stokes solver ( Flowµ code) 

using the spectral element method (Karniadakis and Sherwin, 1999). They use a slip 

boundary condition (Beskok, 1996; Beskok and Karniadakis, 1999) that is valid over the 

entire Knudsen number range. They studied the rarefied gas effects for flows in channels, 

pipes and ducts (Karniadakis and Beskok, 2001), which showed that a continuum-based 

approach can be employed to simulate micro flows in the continuum and slip regimes. 
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Hennighausen (2001) developed a numerical method that integrates the 

compressible Navier-Stokes equations on a deforming grid by utilizing upwind 

differences and a finite volume approach. The boundary condition used is a Maxwellian-

type slip boundary condition. A preconditioning technique was also implemented in order 

to speed up the convergence for low Reynolds number flows. This approach has been 

used to design and simulate the flow about a prototype micro air vehicle. 

Aluru and Li (2001) developed a meshless method for solving the Navier-Stokes 

equations, which may be suitable for truly complex-geometry MEMS flows. The so-

called finite cloud method combines collocation with a fixed kernel technique for the 

construction of interpolation functions over a scattered set of points. The method can 

solve general partial differential equations, and good results have been obtained using 

this approach for examples having elasticity, heat transfer, thermoelasticity, Stokes flows 

or piezoelectricity. This method has been developed recently, and has not yet been 

employed routinely for MEMS applications.  

 There are other continuum approaches for modeling micro-scale gas flows 

(Myong, 2001; Wang, 2002). However, applications of these approaches are limited by 

the validity of the continuum equations. Generally speaking, these methods, including 

approaches that solve the Burnett equations, e.g., Liou and Fang (2001), can only be used 

to model flows in either the continuum regime or the slip regime. As a result, approaches 

based on kinetic theory are desired to model micro-scale gas flows in order to capture all 

the possible physics associated with these flows. 

The direct simulation Monte Carlo (DSMC) method (Bird, 1994) is one of the 

most successful numerical approaches for simulating rarefied gas flows. This method has 

been applied to simulated micro-scale gas flows. However, the statistical scatter 

associated with this method prevents its application for many practical micro-scale gas 

flows, because of its huge numerical expense. Attempts have been made to modify this 
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method in order to simulate micro-scale gas flows with lower or affordable computational 

cost. 

Fan and Shen (1999) proposed an information preservation (IP) method for low-

speed rarefied gas flows based on the DSMC method. The IP method uses the molecular 

velocities in the DSMC method as well as an information velocity that records the 

collective velocity of the large number of molecules that a simulated particle represents. 

The information velocity is modeled during the simulation, and is sampled as the flow 

velocity. This method has been used to simulate Couette flow, Poiseuille flow and 

Rayleigh flow in all flow regimes with satisfactory results (Fan and Shen, 2001). These 

applications to low-speed flows shows that the IP method can save computational time by 

several orders of magnitude compared with a similar DSMC simulation, which promotes 

effective use of the IP method for micro-scale gas flows. This method has been recently 

developed and applied to simulate low-speed micro-channel flows (Cai et al., 2000) and 

to investigate the flows around a NACA0012 airfoil (Fan et al., 2001) using an isothermal 

assumption. However, in order to model general micro-scale gas flows, the isothermal 

assumption must be removed, and a general principle must be established to update the 

preserved information. 

Pan and his co-workers have also developed two modified DSMC methods. In 

one of the modified DSMC methods (Pan et al., 2000), the velocity of gas molecules as 

well as the stress and the temperature of the gas flows is split into two parts. One part is 

determined using a macroscopic model and the other is obtained using the DSMC 

algorithm. Simulations of micro Couette flows show that this modified DSMC method 

exhibits much smaller statistical scatter than the original approach. In the other modified 

DSMC method (Pan et al., 2001), a molecular block model was proposed based on the 

relationship between the statistical scatter and the mass of the gas molecule. The 

reference diameter and the number density of the so-called big molecule are determined 

by ensuring that the mean free path and dynamic viscosity of the big molecule are equal 



8 

 

to those of the real constituent molecules. However, neither of these modified DSMC 

methods has been widely tested. 

Kaplan and Oran (2002) proposed another technique to reduce the statistical 

scatter associated with the DSMC method. It involves a postprocessing operator by 

applying a filter to extract the solution from a noisy DSMC calculation. The filter, called 

flux-corrected transport, uses a high-order, nonlinear monotone convection algorithm. 

Simulations show that filtering in this way removes high-frequency statistical fluctuations 

and can extract a solution from a noisy DSMC calculation for a low speed Couette flow. 

These modified DSMC methods do predict good results for test examples with 

affordable computational cost. However, a more efficient approach for simulating micro-

scale gas flows (especially for external flows) is to develop a hybrid approach that 

combines the physical accuracy of kinetic methods with the numerical efficiency of 

continuum approaches. Micro-scale gas flows have domains where continuum equations 

are still valid, especially for external subsonic flows. Continuum approaches are 

generally several orders of magnitude more efficient than the DSMC method; therefore, a 

hybrid approach can reduce the computational cost of a numerical simulation, by limiting 

the DSMC method to the regions where the kinetic equations must be applied, and using 

continuum approaches in the rest of the computational domain. 

In the past ten years, many studies of hybrid techniques have been reported. There 

exist weakly coupled schemes (Hash and Hassan, 1996a; Lumpkin et al., 1996) for which 

a continuum approach provides a boundary condition for a particle method. There are 

also overlapping coupling strategies for which a particle method provides a boundary 

condition for a continuum scheme (Bourgat et al., 1996), or even provides transport 

coefficients for a continuum method (Oh and Oran, 1998). However, non-overlapping 

coupled schemes may give better performance for accuracy and efficiency. Wadsworth 

and Erwin (1990, 1992) first demonstrated such a scheme by simulating one-dimensional 

shock waves and considering two-dimensional slit flows using a property extrapolation 



9 

 

technique. Hash and Hassan (1996b) performed detailed studies of a hybrid code and 

suggested that the Mashak condition is a better coupling technique. However, in a later 

paper, Hash and Hassan (1997) pointed out that the large statistical scatter from the 

DSMC method precluded the application of the Mashak condition to low speed flows. 

Related coupling schemes are also available in the literature (Tallec and Mallinger, 1997; 

Alder, 1997; Hadjiconstantinou, 1999; Flekkøy et al., 2000; Aktas and Aluru, 2002). For 

further development of hybrid methods, adaptive hybrid schemes are therefore proposed, 

especially for unsteady rarefied flows. Roveda et al. (1998) described an Euler/particle 

approach that can analyze unsteady flows by coupling an adaptive discrete velocity 

(ADV) Euler solver and the DSMC method with an adaptive interface. In a following 

paper, Roveda et al. (2000) successfully simulated an unsteady pressure driven slit flow 

with this scheme. There are other adaptive hybrid schemes, such as the adaptive domain 

decomposition method proposed by Tiwari and Klar (1998) and the adaptive mesh and 

algorithm refinement (AMAR) method developed by Garcia et al (1999). 

Most of the hybrid schemes, however, exhibit scatter difficulties with the particle 

methods. Sampling a large number of particles is generally adopted by most authors with 

multiple time steps (Wadsworth and Erwin, 1990; Hash and Hassan, 1996; Aktas and 

Aluru, 2002), ghost cells (Roveda et al., 1998), or local average from multiple cells 

(Flekkøy et al., 2000). Then a large sampling size is required for low speed flows, which 

can be numerically expensive to couple two methods for each time step. As a result, for 

general micro scale gas flows, a kinetic method having a small statistical scatter must be 

coupled with a continuum solver in a hybrid approach. 

 

1.4 Specific Objectives of the Study 

Although many numerical approaches have been developed recently, there is at 

present no general-purpose approach for modeling micro-scale gas flows. Some available 

methods are too computationally expensive, and some are not able to capture physics 
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accurately. Fortunately, there are some approaches that show potential for modeling 

micro-scale gas flows with efficiency and accuracy, such as the information preservation 

(IP) method. Hence, the first objective of this thesis is to develop the IP method for 

modeling general micro-scale gas flows. 

The second objective of this thesis is to develop a hybrid approach for modeling 

micro-scale gas flows. As continuum approaches are generally more efficient than 

particle methods including the IP method, the best method for modeling micro-scale gas 

flows is to develop a hybrid approach that combines the efficiency of a continuum 

approach in regions where continuum equations are still valid and the accuracy of the IP 

method for the rest of the computational domain. 

The third objective of this thesis is to investigate an external micro-scale gas flow 

since there are few such investigations so far. We intend to study the aerodynamic 

characteristics of a micro-scale airfoil. 

 

1.5 Thesis Organization 

The remaining chapters are organized as follows: 

In Chapter II, the kinetic description of gas flows will be reviewed, and typical 

numerical approaches will be evaluated with respect to their capabilities for modeling 

micro-scale gas flows. Detailed descriptions will be given for two numerical approaches: 

the direct simulation Monte Carlo (DSMC) method and a continuum approach solving 

the Navier-Stokes equations. These represent respectively a pure particle approach and a 

pure continuum approach. 

In Chapter III, the information preservation (IP) method will be developed based 

on the DSMC method, with the intention to model general micro-scale gas flows with 

moderate efficiency and accuracy. The principle to update the preserved information will 

be explained, and models will be introduced when describing the preserved information. 

Some advantages and disadvantages of the IP method will also be discussed. 
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In Chapter IV, evaluation of the IP method will be performed by comparing 

results obtained from the IP and DSMC method for several benchmark problems. These 

problems are the thermal Couette flow, high-speed Couette flow, Rayleigh flow, and a 

flow over a NACA0012 airfoil. 

In Chapter V, a hybrid approach will be introduced by coupling the IP method 

and a continuum approach. The emphasis will be on the determination and 

implementation of the continuum/particle interface. 

In Chapter VI, flows are simulated over a micro-scale flat plate having zero 

thickness and a 5% thickness using the hybrid approach. Drag on the plate with zero 

thickness will be studied and the aerodynamic characteristics of the 5% flat plate will be 

investigated. 

In Chapter VII, we will present summary, conclusions, and discuss 

recommendations for future research. 
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CHAPTER II 

OVERVIEW OF TYPICAL NUMERICAL APPROACHES FOR  
MODELING MICRO-SCALE GAS FLOWS 

In this chapter, an overview is given for the kinetic description of gas flows and 

related numerical approaches. Typical approaches are then evaluated emphasizing micro-

scale gas flows. It turns out that particle approaches and continuum approaches are both 

feasible for investigating micro-scale gas flows; therefore, a detailed description is given 

of the particle and continuum methods that are used in this thesis. 

 

2.1 Kinetic Description of Gas Flows and Related Numerical Approaches 

Conflicting views on matter as either continuous or discrete date back at least to 

early Greek philosophy: Aristotle insisted on the continuous point of view whereas 

Democritus proposed the discrete, atomistic standpoint. Modern physics has reconciled 

these conflicting views by considering continuum descriptions as local averages of the 

underlying discrete atoms. In this section, an overview is given of numerical approaches 

for modeling gas flows, ranging from the discrete to the continuum methods. 

2.1.1 Molecular Models and Several Characteristic Lengths 

Gases are generally described as a myriad of discrete molecules (monatomic, 

diatomic, or polyatomic). Physics has shown that both single molecules and inter-

molecular interactions are very complicated due to the inner structure of molecules. 

However, in view of the large number of molecules in most cases, it is almost impossible, 

and fortunately unnecessary, to address all the details of molecules and their interactions. 

Therefore, several molecular models have been suggested for practical applications, 
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including the simplest hard sphere (HS) model, the widely used variable hard sphere 

(VHS) model (Bird, 1981), and the recently proposed generalized soft sphere (GSS) 

model (Fan, 2002). These models treat molecules as tiny spheres with a fixed or variable 

diameter ( d ), and molecular interactions occur only when two molecules are in contact.  

From the view point of fluid mechanics, there are three characteristic lengths 

associated with molecules: the diameter of molecules, the mean molecular spacing, and 

the mean free path of molecules. It is clearer to describe these lengths if discussion is 

limited to a simple gas that consists of a single chemical species where all molecules are 

assumed to have the same structure. Corresponding concepts for gas mixtures, however, 

are not too difficult to obtain.  

The mean molecular spacing, δ , defines the average volume available to a 

molecule, which can be described as 31−= nδ  ( n  is the number density of molecules). If 

the ratio of the mean molecular spacing to the characteristic dimension of a flow, L , is 

small, statistical fluctuations can be neglected. This requires that enough molecules (say 

106 molecules) should be within the volume of interest for a gas to be modeled 

macroscopically. 

The diameter, d , of molecules defines their cross-section for collisions and is 

model-dependent. For instance, the diameter in the HS model may be different from the 

diameter in the VHS model. In addition, the diameter of an individual collision can also 

be energy-dependent, such as in the VHS model. If the diameter is much less than the 

mean molecular spacing, the dilute approximation can be used. This approximation states 

that only a small part of the space is occupied by molecules, when the scale of the ratio of 

the molecular diameter to the molecular spacing is small (e.g., it can be adopted when 

71<δd ). This means that effects on a molecule from other molecules are small, and it 

is very highly probable that only one other molecule is involved with a molecule in case 

that there is a strong effect. Therefore, for a dilute gas, molecular interactions are 

commonly treated as binary collisions. 
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The mean free path, λ , is the average distance traveled by a molecule between 

collisions. It can be calculated for the HS model as ( )nd 221 πλ = . The ratio of the 

mean free path to the characteristic dimension, which is called the Knudsen number 

( LKn λ= ), defines the degree of rarefaction of a gas. The Knudsen number is generally 

considered to be an important parameter identifying the validity of continuum 

approaches. 

The overall effects of these characteristic lengths to related approximations in 

fluid mechanics are illustrated in Figure 2.1, following Bird (1994). It shows: the dilute 

approximation can be used when the ratio of the molecular spacing to the molecular 

diameter is larger than 7; continuum approaches are valid when the Knudsen number is 

less than 0.01; statistical fluctuations can be neglected when the ratio of the characteristic 

length of a flow to the mean molecular spacing is larger than 10.  
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2.1.2 Molecular Dynamics 

Because a gas is composed of molecules, a fundamental way to model a gas flow 

is to trace the movement of all molecules; this can be done using molecular dynamics 

(Haile, 1993). 

A molecular dynamics simulation involves simultaneous tracking of a large 

number of simulated molecules within a region of simulated physical space. There are 

three main aspects of a typical molecular dynamics simulation. First of all, probabilistic 

procedures are required for setting the initial state. Generally, molecules are randomly 

distributed according to certain distribution functions for their location, velocity and 

internal state. Next, a potential energy function is needed to determine the force on a 

molecule due to the presence of other molecules. Collisions occur whenever the spacing 

between any pair of molecules decreases to the assumed cutoff limit of their force field. 

Third, all simulated molecules obey Newton’s equations of motion.  

Macroscopic flow properties are obtained by averaging the molecule information 

over a space volume. The size of a space volume can be selected so that it will not result 

in significant statistical fluctuations nor smear out the gradient of a property. In principle, 

the space volume should have dimensions much larger than the mean molecular spacing 

and much smaller than the characteristic dimension. As a result, the mass density, ρ , 

defined as the mass per unit volume of the gas, can be expressed as VolNm ∆=ρ , where 

N  is the number of molecules having a mass m  within unit volume, Vol∆ . The flow 

velocity, V , the average velocity of all molecules in a volume, can be calculated as 

∑
=

=
N

i

i

N1

c
V , or cV = . The scalar pressure, p , is normally defined as the average of the 

three normal components of the pressure tensor, p , which is the momentum flux based 

on the molecular thermal velocity ( Vcc −=′ ).  The expression for the pressure p  is 

then giving by ( )22

3
1 Vcp −= ρ . The thermodynamic temperature T  is essentially an 
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equilibrium gas property. However, the expression ( )22

3
Vc

k
mT −=  is still valid for the 

translational temperature in a non-equilibrium situation (Bird, 1994). 

With the help of the previous expressions, macroscopic properties can be obtained 

from a molecular dynamics simulation. However, it is highly inefficient to use the 

molecular dynamics method for most practical applications, because a large number of 

molecules must be simulated, and the computation of an element of trajectory for any 

molecule requires consideration of all other molecules as potential collision partners. As 

a result, molecular dynamics is limited to flows where the continuum and statistical 

approaches are inadequate. 

2.1.3 Velocity Distribution Function and the Boltzmann Equation 

It is desired to have a mathematical description for all the molecules in a flow. 

Maxwell used a velocity distribution function ( )cf  to describe the probability of a 

molecule to have a certain velocity at a certain location and time. It appears that a 

complicated velocity distribution function is required to specify the velocity for all 

molecules involved. However, for a dilute gas, it is possible to use a velocity distribution 

function for a single molecule due to molecular chaos. Any macroscopic quantity can 

then be easily obtained using the velocity distribution function. For instance, if Q  is a 

microscopic quantity of a molecule, then the corresponding macroscopic average can be  

obtained using ∫
∞

∞−
= cdfQQ . Hence, the velocity distribution function must be known 

for all times and locations to fully describe a flow. 

The Boltzmann equation that describes the time evolution of the velocity 

distribution function of molecules can be written as follows: 

 ( ) ( ) ( ) ( )∫ ∫
∞

∞−

Ω−=
∂
∂

⋅+
∂
∂

⋅+
∂
∂ π

σ
4

0
11

*
1

*2 dd c
c

F
r

c rcffffnnfnfnf
t

 (2.1) 

where n  is the number density, t is the time, r  is the physical space vector, c  is the 

velocity space vector, F  is the external force per unit mass, rc  is the relative speed 
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between a molecule of class c  and one of class 1c , Ωdσ  is the differential cross-section 

for the collision of a molecule of class c  with one of class 1c  such that their post-

collision velocities are *c  and *
1c , respectively, and functions f , 1f , *f  and *

1f  are the 

corresponding velocity distribution functions for the molecule and its collision partner 

before and after such collision. This equation is a seven-dimensional integro-differential 

equation. The first term describes the change rate of the number of molecules. The 

second and third terms describe the change of the number of molecules due to molecular 

movement and due to an external force field. The term on the right hand side is called the 

collision term, which generally provides the main difficulty for solving this equation. 

This term describes the change of the molecules due to molecular collisions. 

The Boltzmann equation provides a mathematical means to describe a gas flow. It 

is possible to solve this equation for simple problems, especially when molecular 

collisions can be neglected. However, it is a significant challenge to calculate the 

collision term in the equation for general flows. In some situations, the collision term can 

be modeled, and the model equation (e.g., the BGK equation (Bhatnagar et al., 1954)) can 

predict flow properties with good accuracy.  

2.1.4 Moments of the Boltzmann Equation and the Transfer Equation 

The collision term in the Boltzmann equation provides the change of the number 

of molecules in a phase space element due to molecular collisions. However, the mass, 

momentum and energy of two molecules do not change during a collision. Therefore, it is 

desired to derive equations for these conserved quantities from the Boltzmann equation. 

The average of a quantity may be obtained by multiplying the velocity 

distribution function by that quantity, followed by integrating the product over all 

velocity space. These averages are referred to as the moments of the distribution function. 

Similarly, a moment of the Boltzmann equation can be obtained by multiplying the 
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equation by a quantity, Q , and then integrating the resulting equation over all velocity 

space as illustrated by Equation 2.2.  

 ( ) ( ) ( ) ( )∫ ∫
∞

∞−

Ω−=
∂
∂

⋅+
∂
∂

⋅+
∂
∂ π

σ
4

0
11

*
1

*2 dd c
c

F
r

c rcffffnQnfQnfQnf
t

Q  (2.2) 

If F  is assumed to be independent of c , then Equation 2.2 can be expressed as follows: 

 ( ) ( ) [ ]Q
t
QnQnQn

t
∆=

∂
∂
⋅−⋅∇+

∂
∂ Fc  (2.3) 

where [ ] ( )∫ ∫ ∫
∞

∞−

∞

∞−

Ω−=∆ 1

4

0
1

**
11

2 ddd ccσ
π

rcffffQnQ . This equation is often called the 

transfer equation or the equation of change.  

It can be shown that [ ]Q∆  has several alternative forms (Gombosi, 1994). One 

alternative form is illustrated in Equation 2.4:  

 [ ] ( )∫ ∫ ∫
∞

∞−

∞

∞−

Ω−−+=∆
π

σ
4

0
11

*
1

*2 ddd
2
1

1ccrcffQQQQnQ  (2.4) 

where   , , , *
1

*
1 QQQQ is the quantity associated with collision partners and their post-

collision partners, respectively. Then [ ]Q∆  is caused by the change of the quantity Q  of 

the collision pair during a collision. 

When the quantity Q  is a collision invariant, the collision integral [ ]Q∆  must be 

zero; this property greatly simplifies the transfer equation. The transfer equations for 

mass ( m ), momentum ( cm ) and energy ( 2

2
1 mc ) are then expressed as follows: 

 ( ) ( ) 0=⋅∇+
∂
∂ Vρρ
t

 (2.5) 

 ( ) ( ) τVVV ⋅∇+−∇=⋅∇+
∂
∂ p
t

ρρ  (2.6) 

 ( ) ( ) ( ) ( )τVVhV ⋅⋅∇+⋅∇−⋅−∇=





 +⋅∇+






 +

∂
∂ pRTVRTV
t

3
2
13

2
1 22 ρρ  (2.7) 

with ( )Iccτ p−′′−= ρ  and ( )ccch ′⋅′′= ρ
2
1  (2.8) 

However, these equations are not closed by the macroscopic quantities themselves 

because τ  and h  are still in their microscopic forms. Using the transfer equation for 
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certain forms of Q , equations for τ  and h  can be obtained. However, new unknown 

quantities will appear in these equations to describe the existing unknown quantities. 

Therefore, approximations must be made to close these equations. 

2.1.5 Moment Methods and Continuum Equations 

In order to close the previous equations, moment methods use assumptions 

(Grad’s approach or the Chapman-Enskog expansion) to truncate higher-order moments. 

It is generally assumed that the velocity distribution function may be expressed in 

the form of a power series as 

 ( ) ( )( )⋅⋅⋅+++= 2
210 1 KnaKnaff  (2.9) 

where, coefficients ( )⋅⋅⋅=  ,2 ,1iai  only depend on macroscopic quantities, and Kn  is the 

Knudsen number of a flow. Truncation of the series is made to close the moment 

equations so that the higher order moments can be calculated using the truncated velocity 

distribution function.  

The zero-order Chapman-Enskog expansion is the local equilibrium distribution: 

 






 ′
−






=

kT
cm

kT
mf

2
exp

2

223

0 π
 (2.10) 

With this Maxwellian distribution, τ  and h  vanish, and the resulting set of equations 

leads to the Euler equations. These equations are obtained at the limit of zero Knudsen 

number. As a result, they can only be used in situations where viscous effects and heat 

transfer can be neglected.  

The first-order expansion has the following distribution, 
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with ( ) 212 mkTcC =  (2.12) 
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where µ  and κ  are the viscous coefficient and the coefficient of heat conduction, 

respectively. This distribution function enables τ  and h  to be written as products of the 

coefficients µ  and κ  with the velocity and temperature gradients, thus reducing the 

conservation equations to the Navier-Stokes equations. The Navier-Stokes equations are 

widely used because flows in our daily life generally involve small Knudsen number.  

The second-order expansion leads to the Burnett equations, which is a set of very 

complicated higher-order continuum equations. The Burnett equations expand the 

validity of the continuum model to flows that are more rarefied than those for which the 

Navier-Stokes equations are valid. However, the Burnett equations are very complicated, 

and many difficulties are encountered when the equations are applied to practical 

applications (Gad-el-Hak, 1999). 

 

2.2 Evaluation of Typical Numerical Approaches in the Frame of  
Modeling Micro-Scale Gas Flows 

Many numerical approaches have been designed and developed for simulating gas 

flows. However, not all of them are suitable for modeling micro-scale gas flows. Some of 

them are too numerically expensive while some are not able to capture the physics of the 

flow. Hence, it is necessary to evaluate these methods before applying them to model 

micro-scale gas flows. As it is almost impossible to mention all of them, therefore, only 

three categories of methods are discussed in this section. These are numerical methods 

for solving the Boltzmann equation, particle methods, and continuum methods. 

2.2.1 Numerical Methods for Solving the Boltzmann Equation 

It is very desirable to simulate micro-scale gas flows by directly solving the 

Boltzmann equation. However, it is a challenge to simulate these flows using the 

Boltzmann equation based on current computational capabilities. One major problem for 

such simulations, is that a large number of elements or nodes is required to store the 

velocity distribution function in the phase space, which is a three-dimensional space (1D 
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physical space, 1D parallel velocity, and 1D normal velocity) for 1D flows and a six-

dimensional space (3D physical space and 3D velocity space) for 3D flows. Another 

major problem is that calculation of the collision term involves a large number of 

operations. As a result, direct solutions of the Boltzmann equation have been limited to 

simple flow geometries for monatomic gases. 

The first successful method for directly solving the Boltzmann equation was 

introduced in a series of papers by Nordsieck, Hicks, and Yen (Bird, 1994). They dealt 

with one-dimensional steady flow problems, and employed a conventional finite- 

difference technique for the left hand side of the equation and a Monte Carlo sampling 

technique for the collision term, namely, the right hand side of the equation. Recently, 

development of Boltzmann solvers is mainly due to the work of Ohwada et al. (1989, 

1993, 1996). Their method was also a finite-difference method, in which the collision 

integral is computed efficiently and accurately by the numerical kernel method developed 

by Sone et al. (1989). However, application of this method this far has been limited to 

one-dimensional flow problems.  

2.2.2 Particle Methods 

Particle methods are generally numerically expensive. If all the molecules in a 

flow are modeled in a simulation, then only flows having a very small domain or very 

rarefied flows (e.g., 31 −= mn ) can be simulated. The direct simulation Monte Carlo 

(DSMC) method, however, can simulate moderate 2D rarefied gas flows, or even simple 

3D problems, based on current computer resources, because each simulated particle in the 

DSMC method represents a large number of real molecules which makes a DSMC 

simulation much more efficient than a molecular dynamics simulation. The DSMC 

method has been widely used in many fields, such as rarefied atmospheric gas dynamics, 

materials processing, and vacuum systems. However, it is a challenge to apply the DSMC 

method for simulating micro-scale gas flows.  
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First of all, the statistical noise of the DSMC method makes its results difficult to 

interpret for low-speed micro-scale gas flows unless a huge sampling size is used (micro-

scale gas flows are generally low-speed flows). For instance, the velocity scatter of a 

particle simulated in the DSMC method is RT2  (where R  is the gas constant and T  is 

the gas temperature), and so the scatter is about 400 sm  for air at standard temperature. 

If particles for sampling are statistically independent, the statistical scatter is then about 

NRT2  ( N  is the sample size), which means for air at standard temperature, a sample 

size of 1.6×103 is needed to control the scatter to be within 10 sm , and a sample size of 

1.6×107 is needed to control the scatter to be within 0.1 sm . In addition, particles in the 

samples are not completely statistically independent which increases the statistical 

scatter. In order to increase the independency of particles, many time steps are required 

between two sampling steps. As a result, it is very expensive to obtain a meaningful 

DSMC result for low speed micro-scale gas flows. 

Second of all, it is difficult to implement effective external boundary conditions 

for the DSMC method. Conventional boundary conditions for the DSMC method, such as 

free stream conditions and vacuum conditions, do not work for micro-scale gas flows. 

Instead, one must use inflow and outflow conditions that impose the correct propagation 

of information across the boundaries. If a large number of particles is used in each 

computational cell, it is possible to apply an implicit boundary condition for simple flow 

problems where overall mass balance can be imposed (Liou and Fang, 2000). However, 

for general flows, it is impossible to balance all effects resulting from the statistical 

scatter. Therefore, the difficulty to implement an effective boundary condition also limits 

the application of the DSMC method for micro-scale gas flows.  

2.2.3 Continuum Methods 

Continuum methods are well developed for solving continuum equations, 

including the Euler and the Navier-Stokes (N-S) equations. Although these methods are 
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very efficient, their validity depends on the limitations of the underlying continuum 

equations. As discussed in Section 2.1, the Euler equations are too limited, whereas the 

Burnett equations are very complicated. Hence, in the following, the discussion is limited 

to numerical methods for solving the Navier-Stokes equations. 

Micro-scale gas flows are generally in the slip and transitional flow regimes. As a 

result, numerical methods based on the N-S equations can describe some micro-scale gas 

flows, or part of a flow when such a method is combined with other valid approaches. 

However, several factors affect or limit the application of numerical methods based on 

the N-S equations. 

First of all, there is no generally applicable criterion to indicate when breakdown 

of the N-S equations occurs. The N-S equations are first-order moment equations derived 

from the Boltzmann equation based on the Knudsen number. As a result, effects of 

neglected high-order terms must be investigated. In addition, although the Knudsen 

number is well defined as the ratio of the mean free path of molecules to the smallest 

characteristic length of the flow, this smallest characteristic length is not well defined. 

Therefore, there is still a difficulty to determine the applicable scope for the N-S 

equations.  

Second of all, a slip boundary condition is required to extend the application of 

numerical methods based on the N-S equations. In order to determine the general slip 

boundary condition, a one-dimensional approximation is always assumed for the 

Knudsen layer. However, near sharp edges, corners, and other singular points on a body, 

the Knudsen layer cannot be locally considered to be one-dimensional. Kogan (1973) 

pointed out that the drag on a plate parallel to a flow cannot be predicted by solving the 

N-S equations with a general slip boundary to an accuracy of order Re1 . Therefore, it is 

generally not a good idea to apply numerical approaches based on the N-S equations to 

flows having a sharp edge, corner, or other singular point on a body. 
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Thirdly, the convergence of traditional numerical approaches solving the N-S 

equations is very slow for micro-scale gas flows due to the small Reynolds number. For 

micro-scale gas flows, viscous diffusion is on the same order as the pressure gradient, and 

convection is less important; this makes time-marching techniques, e.g., the MacCormack 

(1969) scheme, difficult to apply. The time step for an explicit MacCormack scheme is 

very small for low Reynolds number flows having small cell sizes as suggested by Peyret 

and Taylor (1983) as 
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∆++++
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Fortunately, the matrix preconditioning technique can accelerate the convergence to the 

steady state for steady flows (Choi and Merkle, 1993). 

Therefore, numerical approaches solving the Navier-Stokes equations can be 

applied to simulate micro-scale gas flows in the continuum or slip flow regime with 

careful treatment.  

 

2.3 Direct Simulation Monte Carlo (DSMC) Method 

The direct simulation Monte Carlo (DSMC) method is a widely used particle 

method as an effective numerical technique to simulate rarefied, nonequilibrium gas 

flows. This method was innovated and mainly developed by Bird (1976; 1994) based on 

kinetic theories. Many review papers describing the DSMC method can be found in the 

literature (Bird, 1978, 1998, 2001; Muntz, 1989; Oran et al., 1998; Ivanov and 

Gimelshein, 1998). 

2.3.1   DSMC Overview 

The fundamental idea of the DSMC method is to track a large number of 

statistically representative particles in the computational domain. The motion and 

interactions of each particle are used to modify particle positions, velocities, and 
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chemical species. The flow information is then sampled from the microscopic 

information about the simulated particles.  

The primary approximation is to uncouple the molecular motions and 

intermolecular collisions over small time intervals. Particle motions are modeled 

deterministically, whereas the collisions are treated statistically. The limitations of the 

DSMC method are the same as those of classical kinetic theory: the assumption of 

molecular chaos and the restriction to dilute gases. Hence, the DSMC method can be used 

to simulate any rarefied gas flow. 

The validity of the DSMC method is very difficult to be determined by strict 

mathematical reasoning, although it has been shown (Nanbu, 1980; Babovsky & Illner, 

1989) that the DSMC method is equivalent to solving the Boltzmann equation for a 

monatomic gas undergoing binary collisions. Bird (1976) shows that the basic 

probabilistic assumptions used in the DSMC method are common to the Boltzmann 

equation, as long as the number of simulated particles, the time step and the cell size are 

kept within reasonable limits. The validity of the DSMC method comes from the 

following facts (mainly from articles in various proceedings of the International 

Symposia on Rarefied Gas Dynamics): many DSMC calculations agree well with 

corresponding experimental data; excellent agreement has been shown for shock 

computations (Salomons and Mareshak, 1992) and slip lengths (Morris et al., 1992) in the 

comparisons of DSMC with molecular dynamics; many computational studies have 

shown that DSMC solutions approach Navier-Stokes solutions in the limit of very low 

Knudsen number. 

2.3.2    Algorithm of the DSMC Method 

For the DSMC method, the computational domain is divided into a network of 

cells, where each cell serves as a separate region for molecular interaction and as a space 

element for sampling flow information. Therefore, the cell size should be less than the 
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mean free path or based on the requirements on gradient resolution, but is much larger 

than the mean molecular spacing. In order to decouple the movement of particles and the 

interaction between particles, the time step employed in the DSMC method is smaller 

than the mean collision time of gas molecules. The procedure of a typical DSMC 

simulation is shown in Figure 2.2.  

A DSMC simulation proceeds from a set of prescribed initial conditions. Namely, 

a large number of particles is generated in the computational domain, with their initial 

microscopic properties determined by the macroscopic quantities such as density, 

temperature and velocity, according to equilibrium distributions. 

Interactions between particles are modeled for each time step. Collision pairs are 

randomly selected within each cell. Probabilities of particle collisions are determined by 

the collision rates obtained from kinetic theory. During each collision, particles exchange 

momentum and energy, and chemical reactions may also take place. The properties of 

collided particles are determined statistically while conservation of momentum and 

energy between collision pairs is enforced. Next, new particles may be generated from 

the outer boundaries. The number of generated particles is determined by kinetic theory. 

Then, all particles are moved to a new location following their individual trajectory for a 

time step, except that new generated particles are moved for a randomly determined 

fractional time step. Particles are discarded when they leave the computational domain.  

For steady flows, once a steady state is established, time averaging is performed 

in each cell to evaluate the macroscopic mean values of the flow properties. For unsteady 

flows, ensemble averaging is used by repeating the previous procedures with different 

random number seeds setting the initial state of the simulated particles. 
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Figure 2.2. DSMC flowchart 
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2.3.3    MONACO Code Overview 

The numerical code used for the DSMC method during the present study is called 

MONACO (Dietrich and Boyd, 1996). It is a general-purpose code for modeling 2D, axi-

symmetric, or 3D rarefied gas flows. The code contains some object-oriented features, 

and different functionalities are separated for easy maintenance and update. The main 

body of code MONACO consists of four libraries: kernel, geometry, physical modeling, 

and utilities. The kernel library organizes different tasks and links all the libraries 

together. It handles the data structure definition, initialization, file input/output, and 

parallelization. The geometry library includes grid structure analysis, new particle 

generation, and particle movement control. The physical modeling library performs the 

particle collision, sampling, particle-surface interaction, and possible chemical reaction. 

The utilities library handles the grid pre-processing and data post-processing. Each 

library is divided into many small modules. New modules can be added to meet special 

requirements of different applications. The DSMC algorithms are implemented in the C 

programming language for easy memory management and code manipulation. 

The basic unit in MONACO is the computational cell whose memory address is 

stored in an array. Each cell is treated as an independent entity that has its geometry 

information, neighboring cell information, and particle information. The geometry 

information includes the number and the coordinates of the nodes forming the cell. The 

neighboring cell information specifies the address (cell index) of other cells or the type of 

boundaries that neighbor the cell. The particle information stores the number of particles 

in the cell and a linked list for these particles with their microscopic information. 

Additional information can also be stored for each particle or cell without any coding 

difficulty. As a result, MONACO is able to handle problems having complicated 

geometry, is efficient for indexing and cross-referencing particles, and is efficient for 

parallelization.  
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2.4 A Numerical Approach for Solving the Navier-Stokes Equations 

We describe a numerical technique to solve the Navier-Stokes (N-S) equations 

because some micro-scale gas flows (or parts of them) can be modeled using the N-S 

equations. The technique used here, following McCormack and Candler (1989) and 

Hennighausen (2001), is a finite volume method for solving the compressible Navier-

Stokes equations. The fluxes are evaluated with a second-order accurate modified Steger-

Warming flux-vector splitting approach. An implicit Gauss-Seidel line-relaxation method 

can also be used for the time integration to enhance numerical convergence. This 

approach for solving the Navier-Stokes equations is referred to as the Navier-Stokes 

solver for the rest of the present thesis. 

2.4.1    Finite Volume Formulations for the Navier-Stokes Equations 

The Navier-Stokes equations are expressed in conservation form as follows: 
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First, the equations are integrated over a small volume Ω, and Gauss’ divergence 

theorem is applied, obtaining: 
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where  

 V
Vol

d1
∫Ω= UU  (2.21) 
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and Vol  is the volume of the computational cell and Sd  is an element of Ω∂ , the surface 

of Ω . 

Next, the inviscid flux 0F  is split into components along the characteristic 

directions of the flow, because the hyperbolic property of this flux allows upwind 

numerical approximations to be used for the spatial derivatives. Then the equations 

become 

 ( ) ( )( ) 0d1
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−−++ SFFF
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where +Λ  and −Λ  are the positive and negative parts of the flux eigenvalues. 

Finally, the equations are discretized in 2-D for each computational cell ( )ji,  as 

follows: 
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where n  is the time index, jiA ,  is the area of cell ( )ji, , and l  is the length of a cell edge. 

The fluxes +
oF  and −

oF  are calculated using upwind differencing, whereas µF  is found 

using centered differences.  

2.4.2    Boundary Conditions 

The classical wall condition for fluid dynamics is the no-slip condition. Thus a 

zero velocity at the wall is prescribed when the isothermal condition is assumed. 

However, in order to extend the approach for flows in the slip regime, a slip wall model 

is adopted as follows: 
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where vσ  is the tangent momentum accommodation coefficient, Tσ  is the thermal 

accommodation coefficient, nq , sq  are the normal and tangential heat transfer from the 
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gas to the wall, wT  is the wall temperature, ρ  is the gas density, sτ  is the shear stress 

component parallel to the wall, R  is the gas constant, γ  is the ratio of specific heats, rP  

is the Prandtl number. 

The outer boundary condition for external flows generally involves the free 

stream condition. However, a characteristic boundary method (Hirsch, 1990) is adopted 

here because it is impossible to have an infinite computational domain. For an exit 

boundary, the exit pressure is prescribed as the free stream pressure.   
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CHAPTER III 

THE INFORMATION PRESERVATION METHOD FOR  
MODELING MICRO-SCALE GAS FLOWS 

For micro-scale gas flows, particle methods are generally accurate but expensive 

whereas continuum methods are efficient but questionable in terms of physical accuracy. 

In this chapter, a method called the information preservation method is developed based 

on a particle method by preserving macroscopic information in microscopic particles, 

with the intention of reducing the computational cost for simulating micro-scale gas 

flows and maintaining high accuracy. 

 

3.1 Introduction 

The information preservation (IP) method, first proposed by Fan and Shen (1999), 

has been used to overcome the problem of statistical scatter associated with the direct 

simulation Monte Carlo (DSMC) method when simulating low-speed, constant density 

flows. It achieved great success for several unidirectional transitional gas flows (Fan and 

Shen, 2001), including Couette flow, Poiseuille flow, and the Rayleigh problem. This 

method was later developed to simulate low-speed microchannel flows (Cai et al., 2000) 

and to investigate the flows around a NACA0012 airfoil (Fan et al., 2001) using the 

isothermal assumption by calculating the macroscopic velocity and by solving the density 

flow field from the continuity equation.  

The IP method is developed based on the DSMC method by additionally 

preserving macroscopic information in simulated particles. In the IP method, all 

microscopic information, including particle movements and collisions, is handled by the 
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DSMC method, and the macroscopic information is updated using other algorithms. The 

flow field is obtained by sampling the preserved macroscopic information instead of the 

microscopic information, so that the statistical scatter of the flow information can be 

greatly reduced for low-speed gas flows. However, the principle for updating the 

macroscopic information has not been thoroughly studied. 

In the next section (Section 3.2), the principle is explained, and the IP method is 

developed to include energy information. Based on this principle, an energy flux model is 

introduced in Section 3.3, and a collision model is described in Section 3.4, in order to 

update the preserved macroscopic information. Section 3.5 presents a detailed 

implementation of the IP method, and Section 3.6 discusses some advantages and 

disadvantages of the method. Finally, Section 3.7 gives conclusions concerning the 

development of the IP method. 

 

3.2 Modeling the Preserved Macroscopic Information 

Micro-scale gas flows can generally be described by the density, velocity, and 

temperature at each location. This macroscopic information is then to be preserved for the 

IP method. Therefore, each particle simulated in the IP method has the following 

information: particle location, particle microscopic velocity, internal energy, macroscopic 

density, macroscopic velocity iV , and macroscopic temperature iT  (it will be shown that 

it is not necessary to preserve the macroscopic density for particles). The computational 

cells will also preserve the macroscopic density cρ , macroscopic velocity cV  and 

macroscopic temperature cT  in order to help update the preserved particle information. 

Because particle location, particle microscopic velocity, and internal energy are handled 

by the DSMC method, only the preserved macroscopic information requires modeling, 

which will be discussed in the following. 

The transfer equation: 
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∂
∂ c  (3.1) 

provides a connection between the microscopic information and the macroscopic 

information for a flow. Hence, the transfer equation will be considered first with the 

intention to obtain physical equations for the preserved macroscopic information with the 

quantity Q  set to mass, momentum and translational energy, respectively.  

In order to clarify the different velocities associated with a particle i , the 

microscopic velocity of a particle is denoted by ic , the preserved macroscopic velocity is 

expressed as iV , while the macroscopic velocity of the flow field is written as 0c . These 

velocities hold the following relationships with scatters ic′ , ic ′′  and ic ′′′ : 

 ii ccc ′+= 0  (3.2) 

 ii ccV ′′+= 0  (3.3) 

 iii ccc ′′−′=′′′  (3.4) 

3.2.1 Preserved Density  

The transfer equation for mass is as follows: 
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∂
∂

inmnm
t

c  (3.5a) 

which can be written as: 

 ( ) ( ) 0=⋅∇+
∂
∂

0cρρ
t

 (3.5b) 

It is obvious that the density of the flow can be found from the continuum Equation 3.5b, 

which means it is not necessary to preserve macroscopic density for each simulated 

particle. However, an IP scheme that preserves the density for simulated particles has 

also been developed (Sun et al., 2002). 

3.2.2 Preserved Velocity  

The transfer equation for momentum appears as Equation 3.6, which can be 

written as Equation 3.9 using the following procedure. 
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With 

 ( ) ( ) iiiiiiiiiiii ccVccccVcccVc ′′′′+=+′′′′+=′′′+= 0
2  (3.7) 

then, 

 ( ) ( ) ( )iiiii nmnmnm
t

ccVcV ′′′′⋅−∇=⋅∇+
∂
∂  (3.8) 

or 

  ( ) ( ) τVcV ′⋅∇+′−∇=⋅∇+
∂
∂ pnmnm
t iii  (3.9) 

where, 

 ( )Iccτ pii ′−′′′′−=′ ρ  (3.10) 

and 

 iTnkp =′  (3.11) 

Equation 3.9 is in the form of the transfer equation with imQ V= , which can be regarded 

as the governing equation for the preserved macroscopic velocity of particles. 

In Equation 3.9, the first term of the left hand side is the change rate of the 

momentum. The second term is the change due to the microscopic movement of the 

particles, which means that the preserved macroscopic velocity is carried by the particles 

as the preserved macroscopic velocity is not directly coherent with the microscopic 

velocity. The right hand side of the equation is the collision integral with a pressure term 

and a viscous term that must be modeled when two particles collide.  

3.2.3 Preserved Temperature  

The transfer equation for energy is shown as Equation 3.12. We intend to obtain a 

control equation for the preserved temperature. 
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The macroscopic temperature can be sampled as the following: 
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then, 
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Hence, 
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Also, 
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Furthermore, 

 ( ) ( ) ( )02 ccccccccc ⋅′′+′⋅′′=⋅′ iiiiiiii  (3.18) 

and 

 ( )( ) ( )00 cccccc ⋅′′⋅∇=⋅′′⋅∇ iiii  (3.19) 

Hence, 
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with 

 τIcc ′′−′=′′ piiρ  (3.21) 

and 
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Therefore, 
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Clearly, Equation 3.23 is also in the form of the transfer equation with 

( )ii RTVmQ 3
2
1 2 += . In order to avoid preserving the average of the preserved energy, 
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Equation 3.23 is approximated as Equation 3.24, 
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with ( )ii RTVmQ 3
2
1 2 += . 

Equation 3.23 or Equation 3.24 is apparently more complicated than Equation 3.8 

or Equation 3.9. Exactly modeling all terms in Equation 3.24 becomes very difficult. 

Attempts to model the preserved temperature have been made recently (Shen et al., 1999; 

Sun et al., 1999). However, these results are far from satisfactory.  

On the other hand, the change of the preserved energy results from three factors: 

particle collision, particle movement, and the pressure force effect shown in Equation 

3.24. The particle collision effect includes heat transfer and viscous dissipation. Particle 

movement, however, has different energy transfer from the transfer of the preserved 

energy (the second term of the left hand side of Equation 3.24) as will be shown in the 

next section. Hence, this difference should also be included in a control equation. As a 

result, a physical form for modeling the preserved temperature is then proposed as 

Equation 3.25. 
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In the next two sections, an energy flux model and a collision model are proposed 

to model the heat transfer difference and collision effects, respectively. The accuracy of 

these models is examined in Chapter IV. 

 

3.3 An Energy Flux Model for the Preserved Temperature 

The IP method is based on the microscopic movement of the particles simulated 

by the DSMC method. There is a contradiction between the real flux and the IP 
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representation for the energy flux across an interface (e.g., a surface of a computational 

cell), which can be demonstrated by the following example. 
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Figure 3.1. Flow between two stationary gases separated by a plate 

Consider a flow of two gases separated by a plate as shown in Figure 3.1. The 

temperature of the gas on the left side of the plate is 1T , whereas the temperature of the 

gas on the right side of the plate is 2T . Thus the average translational energy of the two 

groups of particles is 12
3 kT  and 22

3 kT , and particles preserve the macroscopic 

temperature at 1T  or 2T , respectively. The two gases will become mixed after the plate is 

suddenly removed. Kinetic theory shows that the average energy of the particles that 

move across the interface is 12kT  for the left side and 22kT  for the right side. This occurs 

because the translational energy flux of the component normal to the interface is twice 

the flux of the component in the other directions because particles having larger energy 

can move across the interface from far away (Figure 3.2). However, each particle only 

carries an energy with 12
3 kT  or 22

3 kT  as shown in Equation 3.25 for the IP 

presentation. Therefore, the difference between the real flux and the represented one 

should be included as in Equation 3.25. 

The energy flux model aims to include the difference between the real energy flux 

and the IP representation. Remember the goal of the IP method is to reduce the statistical 

scatter; therefore, this model seeks to represent the net energy flux across an interface 

instead of recovering the microscopic energy for every particle. To do this, each particle  
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Figure 3.2. Illustration of particles that can move across the interface in a short time 

crossing the interface carries an additional energy which is the result of the mentioned 

difference subtracted by a reference energy. This reference energy helps keep the 

additional energy to a small level, and the effect of the reference energy is included in 

Equation (3.25). The additional energy, however, is borrowed from the other particles in 

the computational cells as the conservation of the total energy should be satisfied. This 

model can be illustrated by the example of the flow of two gases separated by a plate. 

Figure 3.3 illustrates the principle of the energy flux model for the example. First, the 

particles crossing the interface have the average translational energy of kT2 . Second, in 

the IP representation, each of those particles has carried an energy of kT2
3 , which 

means each particle must carry an additional energy of kT2
1 . Third, in order to reduce 

the statistical scatter, each particle only carries an additional energy of ( )refTTk −2
1 , 

where refT  is a reference temperature. In general, the reference energy cannot be 

balanced. Therefore, the effect of the net reference energy must be included in Equation 

(3.25). Furthermore, the final additional energy carried by each particle is borrowed from 

other particles in the cell, which means other particles need to share this energy to satisfy 

the conservation of the total energy. 

In the above example, the particles crossing the interface have an average 

translational energy of kT2 . In general, the average energy is a function of the mean flow 

velocity 0c  and the angle θ  between the flow direction and the normal of the interface as 
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shown in Equation 3.26: 
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or, 
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with θcos
20 ⋅⋅=

kT
mcs . Then the additional energy will be in the form of ( )refTTak − .  

If refT  is chosen as the temperature of the interface, the following physical form 

for the preserved energy (the combination of the preserved velocity and preserved 

temperature) is obtained: 
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The term called “additional heat transfer” means that each particle i  will carry an 

additional energy of ( )refi TTak −  when it crosses an interface where a  is to be 

determined from Equations 3.26 and 3.27. The term of “reference energy effect” can be 

expressed as ( )( )kTaa 2211 NN && −⋅∇− , where iN&  is the half number flux across an 

interface from side i , and ia  is the coefficient in the additional energy form. The only 

unknown term in Equation 3.28 is the “collision effects” term that will be discussed in the 

next section. 

In the implementation, the IP method preserves an additional variable aT  for 

particles to describe the additional energy ( )refTTak −  as 2akTξ , where ξ  is the 

number of degrees of freedom. As stated earlier, the additional energy is borrowed from 
other particles; therefore a new variable caT ,  is used for cells to record the borrowed 

energy as 2,cakTξ . At the end of each time step, the borrowed energy is evenly provided 

by all the particles in the cell to maintain the conservation of energy. 
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3.4 A Collision Model for the Preserved Macroscopic Information 

The preserved macroscopic information will change due to molecular collisions 

because of momentum exchange, internal energy exchange and viscous dissipation. For 

low-speed, constant density flow systems, Fan and Shen (2001) used the following 

simple collision model for the preserved macroscopic velocity: 

 ( ) 22121 VVVV ′+′=′′=′′  (3.29) 

where superscripts ′ and ″ denote pre- and post-collision, and subscripts 1 and 2 denote 

particle 1 and particle 2 in the collision pair. Numerical tests show that this simple 

collision model cannot correctly simulate the viscosity of the gases. Fan and Shen (2001) 

adjusted the molecular diameters for the IP method according to experimental data. Thus 

the molecular diameters for the IP method and for the DSMC method are different. Then 

the DSMC collisions with the molecular diameter for the IP method may not be correctly 

modeled, which will affect the results from the IP method. 

Hence, the simple collision model needs to be modified. The preserved 

macroscopic information for two collision particles will not be the same after one particle 

collision. It will depend on the relative speed of the two particles, the deflection angle in 

the collision plane and so on. A detailed mechanism for the IP method is then very 

difficult to obtain. Thus, a phenomenological model for the distribution of the 

information for the two particles is proposed to include the effect of the deflection angle 

in the collision plane: 
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with ( ) ( ) ( )
211

2121cos
VVVV
VVVV
′′−′′⋅′−′
′′−′′⋅′−′

=χ  (3.34) 

where, the values of µC  and κC  are assumed and verified by numerical tests to be 

constants only depending on gas species, and χ  is the deflection angle after collision in 

the collision plane.  

 
Table 3-1 Values of µC  and κC  for the VHS molecular model 

 He Ar N2 O2 air 

µC  -0.15 -0.18 -0.25 -0.21 -0.21 

κC  1.15 1.28 0.87 0.87 0.87 

 
Table 3-1 lists the values of µC  and κC  determined by numerical experiments for 

five gases (He, Ar, N2, O2, and air) with the variable hard sphere (VHS) model (Bird, 
1981). In determining these values, low speed Couette flows are used for µC  and heat 

transfer flows between two parallel plates are employed for κC .  

In Figure 3.4, two plates at 273K are separated by 1m, with one at rest and the 
other with a parallel velocity of 1 m/s. µC  is determined when the numerical shear stress 

agrees with the theoretical result when the Knudsen number of the flow is 0.01. The  

 

 

 

 

 

Figure 3.4. Schematic diagram for Couette flows for determining the value of µC   

y = 0 m 

plate 2:  T2 = 273K,  Vx,2 = 1 m/s 

plate 1:  T1 = 273K,  Vx,1 = 0 

gases

y = 1 m 
 

Kn=0.01 
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Table 3-2 Shear stress distributions (×105kg/m/s2) for five gases in Couette flows  

y/L He Ar N2 O2 air 

0.1 1.834 2.067  1.616 1.879 1.683 

0.2 1.834 2.067 1.617 1.878 1.682 

0.3 1.834 2.069 1.617 1.878 1.681 

0.4 1.834 2.071  1.618 1.878 1.681 

0.5 1.834 2.072  1.621 1.877 1.681 

0.6 1.833 2.073 1.620 1.880 1.682 

0.7 1.833 2.075 1.618 1.879 1.681 

0.8 1.832 2.074 1.615 1.876 1.678 

0.9 1.833 2.069  1.616 1.875 1.681 

theory 1.824 2.066 1.616 1.873 1.678 

 

numerical shear stress is calculated at cell edges parallel to the plate as  

 
( )

At
VVm re

jx
in
ix

IP ∆⋅∆

−
= ∑ ,,τ  (3.35) 

with the summation over all incoming particles i  and all outgoing particles j  that cross 

the edge having an area A∆  during a time t∆ . The theoretical result is obtained through 

yu ∂∂= µτ  with the viscosity coefficient µ  found from experimental data (Chapman 

and Cowling, 1970). Table 3-2 lists the shear stress distributions for the five gases in 

these Couette flows. The relationship between the viscous coefficient and the gas 

temperature is illustrated in Figure 3.5. The agreement between the numerical result and 

theory ( ωµ T∝  from Chapman and Cowling, 1970) is satisfactory. These data indicate 

that µC  is a constant. 
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Figure 3.5. Relationship between the viscous coefficient and the temperature  

for five gases (symbol: IP; line: theory ωµ T∝ )  

Figure 3.6 shows the configuration of the heat flows between two parallel plates 

for determining κC . Both plates are at rest, with one at 173K and the other at 373K. The 

Knudsen number is again 0.01. In this case, it is difficult to obtain an exact theoretical 

result because the temperature distribution is nonlinear and the flow exhibits some non-

equilibrium phenomena. Hence, the average heat flux from the DSMC method is used to 

determine κC  for the IP method. The heat flux is calculated as follows:  
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for the DSMC method, and 
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for the IP method. The heat flux distributions in the heat flows are listed in Table 3-3.  
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Figure 3.6. Schematic diagram for heat transfer flows between 
two parallel plates for determining the value of κC   

 

 

Table 3-3 Heat flux distributions (kg/s3) for five gases in heat transfer flows  

y/L He Ar N2 O2 Air 

0.1 26.18 3.080 4.333 4.366 4.305 

0.2 26.21 3.080 4.330 4.363 4.302 

0.3 26.22 3.080 4.334 4.362 4.307 

0.4 26.23 3.083 4.332 4.361 4.300 

0.5 26.24 3.077 4.333 4.377 4.301 

0.6 26.26 3.080 4.342 4.370 4.301 

0.7 26.27 3.083 4.337 4.366 4.302 

0.8 26.29 3.083 4.337 4.362 4.299 

0.9 26.29 3.084 4.337 4.360 4.314 

DSMC 26.27 3.083 4.322 4.357 4.310 

 

 

y = 0 m 

y = 1 m 
plate 2:  T2 = 373K,  Vx,2 = 0 

plate 1:  T1 = 173K,  Vx,1 = 0 

gases Kn=0.01 
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3.5 Implementation of the Information Preservation Method 

In this section, the general procedure of the information preservation (IP) method 

is described, and a detailed implementation of the method is presented.  

3.5.1 General Procedure of the IP Method  

In general, the information preservation method preserves macroscopic 

information on individual particles simulated in the DSMC method, and updates the 

preserved information during several steps including particle movement and particle 

collision, and obtains flow field information by sampling the preserved information. This 

procedure is illustrated in Figure 3.7. 

In the IP method, each particle has the following information: particle location, 

particle microscopic velocity, internal energy, macroscopic velocity iV , macroscopic 

temperature iT  and additional temperature iaT , , along with the following information for 

each computational cell: the macroscopic density cρ , macroscopic velocity cV , 

macroscopic temperature cT  and additional cell temperature caT , . All this information is 

initialized by the ambient condition while the additional temperature is set to zero. Next, 

all particles update preserved information based on the following two equations: 

  ( ) ( ) p
t iicic ′∇−′⋅∇=⋅∇+
∂
∂ τVcV ρρ  (3.38) 
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 (3.39) 

First, the preserved macroscopic velocity and preserved temperature update their values 

according to Equations 3.30-3.34 when particle collisions occur. This means the first 

term on the right hand side of Equation 3.38 and Equation 3.39 is included. Second, 

particles move around according to their microscopic velocity, which corresponds to the 

second term on the left hand side of the equations. When a particle crosses an interface 

(an internal cell edge or a boundary), the particle carries an additional energy of 
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Figure 3.7. DSMC-IP flowchart 
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( )refi TTak −  while the additional cell temperature records this “borrowing”, which is the 

fourth term on the right hand side of Equation 3.39. Third, each particle updates its 

information using the rest of the terms as shown in Equation 3.40 and Equation 3.41,  

 ( ) p
t ic ′−∇=
∂
∂ Vρ  (3.40) 

 ( ) ( )         
2
1 2 effectenergyreferencepRTV

t cii +′⋅∇−=





 +

∂
∂ Vξρ  (3.41) 

with cc RTp ρ=′  (3.42) 

where R  is the specific gas constant. In this step, the “borrowed” additional energy is 

evenly subtracted from all particles in the cell. Fourth, each cell updates its preserved cell 

information: 

 ( ) ( ) 0=⋅∇+
∂
∂

ccct
Vρρ  (3.43) 

 ic VV =  (3.44) 

 ic TT =  (3.45) 

 0, =caT  (3.46) 

After particles and cells update their preserved information, the cell information is 

sampled if needed before the next time step begins. Then, after the required time steps are 

finished, the preserved cell information is processed to obtain the flow field information. 

The details are discussed in the next section.  

3.5.2 Detailed Implementation of the IP Method  

For micro-scale gas flows, the velocity is generally small and rarefaction often 

occurs only around solid objects. Therefore, when a particle crosses an interface, the  

additional energy can be approximated as ( )refi TTk −2
1 . Then the reference energy 

effect becomes zero. In our 2D parallel IP code that is based on a parallel optimized 

DSMC code named “MONACO” (Dietrich and Boyd, 1996), macroscopic velocity 
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components ixV , , iyV ,  and temperatures iT , iaT ,  are preserved for each simulated particle 

i . Macroscopic velocity components cxV , , cyV , , temperatures cT , caT ,  and density cρ  are 

preserved for each computational cell. 

The general implementation of the IP procedures (based on the DSMC 

procedures) can be summarized as follows (see also Figure 3.7): 

(1) Initialization  

The information for all particles and cells is initialized by the ambient conditions 
after the computational domain is set up, while iaT ,  and caT ,  are set to zero. 

For each time step, one collision sub-step, one movement sub-step and one 

modification sub-step are executed to update the information preserved in particles 

followed by the update of the information preserved in the cells. 

(2) Particle collision sub-step  

Particles are selected randomly to make pairs, and binary collisions are performed 

for a subset of these pairs based on the usual DSMC procedures. The preserved 

macroscopic information is updated according to Equations 3.30-3.34. 

(3) Particle movement sub-step  

Particles are moved at their microscopic velocity as in the DSMC method. The 

preserved information of particles may change when particles interact with interfaces. 

Possible particle-interface interactions are: 

3a) Particles migrate from one cell to another 

When particle i  moves from cell k to another cell, momentum and energy transfer 

occur, and additional energy transfer is required as stated in Section 3.3. The preserved 

additional energy for the particle and for the cell are adjusted as follows: 

 ( ) ξrefiia TTT −=′,  (3.47) 

 iaiakcakca TTTT ,,,,,, ′−+=′  (3.48) 
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where, refT  is the interface temperature interpolated from the preserved cell temperatures 

of neighboring cells. 

3b) Particles leave or enter the computational domain 

If a particle leaves the computational domain, the preserved information of the 

particle is lost along with the particle itself. Similar to the DSMC method, new particles 

may enter into the computational domain, and these particles are assigned information 
according to the boundary condition with 0, =iaT . 

3c) Particles reflect from a symmetric boundary 

When a particle reaches a symmetric boundary, it is reflected. The normal 

velocity component is reversed in direction, and the parallel velocity component remains 

unchanged. 

3d) Particles reflect from a wall 

The preserved information of particles collided with a wall is set in accordance 

with the collective behavior of a large number of real molecules. Namely, if it is a 

specular reflection, only the normal velocity component is reversed. However, if it is a 

diffuse reflection, the preserved macroscopic velocity and temperature of the reflected 

particles are set to the velocity and the temperature of the wall. Also, the preserved 

additional temperature is changed. 

For specular reflection: 

 iaia TT ,, −=′  (3.49) 

 iaiakcakca TTTT ,,,,,, ′−+=′  (3.50) 

For diffuse reflection: 

 ( ) ξrefiia TTT −=′′,  (3.51) 

 iaiakcakca TTTT ,,,,,, ′′−+=′  (3.52) 

 ( ) ξrefwia TTT −=′,  (3.53) 
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Here, iaT ,′′  denotes the additional temperature of the particle when it is “absorbed” by the 

wall. wiref TTT ⋅=  is the constant gas temperature of collisionless flow between two 

plates with one at iT  and the other at wT  (Gombosi, 1994). 

After the collisions and movements of particles are considered, the additional 
energy preserved by the cell k is shared across all pN  particles in the cell: 

 pkcaii NTTT ,,+=′  (3.54) 

 0,, =′ kcaT  (3.55) 

(4) Modification sub-step  

 The preserved information of particles is modified by Equations 3.40 and 3.41 

(We have assumed the reference energy effect is zero). These two equations are solved 

using a finite volume method as: 
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In the previous equations, A  is the area of the cell, Vol  is the volume of the cell, dl  is 

the edge element of the cell, n  is the unit vector normal to the cell edge, and pW  is the 

number of gas molecules represented by one particle. The integrals are evaluated over all 

cell edges. The cell information on cell edges is linearly interpolated using the 

information of the neighboring cells. The density cρ  is replaced by the ratio of the real 

mass of the total represented molecules in the cell to the volume of the cell such that the 

statistical effects for this sub-step due to the number fluctuation of particles in a cell can 

be avoided. For example, Equation 3.56 can be reorganized as follows:  
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It is clear that the number fluctuation of particles in a cell does not affect the total 

pressure effects for all the particles in the cell. 
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(5) Update preserved cell information  

After the preserved information of particles is updated, the preserved information 
for cells is updated by averaging the information of all pN  particles in each cell. 
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(6) Sample flow properties  

The flow properties are obtained by using time or ensemble averaging of the 
preserved information. The flow velocity fV , flow temperature fT  and flow density fρ  

are calculated as follows: 

 ∑
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The expressions for the pressure wp  and shear stress wτ  on the wall, and heat flux 

wq  to the wall are as follows: 
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where sN  is the total number of molecules hitting the wall element during st , A∆  is the 

area of the wall element, cp  is the pressure in the neighboring cell,  subscript n  denotes 

the normal velocity component and subscript τ  denotes the tangential velocity 

component, superscripts in  and re  denote the values before and after striking the wall 

element, respectively. 

For steady flows, steps (2)-(5) are repeated until the flow reaches a steady state. 

Then steps (2)-(5) are further repeated to obtain the desired sampling size, and the step 

(6) is used to obtain the final results. For unsteady flows, steps (1)-(6) are repeated to 

reach the desired sample size, using ensemble averaging. 

 

3.6 Advantages and Disadvantages of the Information Preservation Method 

The IP method preserves the information of the flow, which contains much less 

statistical scatter compared with the DSMC method for low-speed flows. Therefore it is 

possible to simulate complicated low-speed rarefied gas flows using the IP method. 

Furthermore, the instantly available preserved cell information has other advantages, 

including that boundary conditions can be easily applied so that coupling the DSMC 

method and a continuum approach becomes easier. However, models used in the IP 

method need to be verified and the IP method requires more computer memory. 

3.6.1 Computational Cost of the IP Method  

The computational cost of the IP method has two aspects: memory cost and time 

cost. Compared with the DSMC method, the IP method requires more computer memory 

but generally takes much less time to obtain a solution for a low-speed flow simulation. 

For either the DSMC method or the IP method, the cells and particles require a 

great deal of memory to store their information, whereas other information and 

operations cost relatively little memory. Suppose the number of particles in each 
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computational cell is constant (a weight scheme can achieve this), the total memory cost 

for a DSMC or IP simulation can then be approximated as follows: 

 ( )particlepcellcellt MNMNM ⋅+⋅=  (3.68) 

where cellN  is the number of cells, pN  is the average number of particles in a cell, cellM  

is the memory cost of the cell information and particleM  is the memory cost of the particle 

information. 
Based on a 2D MONACO code, a particle uses about 7 float units ( x , y , xc , yc , 

zc , rotE  and vibE ) for DSMC and 11 float units (add xV , yV , T , aT ) for IP. A cell uses 

more than 40 float units for DSMC and uses an additional 11 for IP. Therefore, the IP 

method uses at most 57% (4/7=0.57) more memory than the DSMC method does. 

The DSMC method or the IP method also spends considerable time for each time 

step as can be seen from the DSMC-IP flow chart. If a steady flow is considered, the 

computational time can be expressed as follows:  
 ( ) cellcellsamplesteadyt TNNNT ⋅⋅+=  (3.69) 

where steadyN  is the number of time steps to reach a steady condition, sampleN  is the 

number of time steps for a specified sample size, and cellT  is the average time spent on a 

cell for one time step.  

Based on the flow chart, cellT  consists of the following parts: collT  for selecting 

collision pairs and performing collisions where the IP method spends extra but negligible 

time compared with the DSMC method, moveT  for generating new particles and moving 

all particles where the effect of the IP method is also small and negligible, IPT  for the IP 

method to update the particle information and to calculate cell information, and sampleT  for 

sampling the flow properties where the IP method spends about 20% extra time than the 

DSMC method. Overall, an IP step requires a little less than twice the time that a DSMC 

step requires because of the time IPT  and the extra memory that the IP method occupies. 

However, for low-speed gas flows, a DSMC simulation requires a very large sampleN  
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compared to steadyN , whereas an IP simulation has a much smaller sampleN . Details about 

the sample size are to be discussed in the next section. Generally, an IP simulation 

requires much less time than a DSMC simulation to obtain a satisfactory solution for 

micro-scale gas flows. 

3.6.2 Statistical Scatter of the IP Method  

The statistical scatter of the DSMC method arises directly from the thermal 

movement of particles whereas the thermal movement of particles causes scatter only at 

the macroscopic information level for the IP method. Fan and Shen (2001) have shown 

that an IP simulation reduces the sampling size required for a regular DSMC simulation 

of low-speed flows by four orders of magnitude. This provides a tremendous gain in 

computational time, which can lead to effective use of the IP method for microfluidics 

and MEMS simulations.  

The statistical scatter of the IP and DSMC methods can be illustrated quite well 

by several Couette flows. Figure 3.8 shows a schematic diagram of the flow. Table 3-4 

lists the scatter of the velocity in the middle between the two plates. These data were 

obtained by averaging 100 samples that are shown in Figures 3.9-3.13. The results show 

that the scatter from the DSMC method is independent of the flow velocity, and is at 

levels of about 11m/s for a sample size of 1000 particles, 6 m/s for a sample size of 

10,000 particles and 3 m/s for a sample size of 100,000 particles. These values are larger 

than the scatter predicted by 
N
RT2  from statistical theories for a completely 

independent sample process. The IP simulations, however, exhibit a different behavior. 

Specifically, the scatter from the IP method is smaller and is proportional to the flow 

velocity. Another phenomenon is that the Knudsen number of the flow affects the IP 

scatter; however, IP scatter can be decreased by increasing the sample size by one or two 

orders of magnitude. For a flow with V± = ±1m/s and Kn = 0.01, the IP scatter is less than 

0.01m/s with a sample size of 1000 particles whereas the DSMC scatter is more than 10 
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Figure 3.8. Schematic diagram for Couette flows for evaluating statistical scatter   

 

Table 3-4 Statistical scatter associated with the IP method  
and the DSMC method obtained from Couette flows  

Statistical Scatter (m/s) 
Flow condition 

Sample size 
(particles/cell) IP method DSMC method 

1000 0.6631 11.74 

10000 0.5864 6.284 
V± = ±100m/s 

Kn = 0.01 100000 0.2572 3.075 

1000 1.052 11.21 

10000 0.5704 5.067 
V± = ±100m/s 

Kn = 0.1 100000 0.1892 2.122 

1000 2.787 10.85 

10000 1.032 6.013 
V± = ±100m/s 

Kn = 1.0 100000 0.3845 1.832 

1000 0.006448 11.35 

10000 0.006916 5.820 
V± = ±1m/s 

Kn = 0.01 100000 0.002422 3.750 

1000 0.000046 10.33 

10000 0.000065 6.208 
V± = ±0.01m/s 

Kn = 0.01 100000 0.000023 3.433 

y = 0 m 

x
y 

plate 2:  T2 = 273K,  V+ 

plate 1:  T1 = 273K,  V- 

Argon gas

y = 1 m 
 

Kn 
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Figure 3.9. Statistical scatter obtained from simulating Couette flows  
when V± = ±100m/s and Kn = 0.01 
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Figure 3.10. Statistical scatter from simulating Couette flows  
when V± = ±100m/s and Kn = 0.1 
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Figure 3.11. Statistical scatter from simulating Couette flows  
when V± = ±100m/s and Kn = 1.0 
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Figure 3.12. Statistical scatter from simulating Couette flows  
when V± = ±1m/s and Kn = 0.01 
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Figure 3.13. Statistical scatter from simulating Couette flows  
when V± = ±0.01m/s and Kn = 0.01 
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 m/s for the same conditions. In order to obtain a scatter less than 0.01 m/s, the DSMC 

simulation requires a huge sample size. 

Comparison of sample size required by an IP or DSMC simulation can also be 

illustrated using Couette flows (Figure 3.8). For a flow with V± = ±100m/s and Kn = 1.0, 

the velocity distributions are shown in Figure 3.14 for the results obtained using the IP 

and DSMC methods. Clearly, the IP method only requires a sample size of 104 particles 

per cell to have a statistical scatter (about 1m/s) that requires the DSMC method to 

sample 106 particles per cell. For low-speed flows, the IP method can still predict a clear 

flow field with a sample size about 104 particles per cell, whereas the DSMC method may 

or may not be able to predict a meaningful result even with a large sample size. Such an 

example is illustrated in Figure 3.15 for a Couette flow with V± = ±1.0m/s and Kn = 1.0. 

The results show that the IP method predicts very satisfactory velocity distributions with 

a sample size of 104  particles per cell, whereas the DSMC method predicts results having 

a statistical scatter of about 0.2m/s even with a sample size of 108 particles per cell. As a 

result, it is very difficult or even impossible to simulate low-speed flows using the DSMC 

method. Therefore, the IP method is very helpful for simulating low-speed rarefied gas 

flows. 
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Figure 3.14. DSMC method requires a larger sample size compared with IP method 

when simulating Couette flows having V± = ±100m/s and Kn = 1.0 
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Figure 3.15. DSMC method is impossible to predict Couette flows having V± = 

±1.0m/s and Kn = 1.0, whereas IP method is helpful 
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3.6.3 Advantages of the IP Method  

The main advantage of the IP method comes from the small statistical scatter for 

simulating low-speed rarefied gas flows when compared to the DSMC method. The IP 

method provides a promising tool for simulating micro-scale gas flows where continuum 

approaches are generally invalid and the DSMC method is extremely numerically 

expensive. 

Another advantage of the IP method is that the macroscopic values of the flow 

field are available at any time because the cell information is sampled for each time step. 

Hence, complicated boundary conditions, including the characteristic line boundary 

condition, can be applied in the IP method, especially for subsonic flows where the far 

field boundary condition can not be easily implemented by the DSMC method. Any IP 

simulation contains the DSMC results; therefore the DSMC method can use the IP result 

to implement effective boundary conditions, which improves the effectiveness of the 

DSMC method. 

One more advantage of the IP method is that it can easily exhibit the development 

of a flow, which means it is quite easy to determine whether a simulation has reached a 

steady state or not. Such an example is illustrated in Figure 3.16 that displays the pressure 

history at several locations along a flat plate having thickness ratio of 5% and is placed at 

a 10-deg angle of attack in an otherwise uniform air stream. A similar DSMC simulation, 

however, has a pressure scatter of the same order of magnitude as the mean value, so that 

it is difficult to determine whether a flow reaches the steady state. 

3.6.4 Disadvantages of the IP Method  

The IP method, on the other hand, has several disadvantages compared to the 

DSMC method. However, the IP method can be further developed in the near future, so 

that these associated disadvantages may disappear. 
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The IP method is a relatively new method. The principle of the method merits 

further study and more physically accurate models may be developed. Another 

disadvantage of the IP method is that it has stability difficulties in some instances. The 

stability problem arises because the random movement of particles can cause instabilities 

for the preserved cell information. However, using smaller time steps or more simulated 

particles can solve this problem. 
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Figure. 3.16. Pressure history at several locations along a flat plate having 
thickness ratio of 5% under a flow with a 10-deg angle of attack   
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3.7 Conclusions 

In this chapter, the information preservation (IP) method is developed for 

simulating general low-speed rarefied gas flows. The method updates and samples 

macroscopic information that is preserved in simulated particles whose microscopic 

information is followed in the DSMC method. The principle of the IP method is 

explained and models are introduced in describing the preserved information. It is shown 

that the IP method exhibits small statistical scatter for low-speed flows and has 

significant advantages compared to the DSMC method. The validity of the method will 

be examined in the next chapter. 
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CHAPTER IV 

VALIDATION OF THE INFORMATION PRESERVATION METHOD 

In the previous chapter, the information preservation (IP) method exhibited its 

ability to reduce the statistical scatter associated with particle methods when simulating 

gas flows. In this chapter, the validity of the IP method is investigated for simulating 

micro-scale gas flows.  

A general approach for validating a new method is to apply the method to several 

benchmark problems and compare its results with existing experimental data or results 

obtained by previously validated methods. Unfortunately, there are few experimental data 

or simulation results in the literature for micro-scale gas flows. Hence, we have to 

consider rarefied gas flows for which the direct simulation Monte Carlo (DSMC) method 

can be applied with reasonable computational cost. The IP method is then evaluated by 

comparing the results from the IP method and those from the DSMC method for the 

selected test flows. Such test examples, however, will not adversely affect the evaluation 

of the IP method for simulating micro-scale gas flows because the selected rarefied gas 

flows and general micro-scale gas flows have similar underlying physics. 

In this chapter, four different flow problems are chosen to assess the IP scheme. 

In the first example, heat transfer between two plates at different temperatures (thermal 

Couette flow), the IP method is examined for its ability to simulate flows having a large 

temperature variation. In the second example, the IP method simulates a high-speed 

Couette flow. The balance between the energy dissipation and the thermal conductivity of 

the flow is investigated at different Knudsen numbers. In the third example, a general 

Rayleigh problem is studied, which reveals a limitation of the IP method for simulating 
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unsteady flows. In the final example, flow over a NACA0012 airfoil, the IP method 

shows an application for simulating general two-dimensional problems. At the end of this 

chapter, a brief conclusion is given about the validity of the IP method for simulating 

micro-scale gas flows.  

 

4.1 Thermal Couette Flows 

It is important to investigate the ability of the present IP scheme to simulate flows 

having temperature variations because previous studies have shown that the IP method is 

capable of simulating isothermal flows. One such flow is a heat transfer flow between 

two plates at different temperatures that is called thermal Couette flow in this thesis. This 

flow is one of the most fundamental problems in rarefied gas dynamics. Studies by 

Teagen and Springer (1968) and Ohwada (1996) have shown that the thermal Couette 

flow cannot be solved by approximate approaches, including moment methods. The 

DSMC method, however, predicts the same results as those obtained by solving the 

Boltzmann equation using an accurate finite difference method (Kosuge et al., 2001).  
 

 

 

 

 

Figure 4.1. Schematic diagram for thermal Couette flows 

A schematic diagram of the thermal Couette flow is illustrated in Figure 4.1. The 

two plates at rest are 1m apart, with one at 173K and the other at 373K. Between the two 

plates is an argon gas whose density is selected such that the Knudsen number (Kn) of the 

flows at 273K ranges from 0.01 to 100. The computational domain between the two 

y = 0 m 

y = 1 m 

x
y 

plate 2: α2, T2 = 373K, Vx,2 = 0 

plate 1: α1, T1 = 173K, Vx,1 = 0 

argon gas 



70 

 

plates is divided into 200 computational cells with a cell spacing of less than one mean 

free path of the gas for all simulated cases. The time step is 2.5×10-6 second, which is 

much less than the mean collision time for all cases. Therefore, the cell spacing and the 

time step satisfy the requirements for a DSMC simulation. With the previous physical 

and numerical specification, a DSMC simulation needs a sample size of about 100,000 

particles per cell to obtain a meaningful result, whereas an IP simulation only requires a 

sample size of 1,000 particles per cell for the case with Kn=0.01 and a sample size of at 

most 10,000 particles per cell for the case with Kn=100. However, for the results given in 

this section, a much larger sample size of 20,000,000 particles per cell is used after the 

simulations run for 100,000 time steps to ensure that the steady state is reached for both 

methods. This large sample size is used because it is better to obtain smoother results to 

validate the IP method and because a single simulation code is used for which both 

results are obtained at the same time. 

The temperature profiles obtained from the IP and DSMC methods are illustrated 

in Figure 4.2 for flows having different Knudsen numbers when the thermal 

accommodation coefficient for both plates is 1.0. Excellent agreement is obtained 

between the IP and DSMC results for Knudsen numbers of 0.01, 0.1, 1.0 and 100. When 

the Knudsen number is 10, a small difference between the two results is observed. This 

difference is relatively small, however, for such a strongly non-equilibrium flow. The 

results illustrated in Figure 4.2 also show that the temperature jump at both gas-plate 

surfaces increases as the Knudsen number of the flow increases. This results in a 

decreasing gradient of the gas temperature with increasing Knudsen number.  

The heat fluxes obtained from both methods are illustrated in Figure 4.3. Again, 

very good agreement between the two methods is obtained. These results show that the 

heat flux decreases when the Knudsen number increases (the sign of the heat flux 

indicates the flux direction). However, if the heat flux ( q ) is nondimensionalized as 

shown in Equation 4.1, and is normalized by the heat flux (Equation 4.2) obtained from 
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Figure 4.2. DSMC method and IP method predict similar temperature profiles 

for the thermal Couette flows at different Knudsen numbers 
(Kn = 0.01, 0.1, 1, 10, 100 as labeled in the plot; circle: IP, line: DSMC)  
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Figure 4.3. DSMC method and IP method predict similar heat flux profiles 

for the thermal Couette flows at different Knudsen numbers  
(Kn = 0.01, 0.1, 1, 10, 100 as labeled in the plot; circle: IP, line: DSMC) 
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free-molecular theory (Gombosi, 1994), the normalized heat flux FMQQ  exhibits a 

different behavior: the heat transfer increases when the Knudsen number of the flow 

increases as shown in Figure 4.4. 
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where 0ρ  is the average density of the flow, and ( ) 2210 TTT +=  is the average 

temperature of the two plates. 
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Figure 4.4. Normalized heat flux as a function of the Knudsen number  

for the thermal Couette flows 

The IP method is also examined for its ability to deal with different wall 

conditions. For this purpose, two flow conditions are considered with Knudsen numbers 

of 0.01 and 1.0. For a Knudsen number of 0.01, the thermal accommodation coefficient 

for both plates is set to 1.0, 0.8, 0.6, 0.4, and 0.2 in turn. When the Knudsen number is 

1.0, several combinations of values for the thermal accommodation coefficient of the 
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plates are used to further investigate the effects of the wall condition. As shown in 

Figures 4.5 and 4.6, the agreement between the IP results and the DSMC results is very 

good. The figures also show that the thermal accommodation coefficient plays an 

important role for both methods. A small coefficient generally results in a large 

temperature jump and a small temperature gradient because few gas molecules 

accommodate to the plate condition. Therefore, the effects of the thermal accommodation 

coefficient must be considered when modeling micro-scale gas flows as experiments, 

e.g., Arkilic (1997), have shown that the thermal accommodation coefficient is around 

0.8 for some gases in contact with a prime silicon crystal. 
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Figure 4.5. DSMC method and IP method predict similar temperature profiles 

for the thermal Couette flows under different wall conditions when Kn=0.01  
(α = 1.0, 0.8, 0.6, 0.4, 0.2 for both plates; circle: IP, line: DSMC) 
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Figure 4.6. DSMC method and IP method predict similar temperature profiles 

for the thermal Couette flows under different wall conditions when Kn=1.0 
(α1 = 1.0, 0.9, 0.7, 0.5, 0.3 for the plate at y = 0m, and α2 = 1.0, 0.7, 0.5, 0.3, 0.1  

for the plate at y = 1m; circle: IP, line: DSMC)  
 
 

4.2 High-Speed Couette Flows 

The previous example has shown that the IP method is able to simulate rarefied 

heat transfer flows. In this section, the IP method is applied to flows where both the 

viscosity and the thermal conductivity are important. A good example for this kind of 

flow is a high-speed Couette flow. In such a flow, the energy dissipation of the flow 

causes the gas temperature to have a significant increase, which requires the thermal 

conductivity and the energy dissipation to be balanced in order to reach a steady state 

condition. 

The schematic diagram of the Couette flows is illustrated in Figure 4.7. The two 

parallel plates are 1m apart with one at rest and the other moving with a velocity of 

300m/s. The temperature of both plates is 273K, and the gas between the two plates is 

argon. A similar case (Kn=0.00925) can be found in Bird (1994) where a detailed 
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analysis is provided. In the current simulation, the IP method is examined for simulating 

Couette flows ranging from the near-continuum regime to the free-molecular regime, 

with the same numerical specifications as in the previous example. 
 

 

 

 

 

Figure 4.7. Schematic diagram for the high-speed Couette flows 

The velocity profiles obtained from the IP and DSMC methods are shown in 

Figure 4.8 for flows having different Knudsen numbers. Clearly, the agreement between 

the IP results and the DSMC results is excellent. Figure 4.8 also shows the velocity 

distribution is anti-symmetric, and that the slip velocity on both surfaces increases when 
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Figure 4.8. DSMC method and IP method predict similar velocity profiles 

for the Couette flows at different Knudsen numbers  
(Kn = 0.01, 0.1, 1, 10, 100 as labeled in the plot; circle: IP, line: DSMC) 
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the Knudsen number of the flow increases. The temperature profiles of the flows are 

illustrated in Figure 4.9. Again, the agreement between the IP and DSMC results is very 

good except that the DSMC results exhibit some statistical scatter. It is found that the gas 

temperature increases when the Knudsen number of the flow increases because the 

energy dissipation increases.  
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Figure 4.9. DSMC method and IP method predict similar temperature profiles 

for the Couette flows at different Knudsen numbers 
(Kn = 0.01, 0.1, 1, 10, 100 as labeled in the plot; circle: IP, line: DSMC) 

The shear stress distributions between the plates for the condition of Figure 4.9 

are plotted in Figure 4.10. Good agreement is obtained between the results obtained from 

the IP and DSMC methods although there is a small difference of 2% between the IP 

results and the DSMC results. However, this difference is not surprising, because the 
constant µC  in the IP collision model is determined when the IP shear stress obtained 

from a Couette flow having Kn=0.01 agrees with the value evaluated from the continuum 

theory. A similar difference is also found by Bird (1994): the shear stress (0.00624Nm-2) 

obtained using the DSMC method for the case with Kn= 0.00925 is a little smaller than 

the expected value (0.00639Nm-2) evaluated from the continuum theory. This difference 
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occurs because the continuum theory cannot exactly describe a flow having Kn=0.01 

because a slip velocity about 3.1m/s is observed for this flow condition. Thus, the IP 
method may use the DSMC result to adjust the value of the constant µC ; however, such 

an adjustment is not necessary for practical applications because this difference is 

negligible. 
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Figure 4.10. DSMC method and IP method predict similar shear stress profile 

for the Couette flows at different Knudsen numbers 
(Kn = 0.01, 0.1, 1, 10, 100 as labeled in the plot; circle: IP, line: DSMC) 

 

4.3 Rayleigh Flows 

The previous two examples show that the IP method can simulate steady gas 

flows across a wide range of Knudsen number. It is also interesting to assess the validity 

of the IP method for simulating unsteady flows. One typical unsteady flow is a Rayleigh 

flow. 

A Rayleigh flow is an unsteady flow in which a plate below a gas at rest suddenly 

acquires a constant parallel velocity and a constant temperature. In Figure 4.11, the argon 
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gas is at rest at time t=0 with a temperature of 273K. When t>0, the plate moves with a 

constant velocity of 10m/s and has a constant temperature of 373K. The plate will then 

continue to heat the gas and will also transfer its momentum to the gas. Therefore, the gas 

starts to move and the flow becomes unsteady. 

 

 

 

 

Figure 4.11. Schematic diagram for Rayleigh flows 

There is an analytical solution (Bird, 1976) to the Rayleigh flow problem for 

times much less than the mean collision time 0τ  ( mvλτ =0 , where mv  is the mean 

molecular speed having a value of πRTvm 8= ): 
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where ( ) 2
1

2 −= RTβ , ( ) 2
1

2 −= ww RTβ , ( )erf  and ( )erfc  are the error and the 

complementary error functions, respectively. 

The previous equations, however, can only describe flows when the molecular 

collisions can be neglected. Thus, a numerical method is required to simulate the flow 

y = 0 m 

x
y 

Outer boundary 

plate 1: α = 1.0, T1 = 373K,  Vx = 10m/s 

argon gas, T= 273 K, Vx = 0 
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when the time is larger than the mean collision time. For the current numerical 

simulations, the initial density of the argon gas is varied so that the unsteady flow is 

limited in the current computational domain for a specific time. The computational 

domain as shown in Figure 4.11 is divided into 200 computational cells. The cell spacing 

is generally less than one mean free path of the gas, and otherwise the sub-cell technique 

(Bird, 1994) is used. The time step is 7.0×10-7 second that is much less than the mean 

collision time for all cases. A total sample size of 5,000,000 particles per cell is used in 

order to obtain a meaningful DSMC result for all the cases. 

The simulated results at t=0.01 0τ  are illustrated in Figure 4.12 for the IP and 

DSMC methods along with the analytical solution. Clearly, the DSMC results agree well 

with the analytic solution, whereas the IP method fails to predict the correct results 

except for the parallel velocity distribution. This is because all particles in the IP 

implementation carry the same energy when they reflect from the plate. However, when 

molecules leave the plate, those molecules having larger thermal velocities carry more 
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Figure 4.12. Profiles for the Rayleigh flow at t=0.01 0τ  with 0λ =26.6m 

(circle: IP, dot line: DSMC, solid line: collisionless flow theory) 
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energy; as a result, the energy transferred from the plate can be carried farther into the 

gas. Therefore, for the region far from the plate (y>0.3m), the temperature predicted by 

the IP method is smaller than the analytic result, whereas it is larger than the analytical 

result for the near plate region (y<0.3m). The density profile and normal velocity profile 

are affected by the wrong temperature profile in the IP method, whereas the parallel 

velocity profile is correct because the IP implementation only affects the energy 

transport. 

The previous situation is improved as time increases, see Figures 4.13-4.16. When 

the time t=10 0τ , the particles undergo 10 collisions on average. Thus the effect of 

random movements of the particles reflected from the plate is decreased due to collisions. 

Thus, the implementation of the IP method tends to be correct when there are enough 

collisions. Figure 4.16 shows that the agreement between the IP results and the DSMC 

results is very good when the time t=100 0τ . Therefore, the energy flux model in the IP 

method works fine for this flow when the time is not too small.  
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Figure 4.13. Profiles for the Rayleigh flow at t=0.1 0τ  with 0λ =2.26m  

(circle: IP, line: DSMC) 
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Figure 4.14. Profiles for the Rayleigh flow at t=1 0τ  with 0λ =0.226m   

(circle: IP, line: DSMC) 
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Figure 4.15. Profiles for the Rayleigh flow at t=10 0τ  with 0λ =0.0226m   

(circle: IP, line: DSMC) 
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Figure 4.16. Profiles for the Rayleigh flow at t=100 0τ  with 0λ =0.00226m 

(circle: IP, line: DSMC) 

 

4.4 Flow Over a NACA0012 Airfoil 

One-dimensional flows are selected as test examples because of their well defined 

properties. However, the IP method is not limited to 1D flows. In this section, an air flow 

around a NACA0012 airfoil having a chord length of 0.04m is considered. The detailed 

flow condition is summarized in Table 4-1, where Re∞ and Kn∞ are based on the chord 

length. Again, the selected flow velocity is not very small so that reasonable DSMC 

results can be obtained. Some experimental data and a Navier-Stokes solution of the flow 

for these conditions can be found in Fan et al. (2001). 
 

Table 4-1 Free stream conditions for flow over a NACA0012 airfoil 

Ma∞ Re∞ Kn∞ Lchord (m) ρ∞ (kg/m3) U∞ (m/s) T∞ (K) Tw (K) 

0.8 73 0.014 0.04 1.116×10-4 257 257 290 



83 

 

The computational domain is illustrated in Figure 4.17, which exploits the 

symmetry of the problem. The whole domain is divided into 9,120 non-uniform 

structured cells that are clustered near the airfoil. On average, about 50 particles are 

located in each cell. Free-stream flow conditions are applied at all the boundaries except 

for the symmetric line of the airfoil and the downstream boundary where a gradient 

boundary condition is adopted, because the computational domain is much larger than the 

airfoil. The time step is set to  5×10-8s, which is smaller than the mean collision time of 

the particles. In order to reach the steady state, 30,000 iterations are executed before 

sampling the flow field.  
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Figure 4.17. Computational grids for flow over a NACA0012 airfoil 
 

The density contours, non-dimensionalized by the free stream density, are 

illustrated in Figures 4.18 and 4.19 for the DSMC and IP methods, respectively. The total 

sample size used for the DSMC and IP results is about 450,000 particles per cell. 

However, the contours in the DSMC results are still not smooth due to statistical scatter. 

The simulated density distributions exhibit the same basic features for both methods and 

the agreement between the density fields around the airfoil for the two methods is 

excellent.  
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Figure 4.18. Density flow field ( ∞ρρ ) obtained using the DSMC method  

for flow over a NACA0012 airfoil 
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Figure 4.19. Density flow field ( ∞ρρ ) obtained using the IP method  

for flow over a NACA0012 airfoil 
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It is also important to examine the surface properties of the airfoil obtained using 

the DSMC and IP methods. Figure 4.20 shows the slip velocity distributions obtained 

using both methods. Here, the slip velocity is the flow velocity of the air attached to the 

wall. Figures 4.21 and 4.22 show the pressure distributions and the shear stress 

distributions on the airfoil surface obtained using the two methods. Once again, very 

good agreement is obtained between the results using the IP and DSMC methods for the 

results illustrated on these plots.  

It would be very interesting to compare the temperature profiles from the DSMC 

and IP methods to check the validity of the energy transfer model in the IP method for 

this flow with large bulk velocity. However, a huge sample size is needed to obtain a 

smooth temperature profile for the DSMC method. Although a comparison of the 

temperature is not available for this problem, the good agreement of other properties 

computed by the IP and DSMC methods suggests that the energy transfer model can be 

accepted for flows having a large bulk velocity. 
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Figure 4.20. DSMC method and IP method predict similar  
slip velocity distributions for flow over a NACA0012 airfoil 
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Figure 4.21. DSMC method and IP method predict similar surface pressure 

distributions for flow over a NACA0012 airfoil 
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Figure 4.22. DSMC method and IP method predict similar shear stress 

distributions for flow over a NACA0012 airfoil 
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4.5 Conclusions 

The IP method was proposed to simulate micro-scale gas flows. Being a particle 

method, the IP method cannot be rigorously proved mathematically. The validity of the 

method was tested and verified using several typical rarefied gas flows.  

The thermal Couette flows showed that the IP method was able to predict the 

thermal conductivity of the flow and give the correct temperature distribution for a wide 

flow regime and with different wall conditions. The Couette flows showed the ability of 

the IP method to simulate flows where both thermal conductivity and viscosity are 

important. The example of a transonic gas flow over a NACA0012 airfoil also showed 

that the IP method performed well for general 2D steady flows. The Rayleigh flows, 

however, showed that the proposed IP implementation was good for unsteady flows only 

when each particle underwent enough collisions, which means that the IP method is also 

good for low frequency unsteady flows. Hence, it is concluded that the IP method can be 

applied to general steady flows and to low frequency unsteady flows.  

Specifically, the current implementation of the IP method is suitable to simulate 

general micro-scale gas flows for several reasons. First, micro-scale gas flows exhibit 

rarefied phenomena that require a kinetic scheme. Second, the low gas-speed in micro-

scale gas flows means the approximation made in the evaluation of the additional energy 

is acceptable. Third, few micro-scale gas flows are reported for a time less than several 

mean collision times, which means that it is not necessary for the IP method to preserve 

all detailed information about microscopic molecules. Therefore, the current 

implementation of the IP method can simulate micro-scale gas flows with high accuracy. 
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CHAPTER V 

DEVELOPMENT OF A HYBRID CONTINUUM/PARTICLE APPROACH 
FOR MODELING MICRO-SCALE GAS FLOWS 

Micro-scale gas flows are usually subsonic; therefore, there are regions of these 

flows where the continuum equations are valid. In particular, simulating an external flow 

involves a computational domain that is much larger than the micro-scale system itself; 

then most of the computational domain can be described by the continuum equations. 

Therefore, it is desired to use continuum approaches to simulate the flow in regions 

where continuum equations are valid, and to adopt kinetic approaches for other regions, 

because continuum solvers are much more numerically efficient than kinetic approaches 

(including the information preservation (IP) method). Hence, an effective approach for 

simulating micro-scale gas flows is a hybrid approach by combining the physical 

accuracy of a kinetic method and the numerical efficiency of a continuum solver.  

Obviously, the IP method is a good choice as the kinetic method for a hybrid 

approach because the IP method exhibits small statistical scatter and has the macroscopic 

information available at any time, which can avoid many difficulties encountered when 

the DSMC method is used. The continuum method in a hybrid approach can be an 

algorithm that solves the Euler equations, the Navier-Stokes equations, or the Burnett 

equations. However, the Euler equations are only valid for regions where the viscosity 

and the thermal conductivity of the flow can be neglected. The Burnett equations, on the 

other hand, are not easy to use and are relatively expensive to solve. Hence, an approach 

solving the Navier-Stokes equations is often used as the continuum solver in a hybrid 

code.  
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In this chapter, a hybrid approach is developed by coupling the IP method and the 

continuum solver that is described in Chapter II. Details about coupling the IP method 

and the Navier-Stokes solver are described in Section 5.1. The determination of the 

continuum/particle interface is presented in Section 5.2. An implementation of the hybrid 

approach is described in Section 5.3. Then the hybrid approach is validated in Section 5.4 

with its numerical performance shown in Section 5.5. Finally, a brief conclusion about 

the development of the hybrid approach is presented in Section 5.6. 

 

5.1 The Coupling Between the IP Method and the Navier-Stokes Solver 

One key issue of a hybrid approach is how to pass information from one solver to 

the other. Generally, the particle solver (the IP method in the present hybrid approach) 

and the continuum solver are coupled with an interface that acts as a boundary for both 

solvers. Specifically, the particle solver needs the interface to generate particles based on 

information from the continuum solver, whereas the continuum solver needs fluxes 

through the interface that requires information from the particle solver.  

For general hybrid approaches, the boundary condition for the continuum solver is 

very difficult or expensive to obtain due to the large statistical scatter associated with the 

particle solver. However, the IP method preserves the macroscopic information in cells 

with very small statistical scatter. Comparison of the statistical scatter obtained using the 

IP method and the DSMC method is illustrated in Figure 5.1 by showing the density 

profile along a straight line from a low-speed gas flow over a flat plate. Therefore the 

continuum solver can directly use the macroscopic information preserved in the IP cells 

to evaluate the fluxes through the interface. Then the interface is totally internal to the 

continuum solver. 

On the other side, the interface provides particles for the particle solver. In many 

hybrid approaches, the number of generated particles and their microscopic information 
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(b) A sample size of 20,000 particles per cell with 1,000 time steps 
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(c) A sample size of 20,000,000 particles per cell with 1,000,000 time steps 

Figure 5.1. Density profiles obtained using the IP method and the DSMC method 
along a straight line from a low-speed gas flow over a flat plate 
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are determined from half fluxes based on the macroscopic properties at the interface. 

However, it is only valid for equilibrium flows to sample the velocity for particles from a 

Maxwellian distribution. In order to have a larger continuum domain, it was suggested by 

Hash and Hassan (1997) to sample the velocity of particles from a Chapman-Enskog 

distribution (Equations 5.1-5.4). Furthermore, ideas were reported by Garcia et al. (1999) 

for generating particles based on the macroscopic values on the interface and their 

gradients on the nearby continuum cells. In the present hybrid approach, two different 

strategies are used to generate particles through the interface from the continuum domain.  
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In the first strategy, a condition similar to the Marshak condition (Hash and 

Hassan, 1996) is used: the full fluxes crossing the interface based on the local 

macroscopic values are set to be the sum of the counted half fluxes from the IP side and 

the half fluxes from the continuum side that are to be determined. Details of this 

condition are shown in Equations 5.5-5.7, where f  is the full flux, e  is the internal 

energy, and subscripts p  and c  represent the IP side and the continuum side, respectively. 

These equations determine the number of generated particles and the macroscopic 

information for these particles, whereas the microscopic information for the particles is 

sampled from the Chapman-Enskog distribution based on the local macroscopic values 

(Garcia et al., 1998). Because particles cannot be generated as a fractional number, the 

number of generated particles is rounded to the nearest integer in the present 

implementation. The difference of the half fluxes due to this rounding process is stored 
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and is added to the next time step ensuring that the half fluxes from the continuum side 

are implemented correctly.  
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This strategy has been tested for several flows. It turns out that the coupling 

process works well when the number of simulated particles in each cell is not too small 

(more than 50 for 1-D flows and more than 200 for 2-D flows). However, the code may 

crash when there are not enough particles in cells. This occurs because the macroscopic 

information of generated particles may have large fluctuations due to the rounding of the 

number and to the fluctuation of the number of particles leaving the particle domain. 

Therefore, this strategy should be reserved for flows when it is possible to use a large 

number of particles. 

A second strategy is then developed to avoid directly generating particles on the 

interface. Near the interface, buffer and reservoir cells are used in the continuum domain 

as illustrated in Figure 5.2. These buffer and reservoir cells are also treated as particle 

cells except that the macroscopic information about the cells is provided by the 

continuum solver. Hence, the interface becomes the internal cell edge for the IP 

treatment. Specifically, the reservoir cells are used to generate particles that can enter the 

IP domain, which avoids directly generating particles on the interface. The buffer cells, 

however, are used to improve the quality of the particles that enter the IP domain. The 

algorithm for this strategy is as follows: 

1) In the initialization step, particles are generated for the buffer cells according to 

the Chapman-Enskog distribution based on the local macroscopic information. 
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Figure 5.2. Illustration of the interface and cell structures  

for the hybrid continuum/particle approach 

2) During each time step, new particles are generated for the reservoir cells 

according to the Chapman-Enskog distribution. 

3) Particles in the buffer cells and reservoir cells are selected for collisions and 

motion using general IP procedures. A particle is removed when it enters a non-particle 

cell. 

4) After the collision and movement sub-steps, all particles in the reservoir cells 

are removed. 

5) Steps 2-4 are repeated until the simulation is finished. 

With the previous algorithm, using more buffer cells will improve the interface 

properties, but will increase the computational cost. Hence, only one or several levels of 

buffer cells are used. The number of reservoir cells is also determined such that only a 

negligible number of particles will enter a buffer cell from a continuum cell during one 

time step. Generally, two or more levels of reservoir cells are required. This second 

strategy works very well, as will be shown in Section 5.4.     
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5.2 Determination of the Continuum/Particle Interface 

Another key issue of a hybrid approach is where to divide the whole 

computational domain into particle and continuum domains. There are two criteria to 

determine the continuum/particle interface. The first one is that both solvers must be 

valid to simulate the flow around the interface, and the second one is that the continuum 

domain should be as large as possible in order to achieve the maximum efficiency benefit 

from a hybrid approach. It turns out that the interface should be placed in locations where 

the continuum equations tend to break down since the IP method is valid for the whole 

computational domain. Hence, a continuum breakdown parameter should be adopted to 

determine the interface location. 

In principle, a continuum breakdown parameter can be derived from the 

relationship between the Boltzmann equation and the Navier-Stokes (N-S) equations. The 

Navier-Stokes equations approximate the Boltzmann equation under near-equilibrium 

conditions. Hence, any approximation made to derive the N-S equations can be used to 

derive a continuum breakdown parameter, such as the Knudsen number. A general 

procedure deriving the N-S equations is to use the Chapman-Enskog theory (Bird, 1994). 

It turns out that the N-S equations are not valid when the nonlinear terms in the 

Chapman-Enskog expansion become important. Physically, the continuum equations 

break down when the velocity distribution function deviates from its equilibrium state by 

a sufficient degree. However, there is no theory that indicates how large the nonlinear 

terms in the expansion should be, or how far the function should deviate from 

equilibrium for the N-S equations to be invalid. Therefore, research is still needed to find 

an effective continuum breakdown parameter. 

In the literature, several continuum breakdown parameters have been proposed, 

including Bird’s parameter P  (Bird, 1970), the gradient-length local Knudsen number 

GLLKn  (Boyd et al., 1995), Tiwari’s criterion φ  (Tiwari, 1998), and the parameter B   
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(Garcia et al., 1999). These four parameters are illustrated in Equations 5.8-5.11, along 

with their initial notations. However, only the parameter P  and the parameter GLLKn  

have been extensively investigated for simulating expanding jet flows and for simulating 

hypersonic compressible flows, respectively. Therefore, the validity of these parameters 

for micro-scale gas flows is not clear although all these parameters represent some kind 

of combination of the coefficients in the first order Chapman-Enskog expansion. Even if 

a parameter is acceptable for a certain type of flow, the cutoff value for the parameter is 

also difficult to determine. Some researchers investigate the cutoff value by computing 

the breakdown parameter when differences between a continuum solution and a kinetic 

result are larger than 5% whereas some simply take a small number as the cutoff value. 

Generally, the cutoff value can only be determined by numerical tests, which means the 

cutoff value depends on tolerance chosen for the difference between the hybrid solution 

and the kinetic result. It is also possible that the cutoff value is problem-dependent 

because flow problems vary in their physical behavior. Therefore, a conservative cutoff 

value is often used in applications of a hybrid approach. 
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In the present implementation of the hybrid approach, the breakdown parameter 

B  is selected to be the particle/continuum interface indicator because this parameter 

includes all the coefficients of the first-order Chapman-Enskog expansion. However, 

other parameters can be implemented in the code without any difficulty. The effects of 
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the cutoff value of the continuum breakdown parameter are illustrated in Section 5.4 by 

an example.  

The continuum/particle interface is physically determined by the continuum 

breakdown parameter. Hence, the interface keeps on adjusting its location as the 

simulated flow develops with time. For this purpose, a mapping technique is used to help 

relocate the interface. A similar technique can be found in the work by Roveda et al. 

(1998). 

In the mapping technique, each computational cell is assigned a three-digit 

number to represent the type of a cell, which can be an IP cell, a reservoir cell, a buffer 

cell, or a continuum cell other than buffer or reservoir cell. The number is in the form of 

“a+10b+100c”. Here, “a” indicates whether the cell is in the continuum domain (0) or the 

IP domain (1). “b” shows whether the cell is adaptive (0) or not (1), which means that 

cells can be forced to be of a fixed type. “c” is used to indicate the levels of buffer cells 

or reservoir cells, or to indicate the IP cells neighboring the interface. Figure 5.3 shows a 

simple map that illustrates the cell types and the interface. 
 

 

 

 

 

 

 

Figure 5.3. An illustrative map showing the cell types and the interface 
 

The algorithm for setting the cell type is as follows. 

1) Sweep all computational cells to determine “a” by comparing the cutoff value 

of the continuum breakdown parameter to its local value. If the local value is smaller than 
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the cutoff value, the cell is determined as a continuum cell (a = 0). Otherwise, it is an IP 

cell (a = 1). Generally, “b” does not change after it is initialized.  

2) Set “c” to 1 for all cells neighboring the interface. 

3) Set “c” to i+1 for the continuum cells neighboring buffer cells or reservoir cells 

whose “c” is i (i>0) until all the buffer cells and reservoir cells are marked. 

 

5.3 Implementation of the Hybrid Approach 

In the present hybrid approach, both the IP method and the Navier-Stokes solver 

are implemented in the MONACO system with one structured or unstructured grid. 

Because each computational cell can be handled by either solver, each cell has the 

information for both solvers, including the cell type, the continuum breakdown 

parameter, the density, the velocity, the temperature, the fluxes at each cell edge, and the 

particle information. For each cell, a solver is chosen by the cell type that is determined 

by the continuum breakdown parameter. If the continuum solver is chosen, then the 

macroscopic information is evaluated based on the fluxes through each cell edge. 

Otherwise, the macroscopic information is updated using the particle information. 

The algorithm of the current implementation with our second strategy for 

generating particles through the interface is presented here: 

1) All necessary information for the simulation is initialized. Namely, the 

computational cells are defined and the cell type is initialized as desired. The 

macroscopic information about the cell is set according to the ambient condition. Then 

particles are distributed for the IP cells, the buffer cells, and the reservoir cells. 

During each time step, the following operations are executed. 

2) All particles collide and move similar to the usual IP code. When a particle 

reaches an open boundary or a continuum cell other than a buffer cell or a reservoir cell, 

it is removed. New particles are injected at the open boundary, but no particles are 

generated from the continuum cell side. 



98 

 

3) The macroscopic values of all cells are re-evaluated. All continuum cells 

including the buffer cells and the reservoir cells update their values according to the 

Navier-Stokes solver, whereas all IP cells sample the macroscopic information from the 

preserved information of the particles contained in the cell. 

4) Remove all particles in the reservoir cells because particles are to be re-

generated. 

5) Calculate the continuum breakdown parameter for every cell and use the 

interface mapping algorithm to set the new cell type for each cell. Then generate particles 

according to the Chapman-Enskog distribution for particle cells (including the buffer 

cells and the reservoir cells) if they do not have a particle, and remove particles from the 

continuum cells (excluding the buffer cells and the reservoir cells) that are occupied by 

particles. In many cases, it is not necessary to adjust the interface at every time step. 

Hence, a frequency for adapting the interface can also be implemented in the code. 
 

5.4 Validation of the Hybrid Approach 

The proposed hybrid approach has been applied to several flow simulations. In 

this section, a Couette flow is simulated using the hybrid approach with the first strategy 

of generating particles for the IP solver from the continuum side, which shows the 

validity of the approach. Another example of a flow over a flat plate is used to show the 

ability of the hybrid approach using the second strategy of generating particles and to 

reveal the effects of the cutoff value of the continuum breakdown parameter B. 

5.4.1 A Couette Flow 

The Couette flow is well defined and is often used to evaluate a numerical 

approach (Hash and Hassan, 1996). In the present simulation, this flow is used to assess 

the first strategy of generating particles through the interface for the hybrid continuum / 

particle approach. It is also used to evaluate the validity of general continuum breakdown 

parameters. 
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In the Couette flow, one of two parallel plates has a velocity of 300m/s whereas 

the other is at rest. The temperature of both plates is kept at 273K, and full momentum 

and thermal accommodation is assumed for both plates. The distance between the two 

plates and the nominal density of the flow are compatible so that the body-length global 

Knudsen number of the flow is 0.01, 0.03, or 0.1. In all three cases ( BLGKn =0.01, 0.03, 

and 0.1), 200 computational cells are used with a cell size that is less than the mean free 

path of the argon gas. The particle/continuum interface is fixed in all three cases so that 

70% of the cells are calculated by the Navier-Stokes solver (see Figure 5.4). It is found 

that roughly 50 particles for a particle cell is sufficient to obtain a satisfactory solution 

when BLGKn =0.01, whereas more than 500 particles are required to avoid the crash of the 

code when BLGKn =0.1. 

The results obtained using the hybrid approach are illustrated in Figure 5.4, where 

these results are compared with the full IP results. When BLGKn =0.01, excellent 

agreement between the two results is obtained, which shows the consistency of the hybrid 

approach and the full IP method. When BLGKn =0.03, the smooth results obtained using 

the hybrid approach demonstrate that the interface is still working well. However, the 

slight difference in the temperature profile between the two results in the continuum 

domain indicates that the continuum equations are beginning to fail. When BLGKn =0.1, 

the distorted profiles obtained using the hybrid approach around the interface indicates 

that the Navier-Stokes equations are not valid there, which also means it is impossible for 

continuum equations with slip models to predict the flow under this condition.    

Next, the general continuum breakdown parameters are evaluated for this Couette 

flow. The parameter P , which was proposed for predicting expanding flows, fails for this 

flow because the mass density does not change along the streamline. Some other 

parameters are shown with their profiles calculated from the full IP results in Figure 5.5. 

These results show that the gradient-length local Knudsen number also fails because this 

parameter is mainly zero (excluding the scatter) around the centerline of the Couette 
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Figure 5.4. Comparison of the velocity and temperature distributions  
obtained using the IP code (circle) and the hybrid code (line) 
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Figure 5.5. Profiles of the continuum breakdown parameters  

KnGLL, ||φ|| and B for the Couette flows for various KnBLG 
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flow. However, the parameter ||φ|| and the parameter B  display similar reasonable 

behavior. Their values increase when the flow becomes more rarefied. It can be 

concluded that the cutoff value of these two parameters is on the order of 0.03 for this 

flow, based on the results illustrated in Figure 5.4. However, the cutoff value may vary 

for different flows. 

5.4.2 Flows over a Flat Plate 

For subsonic external micro scale gas flows, a hybrid approach is no doubt the 

best choice for simulations because most of the computational domain can be described 

by the continuum equations. In this section, an airflow over a flat plate is simulated using 

the hybrid approach with the first strategy of generating particles for the particle solver.  

The length of the plate is 20 microns and it has a fixed temperature of 295K. The 

free stream has a Mach number of 0.2, a temperature of 295K, and a density of roughly 

1.32 kg/m3. Thus, the Reynolds number of the flow is about 10, and the body-length 

global Knudsen number is roughly 0.024. In the simulation, full thermal accommodation 

is assumed for the plate and the VHS molecular model is used. A computational domain 

is set up having 60 microns in the upstream region, 130 microns in the downstream 

region and a full span of 120 microns. Characteristic boundary conditions are adopted for 

the external boundaries. On average, about 20 particles are used for each particle cell, and 

the time step is less than the mean collision time of the molecules. 

With the previous specifications, we simulate the flow using the hybrid approach 

with different continuum/particle domain configurations. If the entire computational 

domain is simulated by the IP solver, then the full IP solver is recovered from the hybrid 

approach. Similarly, the full Navier-Stokes solver is used when the whole flow is 

computed by the continuum solver. Figure 5.6 shows a comparison of typical results 

obtained with different domain configurations. For the general hybrid result in this figure, 

the cutoff value of the parameter B  is set to 0.005, and the dashed line indicates the 
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continuum/particle interface. The overall agreement among these results is good because 

the flow is in the slip regime. However, some differences are shown in Figure 5.7 for the 

surface properties. The slip velocity is the flow velocity of the air attached to the plate. In 

Figure 5.7, the cutoff value of the parameter B is 0.002 for the results with “hybrid 1”, 

0.005 for the results with “hybrid 2”, and 0.01 for the results with “hybrid 3”; and only 

one level of buffer cells and two levels of reservoir cells are used. This shows that the 

surface pressure profiles are very close for all results illustrated except the result from 

hybrid 3. It is also found that the shear stress and the slip velocity on the surface decrease 

when the IP domain shrinks. The Navier-Stokes solver, however, predicts larger shear 

stresses and slip velocities near both ends of the plate, which may indicate the breakdown 

of the continuum equations in these regions. 

The implementation of the interface is also investigated. First, the effect of the 

number of particles in each particle cell is considered. It is found that there is no obvious 

changes of overall flow field and the surface properties when the number of particles per 

cell is increased from 20 to 50, which means that small statistical scatter of the preserved 

macroscopic information does not cause problems for the N-S solver to use information 

from the IP domain. Second, the effect of buffer and reservoir cells is investigated. Figure 

5.8 shows a comparison of the results obtained with different sets of buffer cells and 

reservoir cells for the hybrid 3 case. In Figure 5.8, the number of levels for the buffer 

cells and the number of levels for the reservoir cells are: one and two for “interface 1”, 

two and three for “interface 2”, three and three for “interface 3”, and four and three for 

“interface 4”. Clearly, the results become better when more buffer cells and reservoir 

cells are used, which means the quality of particles entering the IP domain from the 

continuum domain increases when more buffer cells and reservoir cells are used. It also 

means that it is not good enough to generate particles in the reservoir cells based on the 

flow information of a single cell. Particles from a different part of a cell may have 

different information.   
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Figure 5.6. Comparison of velocity contours from simulations  
using the full IP, the hybrid, and the full NS configurations 
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Figure 5.7. Comparison of surface properties from simulations 
with the full IP, the hybrid, and the full NS configurations 
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Figure 5.8. Comparison of surface properties from simulations with the full IP and 
the hybrid 3 domain with different buffer cells and reservoir cells 
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It seems that 0.002 is an acceptable cutoff value for the continuum breakdown 

parameter B  for the flows over a flat plate using the current hybrid scheme, illustrated in 

Figures 5.6-5.8. However, this value for the parameter B  is much smaller than the value 

required for the Couette flow. One possible reason for the change of the cutoff value is 

that this value depends on the flow problem. If it is assumed that continuum equations 

begin to break down at locations ten mean free paths away from the plate (regarding the 

plate as a disturbance source), then the gradient of flow information around these 

locations is smaller for a 2D flow problem than for a 1D flow problem. Similarly, the 

value of B  is also smaller for a 2D problem than for a 1D problem because B  is 

dependent on gradients of flow information (see Equation 5.11 and Equation 5.4). 

Another reason for the small cutoff value of B  is that the implementation of the 

continuum/particle interface does not provide satisfactory particles for the particle solver. 

The cutoff value of B  should be increased when a better implementation is adopted. 

 

5.5 Numerical Performance 

The objective of a hybrid approach is to reduce the computational cost of a 

numerical simulation by combining the physical accuracy of kinetic methods and the 

numerical efficiency of continuum solvers. Therefore, a basic requirement for a hybrid 

approach is to require less computational cost than a kinetic approach when simulating a 

flow.  

The computational cost of a hybrid approach consists of three parts: the cost spent 

on the particle cells, the cost spent on the continuum cells, and the cost spent on the 

interface. First, the cost for the particle cells is proportional to the number of particle 

cells, and depends on the number of simulated particles in each cell. The present results 

show that the time for a particle cell in the hybrid approach is almost the same as the time 

for a cell in the IP approach, because the additional variables associated with the hybrid 

cell only cost more computer memory. Second, the cost for the continuum cells is 
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proportional to the number of continuum cells. The cost spent on one continuum cell is 

only about one sixth of the time spent on a particle cell in which about 20 particles are 

simulated. This is the reason why more continuum cells are preferred as long as they are 

valid. It should be mentioned that the N-S solver implemented in the MONACO system 

is less numerically efficient but more powerful than a similar solver implemented in the 

Fortran language, because the current approach is based on the cell structure which helps 

solve complicated geometry problems. Third, the cost spent on the interface is more 

complicated. It depends on the number of buffer cells and the number of reservoir cells. It 

is found that the time spent on one buffer cell is very close to the time spent on a general 

particle cell, whereas a reservoir cell requires about two and a half times the time spent 

on a general particle cell. This is because a large amount of time is spent on redistribution 

of the particles for the reservoir cells. The average time realt  spent on one time step is 

listed in Table 5-1 for the case of flow over a flat plate for several hybrid configurations 

when the hybrid code runs on a Pentium 4 personal computer. In Table 5- 

Table 5-1 Average time spent on one time step on a Pentium 4 PC 

Configuration IPN  NSN  bufN  resN  estt (ms) realt (ms) 

Full NS  18750   54.7 54.6 

Full IP 18750    328 327 

Hybrid 1 3840 14910 267 545 139 137 

Hybrid 2 1454 17296 148 308 92.0 92.2 

Interface 1 540 18210 74 160 70.9 71.4 

Interface 2 540 18210 152 258 76.5 77.0 

Interface 3 540 18210 234 270 78.5 78.3 

 

Hybrid 3 

 

Interface 4 540 18210 320 282 80.5 80.2 
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1, we also list the estimated time estt  which is evaluated based on Equation 5.12, where 

IPN  is the number of IP cells, NSN  is the number of N-S cells, bufN  is the number of 

buffer cells, resN  is the number of reservoir cells, and st IP µ5.17=  is the time spent on 

one IP cell. 
 ( ) IPresbufNSIPest tNNNNt 5.26 +++=  (5.12) 

Clearly, the numerical performance of the hybrid approach depends on the ratio of 

the particle cell number to the continuum cell number and on the percentage of the buffer 

cells and the reservoir cells. Thus, it is better to apply the hybrid approach to flows in 

which most of the flow domain can be described by continuum equations. 

 

5.6 Conclusions 

In this chapter, general issues related to development of a hybrid continuum / 

particle approach were explained, and a hybrid approach was developed by combining 

the IP method and a continuum solver. 

There are two critical factors that affect the development of an effective hybrid 

continuum/particle approach. One is the information exchange between the two coupled 

approaches. The other is the continuum breakdown parameter and its cutoff value. The 

present results showed that the information exchange scheme is very important to the 

performance of a hybrid approach because it affects the cutoff value for a continuum 

breakdown parameter. The numerical performance of the hybrid approach becomes better 

when more of the computational domain of a flow can be set as the continuum domain. 

The hybrid approach can be applied to simulate general external micro-scale gas 

flows because these flows have a very large computational domain that can be described 

by continuum equations. The hybrid approach can also be applied to simulate general 

steady rarefied gas flow to speed up reaching a steady state for the simulation. Such 

application is considered in the next chapter. 
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CHAPTER VI 

NUMERICAL SIMULATION OF AIR FLOWS 
OVER MICRO-SCALE AIRFOILS 

In this chapter, we simulate gas flows over micro-scale flat plates having zero and  

5% thickness. The fluid mechanics of flows over a zero-thickness micro-scale flat plate is 

studied in Section 6.1. The drag on the plate is analyzed in Section 6.2. The fluid 

mechanics of flows over a micro-scale airfoil (a flat plate having a thickness ratio of 5%) 

is studied in Section 6.3. The aerodynamic characteristics of the micro-scale airfoil is 

investigated in Section 6.4. Finally, some conclusions about the simulations of micro-

scale gas flows are given in Section 6.5. 

 

6.1 Fluid Mechanics of Air Flows over a Zero-Thickness Micro-Scale Flat Plate 

The problem of flow past a two-dimensional flat plate aligned with the free-

stream is one of fundamental interest because it generates a wide range of basic flow 

phenomena. It has been shown that the flow can be described by the laminar boundary 

layer equations at a moderate Reynolds number (ReL~104), whereas turbulent equations 

are required when the flow Reynolds number is larger than 106. Furthermore, when the 

Reynolds number of the flow becomes small (ReL<100), the flow properties also depend 

on the Mach number of the flow. Especially, the nature of the flow changes from the 

continuum flow regime to the free-molecular flow regime when the Reynolds number of 

the flow becomes smaller for a fixed velocity and plate size. 

Flows over a flat plate have been investigated experimentally by Schaaf and 

Sherman (1954) in the range of 3.4×101< Re <2.02×103 for 2.5< M <3.8 and 
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3< Re <5×102 for M  about 0.2 and 0.6. They measured the drag on the plate for 

experiments conducted in a low-density wind tunnel, and the results agree with the 

theoretical result obtained by solving a Rayleigh problem with a slip boundary condition 

for an incompressible flow (Schaaf, 1950). However, the measured drag does not agree 

well with the theoretical result obtained by Mirels (1951) although Mirels adopted a 

similar procedure for compressible flows which is the case for the experiments. 

Therefore, it is a coincidence for the agreement between the experiment and Schaaf’s 

theory (1950). Because approximations are generally made in theories, e.g., Mirels 

(1951) and Liu (1959), for gas flows with low Reynolds number, analytic methods can 

only predict flows qualitatively. In this section, the hybrid continuum/particle approach is 

applied to simulate gas flows over a micro-scale flat plate at Reynolds numbers less than 

100.  

Consider air flows past a flat plate having a finite length of 30µm. The flow 

conditions are as follows: the velocity of the free stream is roughly 69 m/s with a Mach 

number of 0.2; the temperatures of the free stream and the plate are both 295K; the 

density of the free stream is determined from the flow Reynolds number based on the 

plate length. We use several large computational domains to simulate these flows. Figure 

6.1 shows half of a typical computational grid where the computational cells are clustered 

near to the plate. The computational domain is enlarged when the flow Reynolds number 

decreases so that the flow along the computational boundaries is in or near an equilibrium 

state. The outer boundary condition is implemented using the characteristic line method. 

The flow is simulated using the continuum/particle approach based on the following 

procedure. At first, the continuum solver is applied to all computational cells. After a 

certain time, the information preservation (IP) method takes over for the domain near the 

flat plate. Later, the entire computational domain is simulated by the IP method. Finally, 

the flow is sampled after the skin friction on the plate reaches a constant value. 

Therefore, the hybrid approach is only used to reduce the computational cost when the 
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flow reaches the steady state, whereas the IP method is applied to the whole 

computational domain for the final simulation. 

 
Figure 6.1. Half of a typical computational grid for flows over a flat plate 

With the previous specification, we investigate gas flows over the flat plate. 

Numerical simulations show that the flows exhibit several rarefied phenomena, including 

velocity slip, compressibility, viscous heating, and temperature jump. 

6.1.1 Velocity Slip 

Velocity slip means that the air adjacent to a solid boundary has a finite velocity 

relative to the boundary. Kinetic theory shows the flow velocity of the air adjacent to a 

wall is the average velocity of all molecules hitting or leaving the wall. If the wall is 

assumed to be fully momentum-accommodated, then the average velocity of the leaving 

molecules is equal to the velocity of the wall. However, the velocity of incident 

molecules is related to the flow velocity where the molecule is recently collided, which 

means the average velocity of the hitting molecules is generally not the same as the 

velocity of the wall. Hence, a velocity slip is a common phenomenon for rarefied gas 

flows. When the characteristic length of a flow is much larger than one mean free path of 

gas molecules, the slip velocity is relatively small, and the velocity slip effect can be 

neglected. Otherwise, the velocity slip effect must be considered in both theoretical 

analysis and numerical simulations. 
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The slip velocity along the flat plate is shown in Figure 6.2 for several low 

Reynolds number flows. This slip velocity is obtained as the average of the tangential 

component of the preserved macroscopic velocity of particles hitting and leaving the 

plate. The figure shows that the slip velocity increases when the Reynolds number 

decreases, which means the velocity slip becomes important for low Reynolds number 

flows. It also shows the slip velocity is not monotonically distributed along the flat plate 

because both ends of the plate act as stagnation points. 
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Figure 6.2. Reynolds number effect          Figure 6.3. Reynolds number effect 

on slip velocity distributions                on pressure coefficient distributions 

6.1.2 Compressibility 

The compressibility of micro-scale gas flows means that the variation of the 

density or the pressure of the flow increases when the flow Reynolds number decreases. 

Figure 6.3 shows the pressure coefficient distributions along the plate for several 

Reynolds number flows. Clearly, the pressure of the gas around the leading edge is higher 

than the free stream pressure, and the pressure around the trailing edge is lower than the 

free stream pressure. The intensity of this behavior increases as the flow Reynolds 

number decreases, whereas the pressure gradient around both ends of the plate decreases.  
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6.1.3 Viscous Heating 

Viscous heating, or viscous dissipation, is a phenomenon in which a gas is heated 

due to the work done by viscous stresses of a flow. A Couette flow is a good example to 

show the rarefied effect on the viscous heating (Chapter IV, Section 4.3). For a gas flow 

over a flat plate, the viscous heating can be illustrated by showing the heat transfer from 

the gas to the plate because other terms in the energy equation are relatively unimportant. 

Distributions of Stanton number along the plate are shown in Figure 6.4. It shows that the 

Stanton number increases as the flow Reynolds number decreases.  
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Figure 6.4. Reynolds number effect           Figure 6.5. Reynolds number effect 

on Stanton number distributions             on temperature jump distributions  

6.1.4 Temperature Jump 

The temperature jump phenomenon is not very obvious when the flow Mach 

number is small. However, we can still show the effect of the Reynolds number on this 

phenomenon. Figure 6.5 shows that the temperature jump increases when the flow 

Reynolds number decreases.  

It is concluded that when the flow Reynolds number decreases, the slip velocity, 

the compressibility, the viscous heating and the temperature jump all increase for gas 

flows over a micro-scale flat plate, which shows that rarefied effects are important for 

low Reynolds number flows. 
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6.2 Drag on a Micro-Scale Flat Plate 

The drag on a flat plate is one of the most important physical quantities for flows 

over a flat plate. It has been shown that the drag only depends on the Reynolds number 

for high Reynolds number flows. However, the behavior of the drag is not clear yet for 

low Reynolds number flows. 

For low Reynolds number flows in the slip regime, Schaaf (1950) solved a 

Rayleigh problem (Equation 6.1) for incompressible flows with a first-order slip 

boundary condition, and obtained a relationship (Equation 6.2) between a normalized 

drag MCD ⋅ on a flat plate and a non-dimensional parameter MRe . Later, Mirels 

(1951) extended the calculation to include the effect of compressibility and introduced an 

empirical relation to match with the Blasius solution (Equation 6.3) for high Reynolds 

number flows. The Mirels (1951) formulation is very similar to the Schaaf (1950) 

formulation except that the independent variable MRe  has a different numerical 

factor, and Mirels (1950) also added a term to limit the local skin friction within the free-

molecular value. However, it turns out that the Schaaf (1950) result (Equation 6.2) agrees 

better with the experimental data obtained by Schaaf and Sherman (1954) than Mirels 

(1951) result (Equation 6.4). This may be a coincidence because there are some 

approximations made in both procedures. First, the transformation from Rayleigh’s 

problem to a flat plate is approximate. Second, the continuum equations cannot be used to 

solve the Rayleigh equation at very small times. Third, the effect of the trailing edge is 

not included in this Rayleigh problem. Hence, the analytic solutions can only be used for 

a reference. 

 ( ) ( )22 yuxuu ∂∂=∂∂ ∞∞∞ µρ  (6.1) 
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For small Reynolds number flows near the free-molecular regime, Liu (1959) 

proposed a physical theory for the drag on a flat plate. In this theory, some collisions 

between incident and reflected molecules are considered whereas other types of collisions 

are neglected. Liu (1959) showed (Equation 6.5) that the drag normalized by the free-

molecular value depends not only on MRe  but also on G  (Equation 6.6) which is a 

function of M  and MRe . The drag based on the formula of Liu (1959) is plotted in 

Figure 6.6. It shows when 5.1Re <M , flows with smaller M  have large MCD ⋅ . 

However, when MRe  is not small, the near-free-molecule theory may not predict the 

drag correctly because a lot of simplications made in the theory can only be accepted 

when the flow Knudsen number is large. 
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In the following, the skin friction and the drag on a flat plate are calculated for 

Reynolds number between 0.2 and 100 at several Mach numbers. Comparisons among 

the IP, DSMC and Navier-Stokes results are shown in Figure 6.7 and Figure 6.8. In 

Figure 6.7, the IP results agree well with the DSMC results for the skin friction along the 

plate, while the results obtained from the Navier-Stokes equation with a slip boundary 

condition are a little smaller. In Figure 6.8, the IP method predicts almost the same drag 
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     Figure 6.6. Drag predicted by             Figure 6.7. Comparison of skin friction 

Liu’s near free molecular theory                among IP, DSMC and NS results    

as the DSMC method when the flow Mach number is 0.8 for all Reynolds numbers. 

However, the drag of the DSMC results is not shown when the flow Mach number is 

0.2 because the DSMC results exhibit a relatively large scatter as shown in Figure 6.7 for 

the skin friction. It is surprising that the overall drag predicted by the Navier-Stokes 

equation is so close to the IP profile although the difference of the skin friction between 

the IP and N-S results increases when the flow Reynolds number decreases.  
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    Figure 6.8. Comparison of drag on             Figure 6.9. Drag on the plate depends 

the flat plate between IP and DSMC          on Mach number and Reynolds number 
and between IP and NS results                      as predicted by the IP method 
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The drag predicted by the IP method at different Mach numbers is shown in Figure 6.9. 

Clearly, the drag on the plate depends not only on the flow Reynolds number, but also on 

the flow Mach number. Comparison between the IP results and the experimental data 

(Schaaf and Sherman, 1954) is shown in Figure 6.10, and the agreement is quite good. If 

the relationship obtained by Schaaf (1950, Equation 6.2) or Mirels (1951, Equation 6.4) 

is followed, both the IP results and the experimental data, however, do not collapse well 

to a single curve. As the near free molecular theory of Liu (1959) shows that the 

normalized drag coefficient or MCD ⋅  is a function of the product of MRe  and G, the 

present results suggest that MCD ⋅  for the current range of MRe  may depend not 

only on MRe . Careful examination of the drag in the MCD ⋅ ~ MRe  plot shows 

that the profiles can be grouped with the flow Mach number. Therefore, plotting MCD ⋅  

with a variable combining MRe and M  was studied. Surprisingly, the normalized 

drag coefficient or MCD ⋅  profiles collapse very well with a variable similar to 
8.0Re M  for both the IP results and the experimental data as shown in Figure 6.11. 

This may indicate that 8.0Re M  is the dominant variable for the drag of flows over a 

flat plate in the slip flow regime and the transitional flow regime. A fitting formula is also  
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Figure 6.10. Drag on the plate from             Figure 6.11. Drag on the plate from 

the IP results and the experimental data     the IP results and the experimental data     
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given in Figure 6.11 for the simulated and measured drags as Equation 6.7 when 

100Re1 8.0 << M . 

 ( ) ( ) ( )8.038.02 Reln030.0Reln333.0285.0ln MMMCD ×+×−=⋅  (6.7) 

 

6.3 Fluid Mechanics of Air Flows over a Micro-Scale Airfoil 

Experiments (Sunada et al., 1997) have shown that conventional streamlined 

airfoils do not perform as well as a flat plate with a thickness ratio of 5% at flow 

Reynolds number of 4×103. A comparison of the lift slope for several airfoils is shown in 

Figure 6.12. In this section, the fluid mechanics of a 5% flat plate is investigated at even 

smaller Reynolds numbers. 

 

 
Figure 6.12. Comparison of lift slope of airfoil  

at a Reynolds number of 4×103, after Sunada et al. (1997) 

The flat plate in the present simulation has a 30 µm chord length, a 1.5 µm 

thickness and an infinite wingspan. The temperature of the plate is kept at 295K, and full 

thermal accommodation is assumed for the plate. The free stream is air with a Mach 

number of 0.2 and a temperature of 295K. The simulations adopt 1.0 atmosphere, 0.1 

atmosphere and 0.01 atmosphere as the free stream pressure. The angle of attack is also 

varied from 0° to 50° using increments of 10°. The hybrid continuum/particle approach is 

     airfoil                lift slope 

NACA0006                3.7 

NACA0009                2.9 

NACA0012                2.0 

2.5% flat plate            5.2 

5% flat plate               5.8 

5% sharp LE              5.7 

5% sharp TE              5.6 
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used to simulate the flows. When the free stream pressure is 1.0 atm, the flow in the 

domain near both ends of the plate is solved using the IP method, whereas the flow in the 

rest of the computational domain is calculated using the Navier-Stokes solver. The 

interface employs three levels of buffer cells and three levels of reservoir cells. When the 

free stream pressure is 0.1 atm or 0.01 atm, the hybrid approach is only used for the flow 

to reach a steady state, and thereafter all the computational domain is simulated with the 

IP method. 

The flow patterns when ∞p =1.0 atm (Re=135.7) are illustrated in Figures 6.13-

6.16 for flows using different angles of attack. Figure 6.13 shows the pressure field and 

some streamlines around the airfoil. Clearly, the pressure increases where the flow faces 

the airfoil, and drops where the flow leaves the airfoil. There is no flow separation when 

the angle of attack (α) is equal to or less than 10°. However, when α=20°, the flow 

begins to separate near the left end of the upper edge because of the strong local adverse 

pressure gradient (Figure 6.15). When α=30°,  another separation occurs near the right 

end of the plate. The flow is then dominated by the two separated regions or two vortices. 

The downstream vortex becomes stronger when the angle of attack increases (α=40°), 

and this vortex almost eats away the upstream vortex when α=50°. The flow above the 

upper edge of the plate can also be illustrated by the profiles of the velocity component 

parallel to the plate as shown in Figure 6.14. A typical boundary layer is observed when 

α=0° as the boundary layer thickness increases along the plate (the leading edge is a 

singularity point for boundary layer theory). The gas velocity within the boundary layer 

decreases with an increasing angle of attack because the adverse pressure gradient 

increases. When the angle of attack is large enough (α=20°),  the velocity at a certain 

location (e.g., X/L=0.3) becomes negative and the flow begins to separate. The 

distributions of the pressure coefficient and the skin friction coefficient along the plate 

are shown in Figure 6.15 and Figure 6.16. These data are used to calculate the 

aerodynamic characteristics of the airfoil. 
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The flow patterns when ∞p =0.1 atm (Re=13.57) are shown in Figures 6.17-6.20, 

and those when ∞p =0.01 atm (Re=1.357) are shown in Figures 6.21-6.24. Compared to 

the flows when ∞p =1.0 atm, these flows under lower pressures exhibit very different 

flow behavior. First, the boundary layer thickness increases although the slip velocity 

increases. Secondly, the pressure gradient near the left end of the plate decreases 

although the overall pressure variation increases. Next, only a weak flow separation 

occurs at a very large angle of attack (α=50°) when ∞p =0.1, and there is no separation 

when ∞p =0.01 atm for the angle of attack up to 50°. Finally, the skin friction increases 

by a significant amount, which means that the importance of the viscous diffusion 

increases so as to prevent flows from being separated. Therefore, it can be anticipated 

that the aerodynamic characteristics of the micro-scale airfoil at low Reynolds number 

flows are very different from those at high Reynolds number flows. 
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Figure 6.13. Pressure field and streamlines for flows over a 5% flat plate  

when M∞=0.2, ReL=135.7, with angle of attack ranging from 0° to 50° 
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Figure 6.14. Profiles of the velocity component parallel to the plate for flows over a 

5% flat plate when M∞=0.2, ReL=135.7, with angle of attack ranging from 0° to 50° 
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Figure 6.15. Distributions of the pressure coefficient for flows over a 5% flat plate  

when M∞=0.2, ReL=135.7, with angle of attack ranging from 0° to 50° 
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Figure 6.16. Distributions of the skin friction coefficient for flows over a 5% flat  

plate when M∞=0.2, ReL=135.7, with angle of attack ranging from 0° to 50° 
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Figure 6.17. Pressure field and streamlines for flows over a 5% flat plate  

when M∞=0.2, ReL=13.57, with angle of attack ranging from 0° to 50° 
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Figure 6.18. Profiles of the velocity component parallel to the plate for flows over a 

5% flat plate when M∞=0.2, ReL=13.57, with angle of attack ranging from 0° to 50° 



128 

 

X / L

Y/L

(P
s-

P
∞
)

/
0

.5
ρ ∞

V
∞2

-0.5 -0.25 0 0.25 0.5

-0.02 -0.01 0 0.01 0.02

-6

-4

-2

0

2

4

6

8 lower side
upper side
left side
right side

M∞ = 0.2, ReL = 13.57, α = 0°

X / L

Y/L

(P
s-

P
∞
)

/
0

.5
ρ ∞

V
∞2

-0.5 -0.25 0 0.25 0.5

-0.02 -0.01 0 0.01 0.02

-6

-4

-2

0

2

4

6

8 lower side
upper side
left side
right side

M∞ = 0.2, ReL = 13.57, α = 10°

 

X / L

Y/L

(P
s-

P
∞
)

/
0

.5
ρ ∞

V
∞2

-0.5 -0.25 0 0.25 0.5

-0.02 -0.01 0 0.01 0.02

-6

-4

-2

0

2

4

6

8 lower side
upper side
left side
right side

M∞ = 0.2, ReL = 13.57, α = 20°

X / L

Y/L

(P
s-

P
∞
)

/
0

.5
ρ ∞

V
∞2

-0.5 -0.25 0 0.25 0.5

-0.02 -0.01 0 0.01 0.02

-6

-4

-2

0

2

4

6

8 lower side
upper side
left side
right side

M∞ = 0.2, ReL = 13.57, α = 30°

 

X / L

Y/L

(P
s-

P
∞
)

/
0

.5
ρ ∞

V
∞2

-0.5 -0.25 0 0.25 0.5

-0.02 -0.01 0 0.01 0.02

-6

-4

-2

0

2

4

6

8 lower side
upper side
left side
right side

M∞ = 0.2, ReL = 13.57, α = 40°

X / L

Y/L

(P
s-

P
∞
)

/
0

.5
ρ ∞

V
∞2

-0.5 -0.25 0 0.25 0.5

-0.02 -0.01 0 0.01 0.02

-6

-4

-2

0

2

4

6

8 lower side
upper side
left side
right side

M∞ = 0.2, ReL = 13.57, α = 50°

 
Figure 6.19. Distributions of the pressure coefficient for flows over a 5% flat plate  

when M∞=0.2, ReL=13.57, with angle of attack ranging from 0° to 50° 
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Figure 6.20. Distributions of the skin friction coefficient for flows over a 5% flat  

plate when M∞=0.2, ReL=13.57, with angle of attack ranging from 0° to 50° 
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Figure 6.21. Pressure field and streamlines for flows over a 5% flat plate  

when M∞=0.2, ReL=1.357, with angle of attack ranging from 0° to 50° 
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Figure 6.22. Profiles of the velocity component parallel to the plate for flows over a 
5% flat plate when M∞=0.2, ReL=1.357, with angle of attack ranging from 0° to 50° 
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Figure 6.23. Distributions of the pressure coefficient for flows over a 5% flat plate  

when M∞=0.2, ReL=1.357, with angle of attack ranging from 0° to 50° 
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Figure 6.24. Distributions of the skin friction coefficient for flows over a 5% flat  

plate when M∞=0.2, ReL=1.357, with angle of attack ranging from 0° to 50° 
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6.4 Aerodynamic Characteristics of a Micro-Scale Airfoil 

The airfoil theory for invisid flows indicates that the lift slope for a thin airfoil is 

2π. However, the lift slope decreases when the flow Reynolds number decreases for 

conventional streamlined airfoils (Sunada et al., 1997). Sunada concluded that a flat plate 

with a thickness ratio of 5% has larger lift than conventional streamlined airfoils. In this 

section, we compare the aerodynamic characteristics of a 5% flat plate for several 

Reynolds number flows. 

Sunada et al. (1997) conducted experiments on a 5% flat plate at the chord 

Reynolds number of 4×103 by towing the airfoil through water in a tank. We plot his 

experimental data in Figure 6.25. It was estimated that the measurement error is within 18 

percent for the lift coefficient and the drag coefficient. The figure shows that the lift slope 

is 5.8 and the drag coefficient is less than 0.1 at small angle of attack. 
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Figure 6.25. Measured drag coefficient and      Figure 6.26. Drag coefficient and 

lift coefficient after Sunada, et al. (1997)                 lift coefficient from IP  
when the Reynolds number is 4×103           when the Reynolds number is 137.5    

The lift coefficient and the drag coefficient calculated for the current simulations 

are plotted in Figures 6.26-6.28. Figure 6.26 shows the results when Re=135.7. The lift 

slope is about 3.0 and the drag coefficient is about 0.4 at small angle of attack. The lift 
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does not increase linearly because the flow is separated when the angle of attack is 20° or 

larger. Figure 6.27 shows the results when Re=13.57. Here, the lift slope is about 2.8 and 

the drag coefficient is a little larger than 1 at small angle of attack. Also, the ratio of lift 

to drag is less than 1 because of the large drag coefficient. Figure 6.28 shows the results 

when Re=1.357. Here, the lift slope is about 4.2 and the drag coefficient is larger than 4.  
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Figure 6.27. Drag coefficient and                 Figure 6.28. Drag coefficient and 

lift coefficient from IP                                    lift coefficient from IP  
when the Reynolds number is 13.57             when the Reynolds number is 1.375    

We also calculate the lift coefficient and the drag coefficient of the 5% flat plate 

under the free molecular condition with Equation 6.8 and Equation 6.9, where α  is the  

angle of attack and ( )RTVs 22
∞= . Figure 6.29 shows that the lift slope is as high as 

16.5 and the drag coefficient is larger than 7.9. The ratio of lift to drag, however, is less 

than 1. 
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Figure 6.29. Drag and lift coefficients predicted by the free molecular theory 

The Reynolds number effects on the lift slope and drag coefficient of the 5% flat 

plate airfoil are illustrated in Figure 6.30. The results show that there is a minimum lift 

slope near Reynolds number of 10 for the aerodynamic characteristics of the airfoil, while 

the drag coefficient keeps increases when the Reynolds number decreases. 
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Figure 6.30. Reynolds number effects on the lift slope and drag coefficient  

of the 5% flat plate airfoil  
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6.5 Conclusions 

It is very important to investigate micro-scale gas flows because understanding of 

these flows will improve current and potential applications of rapidly emerging micro 

systems. Studies were performed for flows over a flat plate having a zero thickness and 

for the aerodynamic characteristics of a flat plate having a thickness ratio of 5% at low 

Reynolds numbers. It was found that the normalized drag coefficient on the flat plate 

varies according to 8.0Re M . It was concluded that there is a minimum lift slope for 

the 5% flat plate at a Reynolds number near 10, and the drag coefficient monotonically 

increases with decreasing Reynolds number. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

7.1 Summary 

The overall objective of the present study was to develop a numerical approach 

for modeling micro-scale gas flows. The first phase of the study developed an 

information preservation (IP) method with evaluations. The development included: a 

principle for updating preserved macroscopic information, an energy flux model for the 

preserved temperature, a collision model for the preserved macroscopic information, and 

an implementation of the IP method for general 2D flows. The evaluation of the IP 

method was performed for several benchmark problems, including thermal Couette flow, 

high-speed Couette flow, Rayleigh flow, and a flow over a NACA0012 airfoil. The 

second phase of the study introduced a hybrid continuum/particle approach. Two key 

issues of a hybrid approach were discussed. One is the information exchange between the 

two coupled approaches. The other is the continuum breakdown parameter and its cutoff 

value. The hybrid approach was implemented based on a DSMC code. The final phase of 

the study applied the hybrid approach simulating flows over a micro-scale flat plate with 

zero thickness and 5% thickness. Drag on a flat plate was studied for various free stream 

Mach numbers and Reynolds numbers. Aerodynamic characteristics of the 5% flat plate 

were also investigated for low Reynolds numbers. 
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7.2 Conclusions 

The results of this study are based on the development of the IP method, the work 

on the hybrid approach, and the study of flows over a micro-scale flat plate. The major 

conclusions of the study are as follows: 

(1) The information preservation method is developed and implemented for 

general two-dimensional micro-scale gas flows. The method exhibits much smaller 

statistical scatter and costs less computational time compared with the DSMC method for 

low-speed flows. The IP method reduces a sample size by at least three orders of 

magnitude compared with the DSMC method when simulating subsonic gas flows. 

(2) Preserved macroscopic information in the IP method can be described by the 

transfer equation in kinetic theory with certain forms of microscopic quantities. There is 

no need to preserve density for simulated particles. The preserved macroscopic velocity 

and temperature can be updated by particle collisions, particle motion, and pressure 

effects. 

(3) The preserved macroscopic information in the IP method does not have all 

details of particle microscopic information. Therefore, an energy flux model is proposed 

to resolve the difference of the translational energy flux between the microscopic reality 

and the IP representation. The model allows a particle to transport this difference when it 

crosses a surface while overall energy conservation is implemented.  

(4) The collision effects on preserved macroscopic information can be described 

by a phenomenological collision model. Within this model, collisions equalize the 

preserved macroscopic information with a weight depending on the collision deflection 

angle. The shear stress and heat flux of a flow can be correctly modeled. 

(5) A continuum/particle hybrid approach is introduced and implemented that 

couples the IP method and a continuum solver using a continuum/particle interface. The 

continuum solver that solves the Navier-Stokes equations can use particle cells as ghost 

cells, and particles can be generated from the continuum domain by either using a flux 
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balanced condition or by implementing buffer cells and reservoir cells. As a result, this 

coupling of the two methods is strong, efficient, and adaptive. 

(6) The continuum/particle interface is determined using a continuum breakdown 

parameter. Parameters that combine all terms in the Chapman-Enskog expansion can 

better indicate the breakdown of the continuum equations than the gradient-length local 

Knudsen number. The cutoff value of a breakdown parameter, however, depends on the 

implementation of the information exchange between the two coupled solvers. Using 

more buffer and reservoir cells can improve the quality of particles that enter into the 

particle domain from the continuum domain, and thus increase the cutoff value, which 

may increase the computational efficiency of the hybrid approach.  

(7) The hybrid approach speeds up simulations because the time spent on a 

computational cell in a continuum domain is much less than the time spent on a cell in a 

particle domain. Therefore, the computational efficiency of the hybrid approach depends 

on the ratio of the continuum cell number to the particle cell number. However, buffer 

cells and reservoir cells cost extra time for a hybrid simulation.  

(8) The IP method predicts very similar results to the DSMC method when 

simulating thermal Couette flow (heat transfer between two parallel plates), high-speed 

Couette flow, Rayleigh flow, and a flow over a NACA0012 airfoil. For the thermal 

Couette flows, the temperature jump and the normalized heat transfer increase when the 

flow Knudsen number increases. In addition, the thermal accommodation coefficient of 

the plates plays an important role on the heat transfer between two plates. For the high-

speed Couette flows, the slip velocity, the viscous heating, and the flow temperature 

increase when the flow Knudsen number increases. 

(9) Studies on flow over a flat plate show that rarefied effects become significant 

when the Reynolds number is small. Such effects include the velocity slip, the 

compressibility, the viscous heating, and the temperature jump. Drag on the flat plate 

having a zero thickness depends not only on the flow Reynolds number, but also on the 
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flow Mach number. Decreasing the flow Reynolds number or the flow Mach number 

increases the drag coefficient on a flat plate. It is found that the normalized drag 

coefficient depends on 8.0Re M when this parameter is between 1 and 100. 

(10) Many results are obtained for flow over a flat plate having a 5% thickness. 

Such results include: when the free stream pressure decreases, the boundary layer 

thickness increases; the slip velocity increases; the overall pressure variation increases; 

the pressure gradient decreases near the leading edge of the plate; flow separation is 

delayed or even disappeared; and the skin friction increases. For the aerodynamic 

characteristics of the 5% flat plate, the slope of the lift coefficient decreases from 3.0 at 

Re=135.7 to 2.8 at Re=13.57 and then increases to 4.2 at Re=1.357. There is a minimum 

slope of the lift coefficient at the Reynolds number near 10, whereas the drag coefficient 

monotonically increases when the Reynolds number decreases. 

 

7.3 Recommendations for Further Study 

The IP method is still a new method for simulating micro-scale gas flows. Several 

aspects can be developed by further study. First, new models may be required to better 

resolve the translational energy flux differences between microscopic reality and the IP 

representation. Second, a better method is required to solve the continuum equations at 

rarefied conditions. Third, the IP method can be implemented for 3D flows with 

parallelization. Fourth, the IP method may be developed to simulate multiple-species 

gases. Finally, there is need to thoroughly investigate the effects of computational 

parameters within their physical limits for the IP method. Such parameters include the 

cell size, the time step, and the number of particles in a cell.  

The hybrid approach is also a new technique for simulating flows. In order to 

obtain maximum benefit from a hybrid approach, there is still a need to investigate the 

breakdown parameter for continuum equations when simulating general micro-scale 

flows. It is also important to investigate the way of generating particles from the 
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continuum domain because this will affect the cutoff value for a continuum breakdown 

parameter in any implementation. 

The present study of flow over micro-scale flat plates shows that the hybrid 

approach is able to simulate such flows. Therefore, by using the present IP or hybrid 

methods, many micro-scale gas flows can be studied, which will increase our 

understanding of micro-scale gas flows. 
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