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CHAPTER I

INTRODUCTION

1.1 Motivation and Problems

Electric Propulsion (EP) devices have several important merits over traditional

chemical thrusters and they have been widely used in space for primary propul-

sion and on-orbit applications such as station-keeping. There have been active re-

search efforts on EP devices since the mid 1950’s, one of the introductory book by

Stuhliger [52]. Among the active research topics, spacecraft integration and plume

impingement are two important issues for EP devices. In this study, several prob-

lems related with plume flows from EP devices will be investigated analytically and

numerically.

The major problem studied in this thesis is three-dimensional particle simulations

of plasma plume flows from a cluster of Hall thrusters. During the past decade,

plasma plume flows from a single thruster have been simulated widely with particle

methods [46, 55]. These simulations adopted simplified axi-symmetric configurations

and the plasma potential was usually solved by the simplest Boltzmann relation.

There are several problems associated with these simplifications:

1. With multiple thrusters in operation, plasma plume flows from different thrusters

may interact with each other. Hence, the flowfield is completely three-dimensional.

1
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2. There are some detailed near-field objects, such as thruster cathode-neutralizers

and conic protection caps on the front of some Hall thrusters. These three-

dimensional objects have significant effects on the near field flow properties

and cannot be well represented with axi-symmetric simplifications.

3. The simple electron model, the Boltzmann relation, cannot predict some de-

tailed electron properties in the near field. Some important electron properties,

such as the electron temperature distributions, change rapidly in the flow field,

while the Boltzmann relation assumes that this property follows a constant

distribution in the whole flowfield.

As the most important work of this thesis, several three-dimensional particle sim-

ulations are performed to understand the plume flowfield in front of a cluster of Hall

thrusters. An advanced detailed electron model will be used in these simulations.

This model is expected to be capable of predicting important electron properties

in the whole flowfield. Three-dimensional effects, such as thruster clustering effects

and cathodes effect, will be demonstrated with the simulation results. Several im-

plementation issues associated with unstructured meshes will be discussed. While

performing these particle simulations of the three-dimensional plasma plume flows

from a cluster of thrusters, another two related issues were identified and are included

in this thesis as well.

One important issue is facility effects of large vacuum chambers. To the EP

community, including people working on experiments or numerical simulations, this

problem is quite important [9]. EP devices are designed for usage in space, where

nearly perfect vacuum exists, but they are tested in large vacuum chambers on the

ground. The finite background pressure in the large vacuum chambers may have
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adverse effects on the performance of EP devices in experiments and on particle

simulations of plume flows. One fundamental concern to the EP community is to

estimate the facility effects on the background pressure and velocity in the vacuum

chamber. More specifically, this thesis will provide answers to the following questions:

1. With given fixed facility parameters and given electric thrusters in a large

vacuum chamber, what average background pressure and average background

velocity will be expected in this chamber? These two properties contribute to

the performance difference between experiments in a chamber and real opera-

tion in space. Having a clear understanding of this problem is crucial to both

experiments and numerical simulations.

2. What are the exact effects on the background gas that a change of facility

properties will result in? Possible facility properties include the pump sticking

coefficient, the pump temperature, the pump size, the chamber wall temper-

ature and the chamber side wall length. Answering this question can provide

guidelines for designing new chambers and improving old chambers.

In the literature, there is little prior work on these problems. This thesis will

provide several sets of analytical models to answer these questions. Several analyt-

ical results from these models are also used to aid the three-dimensional particle

simulations of plasma plume flows.

Another important issue is to analytically investigate the plasma plume flows

in space. Plume flows from EP devices are complex, but by omitting electric field

effects and collisions, the plasma plumes can be approximated with a mixture of

free molecular flows of ions and neutrals out of exits with different shapes. In the

literature, there are essentially no reports of similar analytical work on electric plasma
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plume flows previously. This thesis represents an initial effort to analytically study

plasma plume flows in vacuum.

1.2 Background for Electric Propulsion

1.2.1 Historical Background

The idea of electric propulsion can be traced back to Robert Goddard. He noticed

an important fact that in several of his experiments, a quite high exhaust velocity was

achieved with a still cool tube. He pointed out the fact that electrostatic propulsion

has no limitation of speed by the specific heat of combustion with several papers in

the 1920’s [24]. Another EP pioneer, Hermann Oberth, expanded on the concept of

EP, and several theoretical studies were published from 1945 to the mid 1950’s.

While Oberth and Goddard recognized the potential payoff electric propulsion

could have to interplanetary flight, it was Wernher von Braun who sanctioned the

first serious study on EP. In 1947, at Fort Bliss, von Braun assigned a young en-

gineer named Ernst Stuhlinger the task of giving Professor Oberth’s early concepts

of electric spacecraft propulsion “some further study”. Fifteen years later, Stuh-

linger published a book entitled Ion Propulsion for Space Flight and directed NASA

Marshall Space Flight Center’s work on arcjet and ion propulsion systems.

One drawback cited by people who had doubts about EP was the low inherent

thrust-to-weight ratios of electric engines. EP systems are expected to have thrust-to-

weight values thousands of times smaller than chemical propulsion systems. In 1953,

H.S. Tsien designed trajectories and thrust alignment procedures for low-thrust, EP-

propelled spacecraft. In his work, it was shown that thrust-to-weight ratios as low

as 1 × 10−5 are sufficient to change the trajectory of a space vehicle over a realistic

period of time.
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With the beginning of the “Space Race” in the late 1950’s between the U.S.S.R

and the U.S.A, experimental work on EP began to flourish. In the United States,

RocketDyne(1958), NACA Lewis Flight Laboratory(1959, now NASA Glenn), and

Princeton University(1961) began their EP experimental programs.

In the early 1990’s, the advent of new, high-power spacecraft architectures made

EP more attractive to mission planners. At the same time, an influx of Russian Hall

thruster technology to the west and an aggressive new technology push at NASA

began to advocate the use of ion engines in interplanetary probes.

As of today, EP devices are widely used as primary interplanetary propulsion

and for on-obit applications such as station keeping, attitude control and orbit trans-

fer [38].

1.2.2 Advantages of Electric Propulsion

Compared with traditional chemical rockets, EP devices have several advantages.

First, the exhaust velocity is much higher. Chemical rockets have a limit for the

exhaust velocity, typically of a few kilometers per second:

uex ≤
√

2hc/m (1.1)

where hc is the combustion enthalpy and m is the mean mass of the exhaust products.

EP devices, on the other hand, can readily exhaust velocities as high as 110 km/s.

Second, no oxidizer is needed and electricity can be obtained in space via solar cells,

hence there is more room for payload. Third, EP devices can use inert easily stored

propellants which are much safer than chemical propellants. Detailed discussion of

these advantages can be found in many EP books and several Ph.D. theses such

as [50].
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1.2.3 Types of Thrusters

Electric propulsion mechanisms were first divided into three canonical categories

by Stuhlinger [52]:

1. Electrothermal devices heat a propellant gas with electrical current or elec-

tromagnetic radiation. The resulting thermal energy is converted to directed

kinetic energy by expansion through a nozzle. Resistojets, arcjets and cyclotron

resonance thrusters are examples of electrothermal devices.

2. Electrostatic devices accelerate charge-carrying propellant particles in a static

electric field. These devices typically use a static magnetic field that is strong

enough to retard electron flow, but too weak to materially affect ion trajecto-

ries. Ion engines and Hall thrusters are examples of electrostatic thrusters.

3. Electromagnetic devices accelerate charge-carrying propellant particles in in-

teracting electric and magnetic fields. The magnetic field strength in these

devices is typically high enough to significantly affect both ion and electron

trajectories. Examples include pulsed plasma thrusters(PPT), Magnetohydro-

dynamic (MPD) thrusters, Hall thrusters and traveling-wave accelerators.

The work in this thesis involves one specific Hall thruster, the BHT200 [8].

1.3 Objectives and Thesis Organization

There are three primary objectives in the thesis.

1. Investigate the facility effects on the background flow in large vacuum cham-

bers.
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2. Develop analytical solutions to free molecular flows out of exits with different

shapes.

3. Perform particle simulations of plasma plume flows from a cluster of Hall

thrusters with a detailed electron model on unstructured meshes.

Chapter II reviews the background of a dilute gas and simulation methods, in-

cluding two specific particle simulation techniques that are to be used in the plasma

plume simulations.

Chapter III discusses vacuum chamber facility effects. It includes five free molec-

ular models and comparisons with experimental measurements and numerical simu-

lation results. This chapter addresses the first objective.

Chapter IV discusses six free molecular flows out of exits with different shapes.

Their exact solutions or exact expressions are obtained and compared with numerical

simulation results. This chapter addresses the second objective.

Chapter V reports several three-dimensional particle simulations of plasma plume

flows from a cluster of Hall thrusters with a detailed electron model on unstructured

meshes. Some important three-dimensional effects, due to the clustering and cath-

odes are demonstrated with the simulation results. This chapter addresses the third

objective.

Chapter VI presents summaries and conclusions for the three pieces of work in

this thesis. This chapter ends with some recommendations for future work.

Several appendixes at the end of the thesis include all important mathematical

integrals used in this study and several code implementation issues.



CHAPTER II

REVIEW OF NUMERICAL METHODS

In Chapters Three and Four, the direct simulation Monte Carlo(DSMC) method

will be used to provide numerical simulation results to validate some analytical work

obtained in this study. In Chapter Five, the DSMC and Particle-In-Cell(PIC) meth-

ods will be used to simulate three-dimensional plasma plume flows from a cluster

of Hall thrusters. Hence this chapter is devoted to background introduction and

methodology review.

In this study, gaseous xenon is used for all simulation work.

2.1 Molecular Models and Several Characteristic Lengths

Dilute gases are generally described as a myriad of discrete molecules(monatomic,

diatomic, or polyatomic) with inner structures. In view of the large number of

molecules in most cases, it is impossible to address all the details of molecules and

their interactions. For practical applications, several simplified molecular models

have been suggested, such as the simplest Hard Sphere(HS) model and a recently

proposed generalized soft sphere(GSS) model [25]. These models treat molecules as

small balls with a fixed or variable diameter d, and molecular interactions occur only

when two molecules are close enough.

8
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There are three characteristic length scales associated with molecules in the mi-

croscopic viewpoint of fluids: the molecule diameter d, the mean molecular spacing

δ, and the mean free path λ.

If d < δ, only a small part of the space is occupied by molecules and the dilute

assumption is correct. This means that effects on a molecule from other molecules are

small, and it is highly probable that only one other molecule interacts(collides) with

a molecule in which case there is a strong effect. Hence, for a dilute gas, molecular

interactions are commonly treated as binary collisions.

The ratio of the mean free path to the characteristic dimension, defined as the

Knudsen number, Kn = λ/L, is a quite important parameter to indicate the validity

of continuum approaches. Generally, it is accepted that Kn < 0.01 represents a

flow where the continuum assumption is valid; Kn > 1 represents a free molecular

flow where intermolecular effects are quite insignificant since essentially no collisions

happen and the continuum assumption is not applicable; 0.01 < Kn < 1 represents

a transition region between the continuum and free molecular regions.

Most problems studied in this thesis are in the free molecular flow region.

2.2 Simulation Methods for Fluid Flow Problems

In essence, numerical simulation methods for fluid flow problems can be classified

into two categories: continuum methods and kinetic methods.

A continuum method is a “top-down” method, which is based on macroscopic

conservation equations of fluids, such as the mass equation, momentum equation

and energy equation. It uses the continuum assumption and its primary variables

are macroscopic properties, such as density, velocities, pressure and temperature.

This type of method is successful in solving a large range of flow problems but has
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difficulties in solving flows with strong non-equilibrium phenomena.

A kinetic method is a “bottom-up” approach, which is based on more funda-

mental, microscopic kinetic relations, such as the Boltzmann equation. A kinetic

method concentrates on low level microscopic interactions with a force field or be-

tween molecules or atoms, by analyzing the molecular momentum and energy re-

distribution after collisions. Such methods are useful in simulating non-equilibrium

flows. Another difference from the continuum method is macroscopic properties

such as velocities and pressure are evaluated using moments of velocity distribution

functions or statistical sampling.

The Molecular Dynamics(MD) method, the DSMC method and the PIC method

belong to the class of particle methods, a subtype of kinetic simulation methods.

The MD method is effective in simulating dense gas, the DSMC method is effective

in simulating dilute neutral gas flow while the PIC method is effective in simulating

dilute flows with charges and electric/magnetic field effects called plasma.

2.3 The Molecular Dynamics Method

To study gas flow, there are several particle approaches. The MD method is

considered to be the first particle method and related to the DSMC method, proposed

by Alder and Wainwright in the late 1950’s [2, 3] to study the interactions of hard

spheres. A detailed introduction of this method is provided by Haile [30].

A MD simulation involves simultaneous tracking of a large number of simulated

molecules within a region of simulated physical space and a potential energy function

is generally used to determine the force on a molecule due to the presence of other

molecules. This potential energy function is modeled with two-body or many-body

potentials or an empirical choice. At the same time, the time evolution of a set of in-
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teracting molecules is followed by integrating Newton’s classical equations of motion.

Macroscopic flow properties are obtained by averaging the molecule information over

a space volume. This space volume should be larger than the mean molecular spacing

and much smaller than the characteristic dimensions.

The major disadvantage of this method is that it is highly inefficient to use for

most practical applications, because a large number of molecules must be simulated,

and the computation of an element of trajectory for any molecule requires consid-

eration of all other molecules as potential collision partners. As a result, molecular

dynamics is limited to flows where the continuum and statistical approaches are

inadequate.

2.4 The Direct Simulation Monte Carlo Method

The most commonly used particle method for simulating a rarefied gas flow is the

DSMC method [12]. This method was first introduced by Bird in the 1960’s and has

been developed to the state where it is very reliable and accurate, and has gained wide

acceptance in the scientific community. Each simulated particle in the DSMC method

represents a large number of real molecules which makes a DSMC simulation much

more efficient than a molecular dynamics simulation. Many review papers describing

the DSMC method can be found in the literature(Bird [11] [10], Muntz [37], Oran

et al [43], Ivanov and Gimelshein [31]). Among its many effective applications in

simulating rarefied, nonequilibrium gas flows, one of the most successful applications

was its successful prediction of the inner structure for normal shock waves.

By limiting the time step, the DSMC method decouples collisions and movement

of the particles. The DSMC method emulates the nonlinear Boltzmann equation

by simulating the real molecule collisions with collision frequencies and scattering
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velocity distributions determined from the kinetic theory of a dilute gas. With a suf-

ficiently large number of simulated particles, Bird [14] has shown that the Boltzmann

equation can be derived through the DSMC procedures.

2.4.1 Algorithm of the DSMC Method

For the DSMC method, the computational domain is divided into a network of

cells, where each cell serves as a separate region for molecular interaction and as a

space element for sampling flow information. In order to decouple the movement of

particles and the interaction between particles, the time step employed in the DSMC

method is smaller than the mean collision time of gas molecules. The state of the

system is described by the positions and velocities of particles. After an initial setup

of cells and distribution of particles into cells, several essential steps in a time step

are:

1. Select collision pairs. Some particles are randomly selected to collide. The rules

of this random selection are developed from kinetic theory, so as to replicate

the correct collision frequency.

2. Perform binary collisions, including redistribution of all types of energies and

chemical reactions. Momentum and energy are conserved in the collision pro-

cess.

3. Inject new particles at inlet boundaries. The number of particles is decided by

kinetic theory.

4. Move particles and compute interactions with other boundaries. The particles

are first allowed to translate at constant velocity as if they did not interact

with each other, that is, they are moved according to their own trajectories
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and their positions are updated deterministically. Some particles may travel

from cell to cell. Some particles may escape from the computational domain

or hit a solid wall and bounce back.

5. Sample flow properties.

For a steady dilute flow simulation, the above steps are repeated until a prescribed

time is reached.

2.4.2 Collisions

In Step 1, to evaluate the collisions in a DSMC simulation, pairs of particles in

a cell are randomly selected, regardless of their relative positions and velocities. In

Bird’s “No Time Counter” (NTC) scheme [12], a total number of

1

2
nN̄(σg)max∆t

pairs are sampled from the cell at each time step and a collision actually takes place

if a candidate pair satisfies

(σg)/(σg)max > R.

where R is a random number uniformly distributed in [0, 1). The average number of

particles in the cell is denoted by N̄ . The parameter (σg)max is stored for each cell

and is best set initially to a reasonably large value, but with provision for it to be

automatically updated if a larger value is encountered during the sampling.

The NTC scheme is employed throughout the DSMC simulations in this thesis.

2.4.3 Variable Hard Sphere Model

In step 2, after a collision, conservation of momentum and energy provide four out

of the six equations required to determine the post-collision velocities. The remaining

two conditions are made with the assumption of isotropic scattering.
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In determining the collision frequency of a gas molecule, the use of the typical

inverse power law potential model is inadequate because the model gives an infinite

total cross-section. To overcome this difficulty, Bird [15] introduced the Variable

Hard Sphere (VHS) model as a practical approximation to the inverse power law

potential model. In the VHS model, isotropic scattering is also assumed and its

total cross-section, σ, is allowed to vary with the relative speed of the two colliding

molecules, g, as follows

σ/σr = g1−2ω/g1−2ω
r . (2.1)

Here, gr is the relative collision speed at the reference temperature Tr. In Equa-

tion (2.1), σr is the reference cross section and is written as σr = πd2
ref, where dref

denotes the reference molecular diameter. Data for ω and dref at Tr = 273 K for

several major species can be found in Reference [12].

The VHS model is used throughout this thesis for all flow simulations involving

neutral-neutral collisions.

2.4.4 Boundary Conditions

In Step 4, the velocity distribution for simulated particles reflecting from a solid

wall varies with the type of the wall they hit. Specular and diffuse walls are the two

most common types considered in DSMC. When a particle collides with a specular

wall, its component of velocity tangential to the wall remains the same and the

component normal to the wall changes its sign. When a particle bounces back from

a diffuse wall at temperature Tw, its velocity components tangential to the wall are

sampled from the standard Maxwellian distribution

f(ct) dct =
1√

2πRTw

exp

( −c2t
2RTw

)
dct, (2.2)
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while its normal component is sampled from the biased-Maxwellian distribution

f(cn) dcn =
1

RTw
cn exp

( −c2n
2RTw

)
dcn. (2.3)

A wall with accommodation coefficient ν means that a fraction ν of all the parti-

cles colliding with the wall are thermalized by the wall and the remaining fraction

(1 − ν) of the particles are specularly reflected by the wall. In this thesis, a full

accommodation coefficient ν = 1 is used in all simulations.

The internal energy of a reflecting particle can be handled in the same manner.

However, for atomic xenon, which is exclusively used in all simulations in the thesis,

no internal energy is considered.

In Chapter III, sticking wall boundaries are used to represent cryogenic pump

plates. The pumps are characterized by a low pump temperature Tp and a pump

sticking coefficient α. When particles hit such cold pumps, by a probability of α

they stick on the plates, and with a probability of 1− α they reflect diffusely with a

speed characterized by the low pump temperature Tp.

2.4.5 Limitations of DSMC

Two principal limitations of the DSMC method are the assumption of molecular

chaos and the requirement of a dilute gas. The molecular chaos assumption means

that particles undergoing a collision will not meet again before colliding with other

particles many times. The velocities of a collision pair are, therefore, totally uncor-

related. The dilute gas assumption prevents this method from being used for dense

gases or for highly ionized plasmas that are dominated by long-range interactions [12].

Another fundamental assumption for DSMC is that particle motion and particle

collisions can be decoupled. This assumption requires that the simulation time-step

(∆t) should smaller than the local mean collision time (τ).
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Compared with continuum Computational Fluid Dynamics(CFD) methods, all

particle methods, including the DSMC method, are quite expensive in simulation

cost.

2.4.6 MONACO

The particular DSMC code, named MONACO, employed in this study was first

developed by Dietrich and Boyd [23] in 1996. Since then, MONACO has been fur-

ther modified and applied to a wide variety of rarefied gas problems. MONACO-

V3.0 is a general-purpose DSMC simulation package written in C for simulating two-

dimensional, axi-symmetric, or three-dimensional rarefied gas flows. It contains some

object-oriented features and different functionalities are separated for easy mainte-

nance and update.

Its major structure is a double pointer for cell data, which enables an excellent

performance on parallel machines. Inside each cell, the major data structures are

two linked lists for particles, and these linked lists toggle as a current list and a

backup list. When particles move, they move from the current list to the backup

list. This linked list treatment achieves great efficiency. Besides the two linked list

of particles, neighboring cell information and boundary information, are saved in the

cell structure as well. These data structures make MONACO capable of simulating

problems with complex geometry.

MONACO employs the VHS or Variable Soft Sphere [33] (VSS) collision models,

the variable rotational energy exchange probability model of Boyd [19, 20], and the

variable vibrational energy exchange probability model of Vijayakumar et al. [58]

although these models are turned off in all simulations of this thesis due to the fact

that xenon is monatomic. Cell weighting factors and time-steps may be set uniquely



17

for each cell in the grid. A sub-cell scheme is implemented for selection of collision

pairs where the number of sub-cells is scaled by the local mean free path.

2.5 The Particle In Cell Method

Analogous to dilute gas flow which can be simulated effectively by the DSMC

method, plasmas can be modeled by a particle method with considerations of electric

and magnetic field effects. The PIC method is such a kinetic particle method that

tracks the motion of collections of charged particles similar to the DSMC method.

The PIC method is well developed, and a detailed description can be found in the

book by Birdsall and Langdon [16]. This method has been applied to magnetically

and inertial confined fusion plasmas, electron and ion guns, microwaves devices, and

plasma propulsion. Work by Roy [46] [47] and VanGilder [55] employed the PIC

method to model ion thruster plumes.

Similar to the DSMC method, the PIC method moves particles which represent

neutrals, ions and electrons through space. Usually, the plasma potential and electric

field are evaluated on nodes forming cells. In simulating plasma, the cell size, time

scale, and number of particles per cell must be adequate to represent the essence of

the plasma physics. To update the particles’ properties properly according to the

physics, the time scale should correspond to the inverse of the plasma frequency:

ωp =

√
ne2

ε0m
(2.4)

If inter-particle effects are significant in the plasma flow, the cell size should be the

order of or less than the Deybe length, which is the shielding distance around a test

charge and the scale length inside which inter-particle effects are most significant:

λd =
√
ωpvth (2.5)
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Generally, in quasi-neutral plasmas where collective behavior is more significant,

larger cells can be used.

2.5.1 Major Steps in the PIC Method for Plasma Plume Simulations

For particle simulations of plasma plume flow, which consist of neutrals, ions and

electrons, heavy neutrals and ion particles are simulated with the DSMC and the

PIC methods, while the electrons are modeled as a fluid because electrons can adjust

themselves more quickly.

The major difference in the PIC method from the DSMC method is, due to the

presence of the electric field, accelerations on charged particles must be considered.

Hence, there are a few extra steps in the PIC method:

1. Calculate electric potential field φ, and magnetic field if it is included. Usually

the process needs to obtain the charge density distribution, which requires a

process to allocate ion particle charges onto the mesh.

2. Calculate the electric field from
−→
E = −5 φ.

3. Interpolate the ion acceleration in a cell from the coordinates of the ion particle

and the nodes forming the cell, and the electric field on the nodes.

4. Accelerate ion particles over a small time step ∆t. The PIC method can con-

sider the magnetic field effect by a leapfrog scheme that applies the magnetic

field acceleration from the cluster at a mid step [16]. However, in most situa-

tions of plume flows, the magnetic field leakage from the thruster is not strong

in the plume near field, hence in this study, magnetic field effects are neglected.

5. Perform collisions. Besides Momentum Exchange (MEX) between neutral par-

ticles, there are two other groups of collisions that must be considered in plasma
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plume flows: MEX between a neutral particle and an ion particle, and Charge

Exchange(CEX) between a neutral particle and an ion particle. The latter

type of collision happens when a fast ion particle passes a slow neutral par-

ticle. With an electron transferred from the neutral to the fast ion, a CEX

collision will result in a fast neutral and a slow ion.

A complete list of steps for the DSMC-PIC methods can be found in Chapter V

for particle simulations of plasma plume flows from a cluster of Hall thrusters.

2.6 The Detailed Fluid Electron Model

In the first PIC step to compute the plasma potential, the most widely used and

the simplest fluid electron model is the Boltzmann relation, which is obtained from

the electron momentum equation:

φ = φref +
kTref

e
log(

ne

nref
) (2.6)

This equation is derived using several strong assumptions. These assumptions

include that the fluid electron flow is isothermal, collisionless, the electron pressure

obeys the ideal gas law and the magnetic field is neglected. However, in plasma

plumes, especially in the near field, there are significant gradients and the approxi-

mation may be inappropriate.

To improve the understanding of the plume flow characteristics, recently a de-

tailed electron model was proposed [17] and illustrated with an axi-symmetric plume

simulation. Chapter V reports an implementation of this detailed electron model on

a three-dimensional unstructured mesh. The major results in [17] are summarized

here for reference.

In the detailed model, an equation for the electron stream function ψ can be

derived from the steady mass conservation law for electrons with ionization effects,



20

the final expression is:

∇2ψ = nenaCi (2.7)

where ne
−→ve = ∇ψ and the ionization rate coefficient Ci is expressed as a function of

electron temperature using a simple relation proposed by Adeho et al. [1]:

Ci = σice(1 +
Teεi

(Te + εe)2
) exp(− εi

Te
) (2.8)

From a generalized Ohm’s law:

−→
j = σ[−∇φ +

1

ene

∇(nekTe)] (2.9)

with given ne,
−→ve , Te and the charge continuity condition:

∇ · −→j = 0 (2.10)

a generalized Poisson’s equation describing the electron potential is obtained:

∇ · (σ∇φ) = ∇ · ( kσ
ene

∇(neTe)) = k
e
(σ∇2Te + σTe∇2(ln(ne)) + σ∇(lnne) · ∇Te

+Te∇σ · ∇(ln(ne)) + ∇σ · ∇Te)

(2.11)

The electron temperature equation is obtained from the steady-state electron

energy equation:

∇2Te = −∇ ln(κe) · ∇Te + 1
κe

(−−→
j · −→E + 3

2
ne(

−→ve · ∇)kTe + pe∇ · −→ve

+3me

mi
νenek(Te − Th) + nenaCiεi)

(2.12)

The electron number density ne is set equal to the ion number density ni based

on the plasma quasi-neutral assumption. The electron conductivity σ, the electron

thermal conductivity κe, the ion-electron collision frequency νei, and the neutral

electron collision frequency νen can be found in [36] and its references:

σ =
e2ne

meve

(2.13)
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κe =
2.4

1 + νei√
2νe

k2neTe

meνe

(2.14)

where νe = νei + νen, νei is the ion-electron collision frequency, and νen is the neutral

electron collision frequency.

By treating the right hand side terms as known sources and solving Equations (2.7),

(2.11), and (2.12), three fundamental electron properties are obtained, i.e., electron

velocity, plasma potential, and electron temperature. With these detailed proper-

ties, the plasma plume simulation yields much improved results in comparison to the

Boltzmann relation.



CHAPTER III

VACUUM CHAMBER FACILITY EFFECTS

3.1 Background and Assumptions

Vacuum chambers have wide applications for a variety of purposes such as mate-

rials processing and spacecraft electric propulsion experiments. The goal of vacuum

chambers is to maintain a low pressure. For example, in the experiments of testing a

cluster of high power electric plasma thrusters inside vacuum chambers [60] [29] [8],

the backpressure was maintained at about 10−3–10−4 Pa with thrusters in operation.

In such experiments, a high backpressure will distort the exhaust plume flow and

affect the width of the ion energy distribution function through collisions between

beam ions and neutral background particles. The presence of a high backpressure

misrepresents the real situation in space and may adversely affect the experiments.

One fundamental concern about the vacuum chamber is to understand the facility

effects on the chamber performance. There are several facility effects that have sig-

nificant impact on the vacuum chamber backpressure [9]. For vacuum chambers used

for electric propulsion experiments, large cryo-genic pumps are usually employed as

the primary pumps. A cryogenic pump typically has a steel plate that is main-

tained at a low temperature by gaseous helium. The pump sticking coefficient has

a significant effect on the backpressure [9]. Generally, propellant frost will build up

22
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on cryopump surfaces and eventually limit the pumping speed, hence, even though

the nominal sticking coefficient for gas on steel pump plates at low temperature is

high, in real experimental operations, the sticking coefficient for pumps may be much

lower. Other important facility considerations include pump size and chamber side-

wall length. In [60], different backpressures were measured with different numbers

of pumps in operation and different mass flow rates from one or two 5 kW Hall

thrusters. However, compared with this experimental work, there is little theoretical

analysis about the facility effects in the literature. An analytical study of the facility

effects and the background flow will benefit not only numerical simulations but also

experimental work associated with vacuum chambers.

Vacuum chambers have different configurations based on the pump locations.

In this chapter, two kinds of chambers are discussed. The first type of chamber

is equipped with two-sided pumps. The other type of chamber is equipped with

one-sided pumps located at one chamber end. Compared with a vacuum chamber

equipped with one-sided pumps, the flowfield in a vacuum chamber equipped with

two-sided pumps is more complex: there exists a pre-pump region and a post-pump

region and the pressures in these two regions are different. The major purposes of

this chapter are to investigate the background flow inside these two types of vacuum

chambers and to study the facility effects on their background flow.

The Large Vacuum Test Facility (LVTF) at the Plasmadynamics and Electric

Propulsion Laboratory (PEPL) in the University of Michigan is a typical vacuum

chamber equipped with two-sided vacuum pumps. The LVTF is used for studying

spacecraft electric plasma thrusters and Figure 3.1 illustrates its configuration. It is

a stainless steel-clad vacuum chamber that has a cylindrical volume of 280 m3 with

a length of 9 m and a diameter of 6 m. Near one end of the chamber, there are seven
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CVI TM-1200 nude cryopumps with a total surface area of 7.26 m2. In operation,

two, four or seven cryopumps can be turned on, hence in different situations, the

total pump area can be varied. The pumps are maintained at an estimated low

temperature of 15 K with gaseous helium. When particles such as xenon atoms or

ions hit the pumps, a fraction of the particles stick to the plates and the rest reflect

diffusely with a thermal speed characterized by the pump temperature of 15 K. The

configuration of the LVTF can be simplified as Figure 3.2, where only the thrusters

and the pumps are preserved and their relative positions are clearly reflected.

The pump performance is of significant importance and the pump sticking coef-

ficient has a decisive influence on the final rarefied background flow in the chamber.

Usually in LVTF, there is one thruster or a cluster of thrusters mounted on a test

station in front of the pumps. In the present study, Hall thrusters employing xenon

propellant are considered. The pump plates are aligned parallel to the plume flow

direction, hence both sides of the pumps are equally exposed to the plume flow.

In operation, a low-density plasma flow is exhausted from the thruster towards

the other chamber end without pumps. Though there are ions in the plume flow field,

the ion number density is far lower than the neutral number density and when these

ions hit the chamber wall, they lose their charge and rebound diffusely as neutrals

with a thermal speed characterized by the wall temperature of 300 K. It is reasonable

to assume neutrals move slowly from one chamber end towards the other end where

the pumps are located.

Inside the LVTF, because the background gas flow is highly rarefied, it is reason-

able to separate the chamber gas pressure into two parts: a universal background

pressure and a plume pressure that only exists inside the plume. The study of the

first part is the primary concern of this chapter.
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Figure 3.1: Large Vacuum Test Facility at the University of Michigan(Courtesy of
PEPL).

Figure 3.2: Simplified Configurations for the LVTF.
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In the experiments [60] [29] [8], the backpressure of neutral xenon is calculated

using the ideal gas law Pb = nkTw, where n is the xenon number density measured

using an ionization gauge and Tw is the chamber wall temperature. One possible

ideal location to measure the background density is on the centerline of the chamber

and between the pumps and the thrusters. Locations inside the plume(s) or close to

the chamber walls should be avoided because of possible plume pressure effects and

wall effects.

General Assumptions Based on the LVTF working conditions, several gen-

eral assumptions can be made, and these assumptions are applicable to chambers

equipped with one-sided pumps as well:

1. Pumps work effectively and create a low-density environment. This assumption

results in a free molecular flow at the final steady state. With a typical final

xenon backpressure of 10−3 Pa in the chamber, the mean free path of xenon

atoms is about 2.86 m.

2. The chamber wall temperature is 300 K.

3. The background flow is simplified as one-dimensional flow.

4. The plume flow is neglected. This study concerns the background flow, and no

matter whether the flow from the thruster is hot or cold, all heavy particles,

such as neutrals and ions reflect at the chamber wall as background neutrals.

The reflection of plume flow from one chamber end can be considered as neutral

xenon coming into the chamber through that chamber end with an area, Sc,

at the thruster mass flow rate, ṁ, and wall temperature, Tw. This end of the

chamber is considered as a source.
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5. All pumps have the same sticking coefficient, α, the same pump temperature,

Tp, and a total pump area, Sp. Suppose for simplicity, the total pump area,

Sp, is smaller than the chamber cross-section area, Sc, (this is correct for the

LVTF). When xenon atoms and ions hit one of the pumps, by a probability of

α they stick to the pumps and by a probability of 1 − α they rebound with a

thermal speed characterized by Tp. Hence the pumps can be treated as a sink

with a temperature, Tp, and an area, Sp, which is smaller than Sc. Because the

flow is highly rarefied, the particles reflected from the pumps cannot hit the

same pumps immediately without the necessary change of velocity direction by

collisions with the other chamber end or the chamber sidewalls.

With the above assumptions, the background flow in the vacuum chamber can

be simplified as one free molecular flow with a source at one chamber end and a sink

for the pumps on or close to the other chamber end.

For any dilute gas flow in equilibrium, the velocity distribution in any coordinate

direction can be described as a full Maxwellian distribution. For a temperature T ,

the velocity distribution function is:

f(C)dC =
( m

2πkT

)1/2

exp(−mC2/(2kT ))dC (3.1)

The mass flux in one direction across an area S normal to flow direction is:

ṁ = mnS

∫ ∞

0

Cnf(Cn)dCn =
1

4
mnS

√
8kT/(πm) = mn+S

√
2kT/(πm) (3.2)

where n+ = 1
2
n is the number density of particles moving in one direction.

Another important relation for this study is the number density for a group of

particles reflected from a plate with a different temperature. Directly from Equa-

tion (3.2), to preserve the mass flux, the following relation must hold:

n1

√
T1 = n2

√
T2 (3.3)
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where the subscripts 1, 2 represent the incoming and reflected groups of parti-

cles, respectively. Equation (3.1)– (3.3) can be found in general kinetic theory

books [12] [27] [56].

3.2 Model 1: From Mass Conservation Law

Assuming a spatially constant density distribution in the vacuum chamber, which

is equipped with one-sided or two-sided vacuum pumps, using the mass conservation

law for the gas inside the vacuum chamber, the following relation must hold:

dρ

dt
=
d(
∫
ρdv)

V dt
=

1

V
(ṁ− 1

4
ραSp

√
8kTw

πm
) (3.4)

Two boundary conditions can be used to solve this ordinary differential equation:

1. At t = 0, the pump and thrusters begin to work, and the average background

density in the large vacuum chamber is ρ0, hence ρ(t = 0) = ρ0.

2. At sufficiently long time, a steady background flow is established: dρ(t →

∞)/dt = 0.

The solution for this equation consists of one unsteady term and one steady term:

ρ(t) = (ρ0 −
√

2πm

kTw

ṁ

αSp
) exp(−αSp

V

√
kTw

2πm
t) +

√
2πm

kTw

ṁ

αSp
(3.5)

The mean background flow velocity in the chamber is:

U(t) =
ṁ

Scρ(t)
(3.6)

The pressure corresponding to the experimental measurements is:

Pb(t) = (ρ0RTw −
√

2πRTw
ṁ

αSp
) exp(−αSp

V

√
kTw

2πm
t) +

√
2πRTw

ṁ

αSp
(3.7)
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At steady state, the normalized pressure and the speed ratio are:

PbSc

ṁ
√
γRTw

=
(2π/γ)1/2

αs
(3.8)

U√
2RTw

=
αs

2
√
π

(3.9)

If the backpressure is known, then the pump sticking coefficient can be calculated

using:

α =
ṁ(2πRTw)1/2

PbSp
(3.10)

This crude model, especially Equation (3.7), relates several properties from the

chamber, the pumps, the thruster and the propellant; only the pump temperature is

not included. There are three conclusions from this model:

1. It is evident from Equation (3.7) that if the pumps work efficiently, the pressure

will decrease and reach a final steady state. However, Equation (3.7) also

indicates that the unsteady term will take a finite time to decay significantly.

For example, with the following LVTF parameters: V=280 m3, Tw=300 K,

Sp=7.26 m2, and an assumption of α=0.40, the decaying term is:

Pb(t) = C exp(−0.57t) = C exp(−t/1.75) (3.11)

where C is a constant.

The significant term in this expression is the semi-decaying period τd= 1.75

seconds. In experiments, usually the pumps operate for several hours, and

steady background flows are well established. However, in particle simulations

of the rarefied plasma plume flow field inside a vacuum chamber, usually the

simulations develop as an unsteady process with a time step around 1 × 10−7

second. This requires over 50 million time steps for three semi-decaying periods
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to reach a steady flow state. This presents a challenge to the numerical particle

simulation and usually a full three-dimensional simulation of the whole chamber

flow is too expensive.

2. The background gas flows towards the pump because of the velocity is positive

velocity, and the average velocity increases as the pump sticking coefficient or

the pump area increases.

3. No matter how efficiently the pumps work, there is a certain amount of finite

backpressure in the vacuum chamber. This backpressure is represented by the

second term of Equation (3.7). The same equation also indicates that for a

specific chamber with fixed pump parameters, at the final steady state, the

background pressure is proportional to the mass flux rate from the thrusters,

no matter whether the flow is hot or cold. Although this is a crude approx-

imation, experimental measurements [60] support this conclusion. Different

backpressures and flow rates in [60] are tabulated in Table 3.1 and illustrated

in Figure 3.3. The plot clearly displays the linear relation between backpressure

and mass flow rate and the effect of pump area is evident. Table 3.1 contains

the sticking coefficients calculated with Equation (3.10). For several cases with

two pumps in operation, the calculated sticking coefficients are greater than

one. There are two reasons for this problem: this model is crude and the cases

with two pumps in operation are actually not quite free molecular, which will

be illustrated later. Compared with this model, the next two models make it

possible to evaluate the sticking coefficient for the vacuum pump more accu-

rately.
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Figure 3.3: Measurements of Flow Rate and Backpressure in LVTF, PEPL.

The background pressure can be calculated from Equation (3.8) with a known

sticking coefficient and a given mass flow rate. In general, for this model, the steady

state background pressure decreases as the sticking coefficient increases. At small

values of α, a 1% difference in the coefficient may result in a significant backpressure

difference, while for large values the normalized pressure is not very sensitive to this

parameter. For a numerical simulation of flows inside vacuum chambers, a correct

sticking coefficient is critical.

3.3 Models for Chambers Equipped with Two-Sided Pumps

In this section, two free molecular flow models are presented to discuss the rarefied

background flow in a vacuum chamber equipped with two-sided pumps.
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No. Pumps Thrus Anode Flux Flux Pressure α Kn

-ters (mg/s) (mg/s) (mPa-Xe) (3.10) (3.47)

1 2 1 5.25(H) 6.17 1.20 0.856 0.784

2 2 1 10.24(H) 11.16 1.80 1.030 0.525

3 2 1 5.25(H) 12.34 2.00 1.028 0.473

4 2 1 10.46(H) 22.76 3.70 1.028 0.255

5 4 1 5.25(C) 6.17 7.60 0.676 1.247

6 4 1 10.46(C) 11.38 1.10 0.862 0.863

7 4 1 14.09(C) 15.01 1.50 0.833 0.632

8 4 1 5.25(H) 6.17 0.71 0.723 1.334

9 4 1 5.25(H) 12.34 1.10 0.934 0.846

10 7 1 5.25(C) 6.17 0.47 0.625 2.047

11 7 1 10.46(C) 11.38 0.69 0.785 1.395

12 7 1 14.09(C) 15.01 0.88 0.812 1.092

13 7 1 5.25(H) 6.17 0.45 0.652 2.142

14 7 1 5.25(H) 6.17 0.46 0.633 2.078

15 7 1 10.46(H) 11.38 0.71 0.763 1.088

16 7 1 5.25(H) 12.34 0.72 0.815 1.334

17 7 1 10.46(H) 22.76 1.20 0.903 0.801

Ave 0.821

Table 3.1: Measured Backpressure and Calculated Sticking Coefficients for the LVTF
(H: hot flow, C: cold flow. For all cases the cathode flux= 0.92 mg/s).

3.3.1 Model 2: Two-Sided Pump, Kinetic Model with Specular Reflec-
tion

Figure 3.4 illustrates the configuration of this model. Pumps are located on a

chamber end and both sides of the pumps are exposed to the background flow. There

is a pre-pump region AC and a post-pump region DB. The densities in these two

regions are not equal. This is exactly the configuration for LVTF.

To simplify the analysis, in this model the sidewall effects are neglected. Further
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Figure 3.4: Illustration of Models 2 and 3.

for simplicity, suppose the reflected particles from the pumps maintain their original

flow directions. The second assumption is quite close to a specular reflection pump

wall situation and in the next model this assumption will be relaxed.

The analysis of this model is based on the flux and number density relations

along two directions. At section D, consider the mass flux relation for the group of

particles traveling from A to B:

FD+ = mnC+ScVw −mnC+SpVw + (1 − α)

√
Tw

Tp
nC+mSpVp (3.12)

nB+ = nD+ = (1 − s)nC+ + (1 − α)snC+

√
Tw

Tp
(3.13)

The second term on the right hand side represents the slow particles reflected

from the pumps. These slow particles resume high speed after they reflect from

chamber end B:

nB− = nD− = (1 − s)nC+ + (1 − α)snC+ = (1 − αs)nC+ (3.14)



34

The pumps further absorb a fraction of these particles:

FC− = mnB−ScVw −mnB−SpVw + (1 − α)

√
Tw

Tp
nB−mSpVp (3.15)

nA− = nC− = (1 − s)nB− + (1 − α)snB−

√
Tw

Tp

(3.16)

The slow particles of the second term on the right hand side resume high speeds

after reflection from wall A:

nA+ = nC+ = nin + (1 − αs)nB− (3.17)

From Equations (3.17) and (3.14), the following relation can be obtained:

nA+ = nC+ =
nin

αs(2 − αs)
(3.18)

The above relation can be obtained consistently with the aid of the fluxes in and

out of the chamber as well:

ṁ = mninScVw = αmnC+SpVw + αmnB−SpVw (3.19)

With an intermediate result obtained from Equations (3.18), (3.14) and (3.18):

nA− = nC− =

(
1 − s+ (1 − α)s

√
Tw/Tp

)
(1 − αs)

αs(2 − αs)
nin (3.20)

The final solutions for this free molecular flow model are:

nA = nA+ + nA− =

(
1 + (1 − s+ (1 − α)s

√
Tw/Tp)(1 − αs)

)

αs(2 − αs)
nin (3.21)

nB = nB+ + nB− =
(2 − αs− s+ (1 − α)s

√
Tw/Tp)nin

αs(2 − αs)
(3.22)

fA(C) =






nin

αs(2−αs)

√
1

2πRTw
exp(−mC2

2kTw
), if C > 0;

s(1−α)(1−αs)
√

Tw/Tpnin

αs(2−αs)

√
m

2πkTp
exp(−mC2

2kTp
)

+ (1−s)(1−αs)nin

αs(2−αs)

√ m
2πkTw

exp(−mC2

2kTw
), if C < 0.

(3.23)
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fB(C) =





s(1−α)
√

Tw/Tpnin

αs(2−αs)

√
m

2πkTp
exp(−mC2

2kTp
)

+ (1−s)nin

αs(2−αs)

√ m
2πkTw

exp(−mC2

2kTw
), if C > 0;

(1−αs)nin

αs(2−αs)

√ m
2πkTw

exp(− m
2kTw

C2), if C < 0.

(3.24)

The normalized pressure corresponding to the experimental measurements [60] [8]

and the mean velocities for these two regions are:

Pb(A)Sc

ṁ
√
γRTw

=
1

αs(2 − αs)

√
π

2γ

(
1 + (1 − s + (1 − α)s

√
Tw

Tp
)(1 − αs)

)
(3.25)

Pb(B)Sc

ṁ
√
γRTw

=
1

αs(2 − αs)

√
π

2γ

(
2 − αs− s+ (1 − α)s

√
Tw

Tp

)
(3.26)

UA√
2RTw

=
αs(2 − αs)

√
π

(
1 + (1 − s+ (1 − α)s

√
Tw

Tp
)(1 − αs)

) (3.27)

UB√
2RTw

= 0 (3.28)

The above discussion neglects the sidewall effects and the model is essentially for

a short chamber situation. If the sidewall is long enough, the slow particles reflected

from the cold pumps will hit the sidewall first before they reach a chamber end.

In a cylinder with a length of 9 m and a diameter of 6 m, calculation indicates

that on average only about 5% of the particles from one chamber end can reach

the other end without any collisions on the sidewall, the pump effects are confined

in a small local region close to the pump. Hence, simply replacing Tw/Tp with

unity in the above formulas may approximate a long chamber situation. It should be

pointed out that this is the most convenient treatment but not an accurate treatment.

The same treatment for vacuum chambers equipped with one-sided pumps, which is

presented and validated by numerical simulations in the next section, yields the best

match of average number density and average velocities between analytical results
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and numerical simulations. It is therefore reasonable to apply this same treatment

to the analytical results for two-sided pumps.

Using Tp/Tw=1, the simplified formulas for normalized pressure are:

Pb(A)Sc

ṁ
√
γRTw

=
2 − 2αs+ α2s2

αs(2 − αs)

√
π

2γ
(3.29)

Pb(B)Sc

ṁ
√
γRTw

=
2 − 2αs

αs(2 − αs)

√
π

2γ
<

Pb(A)Sp

ṁ
√
γRTw

(3.30)

Figure 3.5 gives some calculated LVTF pump sticking coefficients with Equa-

tions (3.25) and (3.29) based on the experimental measurement data in [60]. It

should be noted that in [60], the ionization gauges are placed quite close to cham-

ber wall; hence the measurements actually include the whole background pressure

instead of just one direction of background flow. Figure 3.5 shows that these two

formulas yield significant difference, and Equation (3.29) yields smaller but smoother

results. Later comparisons of numerical simulations and experimental measurements

indicate the results from Equation (3.29) are more accurate.

3.3.2 Model 3: Two-Sided Pump, Kinetic Model with Diffuse Reflection

One key assumption in the above derivation is that the particles reflected from

the pump keep their original direction, which simplifies the analysis. In the other

limit, particles reflect from pumps diffusely. Though the derivation is much more

complex, the corresponding results are similar to the results from Model 2. This

model is illustrated in Figure 3.4 as well.

From the diffuse wall condition, after reflection from the pump, half of the parti-

cles travel along the original direction while the other half travel along the opposite

direction:

FD+ = mnC+ScVw −mnC+SpVw +
1 − α

2

√
Tw

Tp

(nC+mSpVp + nD−mSpVp) (3.31)
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FC− = mnB−ScVw −mnB−SpVw +
1 − α

2

√
Tw

Tp
(nB−mSpVp + nC+mSpVp) (3.32)

The various number density relations have the following expressions:

nB+ = nD+ = (1 − s)nC+ +
1 − α

2
snC+

√
Tw

Tp

+
1 − α

2
snD−

√
Tw

Tp

(3.33)

nB− = nD− = (1 − s)nC+ +
1 − α

2
snC+ +

(1 − α)

2
snD− (3.34)

nA− = nC− = (1 − s)nB− +
1 − α

2
snB−

√
Tw

Tp

+
1 − α

2
snC+

√
Tw

Tp

(3.35)

nA+ = nC+ = nin + (1 − s

2
− αs

2
)nB− +

1 − α

2
snC+ (3.36)

The final solutions for this free molecular flow model are:

nA = nA++nA− =

(
2−2s+

1

2
s2+

1

2
αs2+(1−α)s(1− s

2
)

√
Tw

Tp

)
1

αs(2 − s)
nin (3.37)

nB = nB++nB− =

(
2−2s+

1

2
s2− 1

2
αs2+(1−α)s

√
Tw

Tp

(1− s

2
)

)
1

αs(2 − s)
nin (3.38)
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fA(C) =





(2−s+αs)nin

αs(2−s)

√
m

2πkTw
exp(− m

2kTw
C2), if C > 0;

(1−α)
√

Tw/Tpnin

α

√
m

2πkTp
exp(− m

2kTp
C2)

+ (1−s)(2−s−αs)nin

αs(2−s)

√ m
2πkTw

exp(− m
2kTw

C2), if C < 0.

(3.39)

fB(C) =





(1−α)
√

Tw/Tpnin

α

√
m

2πkTp
exp(− m

2kTp
C2)

+ (1−s)(2−s+αs)nin

αs(2−s)

√ m
2πkTw

exp(− m
2kTw

C2), if C > 0;

(2−s−αs)nin

αs(2−s)

√
m

2πkTw
exp(− m

2kTw
C2), if C < 0.

(3.40)

The balanced flow rate condition, Equation (3.19), is completely compatible with

the solution set Equations (3.37)- (3.40). The normalized pressure corresponding to

the experimental measurements [8] [60] and the mean velocities for these two regions

are:

Pb(A)Sc

ṁ
√
γRTw

=
1

αs(2 − s)

√
π

2γ

(
2− 2s+

1

2
s2 +

1

2
αs2 + (1− α)s

√
Tw

Tp
(1− s

2
)

)
(3.41)

Pb(B)Sc

ṁ
√
γRTw

=
1

αs(2 − s)

√
π

2γ

(
2− 2s+

1

2
s2 − 1

2
αs2 + (1− s

2
)(1− α)s

√
Tw

Tp

)
(3.42)

UA√
2RTw

=
αs(2 − s)

√
π

(
2 − 2s+ 1

2
s2 + 1

2
αs2 + (1 − s

2
)(1 − α)s

√
Tw

Tp

) (3.43)

UB = 0 (3.44)

The formulas for normalized pressure with Tw/Tp =1 are:

Pb(A)Sc

ṁ
√
γRTw

=

√
π

2γ

(
2 − 2s+ 1

2
s2 + 1

2
αs2 + (1 − α)s(1 − s

2
)

)

αs(2 − s)
(3.45)

Pb(B)Sc

ṁ
√
γRTw

=

√
π

2γ

(
2 − 2s+ 1

2
s2 − 1

2
αs2 + (1 − s

2
)(1 − α)s

)

αs(2 − s)
<

Pb(A)Sc

ṁ
√
γRTw

(3.46)
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3.3.3 Discussions of Models 2 and 3

There is some difference between Equations (3.23), (3.24) and Equations (3.39)

and (3.40), for example, the denominators are different. However, the differences

between these two sets of results are essentially minor and can be illustrated with

calculations of the pump sticking coefficient in LVTF. Table 3.2 summarizes the

sticking coefficients computed by the two sets of formulas and it clearly indicates that

there are only minor differences between the results from Equations (3.25), (3.26)

and Equations (3.41), (3.42), and the same conclusion holds for the results from

Equations (3.27), (3.28) and Equations (3.43), (3.44). Models 2 and 3 treat the

pump plates as specular and diffusive walls, which are the two extreme situations that

bound all real surface reflection conditions. Based on the fact that these two models

produce quite close results, the following discussions concentrate on the results from

Model 2. All the conclusions apply to Model 3 as well.

There are two possible reasons for the scattered results for the pump sticking

coefficients. First, under different working conditions with different mass flow rates

and number of pumps in operation, different amounts of propellant frost may build

up on the pumps. Hence, the performance of the pumps may be different under

different working conditions. Second, there are some fluctuations in the experi-

mental measurements in [60]. Due to these two reasons, the calculated sticking

coefficient for a vacuum pump may vary within a small range. For the LVTF, the

pre-pump region is larger than the post-pump region and the thrusters are located

in the pre-pump region. Hence the results from the pre-pump region are of pri-

mary interest. Surprisingly, as indicated in Table 3.2, the calculations for both the

pre-pump region and the post-pump region yield quite close results and it can be

concluded that the average pump sticking coefficient for the LVTF is close to a value
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Case α(A) α(B) α(A) α(B) α(A) α(B) α(A) α(B)

No. (3.25) (3.26) (3.29) (3.30) (3.41) (3.42) (3.45) (3.46)

1 0.453 0.450 0.422 0.421 0.451 0.451 0.428 0.429

2 0.536 0.537 0.506 0.507 0.537 0.537 0.507 0.506

3 0.533 0.535 0.504 0.504 0.534 0.534 0.504 0.504

4 0.532 0.532 0.502 0.503 0.532 0.532 0.503 0.502

5 0.382 0.382 0.331 0.329 0.381 0.382 0.331 0.329

6 0.473 0.475 0.418 0.417 0.475 0.473 0.418 0.417

7 0.458 0.461 0.404 0.404 0.474 0.472 0.418 0.421

8 0.405 0.406 0.353 0.352 0.406 0.405 0.353 0.352

9 0.506 0.501 0.452 0.451 0.509 0.507 0.453 0.451

10 0.380 0.386 0.301 0.301 0.385 0.382 0.302 0.300

11 0.459 0.467 0.375 0.373 0.465 0.462 0.377 0.372

12 0.473 0.479 0.387 0.385 0.479 0.473 0.389 0.383

13 0.394 0.401 0.312 0.313 0.399 0.395 0.315 0.311

14 0.387 0.391 0.307 0.306 0.392 0.388 0.308 0.305

15 0.473 0.478 0.364 0.362 0.455 0.449 0.366 0.361

16 0.474 0.481 0.389 0.387 0.481 0.475 0.391 0.384

17 0.515 0.522 0.427 0.425 0.521 0.511 0.431 0.424

Ave 0.461 0.464 0.397 0.396 0.463 0.460 0.400 0.397

Table 3.2: Calculated Pump Sticking Coefficients for the LVTF.

of 0.46 by Equations (3.25) (3.26) (3.41) and (3.42) or a value of 0.40 by Equa-

tions (3.29) (3.30) (3.45) and (3.46).

Several observations can be made based on Equations (3.23), (3.24) and Equa-

tions (3.39), (3.40):

1. The velocity distribution in general is not a zero-centered Maxwellian distri-

bution. Figure 3.6 shows typical asymmetric velocity distribution profiles from

Equation (3.23) for several coefficient combinations.
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2. The number density in the chamber varies spatially and may be affected by

various effects from the chamber, the pumps, the thruster and the propellant.

Figures 3.7 and 3.8 show the normalized pressure contours, PbSc/(ṁ
√
γRT ), as

a function of s = Sp/Sc and α. The temperature ratio is set to Tp/Tw=15/300.

The post-pump region pressure is always smaller than the pre-pump region

pressure. When α is too small, the model is not valid because the flow is no

longer free molecular. PA and PB decrease when α increases. An increase in

pump area or pump sticking coefficient always results in a lower backpressure

for both chamber ends.

3. Figure 3.9 shows the average velocity normalized by
√

2RTw for the pre-pump

region. The velocity in the pre-pump region is always greater than zero meaning

gas flows towards the pump, but the velocity in the post-pump region is always

zero because of a net zero flux. The combination of α=1 and s = Sp/Sc=1

results in nB =0, UB =0, and nA = nin, UA =
√

2RTw/π. For this situation,

all particles hitting the pumps are absorbed and a vacuum exists in the post-

pump region. Because no particles are reflected from the post-pump region,

the number density in the pre-pump region is equal to the inlet number density.

All of these conclusions are applicable to Model 3 as well.

Figures 3.10– 3.12 show three measured pressure profiles [60] inside the LVTF and

three series of axi-symmetric particle simulation results with different pump sticking

coefficients [59]. They correspond to Cases 5, 6 and 11 in Tables 3.1 and 3.2. From

the interpolation of computed results in Figure 3.10, a sticking coefficient of 0.30–0.40

will result in good agreement between the experimental measurements and numerical

simulation for Case 5, and from Table 3.2, the analytical formulas predict a value of
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0.38 by Equations (3.25) or (3.26), a value of 0.33 from Equations (3.29) or (3.30), a

value of 0.38 from Equations (3.41) or (3.42) and a value of 0.33 from Equations (3.45)

and (3.46). These formulas predict similar values for Cases 6 (Figure 3.11) and

11 (Figure 3.12) as well. Because the chamber is long, and the wall side effect is

significant, the formulas with Tw/Tp =1 may yield sticking coefficients that agree

better with the experimental measurements. Obviously the analytical predictions,

especially those from Equations (3.29), (3.30), (3.45) and (3.46), match experimental

measurement and numerical simulations quite well.

It is appropriate to discuss the range of validity of the above formulas. These

formulas are based on a free molecular flow assumption, hence for a specific mass

flux and a specific propellant, it is not difficult to evaluate whether the assumption is

correct. Because the pre-pump region is the major concern, the number density nA,
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from Equation (3.25), and the chamber end radius are selected as the characteristic

quantities for the evaluation of Knudsen number:

Kn =
λ√
Sc/π

=
αs(2 − αs)m

√
RTwSc

πd2ṁ

(
1 + (1 − s+ (1 − α)s

√
Tw/Tp)(1 − αs)

) (3.47)

where the sticking coefficient in this formula should be computed from (3.25) if not

given as a known quantity. Tabulated values of Knudsen number calculated from

Equation (3.47) are given in Table 3.2, from which it can be observed that the cases

with two pumps in operation are not quite free molecular as they do not satisfy

Kn > 1.

Another interesting factor is the temperate ratio Tp/Tw. Usually, the cryopumps

in a large vacuum chamber are maintained at low temperature, for example, the

temperature of pumps in LVTF is about 12–15 K. Generally, this temperature ratio

does not have significant effects on large vacuum chambers. As mentioned previously,

the large amount of slow particles reflected from the cold pumps are concentrated

around the pumps. Once these particles hit the chamber sidewall, these particles

resume faster speeds and diffuse quickly. Hence, most of the volume of long chambers

is dominated by faster particles, and the pump temperature effects are not significant.

Another reason accounting for the unimportance of the temperature ratio is, in the

formulas obtained in this study, the temperature ratios are offset by square roots,

and in front of these square roots, there are always small coefficients. Hence, in this

study, the pump temperature is set to 15 K and no further discussion is necessary.

The final comment about these two models is to note that the results in the

two models are obtained with an assumption of one-dimension flow, and the model

has essentially a constant density in the pre-pump and post-pump regions. In fact,

Equations (3.29), (3.30), (3.45) and (3.46) are extrapolations of this one-dimensional
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model. More accurate results could be obtained with careful consideration of the flux

relations and different solid angles between the chamber ends and chamber sidewalls.

Because both models 2 and 3 consist of two regions and the derivation is significantly

more complex, the details are omitted here. However, Figures 3.10– 3.12 indicate

that these two simple analytical one-dimensional models yield good agreement with

the numerical simulations and experimental measurements.

3.4 Models for Chambers Equipped with One-Sided Pumps

Compared with the models for chambers equipped with two-sided pumps, models

for vacuum chambers equipped with one-sided pumps are simpler, hence it is more

convenient to investigate chamber sidewall effects. Unlike the previous discussion,

which is based on available experimental measurements [60] and three series of sim-

ulations [59], there are no experimental data available for chambers equipped with

one-sided pumps yet. Hence the validity of the models in this section will be assessed

using comparisons with numerical simulations. In this section, the one-sided pumps

are located on one chamber end, hence there is no post-pump region and this greatly

simplifies the analysis.

3.4.1 Model 4: One-Sided Pump, Kinetic, without Sidewall Effects

In this model, a vacuum chamber is equipped with one-sided pumps located on

one chamber end, as illustrated in Figure 3.13. This model represents a practical

and well-defined free molecular flow problem.

In the first step, Model 4 still assumes a constant density distribution without

strict treatment of wall effects. This treatment is valid for a short chamber situation.

In the next model, this assumption will be relaxed.

When the flow reaches a final steady state, the flux must be balanced everywhere
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Figure 3.13: Illustration of Model 4.

along two directions and this condition leads to several number density relations.

Analysis of these flux and number density relations is the key step to analyze this

problem. At chamber end A without pumps, a group of particles moves from A to

B with a number density relation: nA+ = nin + nA1+ + nA2+.

At end B, there are three number density relations from the flux relations:

1. Particles reflected at the chamber end B with pumps but not from the pumps:

nB2− = nA+(1 − Sp/Sc) = nA+(1 − s) (3.48)

2. Mass flux relation: flux out of the chamber through the pumps equals the mass

flux into the chamber at the other chamber end:

ṁ = αmnA+SpVw = mninScVw (3.49)

3. Particles reflected from the pumps:

nB1− = (1 − α)nA+
Sp

Sc

√
Tw

Tp

= (1 − α)snA+

√
Tw

Tp

(3.50)
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The above relations yield the following expressions:

nA1− = nB1− =
(1 − α)

α

√
Tw

Tp
nin (3.51)

nA2+ = nA2− = nB2− =
1 − s

αs
nin (3.52)

nA1+ = nB1−

√
Tp

Tw
=

1 − α

α
nin (3.53)

nA+ =
nin

αs
(3.54)

With the above relations, the full solutions for this model are:

nA = nB =
2 − s+ s(1 − α)

√
Tw

Tp

αs
nin =

ṁ

Sc

√
π

2kmTw

2 − s+ s(1 − α)
√
Tw/Tp

αs

(3.55)

f(C) =





2(1−α)s
q

Tw
Tp

nin

αs

√
m

2πkTp
exp(−mC2

2kTp
)

+2(1−s)nin

αs

√ m
2πkTw

exp(−mC2

2kTw
), if C > 0

2nin

αs

√ m
2πkTw

exp(− m
2kTw

C2), if C > 0

(3.56)

The normalized mean velocity, the pressure corresponding to experimental mea-

surements, the pump sticking coefficients and the Knudsen number are as follows:

U√
2RTw

=
αs

√
π

(
2 − s+ (1 − α)s

√
Tw

Tp

) (3.57)

Pb(A)Sc

ṁ
√
γRTw

=

√
π

2γ

2 − s+ s(1 − α)
√
Tw/Tp

αs
(3.58)

α =
2 − s+ s

√
Tw/Tp

s
√
Tw/Tp + PbSp/(ṁ

√
πRTw/2)

(3.59)

Kn =
λ√
Sc/π

=
1√

2πd2nA

√
Sc

=
αsm

√
RTwSc

πd2ṁ(2 − s+ (1 − α)s
√
Tw/Tp)

(3.60)

Model 4 leads to exact solutions to a classical free molecular flow problem. Gen-

erally, a vacuum system consistent with Model 4 works less efficiently than a vacuum
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chamber equipped with two-sided pumps, which was discussed in the previous sec-

tion, because only the particles moving towards the pumps have a chance to be

absorbed.

Though Equation (3.56) has a different format when compared with Equation (3.39),

it indicates that there are three groups of particles moving inside the chamber. One

group of particles travels towards the vacuum pump, while the other two groups

travel from the pump direction, one of which is directly reflected from the pumps. It

is evident that the background flow cannot be described as a Maxwellian distribution,

and the average velocity is not zero.

It is critical to consider the wall effects because many vacuum chambers are quite

long and the sidewall effects are dominant. With the same treatment of setting the

ratio Tp/Tw to unity, which is used in the previous section, Equations (3.55) and

(3.57) take new formats:

nA = nB =
(2 − sα)ṁ

αsSc

√
π

2kmTw

(3.61)

U√
2RTw

=
αs√

π(2 − sα)
(3.62)

Model 4 is a constant density model and a special case of the next general model.

3.4.2 Model 5: One-Sided Pump, Kinetic, with Sidewall Effects

Different from the previous treatment of considering sidewall effects by setting

the temperature ratio to unity, the following non-constant density model considers

sidewall effects more generally. Figure 3.14 illustrates this model.

First, from the relation of the mass flow into the chamber at chamber end denoted

as A and that out of the chamber through the pump at chamber end denoted as B:

ṁ = mninScVw = αmnB+SpVw (3.63)
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Figure 3.14: Illustration of Model 5.

the following relation is obtained:

nB+ =
nin

αs
(3.64)

At chamber end B, the following relations exist for the mass flux towards the pumps

and other regions of end B:

nB1− = nB+(1 − α)s

√
Tw

Tp
=

1 − α

α

√
Tw

Tp
nin (3.65)

nB2− = (1 − s)nB+ =
1 − s

αs
nin (3.66)

At both ends, the incoming particles are composed of two groups: one group of

particles travels from the other end without any collisions with the sidewalls, while

the other group of particles travels from the sidewalls. In this study, a variable χ

is introduced to represent the percentage of particles travel from one chamber end

finally arrive at the other end without any collision with the chamber wall. Another

variable, ε, is introduced to represent the percentage of particles travel from the
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chamber sidewall and finally arrive one chamber end. Further assuming the particles

close to the sidewall may drift to both ends with equal probability because of the

diffuse wall reflection assumption, the following equations are obtained:

nB+ = χnA+ + εnw (3.67)

nA− = χnB1− + χnB2− + εnw (3.68)

nA+ = nin + εnw + χnB2− + χnB1−

√
Tp/Tw (3.69)

The above equations yield the following intermediate results:

nA+ =
(1 + χ+ αs− αχs)nin

αs(1 + χ)
(3.70)

nA− =
χs(1 − α)(1 + χ)

√
Tw

Tp
+ 1 + χ− χs− χ2s− αχs+ αχ2s

αs(1 + χ)
nin (3.71)

The complete solutions for this model do not contain the factor ε, but involve an

extra geometry parameter χ, which is completely determined by the chamber length

and the chamber base radius:

nA =
χs(1 − α)(1 + χ)

√
Tw/Tp + 2 + 2χ− χs+ αs− χ2s− 2αχs+ αχ2s

αs(1 + χ)
nin

(3.72)

nB =

(
s(1 − α)

√
Tw/Tp + 2 − s

)
nin

αs
(3.73)

nave =
s(1 − α)(1 + χ)2

√
Tw/Tp + 4 + 4χ+ αs− s− 2χs− χ2s− 2αχs+ αχ2s

2αs(1 + χ)
nin

(3.74)

fA(C) =






2(1+χ+αs−αχs)nin

αs(1+χ)

√
m

2πkTw
exp(− m

2kTw
C2), if C > 0

2χs(1−α)(1+χ)
√

Tw/Tpnin

αs(1+χ)

√
m

2πkTp
exp(− m

2kTp
C2)

+2(1+χ−χs−χ2s−αχs+αχ2s)nin

αs(1+χ)

√ m
2πkTw

exp(− m
2kTw

C2), if C < 0

(3.75)
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fB(C) =





2s(1−α)
√

Tw/Tpnin

αs

√
m

2πkTp
exp(− m

2kTp
C2)

+2(1−s)nin

αs

√ m
2πkTw

exp(− m
2kTw

C2), if C < 0

2nin

αs

√ m
2πkTw

exp(− m
2kTw

C2), if C > 0

(3.76)

The normalized mean velocities, the normalized pressures corresponding to experi-

mental measurements and the Knudsen number are:

U(A)√
2RTw

=
αs(1 + χ)

√
π

(
χs(1 − α)(1 + χ)

√
Tw

TP
+ 2 + 2χ+ αs− χs− χ2s− 2αχs+ αχ2s

)

(3.77)

U(B)√
2RTw

=
αs

√
π

(
s(1 − α)

√
Tw/Tp + 2 − s

) (3.78)

Pb(A)Sc

ṁ
√
γRTw

=

√
π

2γ

χs(1 − α)(1 + χ)
√

Tw

TP
+ 2 + 2χ+ αs− χs− χ2s− 2αχs+ αχ2s

αs(1 + χ)

(3.79)

Pb(B)Sc

ṁ
√
γRTw

=

√
π

2γ

2 − s+ (1 − α)s
√
Tw/Tp

αs
(3.80)

Kn =
αs(1 + χ)m

√
RTwSc

πd2ṁ(χs(1 − α)(1 + χ)
√
Tw/Tp + 2 + 2χ+ αs− χs− χ2s− 2αχs+ αχ2s)

(3.81)

There are several significant observations from the above relations:

1. The formulas for the chamber end with pumps are the same as the results from

Model 4.

2. Generally the number densities for the two chamber ends are different, and

a non-constant density distribution occurs. Either chamber end can have a

higher density with a proper combination of parameters.

3. The background gas flows towards the pump and the flow velocity increases as

the pump size of the pump sticking coefficient increases.
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4. This model can be considered as a finite chamber length model, and the pa-

rameter χ reflects the effect of chamber sidewall length. The constant density

Model 4 is a special case of this model. When χ=1, which means the sidewall

is quite short, Equation (3.75) degenerates to the constant density distribution

of Model 4.

5. The highest average velocity is the same as Model 4, and happens at both ends

with a special combination of parameters α = χ = s=1.

The number density in the chamber varies spatially and may be affected by

various effects from the chamber, the pumps, the thruster and the propellant. Fig-

ures 3.15 and 3.16 show results of normalized pressure and average velocity for end

A. In both cases, the parameter χ is set to 0.05 representing a long chamber situa-

tion. Mathematically, ∂P/∂s ∝ (−s−2) and ∂P/∂α ∝ (−α−2) , hence, the pressure

is a decreasing function of s and α, and Figure 3.15 illustrates these trends. Because

the average velocity has an inverse relation with number density to maintain a fixed

net mass flow rate, Figure 3.16 illustrates an exact reverse trend in velocity when

compared with density. When α is quite small, the model is not valid because the

flow is no longer free molecular. The background pressure decreases when α or s

increases.

The velocity near the pump is always greater than zero, which means that gas

flows towards the pump. The parameter combination of α=1, χ=1 and s=1 results in

nA= nB=nin, UA=UB=
√
RTw/π. For this situation, all particles hitting the pumps

are absorbed. Because no particles are reflected from the post-pump region, the

number densities at chamber ends A and B are equal to the inlet number density.

For a short chamber situation χ=0.63, the trends in pressure and velocity are the



55

3

4

5

10

20

100

1000
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

S
p/

S
c

α

Figure 3.15: Normalized Average Backpressure PbSc

ṁ
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same as Figures 3.15 and 3.16, though there are some difference in values.

It is interesting to examine the sidewall effects considered in this model. Fig-

ures 3.17 and 3.18 show contours of normalized pressure and speed ratio for the

chamber end without pumps using α and χ as variables. For both cases, the pa-

rameter s is set to 0.4. Mathematically, ∂P/∂χ has different signs depending on α.

Hence, the sidewalls have different effects on the final average stage in a chamber. A

small α results in a large amount of slow particles reflected from the pumps; within

a long chamber where χ is small, these particles cannot reach the other chamber end

without collisions with the chamber wall, and particles accumulate at both chamber

ends. For a short chamber where χ is greater, these particles are capable of reaching

the other chamber end, hence a uniform, higher average density results. With a large

α, very few particles are reflected back towards the other end, and a short cham-

ber is effective at absorbing slow particles, hence a lower average density occurs. In

Figure 3.17, the condition ∂P/∂χ =0 occurs close to α=0.65, and this result will be

confirmed later by numerical simulations. For the average velocities illustrated by

Figure 3.18, they share the same contour line shapes but reverse trends as Figure 3.17

to maintain a fixed net mass flow rate.

Evaluation of Transport Coefficient χ

A key parameter for this model is the transport coefficient χ, which controls

the probability that a particle traveling from one chamber end can reach the other

chamber end without any collisions with the chamber sidewall. The evaluation of

this parameter involves two steps: first, calculate the solid angle at one specific point

on one chamber end subtended by the other chamber end. The solid angle formula

is:

Ω =

∫

s

−→r · −→n dS
r3

=

∫ 2π

0

Hdφ

∫ R

0

η2dη

(r2 +H2 − 2rηcosφ+ η2)3/2
(3.82)
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The final format of this integral involves the Heuman’s Lambda function and the

complete elliptic integral of the first kind [39] [41]. The second step is to average

the solid angles over all points on this chamber end. Though there is an analytical

result for the first step, it is extremely difficult to obtain an analytical expression for

the second step, which is required to evaluate the analytical results from Model 5.

In this study, the transportation coefficient χ is evaluated numerically. Figure 3.19

illustrates the numerical results of χ for different chamber stations at different dis-

tances from one chamber end. It shows that as x/R increases, the percentage of

particles reaching the stations from one chamber end drops rapidly. For a chamber

with L/R=0.9/3, about 63% of particles starting from one chamber end can reach the

other chamber end; while for L/R=9/3, only about 5% of particles starting from one

chamber end arrive at the other end without hitting the chamber sidewall. Hence,

for a large vacuum chamber with a length of 9 meters and a diameter of 6 meters,

like the LVTF, the sidewall effect is significant.

3.4.3 Comments on Models 1, 4 and 5

There are three models applicable to the background flow in a vacuum chamber

with one-sided pumps: Model 1, Model 4 and Model 5. Among these three models,

Model 1 is the crudest one-dimensional model without any consideration of sidewall

effects. Model 4 is a relatively accurate model with considerations of two cham-

ber ends and pumps, and the sidewall effect is partially considered by setting the

temperature ratio to unity. This model is actually a one-dimensional model with a

constant density distribution. Model 5 is the most advanced and complete model

that considers sidewall effects, and it can predict a non-constant density distribution

along different chamber stations. Model 4 can be considered as one special case of
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Model 5.

In experiments, it is not desirable to accumulate a large amount of particles at

the chamber end equipped with pumps. Model 5 can predict a threshold value for the

sticking coefficient that results in a higher density accumulation around the chamber

end equipped with pumps. For example, to satisfy nA > nB, from Equations (3.72)

and (3.73), it can be shown that:

α >
χ2 − 1 + (1 − χ2)

√
Tw/Tp

1 − 2χ+ χ2 + (1 − χ2)
√
Tw/Tp

(3.83)

A parameter combination of χ=0.05 and Tw/Tp=300/15 results in α > 0.65

according to the above relation. It is interesting to observe that this relation is

independent of s.
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3.4.4 Numerical Simulations

For vacuum chambers equipped with one-sided pumps, there are no experimental

measurements available; hence the validity of these models is depended on compar-

isons with numerical simulations. About 70 DSMC simulations using MONACO [23]

are performed to compare with the analytical results. In these simulations, xenon

gas flows through a cylindrical chamber with a fixed base radius of 3 meters. In all

the simulations, the mass flow rates into and out of the chamber ends are set to 6.17

mg/sec, which is the mass flow rate out of four Hall thrusters studied in Reference [8].

All the simulation results are carefully examined to confirm the mean free path in

the flow field is over 3 meters, hence the flow is close to free molecular for each case.

These simulations are made physically accurate by including collisions, even though

collisions occur very infrequently.

Boundary conditions

Figure 3.20 illustrates the axi-symmetric simulation domain used in this study.

It is a cylindrical chamber with a length of 9 m or 0.9 m and a radius of 3 m.

These simulations with a long chamber sidewall and a short chamber sidewall provide

numerical results to test the performance of the analytical results.

There are four kinds of boundary conditions adopted in these simulations:

1. OO1: axis of symmetry.

2. OA: mixed inlet and diffuse wall boundary condition. When particles hit this

boundary from the inner domain, they reflect diffusely with a speed character-

ized by a wall temperature Tw =300 K. At the same time, this side also serves

as an inlet boundary condition and an extra fixed mass flow rate of 6.17 mg/sec

into the chamber is maintained. A uniform inlet on this side is consistent with
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the treatment in Models 4 and 5.

3. AB: diffuse wall boundary condition with Tw=300 K.

4. BO1: mixed outlet and diffuse wall boundary condition. This study attempts

to perform simulations without any effects from pump locations, hence, no

special location of pumps on this chamber end is specified. Instead, the finite

area pump on the chamber end is achieved by the following process: when

particles hit this wall, by a probability of 1 − Sp/Sc they reflect diffusely with

a speed characterized by the wall temperature of 300 K; by a chance of αSp/Sc

they are absorbed by the pumps and hence removed from simulation; by a

chance of (1 − α)Sp/Sc they reflect diffusely with a speed characterized by

the pump temperature of 15 K. Whether a particle sticks to the pump or

reflects on the wall or pumps is decided by comparing two random numbers

and the assumed values of α and s. This “No Concrete Pump” treatment has

two merits: it is effective to simulate pumps of all size, including quite small

pumps, and it is not necessary to regenerate a new mesh for a new simulation

with a different pump size.

A mesh of 45 by 15 cells along the axial and radial directions is adopted in these sim-

ulations. The flows are almost free molecular, there are very few collisions happening

inside the domain, and such a mesh size provides enough resolution while minimizing

the simulation cost. The time steps adopted in the final stages of these simulations

vary from 1 × 10−4 second to 1 × 10−6 second to reduce multiple reflections for a

particle in one time step. Typically, a simulation starts with a relatively large time

step and a small number of particles to reach a steady state then the time step is

reduced and the particle number increased. For all simulation cases, approximately



62

Figure 3.20: Illustration of Simulation Domain(Not in Scale).

one million particles are preserved in the final sampling stage and each case takes

less than 30 minutes on a SUN workstation.

Evaluation of Average Quantities

Models 1 and 4 are essentially one-dimensional models with constant distribu-

tion at different stations and Model 5 can be considered as one-dimensional with a

proper interpolation of the properties at both chamber ends. The primary concern

of the numerical simulations is to compute the averaged properties throughout the

flow fields. At each time step, an average density and an average velocity for the

whole domain are computed by counting all particles in the simulation domain and

averaging their velocities:

ρ(t) = (
∑

(wiNi))m/V (3.84)

U(t) = (
∑

Uj)/N (3.85)

where Ni and wi are the total number of particles and the particle weight in the ith

cell and V is the whole chamber volume, Uj and N are the jth particle velocity and

total number of particles in the domain. The flow evolution history can be computed
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through these two expressions.

Comment about Accuracy

The major purposes of these simulations are to provide accurate average back-

ground pressure and average background velocity with a combination of different

facility effects. The DSMC method is an accurate simulation method to simulate

rarefied gas flows; by counting all particles in the chamber and averaging their ve-

locities, Equations (3.84) and (3.85) provide accurate calculations of the average

properties. By including collisions between particles and with walls, the DSMC sim-

ulations are expected to yield more physically accurate results than the analytical

results. Hence, these particle simulation results will be used to compare the effective-

ness of the analytical models. The detailed distributions in these two-dimensional

simulations may be effected by subtle changes in boundary treatments, but the av-

erage number density and average velocity in the chamber are not sensitive to these

changes in boundary treatment.

Though the detailed two-dimensional distributions are not the major interest

of this study, observations of these results may be quite informative. Figures 3.21

and 3.22 show contours of number density and velocity at a steady flow state for

the case of L/R=9/3, Sp/Sc=0.4, α=0.4, and the pumps are located on the right

chamber end. Figure 3.21 indicates clearly that for this case there is a large amount

of particles reflected from the pump towards the other end. However, after colliding

with the long chamber wall, these particles resume a faster speed and the density

drops rapidly along one direction though another direction is heavily blocked. Hence,

the high density is confined to small regions around the two ends. Figure 3.22

illustrates that the velocity does not change significantly throughout the flowfield,

and an overall average velocity can represent the velocity field quite well. For other
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simulation cases, the flowfields are quite similar but with a higher pump area or a

higher sticking coefficient, the diffusion from the chamber end with pumps decreases

and for the short chamber cases, gradients are distributed more evenly.

It should be mentioned that Model 5 could be used to study the one-dimensional

variation of density or velocity distribution at different chamber stations. Model 5

provides two different values at the two chamber ends. With the aid of χ shown in

Figure 3.19, it is possible to construct a nonlinear distribution of density or velocity

at different chamber stations. However, this will introduce a numerical distribution

into the analytical results and is not the major concern of this study. Numerically,

the one-dimensional density and velocity can be calculated by averaging particles at

different chamber stations. Figure 3.23 shows variations of steady one-dimensional

density and speed results for the case L/R=9/3, Sp/Sc=0.4 and α=0.4. For this case,



65

6
6.5

7
7.5

8
8.5

9
9.5

10

10.5

X/L

Y
/R

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Figure 3.22: Contours of Velocity(m/s )(L/R=9/3, Sp/Sc=0.4, α=0.4, pumps lo-
cated on the right chamber end).

the diffusion from the chamber end with pumps is more significant than that from

the other chamber end. This indicates that the diffusion effect is confined closely to

both ends; hence a lower value of density results for this long chamber case. The

velocity varies inversely with the density to maintain a fixed net flow rate.

Comparison of Numerical and Analytical Evolution History

Model 1 provides the average density evolution history through Equation (3.5).

The semi-decaying period for a cylindrical chamber is:

τd =
V
√

2πm

αSp

√
kTw

=
L
√

2π

αs
√
RTw

(3.86)

where V and L are the chamber volume and length.

With parameters Sp/Sc=0.4, α=0.4, Tw=300 K and a chamber length of 9 m or

0.9 m, the semi-decaying periods for the unsteady term are τd=1.0 second and 0.10

second, respectively.
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The density evolution process can be compared with numerical simulations. Fig-

ures 3.24 and 3.25 show two comparisons of analytical and numerical simulation

results for the cases of L/R=9/3 and L/R=0.9/3 respectively. A common feature

in these two pictures is the lower steady state average pressure than the correspond-

ing analytical value. This difference is mainly because the analytical results do not

include any collision effects, while in the DSMC simulation results, the collisions be-

tween particles and with chamber walls are honestly included. Because the collision

effects are always tend to result in a uniform distribution among particles, hence, a

lower background pressure is resulted. Several comments can be drawn from these

results:

i) The periods required to reach a steady state from the numerical simulation and

analytical results are quite close. For all cases, it takes approximately 4 semi-decaying
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periods to reach a steady state. There is some subtle difference between the analytical

results and numerical simulation results. The analytical results assume the backpres-

sure is homogenous and there is no preferential direction for gas to enter the chamber;

but in the numerical simulations, at time zero, through one chamber end, gas begins

to enter the chamber which is initialized by either a uniform background pressure or

a vacuum state. Because of this effect, all simulation results include a short startup

time which can be estimated as L/
√
γRTw = 9/

√
5/3 × 8314/131.25× 300=0.05 sec.

However, even with this extra startup time, the numerical simulations converge a lit-

tle faster than the theoretical results possibly because of collisions among particles

and with chamber walls.

ii) For situations that start with a finite initial ambient environment and a vacuum

initial ambient environment, the decaying time to reach a steady state is the same.

iii) The long chamber case results in a lower steady state average density for the

reason mentioned previously when discussing Figures 3.17 and 3.23.

Comparison of Averaged Density

The pump sticking coefficient has an important effect on the final steady state.

Figures 3.26 and 3.27 show the comparison of analytical results from Models 1, 4, 5

and 34 numerical simulations with a varying α, fixed Sp/Sc=0.4 and 0.8, respectively.

The number density is normalized by ṁ/(mSc)
√

2π/(RTw). There are two series of

simulation results and two cases of analytical results from Model 5 with χ=0.05

and χ=0.63, corresponding to the situations of L/R=9/3 and L/R=0.9/3. In Fig-

ure 3.26, the analytical result from Model 5 with χ=0.05 is equivalent to a horizontal

intersection from Figure 3.17. The simulations are divided into two groups of a long

chamber wall (L=9 m) and a short chamber wall (L=0.9 m) providing two bounding

lines. Because models 1 and 4 do not consider wall effects at all, and all models do
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not include the particle collision effects, the analytical results are less accurate than

the numerical simulations. Several observations can be made from these results in

Figure 3.26 and 3.27:

i) For fixed Sp/Sc, the difference between analytical results decreases and the

analytical results fit the simulations better as α increases;

ii) Two series of numerical simulations yield an intersection point close to α=0.65,

which is illustrated in Figure 3.19 as well. Hence, Model 5 has some superiority over

the other models by predicting the trends of backpressure with an extra parameter

of χ;

iii) The Sp/Sc=0.8 case yields better comparison between the numerical and

analytical results than the situation of Sp/Sc=0.4;

iv) Model 4 with Tp/Tw=1 yields the best performance.

The pump area has an important effect on the final steady state as well. Fig-
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√

2π/(RTw), α =0.8).

ures 3.28 and 3.29 show the comparison of analytical results and another 34 simula-

tions with a variation of Sp/Sc, fixed α=0.4 and α=0.8 respectively. In Figure 3.28,

the analytical result χ=0.05 from Model 5 with α=0.4 is equivalent to a vertical

intersection line in Figure 3.17. From the results in Figures 3.28 and 3.29, it can be

observed that:

i) For fixed α, when s increases, the difference among analytical results increases,

some analytical results fit the simulation better and the difference between the two

series of numerical simulation results is more pronounced;

ii) The two series of numerical simulations do not have a cross point which again

is quite consistent with the result shown in Figure 3.17;

iii) The Sp/Sc=0.8 case shows better agreement between analytical results and

particle simulations than the situation of Sp/Sc=0.4, the difference among the ana-

lytical results decrease, and the performance of Model 4 improves greatly with less
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particles reflected from the chamber wall, hence, the Sp/Sc=0.8 case is more compa-

rable to the no-wall assumption for Model 4;

iv) Model 4 with a modification of Tp/Tw=1 has the best performance.

Comparison of Averaged Velocity

Figures 3.30 and 3.31 show the comparison of average velocities for variation of

α and fixed Sp/Sc=0.4 and 0.8, respectively. Compared with the average number

density, the agreement of average velocity results is more challenging because velocity

is a higher order moment of the velocity distribution function. From the results in

Figures 3.30 and 3.31, it can be observed that:

i) Models 1 and 4 with Tp/Tw=1 yield the best performance;

ii) The performance of Model 4 improves greatly for Sp/Sc=0.8;

iii) In these two plots, two series of numerical simulations intersect at α=0.65 as

indicated in Figure 3.18. Again, Model 5 predicts this intersection point successfully.

Figures 3.32 and 3.33 show the comparison of the average velocity distributions for

a variation of Sp/Sc and fixed α=0.4 and 0.8, respectively. It can be observed that:

i) When α=0.4, the long chamber has higher average velocities while for α=0.8

the short chamber has higher average velocities;

ii) Model 1 and Model 4 with Tp/Tw=1 give the best performance;

iii) Model 4 improves significantly with a larger α.

3.5 Effects on Particle Simulations

The analytical results discussed in this chapter have significant effects for particle

simulations of plume flows inside a vacuum chamber.

To simulate a rarefied plume flow inside a vacuum chamber, usually the DSMC

method is adopted and an axi-symmetric simplification substitutes an expensive
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Figure 3.30: Average Velocity Inside Chamber (Sp/Sc=0.4).
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Figure 3.31: Average Velocity Inside Chamber (Sp/Sc=0.8).
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Figure 3.32: Average Velocity Inside Chamber (α=0.4).
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full-scale three-dimensional simulation. Traditionally, the background flow effects

are either omitted or approximated by a few static background particles in each cell.

The velocities of these static background particles are randomly assigned from a zero-

centered Maxwellian velocity distribution. However, from the above discussions, it

is demonstrated that essentially there are three groups of particles inside a vacuum

chamber: two groups diffuse from the chamber end with the vacuum pumps, while

the last group diffuses from the other chamber end. The velocities of the background

particles are highly affected by various factors. The plasma plume flow inside a

vacuum chamber is more like firing a plume flow into another uniform background

flow towards the pump. The velocity distribution for the rarefied background flow

can be far from a full Maxwellian distribution, the mean velocity of the background

flow can be far from zero and can reach
√

2RTw/π, which is over 100 m/s for xenon

at room temperature.

The influence on numerical simulations varies with several parameters. For exam-

ple, in a simulation of electric plumes firing from 4 Hall thrusters inside the LVTF,

with a combination of parameters of α=0.39 and s=0.1460 (4 pumps in operation),

the average background velocity inside the chamber is only 6.0 m/s and the back-

ground number density calculated with formulas for two-sided pumps is only slightly

lower than the number density calculated by n = Pb/(kTw). For this situation, the

traditional approximation of background flow by using static particles with velocities

sampled from a zero-centered Maxwellian distribution is quite acceptable. However,

for other situations where α or s is quite large, the background flow may have a

significant effect. Hence, before performing a simplified simulation of gas flow in-

side a vacuum chamber, it is important to first evaluate the facility parameters and

estimate the background flow in the chamber.
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To accurately account for the rarefied background flow, there are several options:

1. Represent the backpressure by static background particles, but assign the back-

ground particles with velocities sampled from the complete analytical velocity

distribution functions obtained in this study.

2. Consider the background flow with inflow boundary conditions. The front and

back sides of the simulation domain use different branches of the Maxwellian

distributions obtained in this study.

3. Consider the background flow with a general inflow boundary condition for

all sides. This approach will need to calculate a new number density, a new

mean velocity and a new temperature from the velocity distributions obtained

in this study, and reconstruct a new Maxwellian distribution with the above

information.

3.6 Conclusions

In this chapter, five free molecular flow models were presented for the rarefied

background flow inside vacuum chambers equipped with one-sided or two-sided

pumps. Experimental measurements and results from four series of numerical simu-

lations were used to test the validity of these analytical models.

The first model was a crude model with a strong assumption of a constant density

distribution inside the vacuum chamber, and led to a set of crude but important

relations. This model provided an expression of the semi-decaying period for the

unsteady process, and the average background density and velocity fit the numerical

simulation results reasonably well of background flows in a vacuum chamber equipped

with one-sided pumps.
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The second and third models were free molecular flow models that treated the

two-sided pump plates as specular and diffusive with selective sticking cold walls.

Analyzing the flux and number density relations led to detailed velocity distributions

for the background flow, and based on these distributions, the mean velocities and

pressures can be computed. With the experimental measurements in [60], the LVTF

pump sticking coefficients were calculated. On average the coefficient was close to

0.40, while for different working conditions, the coefficient can vary within a small

range. Compared with numerical simulations of specific flows inside the LVTF, the

analytical formulas predicted a very similar sticking coefficient.

The fourth and fifth models were free molecular flow models for the background

flows inside vacuum chambers equipped with one-sided pumps. Analyzing the flux

relations and number density relations led to detailed velocity distributions for the

background flow, and based on these distributions, the mean velocities and pres-

sures were obtained. About 70 numerical simulations were performed to test the

correctness of the analytical results applicable for chambers equipped with one-sided

pumps. Generally, the performance of these analytical models improved greatly as

pump area or sticking coefficient increased; Model 4 with Tp/Tw=1 yielded the best

performance for average density; Model 4 with Tp/Tw=1 and Model 1 yielded the

best performance in predicting the average velocities inside the chamber. Model 5

generally gave relatively poorer performance, although it is the most complete model,

with the complex factors of α, χ and s; it predicted the correct trend change for a

long chamber and a short chamber; it can create a non-constant distribution between

two chamber ends, which is more physically reasonable.

The solutions of these models were five sets of analytical formulas, including

comprehensive velocity distribution functions, and the pump sticking coefficient can
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be computed with these formulas. These formulas connect different properties from

the pumps, the chamber, the propellant and the thruster. These models indicated

that the background flow in a chamber was quite different from vacuum, and it

cannot be simply treated as a static gas field. The highest speed is over 100 m/s

for xenon and the velocity distribution function can deviate far from a Maxwellian

distribution. The formulas for the background gas obtained from this study can be

used to not only evaluate or predict the performance of a vacuum chamber, but also

establish a correct background flow field for numerical simulations.

It is worthy to mention that these models and formulas are applicable to other

vacuum chambers with different cross-sections other than cylinders and different ap-

plications such as materials processing. The basic principles discussed in the chapter

can be used as guidelines to analyze other types of large vacuum chamber with more

complicated geometry configurations.



CHAPTER IV

ANALYTICAL FREE MOLECULAR EFFUSION

FLOW SOLUTIONS

4.1 Introduction

Free molecular flows passing through small holes are fundamental and impor-

tant problems in various practical applications. Such applications can be found in

materials processing in high vacuum chambers [6], spacecraft design [32], metrology

of gas flow [53], and many other applications. Several investigators, such as Liep-

man [34], Varsigma [39] [41], Willis [61], Rotenone and Weizner [42] have proposed

analytical expressions for the mass flow rate near the free-molecular regime in the

case of outflow from an orifice into vacuum, which are valid in a very small range

of gas rarefaction. Recently, several simulations of rarefied gas flow through a thin

orifice [49] were reported.

This study is an initial attempt to analytically investigate the plume flows from

electric propulsion systems. Electric propulsion systems, such as Hall thrusters, have

several merits over traditional chemical thrusters and they are designed to operate

in space for purposes of primary propulsion and on-orbit applications such as station

keeping. For electric thrusters, their plume flows are of major interest because of

several reasons. First, plume flows can be used to study the performance of a thruster;

79
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second, plume impingement onto a spacecraft can have significant adverse effects.

The plume impingement is usually caused by the Charge Exchange(CEX) effect.

When a fast ion collides with a slow neutral, an electron may transfer from the slow

neutral to the fast ion and results in a fast neutral and a slow ion. Under the electric

field effect, this slow ion can drift to large plume angles where sensitive surfaces

such as solar cells may be located. Impingement and deposition on such sensitive

surfaces may result in eventual failure of the devices. Hence, plume flows are always

important research topics for development of electric propulsion thrusters.

Due to its importance, there are many experimental measurements and numerical

simulations of plasma plumes of electric thrusters. However, in the literature there

are very few reports of analytical studies. Most related previous kinetic work in the

literature was concentrated with free molecular flows out of a simplified geometry

such as an orifice [39] [41]. Obviously, further analytical results of the plume flow

field with more detailed geometries can provide insights and aid in the understanding

of the plume flows out of electric thrusters.

There are several fundamental aspects of for a plume flow out of an electric

thruster. First, most electric plume flows are free molecular. The mean free path

for gas propellant out of a thruster can be estimated with the following hard sphere

equation:

λ =
1√

2πd2n0

(4.1)

With a typical number density of 5 × 1018 m−3 at a thruster exit, the mean free

path for xenon is 0.268 m, which is wider than a typical Hall thruster acceleration

channel. Second, the average velocity at a thruster exit plane is greater than zero.

The average neutral speed at the thruster exit plane is usually sonic, and the average

ion speed is always supersonic due to electric acceleration inside the acceleration
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channel. Third, electric field effects in the plume are important for ions. Fourth,

collision effects, including elastic collisions and CEX collisions, may have important

effects on the plume density and velocity distribution outside the thruster exit.

This study does not intend to provide solutions with considerations of all the

above four effects. As an initial effort, by neglecting the electric field and all collision

effects, six different free molecular gas flows out of an exit with different geometries

are investigated. The exact solutions to the six problems provide first order approx-

imations to cold plume flows, and in a future study, electric field effects and collision

effects can be included based on the analytical solutions. Further, in this study,

discussions are concentrated on effusion problems with zero exit velocities, which

simplifies the situation and provides a solid base for further study.

In the rest of this chapter, section 4.2 presents the problems to be studied and a

general solution method; sections 4.3– 4.8 present six free molecular flow problems,

their analytical solutions, discussions of their properties or simplifications of the

solutions and comparisons with DSMC simulation results; section 4.9 summarizes

this chapter.

4.2 Free Molecular Flow Problems and General Treatment

The flows considered in this chapter are six different problems of free molecular

gas flows out of an exit into vacuum with a given average speed. The geometry

configurations for the exit and the average exit speed are different:

1. A two-dimensional thin slit with a width of 2H, average exit velocity U0 is

zero.

2. A rectangular slit with a width of 2L and a height of 2H, average exit velocity

U0 is zero.
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3. A slit formed by two concentered rectangles with widths and heights 2L by

2H, and 2L1 by 2H1, average exit velocity U0 is zero.

4. A circular exit characterized by a radius of R, average exit velocity U0 is zero.

5. An annulus characterized by an inner radius R1 and an outer radius R2, average

exit velocity U0 is zero.

6. A two-dimensional thin slit with a width of 2H, average exit velocity U0 is

greater than zero.

Suppose the gas at the exit is in equilibrium with a uniform static temperature T0

and a uniform number density n0. Denote the plume direction as the x-axis direction,

the direction normal to the x-axis as the y-axis direction, and the middle point of

the slit/circle center/annulus center is the origin. The objective of this study is to

obtain the analytical plume field flow solutions, especially the number density and

velocities at any point downstream of the exit.

4.2.1 General Methods

For a dilute gas flow at rest in equilibrium, the velocity distribution is described

as a full Maxwellian distribution [12] [27] [56]. With a total number density n and a

temperature T0 the velocity distribution function at any point is:

f(u, v, w) =

(
β

π

)3/2

exp(−β(u2 + v2 + w2)) (4.2)

where β = 1
2RT0

. The highest velocity probability occurs at phase point (u, v, w) =

(0, 0, 0). For a velocity with a nonzero average value of U0 along the X direction but

a zero average value along the Y and Z directions, the distribution Equation (4.2)

is shifted along the u-axis by a value of U0.
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With a known velocity distribution f(u, v, w) at a point (X, Y, Z), the average

number density normalized by a reference value and velocities at (X, Y, Z) can be

evaluated using the velocity distribution function:

n(X, Y, Z) =

∫

Ω

f(u, v, w)dudvdw (4.3)

U(X, Y, Z) =
1

n(X, Y, Z)

∫

Ω

uf(u, v, w)dudvdw (4.4)

V (X, Y, Z) =
1

n(X, Y, Z)

∫

Ω

vf(u, v, w)dudvdw (4.5)

W (X, Y, Z) =
1

n(X, Y, Z)

∫

Ω

wf(u, v, w)dudvdw (4.6)

Hence, the critical step is to obtain the velocity distribution function and the

integral domain.

During investigating the free molecular flowfield before an orifice exit, [39] ob-

served an important fact when studying a free molecular flow of gas escaping from

an orifice:

Observation: For any point (X, Y, Z) in front of the slit, its velocity space can

only have non-zero velocity within a specific solid angle Ω subtended by the specific

point and exit edges:

f(u, v, w) =






(β
π
)
3/2

exp(−β(u2 + v2 + w2)), u, v, w ∈ Ω;

0, u, v, w /∈ Ω.

(4.7)

where β = 1
2RT0

and Ω represents the integral domain in the velocity space.

This observation can be viewed as a velocity-positions relation, which is im-

portant to this study: From a given point on the exit, only particles with specific

velocity components can arrive at a specific point (X, Y, Z) in front of the exit. This

relation takes different forms in the six cases and will be illustrated later as Equa-

tions (4.8), (4.18), (4.39) and (4.57). These equations actually have three effects:
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First they guarantee a one-to-one mapping relation between velocity phases and

provide a complete support to Equation (4.7); Second, they can provide boundaries

for the integral domain; Third, they may simplify the integral process by changing

velocity integral variables to geometry parameters of the exit.

In this study, many integral formulas are used, and some of them can be found

in mathematical handbooks while some of them need careful derivations. For con-

venience, the integral formulas are summarized as Appendix B at the end of this

dissertation.

4.3 Problem One: Free Molecular Effusion Flow from a Thin
Slit with a Zero Average Velocity (U0=0)

4.3.1 Analytical Results

In this case, the previous velocity-positions relation takes the following format:

from a point (0, h) on the slit, particles can reach the point (X, Y ) if their two velocity

components (u, v) satisfy the following relations:

tan(θ) =
Y − h

X
=
v

u
,−H < h < H (4.8)

On the other hand, particles from point (0, h) cannot arrive at the point (X, Y )

if their two velocity components do not satisfy the above relation. Hence, a correct

velocity component relation is the necessary and sufficient condition that a particle

can travel from a point on the exit to a specific point in front of the exit. This

important relation shows that there is a one to one mapping relation between velocity

space for the point on the slit and the velocity space of the point (X, Y ). A slice of

the velocity space for point (0, h) is strictly mapped onto the velocity space of point

(X, Y ). There is neither loss nor gain during the mapping. Figure 4.1 illustrates the

velocity spaces for two points in front of the exit. One point is outside the plume
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Figure 4.1: Velocity Spaces for Points Inside or Outside Plume Core.

core region, while the other one is inside the plume core. Velocity space “A1-O-A2”

represents the first point’s integral domain while “B1-O-B2” represents the second

point’s integral domain. Line O-A3 represents the velocity contributed by particles

starting from point 3, while the particle starting at point 3 can arrive at point B is

represented by the positive x-axis.

The non-zero values in the velocity space of point (X, Y ) form a pie shape

bounded by two lines from the slit edge points to the point (X, Y ), and the num-

ber density and velocities at the point (X, Y ) can be obtained by integrating the

probability distribution function within the two lines:

tan(θ1) =
Y −H

X
(4.9)

tan(θ2) =
Y +H

X
(4.10)

With this simple integral domain in the velocity phase space, the integrals can
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be simplified with the following relation:

dudv = V dV dθ (4.11)

where V =
√
u2 + v2.

With this relation, the expressions for the number density and the velocities at

point (X, Y ) are:

n(X, Y ) =

∫

Ω

β

π
exp(−β(u2 + v2))dudv =

θ2 − θ1
2π

(4.12)

U(X, Y )√
2RT0

=

√
π(sin θ2 − sin θ1)

2(θ2 − θ1)
(4.13)

V (X, Y )√
2RT0

=

√
π(cos θ1 − cos θ2)

2(θ2 − θ1)
(4.14)

From the above results, it is informative to obtain the exact solutions of properties

along the centerline, which is important to many applications. Along the centerline

Y = 0, where θ1 = −θ2:

n(X, 0) =
1

π
arctan(

H

X
) (4.15)

U(X, 0)√
2RT0

=

√
π sin(arctan(H/X))

2 arctan(H/X)
(4.16)

V (X, 0) = 0 (4.17)

When X increases from 0 to infinity, the number density decreases from 1
2

to 0

and the speed ratio increases from 1√
π

to
√

π
2

. It should be pointed out that this

speed ratio is obtained by a thermal speed characterized by the temperature at the

slit, not the local temperature.

Several properties of (4.12)– (4.14) are:

1. Flow symmetries are preserved: n(X,−Y ) = n(X, Y ), U(X,−Y ) = U(X, Y ),

V (X,−Y ) = −V (X, Y ).
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2. On the slit where X = 0, −H < Y < H: −θ1 = θ2 = π
2
, n(0, Y ) = 1

2
,

V (0, Y ) = 0, U(0, Y ) =
√

2RT0/π. The nonzero velocity along the X direction

does not contradict the zero mean velocity distribution boundary condition at

the slit.

3. On locations above the slit: X = 0, X > H: θ1 = θ2 = π
2
, the following relations

hold: n(0, Y ) = 0, V (0, Y ) = 0, U(0, Y ) = 0. Hence, the two edge-points are

discontinuity points because of abrupt changes of number density.

4. The mass flux relation through the slit: n(0, Y ) = 1
2

and U(0, Y ) =
√

2RT0/π

for −H < Y < H, −θ1 = θ2 = π
2
, hence the mass flow rate out of the slit

= 1
4
mn0

√
8RT0/π, which is a well-known kinetic flow result.

5. At the exit tip point: n(0, H) = 1
4

= 1
2
n(0, 0), U(0, H) = V (0, H) =

√
2RT0/π =

U(0, 0). Obviously, number density and velocities along the vertical line passing

the exit tip are not continuous.

6. Depending on the distance from point (X, Y ) to the origin, the flow field can

be classified into four regions: near field and inside core region, near field and

outside core region, far field inside core region and far field outside core region.

The last region is the largest where the slit effects are quite minor, and the

velocities in this region have a relation U(X, Y )/V (X, Y ) ∝ /(θ1 + θ2) ≈ 1/α,

where α is the angle subtended from the point to the two exit edge points.

This relation indicates that the streamlines in that region are almost straight.

4.3.2 DSMC Simulation and Discussions

The above set of analytical solutions is validated by comparisons with a numerical

simulation. Because the flows are free molecular, the DSMC method [12] is ideal to
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Figure 4.2: Numerical Simulation Domain For Cases 1 and 5 (not in scale).

provide accurate solutions. In the simulation, gaseous xenon flows out of a slit with

a semi-height H = 0.1 m. In the simulation, the number density at the slit is set to a

value corresponding to Kn = 20 with a characteristic length 2H=0.2 m. To compare

with the analytical results, all DSMC simulations in this chapter are performed with

no collisions.

The simulation domain used for this case is a square with a side length of 2 me-

ters. As illustrated by Figure 4.2, there are three kinds of boundary conditions in

these simulations. OO1 is a symmetric boundary condition; OA is an inlet boundary

condition where particles are introduced into the simulation and their thermal veloc-

ities are characterized by a temperature T=300 K; Sides AB−BC−CO1 are outlet

boundary conditions and when particles cross on these sides, they are removed from

the simulation.
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Figure 4.3: Case 1: Contours of Number Density (U0=0, Top: Analytical, Bottom:
DSMC without Collisions).

A mesh of 75 by 60 cells along the X-axis and Y-axis directions is adopted. In

this study, collisions are omitted. The main reason for adopting such a dense mesh

is to provide high spatial resolution for comparison with analytical results.

MONACO [23] is used to perform this simulation and approximately one million

particles are employed in the final sampling stage. The simulation takes approxi-

mately 30 hours on a parallel machine with two processors.

Figure 4.3 shows a comparison of number density contours obtained with the

analytical results and a DSMC simulation. The average exit velocity U0 is set to

zero. Figures 4.4 and 4.5 show two comparisons of velocity contours along the X

and Y directions. The comparison indicates that for this true effusion problem these

results are almost identical. Both theoretical and numerical results indicate that

there is an exit effect dominating the area close to the exit, while in the far field,
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Figure 4.4: Case 1: Contours of U(X,Y )√
2RT0

(U0=0, Top: Analytical, Bottom: DSMC

without Collisions).

the velocity contours are essentially straight lines. Notice that in Equations (4.13)

and (4.14), the denominator is zero along the vertical line X = 0, Y > H, hence it

is a singularity line. The accumulation of contour lines along this singularity line,

shown in the analytical contour results of V , is not physical.

Figure 4.6 shows comparisons between analytical results and simulation results

of velocity and number density distributions along lines Y=0 and Y = H. It clearly

confirms the previous discussion that the velocity at the slit center and the tip point

are the same but the number density at the tip point is only half of the value at the

slit center.
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4.4 Problem Two: Free Molecular Effusion Flow From a
Rectangular Exit 2H by 2L with a Zero Average Exit

Velocity(U0=0)

4.4.1 Analytical Results

Suppose there is a rectangular exit, which is characterized by a width of 2L and a

height of 2H, and the average exit velocity is zero. Suppose there is a point (X, Y, Z)

in front of the exit, where Y > 0 and Z > 0, then from any point (0, y, z) on the

exit, particles can only arrive at point (X, Y, Z) if their velocity components follow

the relation:

X

u
=
Y − y

v
=
Z − z

w
(4.18)

where X > 0, Y > 0, Z > 0.

From this relation, the number density and velocity integrals can be greatly

simplified with the following change of integral variables:

dvdw =

∣∣∣∣∣∣∣∣

∂v
∂y

∂v
∂z

∂w
∂y

∂w
∂z

∣∣∣∣∣∣∣∣
dydz =

∣∣∣∣∣∣∣∣

−u
X

0

0 −u
X

∣∣∣∣∣∣∣∣
dydz =

u2

X2
dydz (4.19)

Obviously with this relation, the rectangle edges define an integral domain and the

number density and the velocity components can be derived. The integral processes

are lengthy and can be found in Appendix C. The final number density result is:

n(X, Y, Z) = 1
4π

[
arctan (L−Y )(H−Z)

X
√

X2+(L−Y )2+(H−Z)2
+ arctan (L−Y )(H+Z)

X
√

X2+(L−Y )2+(H+Z)2

+ arctan (L+Y )(H−Z)

X
√

X2+(L+Y )2+(H−Z)2
+ arctan (L+Y )(H+Z)

X
√

X2+(L+Y )2+(H+Z)2

]

(4.20)
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The velocities along the X, Y, Z directions are:

U(X,Y,Z)√
2RT0

= 1
4nπ

√
π

[
H−Z√

(H−Z)2+X2
(arctan L−Y√

(H−Z)2+X2
+ arctan L+Y√

(H−Z)2+X2
)

+ H+Z√
(H+Z)2+X2

(arctan L−Y√
(H+Z)2+X2

+ arctan L+Y√
(H+Z)2+X2

)

+ L−Y√
(L−Y )2+X2

(arctan H−Z√
(L−Y )2+X2

+ arctan H+Z√
(L−Y )2+X2

)

+ L+Y√
(L+Y )2+X2

(arctan H−Z√
(L+Y )2+X2

+ arctan H+Z√
(L+Y )2+X2

)

]

(4.21)

V (X,Y,Z)√
2RT0

= X
4nπ

√
π

[
1√

(L−Y )2+X2
(arctan H−Z√

(L−Y )2+X2
+ arctan H+Z√

(L−Y )2+X2
)

− 1√
(L+Y )2+X2

(arctan H−Z√
(L+Y )2+X2

+ arctan H+Z√
(L+Y )2+X2

)

] (4.22)

W (X,Y,Z)√
2RT0

= X
4nπ

√
π

[
1√

(H−Z)2+X2
(arctan L−Y√

(H−Z)2+X2
+ arctan L+Y√

(H−Z)2+X2
)

− 1√
(H+Z)2+X2

(arctan L−Y√
(H+Z)2+X2

+ arctan L+Y√
(H+Z)2+X2

)

]

(4.23)

Note that symmetry is sustained in the above solutions. Suppose X > 0, Y > 0

and Z > 0:

n(X, Y, Z) = n(X,−Y, Z) = n(X, Y,−Z) = n(X,−Y,−Z) > 0

U(X, Y, Z) = U(X,−Y, Z) = U(X, Y,−Z) = U(X,−Y,−Z) > 0

V (X, Y, Z) = −V (X,−Y, Z) = V (X, Y,−Z) = −V (X,−Y,−Z) > 0

W (X, Y, Z) = −W (X, Y,−Z) = W (X,−Y, Z) = −W (−X,−Y,−Z) > 0

Along the exit centerline where Y = Z = 0:

n(X, 0, 0) =
1

π
arctan

HL

X
√
X2 +H2 + L2

(4.24)

U(X, 0, 0)√
2RT0

=
1

nπ
√
π

[
H√

H2 +X2
arctan

L√
X2 +H2

+
L√

X2 + L2
arctan

H√
X2 + L2

]

(4.25)
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V (X, 0, 0) = W (X, 0, 0) = 0 (4.26)

These centerline results contain H and L, and are quite different from the standard

results of free molecular flow through a small circular orifice. When X changes from

0 to ∞, n changes from 1
2

to 0, while U(0, 0, 0) = 1√
π

with H = L.

Another two interesting locations are the rectangle corner and an edge midpoint:

n(X,L,H) =
1

4π
arctan

(
4HL

X
√
X2 + 4L2 + 4H2

)
(4.27)

U(X,L,H)√
2RT0

= 1

2n
√

π3

[
H√

4H2+X2
arctan 2L√

4H2+X2

+ L√
4L2+X2

arctan 2H√
4L2+X2

] (4.28)

n(X, 0, H) =
1

2π
arctan

2HL

X
√
X2 + L2 + 4H2

(4.29)

U(X,0,H)√
2RT0

= 1

2n
√

π3

(
2H√

4H2+X2
arctan L√

4H2+X2

+ L√
L2+X2

arctan 2H√
L2+X2

) (4.30)

n(X,L, 0) =
1

2π
arctan

2HL

X
√
X2 + 4L2 +H2

(4.31)

U(X,L,0)√
2RT0

= 1

2n
√

π
3

(
H√

H2+X2
arctan 2L√

H2+X2

+ 2L√
4L2+X2

arctan H√
4L2+X2

) (4.32)

Immediately, it can be shown that on the exit center and exit tip: n(0, L,H) =

1
4
n(0, 0, 0) = 1

2
n(0, 0, H) and U(0, L,H) = U(0, 0, 0) if H = L.

4.4.2 DSMC Simulations and Discussions

A three-dimensional DSMC simulation is performed to simulate the effusion flow

from a rectangular exit with 2L = 2×0.2 m by 2H = 2×0.2 m. Due to the symmetry

in the geometry configuration, only a quarter of the exit is included in the simulation
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domain. The simulation domain is a cubic shape with side length of 1 meter. A mesh

containing about 0.5 million tetrahedral cells is used to represent the whole domain,

and in the final sampling state, about 6 million particles are maintained. Again, the

collision function in MONACO is turned off.

Figure 4.7 shows the number density contours in the plane Y=0, the solid contours

are the analytical results obtained in this study while the dashed contours are the

DSMC results. At the exit, both the analytical and DSMC results yield the same

value of 1
2
. Figures 4.8 and 4.9 show contours of U(X, 0, Z) and W (X, 0, Z) in the

plane Y=0. In general, both comparisons are quite satisfactory. In all of these results,

the exit effects are well captured. This is the only three-dimensional simulation in

the six problems discussed in this chapter, and the simulation cost is quite expensive.

The comparison can be further improved by a larger scale of sampling. The contours

of number density and velocities in the plane Z = 0 have similar patterns so they

are omitted here.

In addition to the contours, comparisons along the X direction can provide more

informative results. Figure 4.10 shows profiles along one horizontal line passing

through the exit corner (Y = L, Z = H). In general, the number density distribu-

tion fits better, while the velocities yield larger discrepancies. It is also noted that

the number density at X=0 is close to 1
8

instead of 1
2

as predicted by Equation (4.27).

This is physically correct, because any point inside the domain has a full neighbor-

hood of 2π, but on the corner, only π
2

is available. It is expected that the points

on an edge but not on a corner will have a density value of 1
4
. Correspondingly,

from Equation (4.27), it is possible to prove that the corner point velocity in the X

direction has the same value as that for the exit center point.
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4.5 Problem Three: Free Molecular Effusion Flow From a
Concentered Rectangular Exit 2H by 2L and 2H1 by 2L1,

with a Zero Average Exit Velocity(U0=0)

4.5.1 Analytical Results

The solutions to this problem can be obtained from the previous solutions using

the fact that free molecular flow out of a concentered rectangular exit is equivalent

to a large rectangular source minus a smaller rectangular sink. The final number

density result is:

n(X, Y, Z) = 1
4π

[
arctan (L−Y )(H−Z)

X
√

X2+(L−Y )2+(H−Z)2
+ arctan (L−Y )(H+Z)

X
√

X2+(L−Y )2+(H+Z)2

+ arctan (L+Y )(H−Z)

X
√

X2+(L+Y )2+(H−Z)2
+ arctan (L+Y )(H+Z)

X
√

X2+(L+Y )2+(H+Z)2

− arctan (L1−Y )(H1−Z)

X
√

X2+(L1−Y )2+(H1−Z)2
− arctan (L1−Y )(H1+Z)

X
√

X2+(L1−Y )2+(H1+Z)2

− arctan (L1+Y )(H1−Z)

X
√

X2+(L1+Y )2+(H1−Z)2
− arctan (L1+Y )(H1+Z)

X
√

X2+(L1+Y )2+(H1+Z)2

]

(4.33)

The velocities along the X, Y, Z directions are:

U(X,Y,Z)√
2RT0

= 1
4nπ

√
π

[
H−Z√

(H−Z)2+X2
(arctan L−Y√

(H−Z)2+X2
+ arctan L+Y√

(H−Z)2+X2
)

+ H+Z√
(H+Z)2+X2

(arctan L−Y√
(H+Z)2+X2

+ arctan L+Y√
(H+Z)2+X2

)

+ L−Y√
(L−Y )2+X2

(arctan H−Z√
(L−Y )2+X2

+ arctan H+Z√
(L−Y )2+X2

)

+ L+Y√
(L+Y )2+X2

(arctan H−Z√
(L+Y )2+X2

+ arctan H+Z√
(L+Y )2+X2

)

− H1−Z√
(H1−Z)2+X2

(arctan L1−Y√
(H1−Z)2+X2

+ arctan L1+Y√
(H1−Z)2+X2

)

− H1+Z√
(H1+Z)2+X2

(arctan L1−Y√
(H1+Z)2+X2

+ arctan L1+Y√
(H1+Z)2+X2

)

− L1−Y√
(L1−Y )2+X2

(arctan H1−Z√
(L1−Y )2+X2

+ arctan H1+Z√
(L1−Y )2+X2

)

− L1+Y√
(L1+Y )2+X2

(arctan H1−Z√
(L1+Y )2+X2

+ arctan H1+Z√
(L1+Y )2+X2

)

]

(4.34)
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V (X,Y,Z)√
2RT0

= X
4nπ

√
π

[
1√

(L−Y )2+X2
(arctan H−Z√

(L−Y )2+X2
+ arctan H+Z√

(L−Y )2+X2
)

− 1√
(L+Y )2+X2

(arctan H−Z√
(L+Y )2+X2

+ arctan H+Z√
(L+Y )2+X2

)

− 1√
(L1−Y )2+X2

(arctan H1−Z√
(L1−Y )2+X2

+ arctan H1+Z√
(L1−Y )2+X2

)

+ 1√
(L1+Y )2+X2

(arctan H1−Z√
(L1+Y )2+X2

+ arctan H1+Z√
(L1+Y )2+X2

)

]

(4.35)

W (X,Y,Z)√
2RT0

= X
4nπ

√
π

[
1√

(H−Z)2+X2
(arctan L−Y√

(H−Z)2+X2
+ arctan L+Y√

(H−Z)2+X2
)

− 1√
(H+Z)2+X2

(arctan L−Y√
(H+Z)2+X2

+ arctan L+Y√
(H+Z)2+X2

)

− 1√
(H1−Z)2+X2

(arctan L1−Y√
(H1−Z)2+X2

+ arctan L1+Y√
(H1−Z)2+X2

)

+ 1√
(H1+Z)2+X2

(arctan L1−Y√
(H1+Z)2+X2

+ arctan L1+Y√
(H1+Z)2+X2

)

]

(4.36)

Along the exit centerline where Y = Z = 0:

n(X, 0, 0) =
1

π

[
arctan

HL

X
√
X2 +H2 + L2

− arctan
H1L1

X
√
X2 +H2

1 + L2
1

]
(4.37)

U(X,0,0)√
2RT0

= 1
nπ

√
π

[
H√

H2+X2
arctan L√

X2+H2
+ L√

X2+L2
arctan H√

X2+L2

− H1√
H2

1
+X2

arctan L1√
X2+H2

1

− L1√
X2+L2

1

arctan H1√
X2+L2

1

]
(4.38)

These centerline results contain H, L, H1 and L1, and they are quite different from

the standard results of free molecular flow through a small circular orifice. When X

changes from 0 to ∞, n changes from 1
2

to 0, while U(0, 0, 0) = 1√
π

with H = L and

H1 = L1.

4.5.2 DSMC Simulations and Discussions

A three-dimensional DSMC simulation is performed to simulate the effusion flow

from a concentered rectangular exit with 2L = 2 × 0.2 m by 2H = 2 × 0.2 m and

2L1 = 2 × 0.05 m by 2H1 = 2 × 0.05 m. Due to the symmetry in the geometry
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Figure 4.11: Case 3: Contours of Number Density (H = L = 0.2m, H1 = L1 =
0.05m, U0=0, Solid: Analytical, Dashed: DSMC without Collisions).

configuration, only a quarter of the exit is included in the simulation domain. The

simulation domain is a cubic shape with side length of 1 meter. A tetrahedral mesh

of 2 million cells is used to represent the whole domain, and in the final sampling

state, about 6 million particles are maintained. As usual, the collision function in

MONACO was turned off.

Figure 4.11 shows the number density contours in the plane Y=0, the solid con-

tours are the analytical results obtained in this study while the dashed contours are

the DSMC results. At the exit, both the analytical and DSMC results yield the

same value of 1
2
. Figures 4.12 and 4.13 show contours of U(X, 0, Z) and W (X, 0, Z)

in the plane Y=0. In general, both comparisons are quite satisfactory. In all of

these results, the exit effects are well captured. The contours of number density and

velocities in the plane Z = 0 have similar patterns so they are omitted here.

In addition to the contours, comparisons along the X direction can provide more

informative results. Figure 4.14 shows profiles of number density along one horizontal
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line passing the exit corners (Y = L, Z = H and Y = L1, Z = H1) and exit

centerline. In general, the number density distribution fits quite accurately, and

at the outer exit corner the density is about 1
8

while at the inner corner the value

is 3
8
. This is physically correct, because the inner exit corner has a 3 times larger

neighborhood than the outer exit corner point. It is possible to further obtain some

specific properties, such as the location on the axis with the highest number density,

but these derivation processes involve finding roots from complex equations, and

they are omitted in this paper.

4.6 Problem Four: Free Molecular Effusion Flow Out of a

Circular Exit with a Zero Average Speed (U0=0)

4.6.1 Analytical Results

Suppose the average velocity at the circular exit is zero. From any point (0, y, z)

on the exit which is characterized by a radius of R, only particles with the following
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special velocity components can arrive at a point (X, 0, Z) in front of the exit:

X

u
=
Y − y

v
=
Z − z

w
(4.39)

where X > 0, Y > 0, Z > 0.

Combined with geometry relations:

z = r sin θ = Z −Xw/u, y = r cos θ = Y −Xv/u (4.40)

where 0 6 r 6 R, 0 6 θ 6 2π, the integrals for the number density and the velocities

can be simplified using the following variable change:

dvdw =

∣∣∣∣∣∣∣∣

∂v
∂r

∂v
∂θ

∂w
∂r

∂w
∂θ

∣∣∣∣∣∣∣∣
drdθ =

u2

X2
rdrdθ (4.41)

The major derivation steps for the number density and velocity distributions are

summarized in Appendix D. The final results for number density at a point (X, 0, Z)

in front of the exit is:

n(X, 0, Z) = 1
2
− X

4π

∫ π

−π
[ (X2+Z2−ZR sin θ)dθ

(X2+Z2 cos2 θ)
√

X2+Z2+R2−2RZ sin θ
] (4.42)

An option to further simplify the above expression is to expand with a series

of trigonometric functions. However, this treatment does not save much evaluation

cost, and to maintain higher accuracy, this format is kept and a numerical evaluation

is performed.

Similarly, the velocity along the axial direction is:

U(X,0,Z)√
2RT0

= X2

2πn
√

π

(
π

X
√

X2+Z2
− π√

(X2+Z2+R2)2−4R2Z2
+
∫ π

−π

[

Z sin θ
2(X2+Z2 cos2 θ)3/2 arctan Z sin θ√

X2+Z2 cos2 θ
+ Z sin θ(R−Z sin θ)dθ

2(X2+Z2+R2−2RZ sin θ)(X2+Z2 cos2 θ)

+ Z sin θdθ
2(X2+Z2 cos2 θ)3/2 arctan R−Z sin θ√

X2+Z2 cos2 θ

]
dθ

)

(4.43)
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W (X,0,Z)√
2RT0

= 1
2πn

√
π

∫ 2π

0

(
−(Z/2) cos(2θ)dθ

[X2+R2+Z2−2RZ sin θ]
−

sin(θ)dθ√
X2+Z2 cos2 θ

(arctan R−Z sin θ√
X2+Z2 cos2 θ

+ arctan Z sin θ√
X2+Z2 cos2 θ

)+

+ sin θ(X2+2Z2 cos2 θ)dθ

2(X2+Z2 cos2 θ)3/2 (arctan R−Z sin θ√
X2+Z2 cos2 θ

+ arctan Z sin θ√
X2+Z2 cos2 θ

)

+ sin θ(X2+2Z2 cos2 θ)(R−Z sin θ)dθ
2(X2+Z2 cos2 θ)(X2+Z2+R2−2RZ sin θ)

+ Z sin2 θ(X2+2Z2 cos2 θ)dθ
2(X2+Z2 cos2 θ)(X2+Z2)

)

(4.44)

Along the X-axis passing through the exit center, the number density and velocity

variations are:

n(X, 0, 0) =
1

2
− X

2
√
X2 +R2

(4.45)

U(X, 0, 0)√
2RT0

=
1√
π

(
1 +

X√
X2 +R2

)
(4.46)

when X changes from 0 to ∞, n changes from 1
2

to 0, while U(X,0,0)√
2RT0

changes from 1√
π

to 2√
π
.

4.6.2 Simulations and Discussions

An axi-symmetric DSMC simulation is performed to validate the analytical re-

sults obtained in this case. The simulation domain size is 0.8 m by 0.8 m, and a

rectangular mesh of 28,800 cells is adopted mainly to provide high resolution. The

circular exit diameter is set to 0.1 m and the number density at the exit is set to

a value resulting in a Knudsen number of 20 based on the characteristic length of

the exit diameter. In the final sampling stage, about 2 million particles are main-

tained in the simulation domain. By turning off the collision function in MONACO,

the simulation results are expected to be close to these analytical results. The gas

translational temperature at the exit is set to 300 K.

Figures 4.15 and 4.16 show the analytical results of number density and U(X,0,Z)√
2RT0

at plane Z=0. The flow patterns are quite similar to Case 1, effusion flow from a

thin slit. Figure 4.17 shows a comparison of W (X,0,Z)√
2RT0

. The comparison shows exactly
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Figure 4.15: Case 4: Contours of Number Density(R=0.1 m, U0=0, Top: Analytical,
Bottom: DSMC without Collisions).

the same flow patterns, and almost identical results. These velocity results indicate

clearly the finite geometry exit has an influence around the exit.

Figures 4.18 and 4.19 show variations of number density and velocity along two

horizontal lines, one passing through the exit center and the other passing the edge

of this exit. It is interesting to recognize that the number density at (0, R) is close

to 1
4
, almost half of the value at the exit center, but the circular curvature resulted

in some effects on the number density. This is physically correct due to the reason

discussed previously.
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4.7 Problem Five: Free Molecular Effusion Flow Out of an
Annular Exit with a Zero Average Exit Velocity(U0 = 0)

4.7.1 Analytical Results

An annulus is a common shape for the exit of the acceleration channel of Hall

thrusters. Though this shape is characterized by two parameters of inner and outer

radius of R1 and R2, Equations (4.39)– (4.41) are still correct for this situation. The

only difference in the derivation process is the integral domain r ∈ [R1, R2] for an

annular exit instead of r ∈ [0, R] for a circular exit. Hence, by observing the integral

domains, the free molecular flow out of an annulus can be considered as a large

circular source of R2 minus a small circular sink of R1. The derivation process is

similar to Case 3 and is omitted here.

The number density and velocities at a point (X, 0, Z) are:

n(X, 0, Z) = − X
4π

∫ π

−π

[
dθ√

X2+Z2+R2
2
−2R2Z sin θ

− Z sin θ(R2−Z sin θ)dθ

(X2+Z2 cos2 θ)
√

X2+Z2+R2
2
−2R2Z sin θ

]

+ X
4π

∫ π

−π

[
dθ√

X2+Z2+R2
1
−2R1Z sin θ

− Z sin θ(R1−Z sin θ)dθ

(X2+Z2 cos2 θ)
√

X2+Z2+R2
1
−2R1Z sin θ

]

(4.47)

U(X,0,Z)√
2RT0

= X2

2πn
√

π

(
π√

(X2+Z2+R2
1
)2−4R2

1
Z2

− π√
(X2+Z2+R2

2
)2−4R2

2
Z2

+
∫ π

−π

[

Z sin θ(R2−Z sin θ)dθ
2(X2+Z2+R2

2
−2R2Z sin θ)(X2+Z2 cos2 θ)

− Z sin θ(R1−Z sin θ)dθ
2(X2+Z2+R2

1
−2R1Z sin θ)(X2+Z2 cos2 θ)

+ Z sin θdθ
2(X2+Z2 cos2 θ)3/2 arctan R2−Z sin θ√

X2+Z2 cos2 θ

− Z sin θdθ
2(X2+Z2 cos2 θ)3/2 arctan R1−Z sin θ√

X2+Z2 cos2 θ

]
dθ

)

(4.48)
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W (X,0,Z)√
2RT0

= 1
2πn

√
π

∫ 2π

0

[
−(Z/2) cos(2θ)dθ

[X2+R2
2
+Z2−2R2Z sin θ]

+ (Z/2) cos(2θ)dθ
[X2+R2

1
+Z2−2R1Z sin θ]

− sin(θ)dθ√
X2+Z2 cos2 θ

(
arctan R2−Z sin θ√

X2+Z2 cos2 θ
− arctan R1−Z sin θ√

X2+Z2 cos2 θ

)

+ sin θ(X2+2Z2 cos2 θ)dθ

2(X2+Z2 cos2 θ)3/2

(
arctan R2−Z sin θ√

X2+Z2 cos2 θ
− arctan R1−Z sin θ√

X2+Z2 cos2 θ

)

+ sin θ(X2+2Z2 cos2 θ)(R2−Z sin θ)dθ
2(X2+Z2 cos2 θ)(X2+Z2+R2

2
−2R2Z sin θ)

− sin θ(X2+2Z2 cos2 θ)(R1−Z sin θ)dθ
2(X2+Z2 cos2 θ)(X2+Z2+R2

1
−2R1Z sin θ)

]

(4.49)

From the above relation, the centerline variations are:

n(X, 0, 0) =
X

2
√
X2 +R2

1

− X

2
√
X2 +R2

2

(4.50)

U(X, 0, 0)√
2RT0

=
X√
π

(
1√

X2 +R2
1

+
1√

X2 +R2
1

)
(4.51)

Obviously, when X changes from 0 to ∞, the centerline number density increases

from 0 to a specific value, then decreases slowly to zero, while the speed ratio U(X,0,0)√
2RT0

increases from 0 to 1
2
√

π
.

4.7.2 Simulations and Discussions

An axi-symmetric DSMC simulation without collisions is performed to validate

these analytical results. The inner and outer radii of the annulus are set to R1 = 0.2

m and R2 = 0.4 m, respectively. About 19,200 rectangular cells are used to represent

a square simulation domain of 1.2 m by 1.2 m. As usual, the temperature at the

exit is set to 300 K while the number density is set to a value achieving a Knudsen

number of 20 based on a characteristic length of R2 − R1. At the final sampling

stage, about 1.2 million particles are maintained.

Figure 4.20 shows contours of number density, the bottom contours are the analyt-

ical results and the top contours represent are DSMC results. In the whole simulation

domain, the comparison shows almost identical results. Figures 4.21 and 4.22 show
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2RT0
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the contours of velocities. Both comparisons are quite satisfactory as well. In all of

these three results, both the exit region and the slow “cavity” region in the center,

which is characterized by negative Wz, are clearly captured. There are two branches

of zero-value lines for Wz, one is along the axis, while the other curved branch starts

from a point inside the exit and ends on the axis. The intersection point of the two

branches can be found analytically from Equations (4.49). At the specific point,

∂W (X, 0, Z)

∂Z
|Z=0 = 0 (4.52)

From this condition, it is quite easy to show that X =
√
R1R2 is the intersection

point on the axis.

Figures 4.23, 4.24, 4.25 and 4.26 are number density and velocity variations along

four horizontal lines with different radius to the axis: r = R2, r = 1
2
(R2+R1), r = R1

and r = 0. It is quite evident that the number density at the exit tips are close to
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1
4

while on the exit center point the value is 1
2
. Generally, theoretical velocities and

number densities match the results from numerical simulation.

One important result can be obtained for the location on the axis where the peak

number density occurs. From Equation (4.47):

∂n(X, 0, 0)

∂X
=

∂

∂X
(

X

2
√
X2 +R2

1

− X

2
√
X2 +R2

2

) = 0 (4.53)

This leads to:

X =

√√√√R2
2R

4/3
1 −R2

1R
4/3
2

R
4/3
2 −R

4/3
1

=
R

2/3
1 R

2/3
2√

R
2/3
1 +R

2/3
2

=
κ2/3R1√
1 + κ2/3

(4.54)

nmax =
1

2
(κ2/3 − 1)(1 + κ2/3 + κ4/3)−1/2 (4.55)

where κ = R2/R1 > 1. Further notice that Equation (4.54) is an increasing function

of κ, then a range of X can be decided as:

R1/
√

2 < X < κ1/3R1 = (R2
1R2)

1/3 <
2R1 +R2

3
(4.56)

It is interesting to notice that this distance is less than the average value of the inner

and outer radius.

These relations, Equations (4.54)– (4.55), contain only the inner radius and outer

radius of the annulus. This is because the derivation is based on a free molecular

flow assumption without collision effects, hence the final expression contains only

geometry factors, which is quite expected and reasonable. For an annulus with

R1 = 0.2 m and R2 = 0.4 m, the highest number density along the centerline is

0.1299 at X = 0.196 m, which is shown in Figure 4.26. The DSMC simulation

without collisions predicts an exact value at the same location.
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Figure 4.23: Case 5: Number Density and Normalized Velocities along r = R2

(R1=0.2 m, R2=0.4 m, U0=0).
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Figure 4.24: Case 5: Number Density and Normalized Velocities along r = R2+R1

2
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Figure 4.25: Case 5: Number Density and Normalized Velocities along r = R1
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Figure 4.26: Case 5: Number Density and Normalized Velocities along r = 0 (R1=0.2
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4.8 Problem Six: Free Molecular Flow Out of a Thin Slit
with a Non-zero Average Speed (U0 > 0)

4.8.1 Analytical Results

Varsigma [40] discussed the jet flow out of a point source with a non-zero average

exit velocity. In this section, the finite width of the slit, H, is considered.

Consider the velocity space for a point (X, Y ) in front of the slit. The velocity

distribution at the point still follows Equation (4.2), but the integral domain changes

significantly because of the non-zero average velocity at the slit. With this change,

from any point (0, h) on the slit, particles can arrive at the point (X, Y ) if and only

if their velocity components satisfy the following relation:

tan(θ) =
Y − h

X
=

v

u+ U0
,−H < y < H. (4.57)

To compare the difference in the integral domains, for this case, the velocity distribu-

tion function does not shift to the right with a value of U0. Hence, u+U0 represents

a particle’s real velocity along the X-direction. Obviously the non-zero average ve-

locity U0 does not destroy the one-to-one mapping relation between velocity phase

spaces.

The two integral domain boundaries are:

tan(θ2) =
Y +H

X
(4.58)

tan(θ1) =
Y −H

X
(4.59)

Figure 4.27 shows the effect of the non-zero exit velocity on the integral domain in

velocity space. On the left side is a case of zero average exit velocity and the right side

is a case of non-zero average exit velocity. In both plots, region “Aoa” represents an

integral domain for a point (X, Y ) out of the plume core (Y > H), and region “Bob”
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represents an integral domain for a point in the plume core (Y < H). The integral

domain widens as the point (X, Y ) becomes closer to the slit. It is immediately

observed that there are several changes between these two integral domains: The

existence of a nonzero U0 translates the integral domain to the left, without any

effects on the slopes of the two domain boundaries. The two boundaries shift up or

down, resulting in different effects on the points inside the plume core (Y < H) and

outside the plume core (Y > H): if the point is inside the core, the number density

increases for the case of a non-zero average exit velocity because of a larger integral

domain including regions close to the origin with the highest probability; while the

number density at a point outside the plume core decreases because the origin point

is excluded from the integral domain. Physically this is reasonable: with a higher

average exit velocity, more particles are injected into the simulation domain, while

there is less time for particles to diffuse vertically outside the core region while they

flow downstream quite quickly. Hence, a non-zero average exit velocity results in a

higher density at points inside the plume core and a lower density at points outside

the core region.

Suppose the average velocity at the slit exit is greater than zero. Notice θ2 > θ1,

0 < θ2 < π/2 and −π/2 < θ1 < π/2, the number density and velocities at any point

(X, Y ) in front of the slit can be derived and are described in Appendix E. The final

results are:

n(X, Y ) = exp(−βU0
2)

2π
(θ2 − θ1) + 1

4

(
erf(

√
βU0 sin θ2) − θ1

|θ1|erf(
√
βU0 sin |θ1|)

)

+

√
β/π

2

∫ θ2

θ1
exp(−βU0

2 sin2 θ)U0 cos θerf(
√
βU0 cos θ)dθ

(4.60)
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Figure 4.27: Effect on Velocity Space by the Average Exit Velocity.

U(X,Y )√
2RT0

= exp(−βU0
2)

2nπ
√

2RT0

[ ∫ θ2

θ1

(√
π/β

2
exp(βU0

2 cos2 θ) cos θ(1 + erf(
√
βU0 cos θ))

)
dθ

+U0(θ2−θ1)
2

+ U0(sin(2θ2)−sin(2θ1))
4

+
√
βπ
∫ θ2

θ1

(
U0

2 cos3 θ(1 + erf(
√
βU0 cos θ)) exp(βU0

2 cos θ)

)
dθ

]

(4.61)

V (X,Y )√
2RT0

= 1
4
√

πn

[
exp(−βU0

2 sin2 θ1) cos θ1(1 + erf(
√
βU0 cos θ1))

− exp(−βU0
2 sin2 θ2) cos θ2(1 + erf(

√
βU0 cos θ2))

] (4.62)

This set of solutions includes two types of factors: geometry factors represented by θ1

and θ2 and other factors involving complex nonlinear relations with U0, the average

exit velocity at the slit.

From Equations (4.60)– (4.62), it can be proved that: n(X,−Y ) = n(X, Y ),

U(X,−Y ) = U(X, Y ), V (X,−Y ) = −V (X, Y ). These results can be obtained with

aid from the fact that for points (X, Y ) and (X,−Y ), the integral domains in velocity
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space are symmetric about the u-axis.

It is also evident that these solutions are totally compatible with the previous

solutions to Case 1. When the average velocity is zero, this current set of general

solutions degenerates to the special solutions obtained for the first problem. Another

interesting comparison is the quantities on the exit center and exit tip. Though it

is difficult to obtain the values at these two points, the integral domain has some

simple property: on the exit center, the integral domain is from −π
2

to π
2
, while at

the exit tip, the integral domain is from 0 to π
2
. Hence, it can be concluded from

Equations (4.60)– (4.61) that the number density at the exit tip is half of the value

on the exit center, while the velocity along the X direction has the same value.

Because this case has a non-zero average exit velocity, it is worthy to investigate

several kinds of approximations under special conditions, at least for the number

density expressions. Equations (4.60) can be simplified under different conditions

by removing the integral expressions and several simplifications are listed here for

reference.

In the far field, because tan(θ2−θ1) = tan θ2−tan θ1

1+tan θ2 tan θ1
, hence, θ2−θ1 = arctan( 2HX

X2+Y 2−H2 )

≈ 2Hr cos α
r2−H2 , which is quite small:

n(X, Y ) = Hr cos α
r2−H2

[√
β
π
(1 + erf(

√
βU0 cosα)) exp(−βU0

2 sin2 α)U0 cosα

+ exp(−βU0
2)

π

] (4.63)

Equations (4.60) and (4.63) indicate that there are cosine factors in the expres-

sion, quite similar to the solutions obtained by Varsigma [40] for flows through an

orifice with high speed.

Further, if the average velocity at the slit is large, the plume is confined to a

small region close to the X-axis. Hence, with a high average exit speed and a small
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α for points inside the core region, the results further take new formats:

n(X, Y ) =
2HX

X2 + Y 2 −H2

(
exp(−βU0

2)

2π
+

√
β/πU0X√
X2 + Y 2

)
(4.64)

With a low average exit speed, since erf(x) ≈ 2x√
π

and exp(−x) ≈ 1 − x,

n(X, Y ) =
θ2 − θ1

2π
+

√
β/πU0(sin θ2 − sin θ1)

2
+

sin(2θ2) − sin(2θ1)

4π
βU0

2 (4.65)

4.8.2 Numerical Simulations and Discussions

Though the Equations (4.60)– (4.62) involve several integral terms that cannot

be explicitly removed, numerical evaluations are convenient via a computer. The

subroutine for the error function can be found in [44]. The simulation domain and

mesh are the same as the first case discussed previously, and the collision function

in MONACO is turned off.

If the exit average velocity U0 = 0, the boundary line between the flow field and

a vacuum is the vertical line above the slit. When the average exit velocity at the

exit increases, the boundary line begins to decline towards the plume core, though

it still starts with the upper tip (0, H). Hence, there will be a larger void region

connected with point (0, H) and residing above the slit. This presents a problem for

evaluation of the analytical results because the number density is a component of the

denominators in the velocities expressions, and in the analytical vacuum region, the

numerical error may exceed the small analytical magnitudes of the number densities.

For simulation results from the DSMC method, this is not a problem because the

evolution of velocities does not involve a denominator of number density. For the

analytical solutions to the fifth problem, an effective boundary line of n/n0 = 0.0001

is introduced to represent the plume edge, and the comparisons are restricted to

areas within this boundary. Figure 4.28 shows several such effective boundary lines
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Figure 4.28: Case 6: Analytical Plume Boundary Lines (H = 0.1m).

with different average exit velocities at the slit. It indicates that as the average exit

velocity increases, the plume region narrows since particles have less time to diffuse

vertically. When the exit speed is high enough, the flow field is confined to a narrow

region close to the plume core.

Figure 4.29 shows a comparison of number density contours with the DSMC

results evaluated at Kn=20. By turning off the collision function in the DSMC

method, the results are expected to be close to free molecular. Generally the com-

parison shows almost identical results.

Figures 4.30 and 4.31 show the corresponding simulation results of velocity con-

tours. The Knudsen number is set to 20 and the average exit velocity at the slit is

the sonic speed. Due to the singularity problem mentioned earlier, the analytical re-

sults are not valid beyond the boundary line hence they are omitted here. Compared

with Figures 4.4 and 4.5 from Case 1, it can be observed that the flow patterns
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are the same, including a narrow zone where exit effects dominate, straight contour

lines in the far field and the same variation trends. Figures 4.4, 4.5, 4.30 and 4.31

strongly indicate that the solutions to these two flow problems are closely related.

Figure 4.32 shows a comparison of number density distribution along the plume cen-

terline Y = 0 and the slit tip Y = H. An average exit velocity U0 =
√
γRT results

in a density value close to 0.9 at the exit center, which is illustrated on the starting

point of one curve. This value is much higher than 0.5 for the true effusion problem

discussed here as Case 1. Point (0, H) is a singularity point and its number density

value is close to half of the centerline value. The comparison of number density along

line Y = H indicates that in general the numerical and analytical results agree quite

well. This plot also indicates that with this exit velocity, at downstream locations

about X = 5H, these two number density distributions merge into one.
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Figures 4.33 and 4.34 show comparisons of velocities along the centerline Y=0

and the slit tip Y = H. It is evident that the numerical results for velocity along

the Y direction have a perfect agreement.

Figures 4.35 and 4.36 compare different profiles of number densities along the

plume centerline with different average exit velocities U0 = 0.1
√
γRT0 and U0 =

3
√
γRT0. The Knudsen numbers are set to 20 and these distributions are obtained

from different approximations, exact solution and numerical simulations. The com-

parisons clearly indicate that for both low speed and high speed:

i). The exact solutions agree with the DSMC results;

ii). The low speed simplification agrees with the exact solution quite well for

U0 = 0.1
√
γRT0;

iii). Surprisingly, the high speed approximation and the far field approximation
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agree quite well for U0 = 0.1
√
γRT0 as well;

iv). For U0 = 3
√
γRT0, after certain distances down stream of a few slit widths,

the far field and the high speed approximations predict quite similar values to the

exact analytical and numerical results.

It can be concluded that for number density distributions, over a wide range of

average exit velocities, these approximations yield quite good agreement.

4.9 Summary

In this chapter, six fundamental free molecular flows out of an exit with differ-

ent geometries were investigated analytically. The important relations of velocity-

positions, Equations (4.8), (4.18), (4.39) and (4.57), provided one-to-one mapping

relations between velocity spaces for a specific point in front of the exit and a point

on the exit. These four relations validated Equation (4.7) and provided integral
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domains for all six problems.

Analytical exact solutions or exact expressions with detailed exit geometries were

obtained. The first five cases belong to a category of true effusion problems with a

zero average exit velocity. Their flowfields were associated with geometry factors and

no collisions effects were considered. The last problem was of significant importance,

because it is the case closest to true plume flows. The analytical results of the

last problem indicated that the solutions were composed of two factors: one factor

representing simple geometry relations and the other factor representing complex

nonlinear effects from the average exit velocity at the slit.

These results included accurate geometry factors, hence they were expected to

yield more accurate results than existing models in the literature. These analytical

results clearly captured all features of the whole flow field.
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Several particle simulations were performed with the DSMC method to validate

the analytical solutions obtained in this chapter, and in these simulations, the col-

lision functions were turned off. Generally, simulations for all these six cases yield

good agreement with the analytical results, most of the results are essentially identi-

cal. It can be concluded that the general treatment of these six free molecular flows

from different exit shapes are valid.

This study is an initial effort to provide analytical results to describe the free

molecular plume flows from electric propulsion thrusters. It provided a solid basis

for further analytical studies, such as plume flows out of a circular or annular thruster

with a non-zero average velocity at the thruster exit.



CHAPTER V

PARTICLE SIMULATIONS OF PLASMA

PLUME FLOWS FROM A CLUSTER OF

THRUSTERS

5.1 Introduction

Hall thrusters represent a very efficient form of electric propulsion devices widely

used on spacecraft for primary propulsion and on-orbit applications such as station

keeping [38]. In general, Hall thrusters are replacing chemical thrusters in specific

applications because of several merits. Hall thrusters can create higher specific im-

pulse, obtain electricity input directly in space through solar cells, and do not require

carrying oxidizerStuhlinger:1964. High power electric propulsion systems are being

investigated due to improvements in solar cell technology and due to renewed interest

in nuclear power.

The development of high-power Hall thrusters falls into two categories: one case

involves investigating single, monolithic thrusters, while the second case involves

clustering several small thrusters. Generally, clustering is favorable because of several

merits including a cheaper manufacturing cost, less demanding requirement from test

facilities, more robustness and an ability to tolerate failure of single thrusters.

There are several major interests in numerical simulation of plasma flows from

128
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a cluster of Hall thrusters. One interest is to investigate the plume interactions,

especially in the complex and important near field locations. The performance of a

thruster in a cluster may be different from a stand alone situation. Another inter-

est is to estimate plume impingement, which involves high-energy ions and Charge

Exchange (CEX) ions, onto sensitive spacecraft surfaces such as solar arrays. When

a fast ion collides with a slow neutral, one or two electrons may transfer from the

neutral to the ion, resulting in a slow ion and a fast neutral. Under the influence of

the electric field, this ion may drift behind the thruster. Severe impingement of ions

onto spacecraft surfaces may result eventually in failure of devices or even a final

failure of the whole mission. If severe impingement is predicted, then a change of

design philosophy must be considered to reduce the impingement.

To accurately simulate the plasma plumes from a cluster of Hall thrusters requires

an accurate modeling of the complex physical plume mechanism on three-dimensional

meshes. A plasma plume is a complex rarefied flow with several species: atoms,

positively charged ions and negatively charged electrons. Traditionally, the compu-

tational simulation of plasma plume flows into vacuum is performed with a hybrid

particle-fluid approach. The direct simulation Monte Carlo (DSMC) method [12]

models the collisions of the heavy particles (ions and atoms) while the Particle In

Cell (PIC) method [16] models the transport of the ions in electric fields. The elec-

trons are modeled using a fluid description because they adjust their velocities more

quickly with their significantly lighter mass.

For the fluid electron model, the Boltzmann relation, Equation (2.6), is usually

adopted to compute the plasma potential. The Boltzmann relation requires that the

electrons be collisionless, isothermal, un-magnetized. A recently proposed detailed

fluid electron model by Boyd and Yim [17] was based on the conservation laws for
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electrons and is capable of providing accurate and detailed distributions for electron

temperature, plasma potential and electron velocity stream functions. This model

was successfully applied in a simulation of an axi-symmetric plasma plume firing

from a 200 W class Hall thruster. This model was briefly reviewed in Chapter II.

Taccogna [54] proposed a similar model with a further consideration of magnetic

field effects and performed an axi-symmetric simulation of plasma flows out of a Hall

plasma thruster.

In this study, three-dimensional plasma plumes from one, a cluster of two, and a

cluster of four 200 W class Hall thrusters are simulated with the DSMC-PIC meth-

ods. These simulations adopt the detailed fluid electron model [17] and a modified

treatment of backpressure with a consideration of facility effects is performed on

three-dimensional unstructured meshes. It is significant to mention that in the lit-

erature there are no other studies that have reported any similar work with such a

detailed treatment. As to three-dimensional plume simulations, in the past, Roy [47]

performed a calculation of ion thruster bacflow contaminations while Hammel [28]

reported a DSMC-PIC simulation of plasma plume flows out of an nozzle. For both

of these two works, the Boltzmann relations is adopted as the fluid electron model.

Section 5.2 briefly introduces background information from experiments, Sec-

tion 5.3 reviews the steps for a general DSMC-PIC hybrid method with several nu-

merical implementation issues, and finally Section 5.4 presents three three-dimensional

simulations and a discussion of results.

5.2 Background

The devices considered in the present study are a cluster of four BHT-200 Hall

thrusters manufactured by Busek, Co. Each thruster is operated at 200 W with a



131

nominal thruster level of 13 mN. The cluster of BHT-200 thrusters has been inves-

tigated experimentally [8] [60].

The data in [8] were taken in the Large Vacuum Test Facility (LVTF), in the

Plasmadynamics and Electric Propulsion Laboratory (PEPL) at the University of

Michigan. As illustrated by Figure 3.1, the LVTF is a large cylindrical vacuum

chamber with a diameter of 6 meters and a length of 9 meters. Figure 5.1 is a

photograph of the thrusters in operation. These four thrusters are configured in

a 2 by 2 grid with a center-to-center distance of 0.115 m. As shown in the same

photograph, there are four cathode-neutralizers located either above or at the bottom

of each thruster, and there is a 7 mm conic cap on the front face of each thruster

to protect it against ion sputtering. In operation, different numbers of thrusters

in this cluster can be turned on, and in [8], measurements are collected with one,

two and four thruster(s) in operation. Hence, to compare with the experimental

measurements and to understand the clustering effects, in this study, three particle

simulations are performed. In these simulations, only one plume from the thruster is

simulated, and the full plume field for the cases of two and four thrusters in operation

are obtained by reflections due to the symmetric configuration. For example, in the

simulation of a cluster of four thrusters, the simulation domain is a quarter of cylinder

with vertical and horizontal symmetric planes, this symmetric configuration reduces

the mesh size for a cluster of four thrusters compared to that for a cluster of two

thrusters and one thruster. Hence, the simulation of 4 thrusters in operation is the

most economic.

In operation, gaseous xenon effuses from the upstream end of the acceleration

channel. Some of these xenon atoms are ionized and then accelerated by the imposed

electric field in the rest of the acceleration channel. A current of electrons is emitted
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Figure 5.1: Four BHT-200 Hall Thrusters in Operation(Courtesy of PEPL).

from the cathode. One fraction of these electrons are accelerated while traveling

along the electric field towards the anode and are trapped by the magnetic field,

their high kinetic energy ionizes a fraction of xenon atoms, and eventually, these

electrons are depleted at the thruster anode. The rest of the electrons emitted from

the cathode travel downstream into the plume to neutralize it.

In the following simulations, the same thruster numbering as [8] is adopted: the

upper left, lower left, lower right and upper right thrusters are named as thruster 1,

2, 3 and 4 respectively. The origins of the simulation system are the cluster center,

the midpoint between two thrusters and a thruster center for the cases of 4, 2 and

1 thruster(s) in operation, correspondingly. The X-axis direction of the coordinate

system used in this simulation is along the plume direction, while the Y and Z axes

are the horizontal and vertical lines perpendicular to the plume directions. Figure 5.2

illustrates these coordinates.

The total pumping speed in the LVTF with four of the seven cryopumps in

operation for these experiments was 140,000 l/s on xenon resulting in a backpressure
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Figure 5.2: Illustration of Simulation Coordinates for 3D Simulations.

of 1.1 × 10−6 or 3.6 × 10−6 Torr for single and four thruster(s) in operation [8],

respectively. Faraday probes were used to measure angular profiles of ion current

density. A retarding potential analyzer was also used to measure the ion energy

distribution function in the plume far field. In addition, a floating emissive probe

and a triple Langmuir probe were used to measure the plasma potential, the electron

number density and the electron temperature.

Xenon is usually employed for the propellant in Hall thrusters. A plume from a

plasma thruster consists of light electrons with thermal speeds of 1 × 106 m/s, and

heavier ions or neutrals, such as fast single or double charged ions, Xe+, Xe++, slow

neutral xenon, and fast neutral xenon and slow ions due to CEX.
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5.3 Simulation Methods and Numerical Implementation Is-
sues

5.3.1 General Steps for the DSMC-PIC Methods

For particle simulations of plasma plume flow, heavy neutrals and ion particles

are simulated with the DSMC [12] and the PIC [16] methods, while the electrons are

modeled as a fluid because electrons can adjust themselves more quickly. The hybrid

DSMC-PIC simulation can be summarized with the following steps:

Step 1. (PIC): Allocate the charge of each ion inside a cell onto the cell nodes.

Step 2. (Fluid): Calculate plasma potential φ using a fluid electron model.

Step 3. (PIC): Calculate ionization in all cells. A fraction of neutrals will be

changed to ions.

∆ni = Cinani∆t (5.1)

Step 4. (PIC): Calculate the electric field on each node with the relation:

−→
E = −5 φ (5.2)

Step 5. (DSMC, PIC): Sample quantities inside each cell.

Step 6. (DSMC): Perform momentum exchange and CEX collisions inside each

cell.

Step 7. (DSMC, PIC): Introduce new particles (ions and neutrals) into the sim-

ulation domain from inlet boundaries.

Step 8. (PIC): Calculate the ion acceleration based on its location inside its cell.

Step 9. (DSMC, PIC): Move all particles with the time step. When particles move

across an outer boundary, they are removed from the simulation; when a neutral

particle collides with thruster walls, it rebounds back into the simulation domain

with a thermal velocity characterized by the wall temperature of 300 K; when an ion
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collides with the wall, it loses its charge and rebounds as a neutral.

In this study, magnetic field effects are neglected because the magnetic field

leakage is only expected to be significant right next to the thruster.

5.3.2 General Finite Element Solver for Poisson Equations

Each of Equations (2.7), (2.11) and 2.12 can be expressed as a general Poisson

equation [57]:

−5(P (x, y, z) · 5Q(x, y, z)) = S(x, y, z) (5.3)

where P (x, y, z) is a distribution of coefficients, Q(x, y, z) is a distribution of the

primary variable to be solved and S(x, y, z) is a known distribution of source terms.

For a two-dimensional or axi-symmetric simulation on a structured mesh, an

Alternative Direction Implicit(ADI) iterative solver [44] is usually adopted for sim-

plicity. However, there are several drawbacks for the ADI method:

i). It is not applicable, or is very difficult to implement, on unstructured meshes.

ii). For a structured mesh, depending on the geometry of the simulation, the

ADI method needs to be applied on each sub-domain separately with artificial inner

boundaries which may result in inaccuracy in the simulation results. This precludes

the application of ADI to complex geometries, even with structured meshes.

iii). The treatment of boundaries is not natural. This may result in inaccuracies

for the source terms on the first layer of nodes on boundaries. At the thruster exit,

the gradients are significant and a mistreatment of boundary source conditions will

spread the effects into the whole flow domain because of the elliptical property of

these equations. The first three layers of nodes close to the boundaries will be heavily

affected.

To simulate flows with very complex geometry, an unstructured mesh must be
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adopted and this actually precludes the ADI method. To address the above prob-

lems, a general purpose finite element solver applicable to two- and three-dimensional

structured and unstructured meshes is developed to solve the above three equations.

Compared with the ADI method, the finite element method is applicable on struc-

tured and unstructured meshes and can integrate the boundary conditions more

naturally and accurately.

The discrete, stiff matrix for a triangular cell can be found in [57], and a quadri-

lateral cell can be simply assembled as two triangles. For a three-dimensional tetra-

hedral cell with volume V and node coordinates of xi, yi, zi, i = 1, 2, 3, 4, suppose a

general linear solution in the cell by interpolating values on the four element nodes:

u(x, y, z) = ue(x, y, z) = a0 + a1x+ a2y + a3z (5.4)

The coefficients a0, a1, a2, a3 can be solved via the following group of equations:




1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4







a0

a1

a2

a3




=




u1

u2

u3

u4




(5.5)

Finally, after discretization, on a single tetrahedral cell, with an aid of a geometry
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matrix Be:

Be =
1

6V




−

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 y1 z1

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 y1 z1

1 y2 z2

1 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 y1 z1

1 y2 z2

1 y3 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x2 z2

1 x3 z3

1 x4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 z1

1 x3 z3

1 x4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 z1

1 x2 z2

1 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 z1

1 x2 z2

1 x3 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x2 y2

1 x3 y3

1 x4 y4

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1

1 x3 y3

1 x4 y4

∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣∣




Equation (5.3) changes to:
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


{sne} = 0 (5.6)

where une and sne are the unknown variables and known source terms on the four

element nodes.

A Dirichlet boundary condition

U = Ub(x, y, z)

can be achieved by directly arranging values in the complete source terms and the

corresponding rows and columns in the global stiff matrix. A Neumann boundary
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condition

∂U

∂n
= G(x, y, z)

along face n1n2n3 can be integrated by adding three extra terms 1
3
S123Gn1,

1
3
S123Gn2

and 1
3
S123Gn3 into the source terms. Usually G(x, y, z) = 0 means a natural boundary

condition, and a surface with such a boundary condition will not contribute any

effect to the global stiff matrix and global source terms, hence this element surface

can be omitted. There are boundary conditions ∂2Ψ/∂n2 = 0 for the electron stream

functions, therefore fortunately, the surface element contribution to the whole matrix

and source terms is zero as well. At the initialization stage, MONACO scans all

boundary element surfaces, collects the boundary conditions, stores them into three

arrays. When the finite element solver is called to solve these equations, the solver

directly obtains boundary information from these arrays.

The final complete stiff matrix is sparse, symmetric and positive definite. These

novel properties are not naturally guaranteed by a finite difference method or a finite

volume method. To fully take advantage of these properties, an efficient storage

scheme [44] is adopted which only requires a cost of O(n) where n is the total node

number. The iterative conjugate gradients method [44] is adopted to solve the final

linear equations. This method fully takes advantage of the sparse, symmetric and

positive definite properties of the global stiff matrix.

5.3.3 Derivative Calculation on an Unstructured Mesh

Several situations will require the calculation of derivatives on a node. Two

situations are Step 2 to calculate the source terms for Equations 2.7, 2.11, 2.12, and

Step 3 to calculate the electric field from a potential field. Besides accuracy, one

requirement for the optimal calculation scheme is to be applicable on both serial and
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parallel machines.

There are several options to calculate derivatives on unstructured meshes. One

of them is the least square method [28]. The basic idea of the least square method

can be illustrated with an example to calculate the electric field from a potential

field: assume the unknown gradients on one node are
−→
E (x, y, z) = (Ex, Ey, Ez), if

there are N nodes connected to this node with differences of plasma potential d(φ)i

and distance vectors dXi, then they form N × 3 relations which are overdetermined:

ME = dφ (5.7)

where M is an N × 3 matrix, E is a 3 × 1 vector, and dφ is an N × 1 vector. By

multiplying by a transposed matrix MT on both sides, this overdetermined matrix

is transformed to a 3 × 3 matrix and the equations are solvable.

One tetrahedral cell is enough to decide the derivatives on a specific cell node.

This scheme includes the effects from all nodes connected to a specific node, hence,

it yields accurate results. The least square method is also applicable on parallel ma-

chines. The only extra cost of this scheme is, at the beginning of a simulation, a table

of node connection relations must be gathered and saved for the whole simulation

process.

5.3.4 Weighting Schemes

A weighting scheme is a crucial step for a successful DSMC-PIC simulation with

the detailed fluid electron model. In Step 1, the ion number density at a specific node

must be accurately estimated by weighting the charge of ions in all cells connected

with this node. In Step 8, the acceleration for a particle is interpolated from the

electric field values on the same nodes. Generally, these two weighting schemes are

preferably the same, and the closer a particle to a node, the more influence this



140

particle will have on or from the node. In Step 3, a correct ionization source term

requires both valid charge density and valid neutral density allocated from particles

to cell nodes as well.

Usually for charge allocation, there exists two categories of weighting schemes.

The first category of weighting schemes is based on areas or volumes. In these

methods, a particle’s charge is allocated to cell nodes by the areas or volumes formed

by the particle’s position in the cell nodes. The particle’s position in a cell has an

important influence on the weight of its charge to be assigned on different cell nodes.

This scheme is expected to yield a higher accuracy and is very widely used in PIC

simulations. For example, Ruyten [48] presented a well-used scheme for structured

axi-symmetric meshes illustrated by Figure 5.3:

Sj =
(rj+1 − r)(2rj+1 + 3rj − r)

2(r2
j+1 − r2

j )
(5.8)

Sj+1 =
(r − rj)(2rj+1 + 3rj − r)

2(r2
j+1 − r2

j )
(5.9)

Si =
xi+1 − x

xi+1 − xi

(5.10)

Si+1 =
x− xi

xi+1 − xi
(5.11)

W (i, j) = SiSj (5.12)

W (i, j + 1) = SiSj+1 (5.13)

W (i+ 1, j) = Si+1Sj (5.14)

W (i+ 1, j + 1) = Si+1Sj+1 (5.15)

This scheme works accurately on cylindrical coordinates with structured rectangular

cells by satisfying both charge conservation and charge density conservation. In

the literature, there are reports that use similar weighting schemes on unstructured
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Figure 5.3: Particle Positions and Weighting Factors in Ruyten’s Density Conserva-
tion Scheme.

meshes based on volumes and areas. However, it will be shown later this is not a

proper scheme for a DSMC-PIC simulation of plasma flows on unstructured meshes,

especially with the detailed fluid electron model or ionization effects. The other

category of weighting schemes is expected to have a lower degree of accuracy since

a particle’s position in a cell does not have an influence on its weights to different

nodes, and density is not conserved. In this type of method, the charge density on a

specific node is calculated by summing up all particles’ charge inside a closed volume

enclosing the node, then dividing by the volume. This closed volume can either be all

the cells connected to this node, or, a fraction of these cells. Generally this category

of weighting scheme does not have problems associated with the first category, and

it can be used for a DSMC-PIC simulation with unstructured meshes.

There are two problems associated with the weighting schemes based on areas
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Figure 5.4: Effects of Weighting Scheme by Area/Volume on Unstructured Meshes.

or volumes on an unstructured mesh. Suppose there are a large number of particles

in each cell and the average number density is n. Weighting by areas or volumes,

similar to Ruyten’s scheme, will approximately distribute the ion or neutral density

equally onto the nodes forming this cell. Consider Figure 5.4, for a two-dimensional

mesh, on the right, the center node is shared by four cells, and the total charge

number density at the center node is n/4 × 4 = n. While for the unstructured

mesh on the left, the total charge number density will be n/3 × 6 = 2n. While

for three-dimensional unstructured tetrahedral cells, usually there are about 16 or

more cells connected to an inner node, hence the number density at that node will

be calculated as n/4 × 16 = 4n. It is obvious that, for an unstructured mesh, if

the weighting scheme by areas or volumes is applied, for a two-dimensional situation

with triangles the charge density at one node will be two times higher than its real

value, while for an unstructured three-dimensional situation, the estimated charge

density will be four or five times higher than the real charge density, depending on

how many neighboring cells are connected to this specific node. Another problem

is associated with the weighting scheme by areas or volumes. In Figure 5.4, the
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number density at a boundary node may be incorrect. For example, if node B in the

picture on the right is on a boundary, then with a weighting scheme based on areas

or volumes, the number density on node B will be n/4 × 2 = n/2. Compensations

will be necessary to correct the number density for all the boundary nodes on the

inlets, outlet, walls and symmetric axis. Failure to perform compensation may result

in some subtle problems in the simulation results. For example, on the symmetric

line of an axi-symmetric simulation, Ey is usually correctly forced to be zero, but,

some properties such as Ex on the axis and Ey on the layer of nodes next to the

axis, and source terms on the axis will not be correct if the density on the axis is

not compensated. Theoretically, a compensation of two times on the axis is only

approximately correct for the axi-symmetric situation due to radial effects.

If the Boltzmann relation, Equation (2.6), is used to compute the plasma poten-

tial, the overestimated charge density may not result in significant problems. The

mistake in plasma potential is globally offset by the logarithm function in Equa-

tion (2.6), and this error is further canceled in the calculation of the electric field

by Equation (5.2). As a result, even though the number density and the plasma

potential are calculated incorrectly by the weighting scheme of areas or volumes, the

electric field is almost correct. This is the possible reason why there are no reports

of this problem in the literature. However, weighting by areas or volumes for an

unstructured mesh is not a correct approach and should be avoided.

For the detailed fluid electron model, which includes detailed physical terms and

the potential is calculated by Equation (2.11), this mistake will create a false potential

field. Further, for the ionization source term in Equation (5.1), both the charge

density and the neutral density on a node will be overestimated, and a minimum

of 4 × 4 − 1 = 15 times higher source term will be calculated for the ionization
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process in Step 2. In the near field, the neutral number density is usually much

higher than the ion number density, hence, an overestimated ionization rate will

trigger a positive feedback for the ion number density. Finally, in the near field,

a false high accumulation of ion number density will be generated and completely

corrupt the potential field. For the detailed fluid electron model, where the potential

calculation is more sensitive than the Boltzmann relation, the weighting scheme

by areas or volume will trigger a chain reaction in ionization and finally invalidate

the simulation. Hence, the first category of weighting schemes based on areas or

volumes, is totally unusable on unstructured meshes for this detailed fluid model

with ionization effects.

For the second category of weighting schemes, usually a correct charge allocation

is always expected. In the literature, one option to calculate the charge density on

a specific node is by summing up all particles inside the cells around the node then

dividing by the total volume of all cells surrounding the node:

n =

N∑

j=0

Nj/

N∑

j=0

Vj (5.16)

In [28], another scheme is reported which is similar but more accurate than Equa-

tion (5.16) and requires a high quality mesh. The total charge of a particle is assigned

to the closest node from this particle. Though this scheme is physically accurate,

there are situations when the nearest node to the particle is not one of the cell nodes

forming the cell where the particle is located, such as regions near boundaries with

boundary constraints.

The most common defect for the second category of weighting scheme is that it

requires much cross node transportation on a parallel machine and it will be quite

inefficient. The charge and neutral allocation scheme adopted in this study is a simple
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one. First, the cell average values are calculated and then these values are averaged

onto the nodes in the current processor. Suppose there are N cells connected to a

node in one computer processor, and the jth cell has an average charge density nj,

then the charge density n on the node can be expressed as:

n =

N∑

j=0

nj/N (5.17)

This scheme does not require a complete list of cell average values for all cells physi-

cally connected to a node, but only cells in the same computer processor, hence, it is

efficient on a parallel machine without significant loss of accuracy. The interpolation

of electric field with the weighting scheme by areas or volumes is still correct and no

change is necessary.

To effectively suppress statistical scatter in the charge density, this study further

adopts a relaxation in charge and neutral density on a node:

nnew = 0.1nalloc + 0.9nold (5.18)

where nnew is the current charge or neutral number density, nalloc is the density

obtained from the just mentioned allocation scheme, and nold is the charge or neutral

number density used in the last time step. For steady flow simulations, this treatment

is effective in reducing statistical scatter.

5.3.5 Collision Dynamics

The DSMC method uses particles to simulate collision effects in rarefied gas flow

by collecting groups of particles into cells that have a size of the order of a mean

free path. In Step 6, pairs of particles inside a cell are selected at random and a

collision probability is evaluated that is proportional to the product of the relative

velocity and the collision cross section for each pair. The probability is compared
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with a random number to determine if that collision occurs. If so, some form of

collision dynamics is performed to alter the properties of the colliding particles. The

No Time Counter(NTC) method [12] is adopted to determine if a collision occurs

in this study. A special treatment to handle collisions between particles of different

weights will be presented later.

There are two types of collisions that are important in these Hall thruster plumes:

elastic, or momentum exchange(MEX) collisions and charge exchange (CEX)collisions.

The elastic collisions involve only exchange of momentum between the participating

particles. For atom-atom collisions, the Variable Hard Sphere [12] model is employed

and the collision cross-section of xenon is:

σel(Xe,Xe) =
2.12 × 10−18

g2ω
m2 (5.19)

where g is the relative velocity and ω=0.12 is related to the viscosity temperature

exponent for xenon. For atom-ion elastic interactions, one common choice is to use

the following cross section of Dalgarno et al. [22]:

σel(Xe,Xe
+) =

2.12 × 10−18

g
m2 (5.20)

Another choice, which is adopted in this study, is to set the MEX cross section equal

to the CEX cross section.

In all elastic interactions, the collision dynamics is modeled using isotropic scat-

tering together with conservation of linear momentum and energy to determine the

post-collision velocities of the colliding particles. Charge exchange concerns the

transfer of one or more electrons between an atom and an ion. For singly and doubly

charged ions, the following cross sections measured by Pullins et al. [45] and Miller

et al. [35] are used:

σel(Xe,Xe
+) = 1.0 × 10−20(87.3 − 13.6 log(

mcg
2

2e
))m2 (5.21)
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σel(Xe,Xe
++) = 1.0 × 10−20(45.7 − 13.6 log(

mcg
2

2e
))m2 (5.22)

where mc is the reduced mass.

5.3.6 Boundary Conditions

When an ion particle hits a wall, it loses its charge and reflects diffusely as a

neutral particle with a thermal velocity characterized by a wall temperature of 300

K. For the thrusters in this study, the front wall and the center protection cap are

dielectric, and the sheath voltage is significant. The sheath voltage for the front wall

can be estimated by a transformation of Equation (2.9):

φw = φ0 +

(−→
j

σ
− k5 (neTe)

ene

)
· d−→l (5.23)

where φ0 is the potential at the node next to the wall. For other wall locations, a

potential of 0 Volt is appropriate. The gradient of electron temperature is set to zero

at each wall.

Several macroscopic properties of the plasma are required as boundary condi-

tions for the computations. Specifically, the plasma potential, the electron stream

function and the electron temperature are required for all boundaries. Table 5.1

summarizes the boundary conditions for the stream function, the plasma potential

and the electron temperature, most of these values are the same as Reference [17].

As to electron stream functions, an essential requirement is, at both thruster exit

and the cathode exit, two Neumann boundary conditions must be specified to satisfy

the current density relations: ∂Ψ
∂n

= Ja

e
and ∂Ψ

∂n
= Jc

e
, correspondingly.

At the thruster exit, for all heavy species, the number density, velocity and tem-

perature are required. The setup employs a mixture of analysis and estimation based

on experimental data of the mass flow rate from anodes and cathodes, thrust, and
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total ion current. The neutrals are assumed to exit the thruster and cathodes at

the sonic speed corresponding to assumed values for their temperature. Finally, a

divergence angle of θ+ = 30 degree for the outer edge and θ− =20 degree for the inner

edges of the exit channel are assumed. The thruster and cathode wall temperature

are set to 300 K.

Boundary Outflow Wall Thruster Cathode Symmetric

Exit Plane

φ(V ) 2 0 or Eqn.( 5.23) 93.0 7.0 ∂φ
∂n

= 0

Ψ(m−1s−1) ∂2Ψ
∂n2 = 0 0 ∂Ψ

∂n
= Jc

e
∂Ψ
∂n

= Ja

e
∂Ψ
∂n

= 0

Te(eV) 0.6 1 6.0 2.0 ∂Te
∂n

= 0

Table 5.1: Boundary Conditions for the Detailed Electron Fluid Model.

5.3.7 Backpressure Treatment

Hall thrusters are designed for use in space, where almost perfect vacuum exists,

but they are tested in ground vacuum chambers such as the LVTF, where a finite

background chamber pressure always exists and that may result in adverse effects on

the performance of thrusters. Meanwhile, according to the discussions in chapter III,

the semi-decaying period for the evolution of background gas in a cylindrical chamber

can be expressed as:

τd =
V
√

2πm

αsp

√
kTw

=
L
√

2π

αs
√
RTw

(5.24)

For the LVTF, the semi-decaying period is on the order of one second with a chamber

length of 9 meters, 4 thrusters and 4 pumps in operation. Because a DSMC-PIC

simulation must use small time steps such as 1×10−7 sec, it takes over 50 million time

steps for the chamber background flow to reach a steady state. Further, considering

the space discretization cost, a full scale three-dimensional DSMC-PIC simulation is
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impossible. In this study, the three-dimensional simulation is limited to a reduced

scale of a cylindrical domain close to the thruster clusters. With this simplified

approach to simulate the plume flow inside a vacuum chamber, the background flow

must be properly estimated and included in the simulations.

As discussed in Chapter III, there are several key vacuum facilities effects that

have effects on the backpressure in a vacuum chamber, such as the vacuum pump

sticking coefficient, the vacuum pump area, and the chamber side wall. Among these

facility effects, the vacuum pump sticking coefficient has the most important effects.

For the experimental measurements in [8], four two-sided cryogenic pumps in LVTF

were operated. As pointed out in [9], propellant frost will build up on cryopump

surfaces and eventually will limit the pumping speed, hence, even though the nominal

sticking coefficient for xenon on steel is high at 15 K, in real experimental operation,

the sticking coefficient for pumps may be much lower. From the results in Chapter III,

the number density, backpressure, average velocity and velocity distribution function

at the pre-pump region are Equations (3.21), (3.25), (3.27)and (3.23).

Experimental measurements [8] indicated there was a backpressure of 4.78×10−4

Pa with four thrusters and four vacuum pumps (s=0.1460) in operation. With a mass

flow rate of 0.833 mg/sec from each anode and 0.098 mg/sec from each cathode,

the pump absorption coefficient computed from Equation (3.25) is 0.39, which is

consistent with the conclusions in Chapter III based on other measurements [59] in

the LVTF. The mean background flow velocity computed with Equation (3.27) is

about 6.0 m/sec with four thrusters and four pumps in operation.

In the particle simulations, the most convenient treatment of background pres-

sure is to adopt static background particles: inside each cell, there are a few particles

with velocities sampled from a zero-centered Maxwellian velocity distribution func-
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tion. These particles participate in collisions with normal particles and change the

velocities of other particles, but their positions and velocities do not change. In this

study, a similar background particle treatment is adopted with few modifications in

Chapter III. The number density calculated from Equations (3.25) is slightly less

than the values obtained directly by n = Pb/(kTw), and their velocities are assigned

from Equation (3.23), not a zero-centered Maxwellian distribution. There is a net

average velocity towards the thrusters for the background particles. Because Equa-

tions (3.25) and (3.26) consider multiple factors from pumps such as the pump area

and the absorption coefficient, thruster effects such as the mass flow rate, the cham-

ber effects such as the backpressure and properties of the propellant, it is reasonable

to expect a more accurate result than the traditional treatment of background static

particles with assigned velocities sampled from a zero-centered Maxwellian distribu-

tion.

5.3.8 Particle Weight

In this study, the inlet boundary conditions have quite different scales. For the

cathode, the diameter is about 5.08× 10−4 m, though the neutral number density at

the cathode exit is greater than that at the anode exit, the fluxes of ions and neutrals

from the cathode are smaller than those from the anode. To address this problem,

particle weighting is enabled in MONACO. Each particle introduced at the cathode

and anode is assigned with a relative weight ratio Wp. The real particle weight is

decided by multiplying this Wp with the local cell weight ratio Wc. When particles

travel from one cell into another, a clone process is performed based on the two cell

weight ratios, and this particle’s relative ratio does not change. Background static

particles are assigned with weight ratios as well.
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This treatment effectively resolves the problem of different fluxes from cathodes

and anodes. One issue for this different particle weighting is collisions, and it is

handled using the following procedure: when two particles collide, the heavier particle

is split into two particles: one split particle has the same weight ratio as the other

particle and a collision is performed between these two particles with the same weight;

the other split particle keeps the rest of the weight and does not participate in

collision. This treatment is quite similar to [18], which reported a simulation of flows

with trace species.

One issue should be handled carefully. In axi-symmetric simulations and three-

dimensional simulations, cell volumes change dramatically. For example, in the for-

mer case, cells at a large radius have a large volume while cells around the axis

have quite small volumes. In these three-dimensional simulations, cells at the outer

boundary and cells around the cathodes have quite different cell volumes. The rela-

tive particle weights for the background static particles are quite different, and can

be much smaller than those for a normal particle. When a normal particle and a

background static particle collide, if the normal particle’s weight ratio is greater than

the static particle, then a split of the normal particle should be processed. Failure

to perform this process results in a false velocity change for the normal particle.

This splitting scheme is quite effective for the problems in this study. One side-

effect of this scheme is it results in an increasing number of low-weight particles

due to collisions. For neutral particles, a special process is implemented to reduce

their number: if a neutral particle’s relative weight Wp is larger than a threshold

value Wthresh, it is kept in the simulation without a weight change; otherwise, it

is either discarded from the simulation, or kept in the simulation statistically by

changing its relative weight ratio to the threshold value. For ion particles, they
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are essential to the simulations, hence their weights are unchanged and all ions are

kept in the simulation. For DSMC-PIC simulations with background static particles

representing a finite backpressure, the process is like a slow diffusion process: a large

amount of slow ions slowly diffusing in the simulation domain. This represents a

problem to be addressed in a future study.

5.3.9 Code Implementation

In this study, there are some concrete code implementations and re-engineering to

improve MONACO interface and structure, and they are summarized in Appendix F.

5.4 Simulations and Results

In this study, three DSMC-PIC particle simulations are performed to simulate

plume flows from one, two and four BHT200 thrusters. Due to the setup symmetry,

only one thruster is needed in the simulation and the results for cases with two and

four thrusters in operation are obtained by symmetric reflections.

A specific PIC module is implemented in MONACO. Three unstructured meshes

are generated with the software Hypermesh [5]. The very detailed geometries of the

7 mm conic cap and the small cathode are included in the meshes. The cathode exit

plane is an orifice with a diameter of 5.08×10−4 m. It is a challenge for meshing and

the circular cathode exit plane is simplified with six triangles by conserving the same

exit area. Later simulation results indicate that the cathode has important effects

on the flowfield, hence, the preservation of the cathode geometry is quite essential.

All simulations use three static background particles per cell and all time steps are

set to 2 × 10−7 second.

Table 5.2 lists several details for these simulations. The finite element solver is

called every 10 time steps for Equations (2.7), (2.11), (2.12) and takes a significant



153

fraction of the simulation time. The simulations take 40,000 time steps to reach a

steady stage and another 20,000 time steps for sampling.

Ths Domain Triangular Tetra- Particles Time Machine

(cylinder) cells hedrons (million) (Hours)

1 Full 32,550 971,796 10.8 230 Parallel, 8 CPUs

2 1/2 34,058 829,243 6.3 160 Parallel, 8 CPUs

4 1/4 41,972 556,796 5.2 120 PC, 2.1GHz

Table 5.2: Simulation Details.

5.4.1 Axi-symmetric Benchmarks:Current Density for Single BHT200

To confirm the validity of new code implementation, an axi-simulation of the

plasma plume flow from a single BHT200 without background was performed and

the results were compared with another hybrid code, which was well-tested in the

past. Most results from both codes were compared and in general, the comparisons

were quite satisfactory. Among these results, the most sensitive benchmarks are the

current density at constant radius from the thruster center. And Figures 5.5 and 5.6

are two comparisons of the current density results sampled from a fixed radius of

25cm or 50cm in front of the thruster center. Both of the results show almost identical

results from these two codes.

5.4.2 Comparison With Measurements

Electron Temperature

Figures 5.7– 5.9 show contours of electron temperature with 1, 2 and 4 thrusters

in operation. With more thrusters in operation, the contours extend further down-

stream. Figures 5.10 and 5.11 shows comparisons of electron temperature along

several thruster centerlines and two cluster centerlines. It is significant to mention
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Figure 5.5: Comparison of Current Density Cross Fixed Radius from the Thruster
Center(R=25cm, 1 Thruster in Operation, without backpressure).
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Figure 5.6: Comparison of Current Density Cross Fixed Radius from the Thruster
Center(R=50cm, 1 Thruster in Operation, without backpressure).
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that the Boltzmann relation assumes a constant electron temperature and cannot

predict any variation. The detailed fluid electron model yields a non-constant elec-

tron temperature field that is more physically reasonable. In Figure 5.10, the circles

represent experimental measurements along the centerline of a thruster acceleration

channel with one thruster in operation. The solid line represents the corresponding

simulation result with one thruster in operation. The comparison indicates that the

numerical simulation results are close to the experimental measurement data. It is

also evident that with several thrusters in operation, the centerline electron temper-

ature is slightly different in the near field and has a large difference in the far field.

With more thrusters in operation, cluster centerline values and thruster centerline

values merge at a short distance from the thrusters, correspondingly. The closer

to the thruster exit, the higher the electron temperature, and the simulation results

predict that the electron temperature from different plumes merge at station X=0.08

m. The experimental data was obtained with a triple Langmuir probe. This is one

of the most important results in this study because these results clearly indicate the

superiority of this detailed electron model over the Boltzmann relation, and it clearly

displays the clustering effects as well.

Plasma Potential

Figure 5.12 shows contours of plasma potential in the plane y=0 with 4 thrusters

in operation. In the near field, the plumes are well separated while at a short distance

from the thruster exit plane they merge into one plume. Compared with the electron

temperature results, the plasma potential merges at a further downstream station,

X=0.15 m.

Figures 5.13, 5.14, 5.15 and 5.16 present comparisons of plasma potential along
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different centerlines and at the station X=0.05 m. The experimental data in these

three pictures were obtained with one or two thrusters in operation. In general,

these simulations yield lower plasma potentials than the experimental measurements,

especially for the situation of one thruster in operation. This defect is possibly related

with linear finite element used in this study and the sparse mesh in 3D simulations,

this problem will be explained in detail at the end of this chapter. Figure 5.15 shows

that the plasma potentials along different centerlines converge into one universal

distribution at about X=0.15 m, which indicates that the four or two plume flows

merge into one. These three figures also indicate that the numerical simulation

predicts lower potential peak values than the experimental measurements at specific

locations. However, they predict a matching distribution along the centerline passing

through the middle point of two thrusters, and the general shape of the computed
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Figure 5.14: Profiles of Plasma Potential (V) along Centerlines(II).

potential profile at X=0.05 m fits the experimental measurement as well.

Electron Number Density

Figures 5.17– 5.19 show the ion number density contours in plane y=0 with 1, 2

and 4 thrusters in operation. This plane intersects the 7 mm conic protection caps

and the cathodes. These figures indicate that there is a high ion number density

accumulated next to the protection cap, and the plumes from different thrusters

eventually merge into one. The bulges in the outer region of the contours close to

the thrusters result from the CEX effects and a large density of slow ions exists

in these regions. These figures evidently indicate the cathode and cluster effects:

the flowfield of one thruster is not symmetric about its axis and the plumes from

different thrusters interact. Another observation is that the value of ion number

density around the cathode is much higher than the value when one or two thrusters

are in operation. Though these simulations include the ion flux from the cathodes,
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the flux amount is quite small. The physical explanation for this phenomenon is

that neutrals emitted by the cathode collide with the plume beam, then due to CEX

effects, one fraction of the slow ions reflects upward and forward. Further, the three

cases also indicate that with more ions coming out from two or four thrusters, the

plume cores extend significantly downstream, and finally they merge into one plume

again.

Figures 5.20, 5.21 and 5.22 show electron number densities along different cen-

terlines and at station X=0.20 m. Figure 5.20 and 5.21indicate that the number

densities from all four plumes merge into one at the station around X=0.20 m while

two plumes merge into one at the station around X=0.50 m. Electron number density

obtained from a Langmuir probe contains significant experimental uncertainty [29].

Three different profiles of measured data by Brian Beal are shown representing two
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different corrections to the raw data. The profile labeled “sheath” assumes that the

probe collection radius is increased by a sheath of five Debye lengths, thus leading

to a reduction in plasma density. The profile labeled “Laframboise” incorporates

corrections due to the slightly different voltages applied to each of the three probes

in the instrument. The correction is sensitive to the ratio of electron to ion temper-

ature, and a ratio of one is assumed in the corrected data shown here. Comparisons

indicate that in general the numerical results predict significantly lower values than

the experiments. However, the sheath and Laframboise corrected data yield better

agreement with the simulation data.

5.4.3 Clustering Effect

It is interesting to observe some topographic patterns formed by clustering thrusters

in the near field number density. Figure 5.23 shows the ion number density at sta-

tion X=2 cm with 4 thrusters in operation. Figure 5.24 shows the corresponding
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plasma potential. Note that the contour increments are not uniform in both results.

Figure 5.23 indicates that with a cluster of four thrusters in operation, a special

three-dimensional structure occurs in the ion number densities. With two thrusters

in operation, the middle point between the two thrusters is an unstable saddle point

which has a lower potential than the plume core, but a higher potential value than

the far field. Hence, slow ions diffuse along all directions, there exists two spots close

to the cathodes with relatively high density of slow ions due to the CEX effects.

However, with four thrusters in operation, the topographic pattern of ion density in

the near field is quite different. The four thruster centers represent high potential

values because of the large amount of ions in the plume cores. When CEX happens,

slow ion particles may freely diffuse away along the electric field direction opposite to

the cluster center, hence low ion densities exist along four major diffusion directions

of 45 degree, 135 degree, 225 degree and 315 degree, as indicated by Figure 5.23.

Meanwhile, a portion of slow ions may travel along the electric field direction to the

cluster center, which has a relatively lower potential value than the plume core and a

zero value of electric field. With more slow ions accumulated at the cluster center, a

special cusp shape is formed at the cluster center. There are slow ions coming from

the four thruster plume beams, and at the same time, there are slow ions escaping

through the four low potential gaps between the thrusters, i.e. 0 degree, 90 degree,

180 degree and 270 degree. These escaping slow ions form a special pattern of a

four-leaved clover. There are four small secondary leaves in the contours as well,

which are generated by the cathode. A relatively large amount of slow ions are cre-

ated around the cathodes, without electric field effect, they should diffuse upwards

or downwards. However, with the effects of the electric field, these slow ions diffuse

outside along the four directions with the strongest electric field strength: 45 degree,
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135 degree, 225 degree and 315 degree. In the near field, a special topography is

formed: four strong plume cores with a low potential at the cluster center, 4 major

leaves and 4 secondary leaves represent diffusion directions for the slow ions. Further

downstream, the strengths of these four beams decrease quickly and eventually merge

into one plume. Probably Figure 5.23 is one of the most interesting results obtained

in this study, and it clearly illustrates the CEX effects, clustering effects and cathode

effects. In the corresponding neutral number density contours, Figure 5.25, neutral

particles simply diffuse along all directions, and no special topography is found.

Figure 5.26 shows several profiles of ion density along different centerlines. It is

evident that with four thrusters in operations, a fraction of slow ions originally dif-

fusing radially is trapped at the cluster center and due to electric field effects, these

slow ions flow backwards and escape to the back of the thruster. Hence, a severe
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impingement at the back of the cluster is expected because of a higher ion number

density.

5.4.4 Cathode Effects

Cathode effects can be illustrated by velocity and number density contours. Fig-

ures 5.27 – 5.30 show several contours of ion and atom velocity in a vertical plane

that includes the cathode for one and two thrusters in operation. These figures illus-

trate that the cathode has several effects on the ion and atom velocity distributions.

The existence of a cathode in all of these plots results in special areas around the

cathodes. In the near field close to the thruster exit, the ion velocity is accelerated by

the strong electric field, while further down stream, the ion velocity changes slowly

because of CEX effects. The latter effect is clearly illustrated by the contours of neu-
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Thruster 1 (1 Thrusters in Operation).

tral velocity where accelerations occur downstream. The neutral density around the

thruster is high, but quickly decreases in all directions. With a decreasing percentage

of slow neutrals, the percentage of fast neutrals, as a result of CEX effects, increases

at the same time. As a net effect, the neutral velocity is accelerated downstream.

The corresponding results for four thrusters in operation are quite similar with the

situation of two thrusters in operation, hence they are omitted. Figures 5.31– 5.32

clearly show the cathode effects. These figures indicate that it is important to include

the cathode in a plume flow simulation.

5.4.5 Analysis of Neutral Flow

The neutral number density can be predicted with a simple free molecular flow

model. Because the neutral flow is highly rarefied, the Knudsen number for neutrals

is about 55 for a channel height of 7.5 mm. Hence the neutral number density
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distribution, with four thrusters in operation, can be approximated by a free molecule

flow model with zero mean velocity from four small annular sources for the thrusters

and four small orifices for the cathodes. At any specific point with coordinates

(x, y, z) in front of the thrusters, the velocity phase at that point can only have non

zero values within specific solid angles from the four ring sources of thrusters and four

small orifices for the cathodes. The number density distribution at any point can be

estimated by the solid angles at that point subtended by these four ring sources and

four cathodes. The derivation process is straightforward but tedious and the final

expression for the solid angle is listed in Appendix G.

With four thrusters in operation, the final expression for the number density at
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any point in front of the thruster cluster is:

n(x, y, z) = nback + x(R2−r2)na

4π
(F (A1, A2) + F (A3, A4) + F (A5, A6) + F (A7, A8))

+nc

4π
(H(nx1, ny1, nz1, b, a, d) +H(nx2, ny2, nz2, b,−a, d)

+H(nx3, ny3, nz3, b,−a,−d) +H(nx4, ny4, nz4, b, a,−d)
(5.25)

With two thrusters or one thruster in operation, the corresponding results are a

fraction of Equation (5.25).

Figure 5.33 presents the comparison between the simulation results and the an-

alytical results along different centerlines with 4 thrusters in operation. Both the

simulation results and the analytical results present the same trends: The neutral

number density along the cluster centerline and the centerline of vertical/horizontal

planes first increases quickly then decreases slowly with a maximum value at a specific

distance from the thruster; the maximum value along the cluster centerline is further

downstream from the thruster face and is smaller than the value on the centerline

between two thrusters. The difference between simulation and analytical results can

be explained by the following factors omitted in this crude analytical model: wall

effects, the MEX and the CEX effects and the non-zero mean velocity at the exit

planes of anodes and cathodes. Especially, the wall effect is significant in the very

near field because the thruster wall area is large, and the non-zero average speed

may have significant effects as well. Despite these factors, the comparison still yields

a certain agreement.

The cathode is included in this simulation essentially as a source located off

the thruster wall, while for the axi-symmetric simulation in [17], the cathode was

treated as an annulus on the thruster front face without mass flux. In addition, the

protection cap was not included in [17]. Due to these differences, though most of
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the parameters are the same, these three-dimensional simulations yield some results

that are different from the axi-symmetric simulation in [17].

Here are two comments to end this discussion of results. The first comment

is about the drawbacks of axi-symmetric simulations. Firstly, with more than one

thruster in operation, axi-symmetric simulation is completely not applicable. Sec-

ondly, in simulation of a single thruster, the three-dimensional cathode is usually

either completely omitted or simplified as a ring source. However, from this study, it

is evident that the cathode position, angle, and amount of flux have significant effects

on the flowfield. Hence, these three-dimensional simulations should be superior to

over an axi-symmetric simulation. The second comment is about one defect in this

study. For the right hand side terms in Equations (2.7), (2.11) and (2.12), several

second order derivatives are involved, but the finite element adopted in this study
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employs a linear element. This problem is not severe because the derivation calcula-

tion scheme in this study permits a degree of resolution for these second derivatives,

and the source term is weak.

5.5 Conclusions

In this study, a comprehensive three-dimensional DSMC-PIC package with a gen-

eral purpose finite element solver and a detailed electron fluid model was developed

and applied to simulate the plasma plumes from a cluster of four Hall thrusters with

different numbers of thrusters in operation. Several major implementation issues

were reviewed and the backpressure was modeled using the results from Chapter III.

Generally, the simulation results yield some detailed flow patterns, and some re-

sults matched the available experimental measurements or analytical results. The

cluster effects are evidently captured. From the results along different centerlines,

different properties of the plumes merge into one plume at different locations from

X=0.05 m to X=0.60 m. The simulations also showed that the cathodes have signifi-

cant effects on the plume flows. The CEX effect is clearly illustrated in the simulation

results as well.



CHAPTER VI

SUMMARY, CONCLUSIONS AND FUTURE

WORK

This thesis includes three pieces of work:

1. Vacuum chamber facility effects;

2. Analytical free molecular flow solutions;

3. Three-dimensional particle simulations of plasma flows from a cluster of Hall

thrusters with the DSMC-PIC methods on unstructured meshes.

The following sections summarize these studies, list the major conclusions and

suggest possible long term and short term works for the future.

6.1 DSMC-PIC Simulations of Plasma Plume Flows From a
Cluster of Hall Thrusters

6.1.1 Summary and Conclusions

As the centerpiece of this thesis, several DSMC-PIC particle simulations were

performed for the plume flows from a cluster of four Hall thrusters with different

numbers of thrusters in operation. These simulations adopted a detailed fluid elec-

tron model to describe electron properties, including the electron velocity stream

177
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function, the plasma potential and the electron temperature. A general purpose

finite element solver was developed to solve these important electron properties.

Several implementation issues were reviewed as well.

One important finding through this study was, it is not proper to allocate charge

or neutral number density to nodes based on areas or volumes on unstructured

meshes. This problem was hidden and unnoticed on unstructured meshes if the

Boltzmann relation was used to compute the plasma potential. For the detailed

electron model, especially when including ionization effects, this scheme resulted in

a serious problem.

The geometries of a cathode and a protection cap were included in the simu-

lations. Another novel treatment in the simulations was that the facility effects

and backpressure flow were considered by using the analytical results obtained in

Chapter III.

The simulations were compared with available experimental data, and they indi-

cated the cathode had important effects on some flow property distributions. They

also clearly displayed CEX effects and the clustering effects. There exist complex

three-dimensional near field structures in the ion number density with four Hall

thrusters in operation. With four thrusters in operation, a severe impingement is

expected right behind the cluster center. Compared with axi-symmetric simulations,

these three-dimensional simulations had several improvements, and when compared

with the Boltzmann relation, the detailed fluid electron model displayed much supe-

riority in predicting the electron temperature as well.

6.1.2 Future Work

There are several tasks to be considered as future projects:
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1. Include magnetic field effects in plume flow simulations. With this imple-

mentation, the modeling package MONACO-PIC will be more complete and

applicable to more plasma plume simulations.

2. Implementation of higher order finite element solver. As pointed out in Chap-

ter V, several second order derivatives were involved on the right hand side

of source terms but the current finite element solver adopted a linear element.

This problem was alleviated by two facts: first these source terms were usually

weak; second, the least-square derivative calculation method on an unstruc-

tured mesh partially took consideration of these second derivatives. However,

since in three-dimensional simulations, the mesh is usually more sparse than

axi-symmetric simulations, implementation of a higher order finite element

solver will provide more accurate results.

3. Full scale three-dimensional simulation of plasma flows. As discussed in Chap-

ter III, a full scale three-dimensional simulation of plasma plume flow inside

a large vacuum chamber required a huge number of time steps. This simula-

tion involves background flow and plasma plume flows, and it was a multiple

timescale problem coupled in space as well. This problem represents a great

challenge for particle simulations.

4. Further improvements in the experimental version of MONACO. DSMC-PIC

simulations are generally complex and there are no standards to follow yet.

This experimental version of MONACO just provided a platform and many

further improvements can be implemented. For example, in the simulations

with background static particles, a large amount of slow ions were created due

to different particle weights and the splitting scheme. Seeking a more effective
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solution to reduce the slow ion number will improve the performance of the

package.

6.2 Vacuum Chamber Facility Effects

6.2.1 Summary and Conclusions

To understand the facility effects and the topography of background gas in a

vacuum chamber is important to the electric propulsion community. Chapter III

concentrated on this problem. The study was based on the fact that the background

flows in a vacuum chamber equipped with one-sided or two-sided cryogenic pumps

were free molecular. With several other assumptions, the background flow in a large

vacuum chamber were simplified through five different free molecular flows between

two plates, with or without a consideration of sidewall effects. The first model was

based on mass conservation, with a consideration of the mass flow into the chamber

via thrusters and that out of the chamber via pumps; while the other four models

were based on an analysis of the flux relations in two directions and several number

density relations at both vacuum chamber ends and the pumps.

The major conclusions from this study are:

1. No matter how efficiently the pumps work, there is always a finite background

pressure existing in a vacuum chamber. The backpressure is decided by many

factors, including the mass flow rate from thrusters, the propellant properties,

the chamber wall temperature, the cryogenic pump sticking coefficient, the

pump size, the chamber wall temperature and possibly the pump temperature.

2. There exists a semi-decaying period for the unsteady flow evolution. An un-

steady process takes three or four such semi-decaying periods to reach a steady

state, which presents a serious problem for a full scale three-dimensional par-



181

ticle simulation of plume flows in a vacuum chamber. The existence of this

semi-decaying period fact was confirmed by particle simulations of background

flow in a vacuum chamber equipped with one-sided pumps.

3. Generally, the flow inside a vacuum chamber does not follow a zero-centered

Maxwellian velocity distribution. The highest background average flow velocity

can reach over 100 m/s for gaseous xenon. Hence, the traditional treatment of

stationary background flows in DSMC-PIC simulations of plasma flows firing

from thrusters is not always accurate. Several suggestions were proposed to

improve the background flow treatment in particle simulations.

4. The cryogenic pump sticking coefficient in the LVTF, PEPL is close to 0.40 on

average. Depending on different working conditions, the actual value can vary

within a small range.

5. For vacuum chambers equipped with two-sided pumps, kinetic models with

diffusive or reflective pump wall conditions yielded almost the same results

for the vacuum pump sticking coefficient, the average backpressure and the

average background velocity. Because a real wall reflection is always between

completely reflective and completely diffusive, these two models predict very

accurate results.

6. For vacuum chambers equipped with one-sided pumps, sidewall effects can be

analyzed by further introducing a transportation coefficient χ, which can be

evaluated numerically for chambers with different cross-section shapes. Both

analytical solutions and numerical simulations indicated that the sidewall may

have a different role in deciding the average background pressure with different

values of the pump sticking coefficient, α.
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7. Usually, pumps are operated at low temperature, and the large amount of

slow particles reflected from the pump are confined locally around the pumps.

To estimate the average background pressure in a large chamber, numerical

simulations indicate that the treatment of setting Tp/Tw to unity is a reasonable

approach to obtain the average background pressure and average velocity in

the vacuum chamber.

This study provides five sets of analytical free molecular flow solutions to evaluate

the background pressure and the average background flow velocities with facility ef-

fects, including the vacuum pump sticking coefficient, the pump area and the sidewall

length effects. Chapter III presented several principles to study these types of prob-

lems as well. Following these principles can aid investigations of background flows in

other types of large vacuum chambers with complex geometry configurations. The

study in this work may apply to other chambers with different cross section shapes

and other usages as well, such as materials processing.

6.2.2 Future Work

There are several assumptions adopted during the analysis of the background flow

in vacuum chambers equipped with one-sided pumps or two-sided pumps. Though

the assumptions are correct for these types of chambers discussed in this study, there

are more complicated vacuum chambers where the above assumptions are not valid.

Several such special conditions are:

1. Unlike the assumption in this study that plume flows reflect at a chamber end

without pumps, plume flows may directly impinge on vacuum pumps in other

types of chambers.

2. Unlike the assumption in this study that particles cannot consecutively hit a
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pump, in several chamber configurations, particles can.

3. Unlike the assumption in this study that vacuum pumps are located on or close

to one chamber end, several vacuum chambers have distributed pumps on both

chamber ends and side walls.

Obviously, these assumptions will significantly complicate the analysis process.

6.3 Analytical Solutions to Free Molecular Effusion Flows

6.3.1 Summary and Conclusions

Chapter IV presented an initial effort to analytically study free molecular plasma

plume flows by neglecting the electric field and collisions. This study reinterpret

an important observation found by Narasimha with a new relation of velocities and

positions. To arrive at a specific point in front of the exit by starting from a point on

the exit, a necessary and sufficient condition is, the particle’s velocity components

satisfy the relation of velocities and positions. This relation takes different formats in

the flow problems studied in this chapter. It provided a one-to-one relation between

velocity spaces and hence provided a complete support to Narasimha’s observation,

provided integral domain boundaries to evaluate number density and velocities, and

for specific cases, it provided integral variable changes to simplify the integral process.

Free molecular flows out of a thin slit, a rectangular exit, a concentered rectangu-

lar exit, a circular exit and an annular exit with a zero average exit velocity, and free

molecular flows out of a thin slit with a nonzero average exit velocity were studied.

Exact solutions were obtained for the first two cases but only exact expressions were

obtained for the other three cases. However, evaluation of these exact expressions

was straightforward.
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DSMC simulations were performed to validate these analytical results. To com-

pare with the analytical free molecular flow solutions, the collision function in the

DSMC simulations was disabled. Most comparisons were quite satisfactory or even

identical. These flows shared the same patterns: there was a region around the exit

where the exit effect was quite significant, and in the far field, the stream lines were

almost straight. For the last case, analytical results indicated that as the average

exit velocity increased, the plume flows were confined in a narrower region around

the axis.

6.3.2 Future Work

Other free molecular flows should be investigated analytically and numerically as

consecutive problems. Though the results to these problems will be closer to real

plume flows, they will be complex as well:

1. Free molecular flows out of a rectangular exit, with a non-zero average exit

speed.

2. Free molecular flows out of a circular exit, with a non-zero average exit speed.

3. Free molecular flows out of an annular exit, with a non-zero average exit speed.

Studies of these problems will provide complete and concrete analytical solutions,

at the kinetic level, to analyze plasma plume flows in space.
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APPENDIX A

Nomenclature

ai coefficient for the ith node in a tetrahedral cell

b, a, d x, y, z distances from a cathode to the cluster center

Be geometry matrix for a single tetrahedral cell

ce mean electron thermal velocity

Ci ionization coefficient

d atomic diameter

D chamber diameter

e unit charge

−→
E electric field vector

f(C) velocity distribution function

FX+ mass flux rate passing station through X from one side

FX− mass flux rate passing station through X from the other side
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G(x, y, z) value for Neumann boundary condition

g relative velocity

H, L chamber length

hc combustion enthalpy

J free charge current density

JA anode electron current density

JC cathode current density

k Boltzmann constant

Kn Knudsen number

ṁ mass flux rate into vacuum chamber

m atomic mass, or mean mass of exhaust products

mc reduced mass

n plasma number density, or number of nodes

na neutral number density from anode

nc neutral number density from cathode

nin number density for flux into the vacuum chamber

nx, ny, nz normal of cathode exit plane

nX+ number density for particles passing through station X from one side
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nX− number density for particles passing through station X from the other

side

−→n surface normal

pe electron pressure

Pb chamber backpressure

P (x, y, z) variable for the generalized Poisson equations

Q(x, y, z) coefficients for the generalized Poisson equations

−→r distance vector between two points

Rc cathode orifice radius

R gas constant, or circle radius

R1,R2 inner and outer radius for an annular exit

r distance between two points

s area ratio, = Sp/Sc

Sp pump surface area

sne source term on cell nodes

Sc chamber cross-sectional area

S(x, y, z) source terms for the generalized Poisson equations

T temperature

TH heavy particle temperature



189

Tp pump plate temperature

T̃pw temperature ratio, = Tp/Tw

ue linear variable inside a tetrahedral cell

uex average exit velocity

une variable value on tetrahedral cell nodes

U, V, W mean velocity

U0 mean inlet velocity

Ub(x, y, z) value for Dirichlet boundary condition

V cell or chamber volume

Ve electron velocity vector

Vw thermal velocity,
√

2kTw/πm

Vp thermal velocity,
√

2kTp/πm

vth thermal speed

xi, yi, zi node coordinates

α pump sticking coefficient

β = (2RT )−1

χ particle conductance percentage from one chamber end to the other end

δ molecular distance
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εi ionization energy for xenon, =12.7 eV

ε particle conductance percentage from chamber wall to one chamber end

γ specific heat ratio

κe electron thermal conductivity

κ ratio of annulus inner and outer radius,=R2/R1

λ mean free path

λd Debye length

νe electron collision frequency, = νei + νen

νei ion-electron collision frequency

νen neutral-electron collision frequency

ω viscosity temperature exponent

ωp plasma frequency

Ω solid angle in velocity phase space or physical space

φ plasma potential

ψ electron velocity stream function

ρ background density

ρ0 initial background density

σ plasma conductivity
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σi reference cross section for xenon

σel reference cross section for elastic collisions

τ mean collision time

θ+ divergence angle for the outer channel edge

θ− divergence angle for the inner channel edge

τd semi decaying period

subscript

back background

c chamber

e electron

i ion

n neutral

ref reference value

w wall
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APPENDIX B

Integrals Used In This Dissertation

erf(x) = 2√
π

∫ x

0
exp(−x2)dx, erf(∞) = 1

∫
1

(u2+a2)3/2du = u
a2(u2+a2)1/2 + C

∫
1

(u2+a2)2
du = u

2a2(a2+u2)
+ 1

2a3 arctan(u
a
) + C

∫
1

u2+a2du = 1
a
arctan(u

a
) + C

∫ π

−π
c2 sin2 θ

a2+c2 cos2 θ
dθ = 2π

√
1 + c2/a2 − 2π

∫
1

a+b cos θ
dθ = 2√

a2−b2
arctan(

√
a−b
a+b

tan θ
2
) + C

∫
1

a2 cos2 θ+b2 sin2 θ
dθ = 1

ab
arctan( b tan u

a
) + C

∫
1

a+b sin θ
dθ = 2√

a2−b2
arctan a tan(u/2)+b√

a2−b2
+ C

∫ π

−π
sin θ

a+b sin θ
dθ =

∫ π

−π
(1

b
− a

b(a+b sin θ)
dθ) = 2π

b
(1 − a√

a2−b2
), (a > 0)

∫ π

−π
sin2 θ

a+b sin θ
dθ = 2aπ

b2
( a√

a2−b2
− 1), (a > b > 0)

∫ B

A
1

(x2+a2)
√

x2+a2+b2
dx = 1

ab

[
arctan( bB

a
√

a2+b2+B2
) − arctan( bA

a
√

a2+b2+A2
)
]
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APPENDIX C

Derivations for Free Molecular Flow Out of a

Rectangular Slit, U0 = 0

n(X, Y, Z) = (β
π
)3/2

∫∞
0
du
∫ +H

−H
dz
∫ +L

−L
dy u2

X2 exp(−βu2 X2+(Y −y)2+(Z−z)2

X2 )

= (β
π
)3/2X−2

∫ +H

−H
dz
∫ +L

−L
dy

√
π X3

4β3/2(X2+(Y −y)2+(Z−z)2)3/2

= X
4π

∫ +H

−H

[
(L−Y )dz

(X2+(Z−z)2)
√

X2+(L−Y )2+(Z−z)2
+ (L+Y )dz

(X2+(Z−z)2)
√

X2+(L+Y )2+(Z−z)2

]

= 1
4π

[
arctan (L−Y )(H−Z)

X
√

X2+(L−Y )2+(H−Z)2
+ arctan (L−Y )(H+Z)

X
√

X2+(L−Y )2+(H+Z)2

]

+ 1
4π

[
arctan (L+Y )(H−Z)

X
√

X2+(L+Y )2+(H−Z)2
+ arctan (L+Y )(H+Z)

X
√

X2+(L+Y )2+(H+Z)2

]

U(X,Y,Z)√
2RT0

= 1
n
√

2RT0
(β

π
)3/2

∫∞
0
du
∫ +H

−H
dz
∫ +L

−L
dy u3

X2 exp(−βu2 X2+(Y −y)2+(Z−z)2

X2 )

= X2

2nπ
√

π

∫ +H

−H
dz
∫ +L

−L
[X2 + (Y − y)2 + (Z − z)2]−2dy

= X2

2nπ
√

π

∫ H−Z

−H−Z

[
L−Y

2[X2+z2][X2+(L−Y )2+z2]
+ L+Y

2[X2+z2][X2+(L+Y )2+z2]

+ 1

2
√

(X2+z2)3
arctan L−Y√

X2+z2
+ 1

2
√

(X2+z2)3
arctan L+Y√

X2+z2

]
dz

= 1
4nπ

√
π

(
H−Z√

(H−Z)2+X2
(arctan L−Y√

(H−Z)2+X2
+ arctan L+Y√

(H−Z)2+X2
)

+ H+Z√
(H+Z)2+X2

(arctan L−Y√
(H+Z)2+X2

+ arctan L+Y√
(H+Z)2+X2

)

+ L−Y√
(L−Y )2+X2

(arctan H−Z√
(L−Y )2+X2

+ arctan H+Z√
(L−Y )2+X2

)

+ L+Y√
(L+Y )2+X2

(arctan H−Z√
(L+Y )2+X2

+ arctan H+Z√
(L+Y )2+X2

)

)
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V (X,Y,Z)√
2RT0

= 1
n
√

2RT0
(β

π
)3/2

∫∞
0
du
∫ +H

−H
dz
∫ +L

−L
dy u3

X2

Y −y
X

exp(−βu2 X2+(Y −y)2+(Z−z)2

X2 )

= 1
nπ

√
2RT0

(β
π
)3/2

∫ +H

−H
dz
∫ +L

−L
X4

2β2[X2+(Y −y)2+(Z−z)2]2
Y −y
X3 dy

= X
4nπ

√
π

∫ +H

−H

(
1

X2+(L−Y )2+(Z−z)2
− 1

X2+(L+Y )2+(Z−z)2

)
dz

= X
4nπ

√
π

[
1√

(L−Y )2+X2
(arctan H−Z√

(L−Y )2+X2
+ arctan H+Z√

(L−Y )2+X2
)

− 1√
(L+Y )2+X2

(arctan H−Z√
(L+Y )2+X2

+ arctan H+Z√
(L+Y )2+X2

)

]

W (X,Y,Z)√
2RT0

= 1
n
√

2RT0
(β

π
)3/2

∫∞
0
du
∫ +H

−H
dz
∫ +L

−L
dy u3

X2

Z−z
X

exp(−βu2 X2+(Y −y)2+(Z−z)2

X2 )

= 1
nπ

√
2RT0

(β
π
)3/2

∫ +H

−H
dz
∫ +L

−L
X4

2β2[X2+(Y −y)2+(Z−z)2]2
Z−z
X3 dy

= X
4nπ

√
π

∫ +L

−L

(
1

X2+(Y −y)2+(Z−H)2
− 1

X2+(Y −y)2+(Z+H)2

)
dy

= X
4nπ

√
π

[
1√

(H−Z)2+X2
(arctan L−Y√

(H−Z)2+X2
+ arctan L+Y√

(H−Z)2+X2
)

− 1√
(H+Z)2+X2

(arctan L−Y√
(H+Z)2+X2

+ arctan L+Y√
(H+Z)2+X2

)

]
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APPENDIX D

Derivations for Free Molecular Flow Out of a

Circular Slit, U0 = 0

n(X, 0, Z) =
∫∞
0
du
∫ R

0
dr
∫ 2π

0
ru2

X2 (β
π
)3/2 exp(−βu2 X2+(Y −y)2+(Z−z)2

X2 )dθ

=
∫ R

0
dr
∫ 2π

0
r
√

π
4X2 (β

π
)3/2[βX2+(Y −y)2+(Z−z)2

X2 ]−3/2dθ

=
∫ R

0
dr
∫ 2π

0
Xr
4π

[X2 + Z2 + r2 − 2rZ sin θ]−3/2dθ

= X
4π

∫ 2π

0
[ 1√

X2+Z2
− 1√

X2+Z2+R2−2RZ sin θ
+ (
∫ R

0
Z sin θ

(X2+Z2+r2−2rZ sin θ)3/2dr)]dθ

=
∫ 2π

0
[ 1√

X2+Z2
− 1√

X2+Z2+R2−2RZ sin θ
+ (
∫ R

0
Z sin θ

(X2+Z2+r2−2rz sin θ)3/2dr)]dθ

= X
2
√

X2+Z2
− X

4π

∫ π

−π
dθ√

X2+Z2+R2−2RZ sin θ
+ X

4π

∫ π

−π
Z2 sin2 θdθ√

X2+Z2(X2+Z2 cos2 θ)

+ X
4π

∫ π

−π
Z sin θ(R−Z sin θ)dθ

(X2+Z2 cos2 θ)
√

X2+Z2+R2−2RZ sin θ

= 1
2
− X

4π

∫ π

−π
[ dθ√

X2+Z2+R2−2RZ sin θ
− Z sin θ(R−Z sin θ)dθ

(X2+Z2 cos2 θ)
√

X2+Z2+R2−2RZ sin θ
]

U(X,0,Z)√
2RT0

= 1
n
√

2RT0

∫∞
0
udu

∫ R

0
dr
∫ 2π

0
ru2

X2 (β
π
)3/2 exp(−βu2 X2+(Y −y)2+(Z−z)2

X2 )dθ

=
∫ R

0
dr
∫ 2π

0
X2

2β2n
√

2RT0
(β

π
)3/2r[X2 + r2 + Z2 − 2rZ sin θ]−2dθ

=
∫ R−Z sin θ

−Z sin θ
dr
∫ 2π

0
X2

2πn
√

π
r+Z sin θ

[X2+r2+Z2−2rZ sin θ]
dθ

= 1
2πn

√
π

∫ π

−π

(
X2dθ

2(X2+Z2)
− X2dθ

2(X2+Z2+R2−2RZ sin θ)
+ Z sin θdθ

2(X2+Z2 cos2 θ)
×

[
R−Z sin θ

X2+Z2 cos2 θ+(R−Z sin θ)2
+ arctan((R−Z sin θ)/

√
X2+Z2 cos2 θ)

(X2+Z2 cos2 θ)1/2
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+ Z sin θ
X2+Z2 cos2 θ+(−Z sin θ)2

+ arctan((Z sin θ)/
√

X2+Z2 cos2 θ)

(X2+Z2 cos2 θ)1/2

])

= X2

2πn
√

π

(
π

X2+Z2 − π√
(X2+Z2+R2)2−4R2Z2

+
∫ π

−π

[
Z2 sin2 θdθ

2(X2+Z2)(X2+Z2 cos2 θ)

Z sin θ(R−Z sin θ)dθ
2(X2+Z2+R2−2RZ sin θ)(X2+Z2 cos2 θ)

+ Z sin θ(R−Z sin θ)dθ

2(X2+Z2 cos2 θ)3/2 arctan R−Z sin θ√
X2+Z2 cos2 θ

+ Z sin θ
2(X2+Z2 cos2 θ)3/2 arctan Z sin θ√

X2+Z2 cos2 θ

])

= X2

2πn
√

π

(
π

X
√

X2+Z2
− π√

(X2+Z2+R2)2−4R2Z2
+

+
∫ π

−π

[
Z sin θ

2(X2+Z2 cos2 θ)3/2 arctan Z sin θ√
X2+Z2 cos2 θ

+

+ Z sin θ(R−Z sin θ)dθ
2(X2+Z2+R2−2RZ sin θ)(X2+Z2 cos2 θ)

+ Z sin θdθ
2(X2+Z2 cos2 θ)3/2 arctan R−Z sin θ√

X2+Z2 cos2 θ

]
dθ

)

W (X,0,Z)√
2RT0

= 1
n
√

2RT0

∫∞
0
wdu

∫ R

0
dr
∫ 2π

0
ru2

X2 (β
π
)3/2 exp(−βu2 X2+(Y −y)2+(Z−z)2

X2 )dθ

=
∫ R

0
dr
∫ 2π

0
X

2βn
√

2RT0
(β

π
)3/2r(Z − r sin θ)[X2 + r2 + Z2 − 2rZ sin θ]−2dθ

=
∫ R−Z sin θ

−Z sin θ
dr
∫ 2π

0
X

2πn
√

π
(X+Z sin θ)(−X sin θ+Z cos2 θ)

[X2+r2+Z2 cos2 θ]2
dθ

=
∫ R−Z sin θ

−Z sin θ
dr
∫ 2π

0
X

2πn
√

π
XZ cos(2θ)+sin θ(−X2+Z2 cos2 θ)

[X2+r2+Z2 cos2 θ]2
dθ

= X
2πn

√
π

[ ∫ 2π

0
( −(Z/2) cos(2θ)dθ

[X2+(R−Z sin θ)2+Z2 cos2 θ]
+ (Z/2) cos(2θ)dθ

[X2+Z2]2
)

+
∫ R−Z sin θ

−Z sin θ
− sin θ

[X2+r2+Z2 cos2 θ]2
drdθ +

∫ R−Z sin θ

−Z sin θ
X2 sin θ+2Z2 sin θ cos2 θ

[X2+r2+Z2 cos2 θ]2
drdθ

]

= 1
2πn

√
π

[ ∫ 2π

0
−(Z/2) cos(2θ)dθ

[X2+R2+Z2−2RZ sin θ]
−

sin(θ)dθ√
X2+Z2 cos2 θ

(arctan R−Z sin θ√
X2+Z2 cos2 θ

+ arctan Z sin θ√
X2+Z2 cos2 θ

)+

+ sin θ(X2+2Z2 cos2 θ)dθ

2(X2+Z2 cos2 θ)3/2 (arctan R−Z sin θ√
X2+Z2 cos2 θ

+ arctan Z sin θ√
X2+Z2 cos2 θ

)

+ sin θ(X2+2Z2 cos2 θ)(R−Z sin θ)dθ
2(X2+Z2 cos2 θ)(X2+Z2+R2−2RZ sin θ)

+ Z sin2 θ(X2+2Z2 cos2 θ)dθ
2(X2+Z2 cos2 θ)(X2+Z2)

]
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APPENDIX E

Derivations for Free Molecular Flow Out of a Slit,

U0 > 0

n(X, Y ) =
∫ +∞
−U0

du
∫ (u+U0) tan θ2

(u+U0) tan θ1

β
π

exp(−β(u2 + v2))dv

=
∫ +∞
0

V dV
∫ θ2

θ1

β
π

exp(−β(U0
2 + V 2 − 2U0V cos θ))dv

= exp(−βU0
2)

π

∫ +∞
0

∫ θ2

θ1

d exp(−βV 2)
−2

exp(2βU0V cos θ)dθ

= exp(−βU0
2)

2π
[(θ2 − θ1) + 2

∫ +∞
0

∫ θ2

θ1
βU0 cos θ exp(−βV 2 + 2βU0V cos θ)dV dθ]

= exp(−βU0
2)

2π
[(θ2 − θ1) + 2

∫ θ2

θ1
βU cos θ exp(βU0

2 cos2 θ)dθ
∫ +∞
−U0 cos θ

exp(−βt2)dt]

= exp(−βU0
2)

2π
[(θ2 − θ1) +

√
π
β

∫ θ2

θ1
exp(βU0

2 cos2 θ)βU cos θ[1 + erf(
√
βU0 cos θ)]dθ]

= exp(−βU0
2)

2π
(θ2 − θ1) + 1

4
(erf(

√
βU0 sin θ2) − sgn(θ1)erf(

√
βU0 sin |θ1|))

+

√
β/π

2

∫ θ2

θ1
exp(−βU0

2 sin2 θ)U0 cos θerf(
√
βU0 cos θ)dθ

V (X,Y )√
2RT0

= 1
n
√

2RT0

∫∞
−U

vdu
∫ (u+U0) tan θ2

(u+U0) tan θ1

β
π

exp(−β(u2 + v2))dv

= 1
n
√

2RT

∫∞
0
V 2dV

∫ θ2

θ1

β
π

sin θ exp(−β(U0
2 + V 2 − 2U0V cos θ))dv

= 1
4
√

πn

[
exp(−βU0

2 sin2 θ1) cos θ1(1 + erf(
√
βU0 cos θ1))

− exp(−βU0
2 sin2 θ2) cos θ2(1 + erf(

√
βU0 cos θ2))

]
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U(X,Y )√
2RT0

= 1
n
√

2RT0

∫∞
−U0

(u+ U0)du
∫ (u+U0) tan θ2

(u+U0) tan θ1

β
π

exp(−β(u2 + v2))dv

= 1
n
√

2RT0

∫ +∞
0

V 2dV
∫ θ2

θ1

β
π

cos θ exp(−β(U0
2 + V 2 − 2U0V cos θ))dv

= β
nπ

√
2RT0

exp(−βU0
2)
∫∞
0

∫ θ2

θ1

d exp(−βV 2)
−2β

V cos θ exp(2βU0V cos θ)dV dθ

= exp(−βU0
2)

2πn
√

2RT0

∫∞
0

∫ θ2

θ1
cos θ(1 + 2βU0V cos θ) exp(−βV 2 + 2βU0V cos θ)dθ

= exp(−βU0
2)

2πn
√

2RT0
[
∫ θ2

θ1
exp(βU0

2 cos2 θ) cos θ

√
π/β

2
(1 + erf(

√
βU0 cos θ))

+
∫ +∞
0

2βUV cos2 θ exp(−βV 2 + 2βU0V cos θ)dV ]dθ

= exp(−βU0
2)

2nπ
√

2RT0

[ ∫ θ2

θ1

(√
π/β

2
exp(βU0

2 cos2 θ) cos θ(1 + erf(
√
βU0 cos θ))

)
dθ

+U0(θ2−θ1)
2

+ U0(sin(2θ2)−sin(2θ1))
4

+
√
βπ
∫ θ2

θ1

(
U2

0 cos3 θ(1 + erf(
√
βU0 cos θ)) exp(βU0

2 cos θ)

)
dθ

]

The following relation is used in the derivation process for U(X, Y ):

∫∞
0

∫ θ2

θ1
2βU0V cos2 θ exp(−βV 2 + 2βU0V cos θ)dV dθ

=
∫∞
0

∫ θ2

θ1
−(d exp(−βV 2))U0 cos2 θ exp(2βU0V cos θ)dθ

=
∫ θ2

θ1
(U0 cos2 θ +

∫∞
0

2U0
2 cos3 θβ exp(−βV 2 + 2βU0V cos θ)dV )dθ

= U0(θ2−θ1)
2

+ U0(sin(2θ2)−sin(2θ1))
4

+
√
βπ
∫ θ2

θ1
U0

2 cos3 θ(1 + erf(
√
βU0 cos θ)) exp(βU0

2 cos θ)dθ



199

APPENDIX F

Code Implementation

The DSMC-PIC simulations of the plume flows out of a cluster of thrusters,

which were discussed in Chapter V, were performed with an experimental version of

MONACO. This short Appendix is devoted to a review of the many new features

and changes in this experimental version of the code.

F.1 Problems

As reviewed in Chapter II, MONACO-V3.0 is a flexible DSMC simulation package

written in C language with many features including:

1. capable of performing 2D/AXI/3D simulations.

2. capable of using structured/unstructured meshes, hence, flows with quite com-

plicated geometries can be simulated.

3. capable of simulating flows with multiple species and chemical reactions.

4. good data structure with effective performance on serial and parallel machines.

However, even with these excellent features, MONACO-V3.0 is not a perfect particle

simulation package. There are some issues in adding new modules into it due to

problems in its structural design.
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The most severe problem for MONACO-V3.0 is a lack of control layer and sep-

arations between code functionalities and code interfaces. In essence, though with

many good features, MONACO-V3.0 is a process oriented package instead of an

object oriented package. To maintain the original modules’ capabilities with an in-

troduction of a new module, a new compilation variable will have to be added to

achieve conditional code compilation, and new information will be presented in the

code and increase the difficulties of code readability and maintainability. In a large

research group with many group members working on different derivative methods

from the standard DSMC method, such as the PIC method, the Information Preser-

vation(IP) method, two-phase flow with gases and solid particles and hybrid methods

with CFD, different versions of MONACO must be kept. This presents a significant

problem of maintainability.

F.2 Solutions

To solve the structural problem, while adding a PIC module into MONACO, sev-

eral special remedies are introduced. These remedies include adopting two important

design patterns in software engineering, Singleton and Facade [26].

Singleton The intent of this pattern is to ensure a class only has one instance,

and provide a global point of access to it. It serves as a global variable making an

object accessible anywhere in the code. Because the Singleton class encapsulates its

sole instances, it can have strict control over how and when clients access it. Because

this pattern reduces name space, it is an improvement over global variables, as it

avoids polluting the name space with global variables that store sole instances. More

detailed discussions and examples can be found in Reference [26].

Facade This pattern provides a unified interface to a set of interfaces in a sub-
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system. Facade defines a higher-level interface that makes the subsystem easier to

use. This facade introduces a facade object that provides a single simplified interface

to the more general facilities of a subsystem, which will minimize the communica-

tion and dependencies between systems. This pattern provides a simple default view

of the subsystem that is good enough for most clients. It can add layers to the

subsystems which can have different usage. Hence, facade can be used to define an

entry point to each level and it shields clients from subsystem components, thereby

reducing the number of objects that clients deal with and making the subsystem

easier to use. This pattern increases the ease of use and generality of software and

results in the subsystem being more reusable and easier to customize. More detailed

discussions and examples can be found in Reference [26].

F.3 Implementations

Several essential modifications are implemented in this experimental version of

MONACO, including utilizations of the Singleton and Facade patterns:

1. C++ classes are introduced. Hence, a true Object Oriented Programming

style is achieved.

2. Several control classes, simulation engines, are introduced to provide as a major

control layer in the code. Exactly one instance of this control class is initialized.

Meanwhile, this control class is a derived class from a base class which can trace

back to an abstract class as shown in Figure F.1. During the simulation, the control

code initializes an engine object by a control card in a parameter file, as shown in

the code in Figure F.2. This treatment results in a Singleton pattern and avoids a

busy interface and compilation variables.

3. The most base class, AbstractEngine, provides all kinds of interfaces that will
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Figure F.1: Relations Among Different Classes of Simulation Engines.

Figure F.2: Part of Major Control Code.
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be used in the simulation. The interface types are defined as pure virtual without

function bodies. Hence, this class achieves the Facade pattern. For example, in

Figure F.2, with different simulation methods, there are different cell initialization

functions wrapped in different classes, such as a standard two-dimensional DSMC

simulation and an axi-symmetric DSMC-PIC simulation. In the new experimental

version of MONACO, different function bodies are provided for the two corresponding

classes, with the same interface, i.e. function names and parameter list are defined

in class AbstractEngine. With a different configuration of parameters, MONACO

can perform different types of simulations without a recompilation. With this ap-

proach, interfaces and functionalities are clearly separated, and information hiding

is achieved.

4. All the functions in all classes but AbstractEngine are defined as virtual.

Hence, unless a concrete function body is declared in a current class, by default,

MONACO will locate a function body for this current class from its base classes.

This treatment ensures a compact code with better maintainability and ease of use.

5. Most old functions in MONACO-V3.0, are kept as global methods and they are

called inside the engine classes with wrappers. This arrangement ensures the validity

of the new experimental version of MONACO by essentially using old functions and

avoiding a busy interface.

6. All the good features of MONACO-V3.0 are preserved. After re-engineering,

this experimental version can run on serial machines and parallel machines with

unstructured or structured meshes. The update with C++ and classes does not

corrupt the merits of MONACO-V3.0.

7. Particle weight are enabled. Particles are assigned a relative weight ratio when

they enter the simulation domain at inlets via cathodes and anodes.
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8. Implemented various sampling tools. Current density at different angles of

fixed radius, energy spectrum on special points can be obtained with these tools.

9. Card controlling is achieved. Usually in DSMC-PIC simulations, there are

many combinations of parameters and options, hence, like a general feature of a

commercial solver, control cards are enabled with a configuration file. This provides

many dynamic controls which can be conveniently turned on and off. For example,

the following card defines an ion velocity profile at the thruster exit, parameters

such as the outer divergence angle and inner divergence angles can be easily changed

outside the code while a simulation is performing. By remove the � , this card is

disabled and the ion velocity will assume a default profile defined in another basic

input file.

� THRUSTER EXIT PROFILE 30.0 20.0 2 0.01125 3.75e-3

10. Many frequently used functions are declared as inline functions to achieve

higher performance.

These changes significantly improved the architecture of MONACO, and en-

hanced its readability, maintainability and ease of use. Meanwhile, this version

has achieved good expansion capabilities for the future. Theoretically, DSMC and

all its derivative methods, can be united with ease in this experimental version of

MONACO. The only necessary step to add a new method is to consider a proper

existing class to derive from, and add a new class into MONACO with different new

functions sharing the same interfaces defined in class AbstractEngine.
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APPENDIX G

Derivations for Neutral Number Density

Distribution

Ω =
∑4

0

∫
x

R3
i
dsi +

∑4
0

∫ (x−b)nxj+(y−ai)nxj+(z−dj)nxj

R3
j

dsj

=
∑4

i=0

∫ 2π

0
x

R3
i
dθ +

∑4
0

∫ (x−b)nxj+(y−ai)nxj+(z−dj)nxj

R3
j

dsj

= x(R2−r2)
2

∫ 2π

0
dθ

(x2+(y−(a+ R+r
2

cos θ)2+(z−(a+ R+r
2

sin θ)3/2

+x(R2−r2)
2

∫ 2π

0
dθ

(x2+(y−(−a+ R+r
2

cos θ)2+(z−(a+ R+r
2

sin θ)3/2

+x(R2−r2)
2

∫ 2π

0
dθ

(x2+(y−(a+ R+r
2

cos θ)2+(z−(−a+ R+r
2

sin θ)3/2

+x(R2−r2)
2

∫ 2π

0
dθ

(x2+(y−(−a+ R+r
2

cos θ)2+(z−(−a+ R+r
2

sin θ)3/2

+H(nx1, ny1, nz1, b, a, d) +H(nx2, ny2, nz2, b,−a, d)

+H(nx3, ny3, nz3, b,−a,−d) +H(nx4, ny4, nz4, b, a,−d)

= x(R2 − r2)
(
F (A1, A2) + F (A3, A4) + F (A5, A6) + F (A7, A8)

)

+H(nx1, ny1, nz1, b, a, d) +H(nx2, ny2, nz2, b,−a, d)

+H(nx3, ny3, nz3, b,−a,−d) +H(nx4, ny4, nz4, b, a,−d)
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where

H(nx, ny, nz, b, a, d) =





πR2
c((x−b)nx+(y−a)ny+(z+b)nz)

((x−b)2+(y−a)2+(z+d)2)3/2 , S > 0

0, S < 0

S = (x− b)nx + (y − a)ny + (z − d)nz, F (Ai, Aj) = E(

√
2Aj

Ai + Aj

)/(Ai + Aj)
3/2

E(x) is the complete elliptical integrals, and

A1 = (y − a)2 + (R+r
2

)2 + x2 + (z − a)2, A2 = (R + r)
√

(y − a)2 + (z − a)2

A3 = (y + a)2 + (R+r
2

)2 + x2 + (z − a)2, A4 = (R + r)
√

(y + a)2 + (z − a)2

A5 = (y − a)2 + (R+r
2

)2 + x2 + (z + a)2, A6 = (R + r)
√

(y − a)2 + (z + a)2

A7 = (y + a)2 + (R+r
2

)2 + x2 + (z − a)2, A8 = (R + r)
√

(y + a)2 + (z + a)2

The above derivation process uses the elliptical calculus formula [21]:

∫ π/2

−π/2

dθ

(a+ b sin θ)3/2
=

2

(a+ b)3/2
E(

√
2b

a + b
)
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ABSTRACT

THEORETICAL AND NUMERICAL STUDIES OF PLUME FLOWS

IN VACUUM CHAMBERS

by

Chunpei Cai

Chairperson: Professor Iain D. Boyd

This thesis consists of three parts: a study of facility effects on the background

flow in large vacuum chambers; an analytical study of free molecular flows out of

exits with different shape representing thruster plumes; and particle simulations of

plasma plume flows from a cluster of Hall thrusters.

The first part of this thesis discusses the facility effects on large vacuum chambers,

which is quite important to the Electric Propulsion (EP) community. Based on the

fact that the background flows in large vacuum chambers equipped with cryogenic

pumps are free molecular, five models are proposed to study the average background

pressure and flow velocity and their relation to several facility effects, such as pump

sticking coefficient, pump size, wall and pump temperatures, and chamber sidewall

length. The analysis are based on the mass flow rates into and out of the cham-

ber, the fluxes along two directions and various number density relations at various
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stations such as chamber ends and vacuum pumps. As an unsteady process, a back-

ground flow evolves exponentially and there exists a semi-decaying period. This

semi-decaying period is of the order of seconds and presents a challenge to a full-

scale three-dimensional particle simulation of plasma plume flows in a chamber. The

background flow in a large vacuum chamber can not be considered to follow a zero-

centered Maxwellian distribution and some modifications of backpressure for particle

simulations are proposed. Analysis of existing experimental measurement data in-

dicates that on average, the pump sticking coefficient for the Large Vacuum Test

Facility, in the University of Michigan is about 0.4. Generally, background pressures

decrease as pump sticking coefficients or pump areas increase. Vacuum chamber

sidewall length has a different effect when combined with a large pump sticking coef-

ficient or a small pump sticking coefficient. Numerical simulations prove the validity

of several results. This study provides five sets of exact analytical free molecular

flow solutions, including detailed velocity probability distribution functions for back-

ground flow particles. The general principles and processes can be used to guide

studies of other types of vacuum chambers with more complex configurations.

The second part of the thesis develops several sets of analytical solutions to free

molecular flows out of exits with different shapes. It is demonstrated that the plasma

plume flows expanding into vacuum can be studied analytically as a combination of

several free molecular flows, if the electric field and collision effects are omitted. There

exists a unique relation of velocity and positions. A particle’s velocity components

satisfying this condition is the necessary and sufficient condition that the particle can

arrive at a specific point in front of the thruster exit while starting from one specific

location on the exit. Free molecular flows out of a thin slit, a rectangular slit, a

concentered rectangular exit, a circular exit and an annular exit with a zero average
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exit velocity, and free molecular flows out of a thin slit with a nonzero average exit

flow velocity are studied. Six sets of exact analytical solutions or exact analytical

expressions are obtained for the number density and velocity distributions in front

of the exits. The solutions to the last problem include both geometry factors and

the nonzero average exit velocity factors.

The last part of the thesis presents several three-dimensional particle simulations

of plasma plume flows from a cluster of Hall thrusters. A detailed electron fluid

model is used to solve important electron properties such as plasma potential and

electron temperature. A finite element solver is developed to solve the equations of

the electron properties on unstructured meshes. Several important implementation

issues are discussed and one significant finding is that the class of particle-to-node

weighting schemes based on areas or volumes on an unstructured mesh is inaccurate.

This problem is not obvious if the Boltzmann relation is used to determine the

plasma potential; however, if the detailed electron model is used to calculate the

plasma potential, especially when ionization effects are included in the simulation,

then the class of allocation schemes yields invalid results. The other significant

treatment that distinguishes these simulations is that background static particles

representing the backpressure are assigned velocities sampled from a distribution

that takes into consideration the facilities effects. These simulations indicate that

the plume flows from a cluster of four thrusters form complex three-dimensional

near field structures. For example, the contours of electron number densities in

the near field include a special four-leaved clover shape with another four secondary

leaves. Compared with the Boltzmann relation, this study indicates that the detailed

electron model is more comprehensive. Effects due to clustering and the cathodes

are clearly demonstrated by the simulation results. Even though three-dimensional
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simulations are more expensive and complex, they have many advantages over axi-

symmetric simulations.


