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CHAPTER I

INTRODUCTION

1.1 Motivation

The interactions of the bow shock of a hypersonic vehicle and the shock waves

from a wing or control surface are of great interest in the design of reusable launch ve-

hicles (RLV), space planes, and hypersonic cruise vehicles, because of the potentially

high localized temperature and the associated extremely high aerothermal loads in

the interaction region. The interactions are also often seen on the compression ramp

forming the integrated airframe inlet to an air-breathing engine. The shock waves

impinging on the vehicle control surface may cause boundary layer separation and,

as a result, may reduce the control surface effectiveness.

For many years, experimental and numerical efforts have been undertaken on

understanding the shock/shock and shock/boundary layer interactions in hypersonic

flows. Because of the tremendous technical complexities, such as the uniformity of

a hypersonic flow in a wind tunnel and measuring techniques, and costs, flight and

experimental measurements under realistic conditions are limited and sometimes

difficult to understand. On the other hand, because of the increasing availability of

computing resources, numerical means play a pivotal role in the design of the next

generation hypersonic vehicles.

1
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Future hypersonic vehicles will likely have leading edges made from a material

similar to the Ultra-High Temperature Ceramics (UHTC’s) being developed at the

NASA Ames Research Center. There materials are reusable for temperatures up to

3,100 K and do not ablate [69]. The use of UHTC’s makes it possible to design a new

generation of vehicles with very sharp leading edges and smooth surfaces, resulting

in a much smaller, lighter, and more efficient vehicle. For instance, the leading edge

made from UHTC’s could have a radius as small as 0.23 cm, compared to 81.5 cm

for the nose made from the reinforced carbon-carbon material used on the Space

Shuttle. Therefore, passively cooled leading edges of the order of 1 mm in radius are

feasible.

The fact that future hypersonic vehicles will have very small leading edge radii

does not solve the problems of localized high heat transfer from shock interactions.

Instead, it puts these interactions into the regime where a continuum simulation

approach is not necessarily valid. In Figure 1.1, the velocity and Knudsen number of

a typical entry trajectory of an RLV are plotted as a function of the flight altitude [11].

The Knudsen number is evaluated based on a leading edge radius of 0.23 cm as the

characteristic length. The Knudsen number is about 0.0074 at an altitude of 40 km

and it is about 0.03 at an altitude of 50 km. It is clear that the flow near the

leading edge is likely to be non-continuum at 40 km and will certainly be rarefied

at 50 km. Therefore, the flow around a hypersonic vehicle during its atmospheric

re-entry always spans a very wide range of flow regimes, depending upon the flight

altitude and the characteristic length scale.

The large variation in flow properties leads to some regions where the flow is

accurately described as a continuum and can be modeled by the Navier-Stokes (NS)

equations and solved numerically by Computational Fluid Dynamics (CFD) meth-
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Figure 1.1: Velocity and Knudsen number of the entry trajectory of a RLV with
0.23 cm as the characteristic length.

ods. However, the wide variation in flow properties also leads to some regions where

the flow is rarefied and the NS equations break down because of physical limitations.

A particle simulation technique such as direct simulation Monte Carlo [16] (DSMC)

is commonly employed for such conditions.

DSMC emulates the nonlinear Boltzmann equation with simulated particles by

moving them around based on their microscopic velocities and simulating the inter-

molecular collisions with frequencies and scattering velocity distributions determined

from the kinetic theory of a dilute gas. Theoretically, the DSMC method can also be

applied to continuum flows, but it demands huge amounts of computational capacity

because of the requirement of a sufficiently large number of simulated particles in

regions where the flow is dense.

Therefore, on one end of the numerical spectrum is CFD, which solves a set
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of partial differential equations, is numerically efficient for continuum flows, but is

considered physically inappropriate for rarefied or strongly nonequilibrium flows. On

the other end of the numerical spectrum is DSMC, which emulates the Boltzmann

equation with simulated particles, is physically accurate for both continuum and

rarefied flows, but is too computationally intensive for dense flows.

For flow configurations involving a mixture of continuum and rarefied regimes,

such as the hypersonic flows of interest in this thesis, it is an attractive idea to unify

the two methods in a way such that the rarefied and continuum domains are handled

by DSMC and CFD, respectively. This is not an easy task, however, because the two

numerical methods are different to a large extent in terms of physical representation

and programming algorithm. To make them work together, many issues must be

dealt with carefully.

A major issue regarding the development of a hybrid DSMC/CFD method is to

determine, in a flow, which regions are rarefied and which are continuum. In other

words, a criterion is required for the placement of the interfaces between the rarefied

and continuum domains.

Another issue in developing the hybrid method arises from the information ex-

change at the interfaces. At each interface, macroscopic flow properties must be

provided to the CFD method to evaluate the net fluxes and to the DSMC method to

initialize the particles entering from the continuum domain into the particle domain.

For strongly nonequilibrium, hypersonic flows, the information exchange must take

place for each time step.
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1.2 An Overview of Previous Hybrid Approaches

The idea of a hybrid particle/continuum approach is not new and several attempts

have been considered previously. The simplest hybrid approach involves splitting

the whole domain into two and performing two decoupled simulations. The study

by Hash and Hassan [45] was for a hypersonic flow over a 70◦ blunted cone with a

sting and the scheme proposed by George and Boyd [37] was for supersonic expanding

flows. The CFD solution in a decoupled hybrid approach is used to provide boundary

conditions for DSMC. A decoupled hybrid approach is good only for flows in which

the interface between the continuum and particle domains is determined once and

for all.

Using interpolation of fluxes or physical variables for each time step, Wadsworth

and Erwin first performed a one-dimensional shock problem [84] and a two-dimensional

slit flow [85]. Employing the Marshak condition as the coupling mechanism for resolv-

ing fluxes at the interface, Hash and Hassan assessed a hybrid approach in Couette

flows [44] and revisited the hypersonic flow over a 70◦ blunted cone problem [46]. The

Marshak condition employs a conservation of fluxes at the domain interfaces and the

net flux is the summation of the half-flux crossing from the DSMC side plus the half-

flux crossing from the Navier-Stokes side. The strategy of coupling a particle method

and the Navier-Stokes equations by friction or half fluxes was respectively proposed

by Bourgat et al. [18] and Le Tallec and Mallinger [81] to simulate hypersonic flows

over an object. To overcome the statistical scatter in the particle method, a second

order smoothing technique was used [46], but it sometimes produced nonphysical

results. All other approaches in this paragraph employed the technique that one

global update of the macroscopic properties requires several DSMC sampling steps.



6

Therefore, these hybrid approaches are inappropriate for strongly nonequilibrium

flows in which the detailed nonequilibrium information in the particle domain must

be shared with the coupled continuum method for each time step.

A more sophisticated hybrid technique using the kinetic flux-vector splitting

(KFVS) scheme [28] was developed by Lou [56] and Duttweiler [31] at Stanford.

Interestingly, when their technique was applied to a Mach 10 flow over a 2-D rectan-

gle, the Navier-Stokes equations were solved near the surface where the gradients are

large and the NS equations are expected to be invalid. Recently, a hybrid scheme for

flows with thermal and chemical nonequilibrium was established by Michaelis [59]

but most of the work was focused on one dimensional configurations.

The scheme proposed by Rovedo et al. [70, 71] incorporated the DSMC method

with the adaptive discrete velocity (ADV) Euler solver, and would therefore not be

appropriate for nonequilibrium flows. The scheme introduced by Garcia [36] embed-

ded a particle method with the adaptive mesh and algorithm refinement (AMAR)

method. This scheme has been shown to work well for simple flows, such as a 1-D

Mach 2 impulsively started piston problem, a 1-D Mach 2 Rayleigh problem, and

a Mach 1 flow over a sphere, but has not been fully tested for hypersonic flows.

The approach studied by Hadjiconstantinou [41] coupled molecular dynamics with

finite/element methods and would not be appropriate for rarefied gas flows because

the molecular dynamics technique has proved to be valuable only for the simulations

of dense gases and liquids [4].

Postprocessing with a filter to reduce the statistical scatter in the DSMC so-

lution is an interesting direction for the development of a hybrid approach. Oh

and Oran [63] showed that the Flux-Corrected-Transport (FCT) method has the

ability to filter out the high-frequency fluctuations very naturally. Information was
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extracted from DSMC to NS by the interpolation algorithm using a bilinear shape

function. Later, another filter using the FCT method was proposed by Kaplan and

Oran [52]. Their filter employed a high-order, nonlinear monotone convection algo-

rithm to remove high-frequency statistical fluctuations. While the idea of filtering is

promising, it is unknown at the present time how to use it for information exchange

at the domain interface.

A hybrid approach in which the continuum and particle regions are combined by

an overlapped Schwarz alternating method with Dirichlet-Dirichlet type boundary

conditions was proposed by Aktas and Aluru [1] for multiscale analysis of microfluidic

filters. This approach required multiple sampling steps in the particle domain for one

global update of the macroscopic properties, and would be inappropriate for strongly

nonequilibrium flows for the same reason mentioned previously.

More recently, Sun [77] developed a hybrid approach that employs the Information

Preservation (IP) technique [33] coupled with a NS solver. While the approach

was shown to be accurate and efficient, it was primarily applied to 2-D, low speed

microscale gas flows. The IP technique in Sun’s hybrid approach is inapplicable for

supersonic compressed flows due to the inappropriate numerical scheme implemented

for solving the continuity equation. In addition, the IP technique is inaccurate for

strongly nonequilibrium flows because of the assumption made for the energy fluxes

crossing computational cells.

Therefore, to date, a robust, multi-dimensional hybrid approach that is capable

of handling nonequilibrium, hypersonic compressed flows has not yet been accom-

plished. The ideal hybrid code must be efficient, parallelized, and implemented in a

single program.
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1.3 Current Status of Computations of Laminar Hypersonic
Interacting Flows

To improve the understanding of shock/shock and shock/boundary layer inter-

actions in hypersonic flows, a number of experiments have been performed in the

Large Energy National Shock (LENS) facility at the Calspan - University at Buf-

falo Research Center (CUBRC) to provide a benchmark database at well calibrated

hypersonic test conditions. The experiments were conducted to examine complex in-

teraction regions developed over simple model configurations in fully laminar flows.

The experimental results were not made available to the public until after a blind code

validation exercise organized by Dr. Michael Holden at the 2001 AIAA Aerospace

Sciences Meeting in Reno [51, 43].

During the exercise, two model configurations - a double cone and a hollow cylin-

der/flare - emerged as simple configurations over which complex interacting flows

are developed which can provide a stringent test of the numerical schemes that are

employed in the Navier-Stokes and DSMC computations. A schematic of the two

configurations is shown in Figure 1.2. The configurations are assumed to be per-

fectly aligned with the pure nitrogen freestreams so the flows are axisymmetric.

Solutions were invited by a limited number of experts in the field of hypersonic com-

putations: Graham Candler [25] (CFD, University of Minnesota), Peter Gnoffo [38]

(CFD, NASA Langley Research Center), James Moss [60] (DSMC, NASA Langley

Research Center), John Tannehill [53] (CFD, Iowa State University), Iain Boyd [23]

(DSMC, University of Michigan), and Chris Roy and Michael Gallis [72] (CFD and

DSMC, Sandia National Laboratories).

Despite its simple shape, the double cone creates complicated flow structures.

In general, the first cone produces an attached oblique shock wave and the second,
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Figure 1.2: Schematic of the CUBRC wind-tunnel models (measurements in mm).
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larger angle cone produces a detached bow shock. These two shock waves interact

to form a transmitted shock that strikes the second cone surface near the cone-cone

conjunction. The adverse pressure gradient due to the cone juncture configuration

and the transmitted shock generates a large region of separated flow that in turn

produces its own separation shock. This shock interacts with the attached oblique

shock from the first cone, altering the interaction with the detached shock from the

second cone. The size of the separation zone is then affected by this interaction.

A weak oblique shock starts from the sharp leading edge of the hollow cylinder and

coalesces with the shock generated by the separation somewhere along the cylinder.

Two shocks together interact with the detached bow shock due to the flare to form

a strengthened shock wave. This interaction, taking place near the surface of the

body, elevates the pressure and increases the adverse pressure gradient due to the

flare juncture, which causes the boundary layer on the cylinder to separate. This in

turn, produces the separation shock.

The code validation exercise resulted in several key conclusions. One of them was

that DSMC always under-predicted the size of the separation zone in the double cone

for the hypersonic flows considered. For example, the surface heat transfer coefficients

for Run 35 obtained by different methods are compared in Figure 1.3. The under-

prediction is not believed to be a flaw of the DSMC method. The likely explanation

for the poor DSMC results is that the freestreams were too dense and none of the

participants who performed DSMC simulations had employed a sufficiently large

amount of simulated particles and required fine grids. Later investigations verified

that DSMC can well predict the size of the separation zone if the density in the

freestream is reduced by a factor of 3 [73, 42]. Therefore, for the DSMC solution of

Run 35 to be properly resolved it is necessary to ensure that the computational cells
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Figure 1.3: Comparison of surface heat transfer coefficients for Run 35 on the 25◦-55◦

sharp double-cone.

are sufficiently small and remain populated with a reasonable number of particles.

For practical purposes, only the region of about the first 5 cm of the first cone is

considered in this thesis. Such a simple geometry provides a basic assessment for the

development of the hybrid approach.

Another conclusion in the code validation exercise was that some NS solutions,

for example by Candler [25] and Gnoffo [38], over-predicted to a large extent the

size of the separation zone in the hollow cylinder/flare configuration in a certain of

freestream conditions (Run 11) while the DSMC solutions were in good agreement

with the measured data. A comparison of surface heat transfer coefficients for differ-

ent methods is made in Figure 1.4. This shows that the solutions predicted by CFD

under rarefied conditions may be inaccurate. The main reason of the over-prediction

of the size of the separation zone is very likely due to the numerical schemes and

grids employed in the CFD simulations because one CFD simulation performed by
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Figure 1.4: Comparison of surface heat transfer coefficients for Run 11 on the hollow
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Kato and Tannehill [53] did predict the size correctly. This raises a challenge to the

DSMC/CFD hybrid approach. If the whole computational domain is initialized with

a CFD solution with considerable discrepancies from the “correct” solution, can the

hybrid approach eventually predict the correct solution? If the answer is yes, then

how much effort will it take?

1.4 Objectives and Thesis Overview

There are three primary objectives in the thesis.

1. Predict the conditions under which the continuum approach may be expected to

fail in hypersonic viscous flows. Determine a criterion for placing the interface

between the rarefied and continuum domains.

2. Develop a hybrid DSMC/CFD approach for simulating nonequilibrium, hy-

personic flows. The hybrid approach must be able to perform information
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exchange between the particle and continuum domains for each time step. The

hybrid approach also must be able to adjust the domain interface based on its

solution. The hybrid approach must be physically accurate and numerically

efficient.

3. Assess the hybrid approach. The accuracy of the hybrid results will be inves-

tigated by comparisons with the results obtained by other numerical methods

and experimental data if available. The efficiency of the hybrid approach will

be assessed by comparing the times consumed by the hybrid approach and the

DSMC method.

In Chapter II, the mathematical and numerical formulations of the continuum

and particle approaches will be briefly described. The Navier-Stokes equations in

the continuum method are solved by a finite-volume method whereas the direct sim-

ulation Monte Carlo method is employed for the particle method. The Information

Preservation method will also be discussed.

In Chapter III, verifications of the accuracy and consistency of the continuum and

particle methods employed in the hybrid approach are conducted. In this chapter, a

number of accuracy issues are carefully investigated for numerical simulations over

a blunted cone tip and a hollow cylinder/flare.

In Chapter IV, a continuum breakdown criterion is developed. Investigations

are performed through detailed comparisons of the numerical results obtained with

continuum and particle methods. This chapter addresses the first objective.

In Chapter V, the details of the hybrid approach combining the CFD and DSMC

methods is described. The emphases include how to handle particles moving in to

or out from the DSMC domain, how to evaluate fluxes for CFD on the domain
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interface, and how to parallelize the hybrid approach. This chapter addresses the

second objective.

In Chapter VI, hypersonic flows over a blunted cone and a hollow cylinder/flare

are considered to assess the accuracy and efficiency of the hybrid approach. Flow

fields are carefully compared with the results obtained with the pure DSMC sim-

ulations to estimate the accuracy. Computational times consumed by the hybrid

approach are compared to the times required by the pure DSMC simulations to

estimate the efficiency. These studies therefore address the third objective.

In Chapter VII, a summary is presented and conclusions are drawn. This chapter

ends with some recommendations for future work.



CHAPTER II

NUMERICAL METHODS

The mathematical and numerical formulations of the continuum and particle ap-

proaches will be briefly described in this chapter. A finite-volume method is employed

to solve the Navier-Stokes equations for the continuum method whereas the direct

simulation Monte Carlo method is employed for the particle approach. A recently

developed technique, Information Preservation, is also utilized to reduce the statisti-

cal scatter in the direct simulation Monte Carlo method. The perfect gas assumption

is made for all methods.

2.1 Velocity Distribution Function and the Boltzmann Equa-

tion

The ideal way of understanding a flow behavior is to deterministically track ev-

ery microscopic detail, such as position and velocity, of each molecule in the flow.

However, this is a task almost next to impossible even using the most powerful super-

computer nowadays because the number of molecules is enormously large in general

and as a result the amount of information needed to be stored and processed is vast.

One cubic centimeter of air at standard tempeature and pressure, for instance, con-

tains approximately 2.687× 1019 molecules. In addition, a description of this kind is

not practical because it is macroscopic flow properties, such as density, bulk velocity,

15
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temperature, stresses, and heat flow, that are of most interest. An alternative is to

use a statistical means in terms of a particle velocity distribution function, F .

The time evolution in phase space of the particle velocity distribution function

F (x, c, t) of a dilute gas is governed by the nonlinear Boltzmann equation and can

be expressed in terms of time t ∈ R
+, the spatial coordinates x ∈ Ω ⊂ R

3, and the

molecular velocity c ∈ R
3. If external forces are absent, the Boltzmann equation

reads

∂

∂t
F + c · ∇F =

δ

δt
F, (2.1)

subject to the initial condition

F (x, c, t = 0) = F0(x, c),

complemented with the boundary conditions [27] for c · e ≥ 0 and x ∈ ∂Ω

F (x, c, t)|c · e| =

∫

c
∗·e<0

B(c∗ → c;x, t)F (x, c∗, t)|c∗ · e| dc∗,

where e is the inward unit normal and the non-negative function B(c∗ → c) denotes

the scattering probability from the direction c∗ to the direction c. If permanent

adsorption is excluded, the total probability for scattering particles must be unity

∫

c·e≥0

B(c∗ → c;x, t) dc = 1.

The right-hand side of Equation(2.1), δF/δt, is the collision operator and represents

the time rate of change of the distribution function due to binary intermolecular

collisions.

Assuming that the distribution function is normalized to the particle number

density, n, if Q(c) is a function of c but not of position and time, the moment of the

distribution function F with respect to Q over the velocity space is defined as

nQ ≡
∫

R3

QF dc. (2.2)
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Consider a perfect gas with molecular mass m and number of internal degrees of

freedom ζ. Macroscopic states of the gas such as density and bulk velocity are

moments of F

ρ =

∫

R3

mF dc, (2.3)

V =
1

ρ

∫

R3

mcF dc. (2.4)

It is convenient to define a thermal or peculiar velocity, c′, measured with respect to

the macroscopic velocity of the gas

c′ ≡ c − V

and satisfying c′ = 0 with the help of Equations (2.2) and (2.4). Similar to Equa-

tions (2.3) and (2.4), the translational energy per unit volume can be written

1
2
ρc2 =

∫

R3

1
2
mc2F dc

= 1
2
ρ(V 2 + c′2)

= 1
2
ρ(V 2 + 3 R T ) (2.5)

with the translational temperature defined as

T ≡ 1

3ρR

∫

R3

mc′2F dc (2.6)

where R is the specific gas constant.

Although the Boltzmann equation (2.1) describes the time evolution of the ve-

locity distribution function in a single equation, it still remains a great challenge

to be solved because of its nonlinearity and complexity. Analytical solutions to the

Boltzmann equation are limited to very simple flows [27]. Most researchers focus

their efforts on numerical approaches.
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One approach is the direct numerical solution of the Boltzmann equation, directly

solving the only dependent variable, the velocity distribution function, by using a

finite difference or finite element method. There are two major difficulties about

this approach. First, the velocity space domain is of infinite extent. Finite bounds

must therefore be predetermined such that only a negligible fraction of molecules lie

outside them. This is not a large concern for low-speed flows. However, this becomes

a severe issue in the case of hypersonic or high-temperature flows in which a small

fraction of molecules with very high velocities relative to the bulk of the gas can have

a significant effect on the macroscopic flow properties. The second difficulty of this

approach is the number of data points needed to correctly represent the distribution

function. It is estimated that a total number of 1014 points in phase space are

required for solving an unsteady three-dimensional flow in a grid with 100 intervals

in each direction [16]. This requirement prevents the direct numerical method from

being used for most engineering applications.

Recent development of the direct numerical solution of the Boltzmann equation is

mainly due to the work by Ohwada et al. [64, 65]. They employed a finite difference

method to handle the convection terms on the left hand side of Equation (2.1) and

the numerical kernel method developed by Sone [76] to deal with the right hand side

collision operator. However, application of their approach has been limited to one

dimensional flow problems.

Two other approaches are presented in the rest of this chapter and they are

continuum and particle methods. These methods are efficient from the engineering

point of view but have their own limitations.
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2.2 Continuum Method

2.2.1 Conservation Equations

Similar to the moment of the distribution function defined in Equation (2.2),

Maxwell’s equation of change can be derived by multiplying the Boltzmann equa-

tion (2.1) by Q(c) and integrating over velocity space

∂

∂t
(nQ) + ∇ · (ncQ) = ∆[Q] (2.7)

where

∆[Q] ≡
∫

R3

Q
δ

δt
F dc.

If, however, Q(c) is taken to be the collisional invariants m, mc, and m(c2 + ζRT )/2

(the principle of energy equipartition applied), ∆[Q] vanishes because the change in

Q for both molecules must be zero in each collision. This leads to the conservation

equations of gases

∂

∂t
ρ + ∇ · (ρc) = 0, (2.8)

∂

∂t
ρV + ∇ · (ρcc) = 0, (2.9)

∂

∂t
ρE + ∇ · (1

2
ρc(c2 + ζRT )) = 0, (2.10)

where E = 1
2
c2 + ζRT = V 2/2+cvT is the specific total energy. Here, cv ≡ (ζ+3)R/2

is the specific heat at constant volume. If the distribution function in the flow is

only slightly perturbed from the Maxwellian equilibrium distribution locally, it can

be approximated by the Chapman-Enskog expansion and truncated from the second

order term. The conservation equations above then reduce to the Navier-Stokes

equations [40, 83]. In two dimensions, the NS equations in a vector form read

∂

∂t
U +

∂

∂x
F +

∂

∂y
G = 0 (2.11)
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where u and v are the components of velocity in the x and y directions. With

the scalar pressure defined as p ≡ 1
3
ρc′2, the viscous-stress and heat-flux terms are

expressed as

τxx = −p + 2µ[∂u/∂x − 1
3
∇ · V], (2.12a)

τyy = −p + 2µ[∂v/∂y − 1
3
∇ · V], (2.12b)

τxy = τyx = µ(∂u/∂y + ∂v/∂x), (2.12c)

qx = −κ∂T/∂x, (2.12d)

qy = −κ∂T/∂y. (2.12e)

The perfect gas equation of state, p = ρRT , is assumed. The viscosity µ is modeled

with the power law

µ = µr(T/Tr)
ω (2.13)

and the thermal conductivity κ is determined from the Prandtl number

Pr = cpµ/κ
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where µr and Tr are reference quantities, ω is a constant characterizing the molecular

interaction and cp is the specific heat at constant pressure. To be consistent with the

viscosity simulated in the particle approach, the reference viscosity takes the form

µr =
15
√

πmkTr

2σr(5 − 2ω)(7 − 2ω)
(2.14)

where k is the Boltzmann constant and σr is the reference cross section and will be

addressed in Section 2.3.2.

2.2.2 Navier-Stokes Solver – CFD

During the past few decades, Computational Fluid Dynamics (CFD) has been

well developed to numerically solve the Navier-Stokes (NS) equations. Although a

general method working for all kinds of flows is not yet possible, some techniques

have achieved great success for certain categories of flows [6, 47, 48]. Among those

techniques, a finite-volume method is considered to be the best candidate of solving

the NS equations for supersonic flows. The finite-volume form of the NS equations

in two dimensions can be written as

dU

dt
= − 1

A

∑

edges

(F∆y − G∆x) (2.15a)

where A is the area of the cell and ∆x and ∆y are the changes of x and y along an

edge. For axisymmetric flows, the NS equations must include a source term and can

be written as

dU

dt
= − 1

Ayc

∑

edges

ȳ(F∆y − G∆x) + S (2.15b)
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with S defined as

S =



























0

0

pc/yc − 2µ(vc/yc − 1
3
∇ · Vc)/yc

0



























.

Here, ȳ is the midpoint of the edge and the subscript c represents the centroid of the

cell.

If the flux function on a cell edge is defined as Φ ≡ (F∆y−G∆x)/∆s, where ∆s =

√

(∆x)2 + (∆y)2 is the edge length, equations (2.15) for a general two-dimensional

flow are approximated as

Ut+∆t − Ut = − ∆t

Ayc

∑

edges

ȳΦ∆s + S. (2.16)

In the thesis, the flux function is evaluated with an explicit, modified Steger-

Warming flux vector splitting scheme [57], accurate to second order in space. To

evaluate the fluxes on the interface between cells (i,j) and (i+1,j), a total number

of eight cells surrounding it are involved, as shown in Figure 2.1. The strategy of

the parallelization of the hybrid approach is largely influenced by the stencil for

the flux evaluation and will be discussed in Section 5.4. An implicit Gauss-Seidel

line-relaxation technique for the time integration that speeds up the numerical con-

vergence is also employed in some calculations in the next chapter.

2.2.3 Slip Boundary Conditions

In a transitional flow, it is observed that the gas very close to a solid stationary

wall is not considered to be at rest, therefore a velocity “jump” between the flow

and the wall exists. A similar phenomenon is also observed for temperature. These
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Figure 2.1: The stencil for the finite-volume scheme.

jumps are modeled with the Maxwell-Smoluchowski slip boundary conditions [74]

~us =
2 − αv

αv
λv

∂~u

∂n

∣

∣

∣

w
(2.17)

Ts = Twall +
2 − αT

αT
λT

∂T

∂n

∣

∣

∣

w
. (2.18)

Here, Twall is the temperature of the surface and αv and αT are the tangential mo-

mentum and thermal accommodation coefficients of the surface. The mean free path

for momentum (λv) and thermal energy (λT ) were given by Gökçen [39]

λv =
2µ

ρc̄
, λT =

2κ

ρc̄cv

where c̄ =
√

8RT/π is the mean molecular speed. The subscript w indicates condi-

tions at the wall, or surface of the wind tunnel model. The slip velocity is tangent

to the surface, and the normal-direction velocity component is set to zero at the

surface.

Once the slip temperature is computed, heat flux to the surface is calculated as

qw = −κ
∂T

∂n

∣

∣

∣

w
= −κ

T1 − Ts

∆n

where T1 is the temperature at the first cell center away from the wall, and ∆n is

the normal-direction distance from that cell center to the surface.
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2.2.4 Limitations of the NS Equations

As stated in Section 2.2.1, the NS equations are derived based on the assumptions

of slight deviation from local thermodynamic equilibrium and first-order approxima-

tion of the Chapman-Enskog expansion. If the local distribution function is not

simply slightly deviated from local equilibrium, higher order terms of the Chapman-

Enskog expansion must be retained. The evaluation of the next term in the expansion

leads to the so-called Burnett equations. However, attempts at solving the Burnett

equations have uncovered many physical and numerical difficulties, such as viola-

tion of the second law of thermodynamics and numerical instability at high Knudsen

numbers [29].

To overcome the violation of the second law of thermodynamics, Balakrishnan

and Agarwal [9] have derived the Bhatnagar-Gross-Krook (BGK) Burnett equations

by employing the BGK model [12] for the collision integral and using the Navier-

Stokes equations to express the material derivatives in the second order distribution

function. The BGK-Burnett equations ensure that the Boltzmann H-function is

monotonically decreasing at high Knudsen numbers [10] and therefore do not violate

the second law of thermodynamics. However, for strongly nonequilibrium flows, more

and more terms in the expansion must be involved, resulting in a great challenge to

form a set of closed equations [40].

Rather than mathematically dealing with the Boltzmann equation for a gas flow,

another branch of numerical methods is based directly on the simulation of the

physics of the flow. A technique of this kind generates thousands or millions of

simulated particles, each representative of a large number of real molecules, in a

computer, moves them, and makes collisions take place between them.
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2.3 Particle Method

The molecular dynamics (MD) method is considered to be the first particle

method, proposed by Alder and Wainwright in the late of 1950’s [2, 3] to study

the interactions of hard spheres. In a MD simulation, the time evolution of a set

of interacting molecules is followed by integrating the classical Newton’s equations

of motion. The intermolecular force can be modeled with two-body or many-body

potentials or an empirical choice. For instance, Rahman [68] studied a number of

properties of liquid argon, using the Lennard-Jones potential on a system containing

864 atoms. The major disadvantage of this method is that the size of the molecular

system must be very small. Consider the air at standard temperature and pres-

sure again. A simulation of such gas involving a million simulated particles covers

a volume of only 0.037 cubic microns [34]. However, if the density is an order of

magnitude higher, the number of simulated particles required is decreased to about

10,000. Due to its nature, the MD technique has proved to be valuable only for the

simulations of dense gases and liquids [4] but is not appropriate for dilute gases.

The most commonly used particle method for simulating a rarefied gas flow is

the direct simulation Monte Carlo (DSMC) method [16]. This method was first

introduced by Bird in the 1960’s and has been developed to the state where it is

very reliable, accurate, and has gained wide acceptance in the scientific community.

The DSMC method emulates the nonlinear Boltzmann equation by simulating the

real molecule collisions with collision frequencies and scattering velocity distributions

determined from the kinetic theory of a dilute gas. With a sufficiently large number

of simulated particles, Bird [14] has shown that the Boltzmann equation can be

derived through the DSMC procedures.
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2.3.1 DSMC Overview

In a DSMC simulation, the computational domain is divided into a network of

cells. The state of the system is described by the positions and velocities of particles,

{xj, cj}. The evolution of the system is integrated in time steps, ∆t, which are

typically smaller than the mean collision time for a particle. At each time step, the

particles are first allowed to translate at constant velocity as if they did not interact

with each other, that is, their positions are updated to xj +cj∆t. Some particles may

travel from cell to cell. Some particles may escape from the computational domain

or hit a solid wall and bounce back. After all particles have been translated, some

are randomly selected to collide. The rules of this random selection are developed

from kinetic theory, so as to replicate the correct collision frequency. Momentum

and energy are conserved in a collision process.

2.3.2 Variable Hard Sphere Model

Conservation of momentum and energy provide four out of the six equations

required to determine the post-collision velocities. The remaining two conditions

are made with the assumption of isotropic scattering. The azimuthal angle, φ, is

uniformly distributed between 0 and 2π, so as φ = 2πR, where R is a uniform

deviate in [0, 1). The other angle, θ, is computed from sin θ = 2R − 1.

In determining the collision frequency of a gas molecule, the use of the typical

inverse power law potential model is inadequate because the model gives an infinite

total cross-section. To overcome this difficulty, Bird [15] introduced the Variable

Hard Sphere (VHS) model as a practical approximation to the inverse power law

potential model. In the VHS model, isotropic scattering is also assumed and its

total cross-section, σ, is allowed to vary with the relative speed of the two colliding
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molecules, g, as follows

σ/σr = g1−2ω/g1−2ω
r . (2.19)

Here, gr is the relative collision speed at the reference temperature Tr. Also seen in

Equation (2.14), σr is the reference cross section and is written as σr = πd2
ref, where

dref denotes the reference molecular diameter. Data for ω and dref at Tr = 273 K for

several major species are listed in Table 2.1.

He Ar N2 O2 Air

Diameter
(dref × 1010 m)

2.33 4.17 4.17 4.07 4.19

Viscosity index
(ω)

0.66 0.81 0.74 0.77 0.77

Table 2.1: VHS molecular diameters and viscosity indexes for some major species at
273 K.

2.3.3 Coefficient of Viscosity

The coefficient of viscosity obtained from the first approximation of the Sonine

polynomials is [83]

µ =
5

8

√
πmkT

( m

4kT

)−4
[
∫ ∞

0

g7σµ(g) exp

(

−mg2

4kT

)

dg

]−1

(2.20)

where σµ is the viscosity cross section and is given as σµ = 2/3σ for the VHS model.

Using Equation (2.19) and the relation

g2ω−1
r = (4kTr/m)ω−1/2/Γ(5/2 − ω)

one can obtain

µ =
15
√

πmkTr

2σr(5 − 2ω)(7 − 2ω)

(

T

Tr

)ω

.

This shows that the form taken by the reference viscosity in Equation (2.14) is

necessary.
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2.3.4 Collisions

To evaluate the collisions in a DSMC simulation, pairs of particles in a cell are

randomly selected, regardless of their relative positions and velocities. In Bird’s “No

Time Counter” (NTC) scheme [16], a total number of

1/2nN̄(σg)max∆t

pairs are sampled from the cell at each time step and a collision actually takes place

if a candidate pair satisfies

(σg)/(σg)max > R.

The average number of particles in the cell is denoted by N̄ . The parameter (σg)max

is stored for each cell and is best set initially to a reasonably large value, but with

provision for it to be automatically updated if a larger value is encountered during

the sampling.

Baganoff and McDonald [8] developed another sampling scheme suited to vector

computers. In their scheme, the condition for a candidate pair to actually collide is

1

2
n2

(

gσr∆t

S

) (

gr

g

)2ω−1

> R, (2.21)

for a general sample size per unit volume, S. Special care must be taken to ensure

that the left-hand-side of Equation (2.21) is never greater than unity in a numerical

simulation. This can be achieved by reducing the time step, ∆t. As long as the

left-hand-side is less than unity, the sampling scheme will model the correct physics.

The sampling scheme developed by Baganoff and McDonald is employed through-

out the whole thesis.
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2.3.5 Rotational Energy Exchange

In a diatomic or polyatmoic gas, energy is transferred between the various in-

ternal modes via continuous collisions and these collisions drive the internal energy

distribution toward their equilibrium state. The number of collisions required for a

particular mode of each molecule to reach equilibrium is called the collision num-

ber Z of that mode. Each internal mode has a different collision number and it is

generally the case that

Ztranslation < Zrotation < Zvibration.

Since only perfect gases are considered in the thesis, the vibrational energy can be

completely ignored. The above relation indicates that the number of collisions for

the rotational mode to reach equilibrium is greater than the number required for the

translational mode.

The transfer of energy between the various modes is usually implemented into

the DSMC method by using the Larsen-Borgnakke phenomenological model [17].

In DSMC simulations, this model usual assumes that a constant number of 1/5 of

all collisions are considered to be inelastic and the rest of collisions are perfectly

elastic. However, this assumption is in direct opposition to the theoretical findings

of Parker [66] and Lordi and Mates [55].

Boyd [19, 20], therefore, developed a temperature-dependent expression for the

energy exchange probability. In his expression, the rotational collision number is

defined as

ZR = τR/τc,

where τR is the rotational relaxation time and τc is the mean time between collisions.

In a collision, energy exchange between the translational and rotational modes takes
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place if

1 +
Γ(ζ + 5/2 − ω)

Γ(ζ + 3 − ω)

(

kΘ

Ec

)1/2
π3/2

2
+

Γ(ζ + 5/2 − ω)

Γ(ζ + 3/2 − ω)

(

kΘ

Ec

) (

π2

4
+ π

)

>
(ZR)∞

Zt
R, (2.22)

where Θ is the characteristic temperature of the intermolecular potential and (ZR)∞

is the limiting value. The sum of the translational and internal collision energies is

denoted by Ec and translational collision number by Zt with definition similar to ZR.

2.3.6 Boundary Conditions

The velocity distribution for simulated particles reflecting from a solid wall varies

with the type of the wall they hit. Specular and diffuse walls are the two most

common types considered in DSMC. When a particle collides with a specular wall,

its component of velocity tangential to the wall remains the same and the component

normal to the wall changes its sign. When a particle bounces back from a diffuse

wall at temperature Tw, its velocity components tangential to the wall are sampled

from the standard Maxwellian distribution

f(ct) dct =
1√

2πRTw

exp

( −c2
t

2RTw

)

, (2.23)

while its normal component is sampled from the biased-Maxwellian distribution

f(cn) dcn =
1

RTw
cn exp

( −c2
n

2RTw

)

. (2.24)

A wall with accommodation coefficient α means that a fraction α of all the particles

colliding with the wall are thermalized by the wall and the rest fraction (1 − α) of

the particles are specularly reflected by the wall.

The internal energy of a reflecting particle is handled in the same manner. When

a particle strikes a specular wall, its internal energy experiences no change. On the
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other hand, when a particle strikes a diffuse wall, its internal energy is reset according

to the standard Maxwellian distribution evaluated at the wall temperature.

2.3.7 Limitations of DSMC

The procedures in the DSMC method for the probabilistic selection of a repre-

sentative set of collisions are directly based on the basic relations of classical kinetic

theory. As a result, this method has the same limitations as in all of classical ki-

netic theory, including the Boltzmann equation. The principal limitations are the

assumption of molecular chaos and the requirement of a dilute gas. The molecular

chaos assumption means that particles undergoing a collision will not meet again

before colliding with other particles many times. The velocities of a collision pair

are, therefore, totally uncorrelated. The dilute gas assumption prevents this method

from being used for dense gases or for highly ionized plasmas that are dominated by

long-range interactions [16].

Another fundamental assumption for DSMC is that particle motion and particle

collisions can be decoupled. This assumption requires that the simulation time-step

(∆t) be smaller than the local mean collision time (τ). In addition, we are able to

randomly select the colliding particles in a cell while ignoring their positions if the

computational cell size (∆s) is smaller than the local mean free path (λ), statistically

speaking. In other words, we need ∆t/τ < 1 and ∆s/λ < 1.

2.3.8 MONACO

The particular DSMC code, named MONACO, employed in the thesis was first

developed by Dietrich and Boyd [30] in 1996. Since then, MONACO has been further

modified and applied to a wide variety of rarefied gas problems. It is a general-

purpose code for simulating 2D, axi-symmetric, or 3D rarefied gas flows. MONACO
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employs the VHS or Variable Soft Sphere [54] (VSS) collision models, the variable

rotational energy exchange probability model of Boyd [19, 20], and the variable

vibrational energy exchange probability model of Vijayakumar et al. [82] although

this model is turned off due to the perfect gas assumption. Cell weighting factors

and time-steps may be set uniquely for each cell in the grid. A sub-cell scheme is

implemented for selection of collision pairs where the number of sub-cells is scaled

by the local mean free path.

2.4 The Information Preservation Method

2.4.1 Governing Equations

The Information Preservation (IP) method was first developed by Fan and Shen [33]

to overcome the statistical scatter problem in DSMC simulations, especially for sys-

tems in which the flow speed is much smaller than the molecular speed. In addition

to the ordinary microscopic molecular velocity that is utilized to compute the particle

trajectory, each simulation particle in the DSMC-IP method also possesses macro-

scopic preserved information such as velocity vector (ξ) and temperature (T ). As a

result, the DSMC-IP method uses at most 57% more memory than in the standard

DSMC method [77]. This method has achieved great success for solving micro-scale

gas flows [24, 32, 79].

At each time step of the DSMC-IP method, simulated particles are first moved

and collided in the usual way as in the standard DSMC method. The preserved

velocity and temperature of the j-th simulated particle in a cell are updated by
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solving

∂

∂t

(

ρc ξj

)

= −∇pc (2.25)

∂

∂t

(

1

2
ρc

(

ξ2
j + ζ R Tj

)

)

= −∇ · (pc Vc) . (2.26)

After the preserved information of simulated particles is updated, the preserved

information for a cell is updated by taking the arithmetic average over the information

of all N particles in the cell,

Vc =
1

N

N
∑

j=1

ξj (2.27)

Tc =
1

N

N
∑

j=1

(Tj + Ta,j) . (2.28)

The density is updated by solving the continuity equation

∂ρc

∂t
+ ∇ · (ρc Vc) = 0. (2.29)

The ideal gas law, p = ρRT , is assumed again. The reason for the additional

temperature term, Ta, in Equation (2.28) will be given in the next section.

Equations (2.25) and (2.26) are solved using a finite-volume method as

ξt+∆t
j − ξt

j = − ∆t

ρcA

∑

edges

pc n∆s (2.30)

(

ξ2
j + ζ R Tj

)t+∆t −
(

ξ2
j + ζ R Tj

)t
= −2∆t

ρcA

∑

edges

(pc Vc · n)∆s (2.31)

where n = (∆y/∆s,−∆x/∆s) is the unit vector normal to the cell edge. The

cell information on cell edges is linearly interpolated using the information of the

neighboring cells. For axisymmetric flows, Equation (2.31) is modified to

(

ξ2
j + ζ R Tj

)t+∆t −
(

ξ2
j + ζ R Tj

)t
= − 2∆t

ρcAyc

∑

edges

ȳ(pc Vc · n)∆s (2.32)
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to take into account the effect that the cell has been rotated about the axis of

symmetry.

In contrast, the continuity equation, (2.29), must be solved using an adequate nu-

merical scheme due to the possible presence of shock waves in supersonic flows. Since

the same equation also appears in the Navier-Stokes equations, the same technique

described in Section 2.2.2 is used to solve it.

2.4.2 Additional Temperature

The additional temperature term, Ta, in Equation (2.28) was first introduced

by Sun and Boyd [78] to solve the contradiction between the real energy flux and

the DSMC-IP representation of the translational energy flux across a cell interface.

From gas kinetic theory, the volume averaged translational energy of a molecule at

equilibrium temperature T is 3kT/2, whereas the average translational energy carried

by a molecule across an interface at equilibrium is 2kT . The extra energy, kT/2, can

be regarded as being “borrowed” from other molecules that do not move across the

interface. This energy must be taken into account or the energy of the whole system

will not be conserved. Accordingly, each simulation particle in the IP method has an

additional temperature Ta and each cell also has an additional temperature Ta,c to

keep track of the borrowed energy. A more detailed description and implementation

of Ta in the DSMC-IP method can be found in Reference [78].

When a simulated particle moves from one cell to the other, the additional tem-

peratures for the particle and for the cell are changed as

T ′
a,j = (Tj − Tref)/(3 + ζ), (2.33)

T ′
a,c = Ta,c + Ta,j − T ′

a,j (2.34)

where Tref is the cell interface temperature interpolated from the preserved cell tem-
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peratures of neighboring cells. When a particle bounces back from a specular wall,

the additional temperature changes are

T ′
a,j = −Ta,j,

T ′
a,c = Ta,c + Ta,j − T ′

a,j.

Or, when a particle bounces back from a diffuse wall, the changes are

T ′′
a,j = (Tj − Tref)/(3 + ζ),

T ′
a,c = Ta,c + Ta,j − T ′′

a,j,

T ′
a,j = (Tw − Tref)/(3 + ζ)

where Tref =
√

Tj Tw is the constant gas temperature of a collisionless flow between

two plates with one at Tj and the other at Tw [40].

It has been numerically demonstrated that the idea of the additional tempera-

ture performs excellently for flows in which nonequilibrium is insignificant, such as

Couette flow, Rayleigh flow, Mach 0.8 airflow over a NACA0012 airfoil with a chord

length of 4 cm [78] and Mach 0.2 airflow over a 20-micron-long flat plate [80].

2.4.3 Collision

In a (c1, c2) → (c∗1, c
∗
2) collision, the macroscopic preserved properties of the two

particles involved change based on a phenomenological model [78]

ξ∗
1 = Λµ ξ1 + (1 − Λµ) ξ2, (2.35a)

ξ∗
2 = (1 − Λµ) ξ1 + Λµ ξ2, (2.35b)

T ∗
1 = ΛκT1 + (1 − Λκ)T2 + Tξ1−ξ2, (2.35c)

T ∗
2 = (1 − Λκ)T1 + ΛκT2 + Tξ1−ξ2, (2.35d)



36

and

T ∗
a,1 = ΛκTa,1 + (1 − Λκ)Ta,2, (2.35e)

T ∗
a,2 = (1 − Λκ)Ta,1 + ΛκTa,2. (2.35f)

The quantity Tξ1−ξ2 in Equations (2.35c) and (2.35d) is due to the relative energy

Tξ1−ξ2 = (ξ1 − ξ2)
2(1 − C2

µ cos2 χ)/(4 ζ R).

The weighting factors Λµ and Λκ are functions of the deflection angle χ after collision

in the collision plane

Λµ =
1 + Cµ cos(χ)

2
, Λκ =

1 + Cκ cos(χ)

2

where Cµ and Cκ are dependent only upon gas species and obtained from numerical

experiments. A list of values of Cµ and Cκ for five different gases is given in Table 2.2

for the VHS model.

He Ar N2 O2 Air

Cµ -0.15 -0.18 -0.25 -0.21 -0.21

Cκ 1.15 1.28 0.87 0.87 0.87

Table 2.2: Values of Cµ and Cκ for the VHS molecular model.

2.5 New Energy Flux Model for the DSMC-IP

The additional temperature in the DSMC-IP method is actually evaluated as

(Tj − Tref)/(3 + ζ), as shown in Equation (2.33), by assuming that there is a coun-

terpart particle at temperature Tk moving in the opposite direction and carrying

extra energy k(Tk −Tref)/(3+ ζ) across the same interface. Although the IP method
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works well for insignificantly nonequilibrium flows, a numerical experiment of a su-

personic flow over a 2-D wedge [88] showed that this method expresses a clear flaw

near the leading edge and within the shock, where the flow is believed to be strongly

nonequilibrium.

As Mach number is increased to hypersonic conditions, the accuracy of the

IP method becomes very poor. A typical example for a Mach 5 shock in ar-

gon is displayed in Figure 2.2 in which the results obtained with the IP method

are compared with DSMC results. The upstream conditions are T1 = 300 K,

ρ1 = 1.068 × 10−4 kg/m3 and a1 = 322.6 m/s. The non-dimensional variable is

defined as

Q∗ =
Q − Qref

|Q2 − Q1|
,

where the subscripts 1 and 2 represent upstream and downstream of the shock,

respectively. Qref is ρ1 and T1 for density and temperature and u2 for velocity. In the

numerical simulation, the reference time step is 10 nsec and the number of particles

per cell in the upstream is about 30 on average. It is clear that the IP method

is unable to accurately predict the profile of any of the flow properties. Moreover,

because the IP results fail to predict the onset of nonequilibrium at the upstream edge

of the shock, the domain interface in a hybrid DSMC/CFD simulation is placed at

the wrong location. As a result, the particle domain is always too small. Numerical

experiments showed that doubling the number of particles per cell does not resolve

the poor prediction. It is really no surprise because the idea of how the IP approach

deals with the energy carried by simulation particles from cell to cell is based on the

assumption of local thermal equilibrium or weak nonequilibrium.
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Figure 2.2: Non-dimensional flow properties for a Mach 5 shock in argon.

2.5.1 Construction of F

Since a simulated particle j represents a large number of real molecules, it is

reasonable to assume that the real molecules are in some kind of velocity distribu-

tion characterized by ξj and Tj. In the thesis, the distribution is assumed to be

Maxwellian

Mj =
1

(2πRTj)3/2
exp(−

|c − ξj|2
2RTj

). (2.36)

The local velocity distribution function within a cell with N simulation particles is

then assumed to be the arithmetic average of all Mj in the cell

Fc =
n

N

N
∑

j=1

Mj. (2.37)

Notice that it is not necessary for the Fc to be Maxwellian. For the sake of simplicity,

summation always means from j = 1 to N and its upper and lower limits are dropped

from now on.



39

With the above assumption of the local velocity distribution function in a cell,

cell velocity and temperature can be determined using Equations (2.4) and (2.6),

respectively, and are

Vc =
1

N

∑

ξj, (2.38)

Tc =
1

N

∑ 1

3R

∣

∣ξj − Vc

∣

∣

2
+ Tj. (2.39)

Notice that Equation (2.38) is identical with Equation (2.27). Also, notice that Tc

is always positive as long as every particle in the cell has a positive IP temperature.

In a strong shock wave, since the pressure is not in equilibrium in all directions,

the change of the preserved velocity modeled with Equation (2.25) is not valid any

more. As a result, a more general pressure gradient term is involved

∂

∂t

(

ρc ξj

)

= −∇ · Pc (2.40)

where Pc consists of only the diagonal elements of the pressure tensor

P = m

∫

R3

(c − V)(c − V)F dc.

Substituting F with Equation (2.37) and integrating over the velocity space yields

the elements of the pressure tensor

Pik = δik
ρ

N

∑

(ξj,i − Vc,i)(ξj,k − Vc,k) + RTj

where δik is the Kronecker delta.

To solve the energy and continuity equations (Equations (2.26) and (2.29), re-

spectively), energy and mass fluxes across a cell interface must be evaluated. A

general expression of the flux of Q(c) across a cell interface can be written as

JQ =

∫

R2×R+

cnQFcdc, (2.41)
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where cn is the velocity component in the direction normal to the cell interface and

is given as cn = c · n. One integration in Equation (2.41) has been limited to those

molecules moving in the positive n-direction. Mass and energy fluxes can be obtained

when Q in Equation (2.41) is replaced with m and m(c2 + ζRT )/2. With the help

of Equations (2.36) and (2.37), the fluxes can be evaluated as

Jm =
1

N

∑

Jm,j, (2.42)

Je =
1

N

∑

Jm,j

[

ξ2
j + (5 + ζ)RTj

]

/2 − ρcRTj c̄jexp(−s2
j)/8. (2.43)

Here, Jm,j is the mass flux resulting from the simulated particle j

Jm,j =
1

2
ρcβ

−1
j

{

sj [1 + erf(sj)] + exp(−s2
j)/

√
π
}

, (2.44)

where c̄j =
√

8RTj/π, sj = βjξn,j is the speed ratio, β−1
j =

√

2RTj and erf(x) is the

error function. The IP velocity component in the direction normal to the interface

is written as ξn,j = ξj · n.

The rates of change of the density and average energy in a cell are approximated

using the surface integrals with respect to the mass and energy fluxes around the cell

boundary

ρt+∆t
c − ρt

c = −∆t

A

∑

edge

Jm∆s (2.45a)

(ρcEc)
t+∆t − (ρcEc)

t = −∆t

A

∑

edge

Je∆s (2.45b)

for two-dimensional flows or

ρt+∆t
c − ρt

c = − ∆t

Ayc

∑

edge

ȳJm∆s (2.46a)

(ρcEc)
t+∆t − (ρcEc)

t = − ∆t

Ayc

∑

edge

ȳJe∆s (2.46b)
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for axi-symmetric flows. A net flux consists of the outlet flux from the cell and the

inlet flux from the neighboring cell.

A similar approach was proposed in the Equilibrium Flux Method (EFM) by

Pullin [67], but there were no particles involved and all fluxes were evaluated based

on cell averaged values. Shen et al. [75] attempted to calculate the energy flux in a

fashion close to that described here, but they assumed that all particles within a cell

have the same preserved information.

Particle IP temperature is updated by assuming that all particles within a cell

bear the same amount of temperature change

∆T = {Ec −
1

N

∑

(
1

2
ξ2
j + cvTj)}/cv.

If ∆T is positive, particle temperature in the cell increases and everything is well

defined. However, when ∆T is negative, care must be taken to prevent the particle

IP temperature from becoming negative or lower than a cut-off temperature Tθ.

Therefore an iterative process is employed to update the particle temperature. The

loop process starts with a test of each individual particle in a cell to examine whether

the particle IP temperature is lower than Tθ when ∆T is applied. If the test is

false, the temperature update for the individual particle is allowed. Otherwise, the

temperature update is not allowed and an amount of ∆T is banked. After all particles

in the cell are finished with the update for a loop, the banked temperature is divided

by the number of particles in the cell and the result is a new ∆T whose absolute

value is less than the last one. The loop repeats with the new ∆T until there is no

banked temperature. From the experience of numerical experiments, the number of

loops is always smaller than 50. Tθ is arbitrarily chosen to be 5% of the local cell

temperature.
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2.5.2 Shock Structure

The new energy flux model is evaluated using 1-D stationary shock wave sim-

ulations. A computational domain that is sufficiently large to contain the shock is

employed. Particles entering the computational domain from the upstream side are

initialized with the upstream conditions. A moving piston boundary described in the

book by Bird [16] is applied at the downstream edge. IP properties of the particles

reflecting from the moving piston back to the computational domain are set with the

downstream conditions.

To emphasize the great improvement by the new energy flux model, only the

Mach 5 shock in argon mentioned previously is considered in this section. The results

at different Mach numbers and gases can be found in Appendix A or Reference [86].

The reference time step in the numerical simulation with the new energy flux model

is 10 nsec and the number of particles per cell in the upstream is about 30.

At Mach number 5, the IP method with the new energy flux model works very

well. Comparisons for non-dimensional density, temperature, and velocity of the IP

and DSMC methods are displayed in Figure 2.3. It is obvious that the new solution

obtained with the new energy flux model is significantly improved, compared to

the solution obtained with the additional temperature model. The newly predicted

density profile is in excellent agreement with the DSMC results but the discrepancy

of the temperature at the shock front still persists. Because for each time step every

particle in a cell is taken into account for the flux evaluations, the new energy flux

model is slower than the additional temperature model in which only the particles

across the cell edges need to be concerned about the extra energy carried away from

the cell. The use of time-consuming functions, exp and erf, in the flux evaluations

makes the new energy flux model further slower. This issue will be addressed in
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the next section. Overall, the new energy model performs much better than the

additional temperature model when the same reference time step and number of

particles are employed.

2.5.3 Cost and Boundary Condition

It is worth pointing out that the new energy flux model is a very general idea

and is believed to work not only for hypersonic flows but also for subsonic and low-

speed microscale flows. However, there are three major issues that prevent it from

being immediately employed in the current DSMC/CFD hybrid approach. First,

numerical efficiency is very poor primarily because two time-consuming functions,

exp and erf, are largely involved in Equations (2.42) and (2.43) for flux evaluations.

This issue can be resolved by utilizing faster, approximated functions to replace the

built-in exact functions. This issue can also be resolved by creating a look-up table

containing the value in the curved parenthesis in Equation (2.44) as a function of

the speed ratio sj. Second, the model is sensitive to the number of particles per cell.

Numerical experience suggests that it is required to have at least 30 particles in each

cell. Combining these two issues implies that the energy flux model is very expensive

computationally. The third issue is associated with the development or adoption of

a gas-surface boundary condition. This is not an easy task and will be discussed in

the last chapter.
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Figure 2.3: Comparison of non-dimensional flow properties for a Mach 5 shock in
argon.



CHAPTER III

CODE VALIDATION

Before any study of a hybrid method can be undertaken, a verification of the

accuracy and consistency of the constituent numerical methods is required. In this

chapter, a number of accuracy issues for the numerical simulations over a blunted

cone tip and a hollow cylinder/flare configurations using three numerical methods

(NS solver, DSMC, and DSMC-IP) are carefully investigated. For DSMC simula-

tions, solution dependence on numerical parameters, grid resolution, and accommo-

dation coefficient is first examined. The comparisons of DSMC solutions with those

obtained with the NS solver and the DSMC-IP method follow.

The gas considered in the entire thesis is pure nitrogen and some of its mate-

rial properties considered in Chapter II can be found in Tables 2.1 and 2.2. The

Prandtl number is assumed to be a constant of 0.72. The freestream conditions are

listed in Table 3.1. The conditions for the blunted cone tip and the hollow cylin-

der/flare correspond, respectively, to the experiments Run 31 and Run 11 conducted

in CUBRC [50]. The Reynolds numbers are based on the characteristic lengths in

Figure 1.2 and the wall temperature in either case is assumed to be isothermal.

The significant difference between the translational and vibrational temperatures

in the freestreams is due to vibration relaxation lagging behind during the rapid

45
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Blunted Hollow

Cone Tip Cylinder/Flare

M∞ 12.6 12.4

T∞ (K) 104.4 95.6

Twall (K) 297.2 297.2

V∞ (m/s) 2630.4 2484.1

ρ∞ (10−4kg/m3) 5.618 5.566

Tvib (K) 2680.2 2486.7

ReL (104) 6.21 6.35

KnL (10−4) 9.236 8.264

KnR 0.013 -

Table 3.1: Freestream conditions for the flows considered.

expansion of the gas from a high temperature/pressure reservoir tank [26]. Since

either experiment lasts only a few millisecond, the assumptions of frozen vibrational

energy and vanished vibrational energy accommodation coefficient are therefore made

through out all numerical calculations in the thesis. The latter assumption has been

verified in many early analytic and experimental work [58].

Notice that if the Knudsen number is evaluated with the characteristic length, the

flow field in both cases can be considered as continuum. If the number is evaluated

with the cone tip radius in the blunted cone tip case (KnR), it is clear that the flow in

the vicinity of the cone tip is classified as transitional and should be best simulated

with a particle method.

3.1 Blunted Cone Tip

The configuration employed in this case is a blunted 25◦ half-angle cone as the

first cone depicted in Figure 1.2(a). The finest grid used in the code validation

has 600 cells along the cone body and 300 cells normal to the body, as shown in
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Figure 3.1: Grid employed for a 25◦ blunted cone.

Figure 3.1. It has increased cell density near the body in order to resolve the local

high gradients.

A reference time step of 2 nsec is employed in all the DSMC calculations. The

total number of particles in each simulation is about 30 times the total number of

cells. A total of 200,000 time steps of computation are performed and the last 20,000

time steps are sampled to obtain the DSMC results. Particles reflecting from the

cone surface are assumed to be fully diffuse, α = 1, unless otherwise stated.

3.1.1 Numerical Parameters

As described in Section 2.3.7, a fundamental assumption for DSMC is that particle

motion and particle collisions can be decoupled and this assumption requires that

the simulation time-step be smaller than the local mean collision time, meaning

∆t/τ < 1. An other numerical requirement for DSMC is to have the cell size smaller

than the local mean free path, ∆s/λ < 1, making random selections of collision pairs

within a cell physically reasonable assumption.

To study the numerical parameters employed, data have been extracted along
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three different lines: one along the stagnation line and the other two normal to the

cone at x = 2 and 4 cm (corresponding to the dotted lines a, b, and c in Figure 3.1,

respectively). Figure 3.2 shows the ratio of the simulation time-step to the local

mean collision time, with the definition of δn as the normal-distance from the body

surface. It is evident that the simulation time-step criterion is satisfied everywhere.

The characteristic cell size in the grid, ∆s, is determined by the length scale of a

cell in the direction of the maximum gradient of density, pressure, temperature, or

velocity and passing through the cell center. Its ratio to the local mean free path

is shown in Figure 3.3. The cell size criterion is generally satisfied, except in the

shock region in some places along the normal line at x = 4 cm. Even in the worst

condition, the cell size is no more than twice the local mean free path. In addition,

there are at least 40 particles per cell in the shock region as shown in Figure 3.4, and

therefore the use of the sub-cell scheme should provide adequate spatial resolution.

It is important to note that the criteria for ∆t and ∆s are met within the boundary

layer, which gives one confidence with the DSMC solution in the vicinity of the cone

surface.

3.1.2 Grid Sensitivity

In this section, the computed surface quantities at different levels of grid reso-

lution are examined. The two surface quantities considered are pressure coefficient

and Stanton number:

Cp =
p − p∞
1
2
ρ∞V 2

∞

, St =
qw

1
2
ρ∞V 3

∞

and they are plotted versus the axial distances.

In Figure 3.5, the surface pressure and Stanton number are shown for the steady

state solution. It is clear that the two surface quantities in the two grids are very
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Figure 3.3: Ratio of simulation cell size in direction of maximum gradient to local
mean free path along three different lines normal to a 25◦ cone.
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Figure 3.4: Number of particles per cell along three different lines normal to a 25◦

blunted cone.

close and it is believed that the 600 by 300 grid yields a reliable solution in terms of

grid sensitivity and thereafter is used for the further studies of this case.

On a Linux cluster with 20 1-GHz Intel � Pentium � III processors, the time

consumed for the simulation on the 600 by 300 grid is about 32 hours. On the same

machine but on the 400 by 200 grid, the run time is about 16 hours.

3.1.3 Accommodation Coefficient

The surface pressure coefficient and Stanton number computed with two different

accommodation coefficients are displayed in Figure 3.6. It is indicated that only

minor differences are observed. From this study, it is concluded that the DSMC

results are insensitive to the accommodation coefficient in the range from 0.85 to

1.0.
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Figure 3.5: Surface pressure and heat transfer coefficients obtained with DSMC at
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Figure 3.7: Convergence histories for the CFD simulations at different levels of grid
resolution for a Mach 12.6 nitrogen flow over a 25◦ blunted cone.

3.1.4 DSMC and CFD Comparisons

The convergence histories are shown in Figure 3.7 for the CFD simulations ob-

tained with the implicit scheme in the 400 by 200 and 600 by 300 grids. The times

required by the CFD calculations on the same Linux cluster machine are 20 and 45

minutes, respectively, for the coarse and fine grids. The surface pressure and heat

transfer coefficients for the CFD solutions at different levels of grid resolution are

displayed in Figure 3.8 and it is clear that the two surface quantities in the two grids

are very close. The CFD solution in the 600 by 300 grid is used in the following

validations.

Comparisons of the translational temperature and mass density contours obtained

with the DSMC and CFD methods are made in Figure 3.9. It is easy to observe that

the bow shock predicted by DSMC is much thicker. Moreover, its positions in front

of the cone tip predicted by the two methods are different, as shown in Figure 3.9(b).
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Figure 3.8: Surface pressure and heat transfer coefficients obtained with CFD at
different levels of grid resolution along a 25◦ blunted cone surface.

Otherwise, the DSMC method results are in general in good agreement with the CFD

results.

In Figure 3.10, the pressure and heat transfer coefficients obtained with the

DSMC and CFD methods are compared with the experimental data [50] along the

cone surface. Although the numerical results are slightly over-predicted for both Cp

and St, they still agree with the measured data fairly well.

It is worth pointing out that the Cp and St calculated by both numerical methods

are very close along the cone surface, suggesting that the flow fields in the boundary

layer should be very similar in both numerical solutions. Detailed comparisons of

the flow fields for the DSMC and CFD solutions are provided in Chapter VI.

Also shown in Figure 3.10(a) is the profile based on Lees’ modified Newtonian

law [7]

Cp = Cpmax
sin2 θ (3.1)
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Figure 3.9: Comparison of mass density and translational temperature for DSMC
and CFD solutions over a 25◦ blunted cone.
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where Cpmax
is the pressure coefficient evaluated using the stagnation pressure behind

a normal shock wave and θ is the angle between the freestream and the surface. In

the limit as the freestream Mach number is increased to infinity, Cpmax
approaches to

1.839 for a diatomic gas. Despite its simplicity, this model turns out to be capable

of predicting the pressure coefficient with good qualitative accuracy.

The Fay and Riddell model [7] is employed to estimate the Stanton number at

the stagnation point and gives a value of 0.185. At the same point, CFD predicts

0.190 and DSMC gives 0.188, as shown in Figure 3.10(b). The accuracy of the Fay

and Riddell model is very impressive for this case.

3.1.5 DSMC and DSMC-IP Comparisons

A pure DSMC-IP simulation is performed on the same 600 by 300 grid with about

50 particles per cell on average. Based on experience, if a grid satisfies the ∆s/λ < 1

requirement for a DSMC simulation, the grid is applicable to the corresponding

DSMC-IP simulation. Also based on experience, the time step allowed in a simulation

involving the DSMC-IP method must always be approximately an order of magnitude

smaller than the one employed in the pure DSMC simulation. Accordingly, the time

step is set to 0.3 nsec. In order to reach the steady state, therefore, about one million

steps are executed and the last 60,000 steps are sampled once for every three steps.

The mass density and translational temperature contours are compared in Fig-

ure 3.11 for the DSMC and the DSMC-IP methods. Basically, the contour distribu-

tions exhibit the same flow features from both methods and the agreement between

the two solutions is very good. Close-up comparisons for density and temperature

near the stagnation point are given in Figures 3.12(a) and 3.12(b), respectively. It

is clear that the shock thickness and position predicted with the DSMC-IP method
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Figure 3.10: Comparison of surface pressure and heat transfer coefficients for DSMC,
CFD, analytic solutions, and measured data along a 25◦ blunted cone
surface.
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are different from the DSMC results to some extent.

The surface properties obtained with the DSMC-IP method are also compared

with the DSMC results, as shown in Figure 3.13. Generally speaking, the pressure

and heat transfer coefficients from both methods are in good agreement, except for

discrepancies near the stagnation point.

3.2 Hollow Cylinder/Flare

The configuration considered in this section consists of a hollow cylinder followed

by a 30◦ conical flare, as depicted in Figure 1.2(b). The structured grid employed

for the code validation has 200,000 cells, with 1,000 cells along the body surface and

200 cells normal to the body surface, as displayed in Figure 3.14.

In all the DSMC simulations, a reference time step of 3 nsec is employed, 300,000

time steps of computation are performed, and the last 20,000 time steps are sampled

to obtain the results. The total number of particles used at the end of each simulation

varies with the grid resolution and other numerical parameters and will be given later.

As in the blunted cone tip case, particles bouncing back from the body surface are

assumed to be fully diffuse, α = 1, unless otherwise indicated.

Detailed flow structures can be observed in Figure 3.15. A general impression

of the complex flow is the gas density is reduced by a factor of about 2 from the

freestream value in the region above the cylinder and then compressed more than

7 times by the shock at the flare. The temperature above the cylinder is increased

due to viscous interaction and reaches a peak value of about 1,000 K. The strong

compression caused by the shock leads to further heating with a peak value of ap-

proximately 1,500 K. There is a circulation region in the vicinity of the conjunction

of the cylinder and flare.
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Figure 3.11: Comparison for mass density and translational temperature of DSMC
and DSMC-IP solutions over a 25◦ blunted cone.
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Figure 3.12: Close-up comparison for mass density and translational temperature of
DSMC and DSMC-IP solutions over a 25◦ blunted cone.



60

X (cm)

C
P

S
t

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.05

0.1

0.15

0.2

DSMC
DSMC-IP

CP

St
CP

St

Figure 3.13: Surface pressure and heat transfer coefficients of DSMC and DSMC-IP
solutions along a 25◦ blunted cone surface.

X (cm)

Y
(c

m
)

0 5 10 15 20

4

6

8

10

12
1000x200 cells
(every 10th point shown in each direction)

a

b

c
d

e

Figure 3.14: Grid employed for a hollow cylinder/flare.



61

2
4 5

7
6

1

3

4
5

6

1

Axial Distance (cm)
0 5 10 15 20

2

4

6

8

10

12

7 1500
6 1250
5 1000
4 750
3 500
2 300
1 100

TTRA (K)

1 2 3
4

3

2

6

6

7

4 5

0 5 10 15 20
2

4

6

8

10

12

7 4.0E-03
6 3.0E-03
5 2.0E-03
4 1.0E-03
3 7.5E-04
2 5.0E-04
1 2.5E-04

R
ad

ia
lD

is
ta

nc
e

(c
m

)

ρ (kg/m3)

Figure 3.15: Mass density and temperature contours of the DSMC solution for the
flow over a hollow cylinder/flare.

3.2.1 Numerical Parameters

The first step to validate the DSMC solution is to again examine the numerical

parameters employed, including the simulation time-step, cell size, and number of

particles per cell. Data have been extracted along five lines normal to the hollow

cylinder/flare body at x/L = 0.01, 0.5, 1.0, 1.3, and 1.6 (corresponding to the dotted

lines a, . . . , e in Figure 3.14).

In Figure 3.16, the ratio of the simulation time-step to the local mean collision

time along each line is plotted as a function of the normal-distance from the body,

δn. It is obvious that the criterion ∆t/τ < 1 is met everywhere.

To examine the cell size criterion, the ratio of the characteristic cell size to the

local mean free path along each line is displayed in Figure 3.17 also as a function of

δn. The characteristic cell size is again defined as the length scale of a cell in the

direction of the maximum gradient of density, pressure, temperature, or velocity. It
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Figure 3.16: Ratio of simulation time-step to local mean collision time along five
different lines normal to a hollow cylinder/flare body.

is evident from this figure that the current grid resolution is too coarse for the flow,

particularly in the flare region where a strong shock is formed. Along the line at

x/L = 1.3, for example, the grid size should be decreased by a factor of 11 in some

places. However, due to limited computing resources, it is very expensive to employ

such a fine grid. An alternative is to increase the number of simulated particles and

utilize the sub-cell scheme in the DSMC code. Therefore, about 27 million particles

are employed in this simulation to ensure that there is a sufficient number of particles

in each sub-cell. Taking the line at x/L = 1.3 for example, when ∆s/λ reaches its

maximum of about 11, there are about 600 particles per cell as shown in Figure 3.18.

It is reasonable to believe that there are enough particles in each sub-cell and, as a

result, the DSMC solution based on the current numerical parameters is correct. The

total run time of the DSMC simulation on a Linux cluster with 40 2.4-GHz Intel �
Xeon � processors is about 280 hours.
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It is indicated in Figures 3.16 and 3.17 that the criteria for ∆t and ∆s are both

satisfied near the body surface. This leads to good accuracy of the DSMC solution

in this region.

3.2.2 Grid Sensitivity

A finer grid, consisting of 2,000 cells along the body surface and 400 cells normal

to the body, is used to test the sensitivity of the steady state solution to the grid

resolution. On this finer grid, there are more than 29 million particles employed

at the end of the simulation. Comparisons of the surface pressure coefficient and

heat transfer coefficients obtained with the finer and the coarse 1,000 by 200 grids

are made in Figure 3.19. When the finer grid is employed, the shock position is

slightly shifted downstream and the size of the circulation region is a little larger, as

seen in Figure 3.19(c) for the calculated skin friction coefficient. Other than these

small differences, the two solutions are very close. Since this is an extremely time-

consuming flow to simulate, only the coarse 1000 by 200 grid is considered from now

on.

3.2.3 Accommodation Coefficient

Also shown in Figure 3.19 are the surface pressure coefficient and Stanton number

computed with the accommodation coefficient α equal to 0.85. Generally speaking,

the solutions for α = 0.85 and 1 are very similar. Minor discrepancies can be found

about the shock position and the size of the circulation region. Interestingly, the

heating rate on the flare behind the shock is slightly higher for the condition of

α = 0.85. Overall, it is concluded that the DSMC results are not very sensitive to

the accommodation coefficient in the range from 0.85 to 1.
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3.2.4 DSMC and CFD Comparisons

A pure CFD simulation [62] is also performed on the same 2.4-GHz Linux cluster

on a much finer grid with 2048 cells along the surface and 512 cells normal to the

surface. The simulation takes about 8 hours for the CFD method to converge to the

steady state solution.

Comparisons of the mass density and translational temperature obtained with

the DSMC and CFD methods are made in Figure 3.20. Although the two solutions

look similar, differences between them can be observed. A major difference is the

size of the circulation region near the conjunction of the cylinder and flare. It is

clear that CFD predicts a much larger circulation region. This can be verified in

Figure 3.21 in which the skin friction coefficients from the two numerical methods

are shown.

In Figure 3.22, the pressure and heat transfer coefficients obtained with the

DSMC and CFD methods are compared with the measured data [50] along the hol-

low cylinder/flare body surface. It is again shown in the figures that the circulation

region is significantly larger in the CFD solution, causing the shock position in the

CFD solution to be a little further downstream than the shock position predicted

with DSMC. When the numerical results are compared with the measured data, it

is evident that DSMC provides a more accurate solution in terms of the size of the

circulation region. A flow of this kind is a great challenge for a hybrid particle-

continuum method because a good hybrid method must successfully reduce the size

of the circulation region from that predicted by CFD to that predicted by DSMC.

The surface pressure coefficient calculated with the modified Newtonian model

is also displayed in Figure 3.22(a). This model predicts the surface pressure as a

step function as can be easily verified from Equation (3.1). Because some important
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flow features, such as shock wave and boundary layer, are not taken into account

in this simple model, it is not surprised that it does not predict this complex flow

accurately.

3.2.5 DSMC and DSMC-IP Comparisons

It would be very interesting to apply the DSMC-IP method to the more complex

hollow cylinder/flare flow. However, as stated in Section 3.1.5, the time-step allowed

in a DSMC-IP simulation is always an order of magnitude smaller than the one in

the pure DSMC simulation. Therefore, due to the computing resources available,

such a validation is not provided in the thesis.
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CHAPTER IV

CONTINUUM BREAKDOWN

As already discussed in Chapter I, there are two primary issues associated with

the combination of two numerical methods. The first issue regarding the strat-

egy of switching between the methods is addressed in this chapter. Because the

Navier-Stokes equations are not valid under rarefied conditions, it is general to use

a continuum breakdown parameter as the criterion for switching. Investigation will

be focused on predicting the conditions under which the continuum approach may

be expected to fail in hypersonic viscous flows. A breakdown criterion is developed

by detailed comparisons of CFD and DSMC solutions.

4.1 Continuum Breakdown Parameters

In prior works of continuum breakdown, Bird [13] proposed a semi-empirical

parameter for steady state expanding flows

P =
U

ρν

∣

∣

∣

∣

dρ

ds

∣

∣

∣

∣

= M

√

πγ

8

λ

ρ

∣

∣

∣

∣

dρ

ds

∣

∣

∣

∣

,

where U is the local velocity, ν is the collision frequency, M is the local Mach number,

γ is the ratio of specific heats, and s is the distance along a streamline. Although

studies by Bird [13] indicate the value for P of about 0.05 is a good criterion for

continuum breakdown in steady expanding flows, it is believed that in complicated

71
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flows density is not the only flow property needed to be taken into account. By

the same definition, any flow property Q (e.g. density, temperature, etc) can be

employed to obtain

PQ = M

√

πγ

8

λ

Q

∣

∣

∣

∣

dQ

ds

∣

∣

∣

∣

. (4.1)

It is a problem because M approaches to zero at stagnation points. Boyd et

al. [22] carried out an extensive numerical investigation of one-dimensional normal

shock waves and two-dimensional bow shocks comparing DSMC and CFD results, to

determine an appropriate breakdown parameter. They concluded that the gradient-

length local (GLL) Knudsen number

KnGLL =
λ

Q

∣

∣

∣

∣

dQ

dl

∣

∣

∣

∣

,

where l is some distance between two points in the flow field, provides a better

indication of continuum breakdown than P for hypersonic compressed flows. They

also showed that the distance l should be taken approximately along the line of the

steepest gradients in the flow properties. In this chapter, however, dQ/dl is evaluated

as ∇Q without projecting it onto a preferential direction. For simplicity, the subscript

GLL is removed from now on and the GLL Knudsen number for property Q is

expressed as

KnQ =
λ

Q
|∇Q| . (4.2)

The Knudsen number of this form has a great physical meaning. When its value

is much less than unity the flow can be regarded as locally slightly perturbed from

equilibrium [40] that is a fundamental assumption of the NS equations. Therefore,

it is an appropriate parameter to predict continuum breakdown.

It is apparent that Equations (4.1) and (4.2) are not independent and have the
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relation

PQ

KnQ

= M

√

πγ

8
cos θ (4.3)

where θ is the angle between gradient ∇Q and the flow direction. Since
√

πγ/8 < 1

for all gases, the value of PQ is always less than KnQ in subsonic regions. In the region

immediately adjacent to the wall surface, because both M and cos θ decrease towards

zero, PQ is always several orders of magnitude smaller than KnQ. The differences

between PQ and KnQ will be demonstrated numerically in the next section.

Because the breakdown of the NS equations is related to viscosity and heat trans-

fer, both transport phenomena have to be taken into account. As a result, density(D),

the magnitude of velocity(V) and translational temperature(T) are the flow proper-

ties usually considered in the breakdown parameters. A new parameter is defined

for P and Kn, respectively,

Pmax ≡ max (PD, PT , PV ) (4.4)

Knmax ≡ max (KnD, KnT , KnV ) (4.5)

to be utilized as the actual breakdown parameter for switching between the numerical

methods.

4.2 Numerical Studies

The numerical examples considered in this chapter again refer to the experiments

performed in CUBRC impulse test facilities by Holden [49]. The fluid is pure nitrogen

and the freestream conditions are listed in Table 4.1. The wall temperature, Twall, of

both examples is assumed constant in the computations.
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Sharp Hollow

Cone Tip Cylinder/Flare

M∞ 11.3 11.3

ReL (104) 1.45 1.38

T∞ (K) 138.9 128.9

Twall (K) 296.1 297.2

V∞ (m/s) 2712.2 2609.1

ρ∞ (10−4kg/m3) 5.515 5.066

Table 4.1: Freestream conditions for the flows considered for continuum breakdown.

4.2.1 Sharp Cone Tip

The first configuration studied in this chapter covers the first 5 cm of the forecone

in Figure 1.2(a). The DSMC computation employs a structured grid with 1200 cells

along the cone surface by 400 cells normal to the cone. A reference time step of 0.5

nsec is used. More than 8 million simulation particles are employed at the end of

the computation that consumes a total of 82 hours on 16 processors on an IBM-SP

machine. The results presented below are obtained by sampling over 50,000 time

steps. The CFD simulation [61] is performed on a structured grid with 288 cells

along the body and 512 cells normal to the body.

Comparisons of the density and translational temperature contours obtained with

CFD and DSMC are made in Figures 4.1(a) and 4.1(b), respectively. Good agreement

is shown in general between the two solutions.

A detailed comparison of the flow properties obtained with the NS and DSMC

approaches is made in Figure 4.2(a) at x/L = 0.92 cm [dotted line b in Figure 4.1(a)],

where x is the axial distance from the leading edge of the cone tip. In this figure, δn
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Figure 4.1: Comparison of DSMC and CFD solutions of mass density and transla-
tional temperature for hypersonic flow over a 25◦ sharp cone.
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is the distance from the cone surface and εQ is defined as

εQ ≡ QCFD

QDSMC

− 1 (4.6)

and represents the degree of difference between the NS and DSMC solutions. Through-

out this chapter, for the purposes of discussion, failure of the continuum approach

is defined to occur whenever |εQ| > 0.05. It is shown in this figure that the DSMC

shock is much thicker than the CFD shock, suggesting strong nonequilibrium effects.

The thicker DSMC shock results in negative values of ε for density and temperature

ahead of the shock predicted by CFD. Near the cone surface, the substantially large

values of ε are assumed to indicate the failure of the NS approach. In particular,

the NS density close to the surface is about 70% higher than the DSMC solution.

In contrast, the NS velocity and temperature are, respectively, 40% and 90% lower

than the DSMC solutions, indicating a prediction of less slip by the model employed

in CFD. In between the shock and near-body regions, the solutions of the CFD and

DSMC techniques agree approximately.

Profiles of P and Kn based on the NS solutions are shown in Figure 4.2(b). A 0.05

line is also shown in the figure to indicate the breakdown of the NS approach. All

breakdown parameters vanish in the free-stream and increase rapidly across the shock

wave. As discussed above, the continuum approach fails in the region immediately

adjacent to the wall surface. It is clear that the Kn parameters capture the breakdown

very well in this region. In other words, the hybrid code will successfully detect the

continuum breakdown and prepare to switch to the DSMC method. By comparison,

the P parameters are not able to predict breakdown close to the wall since these

values become very small. This is attributed to the small value of the Mach number

and approximate right angle between the flow and gradient directions.
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Similarly, profiles of P and Kn based on the DSMC solutions are illustrated in

Figure 4.2(c). The profiles qualitatively agree with the profiles in Figure 4.2(b) in

the region close to the body surface. The peak of each DSMC parameter across

the shock is lower than the corresponding value of the CFD results in Figure 4.2(b)

because of weaker gradients over the thicker shock in the DSMC solutions.

In Figures 4.2(b) and 4.2(c), it is easy to observe that KnD and KnT are almost

identical near the wall. A proof of this observation is given in Appendix B.

It is shown in Figure 4.2(a) over 0 < δn < 0.38, that |εT | > 0.05 and in Fig-

ures 4.2(b) and 4.2(c) KnV is the only parameter that can predict the continuum

breakdown in this region. However, KnV does not accurately predict the continuum

breakdown at the shock. At about δn = 1.15, εT is approximately -0.8. At the same

location, KnV is about 0.006 and 0.03 for the CFD and DSMC solutions, respectively,

both below the cut-off value of 0.05. In comparison, KnT reaches about 0.2 for both

solutions. Therefore, it is necessary to evaluate Kn based on various flow properties

at each location in order to predict the continuum breakdown accurately.

In Figure 4.2(d) profiles of Pmax and Knmax defined in Equations (4.4) and (4.5)

are displayed. It is clear that near the body surface, Knmax evaluated with the CFD

and DSMC results are very close to each other and predict continuum breakdown

whereas the values of Pmax are much lower than 0.05. In comparison of Figures 4.2(a)

and 4.2(d), it is found that the use of Knmax for predicting the failure of the continuum

approach is quite successful. In the region of δn from 0 to about 0.38, Figure 4.2(d)

has values of Knmax higher than 0.05 and Figure 4.2(a) shows the corresponding

continuum breakdown. From δn ∼ 0.38 to δn ∼ 0.8, Knmax evaluated with the

CFD solution is below the breakdown criterion and flow properties from the two

methods agree except for a small fraction of the post-shock region. For the rest of
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the region from δn ∼ 0.8 to the free-stream boundary, Knmax calculated with the

DSMC solution is higher than the criterion in general and continuum breakdown is

observed in Figure 4.2(a).

In Figure 4.3(a), the NS and DSMC solutions are compared in detail along a line

normal to the cone at x = 1.84 cm [dotted line c in Figure 4.1(a)]. It is evident that

the differences of the two solutions at this station are similar to those in Figure 4.2(a).

The Knmax and Pmax values based on the CFD and DSMC solutions are illustrated

in Figure 4.3(b). The continuum breakdown near the wall of the cone is predicted

by Knmax but not by Pmax. The same CFD/DSMC switch discussed above can

be observed. Similarly, the profiles of comparison and breakdown parameters are

displayed in Figure 4.4 along the line normal to the cone at x = 3.68 cm [dotted line

d in Figure 4.1(a)].

Although Knmax in Figures 4.2 through 4.4 has not demonstrated the capability

of prediction of the failure of the continuum approach in some regions, especially

in the post-shock region, this is not a serious concern at this point. Keep in mind

the comparisons are made of the steady state solutions obtained with two different

numerical techniques. The flow details, such as the shock angle and thickness, are

not identical in the two solutions. As a result, significant differences in the post-

shock region were expected. The answer to whether Kn can completely predict all

occurrences of breakdown will not be revealed until it is actually employed in the

hybrid code.

Strong thermal nonequilibrium near the leading edge of the cone has been re-

ported by Wang and Boyd [87]. The profiles of the comparisons between the NS and

DSMC solutions for the flow properties near the leading edge at x = 0.92 mm [dot-

ted line a in Figure 4.1(a)] are shown in Figure 4.5(a). Clearly, the shock angle and
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thickness calculated with the CFD technique do not agree with the DSMC results.

The rarefaction parameter [60], V , is evaluated locally as about 0.74. This value

is about 5 times higher than the upper limit, V ≈ 0.15, for the Rankine-Hugoniot

shock structure theory to be valid. The accuracy of the NS approach at this station

must be consequently poor. Note the mix of the post-shock region with the bound-

ary layer, which indicates interactions between the two regions. Knmax based on the

DSMC solutions is higher than the criterion over the entire region considered [see

Figure 4.5(b)]. This suggests the use of the DSMC approach near the leading edge

is necessary.

It is interesting to point out that the failure of the NS equations near the leading

edge should have a connection with the continuum breakdown in the rest of the flow

field. One can image that the continuum breakdown from the shock and near-body

in the region close to the leading edge is mixed together and separates gradually in

the downstream. One branch follows the path of the shock, which departs from the

cone surface. The other branch stays in the region immediately adjacent to the wall.

By the same token, some of the differences between NS and DSMC for large x are

due to differences that first occur at the leading edge and then propagate.

The results shown in Figures 4.2 through 4.5 for the hypersonic flow over a

sharp 25◦ half-angle cone tip may be summarized as follows. Near the body surface,

the steep flow gradients cause the continuum equations to fail and to predict the

flow properties incorrectly. This has a great impact for the continuum estimation

of surface values such as heat transfer rate and pressure. Accordingly, the DSMC

technique must be employed in this region. Moving away from the body, there is a

region where the solutions of the NS and DSMC approaches agree approximately.

The NS method should be used in this region. Moving further away from the body
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and approaching the shock where the flow gradients are steep and the continuum

equations break down again, the flow should be calculated using the DSMC method

from here out to the free-stream boundary. Knmax is found to be quite successful for

the prediction of the breakdown using a value of 0.05 for the criterion for switching

between the numerical methods.

4.2.2 Hollow Cylinder/Flare

The second configuration investigated in this chapter consists of a hollow cylinder

followed by a 30◦ conical flare, as depicted in Figure 1.2(b). The cylinder is aligned

with the free stream. The leading edge is sharp and the hypersonic flow entering

the hollow body does not interact with the external flow. Only the external flow is

considered.

The DSMC computation employs 1000 by 200 cells with a total of more than 3.5

million simulation particles. The reference time step of this computation is 5 nsec.

800,000 time steps are computed on an IBM-SP machine to consume a total of about

176 hours on 16 processors and the last 100,000 time steps are sampled to obtain the

results presented below. The CFD [61] simulation is performed on a structured grid

with 2048 cells along the body surface and 512 cells normal to the body surface.

In Figures 4.6(a) and 4.6(b) comparisons of the density and translational tem-

perature contours obtained with CFD and DSMC are shown. A general impression

of the complex flow is the gas density is reduced by a factor of about 3 from the

free-stream value in the region above the cylinder and then compressed more than 5

times by the flare. The temperature above the cylinder is increased due to viscous in-

teraction and reaches a peak value of about 1,000 K. The strong compression caused

by the flare leads to further heating with a peak value of approximately 1,500 K.
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Detailed numerical studies of this flow can be found in References [25, 23, 43]. Notice

the significant differences between the CFD and DSMC solutions around the com-

pression corner. There is a larger separation and re-attachment region in the CFD

solutions.

To study the continuum breakdown near the leading edge of the hollow cylinder

in this case, comparisons for density, velocity and translational temperature along

the line normal to the body at x/L = 0.01 [dotted line a in Figure 4.6(a)] are made in

Figure 4.7(a). Since there are strong interactions between shock and viscous effects

near the leading edge, the post-shock flow quickly merges with the boundary layer.

Continuum breakdown is expected, as shown in the figure. The breakdown occurs

from δn = 0 to about 1.1 mm. Breakdown parameters evaluated with various flow

properties based on the CFD solution are displayed in Figure 4.7(b). The value of

0.05 is again chosen to be the criterion. Like the previous cone tip case, the Kn

parameters predict the failure of the continuum approach at the body surface but

the P parameters do not. The profiles of Kn and P calculated using the DSMC

solution are shown in Figure 4.7(c). Again, the various forms of Kn can capture the

continuum breakdown but the various forms of P do not. Focus on the Knmax and

Pmax that are shown in Figure 4.7(d). Keeping in mind that the DSMC technique

must be applied in the region near the body surface, as discussed above, it is clear

that Knmax based on DSMC crosses the 0.05 criterion line at about 1.1 mm which is

the boundary of the continuum breakdown. Other parameters either under-estimate

the breakdown range or fail to predict the breakdown in the region very close to the

body.

Next, the middle of the cylinder is studied, where the shock and boundary layers

separate. In Figure 4.8, profiles along the dotted line b in Figure 4.6(a) are shown
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of the flow properties considered and the breakdown parameters. Notice that the

CFD shock is a little further from the wall than the DSMC shock at this station but

their thicknesses are about the same. In the range of δn shown, there is not a single

place where all the εQ considered lie within the ±5% band, except in the free stream.

This is in part because of different shock locations obtained with the DSMC and

CFD methods. More importantly, it is also in part because of the strong continuum

breakdown from the steep flow gradients near the body. This can be verified in

Figure 4.8(b) in which the values of Knmax based on both CFD and DSMC solutions

are above the criterion line until about 6.5 mm. Although it is not a precise prediction

for the range of the continuum breakdown, it is indeed an indication of Knmax being

promising for prediction of the continuum breakdown in complex flows.

As mentioned in the beginning of this subsection, the flow structures obtained

with the CFD and DSMC approaches are quite different around the junction of the

cylinder and the flare. Flow properties along the dotted in c in Figure 4.6(a) are

displayed in Figure 4.9(a). The profiles of Mach number for the CFD and DSMC

solutions in the boundary layer are inconsistent to a large extent. Attention should

be paid to the lower left corner of the figure where each Mach number profile shows

two stagnation points, one is right at the junction and the other is in the separation

zone. The second stagnation point is at about 5 mm for the CFD method and about

1.5 mm for DSMC above the body. One can also find a huge value of εV at about

1.5 mm. This is because QDSMC in Equation (4.6) is very small at a stagnation point.

The profiles of Knmax and Pmax at the station are shown in Figure 4.9(b). The

Knmax evaluated with the DSMC solution is still promising to predict the breakdown

at the wall and covers the major portion of the region where the NS equations fail.

At the shock front, the Knmax based on the CFD solution once again predicts the
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breakdown.

Finally, a station on the flare [dotted line d in Figure 4.6(a)] is examined where

the free stream crosses a strong oblique shock [see Figure 4.10(a)]. The solutions

of the CFD and DSMC methods have a large discrepancy in most regions, except

for a narrow region close to the flare surface. As shown in Figure 4.10(b), Knmax

successfully captures the breakdown on the wall but not in most regions of the

boundary layer. On the other hand, Pmax completely fails to predict the breakdown

of the NS equations in the boundary layer. Both Knmax and Pmax predict very well

the breakdown across the shock.

Analogous to the first example, the hypersonic flow over the hollow cylinder/flare

configuration is not described accurately using the NS equations in the regions near

the body surface and the shock and the DSMC technique has to be used. Upstream

of the shock, the CFD method can of course be employed.

4.3 Summary

The focus of the chapter is to identify a criterion that can successfully predict the

conditions under which the continuum Navier-Stokes equations may be expected to

fail in the hypersonic flows considered. Investigation was carried out by the detailed

comparisons of numerical solutions obtained with CFD and DSMC techniques.

A new parameter, Knmax, is proposed that is modified from original KnGLL pa-

rameter. It is concluded that continuum breakdown is best predicted wherever the

value of Knmax exceeds 0.05. For the simple sharp cone flow, the Knmax parameter

can predict the failure of the continuum approach accurately in terms of the posi-

tions of significant differences between the CFD and DSMC solutions, including the

regions immediately adjacent to the cone surface and at the shock front. For the
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more complex hollow cylinder/flare flow, the parameter works fairly well to predict

the continuum breakdown at the shock front and at the body surface. In general,

Knmax does not successfully capture the breakdown in the boundary layer. Since the

detailed flow structures of the CFD and DSMC results for this complex flow do not

agree to some extent in the boundary layer, whether Knmax will work in this region

is unknown until it is actually applied in the hybrid code.

When the Knmax parameter is utilized in the coupled DSMC-CFD computations,

it is expected that the entire flow field will be approximately separated into four

layers. In the region very close to the body surface, the DSMC technique will be

employed. In between the near-body region and the shock region, the CFD technique

will be used. The DSMC technique will be employed again throughout the shock.

In the free-stream region, it is efficient to utilize the CFD technique.



CHAPTER V

HYBRID PARTICLE/CONTINUUM

APPROACH

In this chapter, the details of the hybrid approach that combines the CFD and

DSMC methods are described. Specifically, the following four issues are addressed:

(1) how the boundary conditions for the CFD method are provided at the domain

interface, (2) how particles are handled when they escape from the DSMC domain, (3)

how particles are generated in the CFD domain before they enter the DSMC domain,

and (4) how the domain interface is determined based on the hybrid information. In

addition, the strategy of the parallelization of the hybrid approach is described.

5.1 Domain Coupling

At the interface between the DSMC and CFD domains, macroscopic flow prop-

erties must be provided to the CFD method for evaluating the net fluxes and to the

DSMC method for initializing the particles entering from the continuum region into

the particle region. It is always a major issue for CFD to be provided with decent flow

properties from the particle region because of the large statistical scatter associated

with the DSMC method. However, the IP method preserves the macroscopic infor-

mation in cells with very small statistical scatter. Therefore, it is a natural choice

96
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to utilize the IP information as the flow properties provided to the CFD method

through the domain interface.

To implement the coupling between the particle method and the NS solver, buffer

and reservoir DSMC-IP cells are introduced in the continuum domain adjacent to

the domain interface, as depicted in Figure 5.1. A similar concept of reservoir cells

was first proposed by Rovedo et al. [70].

The buffer DSMC-IP cells work as an extension of the particle domain (see lower

right of the figure). Simulated particles that end their movement phase within the

pure particle domain or in the buffer cells are retained. Those that leave these two

regions are removed. For each time step, all simulation particles in the reservoir

cells are first deleted and then re-generated based on the cell-centered NS informa-

tion. The number of new particles is evaluated from the cell density value and the

particle velocities are initialized to the Chapman-Enskog distribution based on the



98

corresponding cell values. The newly generated particles are randomly distributed

within the reservoir cells.

In the continuum domain, the NS solver determines the interface continuum fluxes

by using the NS variables and DSMC-IP cell macroscopic information. Since the

macroscopic information in the particle cells is known at each time step, the DSMC-

IP cells adjacent to the domain interface are treated as the ghost cells that provide

the boundary conditions for flux computations (see lower left of the Figure 5.1).

Based on this coupling technique, there are six different types of cell: (1) pure

particle cell, (2) particle interface cell, (3) continuum interface cell, (4) pure buffer

cell, (5) reservoir cell, and (6) pure continuum cell. For each time step, cells of

various types have their own different operations.

Pure particle cell A cell in the particle domain that handles particle movements

and collisions and evaluates the IP fluxes in Equations (2.30) and (2.31).

Particle interface cell A cell on the boundary of the particle domain that han-

dles particle movements and collisions and evaluates the IP fluxes in Equa-

tions (2.30) and (2.31) and the NS fluxes in Equation (2.16).

Continuum interface cell A cell on the boundary of the continuum domain that

handles particle movements and collisions and evaluates the IP fluxes in Equa-

tions (2.30) and (2.31) and the NS fluxes in Equation (2.16).

Pure buffer cell A cell in the continuum domain that handles particle movements

and collisions and evaluates the NS fluxes in Equations (2.16).

Reservoir cell A cell in the continuum domain that deletes all its particles, re-

generates new particles based on its own NS information, handles particle



99

movements and collisions, and evaluates the NS fluxes in Equation (2.16).

Pure continuum cell A cell in the continuum domain that evaluates the NS fluxes

in Equation (2.16).

5.2 Velocity Distribution In The Reservoir Cells

As studied in Chapter IV, the interface between the particle and continuum do-

mains is located wherever the difference of the DSMC and NS solutions of a flow

is 5%. Generally speaking, the flow in the vicinity of the interface, including the

region covered by the buffer and reservoir cells, should not be considered as being

in a state of equilibrium. It has been shown [28, 44] that initializing particles with

the Maxwellian distribution is unacceptable in a particle method coupled with a

Navier-Stokes solver and the Chapman-Enskog distribution must be employed. Un-

like sampling of the Maxwellian distribution, which is trivial because the distribution

has an analytical inverted form, sampling of the Chapman-Enskog distribution is

complicated and needs some extra work.

The normalized Chapman-Enskog distribution can be expressed in the form

f(C) = M(C)Γ(C), (5.1)

where C = c′/
√

2kT/m is the normalized thermal velocity and M is the Maxwellian

distribution

M(C) =
1

π3/2
exp(−C2).

The Γ(C) term in Equation (5.1) represents the first order expansion in Sonine

polynomials and is given as

Γ(C) = 1 + (q∗ · C)(2
5
C2 − 1) − τ ∗ : (CC), (5.2)
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with

τ ∗
ij =

µ

p

(

∂ui

∂xj
+

∂uj

∂xi
− δij

2

3

∂uk

∂xk

)

,

q∗i = −κ

p

√

2m

kT

∂T

∂xi
.

The use of the astral symbol differentiates the above stress tensor and heat-flux

vector from those in Equations (2.12).

In a reservoir cell, the macroscopic (IP) information for newly generated particles

is set to the cell-centered NS values and the microscopic velocities are initialized to

the Chapman-Enskog distribution using the acceptance-rejection scheme by Garcia

and Alder [35]. To generate a thermal velocity vector for a particle, the scheme

starts with finding B ≡ max(|τ ∗
ij|, |q∗i |) and setting the amplitude parameter A =

1 + 30B. A vector Ctry is then generated from the Maxwellian distribution M(C).

The Ctry is accepted if AR ≤ Γ(Ctry); otherwise a new vector Ctry is generated

until the inequality is true. Finally, the molecular velocity vector for the particle is

c =
√

2kT/mCtry + V.

5.3 Hybrid Approach Profiling

It is interesting to study how the time spent in a hybrid simulation is shared by the

CFD, DSMC, and IP components. A study of this kind is usually called profiling.

A simple 1-D uniform argon flow is set up to investigate this issue. The uniform

flow has a velocity of 500 m/s, a temperature of 300 K, and the number density

in the flow is about 1.609 × 1021 m−3 . The particular selection of flow type for the

profiling study is not too important based on two main reasons. First, the operations

performed in CFD are almost the same for each time step regardless of the flow type.

Second, particle movement and the determination of particle collisions take most of
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the time in the particle method for each time step and their operations are relatively

independent of the flow type. The number of collisions depends on flow type but

actual collisions take place for a very small portion of all the simulated particles due

to the mean collision time limitation. Therefore, the effect of the number of collisions

is considered insignificant in the profiling study.

Numerical experiments for the profiling study are performed on a grid that has

400 uniform cells and spans 0.04 m. In all experiments, 10 layers of buffer cells and

2 layers of reservoir cells are employed. To simplify the analysis, all the cells in the

particle domain and buffer zone are regarded as particle cells. The percentage of the

particle cells is defined as the ratio of the number of the particle cells to the number

of all the cells in the grid. The time usages by the CFD, DSMC, and IP components

can be described as functions of the percentage of the particle cells and the number

of particles per cell. It is easy to understand that when a pure CFD simulation is

performed, the majority if not all the time spent belongs to CFD. In contrast, when

a pure particle simulation is performed, the majority of the time spent is by the

DSMC and IP methods. It is also easy to understand that at a certain percentage

of particle cells, increasing the number of particles per cell increases the time taken

by the particle methods because more particles need to be processed but this change

has no effect on CFD.

The correlations between the time usages by the CFD, DSMC, and IP components

and the percentage of particle cells in the present hybrid approach are shown in

Figure 5.2 for the cases of 50 particles and 100 particles per cell. The percentage

of time for an individual method in a simulation is defined as the time spent by

the method divided by the overall duration of the simulation. It is shown that

the percentage of the time consumed by CFD is monotonically decreasing with the
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percentage of particle cells increasing. On the other hand, the percentages of the

time spent by the DSMC and IP methods are approximately monotonically increasing

with the percentage of particle cells increasing. In the case where 50 particles are

employed in each cell and 10% of the total number of cells are particle cells, the

CFD method consumes about 46% of the total simulation time. This is the only

case among all the cases considered where the CFD time usage is higher than the

other two methods.

A typical hybrid simulation usually has 40-50% of the total number of cells in the

particle domain and buffer zone. In this range, the time usages by the DSMC and

IP methods are, respectively, about 48-54% and 25-27% of the total simulation time.

In the same range, CFD always spends the least amount of time and its time usage

is between 17% to 24%. Because the percentages of particle cells in the two hybrid

simulations in Chapter VI are about 40% to 50% and there are 50 to 80 particles



103

Task B Task A

Task Boundary

Task C

ρ, u, v, T ρ, u, v, T
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per cell, it is expected that the time usages by CFD, DSMC, and IP approximately

follow the values just mentioned.

5.4 Parallelization

Consider that a structured grid is employed and that the whole computational

domain is divided into several rectangular blocks such that the boundary between two

adjacent blocks is a vertical line, as depicted in Figure 5.3. In a parallel computer,

each individual block is handled by a processor and is termed a task. Under such

a setup, particle movements between two adjacent tasks are easy to be carried out.

When a simulated particle needs to move across the boundary of the task which it

is within, only its velocity components and final position are required to be sent to

the neighboring task. For instance, assuming that a simulated particle is originally

in Task A in Figure 5.3 and is about to move across the right task boundary and

enter Task C, only the particle’s velocity components and final position are passed

to Task C and all records associated with the particle in Task A can be removed.

On the other hand, special attention is necessary for the flux evaluation described

in Section 2.2.2. It is clear from Figure 2.1 that the flux evaluation on the right
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boundary of a task, say Task A in Figure 5.3, needs information in two layers of

cells from the right neighboring task, Task C. Analogously, the flux evaluation on

the left boundary of Task A needs information in one layer of cells from the left

neighboring task, Task B. Accordingly, when the hybrid approach is performed on

a parallel computer, each individual task, except for the right-most and left-most

tasks, has three extra layers of cells, with two attached to its right boundary and one

attached to its left boundary. Before each time step is started, IP or NS information

in the cells of the extra layers is acquired from the neighboring tasks, as shown in

Figure 5.3.

5.5 Information Interpretation

Imagine the hybrid solution is extracted from a line crossing a particle region that

lies between two continuum regions. There are three types of information along this

line, as illustrated in Figure 5.4. There is only the NS information in the continuum

regions whereas there is both the DSMC and the IP information in the particle

region. Since the IP and the NS information are coupled at the domain interface,

they form a continuous profile in a natural manner. Moreover, it is this NS-IP-NS

information that is used to evaluate the breakdown parameter in Equation (4.2). On

the other hand, the DSMC information is isolated in the particle region. This kind

of profile will be largely seen in the hybrid results presented in the next chapter.

It is interesting to point out that the DSMC information at the domain interface is

not necessarily the same as the IP, or NS, information. This is because the buffer cells

are part of the continuum domain and the DSMC information in them is not usually

shown. If the DSMC information in the buffer cells is included, as illustrated in

Figure 5.5, the DSMC information at the edge of the buffer cells should be consistent
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with both IP and NS information. A numerical example for a Mach 1.55 shock in

argon is provided in Figure 5.6. Significant differences between the DSMC and IP

information can be found on the boundary of the particle region (shaded area) and

the differences largely vanish at the edge of the buffer cells (dotted lines).

5.6 Outline of The Hybrid Approach

Since the current hybrid code can be run in pure CFD or hybrid DSMC/CFD

modes, the procedure of performing a hybrid simulation is outlined as follows.

1. Obtain a steady state CFD solution.

2. Use the CFD solution to determine the interface(s) between the particle and

continuum domains and to assign a cell type for each cell.

3. Perform a hybrid simulation for a certain number of time steps.

4. Check if the hybrid solution is satisfactory by comparing it with either exper-
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imental data or a pure DSMC solution. If the hybrid solution is satisfactory,

stop the hybrid simulation. Otherwise,

5. Use the hybrid solution to determine the new domain interface and assign a

new cell type for each cell.

6. Go back to Step 3 and repeat the loop.

In cases where the initial CFD solution is difficult to obtain in Step 1, the domain

interface and a cell type for each cell can be given manually. The whole computational

domain can be initialized by a set of reference values, for instance, the freestream

conditions. Steps 3 to 6 of the above procedure are then applicable.



CHAPTER VI

HYBRID SIMULATIONS OF HYPERSONIC

FLOW OVER BLUNTED AND SHARP BODIES

Two numerical examples are considered in this chapter to test the accuracy and

efficiency of the hybrid approach. The first example is a Mach 12.6 nitrogen flow

over a 25◦ half angle blunted cone and the second example is a Mach 12.4 nitrogen

flow over a hollow cylinder/flare. The freestream conditions of both examples are

given in Table 3.1.

Although it has been concluded in Chapter IV that Knmax = 0.05 is a good

criterion for determining the rarefied and continuum domains, a more conservative

criterion of Knmax = 0.03 is actually set in the hybrid simulations, unless stated

otherwise. Besides, two layers of reservoir cells are employed in all hybrid simulations.

6.1 Blunted Cone Tip

The configuration of the blunted cone tip has been discussed earlier in Chap-

ter III. All simulations in this section are performed on a structured grid that has

600 cells along the cone body and 300 cells normal to the body. In the hybrid sim-

ulation, a steady state solution is first obtained by computing the entire flow field

with an implicit CFD scheme. Using the steady state solution and breakdown crite-
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rion, locations of the interfaces between the continuum and the particle domains are

determined. In the particle region, cell values are set to the CFD steady state results

and simulation particles are initialized to the local Chapman-Enskog distribution.

During the process of a hybrid simulation, domain interfaces are re-evaluated every

100,000 time steps.

6.1.1 Results Obtained With 6 Layers of Buffer Cells

The hybrid code is first run with 6 layers of buffer cells. The particle domains

initially and after a million hybrid simulation iterations are illustrated in the shaded

areas of Figure 6.1. At the beginning of the hybrid simulation, about 25.9% (46,589)

of the total number of cells are in the particle domain. This value increases gradually

with time and reaches about 33.4% (60,051) at the end of the simulation. Each cell

in the particle domain has about 50 simulation particles on average. The reference

time step in the hybrid computation is 0.5 nsec. The hybrid method results presented

here are obtained by sampling once for every three steps over the last 60,000 time

steps.

The total run time of the hybrid simulation on an Intel Linux cluster with 20

1-GHz processors is approximately 130 hours. A detailed comparison for the com-

putational time consumed by various numerical methods will be given later.

Flow Fields

Comparisons of the translational temperature and density contours obtained with

pure DSMC and the hybrid methods are made in Figure 6.2. It it easy to observe in

Figure 6.2(b) that the bow shock in front of the leading edge of the cone is thicker

in the DSMC solution. Otherwise, the hybrid method results are in good general

agreement with the pure DSMC results. Additionally, the hybrid method provides
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Initial

Final

Figure 6.1: Particle domain in hybrid simulation for a blunted cone.

much smoother results.

As pointed out in Section 5.5, the hybrid results in Figure 6.2 comprise two kinds

of information. In the particle domains (the shaded areas in Figure 6.1) hybrid results

are represented by IP information and in the continuum domains by NS information.

Surface Properties

In Figure 6.3, comparisons of surface pressure and heat transfer coefficients ob-

tained with numerical methods and the experiment are made. In these figures, the

profiles labeled “Hybrid (DSMC)” represent only the DSMC information. The pro-

files labeled “Hybrid (IP)” represent only the IP information because the cone body

is entirely enveloped by particle cells. Generally speaking, the flow properties pre-

dicted by the hybrid method along the wall are in excellent agreement with the

DSMC solutions.

Keep in mind that the hybrid simulation is initialized with the steady state CFD
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experimental data for the flow over a 25◦ blunted cone.
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solution, the CFD solution is very close to the DSMC solution on the cone surface,

and the hybrid results are very similar to the CFD results on the cone surface. This

suggests that CFD, DSMC, and hybrid solutions are approximately the same in the

vicinity of the cone body. This also suggests that if the initialized CFD solution is

close to the DSMC solution, the hybrid solution will stay with the solution. More

detailed comparisons are provided in the next section.

Detailed Comparisons

In Figure 6.4, profiles of the pure DSMC, CFD and hybrid solutions are plotted in

detail along the stagnation line for comparison. The vertical dotted lines in the figures

indicate the interfaces between the continuum (right) and particle (left) domains.

Similar to the contour plots above, the profiles labeled “Hybrid (IP/NS)” consist

of two kinds of information which are IP information in the particle domain and

NS information in the continuum domain. The profiles labeled “Hybrid (DSMC)”

contain only the DSMC information in the particle domain and no information in

the continuum domain.

Flow along the stagnation line can be viewed as a hypersonic flow that passes

through a strong normal shock and rapidly decelerates to rest at the wall. In the

shock wave, the flow is strongly nonequilibrium, and the CFD, IP, and pure DSMC

solutions are therefore expected to be different to a large extent. In the temperature

profile, it is evident that the shock thickness and strength represented by the CFD

and hybrid-IP/NS results are significantly different from the DSMC result. This is

consistent with the results shown in Figure 3.9(b) and Figure 6.2(b), respectively.

On the other hand, the hybrid-DSMC results are in outstanding agreement with the

pure DSMC results and prove that the hybrid technique really improves the physical
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accuracy compared to CFD.

A similar comparison between the pure DSMC, CFD, and hybrid solutions for

translational temperature, density and velocity at x = 2 cm is displayed in Figure 6.5.

At this location, the nonequilibrium effects start to weaken, and the Navier-Stokes

equations coupled with the slip-boundary models perform fairly well. As shown in

the figures, the CFD and DSMC solutions are close to each other except in the shock

region.

The whole computational domain at this location is divided into four sub-domains

along the δn direction: particle (I: 0 < δn < 0.72), continuum (II: 0.72 < δn < 3.1),

particle (III: 3.1 < δn < 3.96), and continuum (IV: δn > 3.96). It is shown that the

temperature and density predicted by the hybrid approach are in good agreement

with the pure DSMC solutions, except near the shock region.

The whole computational domain is also divided into four sub-domains along the

δn direction at x = 4 cm. Comparisons of translational temperature, density and

velocity profiles obtained with different methods are plotted in Figure 6.6. In general,

the results calculated by using the hybrid approach are very close to the pure DSMC

results in the region near the cone surface but just qualitatively agree with the pure

DSMC results in the shock region.

6.1.2 Results Obtained With 10 Layers of Buffer Cells

Since buffer cells work as an extension of the particle domain, the more layers of

buffer cells that are employed, the more collisions are experienced by the particles

before they enter from the continuum region to the particle region. As a result, the

velocity distribution of the particles can deviate more from the Chapman-Enskog

distribution and is better able to describe the nonequilibrium state in the rarefied
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region.

In this section, the number of layers of buffer cells is increased to 10 while the

other parameters remain the same as in the last section. The number of particle

cells after one million hybrid simulation steps is 57,208 that is slightly less than in

the last section. The flow property profiles along the stagnation line and the lines

normal to the cone at x = 2 and 4 cm are shown in Figures 6.7 to 6.9. It is evident

that the hybrid-DSMC results are improved substantially in the shock region and

are in very good agreement with the pure DSMC results. By contrast, the change in

the regions near the wall is insignificant.

As described in Section 5.5, interfaces between continuum and particle domains

are determined from the hybrid-IP/NS information. However, careful examination

of the flow property profiles reveals that some interfaces are placed at locations with

very large gradients. Take the density profile in Figure 6.9 for example. The domain

interface near the shock rear edge is at about δn = 3.3 where a significant density

gradient is observed. Similar behavior can be found in Figure 6.6 and in the profiles

obtained with 6 layers of buffer cells. Since it is generally believed that the particle

domain should be sufficiently large to contain the entire shock, the domain interface

is obviously being placed at a wrong location. The reason for the wrong placing

is because the breakdown parameter in terms of density, λ|∇ρ|/ρ, is evaluated by

dividing a large gradient by a high value of density. As a result, the breakdown

parameter in terms of density is lower than the cut-off value. This issue must be

addressed in the future and will be discussed in the last chapter.
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6.1.3 Results Obtained With 6 Layers of Buffer Cells and Knmax = 0.005

The other way of increasing the area of the particle domain is by setting a smaller

breakdown cut-off value. If the cut-off value is set to 0.005 and 6 layers of buffer cells

are employed, the hybrid results are in excellent agreement with the DSMC results.

In Figures 6.10 to 6.12, excellent agreement is shown between the hybrid-DSMC

and pure DSMC results in both the shock region and the region close to the wall.

The price for obtaining the encouraging hybrid results, however, is that about 55.3%

(99,505) of the total number of cells are in the particle domain after one million

hybrid simulation steps and the simulation takes about 190 hours on the 1-GHz Intel

Linux cluster.

The temperature profiles in Figures 6.10 to 6.12 exhibit the poor prediction of

the DSMC-IP method in strong nonequilibrium regions. This is another issue that

must be improved in the future.

A pure DSMC-IP simulation can be viewed as that obtained with the cut-off

value for the breakdown parameter equal to 0 and all cells are in the particle domain.

Results similar to the profiles in Figure 6.10 to 6.12 are then expected.

6.1.4 Computational Cost

Details of the computational costs of different numerical methods executed on

an Intel Linux cluster with 20 1-GHz processors under various setups are provided

in Table 6.1 for comparison. The number of particles includes particles in both the

particle and buffer cells. Considering the three hybrid simulations, it is clear that a

simulation takes a longer time to run if it has a larger number of particles and more

cells with particles.

The per particle cost in the table is defined as the time (in minutes) required on
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Figure 6.10: Comparisons for profiles along the stagnation line when 6 layers of buffer
cells are employed and Knmax = 0.005.
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Pure Hybrid Hybrid Hybrid Pure

CFD DSMC (6 Buffers) (10 Buffers) (6 Buffers & DSMC-IP

Kn=0.005)

Number of
Continuum

Cells

180000 - 119949 122792 80495 -

Number of
Particle
Cells

- 180000 60051 57208 99505 180000

Number of
Buffer Cells

- 0 12624 18696 7931 0

Percentage
of Particle &
Buffer Cells

(%)

- 100 40.4 42.2 59.7 100

Particles
(million)

- 5.9 3.9 4.0 5.6 9.1

Steps
(thousand)

20 200 1000 1000 1000 1000

Time (hour) 0.75 32 130 152 190 260

Per Particle
Cost

(min/Ks/Mp)

- 1.63 2.00 2.28 2.04 1.71

Per Cell
Cost

(sec/Ks/Kc)

0.75 3.20 2.60 3.04 3.80 5.20

Table 6.1: Computational costs on an Intel Linux cluster with 20 1-GHz processors of
different numerical methods under various setups for a Mach 12.6 nitrogen
flow over a 25◦ blunted cone tip.



127

the specific Linux cluster for every thousand steps (Ks) and every million simulated

particles (Mp). It is very disappointing to find out that the hybrid approach is at

least about 23% slower than the pure DSMC method to advance a certain number of

steps if the numbers of particles employed in the two methods are identical. The per

particle cost of the hybrid approach is even worse than the pure DSMC-IP method

by at least 17%.

The per cell cost in Table 6.1 is defined as the time (in seconds) required on the

Linux cluster for every thousand steps (Ks) and every thousand computational cells

(Kc). From the point of the per cell cost, the CFD method is not overwhelmingly

superior over the DSMC method as the latter is slower than the former by no more

than a factor of about 4.3.

The per cell cost of the three hybrid simulations increases as the number of

simulated particles or the percentage of the particle and buffer cells is increased.

Compared to the per cell cost of the pure DSMC simulation, two of the hybrid

simulations with Knmax equal to 0.03 have lower cost while the third one has a 19%

higher cost.

It is easy to make a connection between the per cell cost of the hybrid simulations

and Figure 5.2. For instance, the percentage of the particle and buffer cells is about

40% for the hybrid simulation with 6 layers of buffer cells and Knmax equal to 0.03 and

the time usages by the DSMC and IP methods are 48% and 25% from Figure 5.2 for

the case of 50 particles per cell. The time consumed by the particle methods for every

thousand steps and every thousand cells is about 1.9 seconds (2.6×0.48+2.6×0.25).

Similarly, the percentage of the particle and buffer cells is about 60% for the hybrid

simulation with 6 layers of buffer cells and Knmax equal to 0.005 and the time usages

by the DSMC and IP methods for 50 particles per cell are 51% and 28%. The time
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spent by the particle methods for every thousand steps and every thousand cells is

about 3.0 seconds (3.8 × 0.51 + 3.8 × 0.28). The ratio of the time required by the

particle methods in the two cases is 3.0/1.9 = 1.58, which is very close to the ratio

of the number of particles 5.6/3.9 = 1.44.

The pure DSMC and DSMC-IP simulations have very close per particle costs but

quite different per cell costs. This is because there are about 30 particles per cell

in the pure DSMC simulation whereas there are about 50 particles per cell in the

pure DSMC-IP simulation. If the average number of particles per cell in the pure

DSMC-IP simulation is reduced to 30, the per cell cost of the simulation will be very

close to 3.2.

It is not clear whether the current hybrid approach is more numerically efficient

or less than the DSMC method because the information indicated by the particle and

cell costs is mixed. Although the hybrid approach has a higher per particle cost in

the blunted cone flow, it should not be concluded that the hybrid approach will also

have a higher per particle cost in other flows. The example in the next section will

show the exact opposite trend. A possible explanation for the higher per particle cost

of the hybrid approach in this particular case is due to a higher cost of interprocessor

communication overhead. This issue is related to both the programming algorithm

for the interprocessor communication and the hardware architecture of the parallel

machine performing the hybrid simulations and is beyond the scope of the present

research.

6.2 Hollow Cylinder/Flare

The hybrid simulation for the hollow cylinder/flare is started by obtaining a

steady state CFD solution. The CFD solution [62] is obtained on a structured grid
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consisting of 2048 cells along the surface and 512 cells normal to the surface. The

steady state CFD solution is then mapped onto the 1000 by 200 structured grid

shown in Figure 3.14 by interpolation for initializing the hybrid simulation. In each

hybrid simulation considered below, the size of the particle domain is updated every

100,000 time steps.

6.2.1 Results Obtained With 6 Layers of Buffer Cells

In the first hybrid calculation for the hollow cylinder/flare, 6 layers of buffer cells

are employed and the time step is 2.5 × 10−10 sec. A total number of 5 million

steps is computed after the domain is initialized with the CFD solution and the last

60,000 steps are sampled once for every three steps. At the beginning of the hybrid

simulation, about 37.9% (75,854) of the total number of cells are in the particle

domain and at the end of the simulation, about 38.2% (76,496) are in the particle

domain. Although the number of the particle cells does not change too much, the

area that they occupy does alter significantly.

The transition of the particle domain from the beginning to the end of the hybrid

simulation is shown as the gray regions in Figure 6.13. A large portion of the particle

domain is above the cylinder, where low density is encountered. The other portion

of the particle domain is primarily along the oblique shock wave from the leading

edge, the detached bow shock, and the flare body surface. Notice that there is a

large continuum domain near the conjunction of the cylinder and flare as the hybrid

simulation is started and it gradually vanishes after about 3.1 millon time steps.

At the beginning of the hybrid simulation, there is a very narrow particle region

coming out from the main body of the particle domain and merging into the oblique

shock region. The narrow particle region is caused by a strong density gradient in the
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CFD solution (shown below). The narrow particle region moves in the downstream

direction with time and eventually settles down and joins with the oblique and bow

shock waves to form a fork point.

The hybrid simulation is performed on an Intel Linux cluster with 40 2.4-GHz

processors connected with a high-bandwidth Myrinet network. There are about 80

particles in each particle cell. The run time is about 590 hours – more than 24 days!

Flow Fields

Comparisons of the translational temperature and density contours obtained with

pure DSMC and the hybrid method are shown in Figures 6.14. Although it is very

encouraging that the two solutions are in fair agreement under such complex cir-

cumstance, discrepancies between them can be easily found, especially around the

conjunction of the cylinder and flare. Notice that the oblique shock starting from

the sharp leading edge of the cylinder reaches the flare at a slightly different loca-

tion in the two solutions. A thicker detached bow shock is predicted in the hybrid

solution. As a result, the flow behind the bow shock is not exactly the same in the

two simulations.

Surface Properties

In Figures 6.15(a) and 6.15(b), numerical results are compared with the exper-

imental data from Holden [50] for pressure and heat transfer coefficients along the

body surface. The hybrid-DSMC and hybrid-IP results are almost identical along the

surface. Generally speaking, the hybrid results are in good agreement with DSMC

and experimental results from the leading edge up until about x/L = 0.8. The most

interesting point to emphasize is that the size of the separation zone is reduced from

the initial size predicted by CFD to about the size measured in the experiment. This
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(a) Beginning of the hybrid simulation.

(b) 500,000 steps after the hybrid simulation.

(c) 1 million steps after the hybrid simulation.

Figure 6.13: Particle domain in the hybrid simulation for the flow over a hollow
cylinder/flare. (continued)



132

(d) 1.5 million steps after the hybrid simulation.

(e) 2.0 million steps after the hybrid simulation.

(f) 2.5 million steps after the hybrid simulation.

Figure 6.13: Particle domain in the hybrid simulation for the flow over a hollow
cylinder/flare. (continued)
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(g) 3.1 million steps after the hybrid simulation.

(h) 4.0 million steps after the hybrid simulation.

fork point

(i) 5.0 million steps after the hybrid simulation.

Figure 6.13: Particle domain in the hybrid simulation for the flow over a hollow
cylinder/flare.
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simulation and hybrid simulation with 6 layers of buffer cells for the
flow over a hollow cylinder/flare.
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indicates that the hybrid approach is successful at a certain level.

As pointed out previously, the oblique shock strikes the flare at a different location

in the hybrid solution, resulting in a different location for the peaks of the surface

pressure and heat transfer coefficients. The heat transfer rate behind the peak is

over-predicted by the hybrid approach while DSMC and CFD both provide good

agreement with the measured data.

Skin friction coefficients calculated with the different numerical methods are com-

pared in Figure 6.16. It is evident that the sizes of the separation zone predicted by

them differ to a large extent.

Detailed Comparisons

Detailed comparisons of the pure DSMC, CFD, and hybrid solutions are first

made along the line normal to the cylinder surface at x/L = 0.01, as displayed in Fig-

ure 6.17. The comparisons all show that the hybrid-DSMC results are in outstanding

agreement with the pure DSMC results. Notice that DSMC predicts a temperature

ratio T/T∞ equal to about 12 at the wall while the wall boundary condition and

freestream temperatures give a ratio of 3.11, indicating a large temperature jump at

the wall and very strong translational nonequilibrium near the leading edge. Neither

the slip model nor the DSMC-IP method makes a correct prediction of the slip tem-

perature at the wall. Substantial discrepancies between the DSMC/hybrid-DSMC

and CFD/hybrid-IP temperatures are a result of the nonequilibrium. On the other

hand, the DSMC-IP scheme predicts an accurate velocity jump at the wall.

Next, the flow field around the middle of the cylinder is studied. In Figure 6.18,

profiles are shown of comparisons for the flow properties along the line normal to

the cylinder body at x/L = 0.5. At this station, the whole computational domain is
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Figure 6.16: Comparison of skin friction coefficients with different numerical methods
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divided into four sub-domains along the δn direction and hybrid-DSMC information

is absent in the continuum domains. In the particle domain next to the body, the

hybrid-DSMC results again are predicted excellently by the hybrid approach. The

density profiles indicate that the density is as low as 30-40% of the freestream density

at about δn = 2 mm. This can also be observed in Figure 6.14(a).

In the shock region, the hybrid-DSMC and hybrid-IP results are shown to move

from the initial CFD conditions towards the DSMC solutions. This suggests that 6

layers of buffer cells are sufficient to handle such an oblique shock very well.

Because the nonequilibrium effect becomes relatively weak at this station, the

hybrid-IP and DSMC results are very close in most of the region. The slip velocity

and temperature predicted by the CFD slip models are accurate, based on compar-

isons to the DSMC velocity and temperature.

Further downstream at the conjunction of the cylinder and flare (x/L = 1),
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Figure 6.17: Comparisons for profiles along the line normal to the cylinder at
x/L = 0.01 when 6 layers of buffer cells are employed.
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profiles along a vertical line are plotted in Figure 6.19 for comparison. The hybrid

approach does not work so well at this station. Velocity profiles show that the sizes

of the separation zone calculated by the various numerical methods are different.

Notice the strong density gradient in the CFD solution in the continuum domain

from δn = 10.4 to 16.9 mm. This strong density gradient results in the narrow

particle domain at the beginning of the hybrid simulation in Figure 6.13(a). Ideally,

this narrow particle domain should move to about δn = 11 mm as indicated in the

DSMC density profile, but it vanishes in the hybrid simulation because of a locally

flat NS density.

The ratio of the wall temperature predicted with the hybrid approach is very close

to 3.11 and there is no slip velocity observed. These two aspects combined imply

that the translational nonequilibrium effect has become very weak at this station.

The densities on the wall predicted with the hybrid approach are much lower than

the DSMC result.

The whole computational domain is divided into six regions along the line normal

to the flare at x/L = 1.3, as displayed in Figure 6.20. It is found in Figure 6.14 that

this station is right ahead of the fork point mentioned above. The particle region

near the wall is very small and is only about 0.29 mm in width. The small shock

region predicted by the hybrid approach is at about from δ = 3.9 to 4.2 mm and the

initial CFD shock region is at about from δ = 5 to 6 mm. The DSMC shock is in

between the two CFD and hybrid shocks. It is concluded that the hybrid approach

does not successfully handle such a flow because it fails to change the shock wave

from the position initialied with the CFD solution to the correct position predicted

by DSMC.

The third particle region is from δ = 1.8 to 2.1 mm. The hybrid-IP/NS density
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x/L = 1 when 6 layers of buffer cells are employed.
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profile at δ = 1.8 mm indicates a wrong domain interface placing as the gradient

is large but the Knudsen number evaluated in terms of density is lower than the

breakdown cut-off value.

When a line normal to the flare is considered behind the fork point at x/L = 1.6,

the whole computational domain is again divided into four regions. The flow property

profiles from various numerical methods are plotted in Figure 6.21 for comparison. It

is worth pointing out that the hybrid results are in good agreement with the DSMC

results in the very narrow particle region near the wall.

The shock position in the hybrid simulation moves from the initial CFD shock

position, beyond the DSMC shock position, and further toward the freestream di-

rection. This suggests that the shock angles calculated with the three numerical

methods are not the same as each other. It is difficult at this point for the current

hybrid approach to work under such a circumstance.

Inappropriate placing of the domain interface is again detected at the interface

of δ = 7.3 mm where temperature, density, and velocity gradients are all significant.

At this interface, discrepancies between the hybrid-DSMC and hybrid-IP/NS infor-

mation are found due to the absence of the buffer cell information, as explained in

Section 5.5.

6.2.2 Results Obtained With 10 Layers of Buffer Cells

To investigate the influence of the number of layers of buffer cells on the hybrid

simulation, 10 layers of buffer cells are employed in the hybrid simulation. Since the

computation is expected to be more expensive than the one with 6 layers of buffer

cells, the new hybrid simulation is not initialized with the steady state CFD solution.

Instead, the new simulation is started with the results after 4.5 million steps in the
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last section and carried out for another 500,000 steps. The total number of time

steps, therefore, is 5 million that is the same as in the last section.

The flow property profiles extracted from various lines normal to the body are

displayed in Figures 6.22 to 6.26. In general, good agreement between the hybrid-

DSMC and pure DSMC results can be found at x/L = 0.01 and 0.5 in both boundary

and shock regions and poor agreement at x/L = 1 and 1.3. In Figure 6.26, the new

results at x/L = 1.6 exhibit the same characteristics as in Figure 6.21: the hybrid

and pure DSMC results in the narrow particle region near the wall are in good

agreement, the hybrid shock is the one furthest away from the body, and the hybrid

solution in the shock region does not agree with the pure DSMC solution to a large

extent.

6.2.3 Discussion

There are several possible reasons to cause the poor prediction at x/L = 1, 1.3

and 1.6. Perhaps The size of the particle domains is too small. The number of

layers of the buffer cells may be too small. The time step employed in the hybrid

simulations may be too large. The collision models in the DSMC-IP technique may

be inadequate. Rotational nonequilibrium is not taken into account in the hybrid

approach.

Among the listed reasons, the factor of time step can be ruled out because the time

steps in the hybrid simulations are an order of magnitude smaller than in the pure

DSMC simulation. Another factor that can be eliminated is the ignored rotational

nonequilibrium in the present hybrid approach. An observation of the temperature

profiles in Figures 6.17 to 6.21 or in Figures 6.22 to 6.26 shows that the highest

temperature ratio T/T∞ is about 17 at x/L = 0.01 and 1.3. This temperature ratio
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Figure 6.22: Comparisons for profiles along the line normal to the cylinder at
x/L = 0.01 when 10 layers of buffer cells are employed.
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Figure 6.24: Comparisons for profiles along the line normal to the cylinder at
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Figure 6.26: Comparisons for profiles along the line normal to the flare at x/L = 1.6
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corresponds to a temperature at about 1,624 K. At this temperature, the collision

frequency involving the exchange of both translational and rotational energies is

insignificant and the two energy modes are nearly equilibrium. In addition, it is

evident that the hybrid-DSMC temperature is well predicted at x/L = 0.01.

The numerical experiments performed by Sun and Boyd [78] for verifying the IP

technique and determining the Cµ and Cκ values in the collision models involved

very simple flows, such as Couette flows, thermal Couette flows, Rayleigh flows, and

NACA0012 airfoil flows. Most of these flows share one common feature: the main

stream flows in a single direction. It is unclear whether the IP technique and collision

models are adequate for the present flows with large areas of circulation, such as the

separation zone at the conjunction of the cylinder and flare. A lid-driven cavity flow

could be a good test in the future.

The poor prediction in the shock regions at x/L = 1.3 and 1.6 is very probably the

result of the inappropriate domain interface location determined with the continuum

breakdown parameter Knmax. As pointed out previously, the breakdown parameter

in the shock regions tends to place the continuum/particle domain interface at the

location with large flow gradients, leading to a much smaller particle domain. A

particle domain that is too small makes the hybrid approach work poorly, especially

when the initial shock angle predicted by CFD is so different from the final shock

angle predicted by DSMC.

In the hollow cylinder/flare flow, the results obtained with 6 layers of buffer cells

differ only slightly from the results obtained with 10 layers of buffer cells. If the

size of the particle domain is increased by decreasing the continuum breakdown cut-

off value, for instance, 6 or 10 layers of the buffer cells are not expected to have a

great influence on the physical accuracy. However, this requires more studies to be
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confirmed.

6.2.4 Computational Cost

In Table 6.2, the computational costs of various numerical methods on an Intel

Linux cluster with 40 2.4-GHz processors under different setups are listed. The

number of particles is the summation of the numbers of particles in all particle and

buffer cells. The time taken by the hybrid simulation with 10 layers of buffer cells

is estimated by multiplying by 10 the time actually consumed for the last 500,000

time steps. Since neither of the hybrid simulations can be considered satisfactory in

terms of accuracy and they spend at least twice the computational time of the pure

DSMC simulation, the present hybrid approach is not regarded as successful for the

specific flow over a hollow cylinder/flare.

The per particle and cell costs in the table have the same definition as in Table 6.1

in the last example. Unlike the last example, the current hybrid approach on the

particular Linux cluster is at least 57% faster than the DSMC method in terms of

the per particle cost. However, it is also inappropriate to conclude that the hybrid

approach always has a lower per particle cost than the DSMC method because it is

difficult to compare the interprocessor communication overhead between these two

methods.

It is evident that the CFD method is overwhelmingly superior than the DSMC

method in terms of the per cell cost. This is primarily because there is a significant

number of particles in the DSMC simulation and the busy communication between

the processors slows down the numerical performance. This is in part because the

CFD solution [62] is obtained with an implicit scheme that is faster than the one

employed in the blunted cone flow. However, based on the comparisons of the surface



153

Pure Hybrid Hybrid

CFD DSMC (6 Buffers) (10 Buffers)

Number of
Continuum Cells

200000 - 123504 122921

Number of
Particle Cells

- 200000 76496 77079

Number of
Buffer Cells

- 0 16121 26149

Percentage of
Particle &

Buffer Cells (%)

- 100 47.8 51.6

Particles
(million)

- 27.0 8.0 9.0

Steps
(thousand)

38 300 5000 5000

Time (hour) 8∗ 280 590 630†

Per Particle
Cost

(min/Ks/Mp)

- 2.07 0.89 0.84

Per Cell Cost
(sec/Ks/Kc)

0.72 16.8 2.12 2.27

∗On a 2048 by 512 grid.
†Estimation.

Table 6.2: Computational costs on an Intel cluster with 40 2.4-GHz processors of
different numerical methods and under various setups for a Mach 12.4
nitrogen flow over a hollow cylinder/flare.
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flow properties from the CFD solution with the experimental data, it is clear that

the accuracy of the solution has been sacrificed.

The per cell costs of the hybrid simulations look much better than that of the

pure DSMC simulation. The primary reason is again due to the significant amount

of simulated particles in the pure DSMC simulation.



CHAPTER VII

Summary and Conclusions

7.1 Summary

The main objective for developing a hybrid particle-continuum method is to cre-

ate a faster and more accurate approach than other conventional means. A hybrid

method for computing hypersonic, nonequilibrium flows in 2D/axisymmetric con-

figurations has been described in the thesis. In the particle domain, the DSMC-IP

technique was employed while in the continuum domain, a finite volume, second-

order accurate, Steger-Warming flux vector splitting NS solver was utilized.

In this thesis, continuum breakdown in a flow is defined as when the continuum

solution differs from the particle solution by at least 5%. Numerical investigations

showed that a Knudsen-number-like parameter, Knmax, can best predict the contin-

uum breakdown in the flows of interest.

Buffer and reservoir cells were introduced in the continuum domain and work as

an extension of the particle domain. At the end of the particle movement phase,

particles in either particle or buffer cells are retained. All simulated particles in the

reservoir cells are first deleted for each time step and re-generated based on the local

cell values. The microscopic velocities for the newly generated particles are initialized

to the Chapman-Enskog distribution using an acceptance-rejection scheme.

155



156

The macroscopic DSMC-IP information in particle cells was updated for each

time step. Given the fact that the DSMC-IP information has much smaller statistical

scatter, the particle cells adjacent to the domain interface were regarded as the ghost

cells and the DSMC-IP information in them were used to evaluate the continuum

fluxes. Therefore, coupling these two domains becomes straightforward. Information

exchange on the domain interface was continuously carried out for each time step.

Numerical experiments of hypersonic flows over a blunted cone and a hollow

cylinder/flare were conducted, with the use of the continuum-breakdown criterion

Knmax = 0.03 or 0.005 and 6 or 10 layers of buffer cells. The hybrid method was

first initialized with a steady state CFD solution and then marched forward. The

interface between the particle and continuum domains was updated periodically.

The flow surface properties, the pressure and heat transfer coefficients, along

the body walls of the hybrid results were compared with other numerical results

and experimental data. The flow field properties, including temperature, density,

and velocity, along several lines normal to the bodies were extracted and detailed

comparisons were made with the corresponding DSMC and CFD solutions.

7.2 Conclusions

For the blunted cone case, the hybrid approach is capable of simulating the flow

quite well. When 10 layers of buffer cells and the breakdown criterion Knmax = 0.03

were employed, or 6 layers of buffer cells and the breakdown criterion Knmax = 0.005

were employed, the hybrid results were remarkably accurate, in comparison with the

DSMC results. Since the latter hybrid setup required more time on computation, it

is concluded that 10 layers of buffer cells and the breakdown criterion Knmax = 0.03

is the best hybrid simulation setup for this specific flow.



157

For the hollow cylinder/flare case, the conclusions are mixed. On the positive

side, the size of the separation zone in the hybrid simulation was reduced from that

predicted by CFD to approximately that measured in the experiment. The flow field

simulated by the hybrid method is accurate from the leading edge up to at least

the middle of the cylinder, regardless of whether 6 or 10 layers of buffer cells were

employed. On the negative side, the flow field simulated by the hybrid method does

not agree with the DSMC results in most regions further downstream from the middle

of the cylinder, even when 10 layers of buffer cells were employed. A possible reason

for the disagreement is due to the poor prediction by the DSMC-IP method near the

shock region, with the result that everything from there on is affected. The other

reason is probably attributed to inappropriate domain interface location determined

with the continuum breakdown parameter Knmax.

The disappointing performance of the hybrid method in strong shock regions

is primarily caused by the equilibrium assumption in the DSMC-IP technique to

estimate the extra translational energy carried by a simulated particle moving from

one cell to the other. The new energy flux model developed in Section 2.5 can relax

this assumption and should be integrated with the hybrid method in the future. In

addition, a new breakdown parameter is proposed in the next section.

The numerical efficiency of the current hybrid method is a serious concern. In

the blunted cone case, the hybrid simulation under the best setup took more than

four times longer than the pure DSMC simulation. In the hollow cylinder/flare case,

the hybrid simulations took at least 24 days on a Linux cluster with 40 2.4-GHz

processors. The main reason for the poor numerical performance is that the time step

required in a typical hybrid simulation is always smaller than in the standard DSMC

simulation, sometimes an order of magnitude smaller. For instance, the time steps
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employed in the pure DSMC and hybrid simulations for the hollow cylinder/flare

were 3 nsec and 0.25 nsec, respectively. This is in part because the CFD scheme is

explicit in the hybrid approach. This is also in part because the time step required in

a DSMC-IP simulation is smaller than in the pure DSMC simulation. For instance,

the time steps employed in the pure DSMC and pure DSMC-IP simulations for the

blunted cone tip were 2 nsec and 0.5 nsec, respectively. Additionally, the DSMC-

IP method uses more memory than in the standard DSMC method. It is therefore

concluded that the numerical efficiency of the hybrid method is far from satisfactory.

Overall, the hybrid approach described in this thesis is the only truely hybrid

DSMC-CFD approach to date. It is robust, multi-dimensional, strongly coupled,

parallelized, and able to simulate strongly nonequilibrium, hypersonic compressed

flows. The main weakness of the hybrid approach is its poor numerical performance.

7.3 Future Work

The current DSMC/CFD hybrid approach can be considered as a solid platform

for future development. Several aspects for short term and long term development

are described as follows. Many of these ideas should be first performed for one-

dimensional flows, for instance 1-D shock problems, and then implemented in the

fully 2-D/axisymmetric version.

7.3.1 Distribution of Newly Generated Particles

The current hybrid approach uniformly and randomly places the newly gener-

ated particles in the reservoir cells. In the future, the particles should be placed

along the density gradient direction to account for the non-uniformity of the particle

distribution.



159

7.3.2 Continuum Breakdown

Due to the poor prediction in a shock wave region by the DSMC-IP method, con-

sideration should be given to determining the domain interface based on the DSMC

information instead of the DSMC-IP information. This may be a good idea because

the DSMC information contains the detailed nonequilibrium information. From the

point of view of a general rule for determining the domain interface, however, there

are at least four reasons against this idea. (1) The DSMC information is not con-

tinuous at the domain interface. Evaluation of the continuum breakdown parameter

at such locations becomes very unclear. (2) There is no DSMC information outside

the particle domain. Therefore, evaluation of the continuum breakdown parameter

is confined within the particle domain only. (3) A smooth DSMC solution is very

difficult to obtain in low speed flow regions. A small perturbation in a certain flow

property in a solution always leads to a locally significant gradient for that property

and in turn increases the difficulty of determining the location of the domain inter-

face. (4) In general, because it always takes many more sampling steps to obtain a

smooth DSMC solution, the overall numerical efficiency of the hybrid approach will

become poorer and poorer if such a rule is implemented.

As a result, it is necessary to depend on the NS-IP information for determining

the location of the domain interface. Numerical experiments exhibit a fundamental

flaw of the use of the local Knudsen number as the continuum breakdown parameter

in certain large gradient regions. A simple solution to this problem is the introduction

of a reference Knudsen number

Knref =
λ

Qref

|∇Q| .

The reference value is a constant and can be taken from the freestream conditions,
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for instance. In this way, regions with larger gradients always have higher Knudsen

numbers. It is required to re-evaluate the cut-off value before this parameter can be

actually employed.

7.3.3 Boundary Conditions for the New Energy Flux Model

Probably the easiest boundary conditions for the new energy flux model are the

slip boundary conditions in Equations (2.17) and (2.18). When a simulated particle

strikes a diffuse wall, its IP velocity and temperature are updated to the local slip

velocity and temperature. Because this is a continuum model being applied in a

particle method, its feasibility is unknown.

A more complex idea is inspired by the fact that the velocity distribution of a gas

molecule reflected from a diffuse wall is the standard Maxwellian in the directions

tangential to the wall and is a biased Maxwellian in the direction normal to the wall.

Using Equations (2.23) and (2.24), the velocity distribution of a reflected IP particle

is biased and can be written as

f(cn, ct) dcndct =
1√

2πRTw RTw

cn exp

(

−c2
n + c2

t

2RTw

)

dcndct,

where cn is the velocity component normal to the wall and ct is the velocity compo-

nent tangential to the wall. Therefore, there are biased Maxwellian particles in the

IP method in addition to the standard Maxwellian particles. The drawback of this

idea is that the flux evaluation in Equation (2.41) becomes more complex, especially

when the cell interface is not parallel with the wall.

7.3.4 A General Collision Model

The Cµ and Cκ values in Table 2.2 are assumed in a phenomenological collision

model and are determined from numerical experiments based on the current DSMC-

IP method. Any changes to the DSMC-IP method will have effects on the Cµ and
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Cκ values and a new set of values must be re-evaluated by performing numerical

experiments. It is, therefore, worth simulating the collisions in the DSMC-IP method

by a better model that has less dependence on numerical experiments.

Since the DSMC and DSMC-IP methods decouple the particle movements and

collisions in each time step, the Boltzmann equation can be split into two parts

which, respectively, represent the convection and collision phenomena in a flow

∂

∂t
F + c · ∇F = 0, (7.1a)

∂

∂t
F =

δ

δt
F. (7.1b)

Equation (7.1b) can be approximated by the BGK model [12]. Assuming that an

IP particle j is characterized by the Maxwellian distribution Mj at time t and in a

cell that has the local equilibrium distribution Mc, the evolution of the IP particle

in the cell due to collisions is

∂

∂t
Fj =

Mc − Fj

τ
, (7.2)

where τ is the local relaxation time and can be evaluated with τ = µ/p. The exact

solution to Equation (7.2) over a small period of time ∆t is

Fj(t + ∆t) = Mc + (Mj(t) −Mc)e
−∆t/τ

= Mj(t)e
−∆t/τ +

(

1 − e−∆t/τ
)

Mc. (7.3)

It is easy to show that the distribution Fj remains unchanged as ∆t → 0 or evolves to

Mc as ∆t → ∞. If the distribution of the IP particle after ∆t is further approximated

to be Maxwellian, its velocity and temperature can be analytically determined by

ξj(t + ∆t) =
1

ρ

∫

R3

mcFj(t + ∆t) dc, (7.4)

Tj(t + ∆t) =
1

3ρR

∫

R3

mc′2Fj(t + ∆t) dc. (7.5)
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7.3.5 Numerical Efficiency Improvement

As mentioned above, the current hybrid approach requires a smaller time step

than the standard DSMC method because of the explicit CFD scheme and the

DSMC-IP technique. To improve the numerical efficiency of the hybrid approach, a

faster CFD method, such as an implicit scheme, can be incorporated. It is unclear at

this point how exactly to increase the time step allowed in the DSMC-IP technique.

One direction is to modify the DSMC-IP technique with the new energy flux model

in Section 2.5 and the new boundary conditions in Section 7.3.3.

7.3.6 Physical Models

The level of physical modeling implemented so far in the hybrid code is only

capable of simulating a simple, perfect gas. As the purpose of developing a hybrid

code is specifically intended for hypersonic flow with local regions of nonequilibrium,

the level of physical modeling needs to be raised to include the ability to simulate

thermal nonequilibrium of rotational and vibrational molecular modes, as well as

finite-rate, nonequilibrium chemistry. In addition, the future hybrid approach must

be capable of simulating flows with multi-species. For DSMC and CFD, methods

for modeling the thermochemical nonequilibrium and gas mixtures are available, but

for the DSMC-IP method, schemes for modeling these same processes are yet to be

developed.
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APPENDIX A

Shock Structures by the DSMC-IP with the New

Energy Flux Model

A.1 Shocks in Argon

Unless otherwise specified, the computational domain spans about 40 upstream

mean free paths and is evenly divided between the upstream and downstream regions

with the initial discontinuity at the origin. Although this is a 1-D problem, a 2-D

grid with 400 uniform cells in the flow direction and 5 cells in the transverse direction

is employed. The results shown below are from the middle 400 cells. The number of

particles per cell in the upstream is about 30 on average. The reference time-step is

10 nsec in all cases.

In Figure A.1, results from the present IP method for a weak Mach 1.55 shock

are compared with the old IP method [78] and with DSMC. It is clear that the

present IP method is better than the old one. Although the profiles of the present

IP method and DSMC in the figure are in good agreement in the rear portion of the

shock, the present method still fails to predict the onset of temperature increase at

the upstream edge of the shock. Detailed inspection reveals that the density profile

calculated with the current IP method is slightly thinner.
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(b) Comparison of translational temperature.

Figure A.1: Comparison of non-dimensional flow properties for a Mach 1.55 shock
in argon.
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Figure A.2 shows the results when the Mach number is increased to 4. The

density profile predicted with the present IP method is in excellent agreement with

the DSMC results. The discrepancies in the temperature and velocity at the shock

front still persist but they are not any worse than in the last example at lower Mach

number. On the other hand, the old IP method results are very poor.

Under hypersonic upstream conditions, it is very difficult for the old IP method to

generate reasonable results at Mach numbers higher than 5. On the other hand, the

IP method with the new energy flux model works very well even if Mach number is

increased to 8. Comparisons for non-dimensional density, velocity, and temperature

are displayed in Figure A.3. The density profile predicted with the IP method and

the new energy flux model is again in excellent agreement with the DSMC results

although the IP method predicts a slightly thicker shock.

The size of the downstream computational region at Mach 8 and higher is in-

creased to about 60 upstream mean free paths. Numerical experiments demonstrated

mismatched downstream boundary conditions if the size of the downstream region

is too small.

The reciprocal shock thickness (a measure of the maximum density gradient) is

shown in Figure A.4 as a function of Mach number. The experimental data are from

Alsmeyer [5] and Navier-Stokes data from Boyd [21]. The most striking conclusion

that can be made is that the current IP method predicts shock density profiles much

closer to the experimental and DSMC results for all Mach numbers than the old IP

method. When the Mach number is very high, the shock thickness calculated with

the IP method is slightly thicker than the measured data. The overall accuracy of

the new IP method is much better than the CFD method, except at very low Mach

numbers. Notice that the old IP method stops at Mach 5 because reasonable results



167

X/λ∞

Q
*

-10 -5 0 5
0

0.2

0.4

0.6

0.8

1

DSMC
IP (New Energy)
IP (Sun and Boyd)

ρ*

u*

(a) Comparison of density and velocity.

X/λ∞

T
*

-10 -5 0 5
0

0.2

0.4

0.6

0.8

1
DSMC
IP (New Energy)
IP (Sun and Boyd)

(b) Comparison of translational temperature.

Figure A.2: Comparison of non-dimensional flow properties for a Mach 4 shock in
argon.
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Figure A.3: Comparisons of non-dimensional flow properties for a Mach 8 shock in
argon.

are difficult to obtain for higher Mach numbers.

A.2 Shocks in Nitrogen

When nitrogen gas is considered, the number of internal degrees of freedom ζ is 2

due to rotation. The upstream conditions of a Mach 5 flow are u1 = 1248.6 m/s, T1 =

300 K and ρ1 = 7.483 × 10−5 kg/m3. The downstream temperature is T2 = 1740 K.

The computational domain spans about 50 upstream mean free paths, otherwise it

is the same as in the previous examples. A similar 2-D grid is again employed. The

number of particles per cell in the upstream is also about 30. The reference time-step

is 20 nsec.

The results from the new IP method are in very good agreement with the DSMC

results in terms of density and velocity, as shown in Figure A.5(a). The reciprocal

shock thickness predicted by DSMC and the new IP method is 0.345 and 0.330,
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Figure A.4: Comparisons for reciprocal shock thickness for shock waves in argon.

respectively, compared with the measured data of about 0.35 from Alsmeyer [5].

An overall kinetic temperature Tov may be introduced for a nonequilibrium gas

as the weighted average of the translational and internal temperatures [16]

Tov = (3Ttra + ζTint)/(3 + ζ).

Strong nonequilibrium effects can easily be observed from the significant differences

between the DSMC translational and rotational temperatures in Figure A.5(b).

Because the principle of equipartition of energy is applied in the current IP

method, meaning that the translational and internal temperatures must be equal,

there is no way at this point for the IP method to predict this kind of nonequilib-

rium. Unlike the argon gas examples, the onset of temperature at the upstream edge

of the Mach 5 nitrogen shock is well captured by the IP method. The resulting IP

temperature profile also shows a 0.8% overshoot near the center of the shock. Higher

Mach numbers are not considered because the downstream temperature will increase
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substantially. At Mach 6, for instance, the downstream temperature increases to

about 2,400 K, and it is difficult to judge at such high temperature the accuracy of

the new IP method due to the nonequilibrium effects. In the future development of

the IP method, rotational and vibrational relaxation will be taken into account.



171

X/λ∞

Q
*

-10 -5 0 5
0

0.2

0.4

0.6

0.8

1

DSMC
IP (New Energy)

ρ*

u*

(a) Comparison of density and velocity.

X/λ∞

T
*

-10 -5 0 5
0

0.2

0.4

0.6

0.8

1
T*

OV

T*
TRA

T*
ROT

IP (New Energy)

(b) Comparison of temperatures.

Figure A.5: Comparison of non-dimensional flow properties for a Mach 5 shock in
nitrogen.
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APPENDIX B

Similarity of the Knudsen Numbers Based on

Density and Temperature

By taking the ratio of the two Knudsen numbers

KnD

KnT

=
T

ρ

∣

∣

∣

∣

∇ρ

∇T

∣

∣

∣

∣

and recognizing in the boundary layer that the derivative in the normal direction

n is much larger in magnitude than in the tangential direction, the ratio can be

approximated as

KnD

KnT
≈ T

ρ

∣

∣

∣

∣

∂ρ/∂n

∂T/∂n

∣

∣

∣

∣

.

Furthermore, since pressure p, which is proportional to ρT , in the boundary layer

is approximately invariant along the normal direction n, we have ρ ∂T
∂n

+ T ∂ρ
∂n

= 0.

Accordingly, the ratio of the two Knudsen numbers becomes

KnD

KnT

≈ 1

at a small distance from the wall. The same proof applies to P .
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[58] J. G. Méolans. Thermal Slip Boundary Conditions in Vibrational Nonequilib-
rium Flows. Mechanics Research Communications, 30:629–637, 2003.

[59] C. H. Michaelis. Development of A Continuum/Rarefied Hybrid Scheme for
Flows with Thermal and Chemical Non-equilibrium. PhD thesis, Department of
Aeronautics and Astronautics, Stanford University, 2001.

[60] J. N. Moss. DSMC Computations for Regions of Shock/Shock and
Shock/Boundary Layer Interaction. AIAA Paper 2001–1027, Jan. 2001.

[61] I. Nompelis. private communication, Aug. 2001.

[62] I. Nompelis. private communication, Aug. 2003.

[63] C. K. Oh and E. S. Oran. A New Hybrid Algorithm: Navier-Stokes as a DSMC
Filter. AIAA Paper 1998–0849, Jan. 1998.

[64] T. Ohwada. Structure of Normal Shock Waves: Direct Numerical Analysis
of the Boltzmann Equation for Hard-Sphere Molecules. Physics of Fluids A,
5(1):217–234, Jan. 1993.

[65] T. Ohwada. Heat Flow and Temperature and Density Distributions in a Rarefied
Gas Between Parallel Plates with Different Temperature. Finite-Difference Anal-
ysis of the Nonlinear Boltzmann Equation for Hard-Sphere Molecules. Physics
of Fluids, 8(8):2153–2160, Aug. 1996.

[66] J. G. Parker. Rotational and Vibrational Relaxation in Diatomic Gases. Physics
of Fluids, 2:449–462, 1959.

[67] D. I. Pullin. Direct Simulation Methods for Compressible Inviscid Idal-Gas
Flow. Journal of Computational Physics, 34:231–244, 1980.



179

[68] A. Rahman. Correlations in the Motion of Atoms in Liquid Argon. Physical
Review A, 136:405–411, 1964.

[69] D. J. Rasky, H. K. Tran, and D. B. Leiser. Thermal Protection Systems.
Launchspace, 3:49–54, 1998.

[70] R. Rovedo, D. B. Goldstein, and P. L. Varghese. Hybrid Euler/Particle Ap-
proach for Continuum/Rarefied Flows. Journal of Spacecraft and Rockets,
35(3):258–265, 1998.

[71] R. Rovedo, D. B. Goldstein, and P. L. Varghese. Hybrid Euler/Direct Simula-
tion Monte Carlo Calculation of Unsteady Slit Flow. Journal of Spacecraft and
Rockets, 37(6):753–760, 2000.

[72] C. J. Roy, T. J. Bartel, M. A. Gallis, and J. L. Payne. DSMC and Navier-Stokes
Predictions for Hypersonic Laminar Interacting Flows. AIAA Paper 2001–1030,
Jan. 2001.

[73] C. J. Roy, M. A. Gallis, T. J. Bartel, and J. L. Payne. Navier-Stokes and DSMC
Simulations for Hypersonic Laminar Shock-Shock Interaction Flows. AIAA Pa-
per 2002–0737, Jan. 2002.

[74] S. A. Schaaf and P. L. Chambre. Flow of Rarefied Gases. Princeton University
Press, Princeton, NJ, 1966.

[75] C. Shen, J. Z. Jiang, and J. Fan. Information Preservation Method For The
Case of Temperature Variation. In T. J. Bartel and M. A. Gallis, editors,
Proceedings of the 22nd International Symposium on Rarefied Gas Dynamics,
Sydney, Australia, volume 585, pages 185–192, 2001.

[76] Y. Sone, T. Ohwada, and K. Aoki. Temperature Jump and Knudsen Layer in a
Rarefied Gas over a Plate Wall: Numerical Analysis of the Linearized Boltzmann
Equation for Hard-Sphere Molecules. Physics of Fluids A, 1(2):363–370, Feb.
1989.

[77] Q. Sun. Information Preservation Methods for Modeling Micro-Scale Gas Flows.
PhD thesis, Department of Aerospace Engineering, University of Michigan,
2003.

[78] Q. Sun and I. D. Boyd. A Direct Simulation Method for Subsonic, Micro-Scale
Gas Flows. Journal of Computational Physics, 179(2):400–425, 2002.

[79] Q. Sun, I. D. Boyd, and G. V. Candler. Numerical Simulation of Gas Flow Over
Micro-Scale Airfoils. Journal of Thermophysics and Heat Transfer, 16(2):171–
179, 2002.

[80] Q. Sun, I. D. Boyd, and G. V. Candler. A Hybrid Continuum/Particle Ap-
proach for Micro-Scale Gas Flows. In A. D. Ketsdever and E. P. Muntz, editors,



180

Proceedings of the 23th International Symposium on Rarefied Gas Dynamics,
Wistler, Canada, pages 752–759, 2003.

[81] P. L. Tallec and F. Mallinger. Coupling Boltzmann and Navier-Stokes Equations
by Half Fluxes. Journal of Computational Physics, 136(1):51–67, 1997.

[82] P. Vijayakumar, Q. Sun, and I. D. Boyd. Detailed Models of Vibrational-
Translational Energy Exchange for the Direct Simulation Monte Carlo Method.
Physics of Fluids, 11(8):2117–2126, Aug. 1999.

[83] W. G. Vincenti and C. H. Kruger, Jr. Introduction to Physical Gas Dynamics.
Krieger Publishing, Malabar, Florida, 1986.

[84] D. C. Wadsworth and D. A. Erwin. One-Dimensional Hybrid Contin-
uum/Particle Simulation Approach for Rarefied Hypersonic Flows. AIAA Paper
1990–1690, June 1990.

[85] D. C. Wadsworth and D. A. Erwin. Two-Dimensional Hybrid Contin-
uum/Particle Simulation Approach for Rarefied Hypersonic Flows. AIAA Paper
1992–2975, July 1992.

[86] W.-L. Wang and I. D. Boyd. A New Energy Flux Model in the DSMC-IP
Method for Nonequilibrium Flows. AIAA Paper 2003–3774, June 2003.

[87] W.-L. Wang, I. D. Boyd, G. V. Candler, and I. Nompelis. Particle and Contin-
uum Computations of Hypersonic Flow Over Sharp and Blunted Cones. AIAA
Paper 2001–2900, June 2001.

[88] W.-L. Wang, Q. Sun, and I. D. Boyd. Assessment of a Hybrid Method for
Hypersonic Flows. In A. D. Ketsdever and E. P. Muntz, editors, Proceedings of
the 23th International Symposium on Rarefied Gas Dynamics, Wistler, Canada,
pages 923–930, 2003.



ABSTRACT

A HYBRID PARTICLE/CONTINUUM APPROACH FOR

NONEQUILIBRIUM HYPERSONIC FLOWS

by

Wen-Lan Wang

Chairperson: Professor Iain D. Boyd

A hybrid particle-continuum computational framework is developed and pre-

sented for simulating nonequilibrium hypersonic flows, aimed to be more accurate

than conventional continuum methods and faster than particle methods. The frame-

work consists of the direct simulation Monte Carlo-Information Preservation (DSMC-

IP) method coupled with a Navier-Stokes solver. Since the DSMC-IP method pro-

vides the macroscopic information at each time step, determination of the contin-

uum fluxes across the interface between the particle and continuum domains becomes

straightforward.

Buffer and reservoir cells are introduced in the continuum domain and work as

an extension of the particle domain. At the end of the particle movement phase,

particles in either particle or buffer cells are retained. All simulated particles in the

reservoir cells are first deleted for each time step and re-generated based on the local



1

cell values. The microscopic velocities for the newly generated particles are initialized

to the Chapman-Enskog distribution using an acceptance-rejection scheme.

Continuum breakdown in a flow is defined as when the continuum solution departs

from the particle solution to at least 5%. Numerical investigations show that a

Knudsen-number-like parameter can best predict the continuum breakdown in the

flows of interest.

Numerical experiments of hypersonic flows over a simple blunted cone and a

much more complex hollow cylinder/flare are conducted. The solutions for the two

geometries considered from the hybrid framework are compared with experimental

data and pure particle solutions. Generally speaking, it is concluded that the hybrid

approach works quite well. In the blunted cone flow, numerical accuracy is improved

when 10 layers of buffer cells are employed and the continuum breakdown cut-off

value is set to be 0.03. In the hollow cylinder/flare hybrid simulation, the size

of the separation zone near the conjunction of the cylinder and flare is improved

from the initial continuum solution to approximately that in the measured data.

Numerical accuracy of the flow field varies with locations. It is also concluded that

the numerical efficiency obtained with the hybrid approach is far from satisfactory.

Overall, the present framework is the first fully coupled, hybrid continuum-particle

method for nonequilibrium hypersonic flows and provides a solid foundation for future

development.


