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CHAPTER I

Introduction

The following introductory sections provide a brief overview to electric propulsion;

a discussion of the historical background; operation and types of field emission electric

propulsion (FEEP); and the motivation and organization of this thesis.

1.1 Specific impulse and the rocket equation

A space propulsion system accelerates a spacecraft by applying a thrust force.

This usually occurs by expelling a propellant mass at high velocity. Electric propul-

sion (EP) is a form of advanced propulsion that is rapidly becoming the standard

choice for positioning satellites and other items launched from Earth. Unlike a chem-

ical rocket, which relies on the stored internal energy in the molecular bonds of its

propellant, an electric rocket’s energy is obtained from an external power source. No

longer limited by chemical reaction energies and instead only by available power, EP

has a very high mass efficiency. This efficiency is measured in seconds of specific

impulse (ISP ); roughly the number of seconds for which one pound of propellant

will produce one pound of thrust. Various forms of EP rockets have ISP values of

thousands of seconds, compared to standard chemical rockets which have around 400

seconds.

1
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The average exit velocity of the ejected propellant ve, is directly related to the

thrust and mass efficiency, as seen in Eq. (1.1). Here, F is the thrust force and ṁ is

the mass flow rate, ṁ = dm
dt

.

ISP =

∫ t

0
F dt

g
∫ t

0
ṁ dt

(1.1)

If the thrust and mass flow rate are constant over time, then Eq. (1.1) reduces to

Eq. (1.2), where ve is the exhaust velocity.

ISP =
F

ṁg
=
F

ẇ
=
ve
g

(1.2)

Chemical rockets have an upper limit of exhaust velocity of a few kilometers per

second. Due to restrictions of chemical combustion, ve,chemical ≤
√

2hc

m
, where hc

is the combustion enthalpy. To change the motion of body by a given velocity

increment ∆v requires consuming a certain fraction of the initial massminitial. Rocket

performance can be understood using Newton’s 3rd Law,

m
dv

dt
= ṁve (1.3)

where the product of mass and acceleration comes from the product of mass flux and

propellant exhaust velocity. Replacing ṁ by dm
dt

and integrating Eq. (1.4) gives the

final relation of exhaust velocity to the mass ratio of the spacecraft [229].

∫ vfinal

vinitial

∂v
ve

=
∫ mfinal

minitial

∂m
m

mfinal

minitial
= exp

(
−∆v

ve

) (1.4)

This result implies that to deliver a useful mass fraction, the exhaust velocity

should be on the order of the needed velocity increment ∆v [113]. The single stage,
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gravity-free version of the Tsiolkovsky “rocket“ equation is Eq. (1.5) and it can be

seen that at higher specific impulses, the propellant fraction drops drastically due to

the exponential term.

mpropellant

minitial

= 1− exp

(
− ∆v

g · ISP

)
(1.5)

Here, the initial mass is the sum of the payload, structure and propellant.

minitial = mp,s +mpropellant (1.6)

For example, a change in technology that increases a spacecraft’s Isp from 225 sec-

onds to 1,300 seconds could extend the workable lifetime of a north-south station

keeping (NSSK) geosynchronous satellite from five to twenty years [19]. With elec-

tric propulsion exhaust flows up to 110 km/s, the usefulness of this higher propellant

efficiency becomes obvious [250].

1.2 Electric propulsion background

With their specific impulses 1.3 to 30 times greater than chemical propulsion,

electric propulsion possesses several notable advantages. For satellites in orbit, the

mass of fuel or structures containing that fuel are upwards of 50% of the total orbited

mass. The greater efficiency of electric propulsion can drastically reduce the needed

volume and mass of that propellant. Therefore, spacecraft can be made much lighter,

now fitting in a smaller rocket and resulting in reduced costs. The change in fuel

mass could be exchanged for additional payload, making it a more capable satellite.

Or, the same configuration could be used, now allowing for a significantly longer

traveling range and the consideration of previously impossible missions. In addition

to large mass savings, by avoiding combustion electric propulsion does not need an
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oxidizer. Finally, by using easily stored inert propellants such as xenon, EP has

increased safety margins [34].

The history of EP has spanned over a century and filled with significant discov-

eries. The benefits of electric over chemical propulsion were first pointed out by

Robert Goddard in 1906 [97, 221]. Another EP pioneer was Hermann Oberth in

the mid-1940’s. His major electric propulsion contributions were not from a specific

technical invention, but defining, publicly and unambiguously, EP as a worthwhile

endeavor [43]. These men were followed by Ernest Stühlinger in the early 1960’s,

who wrote one of the definitive books of the time on the field [221] and who re-

cently won the lifetime recognition award from the International Electric Propulsion

Conference (IEPC). Detailed analysis of the advantages of electric propulsion tech-

nologies can be found in the literature, including other University of Michigan theses

[34, 65, 132, 215].

1.2.1 Weaknesses of electric propulsion

It is very important to note, however, that current EP systems are severely re-

stricted in their mass throughput and total impulse because high power demands

per kg of propellant reduce the practical mass flow rate and operational lifetime is

too short to compensate for this low ṁ. They produce very little thrust, from µN to

10s of Newtons of force instead of the mega-Newtons some chemical systems produce

[35, 2]. This restricts electric propulsion to a role as a secondary propulsion system,

one that requires standard chemical rockets to get to low Earth orbit.

In addition, since these systems require electrical power, there has to be the

corresponding inclusion of electricity-generating apparatus on board. This added

power equipment can be quite large, and as specific impulse increases, the power
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conditioning mass will grow quite substantially. For the most mass-efficient systems,

the power/thrust ratio can be above one million Watts per Newton.

Hofer notes that due to this “power supply penalty“ of the mass required to

provide the necessary power, a higher specific impulse is not necessarily ideal [113].

In fact, the optimal setup is given by Eq. (1.7)

ve
∆v
· exp

(
∆v

ve − 1

)
− 1

2

(
vc
ve

)
− 1

2
= 0 (1.7)

where vc is the characteristic velocity given by Eq. (1.8), αpow = Psys/Mpp is the

specific power, tp is the mission time and ηsys = 1
2
gIsp

F
Psys

is the system efficiency.

vc =
√

2αpowtpηsys (1.8)

Using today’s EP technology, for missions with a total velocity change in the neigh-

borhood of 10 km/s, the ideal main propulsive thruster has an approximate specific

impulse of 3,000 seconds.

1.2.2 Types of electric propulsion

Electric propulsion can be broadly divided into three mechanisms through which

thrust is produced: electrothermal, electromagnetic and electrostatic devices [122,

132, 221].

Electrothermal Electrothermal electric propulsion devices use electric power

to heat a propellant, which is then accelerated through a nozzle to produce thrust.

Arc jets, cyclotron resonance thrusters and resistojets are examples of this form of

propulsion. Performance is limited by the maximum sustainable temperature of the

body or the heating elements. As of 2006, typical systems have specific impulses

of 300-600 seconds, thrust of 0.1-1 Newtons and power levels of 0.1-2 kW. Some
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researchers have measured arc jet powers up to 100 kW [132]. A schematic of an arc

jet is shown in Fig. (1.1).

Figure 1.1: Arcjet schematic [89]

Electromagnetic Electromagnetic electric propulsion devices use a combination

of electric (E) and magnetic (B) fields to accelerate the propellant. Subject to per-

pendicular E×B fields, a plasma current j is created. The plasma typically remains

neutral, so space charge limitations are not a concern. The magnetic field is large

enough to alter both electron and ion trajectories. Magnetoplasmadynamic (MPD),

pulsed plasma thrusters (PPT) and traveling-wave accelerators are examples of elec-

tromagnetic force devices. The various implementations of this propulsion method

inhabit totally different operation regimes. MPD thrusters run at extremely high

power, using over 100 kW steady-state. These theoretically generate relatively large

forces of 10-1,000 N with specific impulses of 1,500-8,000 seconds [132]. The PPTs,

as the name indicates, utilize pulsed energy from a capacitor bank. They can use

a wide range of power rates and generate the corresponding thrust, but suffer from
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frozen flow losses and therefore rarely attain even 30% mass efficiency. Figure (1.2)

displays a PPT using a block of Teflon as propellant. A capacitor bank discharges,

which ablates and accelerates the polyamide, producing µN of force.

Figure 1.2: Teflon pulsed plasma thruster schematic [17]

Electrostatic Electrostatic electric propulsion devices accelerate charge-carrying

propellant particles in a static electric field. An electron source in the near field neu-

tralizes the exhaust after it travels through the nozzle. Ion, Hall and FEEP thrusters

are examples of generating force through fields. By using the electric field instead

of heat to accelerate the particles, material thermal issues are largely alleviated,

resulting in higher performance. Maximum force constraints in ion engines occur

because of space-charge limitations, although Hall thrusters are not impacted this

way. Child’s Law (or the Child-Langmuir Law) gives the maximum space-charge

limited current in one dimension as a function of the length and potential differ-

ence along that dimension. It assumes that ions fall freely under the influence of

the electric field, which is true if ion-neutral collisions are negligible [41]. Across a
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surface-electrode gap dte, the maximum current density jsc is given by Eq. (1.9).

jsc =
4ε

9d2
te

√
2qiU3

mi

(1.9)

Typical systems have specific impulses of 2,000-10,000 seconds, thrust of 0.1 µN - 1 N

and power draws from 1-5,000 Watts. Figure (1.3) shows a Hall thruster in operation.

It uses the Hall effect to trap electrons and which then ionize the propellant. The

propellant acceleration occurs from a axial electric field.

Figure 1.3: Hall thruster schematic [219]

Figure (1.4) displays the relative range of specific impulse and thrust/power for

a variety of EP technologies. A particular type of electrostatic space rocket system

is called “FEEP“, for f ield emission electric propulsion. This thesis is based on

simulating this propulsion system. It will be described in greater detail in Sec. (1.4),

but first the basic process and operation will be outlined.
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Figure 1.4: Electric propulsion specific impulse and power ranges

1.3 Field emission

Field emission refers to the process of using a strong electric field to produce a

spray of charged ions and/or droplets. The potential difference between an electrode

and a liquid surface is balanced by the surface tension of the fluid. As a result,

the surface deforms to an equilibrium shape of a cone. The strong field intensity at

the tip then causes a propellant jet to form, composed of ions and droplets [189].

The phenomenon of ion and droplet evaporation from charged liquid surfaces is

of considerable interest in many areas of science and technology. Some of the many

realms in which field emission occurs include: electron microscopy [114], data displays

[31], carbon nanotube fluorescence [33], ink jets [217] and thermoelectric coolers [47].

Field emission driven by electrostatic forces has been studied for decades [77],

first being analyzed by Schottky in 1923 [203]. As in conducting solids [171], ion

evaporation from liquids occurs only when surface electric fields are in excess of

a critical material-specific threshold [84, 119]. Field-ion emission from metal sur-
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faces was examined initially by Tsong and Müller [251]. When used for propulsion,

thrusters use the field emission process by accelerating the ions and droplets past an

electrode, producing thrust through high velocity expelled mass.

1.3.1 Field emission theory

Fowler-Nordheim (FN) theory describes the field emission process in terms of a

tunneling current density J through a potential barrier between a planar surface and

a vacuum [80]:

J =
e3E2

8πhτι2(ζ)
exp

(
−8πω(ζ)

√
2meτ 3

work

3heE

)
(1.10)

where e is the elementary electrical charge, E is the electric field, h is Planck’s

constant, τwork is the material work function, me the mass of the electron, and two

empirical functions ι(ζ) = 1 + 0.1107ζ1.33 and ω(ζ) = 1 − ζ1.69 [108]. Physically, ζ

is a material-specific parameter describing relative electron attachment. A larger ζ

implies greater charge mobility. For indium with τwork = 4.12 eV , an electric field of

2.5× 109 V
m

and an emission area of 40 µm2, ι(ζ) =1.02, ω(ζ) =0.876 and I=196 µA.

ζ =
1

τwork

√
e3E

4πε0
= 9.212× 10−6

√
E (1.11)

However, conventional FN theory does not represent accurately the experimental

behavior of field emitters. This deviation is because the emitters are curved, typically

with a radius of curvature of around 50 µm. The emission from a sphere mounted

on a tapered shank can be calculated by defining non-dimensional variables:

ς = τworkκ
eE

, χ = rκ, ε = e2

8πε0rnτwork

(1.12)
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o(ς, ε) = 3
2

∫ χ2

χ1

√
1− 1

ς
(1− 1

χ
)− ε( 1

χ2−1
+ 2

χ
− 1

χ2 ) dχ

r(o) =
o(ς,ε)+2ς ∂o

∂ς
−2ε ∂o

∂ε

3ς

(1.13)

and using Eq. (1.13) to replace ι(ζ) with r(o) and ω(ζ) with o(ς,ε)
ς

in Eq. (1.10). The

limits χ1, χ2 are values of χ, greater than unity, at which the integrand is zero [63].

Substituting the values of Eq. (1.13) into Eq. (1.10) gives a corrected high-curvature

current. The new approach accurately matches field emission characteristics for

emitters with less than a 20nm radius of curvature [62], while planar approaches

over predict the current by over 100%.

1.3.2 Taylor cones

For a fluid assumed to be a perfect conductor (see Sec. 4.1), the conical surface

is an equipotential. Therefore to balance the surface tension, the potential gradient

must be proportional to 1√
r
. Expressed in polar coordinates, the electric field which

satisfies this stress condition has the potential [245]

U = U0 + A1

√
rP 1

2
(cos θ) (1.14)

where the line θ = 0o or θ = 180o is the axis of the cone, A1 is an integration constant

and P 1
2

is the Legendre function of order 1
2
. If θ = θ0 is the conical equipotential

surface where U = U0, then P 1
2
(cos θ) = 0. The only angle within that range at

which the forces balance is at θ0 = 49.3o where the forces of electrostatics and surface

tension are mathematically in balance [245], as shown in Fig. (1.5). As the potential

on the ring electrodes increases, the liquid curvature increases until reaching this

half-angle and a Taylor cone forms. [84].

However, the space charge effects near an infinitely fine cone point prevent field
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Figure 1.5:
Taylor cone spray from a liquid field emitter. The liquid bottom forms
a 490 angle, while ionic emission occurs in the upper half.

evaporation; this can be avoided by allowing for a small jet on top of the underlying

Taylor shape. The size of these small extended jets varies depending on mass flow

rates and tip radii of curvature. These protrusions have been observed at approxi-

mately 100 nm long and 30 nm in diameter [123, 232, 258]. The fluid velocity, width

and height of the jet scale as Eq. (1.15) [257, 259]. The distance from the jet tip to

the electrode is labeled dte, while the current is I, the electric field E and the charge

q.

vjet
[
m
s

]
= 0.01×E√

8πρ

rjet[m] = 0.01
√

mionI
πρqvjet

hjet[m] = 0.01× dte
(
rjetE

vjet

)2

(1.15)

At the point of jet initiation, field emission occurs around the tip.

1.3.3 Droplet behavior

Droplets as well as ions form from field emitting tips as the emitting current

increases. For the Austrian Research Center - Seiborsdorf (ARCS) design, this
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changeover occurs above 10 µA [238]. The exact initiation point depends on ma-

terials, electrostatic potential and needle radius of curvature. Two different droplet

sources are presented in the literature [238, 257, 259]. From a field emitter, either

Rayleigh or Faraday droplets can be generated. Rayleigh droplets are generated due

to the instabilities of the jet on the tip of the Taylor cone near to where ions are

formed [58]. This is the dominant type of droplet for mass efficiencies of 10-100%.

Faraday droplets are bigger in size and are formed on the shank of the Taylor

cone via surface wave instabilities [102]. This variety of droplet is primarily found

in emitters operating from 0− 10% mass efficiency. Compared to Rayleigh droplets,

when Faraday droplets are the primary type of emitted propellant experiments have

observed a flatter current/efficiency relationship [237, 238].

Rayleigh limit

Efforts to determine the minimum mass necessary for a stable droplet began over

one hundred years ago. Lord Rayleigh showed that the spherical shape of a drop of

radius a, surface tension σ and charge q remains stable as long as the fissility χ does

not exceed unity [193].

χ ≤ q2

64π2ε0σa3
(1.16)

Above that point, the repulsive forces between electrons outweigh the attractive

force from surface tension. The droplet is now unstable and emits charged microjets

to equalize these forces. This emission occurs because smaller droplets remain stable

with a greater relative charge due to the smaller radii increasing the surface tension

forces. The destruction of the old droplet and formation of multiple smaller droplets

is known as Rayleigh discharge or Coulomb fission [127], and is depicted in Fig. (1.6).
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Figure 1.6: Coulomb fission of overcharged droplets [60]

Thompson and Engel rewrote Rayleigh’s expression using atomic mass m and

density ρ [246]; critical fissility is more easily calculated with this version. The

radical equation on the right hand side of Eq. (1.17) provides the minimum mass

necessary to retain stability, while the factor 1.15 × 10−6 converts the kg/C of the

indium droplet to the number of molecules per free electron.

1.148× 10−6MTCR

[
# in. atoms

e−

]
=
m

q

[
kg

C

]
≥

√
ρ2a3

36ε0σ
(1.17)

Figure (1.7a) shows how this critical minimum number of atoms per charge varies

as the droplet diameter changes from 0 to 10 µm, while Fig. (1.7b) highlights just

the 0 to 1 µm diameter range. Overall, Fig. (1.7) demonstrates that the minimum

stable MTCR for a 1 µm diameter droplet is approximately 160,000 indium atoms

per free electron. Note that a lower MTCR equates to a relatively higher-charged

droplet; any point to the left of the line is stable since the greater curvature of a

smaller droplet allows more relative charge.

The largest mass to charge ratio for droplets is harder to pin down. Experi-

mentally, droplets have about 1.5 times the critical Rayleigh limit with a standard

deviation of 8% [88]. Based on numerous experimental tests, Gamero-Castaño posits

this as a general upward bound for electrospray relative charge variation. Therefore,
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Figure 1.7:
The minimum number of molecules per electron before droplets break
apart from Coulomb fission and form jets. Shown for the a) 0-10 µm and
b) 0-1 µm range

it is reasonable to set the expected droplet charge at the limit. The capacitance can

then be used to determine how many charges remain on the surface and the resulting

charge density.

Instabilities

According to current theories, Rayleigh droplets are generated if the propellant

is not transported rapidly enough to fully replenish the amount emitted. The time

to form a droplet is the jet height divided by the velocity, or tjet = hjet/vjet. If this

time needed to form a droplet is less than that needed for the liquid to flow along

the jet, a Rayleigh droplet is produced.

Early experimental [271] and theoretical [184] work showed that neutral droplets

symmetrically elongate parallel to the electrical field as polarization-induced charge

densities develop at opposite ends of the droplets [106]. The elongating droplets

become unstable when the applied electric field reaches a critical limit, E0
c . This

field is known as the Taylor limit .
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E0
c = cemp

√
2σ

8πε0rc
(1.18)

In Eq. (1.18), the fitting constant cemp has been determined theoretically and is 1.625

for liquid droplets in air [245]. Assuming that the droplet remains a spheroid, when

E < 0.55E0
c , the resulting function for the major/minor axis ratio of these detached

droplets versus electric field ς(E) is given by Eq. (1.19) [201].

ς(E) =

(
1 +

9rcε0E
2

16σ

)(
1− 9rcε0E

2

16σ

)−1

(1.19)

Between the Rayleigh charge limit and the Taylor field strength limit is the case of

excess electrical pressure. In this realm, the spherical approximation is not correct,

since charged droplets are egg- or tear-shaped [3]. For a droplet of charge q, this

shape becomes unstable at a critical electric field Eq
c and is characterized by the

formation of a single jet from the sharper end [106]. These unstable droplets can

form quite a large percentage of the mass flux for the higher mass flow of emitters.

The modeling and simulation of these elements in field emission thrusters forms a

large portion of this thesis.

Basic droplet model

A basic model for the force on a droplet states that if the surface charge q is

uniformly distributed on the surface of a conducting fluid sphere of radius R in an

infinite expanse of an ambient dielectric fluid of the same density as the sphere and

absent viscous stresses, the pressure inside the sphere p would be related to that

outside, p0, as Eq. (1.20),
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p = p0 +
(

2σ
R
− 1

2
ε0E

2
n

)

= p0 +
(

2σ
R
− 1

2ε0
σE

) (1.20)

where En is the normal component of the electric field on the ambient fluid side of the

interface, σ is the surface tension, σE is the surface charge density and σE = q
4πR2 =

ε0En [282]. This equation makes it clear that increasing the local field strength or

the local charge density reduces the electromechanical surface tension of the interface

[163].

Conductivity regimes and shear stress

If the drop is a perfect conductor, the entire drop is an equipotential surface and

the interior electric field is zero. When the liquid is not a perfect conductor, there

is necessarily a difference in potential around the shape. This potential variation

ensures the presence of a tangential electric field. Moreover, if the drop is not a

perfect insulator, there will be a distribution of free charge on the surface. When

an interface supports both a tangential electric field and free surface charge, it is

subject to electrical shear stress [201]. In the absence of varying surface tension,

such an electrical shear stress can only be balanced by a viscous shear stress exerted

by the drop on the surface. For these intermediate conductivity fluids, the shear

stresses drive interior bulk circulation, and stabilize the surface during its growth

before detachment [282].

1.3.4 Critical current

As noted previously, in addition to ions, field emitters can also produce micro-

droplets. Generally, the higher the emission current, the greater the Taylor cone

instability that triggers the production of droplets [239]. Theoretically, instabilities
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should occur on sharp needles only above the critical current IC :

IC =
13.4πσ2e

√
ρ

Eimε0
√
ε0

(1.21)

where Ei is the ion evaporation field. Using indium as the liquid, the critical current

regime is 12.7-15.8 µA. Note that the expression is only determined by the material

properties and the electric field.

1.3.5 Minimum voltage

There is a critical minimum electric field below which ion emission will not occur.

Below this field potential, the liquid gradually deforms into a Taylor cone with an

apex half angle approaching the critical 49o as the voltage increases. Experimentally,

emission has been demonstrated at an extractor electrode distance of 200 µm and a

10 kV potential, although any combination that develops an electric field of approx-

imately 109 V/m causes ions to begin streaming [91] for indium tipped emission. As

the tip radius of curvature decreases, the local electric field increases; ion emission

occurs at voltage U0 [152],

U0 = ln

(
2dte
rc

) √
rcσ

ε0
(1.22)

where rc is the needle radius of curvature and dte the tip to electrode distance. Figure

(1.8) displays the baseline relationships for voltage and needle curvature.

1.4 Description of field emission electric propulsion thrusters

Two examples of field emission thrusters are colloid and field emission elec-

tric propulsion thrusters. They have been examined for decades [55, 274] and the

ion/droplet plume composition has been investigated [145, 179]. Several scaling laws
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Figure 1.8: Minimum electrode potential vs. needle tip radii of curvature

about current and voltage, droplet size and specific impulse have been developed

[36, 243].

FEEP thrusters are currently being considered for a variety of space missions

both in the United States and Europe. FEEP thrusters provide a source of high

specific impulse, ultra-low impulse bit electrostatic space propulsion. A space-tested

indium FEEP has been under development in Austria for over a decade [94]. Such

thrusters are appropriate for scientific drag-free missions such as LISA [25], Darwin

[124], GOCE [129] and SMART-2 [161].

1.4.1 Thruster description

The liquid metal ion source (LMIS) thruster as built and tested by the ARCS

consists of a needle covered in the element indium reacting to an applied electric

potential from an extractor ring held at -6 kV [94, 240, 243]. When the field strength

at the tip reaches 1 V/nm, a cone of indium is then ionized from the surface and

accelerated over a fine tungsten needle that is about 1 cm long and 50 µm wide.
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Depending on the mass flow rates, either ions or droplets are observed coming from

the tip. Planar and isometric schematics of a FEEP are shown in Fig. (1.9). Figure

(1.10) displays some experimental apparatuses for slit [92] and needle field emitters

[242].

Figure 1.9: Needle FEEP emitting a) ions and b) droplets

(a) Centrospazio cesium slit FEEP (b) ARCS indium needle FEEP

Figure 1.10: Experimental field emission thrusters
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Droplet importance

Experimental efforts indicate that below 20 µA, only ion emission occurs in a

wide cross-section of field emission needles [90, 93, 178]. Above that point, at a

current that varies based on the thermal and electrical properties of the fluid, periodic

stochastic motions of droplet formation and emission interrupt the steady ion stream

[238, 258]. For the emitter to be an effective space attitude control thruster, a current

of several hundred µA is necessary [94]. At this level of current, significant mass flow

rates generate 100s of µN of thrust. The droplet initiation current is thus driven

by the properties of the fluid flowing over the tip. As the current increases, ever-

increasing mass fractions are emitted as large droplets and less as ions. Due to

localized field evaporation on the Taylor cone shank, there is never 100% droplet

content.

The existence and corresponding behavior of these droplets is of large practi-

cal concern because as more droplets form, operational efficiency decreases, lifetime

is limited because drops clog the extractor electrode, and plume divergence is im-

pacted due to non-identical charge distributions in the exhaust stream. Knowledge

on how the beam behaves and the ability to manipulate it can be used to improve

two performance parameters of the FEEP thruster. First, spacecraft contamination

can be significantly reduced through a reduction in beam spreading. Secondly, with

this lower spreading rate per µA, a larger current (and therefore thrust) is possi-

ble without contamination [86]. In combination, these effects substantially increase

the range of missions that can be successfully undertaken by field emission electric

propulsion thrusters. Therefore, a numerical investigation into the formation and

charge distributions among these expelled droplets is undertaken and described in

this thesis.
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Potential field

Since field emission predominantly occurs in the areas of maximum electric field, a

necessary precursor to this investigation is an awareness of the electrostatic potential

field around the needle. The potential field U was determined using Matlab’s finite

volume numerical Poisson solver on 300x100 rectangular grids. The mixed Dirichlet

and Neumann boundary conditions imposed are listed in Eq. (1.23).

needle: U(0, [0 0.025]) = −2

base: U([0 0.1], 0) = −2

far edge: ∂U
∂n

(0, [0 0.05]) = 0

electrode: U([0.01 0.1], 0.05) = 8, 000

gap: ∂U
∂n

([0 0.01], 0.05) = 0

axis: ∂U
∂n

(0, [0.025 0.05]) = 0

(1.23)

This potential solution indicated that the sharpest potential gradient is located at

the tip of the needle, as can be seen in Fig. (1.11). As a result, the droplet emission

far from the shank of the needle surface is less prevalent due to the lower electric

fields and reduced field emission.

1.4.2 Propellant considerations

Many liquids can be used in a field emitter and several studies have outlined the

characteristics of an ideal propellant [160, 168, 169]. Cesium was the initial element

chosen [177] decades ago, but re-evaluation points to an improved propellant choice

of the element indium due to its high atomic mass, low ionization potential and

good wetting properties. An additional strong benefit is that it can be exposed to
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Figure 1.11: Simulation of potential contours for a needle FEEP
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air without exploding or dangerously out-gassing.

Atomic mass The heavier the atom, the greater the maximum achievable thrust

for a given electric field. Lighter elements and alloys travel faster but impart lower

momentum changes to the engine. The minimum acceptable atomic mass for poten-

tial propellants was initially defined by an ESA panel in 1980 as that of cesium with

a mass of 133 amu, but a lower secondary standard of 100 amu was also adopted

[177].

Capillary / needle flow The flow rate along the surface of a needle needs

to be large enough to allow constant emission at relatively higher currents of 100

µA. Calculations relating to fluid flow lead to the conclusion that the velocity of

the liquid is determined by geometric parameters (e.g. the radius and length of the

needle) as well as physical parameters such as viscosity. This is examined in much

more detail in Sec. (3.3).

Diffusion rate Based on reservoir leaching contamination in Austria, unwanted

tip material buildup and sparking can occur if propellant contamination over 5% by

volume occurs [90, 169].

Droplet emission To work as a pure field emitter, the liquid must emit individ-

ual ions rather than droplets or clusters when subjected to an intense electric field.

One older model of emission characteristics was developed by Crowley that relates

the emission of ions to a low value of ρ
λ
, the ratio of the electrical resistivity to the

thermal conductivity of the liquid [52]. However, his work originally was established

for the case of electrostatic spraying from one single liquid metal cone. In cases
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with multiple-tip emitters like the slit emitter that possess a rather low current per

emission site, the importance of this criterion may be regarded as somewhat inferior.

However, emission with a preponderance of ions is significantly greater for a propel-

lant with a low first and a high second ionization energies, due to the large energy

gap between these points.

Environmental concerns The handling and operation of the propellant choice

necessitates infrastructure costs and procedures. The choice of a hazardous, toxic,

explosive liquid such as cesium for propulsion drastically increases the ground system

financial burden to safely handle and contain carcinogens. Future environmental

regulations further restricting acceptable exposure to chemicals are predicted to make

even this path untenable [214]. Indium avoids many of these concerns, reducing but

not eliminating these environmental aspects of propellant selection.

Melting temperature The propellant should melt at temperatures that can be

achieved readily in the feeding system without incurring a significant power demand.

Commonly, this has been around 100-300 0C [71].

Resistance to vacuum breakdown During operation, a possible eventual mal-

function of a FEEP thruster due to arcing, sparking or flashover is strongly possible.

The physical phenomenon of vacuum breakdown represents the closing of an insu-

lating vacuum gap by a low-voltage, high-current vacuum arc. This breakdown may

cause damage to the emitter itself and perhaps to the high-voltage supplies, but

the transients accompanying such phenomena also may damage or even destroy the

highly sensitive electronic equipment on board a spacecraft due to induced overvolt-

ages. Thus a requirement on the liquid metal propellant requires a resistance against
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vacuum breakdown [168].

Vaporization It is desirable that the propellant has a low vapor pressure, for at

higher values of vapor pressure the liquid would not be emitted as a focused thrust

cone but instead as a non-accelerated mist. This diffusion lowers mass efficiency and

increases deposition rates upon the spacecraft itself.

Voltage standoff Physical liquid properties such as work function, ionization

energy and surface tension contribute to the initial potential needed to induce field

emission. Lower beginning voltages reduce power and secondary equipment mass

requirements.

Wetting The propellant should flow readily along capillary feed systems and

maintain the liquid films or menisci from which emission occurs. It must therefore

be able to wet the reservoir feed system and emitter materials.

Conclusion Among all the requirements for alternative propellants to cesium,

reliability seems the most critical. Arcing or flashover may cause irreversible damage

to the whole FEEP thruster system, thus influencing the reliability and lifetime.

Substantial arguments exist against cesium as a reliable liquid metal propellant.

Indium achieves substantial improvements in usability with only mild degradation

in performance, and is therefore a better selection.

1.4.3 Droplet vs. ion thrust

One question that often arises is why for a given thruster droplets provide more

thrust than ions, even though they move at a slower velocity. The key detail is that

satellites have a fixed total power available to the thruster (Pjet); it usually comes
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from solar panels (Psolar) or radioactive decay. Letting Psolar = Pjet and qE=F=ṁa,

the final velocity of a particle starting from rest in a constant electric field E traveling

over a fixed distance x is v2 = 2a∆x, or

v =

√
2
q

m
E∆x (1.24)

Therefore, a more highly charged droplet, one with a lower mass to charge ratio

(MTCR), moves faster than a lesser charged droplet. With the velocity of the exhaust

particle stream v = goISP , Eq. (1.25) shows a higher charged droplet has a higher

specific impulse.

ISP =
1

g0

√
2
q

m
E∆x (1.25)

The jet power and force from the rocket is shown in Eq. (1.26), while the power-

to-force ratio is given by Eq. (1.27).

Pjet = 1
2
ṁv2

F = ṁv = ṁgISP

(1.26)

Pjet/F =
1

2
v =

1

2
gISP (1.27)

This gives a relationship stating that as the engine becomes more mass efficient from

a higher specific impulse, more power per unit thrust is required. Using Eq. (1.27)

with a fixed maximum power supply,

const = F × ISP ∼ ṁI2
SP (1.28)

and therefore higher charged, faster-moving ions produce less thrust while using less

mass from a given power level than the corresponding droplet emission.
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1.4.4 Alternative technologies

While the main benefits of field emission electric propulsion include its small im-

pulse bit, high mass efficiency (specific impulse) and low thrust, alternative technolo-

gies exist that also provide less than 1 mN of thrust. Colloid thrusters and micro

radio frequency ion thrusters (µN-RITs) are two approaches that have lower spe-

cific impulse and power requirements than FEEP, but still are in the micro-thruster

regime.

Colloid thrusters Colloid thrusters are a design very similar to that of FEEPs.

The main difference is that colloids commonly employ organic propellants of low

conductivity. The main effect of this lower conductivity (generally under 0.1 S/m) is

that charge shielding and the tangential electric field play a large role in the droplet

evolution. In addition, generally only droplets are formed during operation. As

a result of using long chain hydrocarbons, the thrust is greater per µg, while the

necessary power and voltage are lower. Most of the work in the field is termed as

electrospraying, since the original use was the formation and mixing of various size

and charged droplets. Colloid thruster development can be traced to the early 1960s,

but early work generally failed as a result of the poor technical understanding of the

physical elements underlying the electrospraying process [5]. Later, an improved

understanding came from de la Mora’s work in the mid 1990s [73]. This improved

insight has allowed the development of microfabricated emitters, as seen in Fig.

(1.12). Other versions of colloid emitters are designed to fly on LISA [115].

Micro radio-frequency ion propulsion European research into µ-RIT propul-

sion was initially conducted in the 1960’s by the University of Giessen, Germany. The
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Figure 1.12:
Section of a microfabricated silicon wafer containing 20,000 nozzles in
a 75 mm diameter area [5].

European Aeronautic Defense and Space Company (EADS) undertook the industrial

development. Several thrusters have flown in space since 1992 and have been demon-

strated to work for thousands of hours. The design engines for the GOCE mission

produce a specific impulse of 3,500 seconds and a thrust of 250 µN from a 1,000 V

potential difference [101].

1.5 Motivation

The purpose of the effort reported in this thesis is to theoretically and computa-

tionally analyze an indium-fed needle FEEP. Specifically, there is a desire to quantify

the number, size and charge of droplet emission from the needle surface and how the

various aspects of needle design affect overall performance. Notable questions about

thruster performance are analyzed by using a dual approach of theoretical mathe-

matical and computational models.
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1.5.1 Experimental results and limitations

Due to the high electrostatic potentials of over 5 kV needed between the electrode

and the needle, experimental work on field emitters requires expensive and extensive

voltage regulatory equipment. When used as a thruster, there is also a need for a

strong vacuum chamber due to rapid background pressure neutralization. The origi-

nal choice by Centrospazio of the reactive metal cesium as a propellant necessitated

significant material-handling restrictions and raised contamination issues [167]. A

later switch by ARCS to using the metal indium as the propellant source reduced

the hazard associated with inhaling the material, but indium still coats the walls

of the experimental vacuum chambers and requires extensive cleanup afterwards

[1]. While these hardware difficulties can and have been overcome, it necessitates

a significant capital and time investment. Computer simulations of FEEPs can be

performed anywhere and may provide a useful complement to measured data.

While meaningful research has been performed on FEEP thrusters, experimental

work has been limited in the types of questions that can be addressed. NASA’s

Jet Propulsion Laboratory (JPL) and ARCS have concentrated on scaling the ion

emission to the 150µN thrust range [9, 241]. Earlier testing on droplet size and

mass/charge ratios [135] has shown that as the relative charge of the droplets in-

creases toward the Rayleigh limit, droplet breakup is more frequent. In addition, the

relative number of large droplets decreased when the source current increased, the

reservoir pressure decreased, or the operating voltage increased [160]. What has not

been determined is why or how these values change. Modeling presents an alterna-

tive approach to studying droplet dynamics and is flexible, rapid, cheap and capable

of investigating scenarios outside of the normal experimental realm.
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1.5.2 Modeling approaches

To complement experimental studies, a variety of techniques have been used in

the modeling of electrostatic droplets. Kaufman’s original approach was the basis for

nearly all computer models regarding ion propulsion [126]. FEEP simulation started

a little later and focused more on ion trajectories than on bulk plasma behavior.

Compared to the well-developed chemical propulsion simulations, fewer field emis-

sion models have been developed. Some of these approaches include perturbation

of an infinite cone [207], marker-and-cell surface tracking [53], repeated coordinate

reinitialization for Taylor cones [230], 1-D Laplacian jets [143], particle plume models

[233], and microdroplet Rayleigh instabilities [257].

However, none of these attempts to simulate a field emitter provide detailed

droplet relative charge after snap-off. To do so, several issues have to be successfully

addressed. A full model must account for:

� Accurate force representation in the presence of very large electrostatic gradi-

ents

� A rapidly moving surface

� Formation of singularities as a new droplet detaches

� Arbitrary and changing droplet shape

� High-density liquid evolving in a vacuum

The other approaches cannot track the droplet in a reasonable time frame in a dense

fluid during a highly charged fission event. Due to the lack of detailed information

from both experiments and models of FEEP droplet formation and behavior, the

combined approach described hereafter is a new addition to the community.
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1.6 Organization

This dissertation is organized into three major parts: background, mathematical

analysis and simulation of droplet detachment for a FEEP thruster. Chapter (I)

laid out the importance of EP, the base setup of field emission, the functioning of a

FEEP thruster, and contribution of this work. The next few chapters provide the-

oretical tools to study field emission and the effect of varying the initial conditions

on produced droplets. Chapter II discusses a parametric evaluation of the needle

and propellant composition and introduces new impedance and surface tension mod-

els. These models are used to predict the direction and magnitude of the thrust

change from varying the experimental setup. Chapter III presents a mathematical

asymptotic perturbation analysis of the dominant forces involved in the formation

of a FEEP droplet.

The bulk of the dissertation and the majority of the modeling and simulation

efforts are discussed in Chapter IV. The level set and boundary element methods are

introduced for 2D and 2D axisymmetric configurations, and a number of difficulties

encountered are introduced, dissected and solved. Simulation results are shown in

Chapter V; they are in line with Chapter II’s approach and related to the outcome of

Chapter III’s perturbations. Here, component properties are varied and the droplet

time behavior and mass to charge ratio presented.

The major conclusions from the thesis are summarized and suggestions for future

development of the electrostatic drop tracking are proposed in Chapter VI. Finally,

the appendices provide details of standard FEEP needle thruster operation, mathe-

matical derivations, sample problems and a full hardware sensor design.



CHAPTER II

Parametric Analysis of FEEP Performance

Prior theoretical and experimental work states that geometrical impedance Z

and overall mass efficiency ηm are impacted by efforts to change the film thickness of

indium along a field emission electric propulsion needle thruster [156, 151, 238, 261].

Current theory states that droplets begin to form when the velocity of indium being

supplied to the tip of the Taylor cone is insufficient to replenish the mass lost through

ion emission [143]. This velocity is strongly affected by the needle tip radius of

curvature, where the needle’s impedance and surface fluid thickness change the width

of the Taylor cone [237]. As the film thickness decreases, the fluid velocity, required

extractor voltage and mass efficiency increase.

Understanding the related question of how modification of the needle and pro-

pellant affects mass efficiency would therefore provide necessary clarification about

the interaction between these components. An algorithm is presented on linking flow

impedance with mass usage rates and how altering the composition of the propellant

stream impacts fluid flux.

33
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2.1 Needle impedance effect on mass efficiency

The current-voltage I-V characteristics of liquid metal ion sources are determined

by the combined effects of flow and space charge around the tip of the FEEP needle.

However, in situations in which the flow impedance is sufficiently small, the limitation

of space charge is the dominant factor controlling the emitted current. The maximum

current able to be extracted is limited since the self-shaping nature of the liquid

emitter means that even an initially low-impedance source becomes flow-limited due

to a decrease in film thickness [156].

If space charge effects at the apex of the Taylor cone alone limited the emission

rate, then the current-voltage characteristics would not depend on the geometry of

the needle. Rather, a current-voltage curve would be dependent only on each metal’s

Taylor cone. Thus, the observed strong dependence of dI
dV

on needle radius and sur-

face roughness [262] demonstrates that the ion current is limited by flow impedance

of liquid metal on the needle surface. Further evidence for hydrodynamic limitation

is the extremely steep dI
dV

curves for nozzle geometry ion sources in which the flow

impedance is very small [130]. Therefore, understanding the transition of indium

flow between smooth and grooved needles (high and low impedance, respectively)

is essential to being able to predict how varying needle geometry impacts mass effi-

ciency.

2.1.1 Impedance models

Across fields as diverse as acoustics, aerospace and electronic circuits, a variety

of methods to model fluid impedance have been proposed [46, 156, 157]. On purely

physical grounds, the ideal model would include terms describing the material pa-

rameters, predicting varying results for smooth versus rough surfaces [156], Taylor
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cone width [155] and liquid thickness [154].

In the mid-1980’s, the first expression for the current-voltage characteristics of

capillary field emission devices was introduced [153, 22] where the current is deter-

mined solely through the geometric properties of the Taylor cone base radius rT and

half angle θT , the fluid surface tension σ and starting voltage U0.

I = 3π

√
2e

m
· rTσ cos θT√

V0

·
(
U

U0

− 1

)
(2.1)

The model agrees well with experimental data for capillary emitters and low-impedance

needle emitters, characterized by grooved or well-roughened surfaces [235]. For high

impedance needles, Mair modified the formulation as in Eq. (2.2) to include that

resistance, Z. [156].

I =

[
3π

√
2e

m
· rTσ cos θT√

U0

·
(
U

U0

− 1

)]
×

[
4ρ
√
U0e

4ρ
√
U0e+ 3πr2

TZ
√

2m

]
(2.2)

For FEEP needles, when the indium fluid thickness on the shaft is greater than 1 µm,

the correction factor in the brackets can be neglected [236]. These high impedance

needles were characterized by having a smooth, non-grooved surface. Mair et al.

[156, 151] also provided Eq. 2.3, a relation for the geometrical flow impedance of a

well-wetted low- and high- Z paraboloidal needle.

low Z[Ω] = 64µ
a3

grooveπ
2

√
2Ln

rc

high Z[Ω] = 12µ
π2F 3

T

√
Ln

2rc

(2.3)

Here, µ is the fluid viscosity, agroove the groove radius, FT the fluid thickness, Ln is

the needle length, and rc the needle tip radius of curvature. When the propellant

becomes thinner, overall flow resistance increases greatly. To a good approximation,
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the I-V trace can be treated as a linear function of impedance.

U = U0 + Z · I (2.4)

Longer and smaller-tipped needles and more viscous and thinner fluid also increase

this flow resistance. Figure (2.1) shows how the flow resistance varies with these

factors.
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Figure 2.1: Flow impedance as a function of needle radius and groove thickness

Efficiency/impedance relationship

FEEP propellant moves at different speeds as it travels from reservoir to needle

tip. However, the largest amount of time is spent moving along the constant radius

cylindrical surface of the needle body. In contrast to capillary tubes where the

propellant is internal, indium on the external needle surface can vary in fluid thickness

and creeping velocity, thereby causing variations of the measured mass efficiency.

This efficiency is the ratio between the mass emitted as singly charged ions and the
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total mass loss of the liquid metal reservoir, ∆m. In Eq. (2.5), mion is the mass of

the emitted ion.

ηm =
mion

e

∫
I dt

∆m
(2.5)

The strong correlation of impedance with overall mass efficiency makes it very

instructive to examine methods of varying the magnitude of the Z term. Figure (2.2)

presents ARCS data [237] that relates an increasing impedance with a higher ηm.

Each data point is a differentially manufactured emitter producing 100 µA of current,

with the necessary voltage varying from 2.5-8.2 kV. The high efficiency obtained at

high impedance relationship is examined further in the next few sections.
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Figure 2.2:
Experimental mass efficiency and impedance for multiple ARCS indium
needle FEEPs at 100 µA [237]

The height of the mini jet formed atop the Taylor cone due to space charge limits

and the velocity of that fluid were given as Eq. (1.15). The ratio of the two is the

time for the propellant to transit across the jet. Equation (2.6) describes how mass
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efficiency is related to this local time fraction.

h

νjet
=

8m

e

dteI

V 2
∝ 1

ηm
(2.6)

Inserting this relation into Eq. (2.4) and using the definition of an electric field as

the potential difference over the distance, E = U/dte gives Eq. (2.7), a relationship

between efficiency and impedance [237].

ηm ∝ E

(
U0

I
+ Z

)
(2.7)

Therefore, the mass efficiency increases as the impedance increases, but more system

power is needed due to the higher potential required to initiate emission.

Minimum fluid velocity

For a given ηm, mass conservation allows for the computation of indium velocity

up the sides of the needle. Figure (2.3) relates indium’s wicking velocity versus film

thicknesses for currents of 10, 100 and 250µA. For low flow rates where I < 15µA,

experiments have shown that almost all the field emission current is in the form of

ions [72]. At these lowest charge levels the data collapse to Eq. (2.8), an empirical

relation for fluid velocity νfeh derived by Fehringer [71].

νfeh =
19.7 I

FT rc
(2.8)

His prediction method uses only gross flow properties to predict wicking speed. Here,

rc is the needle radius of curvature [µm] with indium film thickness FT . As the

measured current increases, a greater percentage of droplets is formed in the emitted

stream, resulting in a faster fluid flow for a given thickness; more material has to

pass over the needle surface to emit a given number of electrons per second. Also it
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can be noted that a particular emitter occupies only one point along each curve at

the current value of ν{x}µA, and as the current is increased for a given geometry, the

indium velocity and film thickness for that emitter also increase.
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Figure 2.3: Emitted current effects on film thickness and indium velocity

ARCS Experiments

A series of needle life and efficiency tests for a particular needle FEEP technology

family was performed in Austria [91, 92, 93, 94, 240]. The following subsection

describes their experimental setup.

Experimental setup The endurance test was carried out at ARCS in the

Large Indium FEEP Endurance Testing facility (LIFET) # 1, which is a cylindrical,

stainless steel vessel 1 m in diameter, 1.5 m long with a volume of 1.2 m3. An

aluminum ion beam collector is mounted inside the chamber. It has a chevron

configuration, which results in large angles (typically greater than 50o) between the

expected ion trajectories and the direction normal to the aluminum surface [94]. This
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reduces the amount of sputtered material directed back towards the thruster. The

chamber is also equipped to measure mass flow in real time using a quartz crystal

microbalance (QCM) at the base of the collector facing the cluster. This enables

investigation into any variation in the ion/droplet current ratio [94].

Experimental data The proposed relation between needle mass efficiency, volt-

age, fluid thickness and velocity was made using ARCS data from their 2002 In-FEEP

thruster. Figure (2.4) displays current/voltage and current/efficiency traces for this

thruster, taken with the equipment setup just outlined. Equation (2.9) empirically

relates mass efficiency to extraction voltage for a particular technology family of

ARCS’s LMIS needle emitters [238].

U0 =

√
4.1× 1011 × I

1.38− ηm (2.9)

Note that as the efficiency increases, if the current is constant the voltage increases

and if the voltage is constant the current increases. Therefore, ηm ∝ U
I
, in agreement

with Vladmirov’s earlier theoretical analysis in Eqs. (1.15 and 2.6).
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2.1.2 Proposed algorithm

With the above relationships, it is possible to unite discrete elements of exper-

imentally observed mass efficiency and geometrically calculated impedance. A pro-

posed algorithm is developed to predict how a given voltage affects these properties.

The method can be used in either direction, either from mass efficiency to velocity

(as listed below) or the reverse problem where changing fluid flow velocity affects

system mass utilization. The algorithm steps are as follows:

1. Start with a measured mass efficiency ηm and current I

2. Relate ηm to the minimum electrode voltage U0 through Eq. (2.9)

3. Relate U0 with the local needle radius of curvature rc through Eq. (1.22)

4. Relate rc and impedance Z to local film thickness through Eq. (2.3)

5. Calculate necessary velocity through mass conservation, assuming steady

flow rates

Through interrelating mass efficiency, current, voltage, impedance and flow velocity,

the value of any one of these properties can be determined from the others. Figure

(2.5) shows the predicted dependencies for a current of 150 µA. Several important

trends are shown in this graph. As electrode voltage increases, the electrostatic pull

and resulting acceleration of the propellant increased, with a corresponding increase

in mass efficiency. As a consequence, the fluid becomes thinner and moves more

rapidly. The trends of all three variables reinforce the claim that a higher power gives

a greater mass efficiency, for a given mass flow. This change is Isp was addressed in

Sec. (1.4.3).
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Figure 2.5:
Mass efficiency related to extraction voltage, fluid thickness and film
velocity on an ARCS FEEP needle emitter at 150 µA

The algorithm allows for increased experimental design flexibility. For example, if

we need an emitter with at least 50% mass efficiency up to an emission current of 100

µA, an electrical impedance of at least 13 MΩ is required. In addition, the calculation

of hard to measure fluid properties such as film thickness can be determined as well

as the effect of a perturbation of one variable on another. Following the algorithm

set forth and using the needle length Ln as 1 mm, the tip radius of curvature rc as 3

µm, the groove depth agroove as 1 µm and the viscosity µ as 1.91× 10−2
[
N ·s
m2

]
[204],

sample field emission current-voltage properties for two gallium needle LMISs [130]

are shown in Fig. (2.6) with film thickness and mass efficiency predicted in Table

(2.1).

2.1.3 Conclusions

Detailed needle geometry was combined with an experimentally determined re-

lationship between current and voltage of a field emission electric propulsion needle
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Figure 2.6: Current to voltage trace for a high and low impedance needle [130]

Impedance Velocity FT ηm

[Ω]
[
µm
s

]
[µm] [%]

rough(low) 3.2× 1015 0.3 10 67

smooth(high) 3.0× 1017 0.9 1 98

Table 2.1: Modeled gallium needle LMIS properties at 2 impedances
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thruster. This allowed the determination of indium film thickness, local impedance

and fluid velocity calculations prior to initial operation. A model algorithm pro-

vided a quantitative estimation of mass efficiency increase due to variation of needle

smoothness and grooving.

2.2 Propellant composition effect on performance

Similar to altering the needle surface and fluid thickness to induce varying mass

efficiencies, modifying the composition of the indium propellant itself holds potential

to increase thrust and lower heater power requirements. The formation of binary

and tertiary alloys instead of pure indium can provide superior emitter performance.

Additional alloy processing can also reduce solid contaminants, thereby reducing

sparking losses.

2.2.1 Binary and ternary alloys

An ideal propellant replacement alloy reduces the melting point compared to

pure indium, retains a very low vapor pressure and decreases overall flow viscosity,

as mentioned in Sec. (1.4.2). It is important to keep the vapor pressure low to

minimize sublimation losses from the liquid surface of the emitter. Higher vapor

pressures may cause condensation everywhere on the thruster assembly, thus coating

the apparatus with a thin solid metal film [168].

A change in viscosity of the propellant through selective alloying holds potential as

a method to increase operational mass efficiency while reducing or retaining present

heater power requirements. A simple method for estimating the viscosity µalloy [Pa·s]

of molten metallic alloys [40] is

log10(1000 · µalloy + 1) = 10b1,e × T b2,e (2.10)
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where T [K] is the operating temperature and the power coefficients b1,e and b2,e are

experimentally determined for each alloy. Note that alloys can in fact have lower

melting temperatures than their original constituent elements. Using χi as the atomic

fraction of each of the n elements, the alloyed coefficients are given by Eq. (2.11).

b1,e = Σn
i=1χib1i

b2,e = Σn
i=1χib2i

(2.11)

Appendix (A.2) lists b1,e and b2,e for various elements. Of those elements with

equal or lower vapor pressure than indium [264], only tin and gallium have similar

melting points [253]. The melting points and vapor pressure of various combinations

of these alloys are shown below in Figs. (2.7 and 2.8) [269]. Two element fractions

are on the x and y axes, while the third element fraction is the remainder. For

example, a 20% indium, 20% gallium, 60% tin alloy is found at (0.2, 0.2) and has

a melting point of about 390 K. Note the log scale for the vapor pressures in Fig.

(2.8).

Using Eq. (2.10), alloy viscosities can be calculated at any temperature above

melting. Figure (2.9) displays the dynamic viscosity at a particular combined alloy’s

melting point, while Fig. (2.10) shows the much simpler picture of all alloys at 510

K. A depiction of temperature bands where a higher viscosity could be achieved

compared to pure indium is shown in Fig. (2.11). Figure (2.12) combines Figs. (2.7

and 2.9) by plotting only those exact alloy compositions that result in comparable

or lower vapor pressure and higher viscosities of operation.

Previous work [83] examined spot binary and ternary eutectic compositions of

indium, gallium and tin as possible replacement propellants. Using this approach,

the entire alloy spectrum can be analyzed. This analysis indicates that selective
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Figure 2.7: Melting points for alloys of indium, gallium, and tin
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Figure 2.9: Viscosities for alloys of indium, gallium and tin at T = Tmelt
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propellant alloying can result in up to a 0.4 mPa·s increase in fluid viscosity, or

about 25% greater than pure indium. It appears that tin is very effective in increasing

viscosities slightly while reducing the alloyed melting temperature. This combination

provides a doubly positive change in resulting efficiency and power budgets. Notably,

several composition points in this ternary alloy consist of over 80% indium, retaining

the usefulness of a majority of prior experiments. Also, a significant cross-section of

materials produce useful (>0.1 mPa·s) viscosity increases with decreased operating

temperature.
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Figure 2.11:
Design space of temperatures for mixed alloys that result in a viscosity
increase compared to pure indium

Substituting this 0.4 mPa · s higher impedance back into the Z calculations

described earlier gives roughly a 9% increase in overall mass efficiency at a

given fluid velocity, as seen in Fig. (2.13). It is expected that operating temperature

decreases will have the largest impact, as the same efficiency can be potentially

achieved heating the propellant to a final state that is less than 100 K cooler. The
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“suggested“ alloy is chosen as a good combination of viscosity increase (0.1 mPa ·s),

melting point reduction (80K) and usage of indium (> 70%) with a [0.75, 0.1, 0.15]

fraction of indium, gallium and tin. The ’best’ alloy has the maximum viscosity

increase (0.4 mPa · s) and a 30 K reduction in melting point but retains only a small

fractional composition of indium; the system has a [0.2, 0.5, 0.3] fraction of indium,

gallium and tin, respectively. Note that the vapor pressure is 10 orders of magnitude

larger than pure indium; the alloy would be rejected due to overall out gassing levels

listed in Sec. (1.4.2).
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Figure 2.12:
Composition of alloys that provide a) higher viscosity and b) the tem-
perature change to a new melting temperature

2.2.2 Surface tension

Besides varying the viscosity and vapor pressure of the propellant, the needle

material itself can be altered to increase the necessary critical emission potential and

hence mass efficiency.

Background

The surface tension of the propellant varies depending on what material it is in

contact with. The angle formed by a drop when resting stably on a surface varies -
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Figure 2.13: Effect of changed viscosity on mass efficiency

the wetting angle θwet [o] is a quantitative measurement of this tension. This contact

angle variation is seen in Fig. (2.14), where water is placed on two different silicon

surfaces [269]. The smaller the contact angle, the better a material wets and the

more efficient the fluid flow. Contact angle is directly related to the surface energy

of the solid surface (σgs), the surface tension of the liquid surface (σgl), and the

interface energy between liquid and solid (σls).

Figure 2.14: Wetting angle for water on different surfaces
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The net work of adhesion, Wa

[
N
m

]
, is the reversible work necessary to create or

separate an interface area of 1 cm2 between two different materials in their liquid

and solid phases. This adhesive work is defined by the Young-Dupre equation, with

the force orientation as demonstrated in Fig. (2.15). If the spreading of the liquid

on the solid proceeds to some intermediate equilibrium stage, then Eq. (2.12) relates

these forces to the work of adhesion. The subscript “g” refers to the gas phase, “l”

the liquid, and “s” the solid phase.

Wa = σgl + σgs − σls = (1 + cos θwet)σgl

σls = σgs − σgl(cos θwet)

(2.12)

Equation (2.12) indicates that the solid-liquid work of adhesion can be estimated

from the surface tension of the liquid and the contact angle of the liquid formed on

the solid.

Figure 2.15: Schematic of surface force orientation

It has been proposed that the surface energy (σ) is composed of two compo-

nents: the polar component (σp) and the dispersion (nonpolar) component (σd) [79].

These aspects of surface energy are caused by dipole interaction, induced dipole mo-

ments and hydrogen bonds and by dispersion energy between molecules respectively.
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Applying the drop method, σp and σd can be measured simultaneously, with total

surface energy (σij) calculated by summing the force components as in Eq. (2.13).

σij = σpij + σdij (2.13)

This canonical approach is based on Fowkes and Wu [79, 273]. The model of harmonic

mean [269] is used to approximate interaction of low energy phases. Combining these

models and Eqs. (2.12 and 2.13) gives the adhesive work (Wa) shown in Eq. (2.14).

Wa = (1 + cos θwet)σgl = 4

(
σdglσ

d
gs

σdgl + σdgs
+

σpglσ
p
gs

σpgl + σpgs

)
(2.14)

For an insoluble metal (A) on metal (B) interaction, Eq. (2.14) becomes

1

cos(90− θwet) =
σAgl
σBgl
− λ

LBe
(2.15)

where λ (∆Hij )
[
kJ
mole

]
is the average of partial enthalpies for a case of solutions

of infinite dilution of A in B and an infinite dilution of B in A [68] ; LBe
[
kJ
mole

]
is

the molar heat of evaporation of metal B. In this formulation, liquid indium is com-

ponent (B). Sample values of all the terms above are shown in Table (2.2). Values

of surface tension of all materials vary with temperature; the ratios quoted are at

melting points. The ratios can be adjusted for any temperature by utilizing σgl data,

such as in Eustathopoulos [68]. In metal (B) / metal (A) systems, an increase in

temperature is expected to favor desorption of B from the A surface, thus increasing

σgs. Therefore, contact angles should decrease with increasing temperature. Gen-

erally, any increase in σgs leads to stronger adhesive work and decreasing contact

angles.

Contact angles can also be treated dynamically instead of statically [82]. In this

approach of Francois and Shyy, if the instantaneous contact line velocity is within
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5% of the impact velocity, then the contact angle varies linearly from the advancing

and receding values. If the contact velocity is greater than 5% of the impact velocity,

the contact angle is assigned the fixed impact velocity value. However, in light of

the very slow fluid velocity in Fig. (2.3), a static contact angle approximation is

sufficiently accurate.

Binary surface tension analysis

Using Eqs. (2.12 and 2.15) with Fig. (2.15), it is possible to calculate an effective

wicking tension for an insoluble binary metallic system. This new value incorporates

the σls deduced for each indium-[x ] combination. Note that Eq. (2.15) references the

σgl of the solid needle material. The effective σgs is calculated by equating adhesive

work functions and solving for σls. The last column in Table (2.2) is normalized

to σls (indium/tungsten) = 0.555 for easier experimental comparison; this is the

baseline surface tension of pure liquid indium/vapor at the indium melting point on

a tungsten needle. Larger values in the last column are more desirable and generally

indicate that metal A is an element with a high melting point. Tungsten adheres to

indium stronger than any of the other needle material choices.

This method is able to correctly predict wetting angles observed experimentally

within 0.1o [83]. Higher effective surface tension requires a higher onset voltage to

ionize the indium (see Eq. (1.22)), therefore feeding back into the model discussed

in Sec. (2.1). Figure (2.16) displays how overall mass efficiency at 150 µA current

and 453 K changes with various theoretical needle material surface tensions.

This analysis suggests that if the needle material is changed from a material

similar to tin to one closer to tungsten, the same fluid velocity of 0.85 m/s can

result in an increase of up to 30% in mass efficiency. The causal chain of effects is:
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Metal(A)
σA

gl

σIn
gl

[68] λ
LB

e
Predicted angle [o] Effective σgs

Needle at T=melting point
[
N
m

]

Al 1.57 0.25 49 0.472

Cr 2.93 0.69 27 0.539

Fe 3.35 0.66 22 0.550

Mn 2.08 0.08 30 0.532

Pb 0.82 -0.03 > 90 -

Sn 1.01 -0.01 79 0.340

W 4.45 1.41 19 0.555

Table 2.2:
Relative surface tensions and predicted wetting angles of indium on vari-
ous needle materials

Mass efficiency [ηm]

V
el

oc
ity

[µ
m

s]

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05 σgs=0.45
σgs=0.55
σgs=0.65
σgs=0.75

Figure 2.16: Effect of needle material on fluid velocity
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higher surface tension leads to a higher electrode potential to pull off. This higher

potential requires more power, but results in faster ion and droplet acceleration. The

faster the droplets move, the greater their mass efficiency, as shown early on, in Eq.

(1.2). While none of the materials examined are expected to perform better than

the currently used tungsten needles, the strong trend toward greater efficiency with

increasing surface tension implies that needle tip material composition represents a

pathway towards very substantial increase in overall mass efficiency.

2.2.3 Solid contaminants in propellant

The effect of propellant contamination has been a continuing concern in the

experimental field emission electric propulsion thruster community, especially for

ARCS in Austria [236]. Particulate matter from the reservoir accumulates as thermal

diffusion transfers atoms from the container walls to the indium propellant. The

wall material is then wicked to the needle surface where it partially blocks field

emission and drastically reduces performance. Diffusion models predict up to 1 ×

10−3 %
hr

relative molar occultation rates. This prediction of contaminant accumulation

frequency is made possible by utilizing a method from other disciplines that provides

qualitative and quantitative impacts of unwanted elements along the needle.

Section (2.1.1) described prior theoretical and experimental work to change the

film thickness of indium along a FEEP needle thruster that demonstrably affected

geometrical impedance [156, 261] and overall mass efficiency [238]. Previous analysis

assumed a completely pure substance transported over the FEEP needle surface.

In reality, particulate matter from the thruster’s reservoir contaminates the indium

propellant and eventually accumulates on the needle tip [71, 234]. The solid parti-

cles float above the liquid indium [71], forming a slowly moving skin under which
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the propellant wicks to the surface. The tip accumulation reduces the flow cross-

sectional area and mass efficiency and drastically increases the chance of sparking

from the accelerating electrode to the solidified needle impurities. These sparks from

an acceleration plate at 10 kV potential relative to the needle cause local heating

that vaporizes the contaminants, reducing thruster operational lifetime and useful

thrust [218]. The tip erosion problem is severe enough that reducing spark energy

results in a substantial increase in predicted lifetime [236]. Needle impurity accre-

tion rates are nonlinear, with no clogging observed for low mass flow ion regimes

up to catastrophically large deposition rates at currents greater than 100 µA. Iron

and chromium have been particularly troublesome contaminants; their high melting

points need large sparks to eliminate them from the needle tip [90]. Figure (2.17)

displays two field emitters from ARCS that have failed due to contamination after

hundreds of hours of operation [240].

(a) Blade emitter (b) Needle emitter

Figure 2.17: Magnified ARCS tip contamination

Thermal diffusion

The migration of contaminant atoms can be successfully modeled by treating

them as heat fluxes in a semi-conductive material [166]. The theory of thermal
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diffusion in liquids has been developed so far only within the limits of the thermo-

dynamics of the irreversible processes, with no external forces or chemical reactions

and mechanical equilibrium [109]. Concentration and temperature gradients induce

an atomic diffusion rate ji
[

#atoms
m·s

]
[216]. This can be written as Eq. (2.16),

ji = −νD(∆ν10 + aSorν10ν20∆T ) (2.16)

where ν is the total number of moles per unit volume, ν10 = ν1
ν
, ν20 = ν2

ν
, D is the

diffusion rate, and aSor is an empirically determined value called the Soret coefficient.

Assuming that the above reaction follows Fick’s First Law of steady state diffusion,

a constant number of atoms migrate into the liquid indium per unit time, giving Eq.

(2.17).

Jdif = −D ∂c
∂x

D = Do exp
(−Ea

RT

)
(2.17)

Here, Jdif
[
mol
cm2·s

]
is the total diffusion rate, c

[
mol
cm3

]
is the molar concentration, x [cm]

is the depth into the material, Do

[
cm2

s

]
is the diffusion rate constant and Ea

[
J

mole

]

is the activation energy of the material. Table (2.3) gives the diffusion parameters

for chromium, indium and iron in a variety of conductor matrices.

Metal/matrix Do

[
cm2

s

]
Ea

[
J

mole

]
D∗

[
m2

s

]
DT=473K

[
m2

s

]

Cr/C 9× 10−3 26,500 0.47 exp
(−3,187

T

)
7.9× 10−10

In/Ag 2× 10−20 exp(0.0153T ) 2.047× 10−17

Fe/Au 1× 10−18 exp(0.0105T ) 1.16× 10−16

Table 2.3: Diffusion rates [208]

Equation (2.17) is true only with a steady stream of particles flowing into the
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indium propellant at all depths. However, the concentration rate changes as more

contaminants move into the liquid indium from the reservoir walls. This is a result

of unsteady diffusion, a process captured by Fick’s Second Law. With zero original

contamination, the concentration c at depth x is

∂c
∂t

= D ∂2c
∂x2

c = co erfc
(

x
2
√
Dt

) (2.18)

using the complementary error function erfc. With the indium propellant flow mov-

ing at 1 µm
s

, the liquid is exposed to the 2-cm high reservoir walls for up to 20,000

seconds. The reservoir walls are made of stainless steel grade A4(18/8) that con-

tains 18% chromium. The surface forms a layer of Cr2O3 when exposed to the air;

this layer is impervious to water while remaining transparent to the metal beneath.

Assuming the same steel manufacturing process, the diffusion coefficient, thermal

diffusion depth and total amount of material leeched after 20,000 seconds are shown

in Table (2.4).

Contam. co
[
mol
cm3

]
0.1% 1% 10% rel.

contam[
molcontam

molIn

]
total diffused

[kg]

Cr 0.0247 1.9 cm 1.5 cm 0.9 cm 1.06× 10−5 5.52× 10−6

Fe 0.0847 7.1 µm 5.6 µm 3.6 µm 5.32× 10−12 2.98× 10−12

Table 2.4: Contamination magnitude in indium from reservoir walls

Modeling solid contaminant flow

Modeling solid impurities in indium flows is critical. Current experimental efforts

are discovering a wide range of solid concentration rates at the FEEP needle tip.

An increase in these nonlinear accumulation rates make a theoretical understanding
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to leaching a prerequisite to simulating how foreign elements change the system

impedance. This system impedance, Z, has been previously related to overall mass

efficiency in Sec. (2.1.1).

GUEST erosion model Borrowing from hydrological research, the GUEST

model gives a simultaneous erosion and deposition steady-state calculation of solid

particles in a fluid when the flow is assumed to move independent of the amount of

contamination present [166, 197]. This model predicts

d(ciqflow)

dx
= ri + rri −Ψi (2.19)

where ci is mean impurity concentration
[
kg
m3

]
, qflow is the flow rate per unit width

[
m2

s

]
, ri is the rate of flow entrainment

[
kg
m2·s

]
, rri is the rate of flow re-entrainment

and Ψi is the rate of deposition. Each term on the right hand side involves a series of

competing processes and must be modeled separately. As a first cut lifetime estimate,

many simplifying assumptions can be made in the context of solid impurities in the

indium stream on a FEEP needle. They include:

� the entire needle is evenly coated with impurities, so ri = 0.

� uniform impurity size with constant settling velocity, eliminating all i sub-

scripts

� all coefficients are constant and do not change with distance x along the needle

� constant vertical impurity concentrations

Equation (2.19) for net deposition then becomes [277]
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d(ciqflow)

dx
= Ψ

(
1− ci

ct

)
+ Θ (2.20)

where ct is the maximum carrying capacity of fluid
[
kg
m3

]
, v is the settling velocity

for the particle
[
m
s

]
, Ψ = vct, and Θ the source term representing lateral fluid input.

Then the general solution of Eq. (2.20) is Eq. (2.21).

ci = c0 exp

[
x0 − x
λd

]
+ ct

(
1 +

Θ

Ψ

) {
1− exp

[
x0 − x
λd

]}
(2.21)

Using λd=
qflow

v
as the characteristic length of deposition, the downward drift is the

distance a particle travels downstream when the particle settles a vertical distance

equal to the indium depth FT .

Modeled contaminant transfer results Using total measured experimental

mass loss, the maximum level of impurities the indium flow could carry indefinitely

is 0.5% Fe by mass, with a droplet size roughly 1 micron in diameter. The analysis

sets a fluid thickness of 5µm and particle velocity of 1 µm
s

. No iron or other element

re-entrains once it deposits on the surface. Combining these approximations with

an overloaded 5% initial iron concentration gives c0 = 394 kg
m3 , ct = 39.4 kg

m3 , qflow =

5× 10−12 m2

s
, v = 2× 10−7 m

s
[39], x0= 0 m, λd = 2.5× 10−5 m and Θ = 0. Equation

(2.21) then becomes

ci = 393.5 exp

[ −x
1.8× 10−4

]
+ 39.4

{
1− exp

[ −x
1.8× 10−4

]}
(2.22)

Figure (2.18) shows how the concentration of iron in the liquid indium changes

if the starting impurity concentration is higher than the carrying capacity of the

propellant. Figure (2.19) shows the more physically realistic scenario of an initially

low contaminant density stream piling up at the needle tip, where it cannot evaporate
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due to higher melting temperatures of the stainless steel components. As impurities

concentrate at the tip, the requisite voltage necessary for ion emission increases.

This higher voltage leads to a higher probability of sparking from the electrode to

the closest point. The sparks vaporize the solid impurities and flow then resumes

with an unimpeded path.

Figure (2.20) demonstrates the settling out of impurities. It depicts the total and

fractional deposition of contaminants in Fig. (2.19). The change in contamination

levels from initial concentration to needle tip is not the same for all pollution frac-

tions, as larger leaching rates cause a substantially more rapid accumulation around

the edge of the thruster. As higher rates of impurity deposition incur a significantly

higher rate of thruster failure, the tip level concentration ct is raised to an order of

magnitude above the beginning contaminant density c0 as in Eq. (2.23).

c0 = ξρ

ct = c0 × 10(ξζconc)

(2.23)

Here, ξ is the fractional mass percentage of impurities in the stream, ρ is the density

[
kg
m3

]
of the impurity and ζconc is an experimentally determined nonlinear coefficient

raising the tip level rate (1,300 and 56 for 0.1% and 1% initial impurities ξ, respec-

tively).

Needed experimental information for contaminant modeling

If the following components can be determined on both a failed and successful

needle, the model coefficients can be benchmarked:

� Tip volume fraction blocked by contaminants
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Figure 2.18:
Change in iron concentration along the needle from a higher initial level
of solid impurity
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Figure 2.20: Fractional and total deposition of iron impurities on a FEEP needle

� Mass percentage contamination of propellants in feed stream during normal

operation

� Operational mass efficiency

� Thruster run time

The analysis would then quantitatively predict how contamination percentages of

other elements will impact impedances and thus overall mass efficiency. Modeled

time for the emitter to become 25% blocked with iron and chromium is shown in

Fig. (2.21). The behavior of uncontaminated indium is covered in previous anal-

ysis. These models demonstrate that a small level of impurities can cause a very

substantial change in overall mass efficiency.

Conclusions

Solid particulate matter gradually contaminates liquid indium stored in a FEEP

reservoir, and can be modeled as diffusion of a solid into a liquid. The theoretical
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Figure 2.21: Simulated time for needle to clog based on impurity level

leaching rate of impurities is 2.71 × 10−10 kg
s

with an expected range of leaching for

various components in stainless steel of 1.0×10−16 to 2.7×10−10 kg
s
. Relatively large

amounts of iron and chromium have been found experimentally on FEEP needle tips

after hundreds of hours of operation. New modeling algorithms predict the nonlinear

accumulation rates occurring for currents spanning orders of magnitude. This model

also predicts that reducing the reservoir diffusion rate by 10% will lead to an increase

of lifetime of up to 25%.

2.3 Parametric analysis summary

The parametric FEEP ARCS needle emitter model predicts many trends. In

particular, better thruster performance will occur when:

� needle radius of curvature is smaller

� extractor voltage is higher

� impedances are higher
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� percentage of tip wetted is increased

� contamination rates from the reservoir are lower

These trends are already known. The improvement achieved in the present study

is that the model qualitatively and quantitatively predicts the interaction of these

changes and the corresponding change in thruster lifetime. Therefore, the model can

be used to address experimental design questions such as:

� Is it worth the effort to develop a needle that has a 2-µm smaller radius of

curvature?

� What increase in mass efficiency should be expected for another 1 kV of ex-

tractor voltage?

� Should pure indium propellant be alloyed?

� Should pure tungsten needle compositions be altered?

� What range of fluid thickness should be attempted?

� Will sealing the propellant container walls make a measurable change in overall

mass efficiency?

The interrelationship model can also attempt to answer some theoretical questions.

A short list includes:

� How sensitive is mass efficiency to new designs that have different current -

voltage - mass efficiency characteristics?

� What is the trade-off between operating temperatures and mass efficiency?
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� What component of time-varying mass efficiency is due to changed wetting

angles?

� If the power of the system must be reduced, what reduction in mass efficiency

will occur?

� Does back-sputtering play a significant role in the de-wetting process?

The model is a very useful tool, although it should be noted that model coefficients

need to be recomputed for each technology family, similar to the constraint on the

impedance modeling.



CHAPTER III

Slender Jet Asymptotic Analysis

FEEP operation can be better understood through a systematic study of com-

peting physical forces on the needle and fluid. However, a brute force, full 3-D, free

surface simulation is highly impractical in terms of computational time. Mathemati-

cal perturbation schemes allow for the derivation of rapid 1-D models for slender jets

and fibers. This chapter details the theoretical basis for the rapid 1D models and

produces a perturbation scheme that is consistent to all levels of approximation. The

underlying approach to identifying force influence was originally discussed in Bechtel

[21]. Here, the governing equations are derived for a generic fluid regime through the

use of nondimensional numbers. Then, specific experimental FEEP parameters are

used to quantify the largest force and the order of the perturbation forces.

Subsequently, simulations of the time evolution of a slender needle jet driven by

these forces are presented. A careful choice of the boundary conditions is impor-

tant, since the modeling tensors are prone to catastrophic oscillations. A left and

right hand side fixed asymptotic stress setup is needed for smoother results. Simu-

lation of the shape evolution is performed using up to fifth-order forward, backward

and central differencing schemes. An additional analysis of the system sensitivity

to boundary condition perturbations determined that certain initial conditions, al-

67
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though physically reasonable, lead to numerical instability.

In FEEP operation, an indium jet is elongated by electrostatic forces with the

jet shape and size governed by surface tension, viscosity and inertial forces, among

others. In this chapter, we present a practical application of a comprehensive per-

turbation theory for slender viscoelastic jets with a computational example for an

operating indium-fed needle FEEP thruster mimicking the ARCS experimental set

up [240].

3.1 Perturbation expansion and nondimensional variables

A useful prerequisite to the slender jet governing equations is the concept of

nondimensional terms. The goal of non-dimensionalization is to identify the domi-

nant forces and evaluate the relative magnitude of perturbation contributed by each

force. This determination is partially made by expressing all the forces as a sum of

Taylor-expanded and normalized components. This section will define some nondi-

mensionalized terms and describe how variables can be expressed through recursive

power series.

3.1.1 Power series expansion

A power series expansion is a mathematical tool used here to determine the

relative importance of various forces. Formally, it is an infinite series of the form

f(x) =
∞∑
n=0

anε
n = a0ε

0 + a1ε
1 + a2ε

2 + ... (3.1)

where an represents the coefficients of the nth term and ε is the perturbation level.

For a converging series, as n increases, the terms are defined to contribute a smaller

and smaller part of the total sum. The leading order ε0 terms are defined as those
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values that are not subject to boundary condition fluctuations. In addition, only

the leading-order physical effects are present in the corrections. If the values are

uniformly small, first order ε1 corrections will include boundary fluctuations, but

not any weak effects. As the correction order εi increases, all prior perturbation

corrections εi−1 are considered fixed. Therefore, for the ε2 correction dε1

dt
= 0. The

power of the perturbation expansion, also known as the slenderness ratio ε, is given

by Eq. (3.2). This ratio utilizes the two primary length scales for the free surface

boundary value problem: r0 and z0, which correspond to the transverse and axial

scale, respectively. In needle FEEP terms, these are the width and length of the

needle. Another scale used in the nondimensional approach is the time scale t0 = z0
v0

,

where v0 is the velocity of the fluid along the needle length.

ε =
r0
z0

¿ 1 (3.2)

The radial (vr) and axial (vz) velocity components and the free surface (φ) are

expanded in a double power series about both ε and εr in Eq. (3.3). The tilde ( ˜

) notations for these terms
(
e.g. r̃ = r

r0

)
denote the nondimensionalized version of

the original parameter. The superscripts above the terms are derivatives of time

(
∂
∂t

)
and axial distance

(
∂
∂z

)
. Thus, v0,m

r (r, z, t) =
dvm

r (r̃,z̃,t̃)
dzm and r̃2vn,mz (r, z, t) =

r̃2 · [ ∂n

∂tn
∂m

∂zmvz
(
r̃, z̃, t̃

)]
.
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vz(r, z, t) = z0
t0

{
v0,0
z

(
z̃, t̃

)
+ ε

[
v0,1
z

(
z̃, t̃

)]
+ ε2

[
v0,2
z

(
z̃, t̃

)
+ r̃2v1,0

z

(
z̃, t̃

)]
+ ...

}

= z0
t0

Σn,m≥0ε
2n+mr̃2nvn,mz

(
z̃, t̃

)

vr(r, z, t) = z0
t0

{
εr̃v0,0

r

(
z̃, t̃

)
+ ε2r̃v0,1

r

(
z̃, t̃

)
+ ε3

[
r̃v0,2

r

(
z̃, t̃

)
+ r̃3v1,0

r

(
z̃, t̃

)]
+ ...

}

= z0
t0

Σn,m≥0ε
2n+m+1r̃2n+1vn,mr

(
z̃, t̃

)

φ(z, t) = r0
{
φ0

(
z̃, t̃

)
+ εφ1

(
z̃, t̃

)
+ ε2φ2

(
z̃, t̃

)
+ ...

}

= r0Σm≥0ε
mφm

(
z̃, t̃

)

(3.3)

The axisymmetry condition implies that vz is an even function of r and vr is an odd

function of r. However, φ depends on all powers of r and ε. φ is not a function of r

because it is the surface location at axial point z and time t whereas vr and vz are

present at multiple radii.

3.1.2 Dimensionless forces

The various nondimensional forces are defined in Eq. (3.4) as f[x]s representing the

inertial, viscous, capillary and gravitational forces. These forces are compared to each

other, with the largest of the four f[x] becoming the f0 in subsequent dimensionless

variables. The p[x] terms describe the electrostatic and ambient pressures.

finertial , ρr20z
2
0

t20
, fviscous , µr20

t0
, fcapillary , σr0

fgravitational , ρr2
0z0g, pes , r20 p̃es

f0
, pa , r20 p̃a

f0

(3.4)

Using the physical descriptors f, the nondimensionalized governing free surface

boundary problem and field equations involve combinations of the characteristic

length, time and force scales and the material, interfacial and ambient properties
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in Eq. (3.5). The forces in the parenthesis imply that the dimensionless variable is

the ratio of those two effects. The λ’s listed in the Λ1 and Λ2 definitions are the

characteristic elastic and relaxation times for the fluid, respectively.

B , f0t20
ρr20z

2
0

=
(

1
Inertia

)

Fr , z0
gt20

= Froude number
(

Inertia
Gravity

)

W , ρr0z20
σt20

= Weber number
(

Inertia
Surface tension

)

Zν , µr20
t0f0

= Zero strain viscosity

Λ1 , λ1

t0
= Weissenberg number (elasticity)

Λ2 , λ2

t0
= Retardation

1
B·Zν

, ρz20
µt0

= Reynolds number

1
B·W , r0σ

f0
=

(
Capillary

Characteristic

)

(3.5)

3.1.3 Stress tensor expansion

As the velocity components of Sec. (3.1.1) were rewritten as a power series

expansion, the stress tensor and pressure are also expanded in a similar manner

around ε and r. The stress tensor subscripts denote which face of the volume and in

which direction the stress acts, as shown in Fig. (3.1). Note that the (x, y, z) of the

figure map to (r, θ, z) in cylindrical coordinates.

For example, Trr denotes the stress on the radial face applied radially, while Trz

denotes the stress on the same face in the axial direction. Equation (3.6) outlines the

power series expansions of the stress tensor and pressure. These stress and pressure

terms are preceeded by the nondimensionalized stress, f0
r20

.
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Figure 3.1: Cauchy stress tensor

Trr(r, z, t) = f0
r20
{T 0,0

rr + εT 0,1
rr + ε2 [T 0,2

rr + r2T 1,0
rr ] + ...}

Tθθ(r, z, t) = f0
r20

{
T 0,0
θθ + εT 0,1

θθ + ε2
[
T 0,2
θθ + r2T 1,0

θθ

]
+ ...

}

Tzz(r, z, t) = f0
r20
{T 0,0

zz + εT 0,1
zz + ε2 [T 0,2

zz + r2T 1,0
zz ] + ...}

Trz(r, z, t) = f0
r20
{εrT 0,0

rz + ε2rT 0,1
rz + ...}

p(r, z, t) = pa + pes + f0
r20
{p0,0 + εp0,1 + ε2 [p0,2 + r2p1,0] + ...}

(3.6)

The stress and pressure coefficients are dimensionless functions of the scaled axial

coordinate. Axisymmetrical modeling requires that Trr, Tθθ, Tzz and p are even

functions of r while Trz is an odd perturbation of the power series expansion.

3.2 Model equations

The surface of a FEEP thruster is simulated using a 1-D axisymmetric slender jet

model. The free evolving surface F of the model is defined by Eq. (3.7). It adopts a

cylindrical polar coordinate system and assumes that the free jet is torsionless and

axisymmetric along the centerline.

F (r, z, t) = φ(z, t)r̂ − rr̂ = 0 (3.7)

Here, φ is the free surface radius, r the radial coordinate and r̂ the radial unit vector.
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The surface evolution is restricted by the kinematic boundary condition, where “|∂”

denotes that the constraint is evaluated at the interface boundary.

(
∂

∂t
+ v · ∇

)
F |∂ = 0 (3.8)

Figure 3.2: Illustration of a free surface

The standard assumptions for such a model include the idea that the jet radius

decreases slowly in the axial direction
(
dr(z)
dz
¿ 1

)
, and the axial velocity vz is uniform

throughout the jet cross section at a given radius
(
dvz

dr
= 0

)
. Therefore, knowledge

of the velocity vz captures a large portion of the evolution behavior of the surface

deformation. The governing equations for a 3D free surface boundary value problem

within a free jet surface are:

∇ · v = 0

ρ
[
∂v
∂t

+ (v · ∇)v
]

= ∇T−∇p+ ρg

T + λ1
DT
Dt

= 2µ
[
D + λ2

DD
Dt

]
(3.9)

corresponding to, respectively, incompressible continuity, conservation of linear mo-

mentum and a stress constitutive model. In Eq. (3.9), v is the fluid velocity, ρ is the

density, T is the Cauchy stress tensor, p is the pressure, D is the symmetric part of

the velocity gradient, λ1 is the characteristic relaxation time, λ2 is the characteristic

retardation time, and µ is the fluid viscosity.
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3.2.1 Surface curvature and pressure differential

To balance the pressure differential inside the fluid with that of the ambient

atmosphere, there is a discontinuity in pressure at the surface that is equal to the

surface tension multiplied by the surface curvature κ
[

1
m

]
= 1

s

∫
r(s) ds. Assume

that shearing is continuous across the interface and the normal force is discontinuous

by an amount proportional to that curvature. Then, the stress is given by (T-pI),

where I is the identity matrix. Equating this pressure differential to the curvature

stress gives Eq. (3.10), where Ta is the stress from the ambient atmosphere (0 in

a vacuum), −→n is the outward surface normal and σ the surface tension. While not

included in this analysis, addition of electrostatic forces to the expansion would be

in the form of an additional term on the right hand side.

(Ta −T + pI)|∂ · −→n = σκ · −→n (3.10)

Using small angle approximations [21], the surface curvature is approximated as a

power series expansion in Eq. (3.11).

κ =
1

r0

[
1

φ0
+ ε

{ −φ1

(φ0)2

}
+ ε2

{
(φ1)

2

(φ0)3 −
φ2

(φ0)2 −
1

2

∂φ0

∂z

φ0
− ∂2φ0

∂z2

}]
(3.11)

Equation (3.12) outlines the radial component ε stress tensor perturbation, whereas

Eq. (3.13) displays the axial version. A crucial note is that when the nondimensional

inertial and surface tension forces B and W from Sec. (3.1.2) are multiplied, their

magnitude determines which order ε terms are equated.
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êr : p− pa − pes + ∂φ
∂z
Trz − Trr = σκ

ε0 {p0,0 − T 0,0
rr }+ ε1 {p0,1 − T 0,1

rr }+ ε2
{
p0,2 − T 0,2

rr + (p1,0 − T 1,0
rr ) [φ0]

2
+ φ0T 0,0

rz
∂φ0

∂z

}
=

1
B·W

[
par0
σ

+ pesr0
σ

+ κ0 + ε1κ1 + ε2κ2
]

(3.12)

êz : (Tzz − p+ pa + pes)
∂φ
∂z
− Trz = −σκ∂φ

∂z

ε0
{

(T 0,0
zz − p0,0) ∂φ

0

∂z
− φ0T 0,0

rz

}
+ ε1

{
(T 0,1

zz − p0,1) ∂φ
0

∂z
+ (T 0,0

zz − p0,0) ∂φ
1

∂z

−φ0T 0,1
rz − φ1T 0,0

rz − φ1T 0,0
rz } − 1

B·W

[
ε0

{
pa

σ
∂φ0

∂z

+pes

σ
∂φ0

∂z
+ κ0 ∂φ0

∂z

}
+ ε1

{
pa

σ
∂φ1

∂z
+ pes

σ
∂φ1

∂z
+ κ1 ∂φ0

∂z

+κ0 ∂φ1

∂z

}
+ ε2{...}

]

(3.13)

3.2.2 Continuity

The assumption of an incompressible fluid combined with mass conservation

yields Eq. (3.14).

∇ · v =
1

r

∂

∂r
(r · vr) +

1

r

∂

∂θ
(vθ) +

∂

∂z
(vz) = 0 (3.14)

Substituting the expression for velocity expansions of Eq. (3.3) produces a power

series expansion to describe the material continuity.

∑
m

εm




∂φ(m)

∂t
+

∑
n

∑
p

ε2n+p

(∑
q

φ(q)εq

)2n [
vn,mz

∂φ(p)

∂z
− vn,mr

]

 = 0 (3.15)

Equating the terms corresponding to the powers of ε in Eq. (3.15) results in a

perturbation balance.
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ε0 : ∂φ0

∂t
+ v0,0

z
∂φ0

∂z
− v0,0

r φ(0) = 0

ε1 : ∂φ1

∂t
+ v0,0

z
∂φ1

∂z
+ v0,1

z
∂φ0

∂z
− v0,0

r φ1 − v0,1
r φ0 = 0

ε2 : ∂φ2

∂t
+

∑2
L=0

[
v0,L
z

∂φ2−L

∂z
− v0,L

r φ2−L
]

+ φ02
[
v1,0
z

∂φ0

∂z
− v1,0

r φ0
]

= 0

(3.16)

This expansion continues infinitely for φn > 2. Inserting the power series expansion

into the incompressibility condition of Eq. (3.9) results in a component summation

of the directional velocities. The inner bracketed term is restated as Eq. (3.18),

where it becomes a boundary condition for incompressible flow.

∑
n,m

r̃2nε2n+m

[
(2n+ 2)vn,mr +

∂vn,mz
∂z

]
= 0 (3.17)

−(2n+ 2)vn,mr =
∂vn,mz
∂z

(3.18)

3.2.3 Linear momentum

The second entry from the governing equations conserves linear momentum, with

individual stress tensor terms being designated by T[xx]. It is restated below, with the

radial and axial components of momentum conservation given by Eqs. (3.19-3.20).

ρ

[
∂v

∂t
+ (v · ∇)v

]
= ∇T−∇p+ ρg

radial : ρ
[
∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z

]
= ∂Trr

∂r
+ ∂Trz

∂z
+ 1

r
(Trr − Tθθ)− ∂p

∂r
(3.19)

axial : ρ

[
∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

]
=
∂Trz
∂z

+
∂Tzz
∂z

+
Trz
r
− ∂p

∂z
+ ρg (3.20)
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Substituting the power series expansion and differentiating with respect to time

and space, nondimensionalizing and then matching powers of perturbation gives the

radial (3.21) and axial (3.22) ε momentum balance equations.

radial : ε2
{
r ∂v

0,0
r

∂t
+ rv0,0

z
∂v0,0

r

∂z
+ r2 (v0,0

r )
2
}

+ ε3
{
r ∂v

0,1
r

∂t
+ rv0,0

z
∂v0,1

r

∂z

+rv0,1
z

∂v0,0
r

∂z
+ 2rv0,0

r v0,1
r

}
= B

r

[
ε0

(
T 0,0
rr − T 0,0

θθ

)
+ ε1

(
T 0,1
rr − T 0,1

θθ

)

+ε2
{
T 0,2
rr − T 0,2

θθ + r2
(
2T 1,0

rr + T 1,0
rr − T 1,0

θθ + ∂T 0,0
rz

∂z
− 2p1,0

)}]
(3.21)

axial : ε0
{

1 + v0,0
z

∂v0,0
z

∂z

}
+ ε1

{
∂v0,1

z

∂t
+ v0,0

z
∂v0,1

z

∂z
+ v0,1

z
∂v0,0

z

∂z

}
=

B
[
ε0

{
2T 0,0

rz + ∂T 0,0
zz

∂z
− ∂p0,0

∂z

}
+ ε1

{
2T 0,1

rz + ∂T 0,1
zz

∂z
− ∂p0,1

∂z

}] (3.22)

3.2.4 Stress tensor

The evolution of the stress components in a fluid depend on velocity gradients,

fluid characteristic relaxation times, viscosity and retardation stresses. This pro-

cess can be modeled via the Johnson-Segalman constitutive approach. The third

governing constraint from Eq. (3.9) is reproduced below.

T + λ1
DT

Dt
= 2µ

[
D + λ2

DD

Dt

]

The total derivative D
Dt

(·) captures the complete time and space evolution of a

parameter. Including the velocity gradients, its form becomes Eq. (3.23), where D

is the symmetric part and W is the skew symmetric part of the velocity gradient.

D

Dt
(·) =

{
∂

∂t
+ (v · ∇)

}
(·) + (·)W −W(·)− a[(·)D + D(·)] (3.23)

The total derivative captures the complete time and space evolution of a parameter.

Let a be the slip parameter and the upper convected rate corresponds to the case
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when a=1. Nondimensionalizing the time by Λ = λ
t0

= Λ̃εqt allows the time pertur-

bation importance to be determined. The time sensitivity exponent qt is determined

similarly by normalizing the variables as described earlier. Equation (3.24) displays

the renormalized time perturbation terms.

ε = εqt : Λ̃
(
∂T 0,0

rr

∂t
+ v0,0

z
∂T 0,0

rr

∂z
− 2av0,0

r T 0,0
rr

)

ε = εqt+1 : Λ̃
(
∂T 0,1

rr

∂t
+ v0,0

z
∂T 0,1

rr

∂z
+ v0,1

z
∂T 0,0

rr

∂z
− 2a {v0,1

r T 0,0
rr + v0,0

r T 0,1
rr }

) (3.24)

The rr (3.25), zz (3.26), θθ (3.27), and rz (3.28) terms of the stress tensor follow,

organized by the degree of expansion ε. Depending on the degree of εq in Eq. (3.24),

an additional term of Λ for nondimensional time might need to be added to each

expansion power. Similarly, the Zν term, representing nondimensionalized viscous

forces from Sec. (3.1.2), is expanded and normalized by letting Zν = Z̃εz. Since

the Λ and Zν terms could be included at any particular level ε of the power series

expansion, the placeholder is designated with an over brace (︷︸︸︷). Later sections

on experimental parameters evaluate the relative importance of these terms for an

indium-fed needle FEEP.

rr tensor perturbation expansion — ε0r0 : T 0,0
rr +

︷︸︸︷
Λ = 2

︷︸︸︷
Zν v0,0

r

ε1r0 : T 0,1
rr +

︷︸︸︷
Λ = 2

︷︸︸︷
Zν v0,1

r

ε2r0 : T 0,2
rr +

︷︸︸︷
Λ = 2

︷︸︸︷
Zν v0,2

r

ε2r2 : T 1,0
rr = 6

︷︸︸︷
Zν v1,0

r

(3.25)
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zz tensor perturbation expansion — ε0r0 : T 0,0
zz +

︷︸︸︷
Λ = 2

︷︸︸︷
Zν

∂v0,0
z

∂z

ε1r0 : T 0,0
zz +

︷︸︸︷
Λ = 2

︷︸︸︷
Zν

∂v0,1
z

∂z

ε2r0 : T 0,0
zz +

︷︸︸︷
Λ = 2

︷︸︸︷
Zν

∂v0,2
z

∂z

ε2r2 : T 0,0
zz = 2

︷︸︸︷
Zν

∂v1,0
z

∂z

(3.26)

θθ tensor perturbation expansion — ε0r0 : T 0,0
θθ +

︷︸︸︷
Λ = 2

︷︸︸︷
Zν v0,0

r

ε1r0 : T 0,1
θθ +

︷︸︸︷
Λ = 2

︷︸︸︷
Zν v0,1

r

ε2r0 : T 0,2
θθ +

︷︸︸︷
Λ = 2

︷︸︸︷
Zν v0,2

r

ε2r2 : T 1,0
θθ = 2

︷︸︸︷
Zν v1,0

r

(3.27)

rz tensor perturbation expansion — ε1r1 : T 0,0
rz +

︷︸︸︷
Λrz =

︷︸︸︷
Zν

{
∂v0,0

r

∂z
+ 2v1,0

z

}

(3.28)

While the possible time expansion for the first three equations is designated
︷︸︸︷
Λ ,

the rz stress tensor component of the additional potential term is labeled
︷︸︸︷
Λrz and

described by Eq. (3.29).

︷︸︸︷
Λrz =

∂T 0,0
rz

∂z
+ v0,0

z

∂T 0,0
rz

∂z
+ (1− a)v0,0

r T 0,0
rz − aT 0,0

rz

∂v0,0
z

∂z
+

1

2
(1− a)T 0,0

rr

∂v0,0
r

∂z

−1

2
(1 + a)T 0,0

zz

∂v0,0
r

∂z
− (1 + a)v1,0

z T 0,0
rr + (1− a)v1,0

z T 0,0
zz (3.29)

3.2.5 Kinematic boundary expansion

Substituting in the earlier Taylor velocity and surface expansions of Sec. (3.1.1)

into Eq. (3.8) and matching powers of the perturbation ε results in Eq. (3.30).

Σmε
m

{
∂φm

∂t
+ ΣnΣpε

2n+p (Σqε
qφq)2n

[
vn,mz

∂φp

∂z
− φmvn,mr

]}
= 0 (3.30)
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When expanding the free surface restraint into the leading order and the first cor-

rection terms, the stipulation on the surface motion is given by Eq. (3.31). This

restricts the φ location and the corresponding radial and axial surface velocities in a

2D axisymmetric framework and prevents separation of the surface sheet.

ε0 : ∂φ0

∂t
+ v0,0

z
∂φ0

∂z
− v0,0

r φ0 = 0

ε1 : ∂φ1

∂t
+ v0,0

z
∂φ1

∂z
− v0,0

r φ1 + v0,1
z

∂φ0

∂z
− v0,1

r φ0 = 0 (3.31)

3.3 FEEP expressions

Having listed the full set of possible governing equations, the perturbation equa-

tions for a slender jet in a specific configuration can be determined. Table (3.1) shows

experimental values for a representative indium-fed needle FEEP set up at ARCS.

Using the actual values from the first column, nondimensional force ratio terms can

be calculated and the final order ε perturbation of those variables displayed. The

last column is significant because it determines which order ε terms are matched up

at each power series expansion level. Larger values indicate a less important com-

ponent while negative order ε values imply that a force has a greater effect than the

perturbation level would otherwise indicate.

The governing equations with this unique set up will be shown to be sparse.

This is because Λ1, Λ2, Pa and Zν are not of small enough order ε to have their

corresponding expansion terms remain in the leading order or in the first correction

for free jet evolution. Therefore, the possible time and viscous corrections laid out

in Sec. (3.2.4) will not be used, since they are too small of an effective perturbation.

To correctly model only the driving forces for this jet, the terms multiplied by a large

order ε nondimensionalized force need to be removed. After this step, rewriting all
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Experimental parameters Nondimensional terms Order ε

ρ
[
kg
m3

]
6994 W 7.5× 10−4 4

σ
[
N
m

]
0.546 B 1330 -3

p̃es [Pa] 8.85× 106 Fr 0.060 2

v0

[
m
s

]
0.02 Zν 7.2× 10−6 6

r0 [m] 1× 10−4 Λ1 2.4× 10−4 4

z0 [m] 1× 10−3 Λ2 0.01 2

p̃a [Pa] 0.13 par0
σ

4.4× 10−9 9

µ
[
N ·s
m2

]
1.9× 10−3 pesr0

σ
2.95× 10−1 1

fcapil [N] 6.0× 10−5 1
B·W 1 0

Table 3.1: FEEP experimental parameters and resulting nondimensional terms

the incompressibility, momentum, stress, free surface, surface tension and surface

curvature restraints of Sec. (3.2) gives a new power series approximation of an

axisymmetric jet.

The ε = 0 leading order set of equations is listed as Eq. array (3.32). Recall that

B, F and W are nondimensionalized numbers from various combinations of forces,

as originally defined in Sec. (3.1.2). These equations are drawn one apiece from the

analysis of Sec. (3.2). Specifically, these terms come from Eqs. (3.12, 3.13, 3.18,

3.21, 3.22, 3.25, 3.26 and 3.31).
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p0,0 − T 0,0
rr = 1

B·W

{
1
φ0

}

(T 0,0
zz − p0,0) ∂φ

0

∂z
− φ0T 0,0

rz = − 1
B·W

{
1
φ0

∂φ0

∂z

}

2v0,0
r + ∂v0,0

z

∂z
= 0

B
r

{
T 0,0
rr − T 0,0

θθ

}
= 0

B
{

2T 0,0
rz + ∂T 0,0

zz

∂z
− ∂p0,0

∂z

}
= − 1

F r

T 0,0
rr = 0

T 0,0
zz = 0

∂φ0

∂t
+ v0,0

z
∂φ0

∂z
− v0,0

r φ0 = 0

(3.32)

Following similar reasoning and again using the order ε weighting from Table (3.1),

the ε = 1 first order corrections are given by Eq. array (3.33).

p0,1 − T 0,1
rr = 1

B·W

{
− φ1

(φ0)2

}

(T 0,1
zz − p0,1) ∂φ

0

∂z
+ (T 0,0

zz − p0,0) ∂φ
1

∂z
− φ0T 0,1

rz − φ1T 0,0
rz = 1

B·W

{
− 1
φ0

∂φ1

∂z
+ φ1

(φ0)2
∂φ0

∂z

}

2v0,1
r + ∂v0,1

z

∂z
= 0

B
r

{
T 0,1
rr − T 0,1

θθ

}
= 0

B
{

2T 0,1
rz + ∂T 0,1

zz

∂z
− ∂p0,1

∂z

}
= 0

T 0,1
rr = 0

T 0,1
zz = 0

∂φ1

∂t
+ v0,0

z
∂φ1

∂z
− v0,0

r φ1 + v0,1
z

∂φ0

∂z
− v0,1

r φ0 = 0

(3.33)
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3.3.1 Matrix formulation

The leading order and first ε correction arrays in Eqns. (3.32-3.33) each contain

eight equations with eight unknowns. However, they can be reduced to a coupled

system of four quasi-linear PDE’s referencing φ, vz, Trr and Tzz in the form

∂u

∂t
+M(u)

∂u

∂z
= P (u)u+ f (3.34)

where u = [φ, vz, Trr, Tzz]
′

and M(u) is a 4x4 array of coefficients on the spatial

derivatives of u. P (u) is a similar array but acts on u directly. Finally, f is a vector

of constants. This matrix reformulation can be accomplished because the system

of Eqs. (3.32-3.33) are over defined. For example, the last equation of the first

correction, p0,1−T 0,1
rr = 1

B·W

{
−φ1

(φ0)2

}
, allows the pressure term to be determined if Trr

and φ are known. Therefore, a solution to Eq. (3.34) at each level of perturbation

ε ∈ [0...N) allows for the computation of all eight variables. In matrix form, the

leading order problem of array Eq. (3.32) becomes Eq. (3.35).




∂φ0

∂t

∂v0,0
z

∂t

∂T 0,0
rr

∂t

∂T 0,0
zz

∂t




+




v0,0
z

2B
φ0

{
T 0,0
zz − T 0,0

rr + 1
BW

(
1
φ0

)2
}

0

0

1
2
φ

0

0

0

0

−B

0

0

0

B

0

0




×




∂φ0

∂z

∂v0,0
z

∂z

∂T 0,0
rr

∂z

∂T 0,0
zz

∂z




=




0

− 1
Fr

0

0




(3.35)
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Using the form and reasoning behind Eq. (3.34) again, the first order perturbation

ε = 1 correction matrix of Eq. (3.33) transforms into Eq. (3.36). The potentially

20-equation, 24-variable system’s evolution can be successfully described using just

one 4-row matrix per expansion level.




∂φ1

∂t

∂v0,1
z

∂t

∂T 0,1
rr

∂t

∂T 0,1
zz

∂t




+




v0,0
z

2B
φ0

{
T 0,0
zz − T 0,0

rr + 1
BW

(
1
φ0

)}

0

0

1
2
φ

0

0

0

0

−B

0

0

0

B

0

0




×




∂φ1

∂z

∂v0,1
z

∂z

∂T 0,1
rr

∂z

∂T 0,1
zz

∂z




=




−1
2
∂v0,0

z

∂z

2BT 0,0
rz

φ0 + 2
W (φ0)3

∂φ0

∂z

0

0

−∂φ0

∂z

0

0

0

0

2B
φ0

∂φ0

∂z

0

0

0

−2B
φ0

∂φ0

∂z

0

0







φ1

v0,1
z

T 0,1
rr

T 0,1
zz




(3.36)

3.3.2 Matrix simplification

Examining the last two rows of Eq. (3.35) shows that ∂T 0,0
rr

∂t
= ∂T 0,0

zz

∂t
= 0. This

implies that T 0,0
rr = f(r, z) and T 0,0

zz = g(r, z) do not depend on time and are there-

fore fixed in space to their initial profiles. Setting non-zero values for these stress

components yields a constant stress in the fluid - which is physically meaningless.

Therefore, we choose T 0,0
rr = T 0,0

zz = 0 and reduce the matrix in Eq. (3.35) to a 2x2

system shown in Eq. (3.37) with six dependent variables.




∂φ0

∂t

∂v0,0
z

∂t


 +




v0,0
z

1
2
φ0

2
W

1
(φ0)3

0







∂φ0

∂z

∂v0,0
z

∂z


 =




0

−1
Fr


 (3.37)
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Setting ηv = ∂v0,0
z

∂z
and operating the first equation by ∂

∂t
and the second by ∂

∂z
, the

term ∂2v0,0
z

∂t∂z
can be removed and the entire system can then be modeled at ε = 0

leading order with Eq. (3.38).

∂2φ0

∂t2
+ v0,0

z

∂2φ0

∂t∂z
− 1

W

1

(φ0)2

∂2φ0

∂z2
+

3

2
ηv
∂φ0

∂t
+

3

W

1

(φ0)3

(
∂φ0

∂z

)2

= 0 (3.38)

Similarly, the last two rows of Eq. (3.36) show that T 0,1
rr = ∂T 0,1

rr

∂z
= T 0,1

zz = ∂T 0,1
zz

∂z
=

0, and therefore the matrix can be again reduced to a 2x2 system, as shown in Eq.

(3.39) with six dependent variables.




∂φ1

∂t

∂v0,1
z

∂t


 +




v0,0
z

1
2
φ0

2
W

1
(φ0)2

0







∂φ1

∂z

∂v0,1
z

∂z


 =



−1

2
∂v0,0

z

∂z
∂φ0

∂z

2
W (φ0)3

∂φ0

∂z
0







φ1

v0,1
z




(3.39)

Setting ηt = ∂φ1

∂t
, ηz = ∂φ1

∂z
and operating the first equation by ∂

∂t
and the second

by ∂
∂z

, the term ∂2v0,1
z

∂t∂z
can be canceled from both sides. Since leading order terms

are considered constants for all orders ε greater perturbation, setting all ∂
∂z

(·)0,0 =

∂
∂t

(·)0,0 = 0 allows the modeling of the entire system to the first correction ε = 1

using Eq. (3.40).

∂ηt
∂t

+ v0,0
z ηtηz − 1

W

∂ηz
∂z

= 0 (3.40)
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3.4 Stability analysis

It is important to use the perturbation equations of the previous section so as

to obtain physically meaningful results. A well-posed, steady problem must have

boundary conditions consistent with the PDE problem [21]. Successful simulations

resulted from using an initial pressure and final tangential stress. Positive charac-

teristics of a matrix system propagate information in the positive axial direction,

i.e. to the right, by our convention. It follows that each positive characteristic has

one condition specified at the left boundary. Similarly, each negative characteristic

requires boundary data at the right in order to define the solution in the interior at

future points. Boundary conditions chosen from viewing the equations in isolation

run the risk of unknowingly predicting highly unstable, and thus physically impossi-

ble, steady states. The two characteristic equations for Eq. (3.37) are given in Eq.

(3.41).

s1 =
1

2Wφ

[
Wφvz +

√
W 2φ2v2

z + 4W
]

s2 =
1

2Wφ

[
Wφvz −

√
W 2φ2v2

z + 4W
]

(3.41)

Performing an eigenvalue analysis, the solution is hyperbolic when both charac-

teristics are real and the system is not degenerate. If imaginary values are chosen

for s1,2, a mixed hyperbolic/elliptic solution set results. The presence of this mixed

solution type means that surface evolution predictions will be catastrophically un-

stable, regardless of how reasonable the physical constraints. While s1 in Eq. (3.41)

is guaranteed to be positive definite, s2 is positive if (Wφvz)
2 ≥ W 2φ2v2

z + 4W . The

second characteristic turns out to be positive if and only if:

0 > 4W (3.42)
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Since the Weber number is normalized to lie between ε < W < 1
ε
, it should be in

the range [0.1:10]. Therefore, the system will provide a second characteristic that is

always negative and requires one left hand and one right hand boundary condition

to remain stable. Figure (3.3) shows an example plot of φ versus z where the expected

surface behavior is a flat line. However, using an inappropriate initialization of two

beginning boundary conditions, unpreventable chaotic behavior ensues regardless of

the computational differencing scheme or stencil used. This surface shape is shown

after 8,000 time steps simulating 0.01 seconds of evolution.
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Figure 3.3:
Unstable solution to droplet evolution from using two initial boundary
conditions

3.5 Simulation results

An example of the shape, velocity, axial force and stress for a steady-state slender

jet with all forces equally contributing is given in Figs. (3.4-3.5). The solid line is the

ε0 main term while the dotted line is the ε1 first correction. The correction is shown

to cause only a small variation in the jet values, with the variable plus the correction
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always being within 0.5% of the variable itself. This supports the initial claim that

increasing correction levels make ever-smaller changes to their main variable, or

limi→∞ εi = 0. To avoid the instability mentioned previously, these forces require

boundary conditions for a constant pressure on both ends of the jet.
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Figure 3.4: a) Slender jet free surface and b) axial velocity with ε1 correction
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Figure 3.5: a) Slender jet axial force and b) radial stress with ε1 correction

The surface φ begins at 1 and reduces approximately 6% in width to 0.94 at the

minimum, resembling a hanging string, so as to match exit pressure zero gradient

conditions. To preserve mass conservation, the jet velocity vz increases and the

nondimensional axial force Fz =
∫

(Tzz − p) da declines at the far right end, towards

z=1. The force is strongest in the region where the surface gradient is changing most
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rapidly with the max
(
d2φ
dz2

)
around z={0.1,0.3}.

The “equal force” case assumes the physical effects of inertia, gravity, surface

tension, viscosity, and elastic relaxation are all vital in the modeling of jet behavior.

The behavior of the free surface, axial velocity and axial force all drastically diverge

when the governing equations are changed from the original assumption of equal

importance for all forces to using the equations of Sec. (3.3). This divergence occurs

when inputting the experimental characteristics of a FEEP needle covered in liquid

indium as shown in Table (3.1).

Figures (3.6-3.8) show that with the imposition of non-equal forces expected in the

indium FEEP, a power series expansion simulation predicts several notable trends.

The free surface φ decreases rapidly (“bottle necks”) in the absence of retarding radial

stress. With Trr = 0 because of no Λ or Zν terms counteracting the dφ
dz

slope, the far

edge z=1 decreased. There is also no linear radial momentum rv0,0
z

∂v0,0
r

∂z
term to act

as a brake on the free surface and allows the axial velocity to increase. Note that the

area reduction occurs as the square of the radius, so the velocity will increase much

faster than φ shrinks. Finally, the axial force decreases in magnitude to nearly zero

as the right hand of the streaming jet is not tugging on prior points. The result is an

asymptotic breakup of a FEEP droplet-jet whereby the stream accelerates, tapers

and ceases to pull other droplets along. All of these trends have been observed

in experimental studies of field emission thrusters as well, as initially described in

Chapter I.

3.6 Conclusion

The asymptotic analysis presented considers the forces on a slender jet through

the use of nondimensional numbers and power series expansions of those forces.



90

z

φ

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Equal force magnitudes
FEEP force magnitudes

Figure 3.6:
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End stress difference between equal and FEEP parameter force assump-
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Among the assumptions used in the formulation of this model are that there is al-

ways a thin fluid of nonzero radius stretched along the axis and that the jet angle

θjet ∈ (0, π
2
]. The consequence of these assumptions was a rapid 1D model, with run

times from 0.01 to 20 seconds. A related stability analysis examined the importance

of the correct boundary conditions. Unless both beginning and ending jet param-

eters are fixed, the system is unconditionally unstable. This instability was shown

mathematically and the surface evolution chaotic behavior was also observed even

when using up to 5th order accurate stencils.

For the FEEP experimental set up, the order ε of the nondimensional numbers

portend that a complete approximation to fluid behavior requires surface tension and

electrostatic forces as model components. The ordering and magnitudes of the forces

from least to greatest is viscosity (-10), elasticity (-8), atmospheric pressure (-5),

inertia (-3), gravity (-2), surface tension and electrostatics (0). That is, the effect



92

of 101 kPa pressure on the surface has 1 × 10−5 the influence of surface tension on

the jet development. As well as identifying the magnitude of the force contribution,

several figures demonstrated that if all forces were equally important, the overall

evolution of the jet would be substantially different in terms of position, velocity and

internal stress.



CHAPTER IV

Droplet Snap Off Algorithms

Having established a numerical framework for the formation of a FEEP droplet,

we can now examine the results of snap off. In this chapter, we simulate the emis-

sion of charged indium droplets from an indium-fed needle FEEP in 2D and 2D-

axisymmetric coordinate systems. The boundary element method is used to rapidly

and directly calculate the electric field on the fluid surface, with the surface then

being advected forward in time using level sets. This unique combination will allow

us to successfully address difficult issues with surface tracking. Finally, algorithms

to increase speed and accuracy of the simulation are described.

For computational tracking of solid-liquid or liquid-vacuum interface surfaces,

the determination of the normal electric field
−→
En commonly is quite lengthy and

error-prone. This chapter will discuss the physical model used to simulate droplet

detachment and the level set and boundary element methods. This combination

of approaches enables accurate and rapid spatial resolution for charged surfaces,

handles a changing irregular shape and includes the effects of electrostatic forces on

the behavior of droplets after pinch off. In addition, the changes required to run

axisymmetric cases and a discussion of additional approaches used to provide ever

faster run times within the level set and boundary element methods are outlined.

93
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4.1 Model description

In 2D, the simulation model considers an incompressible, isothermal, viscous

liquid. The propellant, indium, is treated as a perfect conductor and its atoms are

accelerated by rectangular electrodes. The governing equations for the system are

listed as Eqs. (4.1-4.3). The electric field
−→
E is a surface normal force, since

−→
E=0

inside a conductor. Continuity and conservation of momentum are enforced, where

∂u
∂x

+ ∂v
∂y

= 0

At + Bx + Cy = −∇p
(4.1)

the main variables in the second vector equation are below.

A =



u

v


 , B =



u2

uv


 , C =



uv

v2


 (4.2)

The free surface is subject to a combined boundary pressure condition.

p = σκ+ q
−→
En + 2µliquid (Ddefm · −→n ) · −→n (4.3)

The subfunction variables u and v are local velocity vectors along the x and y

axes respectively; σ is the surface tension; κ is the surface curvature; and Ddefm is

the rate of deformation tensor. The electric field is computed by E = −∇U (−→x ),

where U (−→x ) is the electrostatic potential at position −→x .

4.1.1 Parameter submodels

The surface tension (σIn) of liquid indium does not vary rapidly with temperature

[56], as indicated by Eq. (4.4). During normal FEEP thruster operation, the tem-

perature remains within the narrow operational range of 440-450 K when indium



95

is far enough above its melting point to be fully liquid [93]. Figure (4.1) displays

the percentage change in surface tension, viscosity and density over the expected

temperatures.

σIn =
555− 0.12(T [K] − 430)

1, 000

[
N

m

]
(4.4)

The ability of indium to flow over a solid surface is determined largely by its viscosity

(µ), which varies with temperature through the weak exponential relationship shown

in Eq. (4.5). Over the expected temperature range, the fluid viscosity changes only

4% [56].

µIn = 3× 10−4e800/T [K]

[
kg

m · s
]

(4.5)

The density of indium (ρ) is given by Eq. (4.6) and changes about 0.01% per degree

Celsius [68].

ρIn = 1, 000× (7.1295− 6.7987× 10−4(T − 273.15))

[
kg

m3

]
(4.6)

Among the model assumptions, the treating of the propellant as a perfect con-

ductor is very reasonable. Since indium is a metal, the conductivity is so high that

an electron can travel through the liquid surface along the needle body at 8× 107 m
s
,

as described in Appendix (C). The fluid flows at a maximum speed 11 orders of

magnitude slower, only 1 × 10−4 m
s
. The isothermal assumption for droplets is ac-

curate because only radiation is available to cool them after snap off. For example,

detachment occurs in 0.1 µs, but a 100 µm diameter droplet at 450 K treated as

a blackbody cools less than 0.1 mK in that time [175]. Therefore, σ, µ and ρ can

accurately be treated as constant.
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Figure 4.1:
Change in surface tension, viscosity and density over operational tem-
perature range

4.1.2 Possible surface modeling approaches

Several different methods exist that can theoretically model the movement of a

surface. One of the most difficult aspects in tracking an interface is dealing with the

detachment and merging of that surface. The other main issue is that in addition to

the shape and movement of the interface to be computed, the large property jumps

associated with phase changes add significant computational burden. Simulations

with a sharp interface tend to be more accurate and numerically stable [211, 276].

For example, a large density ratio across an interface makes the computation stiff

and often leads to numerical instabilities. Tables (4.1-4.2) list several approaches to

simulate droplet surfaces and some advantages and disadvantages of each.

Front-tracking Numerical techniques in smoothing, regularization and surface

surgery are collectively referred to as front tracking methods. Unverdi [254] and
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Method Advantages Disadvantages

Boundary
integral
[14, 147]

� Entire solution from only
boundary nodes

� Rapid and possible infi-
nite precision

� Requires surface derivatives

� Complex shapes need signifi-
cant mathematics.

� Points need to be in order

� Trouble with detachment and
viscosity

Front track-
ing (MAC
[107], SLIC
[180])

� Interface tracked explic-
itly

� Allows for surface tension
and sharp density fields

� One set of governing equa-
tions

� No numerical diffusion

� Effort needed to normalize
panel lengths, compute curva-
ture

� Very complex method

� Grid regeneration needed

� Loses mass

Ghost fluid
[54, 70] � Allows multidimensional

advection

� Avoids interface splitting

� Simple to program

� Requires more points tracked

� Shape of cells around inter-
face nontrivial

� Low accuracy, from surface
orientation assumption

Table 4.1: Overview of droplet simulation approaches I
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Method Advantages Disadvantages

Immersed
boundary
[69, 100]

� Can use regular, unchang-
ing mesh

� Combines best parts of
Eularian and Lagranian
approaches

� Spurious oscillations at nodes

� Requires complex force
spreading

� Uses small timesteps for stiff
matrices

Level set [186,
226] � Allows topology changes

� Can merge and break up
without extra coding

� Grid based

� Needs to reinitialize φ at ev-
ery time step

� Loses mass

Volume
of fluid
[111, 194]

� Can provide 2nd order ac-
curacy for interface veloc-
ity

� Easy to implement

� Mass conserved

� Hard to determine curvature

� Small volumes detach and
drift

Table 4.2: Overview of droplet simulation approaches II
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Tryggvason [248] describe various algorithms for three dimensional front tracking.

They are based on multiple sets of governing equations over the entire computational

domain, with a separate solution for each fluid. A separate front marks the interface,

but a fixed grid is used for the fluid within each phase. The interface conditions are

explicitly enforced at the interface.

The Navier-Stokes equations are solved on a fixed, regular, staggered grid, and

the sharp interface separating the fluids is explicitly tracked by an additional moving

grid called the front. The flow is taken as incompressible and the interfacial source

terms such as surface tension are computed on the front and transferred to the fixed

grid.

Immersed boundary Using boundary body forces, this algorithm allows the im-

position of the boundary conditions on a given surface not coinciding with the com-

putational grid. The governing equations, therefore, can be discretized and solved

on a regular mesh.

Front capturing The basic approach is to use a finite volume discretization of the

entire domain, while modifying the numerical approximation to minimize numerical

difficulties. This generally involves using a second order scheme and adding artificial

viscosity around the front to avoid oscillations.

Boundary integral method (BIM) The basic formulation of the BIM is due

to Baker [14], and modified by Lundgren to account for toroidal geometry [147].

Only the surfaces are discretized, with forces and curvature computed from edge

interpolation. While this method is computationally efficient, it assumes that the

solution is governed by potential flow in each fluid, thereby being limited in how they
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model viscosity.

This method has a noteworthy history in bubble simulation. It has been used to

model the collapse of vapor bubbles [26, 27, 28], the topology change of an inviscid air

bubble [281], drop oscillations [146] and raindrops on a pool [182]. Three dimensional

applications can be found in [128, 158].

Level set method Level sets allow for computational tracking of a surface

between discrete interfaces. A grid is used, with a continuously differentiable variable

φ across the domain. They were introduced by Osher and Sethian in 1988 [187], and

have been heavily analyzed over the following decades [12, 66, 185, 222, 228]. Many

physical phenomena have been simulated using level sets, including ink jets [278],

electrical tomography [46], turbulent channel flow [279], hypothalamus structural

mapping [139] and radar image processing [24, 116].

4.2 Level set method

Using the model framework of Eqs. (4.1-4.3), numerical methodologies and al-

gorithms must be chosen to simulate the characteristics of FEEP droplets. In the

following section, a level set method is used to model material interfaces.

The method most similar to this investigation is by Gibou [96]. He proposed

an Eulerian approach that discretized the problem using a symmetric, second-order

accurate method with variable coefficient Poisson equations on evenly spaced mesh

points in an irregular domain. However, while Gibou’s approach did deal with irreg-

ular interfaces, it did not have the ability to handle gradients that change in space

and time that occur when droplets detach.

Interface tracking using level set computation relies on the determination and
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movement of the boundary. In FEEP operation, liquid propellant exists between a

solid tungsten needle and a vacuum. As outlined in the prior chapter, the dominating

forces are surface tension and electrostatic potential. Here, we present results that

demonstrate the adaptability of the model on irregular shapes and domains. In the

simulations, the position of the vacuum-liquid interface is updated via the level set

equation:

φt +
−→v · ∇φ = 0 (4.7)

where φ is the level set function; positive in the liquid and negative in the vacuum.

The interface velocity −→v is the indium fluid velocity. In the vacuum, lines of constant

−→v are projected normal to the indium surface. The interface is advected by only the

normal velocity component of −→v . This component is the normalized gradient of the

level set surface, as given by Eq. (4.8). The extension was first suggested in [38],

analyzed carefully in [283], and further discussed in [70] and [190]. In the special

case where −→vn=1, then Eq. (4.7) becomes a Hamilton-Jacobi equation whose solution

generally develop kinks, or jumps in derivatives. The unique viscous solution is then

chosen [186]. See [15, 51] for more details.

−→vn =
−→v · ∇φ
|∇φ| (4.8)

Integrating Eq. (4.7) results in the movement of φ contours along the directions

normal to the interface. Equation (4.7) also implies that φ remains constant on

droplet paths. If a point starts on the surface ∂Ω where φ = 0, that particle moves

through time, but remains on the surface. Figure (4.2a) shows the φ ≥ 0 cross-

section of a double-humped shape intersected at 3 different heights while Fig. (4.2b)

demonstrates how the φ level set values around the rightmost hump reproduce the
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surface contour at a point [6].

a) b)

Figure 4.2:
Level set a) surface determination at various heights and b) φ values
around the upper right hump at the highest point.

4.2.1 Fundamental integrals and constraints

To more fully analyze level sets, several new functions need to be introduced.

The unit normal −→n to Γ is given by Eq. (4.9).

−→n =
∇φ
|∇φ| (4.9)

Given an arbitrary function f (−→x ), several fundamental integrals can be obtained.

If we define the volume V ∈ <3 as the closed set of points such that

V = {−→x |φ (−→x ) ≥ 0} (4.10)

with a boundary surface Ω defined by

Ω = {−→x |φ (−→x ) = 0} (4.11)

then the surface and volume integrals are represented by Eq. (4.12).
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∮
Ω
f (−→x ) dΩ

∫
V
f (−→x ) dV

(4.12)

To normalize φ, it is important to define the distance function d (−→xI ) as the length

between any point −→xI in <3 to the nearest point −→x on the surface Ω. The negative

gradient (−∇d) at any point on the line segment from −→x to that −→xI location gives the

vector that points between them. Since d is a Euclidian distance, it is constrained

by Eq. (4.13).

|∇d| = 1 (4.13)

A signed distance function is an implicit function ι with |ι (−→x )| = d (−→x ) for all

−→x . Thus, ι (−→x ) = d (−→x ) = 0 for all surface −→x ∈ Ω, ι (−→x ) = −d (−→x ) for all points

outside the volume, and ι (−→x ) = d (−→x ) for all interior locations −→x ∈ V . Due to this

relationship, the same distance constraint applies in Eq. (4.14).

|∇ι| = 1 (4.14)

So, given −→xI and using the fact that ι (−→xI ) is the signed distance to the closest point

on the interface, Eq. (4.15) provides the closest boundary point.

−→x = −→xI − ι (−→xI ) · −→n (4.15)

The normalized constraints of the distance function cause other equations to

simplify. For example, if the level set variable is restricted via ι, then the mean

surface curvature can be expressed as Eq. (4.16).

κ = −∇ · −→n = −∇ ·
( ∇φ
|∇φ|

)
= −φxxφ

2
y − 2φxφyφxy + φyyφ

2
x(

φ2
x + φ2

y

)3/2
(4.16)
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Note that in our implementation, the curvature is not expressed using level set

variables. The reinitialization step is only second order accurate; the curvature

computed from φ alone will not give the second order accuracy that a volume of

fluid set up provides. While other alternative interface representations provide higher

order location descriptions [42], the accuracy of the simulation is limited instead by

the order of the boundary conditions implementation [222].

4.2.2 Numerical implementation

To numerically compute the surface evolution, a hybrid approach is used to deter-

mine the location of the surface while increasing the simulation accuracy. A combined

level set (CLS) and volume of fluid (VOF) approach is used (CLSVOF) [227]. The

surface normals are computed from the level set function with Eq. (4.8) which are

used in the volume of fluid piecewise linear reconstruction step. The level set reini-

tialization process then replaces the existing φ with the revised level set function.

This produces the signed normal distance from the surface, where φ (−→x ) = ι (−→x ).

Numerical algorithms

A variety of numerical algorithm schemes are needed in the CLSVOF approach

[183]. The method is briefly outlined below [224].

1. Advance the location of the interface using the coupled level set and volume

of fluid method. Velocity and pressure fields are computed based on variable

density projection methods [226].

2. Calculate nonlinear advective force terms in each fluid separately using high or-

der, upwind, slope limited discretization. The liquid indium is discretized using

a Godunov second-order upwind predictor-corrector step [99]. See Appendix
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(B.3) for a fuller description.

3. Compute the viscous forces. Use the Crank-Nicholson [223] and Runge-Kutta

methods. The new velocity field is continuous across the φ = 0 surface. Surface

tension is included as a body force, as in [227]. Curvature is calculated directly

from volume fractions.

4. Cell centered forces are interpolated to face centered forces

5. Pressure and velocity fields are updated and implicitly projected via Eq. (4.17).

∇ · ∇p
ρ

= ∇ · v

u = v − ∇p
ρ

(4.17)

The new velocity field satisfies the continuity condition and the new pres-

sure satisfies the appropriate jump conditions [p]=g and
[

1
ρ
∇p · −→n

]
=h. The

Cartesian-grid approach is used to approximate the divergence operator.

6. The liquid velocity is extrapolated in a narrow band around the φ = 0 interface.

7. The face centered velocity is interpolated back to cell centered velocities.

8. Finally, the cell centered pressure gradient term is updated.

Reinitialization of level set distance

To evolve a surface requires the continual adjustment of the level set field on all

grid points, not solely those on the surface. The convection implied by Eq. (4.7)

allows the nonzero φ values to move with differing velocities than the φ = 0 interface

[173]. If unequal φ propagation occurs, the distance field will become distorted.

Consequently, to prevent the level set gradient from becoming too flat or too step
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near the surface, at each time step the φ values near the surface need to be changed.

Therefore, it is necessary to reinitialize φ via Eq. (4.18) in order for it to be a signed

distance function analogous to ι. To minimize computational load, φ was only solved

in a bandwidth of ε around the interface and for a time τLS that is limited by the

fastest particle traveling a distance ε in Eq. (4.18).

∂φ

∂τLS
+
←−−→
sgn(φ) {|∇φ| − 1} = 0 (4.18)

The one dimensional spread signum function
←−−→
sgn(φ) is approximated numerically as

Eq. (4.19). The function replaced the discontinuity in sgn(φ) at φ = 0 with a smooth

transition from -1 to 1.

←−−→
sgn(φ) =

φ√
φ2 + (∆x)2

(4.19)

If surface distance renormalization is not performed, then Eq. (4.14) is no longer

guaranteed to be an exact representation as the surface evolves. Without a con-

strained gradient operator, a curved surface could overlap other level set values and

the interface identification capabilities of Eq. (4.7) would become invalid.

To solve for the updated level set field, several methods have been proposed in

the literature. Distance renormalizations in the narrow band can be formed in O(N

log N ) iterations [190]. Alternatively, a locally second order but global first order

accurate approach with a very low truncation error was proposed in [206]. Finally, a

fast sweeping method from [249] appears to have O(N) complexity while also being

first order accurate. The method used for the reconstructed interface in cell (i,j) is

decided by Eq. (4.20).

φn,Ri,j (r, z) = ai,j(r − ri) + bi,j(z − zj) + ci,j (4.20)
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The coefficients ai,j, bi,j and ci,j are chosen so that the interface represents the

best fit line for the piece of the zero level set passing through that cell [227]. In other

words, a, b and c minimize the error of Eq. (4.21).

Ei,j =

∫ ri+1/2

ri−1/2

∫ zj+1/2

zj−1/2

H ′(φ)(φ− ai,j(r − ri)− bi,j(z − zj)− ci,j)2 (4.21)

Timestep

The timestep ∆t at time tn is determined by restrictions due to the CFL condition,

surface tension, and gravity [224]. While the simulation is run without gravity, it

can be included through the last term in Eq. (4.22).

∆t < min
i,j


1

2

∆x

|Un| ,
1

2
∆x3/2

√
ρL

8πσ
,

1

2

2∆x

|Un|+
√

(Un)2 + 4g∆x


 (4.22)

The stability condition regarding gravity was determined through the inequality:

(U + ∆tg)∆t < ∆x (4.23)

The relation for surface tension is taken from [32, 81], with other stability references

at [7, 164].

4.2.3 Numerical errors

The numerical approaches presented simulate interface advection and convection.

However, the detailed numerics associated with modeling the motion of the surface

often cause errors in calculating the φ = 0 location. In this subsection, modeling

errors are identified and then solutions are presented. Errors can arise for many

reasons in a level set code. Truncation, extrapolation, uneven surfaces and incorrect

reference locations are among sources of error.
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Surface definition not restricted to grid nodes If the velocity field is only

defined on the interface, movement of the surface using Eq. (4.7) is difficult since

the grid nodes do not necessarily intersect the surface. Frequently, the surface will

not pass through any edges of the computational domain. Therefore, the velocity

field −→v needs to be defined away from the interface. This involves extending the

field normal to the surface. If the bandwidth of the velocity definition is increased

to ≈ 5 ·min(∆x,∆y), then the computational effort is minimized while at the same

time preserving the resolution of the interface.

Irregular surface elements form over time A surface possesses an infinite

number of points. These must be discretized into a finite span of nodes upon which

the velocity field will act. Even simple velocity fields can cause large distortions

of boundary elements via uneven acceleration on individual surface segments. The

resulting surface element deformations rapidly reduce the accuracy of the method.

The discretization of the surface will become less accurate and the resulting solution

would require extensive surface patching and smoothing to correct. Figure (4.3)

illustrates both these types of potential errors. The blue circles do not pass through

the ’x’ grid nodes, nor are they evenly spaced apart.

Degradation of signed distance function As pointed out in Sec. (4.2.2), if

the signed distance function is not modified and reinitialized, it no longer measures

the distance from the surface. The curvature and gradient of the surface would then

grow increasingly skewed over time. After each time step, φ must be re-constrained

via Eq. (4.14) or the calculated velocity normal will be increasingly in error.
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Figure 4.3:
Level set node potential errors from intersection away from the nodes
and uneven spacing

Detachment of surface If a particular node is defined solely as being on the

surface of element A, its detachment should redefine it as a member of a newly

formed element B. In a similar manner, intersections of discrete elements should

form a single new border. However, it is frequently seen that computations do not

reassign node membership in the Γ(t) ∈ ∂Ωi list. Therefore, the listing of points

belonging to a particular shape must be updated each time step.

To reduce the impact of the above sources of error, a volume of fluid and interpo-

lation scheme are introduced. These additions provide second order spatial accuracy

by locating and adjusting the surface with greater resolution.

Volume of fluid

As introduced in Sec. (4.2.2), to reduce the surface location drift over time the

interface is represented with second order spatial accuracy through the CLSVOF

method. In addition to solving the level set equation, the volume-of-fluid function

VF is computed [222, 138],
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∂VF
∂t

+−→v · ∇VF = 0 (4.24)

where the net volume of fluid is conserved both locally and globally. Interfaces are

tracked in this volume-of-fluid method by locally calculating the flux of volume in

or out of a given computational cell. If a cell has no fluid, VF = 0; totally filled grid

points have VF = 1. Interface (’mixed’) cells have VF ∈ (0, 1) [194]. The cell (i,j)

fluid volume fractions are determined by averaging the interior spot fluid presence

via Eq. (4.25).

VF (x, y) =





1 if fluid at (x, y)

0 if no fluid at (x, y)

(4.25)

These local fluid values are combined with H, the Heaviside function evaluated in Eq.

(4.26). A graphical representation of fractionally filled cells is given in Fig. (4.4).

VFij
=

1

∆x∆y

∫

i

∫

j

VF (x, y) dx dy (4.26)

Using the earlier descriptions of level sets, VOF builds on prior two- and three-

dimensional efforts of interface migration by Sussman [228]. The level set and VOF

are coupled as follows:

1. The normals are determined from calculating Eq. (4.7) over time.

2. The level set truncates the volume fractions, correcting truncation error located

more than one grid cell away from the interface.

3. On a cell to cell basis, mass is conserved by combining the volume fraction

values with the slopes of the level set surface. Figure (4.5) displays this linkage,
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Figure 4.4: Volume of fluid and level set cell values

where the linear reconstructed interface combines the area VFij
and the slope

n = ∇φ
|∇φ| .

Figure 4.5: CLSVOF grid combination [224]

4. Volume fractions then express interfacial curvature to second order accuracy.

VFi+1,j
−VFi−1,j

/2∆x is a second-order approximation to the slope h’ and VFi+1,j
−

2VFi,j
+ VFi−1,j

/∆x2 is second order for h”.
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Hamilton-Jacobi essentially non-oscillatory (HJ-ENO) schemes

In addition to VOF corrections, higher-order approximations of surface convection

can also reduce location error. A more accurate calculation of the surface can be

achieved through implementation of Hamilton-Jacobi essentially non-oscillatory (HJ-

ENO) polynomials.

Once φ and −→v are defined at every point in the smoothing region near the inter-

face, the surface can be marched forward in time from φ (tn) = φn to φ (tn+1) where

tn+1 = tn + ∆t. Using the explicit first-order forward Euler method, Eq. (4.7) can

be numerically computed as Eq. (4.27).

φn+1 = φn −∆t
[−→
vn · ∇φn

]
(4.27)

Considering Eq. (4.27) in one dimension at xi gives Eq. (4.28). If ui > 0, then

the method of characteristics points towards the left-hand element to determine φx

at the end of the time step. Conversely, if ui < 0 the situation is reversed and the

right-hand characteristics should be used.

φn+1
i = φni −∆t

[
uni

(
dφ

dx

)n

i

]
(4.28)

A necessary physical condition for stability of Eq. (4.27) is achieved by restricting

the time step in a manner such that a particle cannot travel through more than one

grid cell in a single time interval. This is referred to as the CFL condition, given by

Eq. (4.29).

∆t <
∆x

max|u| (4.29)

Higher order accurate methods are achievable using ENO, giving a better approx-
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imation for the left or right characteristics [187]. Under this second-order scheme, the

distance between the characteristics and φx is computed using the smoothest possible

polynomial interpolants P[x] for φx where φ (−→x ) = P0 (−→x )+P1 (−→x )+P2 (−→x )+P3 (−→x ).

Moving to third order accuracy requires a shift from a three- to a five-point stencil.

A weighted version of ENO, WENO, uses convex combinations of the approxima-

tions, by reducing the input of any points that interpolate across a discontinuity.

This weighting change improves the surface approximation of the characteristic to

fifth-order accurate [67].

Convergence studies and grid refinement

Multiple refinement studies were performed, with the problem of surface tension-

driven drop oscillations being presented. According to the linearized results of [136],

Section 275, the position of a drop interface can be described via Eq. (4.30),

R(θ, t) = a+ εPn(cos θ)(sin(ωnt+ π/2)) (4.30)

where Pn is the Legendre polynomial of order n=2, the offset is a=1, the scaling

ε = 0.05 and the driving frequency ωn is described by Eq. (4.31).

ω2
n = σ

n(n− 1)(n+ 1)(n+ 2)

a3(ρL(n+ 1) + ρGn)
(4.31)

Figure (4.6) shows the perturbed surface R(π
2
,t) when ρL=1, ρG=0, σ=0.5. Grid sizes

vary from 32x32 to 256x256, with a time step of 7 × 10−4 and symmetry boundary

conditions imposed at r=0 and z=0 [224]. Grid convergence occurs above 128x128

density.

The volume loss over time for the level sets versus grid density is shown in Fig.

(4.7). Convergence is demonstrated above the 256x384 node level, at a cell length of
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Figure 4.6: Surface tension driven droplet oscillations

12 µm. The instantaneous calculation of the shape area with varying grid densities

in Fig. (4.8) demonstrates the method’s second-order accuracy as the error drops

two decades for each order of magnitude increase in the number of nodes.
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Figure 4.7: Volume loss over time of a) a semicircle versus b) level set grid density
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Figure 4.8:
Area calculation error versus number of grid nodes. With a log/log slope
of two, it demonstrates a second order method.

4.2.4 Summary of level set method

The operation of level sets was outlined with its governing equations, numerical

calculation issues were raised that could potentially introduce great error into the

algorithm and then several potential solutions to those issues were presented. Level

set theory combined with a volume of fluid approach provided a mass-conserving

method to model the formation and evolution of an interface between two elements.

This work built on prior two- and three- dimensional efforts of interface migration by

Sussman [228]. The accurate location of the interface is vital to calculate the surface

curvature force component (σκ) presented in Sec. (4.1).

However, while the CLSVOF method is able to simulate detaching and re-attaching

droplets on a surface, it can not provide a calculation of the magnitude of the normal

electric field En in Eq. (4.3). A proposed algorithm for determining this electrostatic

force is the boundary element method (BEM).
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4.3 Boundary element methods

A complementary technique to level sets for surface simulation is the boundary

element method (BEM). It allows analysis of the behaviors of mechanical systems

and engineering structures that are subjected to external loading through heat, mass

or inhomogeneous boundary conditions [125, 104]. This approach mimics the more

common finite element method, except that boundary elements span only the bound-

aries of the problem instead of the entire volume. Figure (4.9) displays examples of

how the BEM places nodes around a notched plate and a sphere.

The BEM’s nodal placement only on the edges results in faster computation

due to fewer total nodes, avoidance of adaptive meshing, easier design changes, and

accurate calculation of gradients and infinite domains. Multiple commercial soft-

ware packages use the boundary element method and can include charged particles,

thereby allowing for electrostatic potential and electric field solutions in otherwise

untenable complex geometries [120, 209, 131]. However, a major potential limitation

of the approach is that the points have to be listed in order. Each location has to be

identified as well as its left and right neighbors.

(a) Notched plate (b) Sphere

Figure 4.9: Boundary elements on various surfaces [95]
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For example, consider Poisson’s equation:

∇2U(x) = − ρ̆
ε0

(4.32)

where ρ̆ is the charge density and U is the potential. If electrostatic problems always

involve discrete distributions of charge with infinite volumes, the general solution of

the potential given by Eq. (4.33) is the most straightforward solution. It describes

the scalar potential at interior location x using a volumetric charge density integral.

U(x) =
1

4πε0

∫
ρ̆(x′)
|x− x′|d

3x′ (4.33)

However, solving for the electrical potential in <3 means there are finite volumes

with distributed charge. In practice, to handle these conditions requires a different

perspective, such as solving Poisson’s equation on arbitrary surfaces using Green’s

functions. The following subsections discuss how to numerically calculate U(x) with

varying surfaces and boundary types.

4.3.1 Potential calculation from Green’s functions

To expand Eq. (4.33) and allow a potential calculation at any point using just the

boundary nodes requires Green’s functions. These mathematical constructs belong

to the class of functions identified as Fredholm or Volterra integrals of the first kind.

Here, K is an integral kernel [270] and f is the unknown function to be solved for

[11]. The integrals are of the form

g(α) =

∫ b

a

f(t)K(α, t) dt (4.34)

and provide a method of solving inhomogeneous differential equations. The term g(α)

serves an analogous role in partial differential equations that Fourier analysis does
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in the solution of ordinary differential equations [11, 266]. The exact form depends

on the differential equation, the body shape, and the type of boundary conditions.

The most useful form of the Green’s functions for this model defines G(x |x0) as

the delta gradient for the Laplace operator. Therefore, this is the solution to

∆G = δ(x− x0) (4.35)

where x = (x, y) is a boundary point and x0 is a point on the interior of the domain.

In 2D, the Green’s function becomes Eq. (4.36).

G = − 1
4π

ln
{
(x0 − x)2 + (y0 − y)2} (4.36)

Green’s identities

Green’s functions are used as a component in determining the potential. The first

steps to form these solutions of Eq. (4.34) invokes a vector calculus identity called

the divergence theorem. Given by Eq. (4.37), this theorem applies to any continuous

vector field R defined in volume V and bounded by the closed surface S.

∫

V

∇ ·R d3x =

∮

S

R · −→n da (4.37)

Let R = Γ∇ψ, where Γ and ψ are arbitrary scalar fields. Now,

∇ · (Γ∇ψ) = Γ∇2ψ +∇Γ · ∇ψ (4.38)

and Γ∇ψ ·−→n , Γ∂−→nψ, where −→n is the outward surface derivative acting on surface S

from volume V. Substituting these field definitions into Eq. (4.37), leads to Green’s

1st identity.

∫

V

(
Γ∇2ψ +∇Γ · ∇ψ)

d3x =

∮

S

Γ
∂ψ

∂n
da (4.39)
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Upon reversal of the Γ and ψ terms, subtraction of it from Eq. (4.39) leads to the

cancellation of ∇Γ · ∇ψ. This results in Green’s 2nd identity, or Green’s theorem

[121].

∫

V

(
Γ∇2ψ − ψ∇2Γ

)
d3x =

∮

S

[
Γ
∂ψ

∂n
− ψ∂Γ

∂n

]
da (4.40)

Green’s theorem for electrostatics

Using the result of Green’s theorem, Eq. (4.40), and replacing Γ by the Green’s

function G and ψ by the potential U gives Eq. (4.41).

U(x) =
1

4πε0

∫

V

ρ̆(x′)
|x− x′ | d

3x′ +
1

4π

∮

S

[
G(x, x′)

∂U

∂n′
− U(x′)

∂G(x, x′)
∂n′

]
da′ (4.41)

Since a perfect conductor has no internal charge, the charge density ρ̆(x0) = 0 and

the potential at any point can be calculated from the boundary flux and potential

conditions alone. For Dirichlet boundary conditions the surface SD is constrained by

UD(x, x′) = 0; x ∈ SD (4.42)

and the solution of the potential field in an arbitrary shape [121] becomes Eq. (4.43).

U(x) =
1

4πε0

∫

V

ρ(x′)GD(x, x′) d3x′ +
1

4π

∮

S

GD(x, x′)
∂UD
∂n′

da′ (4.43)

Laplacian description

There is some additional difficulty for the Neumann boundary conditions. Unless

some of the defined surfaces are relatively distant from the droplet, there is an extra

term in the expansion of Eq. (4.41). The difficulties are caused by the nonzero

potential flux at singularities and are established as follows.
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Consider the Laplacian of the distance relationship G = 1
r

where r = |x − x′ |.

Then for r 6= 0, it is a well-behaved continuous function and ∇2(1/r) = 0. This is

seen by:

∇2G = ∇2

(
1

r

)
=

1

r2

∂

∂r

(
r2∂

[
1
r

]

∂r

)
=

1

r2

∂

∂r
(−1) = 0 (4.44)

Using the divergence theorem again, consider the Laplacian of the integral over <3

[112].

∇2

∫

V

1

|x− x′ | d
3x′ = ∇ ·

∫
∇ 1

|x− x′ | d
3x′ (4.45)

Then, Gauss’ Law finds the volume flux relationship for the integral.

∫
∇ ·G(x, x′) d3x′ =

∮

S

G(x, x′) · dS = −4π

∫

V

d3x′ (4.46)

Therefore, the formal closure for the distance Laplacian with a desired volume in-

cluding the r = 0 limit is given by Eq. (4.47).

∇ ·
∫
∇ ·G(x, x′) d3x′ = ∇ · (−4π

∫

V

d3x′) = −4πδ(x− x′ ) (4.47)

Implication for Neumann boundary conditions

The simplest boundary choice for a Neumann fixed flux surface length SN is given

by Eq. (4.48).

∂U(x, x′)
∂n′

= 0; x ∈ SN (4.48)

This option makes the second term vanish in Eq. (4.41). But, applying Gauss’ theory

as in Eq. (4.46) gives

1

4πε0

[∫

V

ρ(x′)GD(x, x′) d3x′ −
∮

S

U(x′)
∂G(x, x′)
∂n′

da′
]

= −4π (4.49)
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Consequently, the least complex allowable boundary condition is given by Eq.

(4.50),

∂U(x, x′)
∂n′

= − 4π

SN
; x ∈ SN (4.50)

and leads to the resulting potential solution for fixed flux.

USN
(x) =<

∂U(x, x′)
∂n′

>SN
+

1

4πε0

[∫

V

ρ(x′)GN(x, x′) d3x′ −
∮

S

U(x′)
∂G(x, x′)
∂n′

da′
]′

(4.51)

< ∂U(x,x′)
∂n′ >SN

is the average value of the potential flux over the entire Neumann

surface. If the boundaries are placed distantly, that is limr→∞G(r) = 0, then the

boundary length SN increases without bound and the restriction of Eq. (4.50) reduces

to 0. This changes the problem back into a homogeneous solution. Assuming a finite

boundary where SN À SD,droplet yields ∂U(x,x′)
∂n′ → 0 and the problem reduces to

the intended homogeneous differential equation with a less than 0.1% approximation

error. The error magnitude upper limit is determined from a test case examination

of the non-normal flux induced on an uncharged wall from a droplet 20 radii away.

Definition of potential

The result of taking the limits of the single and double layered potential [74] gives the

boundary integral formulation for Laplace’s equation from the inside of the domain,

Eq. (4.52).

1

2
U(x0) =

∮

∂Ω

U(x)∂−→nG(x|x0) ds−
∮

∂Ω

∂−→nU(x)G(x|x0) ds (4.52)

The normal derivative of Eq. (4.52) is

∂U(x0)

∂n
=

∮

Ω

(
U(x)

∂2G(x|x0)

∂−→n ,x∂−→n ,x0

− ∂U(x)

∂−→n ,x

∂G(x|x0)

∂−→n ,x

)
ds
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where the surface ∂Ω consists of an arbitrary combination of U(x) along Dirichlet

(∂ΩD) or ∂−→n V (x) along Neumann (∂ΩN) boundary conditions, with ∂Ω = ∂ΩD

⋃
∂ΩN .

4.3.2 Numerical discretization of the problem

Defining all the surface boundaries with a given Dirichlet potential ’f’ or Neumann

flux ’g’

U |∂Ω = f or ∇U |∂Ω · −→n = g, x ∈ Ω (4.53)

and treating the potential and flux of each panel as being a C0 constant over the Nk

panels along surface ds gives the following approximation.

∮
∂Ωk

U(x)∂nG(x|x0) ds
.
=

∑Nk

i=1 U(xi)
∮
∂Ωi

∂nG(x|x0) ds

∮
∂Ωk

∂−→nU(x)G(x|x0) ds
.
=

∑Nk

i=1 ∂−→nU(xi)
∮
∂Ωi

G(x|x0) ds

(4.54)

Inserting Eq. (4.54) into Eq. (4.52) gives the full descriptive integrals for both

boundary types. A sample series of two panels is presented in Eqs. (4.55). The first

term represents a Dirichlet boundary condition and the second a Neumann one. The

terms 1
2
U(x0) and ∂U(x1)

∂n1
in the expansion arise from the effect of a panel on itself.

U(x0) =
∮
∂ΩD

U(x)∂n,0G(x|x0) ds+
∮
∂ΩN

∂−→n ,0U(x)G(x|x0) ds+ 1
2
U(x0)

∂U(x1)
∂n1

=
∮
∂ΩD

U(x)∂2−→n ,1G(x|x1) ds+
∮
∂ΩN

∂−→n ,1U(x)∂−→n ,1G(x|x1) ds+ 1
2
∂U(x1)
∂n1

(4.55)

If x is on the boundary, then using Eq. (4.52) calculates the potential at interior

point x0 as Eq. (4.56). Note that the flux on Dirichlet and the potential on Neumann

boundaries is unknown and needs to be solved, that is the ∂−→nU(x)|∂ΩD
and U(x)|∂ΩN

terms.
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1
2
U(x0) =

∑ND

i=1 U(xi)
∮
∂ΩD,i

∂n,0G(xi|x0) ds+
∑NN

j=1 U(xj)
∮
∂ΩN,j

∂−→n ,jG(xj|x0) ds

+
∑ND

i=1 ∂−→n ,iU(xi)
∮
∂ΩD,i

G(xi|x0) ds+
∑NN

j=1 ∂−→n ,jU(xj)
∮
∂ΩN,j

G(xj|x0) ds

(4.56)

Using the prior discretization and by collecting terms, the matrix can be described

as in Eq. (4.57) and mathematically as Eq. (4.58).




distance from one

panel to another







unknown Dirichlet and

Neumann BC


 =




known Neumann and

Dirichlet BC




(4.57)




a1,1..a1,ND

aND,1..aND,ND

b1,1..b1,NN

bND,1..bND,NN

c1,1..c1,ND

cNN ,1..cNN ,ND

d1,1..d1,NN

dNN ,1..dNN ,NN







∂−→n ,1U(x1,1)

..

∂−→n ,1U(x1,ND
)

U(x2,1)

..

U(x2,NN
)




=




γ̆(x1,1)

..

γ̆(x1,ND
)

αN(x2,1)

..

αN(x2,NN
)




(4.58)

The matrix values are defined by Eq. (4.59). Here, the ai,j represent the inter-

panel distances between Dirichlet-Dirichlet types of boundaries, bi,j are the Dirichlet-

Neumann distances, ci,j are the Neumann-Dirichlet distances and di,j describe the

Neumann-Neumann distances. The known right hand side potentials γ̆ and fluxes

αN are also shown.
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ai,j =
∫
∂ΩD,j

G(x1,i|xj) ds

bi,j =
∫
∂ΩN,j

∂−→nj
G(x1,i|xj) ds

ci,j =
∫
∂ΩD,j

∂−→nj
G(x2,i|xj) ds

di,j =
∫
∂ΩN,j

∂2−→nj
G(x2,i|xj) ds

γ̆(x1,i) = U(x1)
[

1
2
− ∫

∂ΩD,j
∂−→nj

G(x1,i|xj) ds
]

αN(x2,i) = ∂U(x2)
∂n1

[
1
2
− ∫

∂ΩN,j
∂−→nj

G(x2,i|xj) ds
]

(4.59)

The actual boundaries do not have to be all Dirichlet and then all Neumann types as

described above; the boundary conditions can alternate back and forth arbitrarily.

The potential at any point in the domain is thus given by summing the contributions

from fixed, diverse boundaries types, as in Eq. (4.56).

4.3.3 Calculating the electrostatic force

One of the main advantages of the BEM formulation of Eq. (4.58) is the direct

computation of the interface force. However, a critical limitation for electrostatics

using the boundary element approach is that the normal electric field has to be

much larger than the tangential one, or En À Et. This is due to the assumption

that the product of the normal electric field and area equals the entire flux. As noted

in Appendix (C), unless the conductivity of the material is large (on the order of

10,000 S/m), the drift velocity will not be much smaller than the conduction velocity.

Solving for the ∂−→n V (x1)|∂ΩD
term of the normalized test shape in Fig. (4.10a)

provides the normal component of the electric field (En) for points in the interval

(x, y) ∈ [−0.05, 0.05] × [0.7, 0.75], as seen in Fig. (4.10b). To calculate the electro-

static force term qE in the model, consider the droplets’ position. Gauss’ Law states

that the total flux of the electric field through an element dA is given by the sum



125

of the electric field’s surface normals; this is shown in Eq. (4.60) where the flux is

β = 1 unit into the page, along panel length L.
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X [cm]

E
le

ct
ric

fie
ld

[V
/m

]

-0.2 -0.1 0 0.1 0.2
-1.8E+10

-1.5E+10

-1.2E+10

-9E+09

-6E+09

-3E+09

(b) Normal electric field at the surface

Figure 4.10: Boundary nodes and normal electric field along a curved surface

UL

[
N ·m2

C

]
=

∫
E dA =

∮ −→
E · −→n dS =

q

ε0
(4.60)

By drawing a box around each computational panel, the earlier assumption of

a perfect conductor now implies that all electric flux is normal to the surface so

−→
E ≡ −→E n and there is no tangential electric field. The panel charge is given by Eq.

(4.61).

q = ε0LEnβ (4.61)

As a result, the total electrostatic force experienced by the panel is given by Eq.

(4.62).

FE [N ] = qEn = ε0LE
2
n (4.62)

As stated in Sec. (4.1), the primary goal for the BEM is to solve for qEn. The
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electrostatic solution is computed independent of a surrounding volume grid. The

calculation method for the electrical force holds for all non-crossing complex geome-

tries, including the nesting of multiple shapes at different potentials. The model is

capable of determining electrostatic surface forces on a needle FEEP.

4.3.4 Determining droplet potential

After detaching, the droplets need to have the appropriate boundary conditions.

Since they are treated as perfect conductors, there is no internal electric field and

thus no change in potential. Therefore, the entire droplet must have the same

electrostatic potential, regardless of shape. While a constant electric field (Euler)

limiter could act as a de facto potential stabilizer for circular drops, it does not

provide a constant potential for arbitrarily shaped surfaces. Instead, an incorrect

force is computed on the panels, and if simulated this way, any pretense of physicality

is abandoned.

As a result, the correct mathematical description of droplets has to be a fixed

Dirichlet condition (U(x) = c1). One way to do so is to compute the charge distri-

bution self-consistently through the use of variational capacitances. However, due

to the fact that a full capacitance analysis needs to be rerun each timestep, there is

a substantial degradation in numerical efficiency. Instead, system-consistent droplet

potentials can be determined iteratively. The BEM electrostatic algorithm can be

summarized as follows:

1. Obtain level set φ gridded data

2. Using that data, find the linearly interpolated zero surface crossing points

3. Separate the φ = 0 surface into discrete droplets.
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4. To enforce charge preservation, either match each droplet with a previous

timestep’s droplet or as a newly formed shape. This allows fissioning of droplets

even after detachment.

5. For each droplet, order the points as non-crossing and consecutive.

6. Create new surface coordinates where each panel is approximately the same

length.

7. Determine correct boundary conditions, appropriate droplet charges

8. Create distance-based, Green’s function A matrix

9. Solve the Ax=b matrix iteratively with GMRes

10. Calculate the force on the panels using the normal electric field as in the pre-

vious section.

11. Pass evenly spaced surface points of each droplet, with their normals, panel

locations and force back to the level set module.

Step 7 is performed by initially assigning the droplets the background potential. At

that point, steps 7-10 are iteratively repeated, with the potential of each detached

droplet influencing the potentials on all other detached droplets. The needle and

electrode potentials are fixed. This continues until the change in droplet potential is

less than 1%, commonly about 3 iterations. The routine then writes the intermediate

data files and passes the forces on each panel to the level set module.

4.4 2D axisymmetric case

When adapting the previously introduced methods to a 2D axisymmetric setup,

multiple changes in the formulation occur. All such modifications that are needed



128

to transition from a Cartesian setup are described in this section. The simulation

governing equations, panel effect relations and the formation of the Green’s function

are directly altered when modeling in cylindrical coordinates.

4.4.1 Model assumptions and governing equations

While the simulation model still considers an incompressible, isothermal and

viscous liquid, the indium propellant is now accelerated by a ring electrode instead

of two rectangles. The two dimensional axisymmetric governing equations for the

system are listed as Eqs. (4.63-4.64). Continuity and conservation of momentum are

enforced.

1
r
∂
∂r

(rvr) + ∂vz

∂z
= 0

∂A
∂t

+
(
vr

∂
∂r

+ vz
∂
∂z

)
A = B + σκ+ q

−→
En

(4.63)

The main momentum equation variables are listed in Eq. (4.2).

A =



vr

vz


 , B =



−1
ρ
∂p
∂r

+ ν
(∇2vr − vr

r2

)

−1
ρ
∂p
∂z

+ ν∇2vz


 (4.64)

Since the surface curvature is represented as κ = ∇·(∇φ)
|∇φ| , the new axisymmetric

surface curvature is expressed in terms of the level set as shown in Eq. (4.65).

κ =
1
r
∂
∂r

(r ∂φ
∂r

) + ∂2φ
∂z2∣∣(dφ

dr
, dφ
dz

)∣∣ (4.65)

4.4.2 Axisymmetric Green’s function

The 2D axisymmetric Green’s function is more convoluted than either the Carte-

sian two or full three dimensional case. This additional complication is due to the
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rotation about the z-axis. There are integrals that cannot be evaluated analytically

and no full recursion relationship for Taylor expansion terms is known.

Green’s function derivation

The function can be derived by integrating the 3D Green’s function in the θ-

direction [65]. This is analogous to Eq. (4.36), in <3 with x being the point at which

the potential is computed and x1 being the source point.

G(x, x1) =
1

4π

1

r
=

1

4π

1√
(x− x1)2 + (y − y1)2 + (z − z1)2

(4.66)

Conversion of the system to radial coordinates occurs from a substitution of x =

r cos θ and y = r sin θ into Eq. (4.66).

G(x, x1) =
1

4π

1√
(r cos θ − r1 cos θ1)2 + (r sin θ − r1 sin θ1)2 + (z − z1)2

(4.67)

This can be simplified via the relations sin2 θ+cos2 θ = 1, cos θ cos θ1 +sin θ sin θ1 =

cos(θ − θ1) and 1 + cos(2θ) = 2 cos2 θ. The Green’s function now becomes

G(x, x1) =
1

4π

1√
r2 + r2

1 − 2rr1 cos(θ − θ1) + (z − z1)2
(4.68)

Because the domain is axisymmetric, the absolute values of θ and θ1 are unim-

portant; only the difference ζθ between them. In addition, this coordinate system

transformation of the Green’s function requires some new variables.

ζθ = θ − θ1

L = (r + r1)
2 + (z − z1)

2

m = 4rr1
L

(4.69)

After changing the limits of integration and substituting Eq. (4.69) into Eq. (4.68),

the ring charge can be calculated by performing a rotational integration.
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G(x, x1) =
1

2π
√
L

∫ π

0

dζθ√
1−m cos2 ζθ

(4.70)

Since the integration is from 0 ↪→ π,
∫

sin2 ζθ dθ =
∫

cos2 ζθ dθ and these terms are

interchangeable. With sin ζθ being symmetric about π
2
, the integration is equivalent

to 2
∫ π

2

0
[ ] dζθ. Therefore, Eq. (4.71) is the axisymmetric Green’s function.

G(x, x1) =
1

π
√
L

∫ π
2

0

dζθ√
1−m sin2 ζθ

=
K(m)

π
√
L

(4.71)

The K(m) function is a complete elliptic integral of the first kind [4] and can be

approximately determined using a method of arithmetic-geometric means [210, 65].

Derivative recursion relations

The formulation of Eqs. (4.56 and 4.71) requires the first and second derivatives

of the Green’s function. In contrast to the two and three dimensional cases, no

full recursion relationship for Green’s function derivatives is known to exist in 2D

axisymmetry. A partial solution provides the next greater term of the Taylor expan-

sion, but still requires extensive calculations at each step [220]. These derivatives can

be calculated via the axisymmetric Laplace equation, Eq. (4.72). The fundamental

solution is [252] Eq. (4.73), where r1 is the source point, r2 is the reference point

and E(p) is an elliptic integral of the second kind.

1

r
Ψ∗ = −δ(r1 − r2)δ(z1 − z2) (4.72)

Ψ∗ =

√
r1r2
πp

{
K(p)(1− p2

2
)− E(p)

}
, p2 =

4r1r2
(r + r1)2 + (z − z1)2

(4.73)

Taking the derivative of Ψ∗ with respect to r1 and r2 gives two equations [65]:
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∂a+b+cG
∂za∂rb

1∂r
c
2

= −∂a+b+cG

∂za+2∂rb−2
1 ∂rc

2

−∑b−2
i=0

(−1)i

ri+1
1

(b−2)!
(b−2−i)!

∂a+b+c−i−1G

∂za∂rb−i−1
1 ∂rc

2

∂a+b+cG
∂za∂rb

1∂r
c
2

= −∂a+b+cG
∂za+2∂rb

1∂r
c−2
2

−∑c−2
j=0

(−1)j

rj+1
2

(c−2)!
(c−2−j)!

∂a+b+c−j−1G

∂za∂rb
1∂r

c−j−1
2

(4.74)

Redefining z = z1−z2 requires that the derivative with respect to z2 be multiplied

by (-1). The first equation in Eq. (4.74) is only valid when b is greater than one

while the second equation similarly requires c to be greater than one. A full listing

of 2D axisymmetric Green’s functions up to the a+b+c=3 derivative is provided in

Sec. (D.4).

4.4.3 Panel charge and radius normalization

For a 2D axisymmetric model, the boundary panel description needs to be mod-

ified. Consider a distribution of particles in a cylindrical system randomly scattered

along r and θ. To produce a constant overall potential, the charge density must re-

main constant. However, with an increasing area as the radius increases, the relative

charge must increase. Thus, the charge on each panel integration point is multiplied

by the normed radius rpoint/rmidpoint . This increases the charge further from the cen-

ter, leaves it unchanged at the midpoint and reduces it as the integration proceeds

towards the axis.

4.4.4 A matrix form variation

While Eqs. (4.58-4.59) demonstrate how to set up the A matrix, moving to a

2D axisymmetric realm creates several new concerns. The primary issue is the lack

of strong diagonal dominance in A. As a result, the matrix is stiff and the solution

to the linear system is unstable. The matrix is of full rank but poorly conditioned,

so practical solution techniques are inaccurate. With a high condition number on

the order of 1 × 105 for 1000 panels, computed strengths vary greatly due to small
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system perturbations.

Computational load also becomes a concern. Previously, the matrix formulation

automatically solved for both the potential and electric field at every panel center. In

this model, both of these quantities are not necessary for every position, so changing

the A matrix interpretation can save time by reducing the number of computed

integrals from the original 2N2
p panels to N2

p [65].

An alternative method replaces the ∂−→nU(x1,1) and U(x2,1) terms in Eq. (4.56)

with constants ϕi and $i. For fixed potential panels ϕi is set to zero while $i is zero

for fixed potential flux panels. Equation (4.58) is then rewritten as Eq. (4.75) [65]:




à1,1..à1,ND

àND,1..àND,ND

b̀1,1..b̀1,NN

b̀ND,1..b̀ND,NN

c̀1,1..c̀1,ND

c̀NN ,1..c̀NN ,ND

d̀1,1..d̀1,NN

d̀NN ,1..d̀NN ,NN







$1

..

$ND

ϕ1

..

ϕNN




=




U(x1,1)

..

U(x1,ND
)

∂−→nN
U(x2,1)

..

∂−→nN
U(x2,NN

)




(4.75)

where the values in the matrix are given by Eq. (4.76).

ài,j =
∫
∂ΩD

∂−→nD
G(x|x1,j) ds+

{
1
2
∈ i=j

}

b̀i,j =
∫
∂ΩN

G(x|x1,j) ds

c̀i,j =
∫
∂ΩD

∂−→nD
∂−→nN

G(x|x2,j) ds

d̀i,j = − ∫
∂ΩN

∂−→nN
G(x|x2,j) ds+

{
1
2
∈ i=j

}

(4.76)

Once the values of {$1..$ND
} and {ϕ1..ϕNN

} have been calculated, they can be

used to calculate the potential throughout the domain by using Eq. (4.77).
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U(x) =

ND∑
j=1

$j

∫

∂ΩDj

∂G(x|xj)
∂nj

dS +

NN∑

k=1

ϕk

∫

∂ΩNk

G(x|xk)dS (4.77)

4.4.5 Electrostatic force calculation

When calculating the potential flux from Sec. (4.3.3), recall that

UL

[
N ·m2

C

]
=

∫
E dA =

∮ −→
E · −→n dS =

q

ε0

and therefore q = Enε0A. While the cross sectional area in 2D is the panel length

one unit deep (L× 1), the surface area Atorus of the torus in Fig. (4.11) is

Atorus = 4π2Rr (4.78)

and with the relative radius r equal to the panel length L, the charge is given by Eq.

(4.79).

q = 4π2Enε0RL (4.79)

The total electrostatic force experienced by the panel in 2d axisymmetric coordinates

is given by Eq. (4.80).

FE [N ] = qEn = 4π2E2
nε0RL (4.80)

4.5 Improvement of accuracy and speed algorithms

The definition of two dimensional surface tracking was described in Secs. (4.2-

4.3). However, important issues remain concerning accurate and rapid implementa-

tion of these methods. This section details approaches to obtain improved simulation

performance.
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Figure 4.11:
Torus geometry framework used to convert simulation area to axisym-
metric droplet volume

4.5.1 Generalized Minimal Residual (GMRes)

Many methods are suitable for quickly obtaining solutions for the unknowns in Eq.

(4.58). An excellent candidate used here is Generalized Minimal Residual (GMRes).

GMRes is an iterative matrix solver for large, unsymmetric, semi-positive, definite,

Ax=b linear systems. Substantial time savings can be achieved using this method to

calculate the electrostatic force on a set of points within a Poisson problem.

Background

Determining the force on N particles from all of the other charged particles usu-

ally requires the formation of an Ax=b matrix. Here, A denotes a real, unsymmetric

N × N matrix with eigenvalues λ1, λ2, ..., λn [199]. Solving this system through

full Gaussian inversion takes O(N3) operations, whereas GMRes can solve the same

system to tolerance xtol in approximately O(N2 ln(N)) time. For large matrices, this

can result in significant time savings. An improvement on standard GMRes occurs

if the matrix-vector product is computed with a tree code; x can then be computed

in O(N ln(N)) time. For matrices of various sizes, the approximate computational

effort is given in Table (4.3).

GMRes solves systems of non-linear partial differential equations by approximat-
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ing the solution with the Arnoldi method on a projected Krylov subspace. The

mathematics and algorithm of the above methods are described in the following

sections. Note that if the matrix operator Ak is a constant linear operator, then

GMRes is identical to another matrix solving method labeled gradient conjugate

residual (GCR). In general, GMRes remains more stable for an arbitrary A matrix

than GCR [260].

Matrix solution method size= 1002 10002 10, 0002 100, 0002

Gaussian inversion 1× 106 1× 109 1× 1012 1× 1015

GMRes 5× 104 7× 106 9× 108 1× 1011

GMRes tree code 5× 102 7× 103 9× 104 1× 106

Table 4.3:
Order of magnitude computational effort for various A matrix dimensions
using 3 different solution methods

Krylov subspaces

A projection method approximates a solution of the linear system Ax=b by ex-

tracting or “projecting” onto a spanning subspace [198]. GMRes projects the solution

onto the mth Krylov subspace formed by Eq. (4.81)

κm(A, υ) = span
{
υ, Aυ, A2υ, ...Am−1υ

}
(4.81)

where υ is the initial normalized residual. Subspaces are useful due in large part to

their embedded characteristic polynomial. In Eq. (4.82), that polynomial provides

a more accurate and better fitting approximation to the system solution as the size

of m increases.

det(λI −A) = h0 + h1λ+ h2λ
2 + ... hNλ

N = 0 (4.82)
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Here, hi are coefficients and λ are the eigenvalues of the A matrix. Using the Cayley-

Hamilton theorem, the eigenvalues can be replaced by A while the sum remains zero

[10].

h0I + h1A+ h2A2 + ... hN−1AN−1 +AN = 0 (4.83)

By rearranging Eq. (4.83), renaming the hi coefficients with the residual υi and

substituting into Ax=b, a linear combination that approximates x can be calculated.

x = A−1b = υ1b+ υ2Ab+ υ3A2b+ ... υNAN−1b (4.84)

Equation (4.84) is a polynomial describing a Krylov combination of order N. The

N th Krylov subspace can form a basis vector in <N . That is, any N-dimensional

vector can be written as a linear combination of its basis vectors. The projection

onto the Krylov subspace yields an approximate solution of the linear system [110].

Arnoldi method

Arnoldi’s method was first introduced in 1951 as a way to reduce a dense matrix

into upper Hessenberg form. This occurred by making a set of linearly independent

vectors orthogonal. It was thought that this process would approximate the eigenval-

ues of the original dense matrix with the eigenvalues given by the Hessenberg matrix

[198]. While that did not happen, it was determined eventually that this strategy

can efficiently approximate eigenvalues of larger matrices.

Therefore, the Arnoldi method finds the exact solution at the N th step, since at

that point the Krylov subspace completely spans A, and κ ∈ <N . This method starts

with a given vector υ1 with unit norm and then at each step m (m¿1) constructs an

orthonormal basis υm by computing
︷︸︸︷
w = Aυm−1. Afterwards, it ortho-normalizes
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︷︸︸︷
w with respect to υ1 → υm−1 to obtain υm. The original vector guess x1 is com-

monly {0}. The upper Hessenberg matrix can be formed through H = υTAυ; see

Sec. (D.3) for more details. The newly formed Hessenberg matrix and its eigen-

values populate the Krylov subspace and help to provide approximations of the m

eigenvalues of the A matrix [205].

GMRes algorithm

The algorithm for the generalized minimal residual iterative solver sets up the

component matrices in steps 1 and 2, applies the Arnoldi method in steps 3-11

and determines the residual and improved guess for xm at the end. The algorithm

then repeats until the approximated solution results in a system residual less than a

specified threshold. One reason the method is so rapid is that the Hessenberg begins

as a [1x1] matrix and then grows iteratively. So instead of solving an [NxN] matrix

directly, it solves a [2x2], a [3x3], [4x4]... only up until convergence when the residual

is less than the chosen tolerance [110]. In these simulations, the matrix solution is

commonly arrived at using N/10 iterations.

1. Compute r1 = b− Ax1; β =‖ r1 ‖2; υ1 = r1
β

2. Define the (m + 1) × m upper Hessenberg matrix Hm = {hij}1≤i≤m+1,1≤j≤m.

Set Hm = 0.

3. For j=1,2...m Do:

4. Compute
︷︸︸︷
w
j

= Aυj

5. For i=1,2...j Do:

6. hij =
T︷︸︸︷
w
j
υi
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7.
︷︸︸︷
w
j

=
︷︸︸︷
w
j
−hijυi

8. End Do i

9. hj+1,j =‖ ︷︸︸︷
w
j
‖2. If hj+1,j = 0 set m=j and goto 12

10. υj+1 =

︷︸︸︷
w
j

hj+1,j

11. End Do j

12. Compute xm, the minimizer of
∥∥βe1 −Hmx

∥∥
2

and υm = υ1 + υmxm

Speedups to the GMRes algorithm

Through the steps in Sec. (4.5.1), the GMRes algorithm approaches O(N2 ln(N))

computational cost. To reduce the total runtime to O(N ln(N)) time requires sub-

stantial reworking and recasting of variables. The most significant change involves

the panel-panel Green’s function calculation. Here, a tree code method is introduced

that removes the need to form the A matrix at all.

Tree code utilization The most computationally expensive parts of the stan-

dard GMRes algorithm come in the calculation of the matrix-vector product, an

O(N2) operation. Implementation of a point-cluster reduction scheme is most effec-

tive in calculating the b, A or Aυj terms identified in the previous numbered list.

An approach that avoids forming most of A can be derived by recalling that for a

representative charge distribution, Aυj is the potential arising from that set up. For

2D coordinates on a Dirichlet boundary, if the distance is large between the centers

of panel i and panel j compared with the panel sizes, then Aij ' ln(‖xi−xj‖)
4π

. That

is, for widely separated panels, the distributed jth panel charge has the same effect

on the potential at xi as would a point charge located at panel j ’s center [172]. A
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variety of concepts for tree codes with their branches and clusters [59, 195, 105, 263]

have been published.

Clusters There are two main steps in using a tree code: constructing the tree

for a given set of panels and then computing the electric field using that structure.

The
−→
E n field calculation is determined from the formation of Green’s function and

then uses the boundary element method of Sec. (4.3). The tree is constructed by

subdividing the panels into a nested set of clusters. Once the tree is computed,

each particle’s potential U is then expressed as a sum of panel-cluster interactions

of strength Υ.

U (x, Cj) = 1
ε0

∑NP,j

i=1 Υi

∫
∂Ωj

G (x, xi) ds

U (x) =
∑Nc

j=1 U (x, Cj)

(4.85)

where Cj = {xi, i = 1, ...NP,j} denotes a cluster of NP panels in cluster j [141] and

Nc is the number of non-overlapping clusters. The panels are grouped into this set

of clusters using a divide-and-conquer strategy [16]. The first level is one cluster

containing all the panels, with successive levels containing geographically grouped

sections split into 4 subclusters. Figure (4.12) shows an example quad tree after

construction. Figure (4.12b) was formed by beginning from the top-left square of Fig.

(4.12a) and rotating clockwise through the hierarchy. The dotted lines correspond

to empty squares that were subsequently removed to save storage space.

Tree codes can be used to approximate the panel integrals. The approximate

Green’s function in two dimensions can be written in terms of the Taylor expansion

around point x with respect to xi about particle cluster xC [44]:



140

Figure 4.12: Representation of quad tree a) spatially and b) tree-linked [188]

G (x, xi) = G (x, (xi − xc) + xc)

' ∑p
k=0

∑k
L=0

1
L!(k−L)!

∂Lxi
∂k−Lyi

G (x, xc) (xi − xc)L(yi − yc)k−L
(4.86)

where p is the order of approximation. The derivative of the Green’s function for

Neumann conditions is one power higher, and hence the moments have a greater

exponent on their respective distances from cluster center.

∂nG (x, xi) = ∂nG (x, (xi − xc) + xc)

= ∂xG (x, (xi − xc) + xc) + ∂yG (x, (xi − xc) + xc)

' ∑p
k=0

∑k
L=0

1
L!(k−L)!

∂Lxi
∂k−Lyi

G (x, xc) (xi − xc)L+1(yi − yc)k−L

+
∑p

k=0

∑k
L=0

1
L!(k−L)!

∂Lxi
∂k−Lyi

G (x, xc) (xi − xc)L(yi − yc)k−L+1

(4.87)

Using Eqs. (4.85-4.86), the panel-cluster interaction is given by Eq. (4.88).
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U (x, C) ' 1
ε0

∫ ∑
i∈C

∑p
k=0

∑k
L=0

1
L!(k−L)!

∂Lxi
∂k−Lyi

G (x, xc) (xi − xc)L(yi − yc)k−LΥi ds

= 1
ε0

∫ ∑p
k=0

∑k
L=0

1
L!(k−L)!

∂Lxi
∂k−Lyi

G (x, xc)
∑

i∈C(xi − xc)L(yi − yc)k−LΥi ds

= 1
ε0

∑p
k=0

∑k
L=0

1
L!(k−L)!

∂Lxi
∂k−Lyi

G (x, xc) ×
∑Np

i=1
PL,i

2
Υi

∑M
m=1wm(xim − xc)L(yim − yc)k−L

= 1
ε0

∑p
k=0

∑k
L=0 TL,k (x, xc) ML,k(C)

(4.88)

where wm is themth Gaussian quadrature weight (see Sec. (4.5.2)), PL is the length of

the ith panel in that cluster, TL,k (x, xc) is the (L,k) Taylor coefficient of the Green’s

function and ML,k(C) is the corresponding moment of the cluster. Following similar

steps, the panel-cluster Neumann interaction is given by Eq. (4.89).

∂nU (x, C) ' ∑p
k=0

∑k
L=0

1
L!(k−L)!

∂Lxi
∂k−Lyi

G (x, xc)×
{∑Np

i=1
PL,i

2
Υi

∑M
m=1wm(xim − xc)L+1×

(yim − yc)k−L +
∑Np

i=1
PL,i

2
Υi

∑M
m=1wm(xim − xc)L(yim − yc)k−L+1

}

=
∑p

k=0

∑k
L=0 TL,k (x, xc) M

N
L,k(C)

(4.89)

Note that Taylor coefficients are not affected by the points i in cluster C, nor do the

cluster moments change due to the location of x [45]. To calculate step 4 in Sec.

(4.5.1) with a tree code requires the determination of the correct cluster interaction

Atree for each iterate vj. Instead of N cluster calls, approximately ln N clouds are

evaluated.
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Fast potential evaluation As indicated in Eq. (4.85), the potential at a point

is expressed as the sum of particle-cluster interactions for suitably chosen clusters

C. The tree code has two options for evaluating each interaction: either direct sum

with all particles or applying the Taylor approximation in Eq. (4.88). Replacing

the panel strengths with the iterative matrix-vector product in step 4 of Sec. (4.5.1)

gives Eq. (4.90), where
︷︸︸︷
w is the next iterated x guess.

︷︸︸︷
w (x, C) =

∑p
k=0

∑k
L=0

∫ {
1

L!(k−L)!
∂Lxi
∂k−Lyi

G (x, xc) ds
}
×

∑
i∈C

∑M
m=1(xim − xc)L(yim − yc)k−Lviωm

(4.90)

Using the Barnes-Hut criteria [16], it is possible to determine when the Taylor

cluster approach is sufficiently accurate [44]. If xC is the cluster center, let rC be

the cluster radius and R = |x− xC | the particle-cluster distance. A user-specific

error parameter θ < 1 is also defined. In practice, θ = 0.2 is commonly used

[45]. If rC < θR, the bodies are said to be well-separated and the approximation

is appropriate. Otherwise, the code recursively considers interactions between the

particle and the children of the cluster Cj. If the cluster has no children then it is a

leaf on the node and direct summation is used.

Preconditioning the matrix

Besides tree codes, another approach to decreasing solution time is to cluster the

eigenvalues through preprocessing the matrix. The simplest preprocessor is called a

block Jacobi; it utilizes the inverse of the main diagonal, as shown in a sample 3x3

matrix by
︷︸︸︷
A in Eq. (4.91).
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A =




A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3



,
︷︸︸︷
A =




1
A1,1

0 0

0 1
A2,2

0

0 0 1
A3,3




(4.91)

The preconditioned matrix is then formed through Eq. (4.92). The span-reduction

results of such an operation are shown in Fig. (4.13). The range of matrix entries

are reduced from over (−1× 106 : 1× 107) down to [−10 : 10].

Ax = b

︷︸︸︷
A Ax =

︷︸︸︷
A b

(4.92)

a) b)

Figure 4.13:
Matrix values a) before and b) after application of a block Jacobi pre-
conditioner

While an extra multiplication is needed on both sides of the equation, Fig. (4.14)

displays the reduced total computation time when solving for the A matrix. Figure

(4.15) demonstrates the lower time occurs due to drastically fewer iterates needed

for a given residual. Convergence is achieved in about one fourth the number of

iterations.
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Figure 4.14: Matrix solution time reduction to a specified level of accuracy

Figure 4.15:
Matrix residual versus iteration number for a preconditioned and un-
conditioned matrix
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GMRes summary

GMRes is an iterative rapid solver for semi-positive nonsymmetric matrices.

Combined with the boundary element method, it solves Poisson’s equation with

arbitrary combinations of Dirichlet and Neumann boundary conditions to determine

electrostatic forces on the surface in O(N ln N) time for arbitrary and complex 2D

geometries in a grid-free setup. The method is amenable to problems having 3-

D geometries after changing the Green’s function to 1
|R| . As discussed earlier, full

inversion is the slowest approach to solve for the unknowns in an Ax=b system, fol-

lowed by GMRes, and finally the most rapid technique of preconditioned GMRes. In

this section, the mathematical basis, algorithm and numerical implementation were

outlined and described.

4.5.2 Integration point placement and type

Three other concerns arise as to how to improve simulation accuracy. Since

they are well known, details of these approaches are referenced and discussed briefly.

References to more complete descriptions are provided. The within panel integration

point location and type and the overall panel relative lengths are examined.

Gaussian quadrature

In numerical analysis, a quadrature rule is an approximation of the definite inte-

gral of a function, usually stated as a weighted sum of function values at specified

points within the domain of integration. Careful choice of the location of these

points can provide a specified level of accuracy using fewer function evaluations [61].

A specific type of numerical approximation called Gaussian quadrature uses half the

computing effort of the more common linear interpolation while retaining the same

accuracy.
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The fundamental theorem of Gaussian quadrature is that the abscissas of the

formula are precisely the roots of the orthogonal polynomial for the same interval

and weighting function [265]. The simplest form is based on the use of an optimally

chosen polynomial to approximate f(x) over [-1,1]. Then, using n points provides a

2n-1 degree Legendre polynomial fit for

∫ 1

−1

f(x) dx ≈
n∑
i=1

wif(xi) (4.93)

where w is the point’s weight [4]. To evaluate it over a more general range [σ,ε],

linearly map to [-1,1] via the transformations of Eq. (4.94).

x = c+mt

c = 1
2
(ε+ σ)

m = 1
2
(ε− σ)

(4.94)

Combined with Eq. (4.93), a general integral evaluation Q [61] can be determined

via Eq. (4.95).

Q =

∫ ε

σ

f(x) dx ≈ m

n∑
i=1

wif(c+mti) (4.95)

For a full derivation of the Legendre polynomials for arbitrary shapes, see Rohklin

or Sidi [148, 212]. Sample weights and locations for n= 2 or 4 integration points are

in Appendix (B.2). Figure (4.16) demonstrates how the error in calculating the area

of the shape changes with the number of integration points. Gaussian quadrature

produces the same amount of error with a significantly fewer number of locations.

The error decreases as O(N2); due to fewer integrations, the model then takes less

time to complete.
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Figure 4.16:
Area calculation error for a) half-sphere b) based on the number of
integration points

Panel potential approximations

Another way of increasing the accuracy of panel integration is connected to the

level of approximation used for each panel. The overall simulation accuracy does not

change if our current implementation of constant potential C0 panels are replaced

with linear C1 representations.

Constant boundary conditions The potentials and fluxes that are on the right

hand (i.e. =b), known side of Eq. (4.58) are defined as known and constant. The

assumption of a perfect conductor means that the electrode and needle have a fixed

potential throughout. Therefore, changing the panels from C0 to C1 potential repre-

sentations for constants does not increase accuracy. The Green’s functions (ai,j...di,j)

and
(
ài,j...d̀i,j

)
in Eqs. (4.59 and 4.76) are not affected by the potential represen-

tation scheme, and therefore remain unchanged regardless of the implementation

chosen.
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Varying boundary conditions Even if the assumption of a perfect conductor

is not true, the 2D axisymmetric implementation is acceptable. The known variables

γ̆ and αN in Sec. (4.3.2) have U(xi)∂−→nG(x|x1) and {∂−→nU(xi)}G(x|x2) terms, respec-

tively. However, due to the differing formulation outlined in Sec. (4.75), these values

do not contain any panel integrals, but terms containing only U(x) and ∂−→nU(x).

Since the panels are integrated, the current choice of U(xcenter) = 1
s

∫
U(x) ds is

identical whether or not one integrates the length of the panel along its height or

utilizes the rectangle + triangle sum approach of a linearly interpolated C1 panel.

Conclusion Due to the assumption of all surfaces being perfect conductors and

hence at constant potential and the specific implementation of the algorithm, the

utilization of a C0 constant potential assumption does not degrade the claimed 2nd

order accuracy of the approach.

Panel integration point spacing

Implicit in all the previous analysis is the assumption that panel integrals over

the surface can be performed accurately. If the panels are formed using the uneven

coordinate spacing shown in Fig. (4.3), then drastically different panel lengths result.

Figure (4.17) demonstrates how this unequal distance between points can cause er-

rors. Compared to the correct constant potential, the test case in Fig. (4.17a) shows

contours of error due to the widely spaced vertical grid points. Figure (4.17b) graphs

how this maximum error varies with relative panel length variation.

To counteract this numerical integration error, the shape must have evenly spaced

points along the surface. When any panel gets to be more than 30% longer than

other panels, integral sums become increasingly incorrect.
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Figure 4.17:
Maximum potential error resulting from differential panel spacing a) in
space and b) as a function of integration inter-point distance variation

4.5.3 Computational issues at detachment

When a droplet detaches from a needle FEEP, several complex computational

issues arise. The electrostatic potential around the detachment location changes

quickly, causing very large U(−→x ) gradients. In addition, the surface shape rapidly

varies in space and time, is non-symmetric and evolves with increasingly complex

geometries. There are several methods for dealing with these concerns.

Curvature computation

Near pinch off, determination of the surface curvature (κ) is more prone to errors

as a greater change in κ = ∇·∇φ
|∇φ| occurs within a smaller area. Three nonexclusive

methods to deal with this potentially greater curvature error are distance gradients,

volume of fluid and adaptive mesh refinement.

Lowengrub and Macklin suggested improving the κ determination through the

inclusion of an intermediary step [149]. They solve a system of Poisson-like problems

in a moving domain with a velocity that depends on the gradients of the solutions.

A faster solution that does not depend on a directional gradient reconstruction is
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the earlier VOF approach. Sussman calculates the curvature at the φ = 0 surface

based on the reconstruction of the height function directly from the volume of fluid.

Mass is conserved by tracking the fraction of each cell filled [227]. A method that

can be used to supplement either of the above approaches is that of adaptive mesh

refinement. It is used to locally generate more cells in a given area, so that the

curvature/cell is kept below a global maximum [150, 225]. Figure (4.18) shows how

an area can be subdivided into four blocks (a quad tree) to allow greater resolution

with fewer total cells.

Figure 4.18: Adaptive mesh refinement example [150]

Surface node generation

Recall that the BEM is a directional method, so not only do all the interface

locations have to be determined, but they also have to be examined sequentially.

This computational task of ordered surface node generation from level set grid data

is an issue that has consistently arisen over the last few years. Shape determination

strongly impacts model behavior; problems in calculating the physical connectivity

between panels arise from the existence of: areas of high curvature, variational spac-
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ing between located surface points, multiple surfaces, and variation in both time

and space. Figure (4.19) displays a situation commonly encountered that concerns

surface recognition and separation of five unique droplets. In Fig. (4.19a), the level

set variable is graphed for values [−0.001 ≤ φ ≤ 0.001], while the second picture

displays the φ = 0 locations. Figure (4.20) displays the droplets along with the

possible separation points. The top three drawn circles are discrete droplets; any

surface tracking program has to recognize this and that droplet #5 extends over an

area whose middle is necking, but not detached.
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Figure 4.19:
Surface as represented by the a) level set variable φ from [−0.001 ≤ φ ≤
0.001] and b) surface reconstruction points

Numerous approaches for discrete shape identification were attempted before set-

tling on a hybrid anti-crossing, tracking normal-weighting (ACTNOW) scheme. This

method was created using parts of many discrete schemes in the literature. It can

generate connected droplets using only φ values, including parallel lines and necking.

Other alternative schemes investigated for the shape connectivity include nearest

neighbor, limited distance, normal minimization, angle gradient minimization and

pseudo-entropy reduction [8, 30, 67, 144, 185].
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Figure 4.20: Individual droplets with circled potential detachment locations

Starting from the top point on the midline, the ACTNOW approach traverses the

level set grid vertically until the first positive φ value is encountered. The direction

moving is then recorded, with the first instance being south. The algorithm then

looks at the level set values 135 degrees counter-clockwise, or northeast in Fig. (4.21).

From there, the level set values are examined every 45 degrees to see if φ changes

sign. When that sign change is identified, the new surface point is marked and the

8-point circle check is continued from the new location. In this way, a listing of

the intersection points for each shape is determined. Using the list of individual

droplet nodes, the order of points is determined using a combination of all the prior

methods. If two lines cross when linking nodes, a connection between two nodes

was mistakenly drawn, and the process for that particular shape is begun again,

with that connection no longer possible. The most successful sub-techniques used in

ACTNOW include limiting the length of the proposed connection near the average

of the other connections and restricting the interior angle change from one point to
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the next.

Figure 4.21: Compass directions used in the -1350 back step ACTNOW algorithm

4.6 Algorithms to allow experimental confirmation

One way to potentially compare modeled with measured droplet behavior is to

simulate an experiment. Three approaches that allow possible comparison are mass

to charge ratio (MTCR), time of flight (TOF) and initial droplet formation current.

4.6.1 Bigaussian data fitting

A variety of techniques are useful in computing the detached droplet characteris-

tics. One of these approaches is to fit histogram data with a bigaussian distribution.

To create a droplet histogram requires binning ranges of droplet properties such

as relative mass to charge ratio (MTCR). For instance, while no point has an MTCR

of exactly 4,234.1, a finite number fall in the range 4, 200 ≤ MTCR ≤ 4, 250. In the

case of a relatively small number of droplets (anything less than a few thousand), the

overall shape of the PDF can vary significantly depending on the bin number and

location. Figure (4.22) displays the percentage of droplets η expected for a specified

MTCR range. The graphic shows how changing the total number of MTCR bins

by even one bin can substantially change the raw histogram shape. The high shape
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variation between 24 and 25 histogram bins is due only to a user choice of the number

of divisions and does not represent an underlying physical mechanism.

Note that as the number of droplets per bin increases, the need to fit the overall

distribution is less important. The central difference theorem requires the histogram

shape to approach the true size or charge distribution as more samples are included.

However for all the cases currently examined, the number of points has been small,

and thus curve fitting the distribution is of substantial aid in smoothing variations

caused by relative charge distributions.
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Figure 4.22: Histogram bin effect on PDF distribution

To change discrete simulated data points into a smoother continuous distribution,

a mathematical data fit is required. This allows knowledge of individual points to

provide high-fidelity predictions of unknown locations. That is, it is desirable to

transform yi = f(xi) into the more general y = f(x). The best fit allows for the

calculation of slope, rate constants, etc. even if numerical noise or experimental

error is present. When curve-fitting the previous binned datasets, the new fitted
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probability density functions are very similar despite the difference in number of

bins. Hence, by imposing a least-squares bigaussian fit on the underlying simulation

result, the error arising from bin number variability is reduced.

Linear regression

The most basic method of determining a fit to data is linear regression, where

y = mx + b. Given a set of data (xi, yi) with n data points, the slope, y-intercept

and correlation coefficient r can be determined through Eq. (4.96) [280].

m = n
P

(xy)−Px
P
y

n
P

(x2)−(
P
x)2

b = 1
n

(
∑
y −m∑

x)

r = n
P

(xy)−Px
P
yq

[n
P

(x2)−(
P
x)2][n

P
(y2)−(

P
y)2]

(4.96)

However, standard linear regression may not be the appropriate technique for many

types of data analysis. The regression procedure assumes that all the x values are

known perfectly and that all the uncertainty is in the assessment of the y points. This

is why it minimizes the sum of the squares of the vertical distances of the points on

the line. While it is possible to assume non-equal dual systemic errors (e.g. Deming

regression [49]), the fit line must then go through zero.

The more important concern is that linear regression performs poorly in pre-

dicting many real-world data patterns. It does not capture curvature, peaks or

sinks shown in modeling. In Fig. (4.23), a characteristic double hump can be seen.

However, linear regression does not capture this, nor can it predict future MTCR:η

values. To accurately predict droplet mass to charge ratio probabilities requires an

alternative type of regression scheme, namely nonlinear.
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Figure 4.23: Sample data, linear fit

Nonlinear regression

Before nonlinear regression tools were readily available, the best way to analyze

complex data was to transform it to create a linear graph and then examine the trans-

formed data with linear regression (e.g. Lineweaver-Burke [142] and Scatchard [202]

plots). However, the variable transformations can distort the experimental error,

often over-weighting the contribution of the least important data points, where the

concentration is minimal. They also plot y
x

= f(x), thereby violating the assumption

of variable independence [192].

To fit the data to a double Gaussian probability density function of Eq. (4.97),

the relationship η = f(MTCR) is approximated via two independent normal distri-

butions with their own mean (µ), standard deviation (σ) and weight A[x]. Results

of the data fitting are shown in Fig. (4.24). This bigaussian curve represents a

much better relationship between the simulation points and the underlying shape.

It displays the double peaks and local minima.
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Figure 4.24: Sample data, bigaussian fit

η = A1 exp

[
−1

2

(
MTCR− µ1

σ1

)2
]

+ A2 exp

[
−1

2

(
MTCR− µ2

σ2

)2
]

(4.97)

Generating a smooth line to a multiple exponential approximation is difficult due

to the extreme sensitivity of the terms to perturbation, the non-integer character of

the variables, the constraints against negative standard deviations and non-sequential

additive nature of the functions. Most commercial software programs utilize a two-

step method to solve for the distribution coefficients. Initially, the method of steepest

descent is used. Starting from an initial guess, compute the sum-of-squares (SoS),

∑
(x̄2). Then the points are varied slightly to find out the direction which reduces

the SoS. Using a χ2
m merit function to assess how good a value is produced, the

determination of the coefficients must then proceed iteratively. Assuming a good

initial guess acurrent, the next anext values of the fit parameters are given by Eq.

(4.98).
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anext = acurrent − const · ∇χ2
m(acurrent) (4.98)

After getting closer to the vector global minima amin and away from any lo-

cal minima, rapid convergence is achieved with the Gauss-Newton method. In Eq.

(4.99), D is the second derivative matrix (Hessian matrix) of the merit function [181],

as shown in Appendix (B.1). Since the equations are nonlinear, the SoS curve is ir-

regularly shaped and hence the Gauss-Newton method can not determine the global

minima through direct calculation alone. Note that iterative methods are needed

not only to evaluate nonlinear terms but also to construct the Hessian matrix.

amin = acurrent +D−1 · [−∇χ2
m(acurrent)

]
(4.99)

The method of differential corrections is used in tandem with Gauss-Newton.

Figure (4.25) presents a graphical visualization of this dual proposal. In this hybrid

approach, an initial guess for the fitting parameters is used to expand the fitting func-

tion into a Taylor series about the current estimate. First order terms are retained

and the resulting linear system is solved for incremental changes. Finite difference

methods are used to compute the partial derivatives in D and the resulting ma-

trix is inverted and solved. Central limit distribution estimates are obtained from

the inverse matrix diagonal [170]. No special goal-seeking, precision-preserving (e.g.

pivoting), convergence-acceleration or iteration-stabilizing techniques are used.

An alternative tactic for finding the global minimum of a nonlinear function is

the Nelder-Mead (NM) method [176]. It is a direct search method of stochastic

optimization that is based on evaluating a function at the vertices of a simplex,

then iteratively shrinking the simplex as better points are found until some desired

tolerance is obtained [268]. The restrictions on the initial guess ainit are looser than
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a) b)

Figure 4.25:
Hybrid nonlinear global minima finding algorithm using a) sum of
squares and b) Gauss-Newton methods

for a steepest descent approach, but NM is less effective in dealing with the multiple

local minima needed for a bigaussian data fit.

4.6.2 Time of flight

Literature searches show many time of flight (TOF) thruster tests, especially for

colloid emitters. These experiments utilize a needle, electrode, and current collector.

After flow cessation, the current arriving at the collector is measured as a function

of time. In the following pages, the details of this approach are outlined, numeri-

cal implementation issues are described and then conclusions about similarities to

published data are drawn.

An example experimental setup used by Gamero-Castaño is shown in Fig. (4.26)

[85]. The emitter on the left is operated in a steady-state mode for awhile and then

is abruptly turned off. The stream of droplets moves past the electrode and towards

the collector CTOF , being accelerated at different rates depending on their individual

mass to charge ratio, where relatively lower-charged droplets take longer to arrive.
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Figure 4.26: Experimental Busek TOF setup [85]

Background on time of flight

Droplet time of flight is a way to calculate accurate values for many operational

characteristics of charged beams [118]. A TOF measurement is a time-dependent

spectrum of a current signal associated with the beam I(t) following its instantaneous

interruption. The spectrometers utilize the principle that particles of different masses

with the same energy E travel with different velocities inversely proportional to the

square root of the mass [256].

v =

√
2E

m
(4.100)

The time-of-flight time tTOF of the particle over a prescribed distance dTOF is

therefore directly proportional to the square root of the mass. If this particle is a

droplet with charge q which has traveled through a potential V, the flight time and

mass per charge are given via Eq. (4.101).

tTOF = dTOF
√

m
2E

m
q

= 2UA

(
tTOF

dTOF

)2
(4.101)

For a known acceleration voltage, analysis of I(t) yields the specific charge distribu-

tion function of the droplets. Through current integration, Eq. (4.102) describes the
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thrust, mass flux, specific impulse and propulsive efficiency of the thruster.

F =
∫∞
0

2UA(t)
dTOF

tI dt

ṁ =
∫∞
0

2UA(t)

d2TOF
t2I dt

ISP = F
ṁg

η = F 2

2ṁVN I

(4.102)

With UA as the accelerating voltage, a simulated time of flight curve can be generated

from a specific starting state. However, several computational issues have been

addressed to correctly compute these unknowns.

Numerical issues in modeling TOF

Multiple significant obstacles arise when attempting to numerically evolve a prob-

ability density function into a modeled time of flight curve.

Acceleration voltage Unfortunately, the acceleration voltage on the beam drops

is not simply the voltage difference between the needle and the electrode. In fact,

droplets with different voltages are generated at breakup. Voltage losses of over 500 V

have been previously measured [87]. The difference is associated with both electric

conduction losses in the cone jet and changes in the sum of kinetic and potential

energies of the fluid occurring during the acceleration of the jet and its breakup [85].

The actual force felt on the droplets can be determined using the so-called stopping

potential technique [117]. Experiments have shown that most acceleration voltages

are approximately 85% of the needle-electrode voltage difference [196].

Converting droplet frequency PDF to location PDF A processing tech-

nique to allow a TOF computation to be performed rapidly is to introduce a velocity-
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shifting function to the droplets at their detachment. This function predicts I(t) at

the distant collector without tracking the droplets through the entire pathway. In-

stead of having a numerical domain of meters, a length of millimeters is sufficient.

Without the need for droplets to travel through the system, the domain can be

smaller, run for fewer time steps and use a rougher grid at the extremities. The cu-

mulative result from all these changes is a substantial speedup for a droplet emission

prediction.

It is important to realize that velocity-shifting a droplet PDF impacts multiple

components of the final prediction. Both the shifted velocity and the resulting time of

flight (TOF) are noticeably changed depending on the form of the shifting algorithm.

The final mass to charge information desired is a frequency distribution, or how many

droplets are produced with MTCRi ≤ m
q
≤MTCRi+1.

However, the experimental TOF data is taken not by how many droplets are in a

volume of space, but instead how quickly these drops travel. It records a spatial not

a temporal distribution. Faster moving particles remain in any location [x, x+dx)

for a shorter period of time than slower moving droplets. Therefore, the charged

droplet PDF needs to be re-normed so that looking at any volume at any time

snapshot results in the likelihood of seeing each speed of droplet in that volume.

The methodology is described in the following section.

Define the vector b such that bi denotes the number of droplets produced at the

needle in time τ with an acceleration α in the interval [ai−1, ai) for 1 ≤ i ≤ N

acceleration intervals. That is, looking at Fig. (4.24), the bi are the frequency η

values for the bin i. The acceleration is a function of the charge and electric field,

with ai = const × 1
MTCRi

× E. Let a0 be the minimum and aN be the maximum

acceleration. Since all droplets are charged, a0 > 0. Next define the flux distri-
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bution function Ξ(α) to represent the number of particles produced per unit time

with an acceleration in the infinitesimal interval [α, dα). Converting from indium

[particles/electron] to [kg/C] expresses the acceleration term as a function of relative

charge, or α = 8.453×1014

MTCR
. Larger blobs with less charge move slower, so the mini-

mum acceleration αmin occurs at MTCRmax. The density of droplets with a given

acceleration is then given by Eq. (4.103),

Ξ(α)dα =
1

tTOF

N∑
i=1

H (α− ai−1)H (ai − α)
bi

ai − ai−1

dα (4.103)

where H(x) is the Heaviside step function of Eq. (4.104).

H(x− c)H(d− x) =





1 if x ∈ [c, d)

0 otherwise

(4.104)

Since the thruster is operated in a steady state before emission cutoff, Ξ(α, t) =

Ξ(α) and from Fig. (2.3), the initial velocity of the droplets leaving the needle is

effectively zero. Define the spatial distribution function f(x, α) to represent the

number of drops at any given time. In order to derive f(x, α), first consider the

range of possible flux populations Ξ(α) possible when a drop leaves the needle. In the

infinitesimal interval [x+dx), the time when the droplet has traveled x is tin =
√

2x/α

while the time it leaves x+dx is tout =
√

2(x+ dx)/α. Therefore,

t(x, α) = tout − tin =

√
2(x+ dx)

α
−

√
2x

α
(4.105)

Recalling the definition of a derivative simplifies the above to Eq. (4.106).

t(x, α) =

√
2x

α

(
∂

∂x

√
x

)
dx =

dx√
2xα

(4.106)
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The number of droplets f(x, α) in the spatial location [x, x+dx) with acceleration

α ∈ [α, α+dα) is then given by Eq. (4.107), which multiplies the number of particles

produced per time by their changing speed.

f(x, α) =
∫ ∫

Ξ(α)dα t(x, α)dx

=
∫ αmax

αmin

∫ xneedle

0
1

tTOF

∑N
i=1H (α− ai−1)H (ai − α) bi

ai−ai−1

1√
2xα

dαdx

(4.107)

The double integral allows for the calculation of the spatial and temporal distribution

of droplets as a function of their relative charge. The varying accelerations of the

many charged points produces a varying current collection profile. The effects of this

profile alteration are discussed in more depth in Chapter V.

TOF data conversion process

The overall process for the time of flight conversion is given by Fig. (4.27). The

steps listed in the figure correspond to:

1. Record all detached droplets, each with a unique mass to charge ratio.

2. Decide to evolve the MTCR to compare to time of flight instead of differenti-

ating experimental data to produce the underlying relative charges.

3. Form a frequency histogram by binning the droplet MTCR.

4. Nonlinear bigaussian fit the data to remove the underlying bin number depen-

dence.

5. Change the fitted frequency distribution to a velocity-based one. As discussed

in the previous section, for various methods, there is a nonzero median of the
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boundary velocity distribution function. Particle and droplet statistics need

to be adjusted to account for physical fluxes. Equation (4.108) lists the inte-

gration domains for stationary and fluxing PDFs. Figure (4.28) displays how

the mean and standard deviation are different for log-normal versus Gaussian

distributions. C1−3 are the distributions for each axis. Since the only droplets

recorded are those with a positive x-acceleration towards the collector, the flux-

ing PDF integrates from
∫∞

0
.

stationary:
∫∞
−∞C1

∫∞
−∞C2

∫∞
−∞C3

fluxing:
∫∞︷︸︸︷

0︸︷︷︸
C1

∫∞
−∞C2

∫∞
−∞C3

(4.108)

6. Change the velocity PDFs into probabilities of how many particles are in a

location (x+dx ) with acceleration (α + dα).

7. Produce a time of flight curve that incorporates limited spatial data to predict

current fall off over time.

8. Compare original and shifted current degradation time lines.

4.6.3 Initial current for droplet formation

In addition to TOF, other approaches to potentially compare simulated and ex-

perimental results exist. Recently, a dependence between the Taylor cone radius

rT [µm] and the critical current Ic was hypothesized [237]. Equation (4.109) provides

a curve fit for the point at which droplets begin being emitted from a needle FEEP.

IC [µA] = 0.0005r2
T − 0.1085rT + 10.121 (4.109)
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Figure 4.27: Time of flight data conversion process.

Figure 4.28: Fluxing versus static distribution functions
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The mass efficiency of a single indium-fed needle FEEP normalized to 100 µA of

current can then be represented by Eq. (4.110) [239].

I < IC η = 100%

I ≥ IC





η =
(

I
IC

)2.01−0.16(rT )

η =
(

I
IC

)1.13−0.01(rT )

(4.110)

Figure (4.29) relates the Taylor cone radius, the overall mass efficiency and critical

current. Droplets begin forming sooner (at a lower current) from a wider Taylor

cone base. With the larger base, and a fixed Taylor cone angle, emission tip height

is greater. The corresponding longer sides increase the number of surface instability

frequencies possible during Faraday source detachment. (Refer back to Sec. (1.3.3)

for a discussion of droplet types.) More droplets lower the mass efficiency because

droplets produce much less thrust per kg expelled than do ions. Figure (4.30) displays

the percentage of the thrust and number and mass of particles that are ions at three

different current levels. Note that while the mass efficiency η decreases precipitously

by the time the current reaches 250µA, over 99% of the thrust and the number of

independent particles are ions. This ion primacy concurs with the analysis presented

in Sec. (1.4.3) concerning the relative impact of each type of exhaust.

4.7 Conclusion

The rapid and accurate simulation of a droplet detaching from an indium-fed

needle FEEP presented many challenges. A physical model was created that includes

surface tension, viscosity and electrostatic potential. The level set and boundary

elements algorithms were described in detail. Used in tandem, these approaches can

find the surface, compute its curvature and the surface electric field and advect the
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Figure 4.29: Critical current, mass efficiency and Taylor cone radius
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shape forward in time while retaining conservation of mass and momentum. The

sequential linking of approaches provided the capability for simulating an arbitrary,

complex and time-variant geometry and the formation of new shapes while dealing

with singularities at snap off.

In addition, the model was extended to a 2D axisymmetric framework where the

physical model, Green’s function and A matrix were extensively adapted. In addition,

multiple sub-methods were detailed that reduced the overall computational time,

increased the accuracy, reduced computational aberrations and yielded stable linear

solutions. Finally, a time of flight simulation capability was introduced along with

its corresponding data algorithms. These allowed FEEP current and mass efficiency

to be predicted.



CHAPTER V

Parametric Studies of the System

The mass efficiency of the system and relative charge of the exhaust can be sig-

nificantly influenced by the values assigned to various droplet and needle properties.

Drawing on all prior analysis, this chapter presents simulation results of the forma-

tion and propagation of droplets from the tip of a needle FEEP. It includes varying

the needle shape and propellant properties identified in Chapter II; the asymptotic

force order of magnitude from Chapter III; and the level set and boundary ele-

ment methods of Chapter IV. The surface evolution of the baseline is presented,

followed by alterations due to various solid and liquid modifications. Next, droplet

stream characteristics are presented via a probability distribution and time of flight

data filtering. Finally, comparison with independent simulations are presented that

reproduce the surface evolution until snap off and the subsequent droplet angular

spread.

From Eq. (4.62) of the boundary element method, the force on a droplet can

be calculated and the surface advected forward in time using the level set Eqs. (4.1

and 4.7). The baseline parameters for a 2D axisymmetric simulation of a needle field

emitter similar to the ARCS design and with indium propellant is given in Table

(5.1).

170
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Phys. var Units Value Comp. var Units Value

Electrode gap mm 1 Fluid accel. m
s2

1.4× 109

Electrode height mm 6.5 Max. velocity km/s 6.5

Electric field V/nm 10 BEM panels # ˜800

Surface tension N/m 0.552 LS grid # 100x200

Temperature K 453 ∆tcomp ns 10

Viscosity mN ·s
m2 1.7 ∆trun hr 12

Table 5.1: Baseline parameters for 2D axisymmetric simulation

The 2D axisymmetric computational domain is given in Fig. (5.1). The rectangle

at the top of the figure represents the position of the ring electrode while the red

triangle in the bottom center is the underlying solid tungsten needle. A picture of

the corresponding experimental systems was presented in the introductory chapter

as Fig. (1.10b). An example of an intermediate step is shown in Fig. (5.2) as

a snapshot of the liquid surface evolution, showing both adaptive mesh refinement

boxes and instantaneous velocity vectors. The run time using the converged grid

spacing of Fig. (4.7b), is 15 hours to obtain 100 detached droplets. As the original

curvature increases, the initial surface electric field is smaller and more time is spent

forming the Taylor cone, prior to snap off.

5.1 Variation of the simulation parameters

All the design variables of the simulation can be varied. This section examines

how needle FEEP performance is affected in 2D axisymmetric simulations by varying

electrode geometry, liquid properties and the field emitter operating condition.
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Figure 5.1: Computational domain, 2D axisymmetric case

Figure 5.2:
Indium surface evolution with adaptive mesh refinement boxes and over-
laid velocity vectors
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5.1.1 Effects of electrode axial gap size

The horizontal width of the gap between the axis centerline and the edge of the

electrode has a negligible impact on the shape of the droplet pulled off the tip. As

the gap approaches zero and the electrode resembles a flat plate, the corresponding

electric field becomes perpendicular to the accelerating surface and a three-pronged

emission surface forms. As the electrode widens, the droplet is preferentially pulled

towards the edges, both at the surface itself and after droplet separation. When the

electrode spacing is changed, the corresponding position and velocity of the resulting

droplets evolves as well. Figure (5.3) displays how the surface shape formation

process differs as the radius of the ring electrode increases. Wider rings result in an

effective lower surface electric field and therefore a longer rise time for the droplet

tip. Figure (5.3b) shows that as the gap width increases past δ >0.1 mm, the surface

is pulled laterally. At each subsequent height, the droplet is shifted a greater amount

from the centerline (a greater radius at Z) than for smaller gaps. As δ increases, the

surface offset distance widens even further.
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Figure 5.3: Effect of electrode gap variation on droplet spread
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5.1.2 Effects of electric field

As predicted in previous analysis, the strength of the electric field at the surface

strongly influences the speed of formation, behavior and shape of indium droplets.

There is a strong two-stream pull towards the edge of the two electrodes in this

simulation. Note that with a stronger field, significantly smaller drops occur since

the shorter formation time pulls off the droplets before local surface equilibrium

restabilizes the shape.

The effect of varying the electric field can be demonstrated in multiple ways. By

plotting the uppermost point on the axis, Fig. (5.4) shows its height and velocity

versus time as a function of electric field. The pattern is similar for all cases, with a

trend of later separation and lower velocity for smaller electrode potentials. Under

the smallest electric field of 0.1 V/nm, the surface height eventually reaches the same

vertical position as under the other larger fields, but with a significant time delay.

The claim of droplet evolution similarity is supported by the fact that the surface

height is shifted, but otherwise identical in Fig. (5.4a).
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5.1.3 Effects of viscosity

The viscosity of the simulations is varied over several orders of magnitude; The

viscosity of 0.1 µIn occurs around 2,000 K while the more viscous 10 µIn occurs near

200 K. As the fluid becomes thinner at higher temperatures, it forms into droplets

sooner, the droplets form closer to the original surface, and disturbances in the fluid

move down the needle much more rapidly. This increase in surface instability is

associated with the formation of Faraday droplets, as discussed previously in Sec.

(1.3.3).

In Chapter III, it was shown that viscosity does not have an important role in

shaping the surface evolution. Figure (5.5) confirms this, with the shape barely

changing despite varying the viscosity µ from zero to one thousand times indium’s

operational viscosity at 453 K.
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Figure 5.5: Effect of viscosity variation on droplet vertical position and velocity

Treating the needle as a 1.0 x 0.3 cm cone, and assuming that the liquid is one

thousand times as viscous (i.e. like glycerin), 3.2 × 10−3 N of resistive force exists

along the length of the needle. For a 100 µA current and corresponding mass flux of

0.3 µg
s

[72], this equates to a 1.07× 107 m
s2

deceleration force of the fluid. In the first
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8 µs of the propellant being on the needle in Fig. (5.5b), this resistive force slows

the detachment velocity by 85 m/s, mirroring the small decrease in speed shown in

the simulation.

5.1.4 Effects of surface tension

Simulations were also performed in which the surface tension was varied by a

couple orders of magnitude higher and lower. At higher values of surface tension σIn,

the droplets snap off more slowly since the high cohesion and tension of the surface

interface resists droplet formation. As mentioned in Sec. (4.1), surface tension resists

the electrostatic pull from the ring electrode. Hence, increased surface cohesion

reduces the pre-snap off droplet formation velocity. This illustration furthers the

dissertation’s claim of surface tension as a driving force of surface shape and time

evolution.

Liquid indium has a tremendous surface tension, about ten times greater than

water and larger than mercury. None of the reference books listed any material

that had more than three times indium’s pull, and only liquid platinum came close

[78]. As σ is increased from zero to one thousand times indium’s operational surface

tension in Fig. (5.6), the liquid velocity is reduced from 2,500 m/s to zero. At these

extreme values, a droplet cannot form from a surface electric field of 10 V/nm. As

the initial surface begins narrowing around t=8× 10−6 seconds, the shape curvature

increases and the impact of the higher −σ∇ ·−→n term from Sec. (4.1) causes surface

necking and droplet formation to precipitate.

5.1.5 Importance of parameters at needle tip

Previous sections addressed the gross impact of various forces, such as surface

tension and viscosity. However, in a microscopic volume around the needle tip,
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Effect of surface tension variation on droplet vertical position and velocity

the relative magnitudes of these forces could be dramatically different. Equation

(5.1) presents the nondimensional Navier-Stokes equation [57]. Using the local tip

parameters allows an investigation of forces in the droplet snapoff regime.

c∗t + (c∗ · ∇)c∗ = −∇P ∗ +
1

Re
∇2c∗ (5.1)

Here, c=(u,v) is the fluid velocity in the (r,z) direction and P is the hydrodynamic

pressure. Arrive at the nondimensionalized pressure term P ∗ = P/P0 through divid-

ing P by P0 = 1
2
ε0E

2 = 4.4× 108 Pa. The other starred terms can be calculated by

using the needle radius of curvature r0 = 5× 10−6 m, time t0 = r0
E

√
2ρ
ε0

= 2.1× 10−8

s, fluid velocity c0 = r0/t0 = E
√

ε0
2ρ

= 241 m/s and viscosity ν = 2.4 × 10−7 m2

s
.

In terms of these quantities, nondimensional Ohnesorge, Reynolds and Weber num-

bers are given in Table (5.2). The Eötvös (Eo), Morton (Mo), Froude (Fr) and drag

(Cd) numbers are not listed since they incorporate gravity, a force neglected in our

simulations.

If the droplet tip has a low Ohnesorge (Oh) number, viscous effects are small and

the breakup is relatively independent of viscosity. At a large Weber (We) number,



178

Abbr. Measures Represents Value

Oh µ√
ρσr

viscosity
surface tension

0.012

Re cr
ν

inertia
viscosity

4,950

We ρc2r
σ

inertia
surface tension

3,840

Table 5.2: Dimensionless numbers

the jet is unstable to shorter waves, resulting in smaller droplets [248]. As the tip

radius of curvature decreases, viscosity become more important [64, 231] as the 1
Re

term shrinks. However, there is a physical minimum to the curvature, as the needle

tip is a physical object. With the rapid velocity c, even reducing the tip curvature κ

over two orders of magnitude to 20 nm still has the viscous term having a minimal

impact with 1
Re
¿ 1.

Repeating the dimensional analysis from Chapter (3), Table (5.3) plots the nondi-

mensional numbers using the dimensions of the needle tip. Table (5.4) uses those

values to plot the relative important of inertia, surface tension, viscosity and gravity

within this small volume. Smaller perturbation order values relate to stronger im-

pact on surface evolution, so inertia is many times more important than gravitational

forces.

The conclusion from both examinations of nondimensional numbers is that due

to the extreme electric field in a needle FEEP, viscosity at the microscopic and

macroscopic levels is not an important force in determining surface evolution. The

rapid fluid movement at the tip, however, causes inertia to become the driving force

component. While the level set/ boundary element hybrid approach can simulate all

these forces, this analysis supports the overall claim of viscosity being of secondary

importance.
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Experimental parameters Nondimensional terms Order ε

ρ
[
kg
m3

]
7310 W 3.9× 103 -3

σ
[
N
m

]
0.546 B 1 0

p̃es [Pa] 1× 1010 Fr 1.2× 108 -8

v0

[
m
s

]
241 Zν 2.2× 10−5 5

r0 [m] 5× 10−6 Λ1 2.4× 10−4 4

z0 [m] 5× 10−5 Λ2 0.01 2

p̃a [Pa] 0.13 par0
σ

3.0× 10−12 12

µ
[
N ·s
m2

]
1.76× 10−3 pesr0

σ
2.96× 10−4 4

finertia [N] 1.06× 10−2 1
B·W 2.57× 10−4 4

Table 5.3:
FEEP experimental parameters and resulting nondimensional terms
around tip

Force O(ε)

inertia 0

surface tension 3

viscosity 5

gravity 8

Table 5.4: Relative force importance at needle tip
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5.1.6 Summary of parameter adjustment

Variation of the electrode’s horizontal spacing and potential affects the size and

velocity of droplets detaching from the surface. Since the droplet velocity is used

for mass efficiency calculations, wider rings, lower potentials and larger needle tips

result in lower ηm, as a greater percentage of emission is in the form of large droplets.

Increased numbers of droplets produce less thrust per milligram of propellant, as

discussed in Sec. (1.4.3). Finally, large surface electric fields give rise to large power

requirements, sharper surface curvature and higher efficiency, with there being a

minimum critical electric field below which droplets will not form. As that point is

approached, fewer and larger droplets are produced over a longer time.

Altering the viscosity of the propellant had a very small effect on the velocity

of detached droplets. Increasing from an inviscid flow to one of a thousand times

indium’s true viscosity resulted in a less than 5% reduction in vertical surface velocity.

However, surface tension provided a very significant retarding force on the evo-

lution of a droplet. The velocity of the droplet surface is substantially reduced and

the characteristic evolution time increased as σ grows. Multiple approaches such

as asymptotic analysis and the surface curvature feedback of Eqs. (1.20 and 4.3)

confirm that same conclusion.

5.2 Stream predictions

Many predictions about the characteristics of detached droplets can be made.

Two of the analyses that are most amenable to future experimental validation are

the generation of probability density functions and time of flight current decay.
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5.2.1 Probability density functions

As discussed in Sec. (4.6.1), relative droplet charges can be more accurately

viewed when fitting the data to a bigaussian distribution. After detachment, Eq.

(4.62) demonstrates that droplets have calculable charge and area. During operation,

a steady stream of droplets detach from around the needle tip. Those droplets are

then tracked as they travel upwards towards the electrodes. As described in Sec

(1.3.3), overcharged droplets lose charge over time. In Fig. (5.7), an example droplet

with too many electrons for its mass is shown breaking up into smaller droplets at

y=0.762 cm and y=0.768 cm. The change in relative charge for the first droplet is

shown in an increasing mass-to-charge ratio from 9,000 to 11,000 to 14,000 atoms

per electron.
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Figure 5.7: Overcharged droplets undergoing Coulomb fission
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Mass to charge ratio

Recording the properties of 7,600 droplets at snap off gives a mass to charge

ratio distribution of Fig. (5.8). The first figure is the entire distribution, from an

MTCR range of [0:20,000], with most of the droplets having a charge from 1,000-9,000

atoms/electron, while the finer resolution “zoomed” picture of Fig. (5.8b) yields a

double humped bigaussian within this range. They are from the same simulation,

with the increased histogram details due to the smaller bin size. The bigaussian

shows two sub-peaks at 500-1500 and 3,500-4,500 atoms/electron. There is a large

high-mass tail to this distribution, predicting a larger population of massive, slow

moving droplets.
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Figure 5.8: Mass to charge probability density distributions for 7,600 droplets

The simulated MTCR relative charge of 4,000 in Fig. (5.8) is in remarkable

agreement with experimental measurements. Fehringer found that the most common

sized droplet had a radius of 0.04 µm [72]. Charged to the Rayleigh limit, those

droplets have q =

√
64π2ε0σr3

e
= 2, 774 charges, where the number of indium atoms is

determined by Eq. (5.2).



183

#in. atoms = ρAb(MW )in

= (7300)
〈

4
3
π(4× 10−8)3

〉 (
1 amu

1.6606×10−27kg

) (
1molecule

114.818 amu

)
= 1.026× 107

(5.2)

Dividing the number of atoms by the number of charges results in an experimental

needle FEEP MTCR of 3, 699
[

mol
charge

]
.

Satellite droplets When droplets form from the tip of a FEEP, smaller satellite

droplets also commonly form. The electric field directly impacts the formation and

fate of these secondary droplets. The field influences the volume of these satellite

droplets by modulating snap off speed and the distribution of surface charge on

the satellite droplets, the primary drop and the liquid remaining on the needle. In

line with the discussion of Sec. (1.3.3), these satellite droplets have larger relative

charges [106] and form the smaller and lower MTCR hump shown in Fig. (5.8).

An example detachment location is shown in Fig. (5.9a), where four droplets had

detached from the surface. The variation in area of the new droplets is analogous

to a faucet, where a large droplet is frequently followed by a small one. Whether

electrostatically charged or not, this trend of oscillating the size of detached areas is

common in droplet formation [282]. Figure (5.9b) displays the cross sectional area of

sequentially created droplets from one location. The substantial changes in droplet

area occur from a large volume to a small volume and vice versa, in agreement with

MTCR predictions.

The claim of the satellite droplets largely being part of the low MTCR popula-

tion and therefore having greater relative charge is supported via Fig. (5.10). The

greatest number of charges per cubic meter is for the smallest diameter droplets.
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Figure 5.9:
Droplets a) detaching from a jet and b) area at initial detachment. The
abrupt spiking from large to small droplets is consistent with experiments

Droplet diameter [µm]

V
o

lu
m

et
ri

c
ch

ar
ge

[C
/m

3
]

0 0.5 1 1.5 2 2.5
105

106

107

108

109

Figure 5.10:
Droplet volumetric charge density versus diameter. The smallest satel-
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As the droplet diameter increases, the Rayleigh limit caps the number of electrons

on the surface, with greater diameters having a lower maximum volumetric charge

density before Coulombic fission occurs. The large number of droplets with a diam-

eter around 2.5 µm and a tight volumetric charge of that population represent the

common MTCR of 4,000 presented earlier.

Charge distributions The cumulative distribution function (CDF) of 7,600

droplet charges is shown in Fig. (5.11). While the largest group of charges is around

2−3×10−8 C, there are multiple other fairly evenly distributed populations scattered

throughout the range.
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Figure 5.11:
Charge CDF. Multiple droplet charges are visible, with the bulk con-
duction occurring around 3× 10−8 C.

Droplet diameter

The effective diameter is determined in axisymmetric coordinates by using the posi-

tion of the droplet center R and radius rdrop. Since the boundaries of detached liquid
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are not spherical, the radius is based on the equivalent area of the corresponding

circle. That circle is then rotated around the axis, forming the torus of Fig. (4.11).

Equation (5.3) relates the torus volume Vtorus and droplet radius to the effective

diameter deff .

Vtorus = 2π2Rr2
drop = 1

6
πd3

eff

deff =3
√

12πRr2
drop

(5.3)

The calculated diameter distribution for 7,600 droplets is provided in Fig. (5.12).

Many of these shapes have an effective diameter deff of 1 µm - 3 µm. The smaller

satellite droplets described in Fig. (5.10) of radius 0.5-1.5 µm are clearly shown

here. The simulated diameters are larger than the 0.04 µm diameter experimentally

reported by ARCS, but only a qualitative comparison is possible since their exact

system dimensions (needle radius of curvature, fluid thickness, distance from the

electrode, etc.) are unknown. The simulation as run could resolve droplets only

down to 0.1 µm, though there is no theoretical smallest bound as the grid size

decreases.

An example of how droplet diameter varies due to a changing system setup is

shown in Fig. (5.13). In a related simulation, the needle width is doubled while

the length is kept constant. The resulting main diameter probability peak separates,

with a larger and narrower band centered around 3 µm. Based on the droplet PDF

changes, it seems reasonable to conclude that the orders of magnitude uncertainity

in the experimental dimensions could explain the factor of fifty difference between

the ARCS data and the simulations.
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Figure 5.12: Droplet effective diameter deff PDF
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Figure 5.13: Relative charge variation from two different needle widths
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5.2.2 Time of flight probability distributions

Using the bigaussian and time of flight algorithms described in Sec. (4.6.2), the

MTCR of Fig. (5.8) can be used to create an expected TOF current collection profile.

With the spatial distribution of the acceleration function f(x, α) in Eq. (4.107), the

relative droplet acceleration density is shown versus the distance above the needle

in Fig. (5.14). The contours of fV olPDF in the figure display relatively how many

droplets are in a particular region of space. The two pictures display how the density

of droplets varies depending on whether or not the histogram uses a fitted bigaussian

to smooth the underlying distribution. Further away from the needle (and thus closer

to the collecting electrode), the droplets move faster and hence spend less time in

any [x+dx) area, yielding a smaller relative flux probability. The result is that when

counting droplets in a set volume dx for a finite amount of time dt, the greater their

relative charge and velocity the fewer droplets are tallied.
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Figure 5.14:
Variational velocity shifting function from a) unfitted and b) fitted
MTCR distributions

However, if the data are not shifted and a zero median velocity vector from Sec.

(4.6.2) is assumed, Fig. (5.15) shows how the density of variously accelerated droplets
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does not vary downstream. This treatment results in an unrealistic approximation

where all droplets move at the same speed, regardless of relative charge.
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Figure 5.15:
Unshifted velocity function using a) unfitted and b) fitted MTCR dis-
tributions

The experimental setup used by Gamero-Castaño in Fig. (4.26) was reproduced

numerically for a needle FEEP, with indium as a propellant [85]. Figure (5.16)

displays predicted TOF current collection profiles for that configuration. The mag-

nitude of the current gradients varies by over 20% depending on whether the data

are fitted and shifted to a bigaussian format. In particular, the predicted current

at intermediate times from 20 to 40 ns is significantly higher when using the fitted

and shifted results from the double humped distribution. Studying the four cases, it

follows that data shifting yields the largest contribution towards shape change.

5.2.3 Summary for stream characteristics

In this subsection, droplet breakup, probability density functions for relative and

absolute droplet charge and droplet diameter, and time of flight analysis for current

collection profiles were presented. When simulating the current as a function of time,

it was recognized that droplet velocity varies as they accelerate toward the electrode;
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Figure 5.16: Simulated time of flight current collection profiles

this fact needs to be included when modeling time of flight.

5.3 Comparison with independent work

The BEM/LS model matched the shape and characteristics predicted by unre-

lated approaches. The pre-snap off surface evolution is matched to an independent

electrohydrodynamic (EHD) simulation while the predicted MTCR mirrors that re-

quired for an experimentally observed droplet angular spread.

5.3.1 Pre-snap off shape

Suvorov presented a self-similar numerical simulation of a perfectly conducting

fluid [230]. He modeled the equations of motion using electrohydrodynamics, simu-

lating a field emitter surface evolving up to the full Taylor cone angle. Figure (5.17)

displays that work and the level set/boundary element works side by side; note that

the EHD method can only track the surface until the Taylor cone angle is reached.

Electrode position, surface tension and viscosity were matched, producing models
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that are similar in space and time. The surface locations were recorded at 81, 104,

116 and 123 ns. The evolution times for this case are shorter than the previously

presented cases in Sec. (5.1) due to a different geometry and surface electric field

used.

Figure (5.18) presents the angle of the surface χ(r), measured from vertical to the

surface tangent. A fluid peak on the order of 50µm wide forms and becomes more

pronounced over time. As time increases, χ(r) continues to decrease as the surface

becomes vertical and droplet necking begins. This is the initiation point for the first

droplet detachment.
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Figure 5.17: Centerline tip formation

The radial position of the minimum χ(r) is plotted in Fig. (5.19) when varying

the electric field through five orders of magnitude. Similar behavior is seen for all

the runs except for the lowest field of 0.1 V/nm. Here, the relatively weak pull of the

electric field allows sufficient time for the surface tension forces to cause the shape to

re-establish. This noticeably elongates the duration, shape and extent of the droplet

surface evolution. Similar behavior was shown for exceptionally large surface tension

when the surface tension and electrostatic forces were in equilibrium.
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Suvorov’s approach

In this section, the computational methods Suvorov used to electrohydrodynami-

cally simulate the fluid behavior of a field emitter under electrostatic forces [230, 231]

are described. This approach produces self-similar, asymptotic conic solutions as

t→ tc, a point where the equations of motion reach a singularity and the tip radius

of curvature goes to zero. The evolution equations assume that the apex electric field

is much greater than the electrode, |∇U |apex À E. The surface interface η evolution

is described via Eq. (5.4).

∂η

∂t
= v − u∂η

∂r
(5.4)

Time advancement comes from an explicit forward Euler discretization, where the

time increment δt < 0.25(Re)δr2 [191]. At the free surface, the normal stress com-

ponents are the electrostatic Pes and surface tension Pst terms. The hydrodynamic

pressure is then given by Eq. (5.5).

P |z=η(r,t) = −Pes + Pst

= 1
2
ε0E

2 + σκ

(5.5)

The total surface curvature κ is described by Eq. (5.6),

κ =
1√

1 + η2
r

{
ηrr

1 + η2
r

+
ηr
r

}
(5.6)

where subscripts are used to denote partial differentiation with respect to position,

e.g. ηr = ∂η
∂r

. These partial derivatives are approximated from 2nd order central

difference expressions on a fixed staggered Eulerian grid, where the pressure is located

in the cell center and the velocities are at the middle of the cell edges. There is no
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approximation of the surface shape by polynomials, nor is there repeated manual

interventions to smooth the shape. The boundary conditions for the surface are

given in Eq. (5.7).

u, v|z=0 = 0 u, v|r=edge = 0 u|r=0 = 0

U |z=electrode = U0 U |z=η(r,t) = 0 ∂U
∂r
|r=0,edge = 0

(5.7)

Cusp formation discussion

Both the electrohydrodynamic approach of Suvorov and the combined level set

and boundary element (LSBEM) approach treat surface tension as applying a pres-

sure on the surface. Both of them calculated that force as the surface tension mul-

tiplied by the curvature, σκ. While [231] determined κ through 2nd order central

differencing of the geometrically compressed cells around the tip, the LSBEM applies

a volume of fluid (VOF) or level set (LS) method for the cell volume.

One possibility for the difference in surface evolution is that the shape deter-

mination in LSBEM could be made using either VOF or LS. Figure (5.20) shows

the LSBEM simulations at various times when the volume was computed with both

approaches. The level set location of the cell surface tends to slightly overstate the

overall volume, with an increasing error in time. However, this error is very small, as

both the surface and its derivative in Fig. (5.20a-b) are very similar at each timestep.

Therefore, the choice of surface location method does not explain the evolved shape

variation.

Another possibility to explain the differences is that the limits of the governing

equations are fundamentally different. The formation of a tip cusp is to be expected

for a dynamic evolution simulation [162, 165]. This is because Taylor’s analysis was
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Figure 5.20:
Surface variation using the volume of fluid (VOF) or level set (LS)
methods to calculate interface curvature.

for a hydrostatic balance [271], but with a moving liquid there are associated pres-

sure differences and it is not in static equilibrium. In addition, a perfect 490 Taylor

cone can come about only when the tip space-charge effects are ignored [75, 130].

As the liquid comes to a finer and finer point, the EHD equations ignore viscous

stress and predict infinite point stress as simulated time t → tc [230, 231]. This

incorrect underlying asymptotic force prediction is shown in Fig. (5.21). The elec-

trohydrodynamic equations do not produce simulations that match those observed in

experiments. Since the tip elongation is not seen, the protrusion physically present

cannot be explained by pure hydrodynamic effects alone, and a breakdown in the

EHD equations occur when the feature size becomes very small [76].

After a further review of the literature, an examination of surface oscillations, a

consideration of space charge and noting the incorrect EHD-predicted infinite surface

stress, the prediction of a perfect Taylor cone angle from a dynamically evolving liquid

metal ion source does not accurately account for the physical effect of surface tension

on the evolution of the surface. The formation of a cusp as shown in the LSBEM
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Figure 5.21:
Asymptotic (1) kinetic energy density; (2) surface tension stress; and
(3) electrostatic stress as t→ 0.03192 [231]

simulations more closely matches with experimental and theoretical behavior at the

small scale around an emitter tip.

Surface oscillations

The numerical problem of liquid conductors in a strong electric field is very prone

to produce oscillations [258, 257]. This is simply because the driving forces (elec-

trostatics and surface tension) are acting in opposite directions. Both forces are

very sensitive to surface curvature, which depends on the surface location’s second

derivative. Normally, it is easy to distinguish between a real physical effect (electro-

capillary waves) and numerical errors (oscillations). The simple criterion is that any

physical effect has to be resolved by a reasonable number of numerical points. The

dispersion relation z for physical surface waves in the presence of an electric field is

given by Eq. (5.8), with the resulting disturbance
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z(r, t) = (a) exp[i(kr − ωt)] (5.8)

described as electrocapillary waves [137]. The dynamic frequency of growth is given

by Eq. (5.9),

ω2 = −ε0E
2
0

ρ
k2 +

σ

ρ
k3 (5.9)

where ω is the frequency and k is the wave number. If k > k0 = ε0E2

σ
, ω > 0 and the

surface is stable. However, if k < k0, ω is imaginary and surface instabilities develop.

The maximum growth rate k = 2
3
k0 leads to a temporal scale T0 of Eq. (5.10) [231].

For a needle FEEP, T0 = 9.5µs.

T0 =
πσ

E3

√
27ρ

ε30
(5.10)

Due to these inherent physical instabilities, oscillations will form in the fluid on

the side of the needle over time. Figure (5.22) supports the claim that the simulated

waves are a natural physical response to an electric field and are not a numerical

artifact of grid size. At six different grid densities and levels of adaptive mesh

refinement, Fig. (5.22a) displays the same surface location without oscillations at

T=2.3 µs < T0, while Fig. (5.22b) shows a magnified section indicating that as

T → T0, increasing oscillations occur.

5.3.2 Post-snap off radial spread

The PDF simulation results in Fig. (5.8) have shown a MTCR large frequency in

the droplets around 4,000 indium atoms per electron. The following subsection at-

tempts to support this finding by presenting a simple model that relates an observed

droplet angular spread to the relative charge necessary to cause this distribution. The
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Figure 5.22: Surface instability growth

MTCR of this order-of-magnitude analysis was found to approximate the simulation

maximum probability value.

Droplet average accelerations

For a droplet to be deflected in flight, it has to experience a repulsive force. Figure

(5.23) shows an experimental set up that records the angular density and volume of

droplets from a FEEP [72]. The axial vertical velocity u of the droplet after passing

the shutter is constant and is a function only of its relative charge. The off-axis

horizontal velocity v is a function of average acceleration a and time, or v = at. The

time of flight is determined by how long it takes the droplet to travel on its angled

trajectory before impacting the surface of the catcher studs. Due to the collection

surface being a constant radius from the emitter, the larger the offset angle Ψ and

therefore the greater the horizontal distance traveled, the less vertical distance needs

to be traversed. Using dimensions of the ARCS experiment, the droplet vertical

velocity and time of flight are given by Eq. (5.11).



199

u
[
m
s

]
=

√
2E∆x

(
q
m

)
= 109.1
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m

t[s] = 3.667× 10−5 cos Ψ
√

m
q

(5.11)

Figure 5.23: ARCS droplet angular measurement apparatus

Inserting the horizontal distance 0.04(sin Ψ) into r = v0 + 1
2

∫ tf
ti
at dt, the necessary

acceleration and horizontal velocity for a charged droplet to reach the collection ring

at an angle of Ψ are described by Eq. (5.12). Using these equations, the accelerations

needed to force variously charged droplets off-axis is shown in Fig. (5.24). For

example, a droplet with an MTCR of 4,000 needs to experience an acceleration of

1010 m
s2

to be deflected 30o by the time it travels 4 cm. Note that drops with a larger

MTCR are relatively less charged, and so have a lower velocity and therefore a longer

transit time before impact. Because of this longer flight time, a lower acceleration is

needed to reach a given offset angle Ψ.

a
[
m
s2

]
= 5.948× 107 (tan Ψ sec Ψ)

(
q
m

)

v
[
m
s

]
= 2181(tan Ψ)

√
q
m

(5.12)
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Figure 5.24:
Average acceleration needed to cause a droplet with a chosen MTCR
to arrive at various angles on the collection plates

Droplet number and volume fluxes

The droplet angular number and volume dependence for two different mass flow

rates of 2.67 and 0.28 µg
s

are shown in Fig. (5.25). The corresponding field emitter

currents are 250 and 100 µA respectively [72] . The data fittings are given by Table

(5.5), where Ψ is the angle in degrees off axis measured from the electrode center

to the collecting plate. The last column of mass-weighted mean angle is the point

where half the total droplet volume is closer to the axis and half is further away.

Since the droplets have already passed the accelerating electrode before entering the

spreading area, the angular distention at higher mass flow rates is caused only by

the increased number of particles electrostatically repelling one another.

The claim is that these density spreads can be caused by droplets that are rel-

atively charged to the O(4000) indium atoms per electron predicted by the full

BEM/LS hybrid approach. The approach uses the equality qE=F=ṁa, the repul-
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Figure 5.25:
Droplet a) number and b) volume density per steradian per second
versus angle Ψ off axis

Type of flux Mass flow rate Fit Weighted Angle[
1
s·sr

]
ṁ

[
µg
s

]
[o]

Number 2.67 6.229× 108 exp(−0.0378Ψ)

Number 0.28 4.843× 108 exp(−0.1494Ψ)

Volume 2.67 6.400× 108 exp(−0.0724Ψ) 16.5

Volume 0.28 3.443× 108 exp(−0.1689Ψ) 5.5

Table 5.5: Droplet angular flux and volume spray dependencies
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sion as the square of the distance and the fact that the average value of the function

∫ rf
ri

1
r2
dr = 1

(rf−ri)2 . The model prediction was based on the mass of the jth droplet

being much less than the overall mass flux ṁtot, the current is 250 µA and the dis-

tance from the collecting ring to the needle rf is 4 cm. The electric field Ej from the

Nd detached drops is then given by Eq. (5.13).

Ej = k
∑Nd

i=1,i6=j
qi
r2i

= kṁ8.403×105

MTCR

∑Nd

i=1,i6=j
1
r2i

= 1.230×109

MTCR

∑Nd

i=1,i6=j
1
r2i

= 7.687× 1011/MTCR

(5.13)

Setting the electric field Ej = ṁ
q
a from Eq. (5.12), the predicted MTCR is deter-

mined by solving for the mass to charge ratio at the mass-weighted angle 16.6o. Con-

verting from steradian solid angles, the rudimentary model predicts a MTCRmodel

as given in Eq. (5.14). This simplistic model is remarkably close to the most likely

relative charge predicted with the BEM/LS approach and is derived solely from the

average droplet relative charge needed to match a given angular dispersion.

MTCRmodel

[
# atoms

e−

]
= 8, 700 (5.14)

5.4 Summary

A combination of the level set and boundary element methods was used to sim-

ulate high conductivity liquid metal droplets expelled from a field emission thruster

tip. This union avoided many of the obstacles of modeling detaching surfaces by

reducing the calculation domain. The boundary element method provided a solution

of the potentials and normal electric fields, thereby identifying the driving forces for
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the liquid’s evolution. Level sets allowed arbitrary surface geometries and the join-

ing and separation of droplets. Through the use of level sets to identify the surface

location instead of tracking discrete particles, manual boundary modification at each

time step was unnecessary.

The qualitative and quantitative effects of varying the axial gap size, electrode

potential, viscosity and surface tension were displayed. Larger droplets formed from

smaller potentials or greater electrode gaps, viscosity, or surface tension. The for-

mation of microdrops due to Rayleigh overcharging was shown. In addition, droplet

charge and size probability density functions were calculated at detachment, with a

large percentage of droplets having less than 5,000 atoms/electron and being around

2.5 µm in diameter. The varying size of molecules detaching from a single point and

the corresponding formation of satellite droplets was proposed as an explanation for

the dual-humped histogram.

Time of flight current predictions were made and the effect of shifting and fit-

ting to simulation data was demonstrated. Finally, validation against two indepen-

dent data sources was performed. Surface movement pre-snap off matches an EHD

model. In addition, changes in droplet angular spread were examined. The off-axis

particle densities agreed qualitatively and quantitatively with those predicted for

droplets with a mean and mode MTCR between 1,600-40,000. The full LS/BEM

hybrid model’s simulated most probable relative charge is solidly within this range.

The simulation performed significantly beyond liquid detachment without having to

restart, reflecting a robust modeling method.



CHAPTER VI

Summary and Future Work

6.1 Conclusions

This thesis has attempted to identify the existence and magnitude of various fac-

tors affecting FEEP operation through multiple analysis pathways. It was focused on

droplet behavior for field emitter thrusters. Parametric and asymptotic evaluations

identified the main forces driving the surface evolution. The combination of level sets

and boundary element methods was used to model the droplets after detachment and

to provide their relative mass to charge frequency and detailed individual properties

of the surface. The various sections have examined different contributors to needle

operating performance. Mass efficiency can be increased by varying the parameters

in the direction indicated by Table (6.1). These parameters are listed alphabetically,

and not by order of magnitude.

6.1.1 Parametric analysis

In Chapter II, a needle FEEP was examined parametrically. Needle geometry

modification and propellant alloying were proposed as methods to increase system

mass efficiency ηm. The effect of reservoir contamination on reducing ηm was quan-

tified. Correlations between mass efficiency and impedance Z were derived. As the

needle becomes smoother and impedance increases, efficiency increases, but more

204
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Smaller/less Larger/More

Contamination from reservoir Critical (starting) current

Droplet diameter Electric field

Electrode width Electrode voltage

Fluid thickness Fraction tip wetted

MTCR Fluid velocity

Taylor cone radius Impedance

Tip radius of curvature Surface tension

Viscosity

Table 6.1: Variables to alter to increase mass efficiency

power is then needed due to the higher potential required to initiate droplet emis-

sion. A model was presented that gives quantitative predictions for how voltage,

current, fluid thickness, fluid velocity and impedance are interrelated.

Besides adjusting the characteristics of the needle itself, various alternative pro-

pellant binary and ternary alloys were examined. While the baseline propellant was

pure indium, the melting points, vapor pressures and viscosity of all combinations of

indium, gallium and tin were presented. A model was presented that predicted an

increase in the viscosity of the fluid resulting in an increased system mass efficiency.

This trend was because the electrostatic potential was increased along with increas-

ing viscosity so that the fluid velocity was unchanged. The suggested alloy possessed

a good combination of viscosity increase (0.1 mPa ·s), melting point reduction (80K)

and usage of indium (> 70%) with a [0.75, 0.1, 0.15] fraction of indium, gallium and

tin. Similarly, altering the composition of the solid needle was proposed to see how

surface tension forces vary between solid and liquid elements. The predicted effect

of changing the needle material was quantified. The current tungsten needle was

shown to be the best element available as an underlying base. In addition, it was
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shown that the effect on mass efficiency per percent increase in surface tension was

larger than that of similar viscosity changes.

Finally, ARCS has had past performance problems with contaminants migrating

from the reservoir to the needle tip. Iron and chromium were shown as the primary

foreign constituents. After a sufficient amount of contaminant buildup, sparking

occurred between the electrode and the needle tip. This arcing degraded the needle

surface and reduced thruster performance. Modeling the occultation as a diffusion

of solids into a liquid, the leaching rate of impurities for various components into

stainless steel was found to lie in the range of 1.0 × 10−16 to 2.7 × 10−10 kg
s
. This

model related contaminant deposition rate to a rough estimate of emitter lifetime.

It also predicted that reducing the reservoir diffusion rate by 10% will lead to an

increase of lifetime of up to 25%.

6.1.2 Asymptotic analysis

To better predict the performance of a FEEP thruster, the motions of the propel-

lant surface need to be understood. However, a brute force full 3-D jet free surface

simulation is highly impractical in terms of computational time. Mathematical per-

turbation schemes allow for the derivation of rapid 1-D models. In Chapter III, the

order of magnitude of the forces acting on the liquid surface was ascertained. A

perturbation scheme using nondimensional numbers was produced that is consistent

to any arbitrary order of approximation.

The inertial, viscous, capillary, gravitational, electrostatic and ambient forces

were compared. The surface of a FEEP thruster was then simulated using a 1-D

axisymmetric slender jet model. Continuity, momentum and surface curvature stress

are conserved. A general balance of all the forces was presented, and then specific
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ARCS FEEP values were used as inputs. The resulting matrix produced a power

series approximation of an axisymmetric jet at every level of expansion ε. The order

of magnitudes of the forces from least to greatest were viscosity (-10), elasticity (-8),

atmospheric pressure (-5), inertia (-3), gravity (-2), surface tension and electrostatics

(0). That is, the effect of the 500 Pa vacuum chamber pressure on the indium surface

had a relative influence of 1×10−5 times the influence of surface tension on the slender

jet’s development. In addition to identifying the magnitude of the force contribution,

several figures demonstrated that if all forces were (incorrectly) treated as equally

important, the overall evolution of the jet would be substantially different in terms

of position, velocity and internal stress.

Finally, the numerical stability of the system was examined. From an eigenvalue

analysis, it was determined that unless both left and right hand boundary conditions

are enforced, a mixed hyperbolic/elliptic solution set results and surface evolution

predictions become catastrophically unstable, regardless of how reasonable the initial

physical constraints.

6.1.3 BEM/LS analysis

As droplets snap off the needle tip, the width of the fluid connecting the droplet

and the needle decreases to zero. This computational singularity occurs in a region

of very high electrostatic gradients and surface curvature. The method of level

sets allows for computational tracking of a surface between discrete interfaces. The

boundary element method (BEM) is a complementary algorithm to level sets that

span only the boundaries of the problem instead of the entire volume. Restricting

the BEM’s nodal placement only to the edges resulted in faster computation due to

fewer total nodes, avoidance of adaptive meshing, easier design changes, and accurate
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calculation of gradients and infinite domains. The combination of the level set and

the boundary element methods enabled accurate and rapid spatial resolution for

charged surfaces. They also handled a changing irregular shape and included the

effects of electrostatic forces from the electrode and other droplets on the behavior

of individual droplets after pinch off.

The behavior of these droplets was described for 2D planar and 2D axisymmetric

coordinates. In addition, a variety of techniques was implemented that increased

accuracy and/or reduced simulation run time. Employing the iterative matrix solver

GMRes and fitting of the data with a bigaussian distribution provided especially

notable improvements. The electrode separation, electric potential, the fluid viscosity

and surface tension were varied over several orders of magnitude. In agreement with

the analysis in previous chapters, the potential and surface tension had the largest

impact on droplet velocity, position and formation shape.

Besides varying selected experimental parameters, methods were proposed that

allow for future experimental validation. Time of flight measurements and various

generated droplet probability density functions such as mass to charge ratio (MTCR)

provided quantitative predictions on emitted FEEP propellant. The simulations ac-

curately reproduce independent work up to their termination of the droplet formation

and the predicted most probable MTCR can explain observed droplet angular disper-

sion. In addition, the combined approach can model a range of situations unrivaled

by other methods.

6.2 Future work

Several possible areas of improvement exist as areas for future research on these

topics. The improvements are grouped according to the primary benefit of inclusion,
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whether it increases the accuracy, speed or general applicability of the algorithms or

increased understanding of parameter correlations.

6.2.1 For increased accuracy

These modifications will mainly increase the accuracy of the simulation. Depend-

ing on the implementation method, the overall computation time may increase.

Integrate the influence matrix rather than numerical approximation

The use of a boundary integral method (BIM) instead of a boundary element method

(BEM) to calculate the influence matrix A could increase the accuracy of the surface

force computation. Integrating along the panel surface avoids singularities in the

numerical approximations. However, on tilted or curved panels, the BIM is more

sensitive to differences in panel lengths and more computationally expensive. Addi-

tional effort would be needed so that the integration end points always avoid droplet

singularities inherent in the Green’s function.

Adapt Green’s function for close points At smaller panel grid spacings,

the distance between boundary points decreases. As the Green’s function uses the

natural logarithm function, at these shortening separations the function approaches

a singularity. Hence, the matrix A becomes numerically stiffer as panel resolution

increases. This stiffness increases the matrix condition number, spreads the solution

eigenvalues and causes an iterative solver such as GMRes to converge significantly

slower. If droplets are frequently present near the surface, a possible route is to

perform the calculations using a quadrature method (see Sec. (4.5.2)) designed for

the system Green’s function [213]. Another approach is to regularize the singularity

and correct the solution afterwards [20].
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Incorporate a sink term for ions Currently, only charge on droplets is tracked.

At flow rates under 50µA, Fig. (4.30) demonstrates that the contribution of total

charge carried by ions increases dramatically. Creating a sink term in the governing

equations to represent this ionic charge would more accurately determine the total

charge in the system and its distribution among all the components.

6.2.2 For reduced computational time

These modifications will increase the speed of the simulation, although depending

on the algorithm, small errors in accuracy due to approximations could be introduced.

Implement a tree code or fast multipole matrix solver Instead of solving

the Ax=b system through GMRes or matrix inversion, one could treat the panel

points using point-cluster or cluster-cluster approximations for very rapid calculation

of normal electric fields. Emhoff’s doctoral thesis has significant details about tree

code implementation [65]. An even more rapid computation can be obtained by using

the fast multipole method. This approach computes the force between two clusters

at a time, rather than the particle-particle set up of the current implementation.

Taylor expansions are performed about the center of both the target and source

cluster. This requires a large amount of memory storage for these cluster moments;

however, it can reduce computational cost to approximately O(N) [105].

Parallelize the routines Since the matrix and potential calculations are per-

formed around the computational and surface boundaries, the formation of the A

matrix requires each panel to independently assess the rest of the boundary’s effect

on it. Therefore, parallelizing the code would offer some potential speed-up in total

run time as the formation time of the matrix A is reduced.



211

Apply fixed matrix values For panel distances that do not vary (e.g. the

edge-edge connections) or change very slowly (e.g. needle surface-edge), the influence

matrix A does not need to be re-calculated for each iteration. The Green’s functions

need to be recalculated only when a surface moves more than 1% from its prior

position.

Improve matrix preconditioning A better conditioned matrix allows for faster

eigenvalue determination when using an iterative solver. The main difficulty in in-

definite preconditioning of a matrix can be explained as follows. Krylov subspace

methods (see Sec. 4.5.1) converge rapidly when the eigenvalues are clustered around

1. This means that the preconditioner, often viewed as an approximation to the

inverse of the given matrix, must transfer the eigenvalues to one. It may happen

that eigenvalues are transferred to values closer to zero due to approximation errors

that are intentionally made in order to keep the process efficient. In that case, the

convergence of Krylov methods such as GMRes will be slow, and it may happen

that the unpreconditioned iteration process converges faster than the preconditioned

iteration. A more sophisticated method than the current block Jacobi (such as block

SSOR) could result in consistent, rapid solution times.

6.2.3 For broader applicability

These modifications will allow a wider range of problems to be addressed with

the simulation method.

Incorporate source term and flow rates The flow rate and current should

vary as a function of potential. Currently, the needle tip is treated as possessing a

fixed amount of propellant; adding an inflow term would allow for the modeling of
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larger- and longer-flux simulations.

Extend to three dimensional coordinates A full 3-D simulation provides

a better characterization of droplet detachment. In case the tree code approach in

Sec. (4.5.1) is used, a 3-D approach will also be more efficient, as a full recursion

relationship exists for the Green’s function. Also, the BEM would be more accurate,

as singularities are more easily addressed [65]. However, using a volumetric domain

requires the boundary elements to be planar rather than linear. This introduces a

large number of additional calculations and increases run times substantially.

The main obstacle in performing a 3D simulation is the requirement to correctly

connect the nodes. Not only does it need to be determined which blob a level set

crossing is attached to, but in what order the (x, y, z) points should be sorted. If

points are linked to one another incorrectly, a BEM approach causes the physical

forces to be computed inaccurately. While identification of the crossing location

itself is fairly rudimentary, this ordering of multiple irregular blobs has proven to be

a very difficult problem. Due to the simplication of the Green’s function, if a full

multipole solver was used and the nodal connectivities were determined quickly, it is

estimated that total run time for a 3D case would be the same order of magnitude

as the currently implemented 2D axisymmetric version.

6.2.4 Reformulation of the system to be gridless

Originally, the entire electrostatic calculation was envisioned to be grid-free. This

would entail using the boundary integral method as a vortex driver. Because this

approach uses only the edges, arbitrary precision can be achieved through point

insertion. A quick overview of the system follows. See Krasny [59, 141, 134] and

Smerka [226] for a fuller review. Mansour [159] used the boundary integral method
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to simulate satellite droplet formation in capillary jet breakup without electrostatics.

If the liquid outside a bubble is irrotational and incompressible, its velocity u is

given by Eq. (6.1) and the velocity potential Φ.

u = ∇Φ, where ∇2Φ = 0 (6.1)

The potential can be represented by a distribution of dipoles on the surface, where

µ is the dipole density and g is the Green’s function for the Laplacian in <3 as in

Eq. (6.2).

Φ(r) =
∫
Ω
µ(r′)n(r′) · ∇′g(r − r′) dS

g(r − r′) = − 1
4π|r−r′|

(6.2)

The liquid velocity on the boundary can be determined by taking the limit as

r →surface s and using the principal value integral
∮

in Eq. (6.3).

Φs =
1

2
µ(r) +

∮

Ω

µ(r′)n(r′) · ∇′g(r − r′) dS (6.3)

The velocity tangential components come from derivatives of Φs. The normal

component of the velocity u comes from the vector potential A on the surface, as

described by Eq. (6.4).

A =

∮
µ(r′)n(r′)×∇′g(r − r′) dS (6.4)

Then, the evaluation of the normal velocity only requires surface derivatives. The

motion of the interface is given by Eq. (6.5).
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u · n = (n×∇) · A

dr
dt

= u

(6.5)

6.2.5 Additional uses of the models

Many additional tests can be run using this simulation. A parametric investi-

gation of many of these variables could increase the understanding of the interplay

between components.

Electrostatic mixing One of the areas that the BEM/LS model is most easily

applied is in the realm of electrostatic mixing. By using electric fields on small liquids

and powders, they can be rapidly and thoroughly combined [37, 133, 244].

Timing comparison with level set electrostatics As of publication, neither

Prof. Sussman nor I are aware of anyone who has combined electrostatics with the

level set method [255]. As a consequence, there is no data on whether it or the thesis

BEM approach is faster. While level sets can use AMR, it has diminishing returns.

However, BEM has to invert a dense matrix.

Satellite droplets The formation of satellite droplets is influenced by the size and

relative charge of the droplets that detached earlier. Depending on the magnitude of

the electric field, tiny droplets have been known to be repulsed from highly charged

larger drops and back towards the needle [282]. Their unique influence on the path

and velocity of the other drops could be more rigorously quantified.

Taylor cone variation Several experiments have shown a mass efficiency de-

pendence on the liquid cone width [237]. By varying the needle radius of curvature,
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the mass flow rate and charge could be examined.

Relative heights of liquid bridges Surface evolution of a liquid has been the

subject of multiple basic research projects [13, 282]. They have examined the relative

width and height of the liquid bridge between a detaching droplet and the under-

lying solid surface. This ratio has been used to examine the possibility of forming

microdroplets smaller than the surface itself as an aid to dispersion and atomization.

Therefore, it is conceivable to design an apparatus that produces predominantly

single-sized droplets from sessile liquid motion as a consequence of the underlying

physical shape.
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APPENDIX A

Element properties and experimental variables

The physical properties of a needle FEEP are listed for reference. In addition,

indium and other previously discussed elements and alloy compositions are included.

The values are from a selection of published papers [50, 56, 68, 272].

A.1 Needle FEEP values

The physical values parameterizing an indium-fed needle FEEP are presented.

The dimensions were used as an educated approximation to ARCS setup, since exact

experimental values were unobtainable.

angular spray intensity = 3.9× 106 × exp
(
−12.42ψ

Ie

) [
#

steradian·s
]

background pressure = 0.133 [Pa]

drop diameter = 0.1 half-bubble on the plate, or 0.079 rounded [µm] [72]

emitter current = 5− 300× 10−6 [A]

emitter-extractor distance = 2× 10−4 [m]

extractor hole diameter = 0.004 [m]

extractor potential difference = 5− 10× 103 [V]

film thickness = 1− 20× 10−6 [m]

groove radius = 1− 500× 10−8 [m]
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mass efficiency = 10− 100%

needle length = 0.001 [m]

temperature = 453 [K]

A.2 Element properties

Indium is used as the propellant in ARCS FEEP thruster designs; gallium has

been used in past field emitters and tin was discussed in Sec. (2.2) as a possible alloy

component to modify the fluid properties.

A.2.1 Indium

atomic mass = 114.818 [amu]

density = 1000× (7.1295− 6.7987× 10−4[T − 273.15])
[
kg
m3

]

dielectric constant (ε) = 1× 10−5
[
F
m

]

ionization electric field = 2× 109
[
V
m

]

electrical resistivity = 8.75× 10−8 [Ω ·m]

Fermi energy (eF ) = 8.63 [eV]

Fermi velocity (vF ) = 1.74× 106
[
m
s

]

melting point = 429.75 [K] (156.6 oC)

molar volume = 15.76
[
cm3

mole

]

molecular heat adsorption
(
LBe

)
= 1959

[
kJ
kmol

]

specific heat at 300 K = 233
[

J
kg·K

]

surface tension (σ) = 0.555− 1.2× 10−4(T − 429.75)
[
N
m

]

thermal conductivity = 42
[
W
m·K

]

viscosity (µ) = 3.02× 10−4(exp[800/T ])
[
N ·s
m2

]

wetting angle (σgs) = 0.674 ± 0.074
[
J
m2

]
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A.2.2 Viscosity fitting coefficients

Eq. (2.10) coefficients, log10(1000 · µ+ 1) [Pa · s] = 10b1 × T b2

Element b1,e b2,e

Iron (Fe) 4.406 -1.384

Gallium (Ga) 0.85 -0.500

Indium (In) 3.01 -1.280

Tin (Sn) 1.91 -0.8505

References [29, 200, 247].

A.2.3 Vapor pressure curves

Used for Sec. (1.4.2). Indium and manganese are the two elements shown on the

far left of Fig. (A.1) with the lowest vapor pressure.
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Figure A.1: Vapor pressure curve for various elements versus temperature
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A.2.4 Melting point, boiling point and surface tension

Element Melting Point [oC] Boiling Point [oC] Surf. Ten.
[
N
m

]

aluminum 660 2,519 0.871

beryllium 1,287 2,471

chromium 1,907 2,671 1.627

cobalt 1,495 2,927

copper 1,085 2,562 1.6

gallium 30 2,204

germanium 938 2,833

gold 1,064 2,856

iron 1,538 2,861 1.86
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Element Melting [oC] Boiling [oC] Surf. Ten.
[
N
m

]

lead 0.457

manganese 1,246 2,061 1.152

nickel 1,455 2,913

palladium 1,555 2,963

scandium 1,541 2,836

silver 962 2,162

tin (gray) 13 2,602

tin (white) 232 2,602 0.562

titanium 1,668 3,287

tungsten 2.486

References [140, 275]
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A.2.5 Tin and gallium

Property Unit Tin Gallium

kinematic viscosity m2

s
8.00× 10−7

latent heat of fusion J
kg

6.00× 104

liquid density kg
m3 6,990 6,080

solid density kg
m3 7.50× 103

specific heat J
kg·K 228 371

J
mol·K 27.112 25.86

thermal conductivity W
m·K 60

thermal expansion 1
K

2.67× 10−4
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APPENDIX B

Mathematical terms

This section is intended to describe the concepts, rather than give a comprehen-

sive discussion of various mathematical terms used in this research.

B.1 Hessian

The Jacobian matrix of the derivatives ∂f/∂x1, ∂f/∂x2, ..., ∂f/∂xn of a function

f(x1, x2, ..., xn) with respect to x1, x2, ..., xn is called the Hessian H of f [267].

H {f(x1, x2, ..., xn)} =




∂2f
∂x2

1
... ∂2f

∂x1∂xn

...
. . .

∂2f
∂xn∂x1

∂2f
∂x2

n




(B.1)

It also is used to refer to the determinant of this matrix [103] via Eq. (B.2).

H {f(x, y)} =

∣∣∣∣∣∣∣∣

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

∣∣∣∣∣∣∣∣
(B.2)

B.2 Gaussian quadrature weights and locations

By properly choosing the location of points along a line during numerical inte-

gration, accuracy can be increased while using fewer points. One common method is
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labeled Gaussian quadrature. See Sec. (4.5.2) for more details about the approach.

For two or four quadrature points, representing a 5th or 9th degree polynomial fit,

their fractional locations from (-1,1) and weights are listed.

n location weight

2 ±0.5773502 1.0000000

4 ±0.3399810 0.6521451

±0.8611363 0.3478548

(B.3)

B.3 Godunov predictor-corrector

Consider the system of conservation laws Ut+Fx = 0 where U is a vector of length

K and F is a vector-valued function of U. To simulate the spatial and temporal

change, a difference scheme of the form

Un+1
j = Un

j −
∆t

∆x

(
Fj+1/2 − Fj−1/2

)
(B.4)

can be used, where Un
j approximates the average value of the solution in cell ∆j

centered at xj at time tn and Fj+1/2 is the numerical flux [23]. For the first-order

Godunov method, the numerical flux is FG
(
UL, UR

)
, and is defined to be the flux

evaluated along the ray x/t=0 [98]. To change to a second-order method, the flux F

needs to be second order accurate. This increase in accuracy can occur by construct-

ing a linear approximation to U at time tn within each grid cell. The quasi-linear

form is then used to extrapolate to cell interfaces at tn+1/2. This form is represented

by Eq. (B.5). For more detail, refer to Colella [48].
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U
n+1/2
j+1/2 = Un

j + ∆x
2
Ux,j + ∆t

2
Ut,j

= Un
j + ∆x

2
Ux,j − ∆t

2
Fx,j

(B.5)

B.4 Discretizing terms

When discretizing the projection step of the CLSVOF,

∇ · ∇p
ρ

= ∇ · v

Div
(

Grad[p]
ρ

)
= Div(v)

(B.6)

where Div is the discrete divergence operator and Grad is the discrete gradient

operator given in Eq. (B.7).

Div(vi,j) =
ui+1/2,j−ui−1/2,j

∆x
+

vi,j+1/2−vi,j−1/2

∆y

Grad
[
pi+1/2,j

]
=

pi+1,j−pi,j

∆x

Grad
[
pi,j+1/2

]
=

pi,j+1−pi,j

∆y

(B.7)

Equation (B.6) can then be discretized as Eq. (B.8).

pi+1,j−pi,j

ρi+1/2,j
− pi,j−pi−1,j

ρi−1/2,j

∆x2
+

pi,j+1−pi,j

ρi,j+1/2
− pi,j−pi,j−1

ρi,j−1/2

∆y2
= Div(v) (B.8)
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APPENDIX C

Droplet minimum conductivity

This section is intended to list some representative FEEP parameters, calculate

sample droplet statistics and determine the lower bound for droplet conductivity

where the BEM is appropriate. Reported operating FEEP values of thrust (66 µN),

mass flow rate (0.69 µg
s

) and Isp (10,900 s) [179] give a volume flux of 9.44×10−14 m3

s
.

For needle FEEPs, some versions have cylindrical needle radii of 0.125 mm, needle

heights of 3 mm and 10 kV emitter voltages.

Fermi energy and velocity For metals, the Fermi energy (eF ) provides the

minimal energy for conducting electrons. However, the maximum amount of energy

which can be given to any electron is on O(µeV ), so only the electrons very near the

Fermi energy can participate in conduction [174]. The Fermi velocity (vF ) of these

conduction electrons can be calculated from the Fermi energy. For indium, vF is:

vF = c

√
2eF
mec2

= 1.74× 106
[m
s

]
(C.1)

Drift velocity and residence time The effective resistance for an electron

while traveling through a 2 µm droplet is
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R =
L

σA
=

2× 10−6

1.14× 107 × 0.5× π × (1× 10−6)2
= 0.112 [Ω] (C.2)

while the current density J is given by Eq. (C.3).

J =
U

RA
=
Uσ

L
=

8000

.112× 0.5× π × (1× 10−6)2
= 4.56× 1016

[
A

m2

]
(C.3)

The number of free electrons n is calculated using Avogardo’s number and the

mass density of indium.

n =
Nρ

M
=

6.022× 1023 × 7100

.1148
= 3.72× 1028 (C.4)

The drift velocity vd then becomes Eq. (C.5).

vd =
J

ne
=

4.56× 1016

3.72× 1028 × 1.609× 10−19
= 7.61× 106

[m
s

]
(C.5)

Finally, an electron traveling a distance of 10µm through the propellant layer at

speed vd takes 1.31× 10−12 seconds. Since other processes such as snap off occur on

a much larger time scale, the droplet behaves as an effective infinite conductor.

Droplet minimum conductivity Since the BEM requires that the tangential

electric field be much less than the normal field, or Etangent ¿ Enormal, the rela-

tive electron velocity must be high enough to make the assumption of local charge

equilibrium reasonable. Reasonable is defined as the the conduction time tconduct

being less than 1% of drift time tdrift. Using the earlier formulas and a 10 µm panel

length, a tip to electrode distance dte = 5 × 10−6m and a computational time step

of tcomp < 5× 10−10 seconds, the minimum fluid conductivity σmin is calculated via

Eq. array (C.6). They make use of the Fermi energy and velocity presented earlier

in the Appendix.
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vF = c
√

2eF

mc2
= 1.74× 106

[
m
s

]

tconduct = dte

vF
= 5×10−6

1.7×106 = 2.9× 10−12 [s]

J = nevd = σE = U
RA

= 1.6× 109(σmin)
[
A
m2

]

vdrift = J
ne

= 0.218(σmin)
[
m
s

]

tdrift = dte

vdrift
= 2.3× 10−5

(
1

σmin

)
[s]

σmin ≥ 0.01 (vF )nedte

U0
= 80, 000

[
Siemens

m

]

(C.6)
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APPENDIX D

Derivations

D.1 Surface tension components

If the surface tension of the solids (σs1, σs2) is known, the surface tension of the

liquids above can be determined by solving Eq. (2.14) using the Newton-Raphson

method [18],

σgl(start) = σs1F (θ1) + σs2F (θ2) (D.1)

where F(θi) =
(
1− 1+cosθi

4

)
/

(
(1+cosθi)

2

)
.

D.2 Electrical relationships

For voltage V and current I, Eq. (D.2) relates the charge to the capacitance.

V = q
C

= 1
C

∫ t

0
I(t) dt

I = dq
dt

(D.2)

For a circuit with capacitor C in series with resistor R, Kirchoff’s current law gives

1

C

∫ t

0

I(t) dt+ IR = 0 (D.3)
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Therefore, the current is described by Eq. (D.4).

dI
dt

= − I
CR

I(t) = I0 · exp
(− t

RC

)
(D.4)

A Fourier transform with a delta function input current gives 1
C ω
Î(ω) + RÎ(ω)

=1, or

Î(ω) =
1

R + 1
C ω

This is a frequency transformation of a high pass filter; more current is available

when ω is large.

D.3 GMRes iterative Hessenberg bounding

The mathematics involved in GMRes require the formation of an upper Hessen-

berg matrix H. The relationship between the main matrix A, the iterative solution

vector v and the Hessenberg is described.

D.3.1 Claim on v

[Avm = vm+1Hm

]

From steps 3 and 10 in Sec. (4.5.1), wj = vj+1hj+1,j = Avj. The following

equality is then readily derived.

Avj =
∑j+1

i=1 vihij, j = 1, 2, ...m. (D.5)

By defining vm as the n ×m matrix with column vectors v1, ..., vm and Hm as

the m×m Hessenberg matrix with nonzero entries hij defined earlier, the following

relation holds:
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Avm = vmHm + vm+1hm+1,mem (D.6)

where em is the modified identity matrix with the (m,m) position as the sole non-zero

value. However, the last term is equivalent to vm+1, as seen in Eq. (D.5), so

A{n× n}vm{n×m} = vm+1{n, m+ 1}Hm{m+ 1, m} (D.7)

D.3.2 Claim on iterative Hessenberg identity

[
vTmAvm = Hm

]

Multiply Eq. (D.6) by vTm to get

vTmAvm = vTmvmHm + vTmvm+1hm+1,mem (D.8)

The Arnoldi process is premised around the ortho-normality of {v1, ..., vm}, so

vTmvm = 1 and vTmvm+1 = 0. Therefore, Eq. (D.9) relates the Hessenberg and A

matrices through the iterative v vector.

vTm{m× n}A{n× n}vm{n×m} = Hm{m×m} (D.9)

D.4 Axisymmetric derivatives of the Green’s function

Originally described in Sec. (4.3.1), the axisymmetric derivatives of the Green’s

function are used in a Taylor expansion. The derivatives are given with respect to

z and r where {}1 is the reference and {}2 is the source point. The derivative with

respect to z2 is obtained from the z derivative by multiplying by (−1)n, where n is

the order of the derivative. For example, ∂2G
∂z1∂z2

= (−1)1 ∂2G
∂z2

. The derivatives for r1

are the same as for r2 with the {1,2} interchanged [65].
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As a reminder, note that G = K
π
√
L

and that K and E are complete elliptic inte-

grals of the first and second kinds, respectively. Equations (D.10-D.17) recapitulate

the transformation variables used when changing from a 3D to axisymmetric form

of the Green’s function while Eqns. (D.18-D.29) are its first three derivatives. Let:

r = r1 + r2 (D.10)

z = z1 − z2 (D.11)

L(r, z) = r2 + z2 (D.12)

m(r1, r2) =
4r1r2
L

(D.13)

w(m) = 1−m (D.14)

K(m) =

∫ π
2

0

dθ√
1−msin2θ

(D.15)

E(m) =

∫ π
2

0

√
1−msin2θ dθ (D.16)

D(m) =
E(m)

w(m)
(D.17)

The first order derivatives are:

∂G

∂r1
= −D(L− 2rr1)− LK

2r1
√
L3

(D.18)

∂G

∂r2
= −D(L− 2rr2)− LK

2r2
√
L3

(D.19)

∂G

∂z
= − z D√

L3
(D.20)

The second order derivatives are:
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∂2G

∂z∂r1
=

z

mw
√
L5
{2D[rm(2−m)− r2(1 +m)] +K(2r2 − rm)} (D.21)

∂2G

∂z∂r2
=

z

mw
√
L5
{2D[rm(2−m)− r1(1 +m)] +K(2r1 − rm)} (D.22)

∂2G

∂z2
=

1

w
√
L5

{
D[2z2(2−m)− Lw]− z2K

}
(D.23)

∂2G

∂r1∂r2
=

1

mw
√
L5

{
D[2r2(mw − 1) + Lm(1 +m)] +K[r2(2−m)−mL]

}
(D.24)

The third order derivatives are:

∂3G
∂r32

= −1

2w2r32
√
L7

{
D

[
L3(2−m 〈5− 4m〉)− L2r1r2m(1 +m)− Lr2

2

(
Lm 〈3−m〉

+ r2
1 〈1 + 5m+ 2m2〉) + 2r3

2 (r3 〈1 + 15m− 8m2〉+ 2Lr1 〈3−m〉 〈1− 3m〉)

+ Lr4
2(33− 39m+ 14m2)− 16rr5

2(3−m)]

− K [L3(2− 4m) + L2r2m(10r1 − r2)− 8rr2(wr
2r2

2 + r4
2)

− Lr2
2 (wr2 − 4r2

2 + 2r 〈3r1 − 6r2 + 4mr2〉)]}
(D.25)

∂3G

∂z3
=

−z
4w
√
L7

{
D[6L(2− 3m)− 23z2w + 2m2(3L− 4z2)] +K[4z2(2−m)− 3Lw]

}

(D.26)

∂3G
∂r22∂z

= −z
4w2r22

√
L7
{D 〈2L2(m2 + 2m− 1) + 16Lw2r2

2 − 4r2
2[(12− 4m)(r2 − 2r2

2)

+ z2w(11− 8m)]〉+K 〈L2(2− 3m) + 8r2
2[r

2 − 2r2
2 + z2(3− 2m)− Lw]〉}

(D.27)
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∂3G
∂r2∂z2

= 1

w2
√
L7

{
2r1
m

(D −K)(2z2 − r2) +D[2wr3(2−m)− z2r(19− 17m+ 6m2)

+ 2r1(z
2 〈7−m〉+mr2)] +K[z2r(7− 3m)− 2r1(r

2 + 2z2)− wr3]}
(D.28)

∂3G
∂r1∂r2∂z

= −z
w2
√
L7

{
6r2(K−D)

m
+D[L(3 + 7m− 2m2)− r2(9− 19m+ 8m2)]

− K[L(3 +m) + 2r2(3− 2m)]}
(D.29)
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ABSTRACT

FIELD EMISSION ELECTRIC PROPULSION THRUSTER MODELING AND
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by
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Electric propulsion allows space rockets a much greater range of capabilities with

mass efficiencies that are 1.3 to 30 times greater than chemical propulsion. Field

emission electric propulsion (FEEP) thrusters provide a specific design that possesses

extremely high efficiency and small impulse bits. Depending on mass flow rate, these

thrusters can emit both ions and droplets. To date, fundamental experimental work

has been limited in FEEP. In particular, detailed individual droplet mechanics have

yet to be understood. In this thesis, theoretical and computational investigations are

conducted to examine the physical characteristics associated with droplet dynamics

relevant to FEEP applications.

Both asymptotic analysis and numerical simulations, based on a new approach

combining level set and boundary element methods, were used to simulate 2D-planar

and 2D-axisymmetric probability density functions of the droplets produced for a



1

given geometry and electrode potential. The combined algorithm allows the simu-

lation of electrostatically-driven liquids up to and after detachment. Second order

accuracy in space is achieved using a volume of fluid correction.

The simulations indicate that in general, (i) lowering surface tension, viscosity,

and potential, or (ii) enlarging electrode rings, and needle tips reduce operational

mass efficiency. Among these factors, surface tension and electrostatic potential

have the largest impact. A probability density function for the mass to charge ratio

(MTCR) of detached droplets is computed, with a peak around 4,000 atoms per

electron. High impedance surfaces, strong electric fields, and large liquid surface

tension result in a lower MTCR ratio, which governs FEEP droplet evolution via

the charge on detached droplets and their corresponding acceleration. Due to the

slow mass flow along a FEEP needle, viscosity is of less importance in altering the

droplet velocities. The width of the needle, the composition of the propellant, the

current and the mass efficiency are interrelated. The numerical simulations indicate

that more electric power per Newton of thrust on a narrow needle with a thin, high

surface tension fluid layer gives better performance.


