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CHAPTER I

INTRODUCTION

1.1 Motivation

Micro-electro-mechanical systems, or MEMS, represent a $5.3 billion industry (in

2003) that is expected to grow to nearly $10 billion by 2008.1 Current MEMS applica-

tions are found across a wide range of scientific and engineering fields, which include:

automotive, aerospace, biology, chemistry, computer science, medicine, optics, and

telecommunications. To illustrate the length scales of current MEMS design, four de-

vices developed at Sandia National Laboratories2 are shown in Figure 1.1. Creating

devices with these length scales is particularly challenging because designs that are

successful at the human-scale, or meso-scale O (m), often do not function as intended

at the micro-scale O (µm). One reason is that the surface area to volume ratio in-

creases as the characteristic length scales shrink; and as a consequence, phenomena

which are dependent on the surface area of the system (e.g. friction) become more

important at the micro-scale. As the length scales shrink further in MEMS design

and begin to approach the nano-scale O (nm), quantum mechanics must also be con-

sidered in some applications. The rapid growth of the industry has created many

1See the July 16, 2004 online edition of Small Times magazine (www.smalltimes.com).
2Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin

Company, for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

1



2

Figure 1.1: Examples of MEMS (clockwise from top-left): a spider mite dwarfing
three linear comb drives used for the actuation of a micro-mirror sys-
tem; a collection of red blood cells and a single grain of pollen next to a
micro-gear; a three piston micro-scale steam engine; and an air-cushioned
bearing for a micro-gear. All images courtesy of Sandia National Labo-
ratories, SUMMiTTM Technologies, www.mems.sandia.gov.
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active areas of research, which are focused on improving the theoretical analysis

and computer simulations required for all aspects of MEMS design: aerodynamic,

electro-magnetic, mechanical, optical, structural, and thermal.

The term fluidic MEMS refers to any device in which the control or distribution of

a fluid flow are important (see [51, 67, 69] for an overview). Moreover, fluidic MEMS

that are designed to control gas flows are of particular interest to this investigation.

The intended purpose of a MEMS device does need to actively involve gas flows for

the aerodynamic effects to be critical to the design. For example, any MEMS device

with moving parts that is not vacuum-sealed is likely to be affected by air-friction.

In fact, a mechanical system which functions perfectly at the meso-scale may be

rendered inoperable when shrunk to the micro-scale because the relative magnitude

of air-friction grows with the surface area to volume ratio. The accuracy of the

boundary conditions, therefore, become very important in any analysis of simulation

of micro-scale gas flows. There are additional challenges facing aerodynamic analysis

at the micro-scale because common meso-scale assumptions and solution techniques

are no longer valid. In the case of low-speed micro-channel gas flows with a Mach

number M < 0.1, the assumption of incompressibility is not physically accurate as

there is a significant drop in pressure along the length of the channel, which leads

to compressibility effects (see the experimental results of [4, 6, 5, 170, 145]). Thus,

the aim of the research presented in this investigation is to improve the available

simulation methods for general micro-scale flows, in order to better evaluate fluidic

MEMS designs.

In addition to aforementioned micro-channels, some designs of micro-scale pumps

and valves have also been tested experimentally (see [27, 29, 122, 177]). These basic

construction elements for controlling MEMS flows have been used successfully to de-
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velop lab-on-chip MEMS, which manipulate flow for testing processes that demand

a high degree of sensitivity. Lab-on-chips are also able to combine a microprocessor

on the same silicon structure as the MEMS device, in order to process and analyze

the data as it is collected. This has the potential to greatly increase the throughput

of the testing process compared to the traditional meso-scale methods. Some specific

applications of lab-on-chips, which have recently been developed and tested experi-

mentally, include: (i) fluid density and chemical concentration measurements [169];

(ii) DNA analysis [53, 132]; and (iii) detection of explosive particles at the nanogram

level [137]. Successful fluidic MEMS application are not solely limited to internal

flows and lab-on-chips, micro-scale thrusters have also recently been demonstrated.

In particular, MEMS thrusters have been developed and tested experimentally for

applications involving micro-scale locomotion under standard atmospheric conditions

[141], and precise satellite attitude control in the space environment [64].

While the list of successful fluidic MEMS devices is significant, the future appli-

cations currently being developed are even more impressive. One of the main goals of

fluidic MEMS research is to develop an atmospheric micro-scale flier. Such a device

clearly has numerous security applications as it offers nearly undetectable reconnais-

sance. Further, its low manufacturing cost would allow large arrays to be deployed

for the detection and tracking of minute amounts of air-borne toxins or radiation.

Current development of an atmospheric micro-scale flier is especially difficult con-

sidering that almost all of the fluidic MEMS designs tested to-date involve internal

flows. Fortunately, the recent efforts of Martin and Boyd [108] aim to fill this void

in the MEMS research by developing both a micro-scale wind tunnel, and micro-

scale airfoils to test within the facility. The development of micro-scale fliers is also

important in the bio-medical field, where such devices have the potential to detect,
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diagnose, and treat at levels unparalleled by any of the current methods found in

medicine.

The cost of developing and testing any MEMS prototype is appreciable; and thus,

the numerical simulation of MEMS becomes an extremely important cost-savings tool

in the design of a new device. Unfortunately, for many fluidic MEMS applications

involving gas flows, there does not exist a simulation technique which is both accurate

and computationally efficient. Continuum-based methods, such as the Navier-Stokes

simulation, have a relatively low computational cost, but are not physically accurate

for a wide range of flow conditions commonly found in fluidic MEMS. On the other

hand, particle-based methods, such as direct simulation Monte Carlo, are physically

accurate for fluidic MEMS, but suffer from exceedingly large computational costs

that are difficult to manage unless one has a supercomputer available. Given the

apparent lack of an accurate and efficient simulation technique for micro-scale flows,

the goal of this investigation is develop new approaches in an effort to improve the

design analysis for fluidic MEMS applications.

1.2 Problems facing the current simulation techniques for
MEMS gas flows

The two most widely used simulation techniques for MEMS gas flows are the

Navier-Stokes simulation with slip model boundary conditions, and the Direct Sim-

ulation Monte Carlo (DSMC) method of Bird [16]. The suitability of a particular

simulation technique depends on both the average flow speed and the amount of

rarefaction, or non-equilibrium, present in the MEMS gas flow. The amount of rar-

efaction is most often expressed by the non-dimensional Knudsen number Kn, which

is defined as the ratio of the mean free path `p to the characteristic length scale L
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Figure 1.2: The range of physical validity of the current simulation methods for rar-
efied gas flows based on the Knudsen number.

(i.e. Kn = `p/L).3 As the Knudsen number increases, the number of inter-molecular

collisions occurring within the volume L3 decreases. Since the collisions between the

gas molecules drive the flow toward thermodynamic equilibrium (or equivalently, sta-

tistical equilibrium), a flow is said to have deviated further from equilibrium as the

Kn increases. Continuum methods, such as the Euler and Navier-Stokes equations,

are based on the assumption that the gas flow is in local thermodynamic equilibrium;

as a consequence, these methods are only physically accurate when Kn � 1. For

larger Knudsen numbers (i.e. Kn = O (1) and greater), the actual statistical be-

havior of the gas molecules must be simulated in order to achieve a physically valid

solution. Discrete particle models based on the Boltzmann equation (e.g. DSMC)

or the Liouville equation (e.g. Molecular Dynamics MD) are therefore used for these

non-equilibrium gas flows. It is important to note that these discrete particle models

are valid for all Knudsen numbers.

For comparison, the range of Knudsen numbers over which the simulation meth-

ods are considered accurate is given in Figure 1.2 (see [16]). Note that the Vlasov

equation is equivalent to Boltzmann equation for gas flows when there are no inter-

3The mean free path `p is defined as the distanced traveled, on average, by a gas molecule before
it collides with another gas molecule.
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molecular collisions present. A large number of fluidic MEMS applications have low-

speed gas flows operate within a range of Knudsen numbers termed the transition

regime. Although there is not an exact definition, the lower bound of the transition

regime is typically assumed to be in the range of 0.01 to 0.1 while the upper bound

is assumed to be in the range 10 to 100. The problem with the continuum-based

Navier-Stokes simulation of fluidic MEMS is that it is not physically accurate for

much of the transition regime, as illustrated in Figure 1.2. In contrast, the particle-

based DSMC method is physically accurate throughout the transition regime, but

it has a very high computation cost when used to simulate low-speed flows. These

two simulation techniques are briefly discussed in the remainder of this section with

regard to the difficulties they encounter for MEMS gas flows.

1.2.1 Navier-Stokes simulation with slip model boundary conditions

Strictly speaking, the Navier-Stokes equation(s) refers only to the conservation

of momentum (in three dimensions) under the assumption of a Newtonian shear

stress closure [187]. The term Navier-Stokes simulation, however, is used in practice

to describe the numerical approximation of the entire system of conservation laws,

which govern the continuum dynamics of a viscous flow. These include the following

equations for the conservation of mass (1.1), momentum (1.2), and energy (1.3).

Specifically,

∂ρ

∂t
+ ∇(ρv) = 0 (1.1)

∂

∂t
ρv + ~∇ ·

(
ρv ⊗ v + pI − τ

)
= ρg (1.2)

∂

∂t
ρ(e + 1

2
|v|2) + ∇

(
ρv(h + 1

2
|v|2) − α∇T − τ · v

)
= ρg · v + QH , (1.3)

where ⊗ denotes the outer tensor product of a vector, I denotes the identity tensor,

and the following quantities are specified: the external body force g, the thermal



8

conductivity coefficient α, and the external heat source QH . The system (1.1-1.3)

represents five partial differential equations governing the evolution of five macro-

scopic flow quantities in time t and space x: (i) the density ρ(x, t); (ii) the velocity

vector v(x, t) = (v1, v2, v3); and (iii) the pressure p(x, t). To close this system of equa-

tions, the remaining thermodynamic quantities (e - internal energy, h - enthalpy, and

T - temperature) are represented in terms of the density and pressure using the ideal

gas law. Further, the shear stress tensor τ is calculated in terms of the velocity gra-

dients assuming the Newtonian shear stress closure with the Stokes relation, which

yields (using Einstein summation)

τ = τij = µ

(
∂vj

∂xi

+
∂vi

∂xj

− 2

3

∂vk

∂xk

δij

)

,

where µ is the coefficient of viscosity, which is specified, and δij is the Kronecker

delta. A thorough review of the Navier-Stokes simulation is given by Hirsch in [63].

At the solid boundary surfaces in the flow domain, the velocity field v(x, t) in

the Navier-Stokes simulation is most often treated by no-slip boundary conditions,

which are physically consistent in the continuum limit (i.e. Kn → 0). Specifically,

v(x, t) = (0, 0, 0) for all points x on the solid boundary surface.4 As a gas flow

begins to deviate slightly from local thermodynamic equilibrium (i.e. 0 < Kn � 1),

the first non-equilibrium regions develop near the solid boundary surfaces. These

non-equilibrium regions are referred to as the Knudsen layer, and typically have an

approximate thickness of several mean free paths. The gas molecules in the Knudsen

layer do not undergo a sufficient number of collisions to reach local thermodynamic

equilibrium with the solid boundaries. As a consequence, there can exist a non-zero

tangential velocity at the boundary, which is termed the slip velocity. When the

4This is assuming the solid boundary surface is stationary. More generally, v(x, t) = w(x, t) for
all points x on the solid boundary where w(x, t) is the local velocity of the solid surface boundary.
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Knudsen layer is sufficiently small, almost all regions of the flow are still accurately

represented by the Navier-Stokes simulation except at the solid boundaries. It is

therefore entirely reasonable to expect that the Navier-Stokes simulation still yields

an accurate approximation when Kn is sufficiently small provided that the no-slip

boundary conditions are corrected. The purpose of a slip model is then to correct

the boundary conditions of the Navier-Stokes simulation by estimating the non-zero

slip velocity using known macroscopic flow quantities from the equilibrium regions.

The concept of a slip model dates back to the origins of gas kinetic theory, with

Maxwell proposing the first slip model in [109]. Maxwell derived the slip model using

a perturbation analysis of the behavior of the velocity distribution function within

a mean free path of a solid boundary. From this analysis (assuming a fully diffuse

wall), the tangential slip velocity us at the wall is given by

us =
2

3
`p

∂u

∂n

∣
∣
∣
∣
wall

,

where `p is the mean free path. Note that Maxwell’s slip model recovers the no-

slip boundary condition in the continuum limit Kn = 0. More importantly though,

Maxwell’s slip model is mathematically consistent for non-equilibrium gas flows (with

small Kn) during the approach of the limit Kn → 0 because it is derived directly

from kinetic theory valid at all Knudsen numbers.

Although non-equilibrium temperature effects are not considered in this investiga-

tion, it should be noted that the lack of collisions within the Knudsen layer similarly

prevents the gas temperature from reaching equilibrium with the solid boundary.

Thus, there may also exist a non-zero temperature jump at the solid boundaries.

Based on the same type of perturbation analysis as Maxwell’s slip model, von Smolu-

chowski [180] derives a similar model to estimate the temperature jump at the solid
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boundaries. During the century that has passed since the models of Maxwell and

von Smoluchowski were first published, many new models have been proposed to

yield more accurate corrections to the continuum-based boundary conditions under

certain flow conditions (see for example [11, 12, 15, 25, 39, 69, 80, 111, 112, 138]).

All of these new models, however, still retain the same basic structure as the original

models of Maxwell and von Smoluchowski.

The Navier-Stokes simulations with slip model boundary conditions have been

successfully implemented by Cai et. al. [24] for micro-channel flows, and by Sun

et. al. [171] for micro-scale airfoils. The results in [24, 171] demonstrate the limited

range of physical accuracy of the Navier-Stokes simulation in the transition regime,

which is the main drawback of the method for fluidic MEMS simulations. While the

exact range of applicability depends on the flow geometry and desired accuracy, the

Navier-Stokes simulation with slip model boundary conditions is widely considered

to be physically accurate when Kn / 0.1. At Kn ≈ 0.1, the Knudsen layer in a

micro-channel easily covers most of the flow domain. As the Knudsen number in-

creases beyond Kn ≈ 0.1, it is unreasonable to expect that modifying the continuum-

based boundary condition is able to properly account for the non-equilibrium effects,

which occur everywhere within the flow. Because the Navier-Stokes simulation with

slip model boundary conditions is only physically accurate for near-continuum non-

equilibrium gas flows, the method is not particularly well-suited to simulate future

fluidic MEMS applications. Following the development of micro-electronics for the

computing industry, there is a similar drive to produce smaller devices throughout

the MEMS industry in an effort to improve their response time and sensitivity, while

lowering their manufacturing costs. As the size of MEMS decreases, so too does the

characteristic length scales in the gas flows found in the fluidic MEMS applications,
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which, in turn, increases the Knudsen number. Thus, a Navier-Stokes simulation that

produces a good solution for a current fluidic MEMS design may not be sufficiently

accurate to evaluate the next generation of the design.

1.2.2 Direct Simulation Monte Carlo

The Boltzmann equation is a single non-linear integro-differential equation in up

to 7 dimensions, and provides an accurate description 5 of gas flows for all Knudsen

numbers, as shown in Figure 1.2. Let F = F (x,u, t) denote the number of gas

molecules located in the infinitesimal volume of space at x = (x1, x2, x3) which travel

with a velocity in the infinitesimal neighborhood of u = (u1, u2, u3) at time t. The

function F is termed the velocity distribution function and its evolution is governed

by the Boltzmann equation (see [16, 25, 54, 80, 179]). Specifically,

∂F

∂t
+ u · ∇xF + g · ∇uF =

∫∫∫ ∞

−∞

∫ 2π

0

∫ π

0

$ sin χ
(
F ′F ′

2 − FF2

)
S($,χ)dχdεdv, (1.4)

where F2 = F (x,v, t) is the velocity distribution function of a collision partner

traveling at a velocity v, F ′ = F (x,u′, t) and F ′
2 = F (x,v′, t) with the primes

denoting the post-collision velocities (or distributions of velocities) of two molecules,

g is an accelerative body force, (ε, χ) are the two trajectory angles characterizing a

binary collision, $ = |u−v| is the relative speed between two colliding molecules, and

S($,χ) is the differential cross-section of the collision based on the inter-molecular

forces.

5The Boltzmann equation is obtained from the more general Liouville equation under the follow-
ing assumptions (see [179] p. 333): (i) the range of inter-molecular force is much smaller than the
average distance between collisions (i.e. only binary collisions occur); (ii) there is no correlation be-
tween the initial velocities of two molecules undergoing a collision (molecular chaos/irreversibility);
and (iii) the distribution function does not vary appreciably over a distance (or time) on the order
of the range of inter-molecular forces (or duration of a collision).
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The Boltzmann equation (1.4) must have prescribed initial and boundary condi-

tions in order to be well-posed. Let V ⊂ R3 denote an arbitrary three dimensional

flow domain with a boundary surface S. The initial condition for the velocity distri-

bution function F is then well-posed if, at some time t0,

F (x,u, t0) = F0(x,u),

where F0 = F0(x,u) is a known non-negative function defined at every x ∈ V and

every u ∈ R3. In most applications of the Boltzmann equation to non-equilibrium

gas flows, there are two basic boundary conditions: (i) the inflow/outflow-type; and

(ii) the surface interaction/reflection-type. Let I ⊂ S denote the regions of the

boundary surface where there is an inflow/outflow type boundary condition, and

further define n̂(x) as the unit surface normal (pointing into V) for all x ∈ S. The

inflow/outflow-type boundary condition for the velocity distribution function F is

then well-posed if

F (x,u, t) = Fi(x,u, t)

where Fi = Fi(x,u, t) is a known non-negative function defined (for all times t > t0)

at every x ∈ I and every u ∈ R3 such that u · n̂(x) > 0.

Similarly, let W ⊂ S denote the regions of the boundary surface where there is

an interaction/reflection-type boundary condition. This type of boundary condition

is then well-posed if

F (x,u, t) =

∫

v·n̂(x)<0

F (x,v, t)K(u,v)dv,

where K(u,v) is a non-negative function defined for all u,v ∈ R3 that satisfy

u ·n̂(x) > 0 and v · n̂(x) < 0. The function K(u,v) is often referred to as the scatter-

ing kernel. In particular, it represents the probability that a molecule intersects the
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boundary S with a velocity v, from within the domain V , and is then reflected back

into the domain with a velocity u. The scattering kernel K(u,v) may also be gener-

alized to include variations in both time and space. When the interaction/reflection-

type boundary condition is used to represent a solid wall with no net absorption of

gas molecules at the surface, the scattering kernel must also satisfy an additional

normalization condition to be physically consistent. The boundary conditions are

discussed in greater detail for the Boltzmann equation in the monographs of Cercig-

nani [25] and Kogan [80], while specific details of their implementation in the DSMC

method are given in the monograph of Bird [16].

The DSMC method approximates the Boltzmann equation (1.4) by indirectly

simulating the stochastic molecular behavior governed by the equation, rather than

using standard discretization techniques to directly solve the complicated non-linear

integro-differential equation. In all DSMC simulations (except at the nano-scale), the

number of molecules is simply too large to track their trajectories individually. As a

consequence, a relatively small number of “simulated particles” are used in practice,

where each simulated particle represents the local behavior of a large number of real

gas molecules. The location and velocity of these simulated particles are then tracked

at discrete times as they travel throughout the flow geometry. To calculate the spatial

variation of the velocity distribution function F in (1.4), the DSMC method divides

the flow geometry into discrete computational cells. The cell size is selected such

that the variation in the velocity distribution function F is relatively small, which

requires all dimensions of the cell to be smaller than the local mean free path `p.
6

Since the simulated particles evolve according to the Boltzmann equation (at least

in a probabilistic sense), they provide a snapshot of the local velocity distribution

6The cell dimensions are generally selected to be smaller than `p/3 in order to maintain physical
accuracy in the DSMC method (see [16]).
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function F when sorted into the computational cells. The expected behavior of the

non-equilibrium gas flows is then approximated in the DSMC method by collecting

a large number of these representative snapshots in each computational cell.

In the discrete time evolution of the system, the location and velocity of the simu-

lated particles are updated after each time step. To simplify this update calculation,

the time step is chosen to be a fraction (typically less than 1
3
) of the mean time

between collisions; and as a consequence, only a fraction of the simulated particles

undergo a collision during this time. More importantly, the fraction of real molecules

colliding multiple times during the time step is sufficiently small so as to be consid-

ered negligible in practice. Therefore, the advection and collision processes are able

to be accurately updated independently for the simulated particles by limiting the

time step in this manner, which is equivalent to the physics-splitting found in tradi-

tional CFD methods. The advection update7 of each simulated particle calculates the

new particle location and velocity based on its ballistic trajectory. In contrast, the

enforcement of the boundary conditions and the collision update8 are probabilistic in

nature for the simulated particles. To obtain an accurate statistical representation

of the random collision process, the number of real molecules represented by each

simulated particle is generally selected such that each computational cell contains

at least 20 to 30 simulated particles on average (see Bird [16]). Because some steps

of the update calculation are random, the DSMC method (as its name indicates) is

thus considered a Monte Carlo method.

The DSMC method is, in essence, a collection of simulated particles that behave

as if they were sampled directly from the local velocity distribution function as

7That is, the time integration of the gradient terms on the left-hand side of the Boltzmann
equation in (1.4).

8That is, the time integration of the integral collision operator on the right-hand side of the
Boltzmann equation in (1.4).
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governed by the Boltzmann equation (1.4). The distribution of simulated particles

at any instant is not, however, an accurate representation of the expected velocity

distribution function because there is only a small number of particles in each cell.

When all the simulated particles in a cell are viewed as a single set, some of the new

velocities and locations in the set will be randomly generated during the update of

each time step. Under the assumption of steady-flow, the distribution of simulated

particles after each time step can thus be considered an independent realization, or

a sample, of the true velocity distribution.9 By averaging together over many time

steps the distribution of simulated particles in each computational cell, the DSMC

method is able to accurately represent the expected velocity distribution function.

In fact, the Central Limit Theorem [47] implies that the average distribution of

simulated particles in the DSMC method is expected to converge (in a probabilistic

sense) at a rate of O
(
N−1/2

)
to the true velocity distribution function governed by

the Boltzmann equation (1.4).

The overwhelming majority of DSMC simulations of non-equilibrium gas flows

do not actually need all the detailed microscopic information contained within the

velocity distribution function. Usually, the goal of most simulations is simply to

obtain accurate approximations to the macroscopic properties of the flow, which

include: the density, average flow velocity, pressure, shear stress, and temperature.

These macroscopic properties are determined by taking the appropriate moments

of the velocity distribution function. For example, the density of the flow ρ(x) is

determined by the zeroth-order moment of the velocity distribution function F =

9It is suggested by some (e.g. Bird [16]) that the distribution of simulated particles in each cell
should only be considered independent after a sufficient number of time steps have elapsed in order
to allow for all the particles, on average, to undergo at least one collision. The frequency at which
the simulated particles are sampled in each cell does not, however, affect the actual convergence to
the true velocity distribution function. Hence, it is still acceptable to sample the DSMC simulation
after each time step.
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F (x,u), which yields

ρ(x) =

∫ ∞

−∞
mF (x,u)du,

where m is the molecular mass of the species. The average velocity of the flow

v(x) = (v1, v2, v3) is determined by the first-order moment of the velocity distribution

function, and is given by

vi(x) =
1

ρ(x)

∫ ∞

−∞
muiF (x,u)du for i = 1, 2, 3.

Likewise, the pressure, shear stress, and temperature of the flow are determined by

the second-order moments of the velocity distribution function. With respect to

the memory requirements, it is much more computationally efficient to only store

the running averages, or tallies, for the velocity moments of interest rather than

storing the entire approximation to the velocity distribution function. A thorough

review of all the implementation details of the DSMC method, including a complete

FORTRAN code with all the necessary algorithms, is provided by Bird in [16].

There are two common implementations of DSMC for the approximation of the

Boltzmann equation: (i) the method of Bird [16]; and (ii) the method of Nanbu

[121]. The only significant difference between the two methods occurs within the

approximation of the collision integral operator of the Boltzmann equation (1.4). If

Np is the number of simulated particles in a computational cell, then the operation

cost of computing the particle collisions is O (Np log Np) for the method of Bird and

O
(
N2

p

)
for the method of Nanbu. Further, the method of Bird conserves energy

during each binary collision, while the method of Nanbu only conserves energy in an

average sense and thus the total system energy follows a random walk. Due to its

computational efficiency and the fact that energy is conserved in-detail, the DSMC

method of Bird [16] is more often used in practice. Note that the term “DSMC,” as
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it relates to a specific simulation technique, refers to the DSMC method of Bird in

this investigation, unless specifically stated otherwise. The method of Nanbu does,

however, offer some advantages with respect to the more rigorous mathematical

study of the convergence of particle simulation to the Boltzmann equation, as noted

in [8, 10, 86, 87, 88]. This is due in part to the Nanbu method being derived directly

from the Boltzmann equation, which makes the task of establishing the consistency

of the Nanbu method easier. It should be noted, however, that both DSMC methods

are now known to yield mathematically consistent approximations to the Boltzmann

equation. In particular, Babovsky and Illner originally proved the consistency of the

method of Nanbu in [10], while Wagner more recently proved the consistency of the

method of Bird in [182].

The main drawback to the DSMC method is the relatively slow convergence of the

moments of the velocity distribution function collected from the simulated particles

in each cell. The convergence rate of DSMC, as with all Monte Carlo techniques, is

O
(
N−1/2

)
, where N is the number of independent samples; however, the convergence

rate alone does not determine the total computational cost of DSMC. The magnitude

of the natural statistical fluctuations present in the method relative to the average

bulk velocity of the flow (or equivalently, the desired error level) is important as

well. Specifically, the computational cost of DSMC increases quadratically as the

average bulk velocity, or desired error level, decreases. The DSMC method is thus

best-suited for the simulation of high-speed non-equilibrium gas flows such as the

hypersonic flows associated with atmospheric re-entry vehicles.

To better illustrate the computational cost of the DSMC method, consider the

simulation of the following two free stream flows of nitrogen gas at STP10: (i) at 1,000

10Standard temperature and pressure (STP) is 0◦C at 100.0 kPa as defined by the International
Union of Pure and Applied Chemistry (IUPAC).
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m/sec (approximately Mach 3); and (ii) at 1 m/sec. The mean molecular speed of

nitrogen gas at STP is vN2
= 455 m/sec with a standard deviation σN2

= 285 m/sec.

Suppose one wants to resolve the average velocity of these two free stream flows to

an accuracy of 1% (with a 95% confidence interval) using the DSMC method. Then,

by the Central Limit Theorem [47], resolving the 1,000 m/sec flow requires around

1,500 independent samples of the velocity distribution function to reach the desired

error level. In contrast, the 1 m/sec flow requires more than 1.5 billion independent

samples to be simulated in the DSMC method in order to achieve the same 1% accu-

racy. The magnitude of the statistical fluctuations in molecular velocities represents

the thermal energy of the flow and is independent of the characteristic length scales

of the flow geometry. Consequently, the DSMC method is expected to suffer from

extremely long computation times when simulating the low-speed non-equilibrium

gas flows commonly found in fluidic MEMS applications.

1.2.3 Boltzmann CFD

There is also a third simulation technique that has been developed for non-

equilibrium gas flows referred to as Boltzmann CFD (Computational Fluid Dy-

namics); however, it is much less popular than the slip-corrected Navier-Stokes

simulation and the DSMC method. Boltzmann CFD uses the discretization tech-

niques commonly found in CFD11 to obtain a consistent numerical approximation

to the Boltzmann equation (1.4). Working together, Ohwada, Sone, and Aoki

[134, 133, 164, 163, 165] have developed Boltzmann CFD simulations for several

different one dimensional gas flows assuming a linearized collision operator for hard-

sphere molecules. Each spatial and temporal point in the Boltzmann CFD simulation

11For example, partial derivatives may be approximated using a finite difference, finite element,
or finite volume approach, while integral terms may be approximated using a Newton-Cotes integral
rule or Gaussian quadrature.
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requires a discretization of the velocity phase space in order to represent the veloc-

ity distribution function governed by (1.4). As a consequence, the simulation of a

one dimensional flow geometry with Boltzmann CFD requires a minimum of three

dimensions, even under the assumption of a steady-state solution. More general two

and three dimensional flow geometries require the full three dimensional velocity

space to be calculated and stored. Boltzmann CFD must therefore simulate a total

of five or six dimensions in these cases. Further, each time step in Boltzmann CFD

requires an evaluation of the integral collision operator, which for the update of each

simulated point in the velocity phase space requires, at the very minimum, a direct

summation over all the simulated points in the local phase space. The main drawback

to Boltzmann CFD is thus the high computational cost in terms of both memory

and simulation time of the method, which is the reason why its use is infrequent.

These dimension problems become even more difficult to overcome in simulations

involving: (i) a large range of particle velocities (e.g. hypersonic flows); (ii) collisions

with additional degrees of freedom (e.g. poly-atomic molecules and high temperature

flows); and (iii) multiple gas species.

1.3 Objectives

The accurate and efficient simulation of low-speed non-equilibrium gas flows is a

much sought, yet elusive, goal in fluidic Micro-Electro-Mechanical-Systems (MEMS)

research. The two most popular simulation techniques for MEMS applications in-

volving gas flows are the Navier-Stokes simulation with slip boundary conditions and

the direct simulation Monte Carlo (DSMC) method of Bird. In almost every appli-

cation, the Navier-Stokes simulation converges to a solution much faster than the

DSMC method. The Navier-Stokes simulation, however, is only physically accurate
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Figure 1.3: Investigation path for the dissertation.

for near-equilibrium gas flows; that is, when the Knudsen number Kn / 0.1. The

DSMC method, in contrast, is physically valid for the entire range of Knudsen num-

bers 0 < Kn < ∞, but suffers from a relatively slow convergence rate O
(
N−1/2

)

(where N is the number of samples). As previously noted, when the average bulk ve-

locity is significantly slower than the average speed of the simulated particles, which

is common in many fluidic MEMS, the problems associated with the slow conver-

gence result in substantial computation cost. In fact, when the average velocity in

the fluidic MEMS is on the order of [mm/sec], the computation time of the DSMC

method is often intractably long on all but the world’s largest supercomputers.

To confront these challenges facing the popular simulation techniques, two ap-

proaches are developed in this investigation in an effort to achieve an accurate and

efficient simulation of low-speed non-equilibrium gas flows. The general goal of each

approach is illustrated in Figure 1.3, which plots the relative speed and accuracy of

the major methods under consideration. The first approach aims to extend the ac-
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curacy of the computationally efficient Navier-Stokes simulation to higher Knudsen

numbers in the transition regime by introducing empirical corrections to both the

boundary conditions and transport closures of the method. Similar empirical correc-

tions have been introduced by Karniadakis and Beskok [15] and Bahukudumbi et.

al. [12], and thus the focus in this investigation is to better establish the range of ap-

plicability of such methods. The second, and more ambitious, approach is to develop

a quasi-Monte Carlo (QMC) particle simulation that retains the physical accuracy

of the DSMC method while converging at a rate faster than O
(
N−1/2

)
. The QMC

method refers to any integral approximation that achieves a near-linear theoretical

error convergence rate O (N−1+ε), for all ε > 0, when sampled by a set of points in

a manner similar to the Monte Carlo method. The key difference is that the set of

sample points for the QMC method are not generated at random, instead they are

deterministically selected in order to obtain the most uniform distribution possible.

The design of a successful QMC method is not, however, a trivial undertaking. Even

for relatively simple problems, great care must be exercised when developing each

step of the simulation process or else the near-linear convergence rate is not attained

in practice. In fact, it is the understanding of the author that no QMC particle

simulation for general non-equilibrium flows has ever demonstrated near-linear con-

vergence. Given the difficulty associated with the task, the QMC particle simulation

is only developed in this investigation for free molecular, or collision-less flows.

The two approaches developed in this investigation are not the only techniques

under consideration at this time, for improving the simulation of non-equilibrium gas

flows. There are, in fact, several alternative approaches currently being researched

that are noteworthy and deserve mention here. One of these alternative approaches

involves the reduction of the statistical scatter that is naturally present among the
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simulated particles. If the statistical scatter is smaller, then variance of the Monte

Carlo method is also reduced, which, by the Central Limit Theorem [47], results in

a lower implied constant in the O
(
N−1/2

)
convergence of the simulation error. An

example of this type of approach is the information preserving DSMC (IP-DSMC)

method proposed by Fan and Shen in [44], and developed by Sun and Boyd in

[171, 172] for the low-speed non-equilibrium gas flows found in fluidic MEMS.

A second alternative is the hybrid DSMC method, which restricts the expensive

particle simulation only to regions of the flow which are not in thermodynamic equi-

librium. The hybrid DSMC method clearly yields the greatest computational savings

when the non-equilibrium regions are as small as possible. Even when the non-

equilibrium regions are not necessarily small, the hybrid DSMC method is still able

to reduce the total simulation time when there are large density variations present

in the flow. In these cases, the gas flow may be sufficiently dense in the equilibrium

regions such that the cell size and time step restrictions on the DSMC method render

the simulation intractable. The hybrid DSMC method is, therefore, well-suited to

handle non-equilibrium flows with high density regions, which are common in hyper-

sonic flows associated with re-entry vehicles. Recently, Schwartzentruber and Boyd

in [156, 157] have demonstrated that the hybrid DSMC method does, in fact, achieve

an appreciable cost savings over DSMC for certain high-speed, non-equilibrium gas

flows.

A third alternative is the time relaxed Monte Carlo (TRMC) methods proposed

by Pareschi and Russo [139, 140]. The key feature of the TRMC method is the

novel time discretization of the collision operator in the Boltzmann equation, which

approximates the higher order terms by an equilibrium velocity distribution. During

the collision update step in the TRMC method, some of the simulated particles
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are sampled directly from a local Maxwellian distribution for their post-collision

velocities. As a consequence, the TRMC method allows time steps that are much

larger than possible with DSMC. Further, the collision process preserves the correct

asymptotic behavior in the limit as the time step tends toward infinity.

These benefits suggest that the TRMC method can offer appreciable reduction

in the computational cost when compared to traditional DSMC methods for non-

equilibrium gas flows in the slip regime (Kn < 0.01). Specifically, the collision

timescale is typically many times smaller than the timescales associated with the

macroscopic flow properties in the slip regime. Since the time step in traditional

DSMC methods is limited by the collision timescale, many time steps are required

to capture the changes in the macroscopic behavior of the gas. The TRMC method,

in contrast, is able to use a much larger time step while remaining a physically

consistent approximation to the collision process, which accounts for its cost-savings

potential over traditional DSMC. To establish the accuracy of the TRMC method,

Russo et. al. compares the new method to a proven DSMC method for the simulation

of a spatially homogeneous gas [151] and a high-speed Couette flow [152].

Instead of improving the efficiency of the DSMC method, a fourth alternative

is to use the so-called extended fluid dynamic approaches (e.g. the Burnett equa-

tions [22, 21]). The extended fluid dynamic approaches are essentially higher-order

formulations to the Navier-Stokes equations that are able to extend the accuracy

of the continuum-based methods to more rarefied flows in the transition regime.

These higher-order formulations also involve higher-order derivatives in the govern-

ing partial-differential equations, which are more difficult to accurately simulate in

practice. Hittinger [65] developed a novel scheme to simulate the extended fluid dy-

namic approaches using a system of hyperbolic-relaxation equations based on a closed
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system of moment equations derived from kinetic theory [55, 94, 95]. Further devel-

opment of the hyperbolic-relaxation scheme is currently being performed by Suzuki

and van Leer [173]. The system of hyperbolic-relaxation equations only contain

first-order derivatives and thus offer the following advantages over the higher-order

partial-differential equations: (i) less restriction on the time step size for explicit

schemes when the diffusion is numerically stiff; (ii) less sensitivity to the smoothness

of the computational grid; and (iii) less communication between the computational

cells (smaller stencil) making the scheme more efficient to implement on parallel

computing architectures.

1.4 Outline

This investigation is organized in two parts corresponding to the two new ap-

proaches considered for the simulation of low-speed micro-scale gas flows. The first

part, found in Chapter II, develops and tests the empirical corrections to Navier-

Stokes simulation for the entire transition regime. The second part, found in Chap-

ters III-VI, is devoted to the development of the quasi-Monte Carlo (QMC) particle

method. In Chapter III, the basic theory concerning the convergence of the QMC

method in general is reviewed. Chapter IV introduces a new construction of the

low-discrepancy Weyl-Richtmyer sequence that is expected to offer some advantages

when implemented in a QMC particle simulation. Further, the structure and compu-

tational cost of the basic algorithms used to generate the common low-discrepancy

sequences needed in the QMC methods is also reviewed in Chapter IV. Given the

difficulty associated with the design of a QMC particle method for general non-

equilibrium gas flows, the method is only developed and tested in this investigation

for free molecular, or collision-less flows. Specifically, the governing equations for free
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molecular duct flows are presented in Chapter V, along with several different simula-

tion techniques. These include: (i) the Markov chain simulation; (ii) the finite-state

linear system solution; (iii) the Nyström method using Gauss-Legendre quadrature;

(iv) the traditional test particle Monte Carlo method; and (v) the new QMC parti-

cle simulation. The most important result of Chapter V is that the QMC particle

simulation proposed here is shown to achieve a near-linear error convergence, with

significantly greater accuracy than the test particle Monte Carlo method. To deter-

mine the range of applicability of the method, the new QMC particle simulation is

then tested in Chapter VI for 20 different duct geometries with a length to height

ratio 0.5 ≤ L ≤ 10. Although the convergence rate of the QMC particle simulation

is found to decrease as the free molecular duct becomes narrower, the QMC par-

ticle simulation still demonstrates a faster convergence rate than the Monte Carlo

methods. The cause of the performance loss in the QMC particle simulation is also

considered, along with a possible correction, in Chapter VI. Finally, a summary of

the major results of this investigation and brief outline of future research directions

for the QMC particle simulation are given in Chapter VII.

Throughout the course of this research investigation, several original contribu-

tions are made by the author in an effort to improve the simulation of microscale gas

flow. These new ideas and results appearing in the thesis include the following:

• (Section 2.4) A new technique is proposed for the construction of empirical

models designed to correct the Navier-Stokes solution in the transition regime

(0.01 ≤ Kn ≤ 10).

• (Section 2.5) New empirical models are found for Couette and Poiseuille flows

using this construction technique.
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• (Section 2.6) The new empirical models are tested much more thoroughly than

previous models found in literature to better assess their predictive capabilities

in the transition regime.

• (Section 4.1) A new implementation of the low-discrepancy Weyl-Richtmyer

sequence, termed the BCF-3 sequence, is introduced.

• (Section 4.2) A process for selecting the set of irrational numbers required to

generate the new BCF-3 sequence is presented.

• (Section 4.3) The BCF-3 sequence is shown to provide a noticeable improve-

ment over the other Weyl-Richtmyer sequences found in the literature, when

used in a QMC particle simulation.

• (Section 5.5) An original QMC particle simulation is developed to calculate the

conductance probability of free molecular flow in a two dimensional duct.

• (Sections 6.1) The QMC particle simulation achieves a near-linear error con-

vergence rate for a duct length to height ratio of two, irrespective of the choice

for the low-discrepancy sequence of the method.

• (Sections 6.3) The QMC particle simulation is performed for a large number

of duct geometries to best characterize the impact of the duct length on the

performance of the method (in contrast with other applications found in the

QMC literature that often present only a single test case).

• (Section 6.4) A new measure is proposed to quantify the extent of the non-

physical correlation present between the dimensions of a low-discrepancy se-

quence, and to provide the minimum sequence length necessary for these cor-

relation effects to be considered negligible.
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• (Section 6.5) A hybrid quasi-Monte Carlo/Monte Carlo (QMC/MC) method

is developed and subsequently shown to reduce the computational cost of the

QMC particle simulation by a factor of 2 to 4.5.



CHAPTER II

EMPIRCAL CORRECTIONS TO THE

NAVIER-STOKES SIMULATION

The computational challenge of simulating micro-scale gas flows has spawned

many possible solution strategies. One of the most popular strategies involves cor-

recting the continuum solution to include rarefaction effects. The corrections to the

continuum solution can use alternative boundary conditions and transport closures,

but do not usually affect the overall numerical solution technique. Thus, simulation

of micro-scale gas flows can enjoy the same computational advantage as the underly-

ing continuum method. Continuum methods based on the Euler and Navier-Stokes

equations enjoy a rich and well-developed numerical simulation heritage [63, 174].

Without regard for accuracy, it is widely accepted that for a given flow and geome-

try the continuum simulation will reach its “solution” much faster than a physically

accurate non-equilibrium method such as DSMC.

In the near continuum limit Kn → 0, perturbation analysis demonstrates the

need to relax the no-slip continuum boundary condition to allow for the presence

of slip flow at the wall [109]. Therefore, in the limit of vanishingly small Kn, it is

a physically and mathematical valid simulation technique to correct the continuum

solution with a slip boundary condition. This correction to the traditional no-slip

28
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boundary condition is referred to as a slip model. As the Knudsen number increases,

the flow deviates further from local thermodynamic equilibrium and the continuum

approximation in the transport closures for mass, momentum and energy break down.

For the Poiseuille flows in this investigation, the error in the momentum transport

closure is at least 25% when Kn ≥ 0.2. Consequently, there are some continuum-

based simulations which adopt empirical corrections to the transport closures in order

to extend their applicable range to higher Knudsen numbers.

Corrected continuum methods that claim a range of applicability outside the

near-continuum limit are not physically valid for large Knudsen numbers. How-

ever, the continuum methods may still give a reasonably accurate solution to the

non-equilibrium problem. To a MEMS designer or fabricator, the path to the gas

dynamic solution is irrelevant provided the final results are sufficiently accurate. If

the corrected continuum method is accurate but non-physical, the degree to which

the method is truly predicting the non-equilibrium phenomenon is highly dubious.

It is especially true when the continuum corrections are derived from known non-

equilibrium solutions provided a priori. This is most evident in the new unified

models which combine empirical slip and transport corrections to obtain accurate

Navier-Stokes solutions well outside the near continuum limit. The creators of such

unified models claim that their continuum method can “predict” gas flow properties

for all degrees of rarefaction 0 ≤ Kn < ∞ from continuum to free molecular flow.

Despite the philosophical objections to using a continuum solution in the free

molecular regime, their extremely low computational cost makes them an inviting

prospect. The continuum methods are so fast compared to physically accurate non-

equilibrium techniques (e.g. DSMC and linearized Boltzmann), that there is a great

deal of interest within the MEMS community to understand their range of applica-
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bility. Sandia National Laboratories1 is a leader in the field of MEMS design and

fabrication. With their interest in MEMS, they supported this author during his

summer practicum investigation of continuum corrections for micro-scale gas flows.

The purpose of the summer investigation was to evaluate the accuracy of the new

unified models that claim to extend the Navier-Stokes solution to the free molecular

regime [111]. The initial study expanded to develop a new unified model with the

goal of understanding its construction and assessing its ability to actually predict

micro-scale gas flows [112].

The remainder of the chapter is devoted to continuing the investigation of uni-

fied models to correct continuum flows. Two new unified models are developed for

Couette and Poiseuille flows. Similar to [112], these models are not developed as

the “latest and greatest” replacements to those found in literature. Instead, they

are developed only to understand the construction, accuracy, sensitivity and range

of applicability. The organization of the chapter is as follows. In Section 2.1, the

background of the continuum corrections is discussed including their history and po-

tential error sources. In Section 2.2, the two most prominent unified models found in

the literature for Couette and Poiseuille flows are given. In Section 2.3, an overview

of the investigation procedure is provided. In Section 2.4, the procedure to determine

the optimum Navier-Stokes solution that matches a known non-equilibrium result is

explained. In Section 2.5, the construction of new unified models is detailed. In

Section 2.6, the performance of the new unified models is analyzed for a variety

of predictive cases. Finally in Section 2.7, the main points of the unified model

investigation are summarized and recommendations for appropriate usage are given.

1Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.
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2.1 Background

The first continuum correction for non-equilibrium flows can be traced to Max-

well’s founding work in gas kinetic theory [109]. Maxwell considered the behavior

of gas molecules located within one mean free path of the wall undergoing idealized

collisions with the surface. Maxwell’s analysis, sometimes referred to as the mean

free path method [54], demonstrates the existence of a finite slip velocity at the wall

surface. In [109], the slip velocity us of the gas relative to the wall is determined to

be

us =
2 − f

f
· 2

3
`p

∂u

∂n

∣
∣
∣
∣
wall

, (2.1)

where f is the fraction of particles undergoing a diffuse reflection with the wall

surface, `p is the mean free path of the gas molecule, and ∂u
∂n

∣
∣
wall

is the tangential

velocity gradient in the direction normal to the wall. Maxwell originally treated the

boundary condition as incalculable; but under the urging of a referee of his paper

submitted to the Royal Society, he developed (2.1). Maxwell assumes two idealized

types of wall collisions to model the boundary interaction, specular and diffuse. A

specular reflection is similar to a ray of light reflecting off a mirror. The only change

to the incident particle is that the normal component of the velocity reverses sign.

The other velocity components are unaffected, thus there is no transfer of tangential

momentum from the molecule to the wall. By contrast, a diffuse reflection is one

that transfers the entire tangential momentum of the gas molecule to the wall. In

a diffuse reflection, the incident molecule is considered to be absorbed by the wall

for a period of time sufficient for the molecule to reach equilibrium with the wall

before being re-emitted. As a consequence, the re-emitted molecule loses all memory

of its previous trajectory. The reflected diffuse trajectory is thus equivalent to the
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kinetic effusion of the gas from a reservoir at equilibrium with the wall [54]. Under

these circumstances the gas molecule is said to be fully “accommodated” to the wall

environment.

The boundary condition (2.1) is referred to as Maxwell’s slip model. It demon-

strates that the no-slip boundary condition used in the continuum solutions to the

Navier-Stokes equations are not valid when the mean free path `p becomes signifi-

cant. When the Navier-Stokes equations are corrected to include slip via (2.1), the

results are accurate in the near continuum limit. The presence of slip velocity at the

wall was demonstrated experimentally by Knudsen, and a review of his capillary tube

measurements appears in [73]. Millikan noted the presence of slip velocity around

the oil droplets in his famous electrostatic experiment [113]. Furthermore, in [113]

Millikan conducts some of the earliest measurements of the empirical coefficient f

used to model the gas-surface interaction in (2.1). Additional experimental work

has prompted researchers to differentiate between the wall accommodation of an in-

cident molecule’s tangential momentum and thermal energy [154]. This allows an

additional degree of freedom in approximating the gas-surface interaction and leads

to a refinement of the form of Maxwell’s slip model

us =
2 − σv

σv

· 2

3
`p

∂u

∂n

∣
∣
∣
∣
wall

,

where σv is the tangential momentum accommodation coefficient (TMAC). The

TMAC has a similar role to original accommodation factor f used by Maxwell, except

that the TMAC only measures the fraction of incident molecules whose tangential

momentum is fully accommodated to the wall conditions. The energy accommoda-

tion is not needed in the boundary conditions for isothermal flow.

Modern research has continued improving Maxwell’s slip model as interest in
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rarefied gas flows has grown. The development of high altitude rocketry in the

1950’s and 1960’s, and the recent research in micro-flows for MEMS are responsible

for the bulk of the modern slip model work. More accurate slip models have been

developed, but they still rely on Maxwell’s original framework

us =
2 − σv

σv

(

C1Kn
∂u

∂η

∣
∣
∣
∣
wall

+
1

2
C2Kn2 ∂2u

∂η2

∣
∣
∣
∣
wall

)

, (2.2)

where C1 and C2 are coefficients that can be determined by any combination of

analysis, numerical simulation, and experimental results. The Knudsen number

Kn = `p/L appears in (2.2) because the wall normal component is normalized

η = n/L by the characteristic length scale L of the flow. The slip model (2.2) is

considered a second-order approximation when an appropriate non-zero value for C2

is selected. The coefficients C1 and C2 can be found analytically by a wide variety of

approximations to the non-equilibrium, near wall solution [188, 39, 80, 25, 103]. The

coefficients are also determined numerically using DSMC [138], the direct Boltzmann

simulation [159] and the linearized Boltzmann simulation [133, 165]. Experimental

results have been obtained for slip flows through long circular tubes [170]. A survey

of the coefficient range is found to be 1.0 ≤ C1 ≤ 1.1466 and −1.3089 ≤ C2 ≤ 0.5,

as reported in [69].

Recent studies show that Maxwell’s slip boundary condition breaks down around

Kn = 0.15 [142]. Moreover, Piekos in [142] notes that there is an additional fail-

ure of the transport closure used in the Navier-Stokes equation. For example, the

Poiseuille flow results in this chapter have at least a 25% error in the momentum

transport when a slip model alone is used for Kn ≥ 0.2. A group of researchers led

by Karniadakis and Beskok have proposed unified models to provide not only slip

boundary corrections but also momentum transport corrections [69, 15, 12, 11]. The
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unified model allows for continuum corrections to be applied to increasingly rarefied

flows with no loss of accuracy in certain special cases. In these unified models, the

modern slip model (2.2) is further refined to allow for a slip coefficient Cs to depend

on the Knudsen number

us =
2 − σv

σv

Cs(Kn)Kn
∂u

∂η

∣
∣
∣
∣
wall

. (2.3)

In addition, the apparent fluid viscosity µ′ is also given a Knudsen number depen-

dence

µ′ = µ0Cµ(Kn), (2.4)

where µ0 is the continuum viscosity of the fluid and Cµ(Kn) is a correction factor

designed to recover the non-equilibrium momentum transport. The Knudsen number

dependence of Cs and Cµ is empirical and is found by matching the Navier-Stokes

solution to known non-equilibrium results. The continuum corrections provided by

the unified models are reported to produce accurate Navier-Stokes solutions for 0 ≤

Kn ≤ 12 in [12] and 0 ≤ Kn < ∞ in [15]. The computational time needed for

standard non-equilibrium methods (DSMC and direct Boltzmann) is much greater

than that to solve the corrected Navier-Stokes equations. Therefore it is of great

interest to this investigation to understand and evaluate the accuracy of the unified

models’ continuum corrections.

2.1.1 Limitations to the slip model

The slip model is useful for understanding general trends of gas flows in the slip

regime: increased mass flux through ducts, thermal creep, and decreased heat flux

through the walls. However, its utility for calculating absolute (dimensional) flow

properties is less clear. Some of the limits of using the slip model are discussed below



35

and should be kept in mind when considering the reported accuracy of the unified

models.

Mean free path. The mean free path as an exact collision length scale is not well

defined. From the original derivation of Maxwell’s slip model (2.1) to the modern

version (2.2) the 2/3 factor in the boundary condition has been unceremoniously

dropped. The 2/3 factor appears in (2.1) because the average distance traveled in

the direction normal to the wall by a reflected gas molecule is only 2/3 of a mean

free path [109, 54]. Alternative collision length scales, similar to the boundary layer

definition, can also be used to construct a slip model. For example, a collision

length could represent the distance that 90% or 99% of the reflected molecules travel

before colliding with the bulk flow. Regardless of the collision length scale chosen,

a model can be constructed using Maxwell’s reasoning with the sole difference being

the leading coefficient C1 in (2.2). This lack of certainty leads to some speculation

on the true value C1 by current slip model researchers.

Second-order corrections. The second-order term in (2.2) is designed to improve

the accuracy of the slip coefficient and extend corrected continuum solution into more

rarefied regimes. The second-order accuracy is only achieved in the limit of a small

Knudsen number where the perturbation analysis is valid. Including the second-order

terms offers no additional mathematical validity when Kn ≥ 1 because the geometric

series used in the perturbation analysis diverges. Furthermore, at any Knudsen

number Kn > 0, the second-order slip models can not add any accuracy to the

Navier-Stokes solution which is fundamentally equivalent to a first-order Chapman-

Enskog expansion in Kn [28]. Adding a O(Kn2) correction is of no value given

that the other second order terms are neglected when formulating the Navier-Stokes

equation.
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Gas σv Reference
He ∼ 1 [4]
Ar 0.80 ± 0.01 [6]

0.75–0.85 [5]
N2 0.88 ± 0.01 [6]

0.75–0.85 [5]
CO2 0.75–0.85 [5]

Table 2.1: TMAC values reported by Arkillic et. al. for various gas species in micro-
machined silicon channels.

Tangential Momentum Accommodation Coefficient. The exact value of the TMAC

is difficult to measure because it is sensitive to so many factors, such as: surface

roughness, environmental contamination, adsorbed layer composition, and surface

age. A 5% error in the value of TMAC is equivalent to a 10% error in the slip coeffi-

cient C1 in (2.2). Millikan measured gas-solid and gas-liquid surface accommodation

coefficients with a range of 0.79 ≤ σv ≤ 1.00 [113]. The minimum accommodation

(79% diffuse reflection) is found for air interacting with a fresh shellac surface. The

maximum accommodation (100% diffuse reflection) occurred for air interacing with

a machined brass surface and several days old shellac. Arkillic et. al. measured the

TMAC and established a range of values in several experiments with micro-machined

silicon channels and various working fluids, reported in Table 2.1 The experimental

methods of Millikan and Arkillic do not directly measure the TMAC. Instead, the

TMAC is inferred from either the oil droplet velocity (Millikan) or the accumulated

mass flow (Arkillic) when calculated with the continuum flow solution corrected with

Maxwell’s slip model boundary conditions (2.1). It is difficult to discern the accuracy

of the slip model and the TMAC when their effects are lumped together in the same

indirect measurement.

Direct measurements of the TMAC are made studying the surface reflection of

high speed molecular beams in a vacuum environment [49]. Seidl and Steinheil
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measure the TMAC for mono-energetic helium molecular beams reflected off various

surfaces: single crystal copper (100), shellac, tungsten, gold, glass and sapphire [158].

The TMAC in [158] is found for the materials under common surface treatments and

ranges in value from 1.16 for single crystal copper (100) with 5 micron grinding

grooves to 0.67 for the same single crystal copper electrolytically polished. Seidl and

Steinheil focus their study on the effect of the adsorbed layer on the solid surface

and find similar concentrations of water and hydrocarbons for all materials tested.

They proceed to remove the contaminates in the adsorbed layer by successive ion

bombardment and annealing treatments which reduces the TMAC for the single

crystal copper to 0.47. In order to fully remove the effect of the adsorbed layer in

[158], an epitaxial layer of single crystal gold is grown on the copper surface and then

annealed. The resulting treatment yields an extremely smooth surface on the atomic

scale with a TMAC as low as 0.2. Lord conducts similar molecular beam experiments

except with improved environmental conditions [99]. In [99], he obtains a TMAC of

0.2 for helium gas reflecting on a polycrystalline molybdenum surface without the

use of an epitaxial layer [99]. Lord notes that the value of TMAC increases with

the molecular weight of the gas species, and reports the following TMAC ranges

for molybdenum and tantalum: He (0.20–0.46), Ne (0.31–0.59), Air (0.67–0.78), Kr

(0.85) and Xe (0.95). The molecular beam experiments directly measure the TMAC

and attempt to quantify the effects of complicated environmental influence on the

gas-surface interaction. However, it is difficult to apply the molecular beam values of

xenon gas on molybdenum to a micro-machined silicon channel, given the uncertain

relationship between the experimental operating conditions and a typical MEMS

device.

Gas-surface interaction. All slip models are based on Maxwell’s initial assumption
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[109] that each incident gas molecule can be classified as either having zero accommo-

dation (specular reflection) or full accommodation (diffuse reflection) regardless of

incident angle. The molecular beam experiments mentioned in the previous section

[158, 99] show a dependence of the measured TMAC value on the incident angle. In

some cases, the TMAC varies by 30% or more for incident angles ranging from 10

degrees to 70 degrees from the surface normal. The more glancing collisions (high

incident angle relative to the surface normal) yield more specular reflections, thus

lowering the observed TMAC. Cercignani and Lampis propose a phenomenological

model that includes more surface physics than Maxwell’s original assumption [26].

Lord includes even more physics to the model in [26] to produce what is often re-

ferred to as the CLL model [100, 101]. The CLL model is well-suited for use in

non-equilibrium calculations like DSMC; however, it can not be incorporated in a

continuum method because of predicate assumption of a near-equilibrium velocity

distribution function. Yamanishi et. al. have also proposed more complicated gas-

surface boundary conditions using a database of interactions simulated with a direct

molecular dynamics method [191]. The evidence of more complicated gas-surface

interaction than approximated by Maxwell’s original slip model should prompt the

user of such continuum corrections to be wary of reporting any results to very high

accuracy.

2.2 Unified Models

All gas flows, in equilibrium or not, must satisfy the conservation laws of mass,

momentum, and energy. For continuum flows, these conservation laws are repre-

sented by a set of 5 differential equations, with additional transport closures for

momentum and energy and a state equation, for which there is no known general
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solution. Assuming isothermal flow and the Newtonian shear stress closure, the con-

servation of energy is automatically satisfied, which results in a system of equations

consisting of the continuity equation (2.5), the Navier-Stokes equation (2.6) and the

shear stress closure (2.7).

∂ρ

∂t
+

∂ρvi

∂xi

= 0, (2.5)

∂vi

∂t
+ vj

∂vi

∂xj

=
1

ρ

(
∂τij

∂xj

− ∂p

∂xi

)

+ fi, where (2.6)

τij = µ0

(
∂vi

∂xj

+
∂vj

∂xi

)

. (2.7)

In the above equations, ρ is the fluid density, v is the fluid velocity vector, p is the

fluid pressure, f is the acceleration due to an external body force acting on the fluid,

µ0 is the fluid viscosity, and τij is the stress tensor.

The unified models developed recently use continuum corrections to the Navier-

Stokes solution to approximate non-equilibrium flows in the slip to free molecular

range Kn > 0.001 [69, 15, 12, 11]. The idea is not new as researchers have developed

approximations to Couette flows for all degrees of rarefaction by solving the low-order

moments of the Boltzmann equation assuming a model velocity distribution function

[92]. For certain flow geometries, the relative shape of the macroscopic velocity profile

does not significantly change with Knudsen number. This is especially true for the

canonical viscous geometries of Poiseuille and Couette flows. Poiseuille and Couette

flows permit analytical solutions to the continuum fluid equations (2.5), (2.6) and

(2.7) under the assumptions of constant density and steady flow for a two dimensional

duct with constant area. The continuity equation (2.5) is no longer needed and the

Navier-Stokes equation and shear stress closure combine to yield a single ordinary

differential equation for each case. The continuum solution to body force driven
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Figure 2.1: Poiseuille velocity profiles for 0.01 ≤ Kn ≤ 10.

Poiseuille flow satisfies

∂2u

∂η
= −ρfh2

µ
with u(0) = u(1) = 0, (2.8)

where u is the tangential velocity in the duct, and h is the duct height used to

normalize the wall normal direction η = y/h. Similarly, the continuum solution to

Couette flow satisfies

∂2u

∂η
= −ρfh2

µ
with u(0) = U0 and u(1) = U1, (2.9)

where U1 and U2 are the lower and upper velocities of the wall boundaries. In Fig-

ure 2.1, Poiseuille velocity profiles are plotted for a non-equilibrium solution (DSMC

- circles) and the best possible continuum corrections to the Navier-Stokes equation

(Poiseuille Model - solid line). For all Knudsen numbers 0.01 ≤ Kn ≤ 10, the non-

equilibrium velocity profiles are nearly parabolic. Thus, the Navier-Stokes solution

to Poiseuille flow (2.8), which is strictly a symmetric parabola, can be corrected to

yield a close fit to the non-equilibrium results. Similarly in Figure 2.2, Couette pro-

files are plotted using the same simulation techniques and conditions. Now for all
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Figure 2.2: Couette velocity profiles for 0.01 ≤ Kn ≤ 10.

Knudsen numbers 0.01 ≤ Kn ≤ 10, the non-equilibrium velocity profiles are nearly

linear. Thus, the Navier-Stokes solution to Couette flow (2.9), which is strictly linear,

can also be corrected to yield a close approximation to the non-equilibrium results.

The non-equilibrium profiles in Figures 2.1 and 2.2 show an extra curvature in the

near wall region, especially for the transitional flow cases Kn = 0.1 and Kn = 1.

This effect is termed the Knudsen layer and is limited to the region within a few

mean free paths of the wall [73, 154, 179]. The Knudsen layer is a consequence of

the non-equilibrium relaxation of the reflected gas molecules from the wall to the

streaming bulk flow conditions.

All the non-equilibrium Poiseuille flows in Figure 2.1 exhibit a non-zero slip ve-

locity at the wall that increases with Knudsen number. The goal of the slip model

boundary condition (2.3) is to correct the continuum Navier-Stokes solution to cap-

ture this non-continuum effect. The unified models assume the slip velocity can be

corrected for all degrees of flow rarefaction if one knows the non-equilibrium solution

a priori. Replacing the no-slip boundary condition in (2.8) with the slip boundary
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condition (2.3) allows one freedom to choose Cs(Kn) to match every known non-

equilibrium slip velocity. This is the crux of the construction of the unified models.

It is important to note, that the Navier-Stokes solution can not be tuned to match

the non-equilibrium results Kn ≥ 0.2 via the slip model alone. As Maxwell’s slip

model (2.1) demonstrates in Figure 2.1, the curvature approximation of the Navier-

Stokes velocity profile worsens as the Knudsen number increases. The curvature of

the Navier-Stokes solution is set by the flow constants on the right hand side of

(2.8). Only the fluid viscosity is not explicitly used in a non-equilibrium calculation

because it is only a by-product of the continuum shear stress closure. For this reason,

the unified models must include a correction to the viscosity (2.4) in order for the

continuum solutions to capture the non-equilibrium curvature when the transport

closure breaks down. Therefore, the freedom to choose the values of the two empirical

coefficients Cs(Kn) and Cµ(Kn) allows for a corrected Navier-Stokes solution to

accurately approximate almost any non-equilibrium Poiseuille result.

Similarly, all the non-equilibrium Couette flows in Figure 2.2 exhibit a non-zero

slip velocity at the wall that increases with Knudsen number. The continuum Couette

velocity profile obtained by solving the linear homogeneous differential equation in

(2.9), is simply a straight line matching the two wall speeds. The addition of the

slip model (2.3) does not change the character of the solution. The only permissible

solutions of the corrected continuum solution are linear; however, the freedom to

choose Cs(Kn) allows for any slope to be matched. As Figure 2.2 illustrates, the

ability of the continuum correction to match any slope is sufficient to ensure accurate

approximation to any non-equilibrium Couette result. If the ideal slope is selected

for the Navier-Stokes solution to match the non-equilibrium result, the average shear

stress in the channel is still incorrect due to the failure of the continuum transport
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Figure 2.3: Comparison of the continuum shear stress predicted by the unified model
and by slip model alone.

closure, see Figure 2.3. When the Navier-Stokes solution is only corrected by a slip

model, the shear stress is 50% greater than the non-equilibrium result at Kn = 1, and

3 times greater at Kn = 10. Therefore, it is necessary for the Navier-Stokes solution

to use the viscosity correction (2.4) to overcome the error in the transport closure. For

both Poiseuille and Couette flows, the non-equilibrium solutions maintain a similar

enough shape in the range 0.01 ≤ Kn ≤ 10 for accurate Navier-Stokes solutions to

exist. However, accurate corrections to the Navier-Stokes solution at Kn ≥ 0.2 can

only be obtained if both the slip coefficient Cs and the viscosity correction Cµ are

used.

2.2.1 Unified Poiseuille model

Karniadakis and Beskok propose a unified model for Poiseuille flow involving

empirical corrections (2.3) and (2.4) to the Navier-Stokes equation [69, 15]. The slip
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coefficient Cs is modeled by

Cs(Kn) =
1

1 − b0Kn
, (2.10)

where b0 is a free parameter selected to be b0 = −1 for Poiseuille flow. The viscosity

correction is modeled by

Cµ(Kn) =
1

1 + αKn
, (2.11)

where α is an empirically determined rarefaction parameter. This model will be re-

ferred to as the KB model for the remainder of the investigation. The value b0 = −1

in (2.10) is found by fitting the normalized Navier-Stokes velocity profile to linearized

Boltzmann results. Note that normalizing the velocity profile isolates the slip correc-

tion from the viscosity correction. Specifically choosing b0 = − 1 has an additional

benefit in that it is a second-order correction to Maxwell’s slip model in the near

continuum limit Kn → 0. Other asymptotic limits can be satisfied with the selection

of α. An additional model can be constructed to ensure α yields the correct results

in the limits Kn → 0 and Kn → ∞ [15]

α = α0
2

π
tan−1(α1Knβ). (2.12)

Here α0 is the free molecular value and α1 and β can be selected to match any given

non-equilibrium solution in the transition regime. Alternatively, the model (2.12) can

be forsaken altogether by selecting α directly from a database of linearized Boltzmann

solutions [12].

2.2.2 Unified Couette model

Similarly, Bahukudumbi, Park and Beskok propose a unified model for Couette

flow, referred to as the BPB model for the remainder of the investigation [12, 11].

The aesthetic and second order accuracy found in the KB model is dropped in favor
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of a more direct modeling strategy. The Knudsen number dependence of the slip

coefficient adopts a four parameter arctangent form

Cs(Kn) = a1 + a2 tan−1(a3Kna4), (2.13)

with the coefficients determined empirically to be a1 = 1.2977, a2 = 0.71851, a3 =

−1.17488 and a4 = 0.58642. The viscosity correction does not use the form of (2.4)

explicitly, rather the corrected shear stress is obtained by the non-dimensional form

Πxy =
τxy

(τxy)∞
= − bKn2 + 2cKn

bKn2 + dKn + c
, (2.14)

where (τxy)∞ is the shear stress present in free molecular Couette flow and the

coefficients are b = 0.529690, c = 0.602985 and d = 1.627666. The free molecular

shear stress in determined analytically from gas kinetic theory

(τxy)∞ = ρ(U1 − U0)

√

kT

2πm
. (2.15)

The advantage of the form in (2.14) is that it is straightforward to enforce the correct

asymptotic limits on the shear stress.

2.3 Investigative Method

The KB model and the BPB model are designed to correct the Navier-Stokes so-

lution for Poiseuille and Couette flows with any degree of rarefaction [69, 15, 12, 11].

However, the successful construction of both unified models requires the availability

of known non-equilibrium solutions. This observation begs the immediate question:

what good is an ultra-fast Navier-Stokes solution to a non-equilibrium flow if one

needs the slower non-equilibrium solution first? The whole point is to avoid calculat-

ing the expensive non-equilibrium solution in the first place. While the unified models

are not truly predicting non-equilibrium flows, they can offer computational savings
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in some instances. If a geometry is fixed, but the scale of the problem is allowed

to vary (e.g. the slider bearing design of the magnetic reader of a hard drive), the

unified model could be useful interpolating flow parameters between non-equilibrium

solutions. Another use for the unified models is for flow geometries that are reason-

ably close to the non-equilibrium solutions used in the models’ construction, such as

the oscillating Couette flow [12] and the slider bearing flow [11].

The KB model and the BPB model are reported to yield continuum solutions

with great accuracy for any non-equilibrium conditions. In particular, [15] states the

following:

“. . . we have developed a simple physics-based unified model that predicts
the velocity distribution, the volumetric and mass flow rates, as well as
the pressure distribution in channel, pipes, and duct flows (of general
aspect ratio) for the entire flow regime (i.e., 0 ≤ Kn < ∞).”

This author believes the use of the word “predict” is not valid. The amount of effort

spent generating the non-equilibrium solutions for the models’ construction would

seem to indicate that the unified models are not actually predicting non-equilibrium

flows. Instead, the unified models are just carefully tuned to reproduce the non-

equilibrium results. Bird issues a seemingly prescient warning in 1994 (p. 184 of

[16]) to future aficionados of the unified models:

“The fact that solutions are available for the two limiting cases of colli-
sions and continuum flows means that superficially good results may be
obtained from physically unreal methods that happen to provide a for-
tuitously good curve fit between these known limits. Particular scrutiny
should be given to solutions that are based on approximations which in-
troduce adjustable parameters.”

By simulating with a unified model, one gives up the physical accuracy of a true non-

equilibrium method in favor of computational speed of the Navier-Stokes solution.

However to initially construct a unified model, one forgoes the computational speed of
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the Navier-Stokes solution in favor of the physical accuracy of a true non-equilibrium

method. The unified model essentially is caught in a rarefied gas dynamics perversion

of The Gift of the Magi [61].

If it is possible to obtain an accurate non-equilibrium solution with continuum

corrections to the Navier-Stokes equation, it would represent a tremendous advantage

for evaluating fluidic MEMS designs. Given the need for non-equilibrium solutions

a priori, the unified models do not seem to deliver that advantage in cases of true

prediction. Despite the disheartening outlook for unified models, as indicated earlier,

there are flows for which the unified models should provide an accurate level of

prediction. Specifically, gas flows close in either geometry or operating conditions

to the non-equilibrium solutions used to construct the unified model. It is therefore

important to understand how these unified models are constructed, and establish the

accuracy of deviations from the known solutions. In order to accomplish these goals,

the following investigative procedure is proposed:

1. Generate a database of non-equilibrium Couette and Poiseuille flows.

2. Find the optimum model coefficients C∗
s and C∗

µ that produce the

Navier-Stokes solution that best matches the non-equilibrium results.

3. Form new unified model laws that capture the functional dependence

of the optimum coefficients found in Step 2.

4. Test the new unified models for various predictive cases.

2.3.1 Database construction

The database of non-equilibrium solutions used to generate the new models con-

sists of one dimensional argon and nitrogen Couette and Poiseuille flows. The DSMC

solutions used for the database are obtained from a modified version of the one di-
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mensional code provided by Bird [16]. All flows in the database are low speed flows,

the Poiseuille flows are driven to a maximum velocity of 20 m/sec and the Couette

flows use a difference in wall velocities of 20 m/sec. Knudsen numbers of 0.01, 0.02,

0.05, 0.1, 0.2, 0.5, 1, 2, 5, and 10 are simulated by adjusting the operating density of

the working fluid, while keeping the geometry and computational domain constant.

The walls are simulated with a temperature of 273 K and a fully diffuse, gas-surface

interaction yielding a TMAC of unity. The DSMC simulation is one dimensional

which implies that the velocity distribution function is everywhere uniform along

planes parallel to the walls. As a result, a pressure gradient cannot be used to drive

the Poiseuille flow cases; instead, the accelerative body force f is used. The driv-

ing force varies with Knudsen number, and is found through trial and error until

the DSMC results appear to have a maximum velocity of 20 m/sec. The collision

dynamics are simulated using the variable soft sphere model with the collision pa-

rameters from Bird, and the rotational energy exchange for the nitrogen gas flows is

simulated with the Larsen and Borgnakke model [16]. All DSMC simulations use 150

cells and 4500 simulated particles, except for the case of Couette flow at Kn = 0.01,

which uses 300 cells and 9000 simulated particles. The maximum cell length is less

than one third of a mean free path. The time step is chosen so that a particle will

cross a cell in an average of three time steps. The results are sampled for 20 million

time steps with the typical statistical scatter in the velocity profile less than 1%.

2.3.2 Optimum model coefficients

Given the freedom to choose any values for the two empirical corrections included

in the unified model Cs (2.3) and Cµ (2.4), one can alter the Navier-Stokes solution

to match almost any non-equilibrium Couette and Poiseuille result. For Couette
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flow, where the non-equilibrium solution remains nearly linear, the line that best

matches the DSMC data is found using the linear least squares technique. The slope

of the best-fitting line corresponds uniquely to a specific value of Cs. The value of

Cs that produces the best-fitting Navier-Stokes solution is termed the optimum slip

coefficient C∗
s . Once the slope of the best fitting line is determined for Couette flow,

the optimum viscosity correction C∗
µ is found such that the corrected Navier-Stokes

solution (2.18) and the DSMC solution have the same channel-averaged shear stress.

Similarly for Poiseuille flow, where the non-equilibrium solution remains nearly

parabolic, the channel symmetric parabola that best matches the DSMC data is

found using the linear least squares technique. The two free parameters that define

the best-fitting parabola correspond uniquely to specific values of Cs and Cµ. These

two values for the unified model that produce the best-fitting Navier-Stokes solution

are also termed the optimum slip coefficient C∗
s and C∗

µ for Poiseuille flow. Unlike

Couette flow, the viscosity correction Cµ for Poiseuille flow is not needed to match

the non-equilibrium wall shear stress. Both the continuum Navier-Stokes solution

and the non-equilibrium DSMC simulation conserve momentum exactly throughout

the domain. Therefore, the method of simulation for the momentum transport has

no effect on the shear stress at the boundary surface. The wall shear stress at the

boundary surface for a one dimensional, body force driven Poiseuille flow is deter-

mined entirely by the fluid density, body force and channel height (2.19). Corrections

to the Navier-Stokes solution via the unified model coefficients Cs and Cµ can match

the non-equilibrium velocity profiles to within an L2 error norm of 2% for both Cou-

ette and Poiseuille flows in the range of 0.01 ≤ Kn ≤ 10. The optimum coefficients

C∗
s and C∗

µ are found for the unified model using the least squares technique in Section

2.4 for every non-equilibrium case in the DSMC database.
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2.3.3 Unified model construction

After the optimum coefficients C∗
s and C∗

µ are determined for each case in the

DSMC database, model laws are found to approximate the Knudsen number depen-

dence of the coefficients. Several non-linear model laws are tested in an attempt to

find the unified model that best matches the DSMC data for argon gas throughout the

range of rarefaction tested (0.01 ≤ Kn ≤ 10). A new model construction technique

is proposed in Section 2.5 using an importance weighting of the optimum coefficient

data in conjunction with the Levenberg-Marquardt non-linear least squares mini-

mization. The error sensitivity for deviations in the optimum coefficients is found

for all Knudsen numbers. The first order estimation of the sensitivity is used as the

importance weight when fitting the model to the optimum coefficients. The resulting

non-linear models show marked improvement in uniform accuracy over all degrees of

rarefaction compared to the previous models constructed by this author [112]. The

new unified models are within 1% of the best possible L2 error of the velocity profile

when obtained directly from the optimum coefficients.

2.3.4 Predictive cases

Great care is taken to ensure the empirical Couette and Poiseuille models devel-

oped in this investigation for the slip and viscosity model coefficients capture the

non-equilibrium flows in the DSMC database. However, the accuracy of the models

for cases within the database is not a measure of the models’ applicability, only of the

data fit correlation. The new unified models are not predicting the non-equilibrium

flows from the database, they are just carefully tuned to reproduce them. Since

the new unified models are purely empirical and the continuum solutions based on

them break down as the flow deviates from equilibrium, they should be suspect when
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predicting flows outside the database at large Knudsen numbers. In order to assess

the actual predictive power of the new unified Couette and Poiseuille models, five

types of test cases outside the DSMC database are selected to illustrate different

non-equilibrium challenges. The models developed in this investigation are used to

predict these flows and then compared to DSMC results. The first cases involve

interpolation and extrapolation of the database for both Couette and Poiseuille ar-

gon flows at Knudsen numbers of 0.7 and 20. Second, a combination Couette and

Poiseuille flow is simulated for argon gas at Kn = 1. Third, the tangential momen-

tum accommodation coefficient (TMAC) is changed from unity to 0.8 and 0.5 for

both Couette and Poiseuille argon flows. Fourth, helium gas is used as the work-

ing fluid for the Couette and Poiseuille flows at Kn = 1. Helium has a molecular

weight about one tenth of that of argon, so the resulting most probable molecular

velocity is about three times that of argon. Finally, a body force driven flow with

uniform suction and injection normal to the walls is simulated at Kn = 1. While

the solution is still one dimensional, it is the only flow in this investigation that

has a non-zero convective acceleration. Most multidimensional flows, or flows with

complex geometry have a non-zero convective acceleration, so the ability of the new

unified Poiseuille model to capture the physics change in this flow is an indication

of the applicability of the new models toward more complex flows. The analytical

solution to the body force driven flow with a uniform suction and injection velocity

V0 at the walls is given in the following equations [187]:

uχ =
F ′

Re

[
D
(
eηRe + ΛRe − 1

)
+ η + Λ

]
, where

D =
1 + 2Λ

1 − ΛRe − (1 + ΛRe)eRe
,
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Re = ρV0h/µ′ is the non-dimensional Reynolds number based on the cross flow

velocity V0, Λ = 2−σv

σv
KnCs(Kn) is the combined non-dimensional slip coefficient, µ′

is the apparent fluid viscosity, and F ′ = ρfh2/µ′ is the force term.

2.4 Least squares fit

The Navier-Stokes equation can be solved analytically for most Couette and

Poiseuille flows that are one dimensional, fully developed, steady, isothermal and

constant density. These are the same conditions found in the DSMC simulations.

Using the empirical slip model (2.3) and viscosity correction (2.4) introduced earlier,

the resulting Navier-Stokes solutions to the ordinary differential equations in (2.8)

and (2.9) for the flow velocity and shear stress are

uc(η) = U0 +
U1 − U0

1 + 2Λ
(η + Λ) , (2.16)

up(η) = −F ′

2

(
η2 − η − Λ

)
, (2.17)

(τxy)c =
µ′

1 + 2Λ
(U1 − U0) /h and (2.18)

(τxy)p = −ρfh (η − 1/2) . (2.19)

In the above equations, uc and up are the Couette and Poiseuille velocity profiles,

(τxy)c and (τxy)p are the Couette and Poiseuille flow shear stress, U0 and U1 are the

lower and upper wall velocities for the Couette flow, η = y/h is the wall normal

coordinate non-dimensionalized by the channel height h, Λ = 2−σv

σv
KnCs(Kn) is the

combined non-dimensional slip coefficient, and F ′ = ρfh2/µ′ is the body force term.

The purpose of the empirical coefficients is to tune the continuum-based Navier-

Stokes solutions to yield an approximation to the non-equilibrium DSMC results in

the database. The Navier-Stokes velocity profile for Couette flow is simply a straight

line with the following constraint that the velocity at the midpoint of the channel
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must be the average of the two wall velocities. Therefore, any line of the form in

(2.20) is a valid Navier-Stokes solution for shear-driven flow

uc(η) = Gc

(

η − 1

2

)

+
1

2
(U0 + U1), (2.20)

where Gc is a free parameter that characterizes the family of solutions for different

slip coefficients.

We can select the Navier-Stokes solution from this family that best fits the DSMC

data by performing a linear least squares fit of the DSMC velocity data. The lin-

ear least squares technique minimizes the L2 error norm between the known data

(DSMC) and the approximate linear model (Navier-Stokes) [176]. The L2 error norm

is the non-dimensional measure of a the velocity profile error

L2 =
1

v̄N

√
√
√
√

N∑

i=1

[(vmc)i − (vns)i]
2 where v̄ =

1

N

N∑

i=1

(vmc)i , (2.21)

and (vmc)i and (vns)i are the DSMC and Navier-Stokes velocity in cell i respectively.

The Navier-Stokes solution with the lowest L2 error is defined by

Gc =
(Suy)c

(Syy)c

,

where

(Syy)c =
N∑

i=1

(

ηi −
1

2

)2

and

(Suy)c =
N∑

i=1

[

(ui)c −
1

2
(U1 + U2)

](

ηi −
1

2

)

.

In the above equations, ηi and (ui)c are the non-dimensional position and velocity

respectively in the ith DSMC cell, and N is the total number of cells. Once the free

parameter Gc is found for the best fitting solution, it corresponds uniquely to the slip
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coefficient. The optimum slip coefficient necessary to capture the non-equilibrium

DSMC profile in a least squares sense is determined by

Cs(Kn) =
U2 − U1 − Gc

2
(

2−σν

σν

)

KnGc

.

As mentioned earlier, matching the velocity in Couette flow is only half the problem.

In order to capture the correct shear stress, the viscosity correction Cµ is selected

to reproduce the average shear stress of the DSMC data. The free parameter Gc

characterizing the best fitting profile is used to determine the viscosity correction

Cµ(Kn) =
h

µ0NGc

N∑

i=1

(τxy)i,

where (τxy)i is the shear stress in the ith DSMC cell.

The Navier-Stokes solution for the Poiseuille flow velocity profile is a channel

symmetric parabola. This means that there are two free parameters Gp1 and Gp2

to characterize the family of valid Navier-Stokes solutions, with different boundary

conditions and transport closures

up(η) = Gp2(η
2 − η) + Gp1.

Similar to Couette flow, the values of Gp1 and Gp2 can be found that best match

the non-equilibrium solution by performing a linear least squares fit to each DSMC

Poiseuille flow case in the database:





Gp1

Gp2




 =






N (Sy)p

(Sy)p (Syy)p






−1 




(Su)p

(Suy)p




 ,

where

(Sy)p =
N∑

i=1

(
η2

i − ηi

)
,

(Syy)p =
N∑

i=1

(
η2

i − ηi

)2
,
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Couette Flow Poiseuille Flow
C∗

s C∗

µ C∗

s C∗

µ

Kn Ar N2 Ar N2 Ar N2 Ar N2

0.01 1.821 1.907 0.970 0.960 1.493 1.318 1.006 1.017
0.02 1.850 1.688 0.974 0.983 1.415 1.259 0.992 0.982
0.05 1.160 1.274 0.981 1.006 1.254 1.277 0.940 0.978
0.1 1.214 1.198 0.948 0.974 1.188 1.126 0.877 0.906
0.2 1.118 1.035 0.911 0.917 0.972 0.953 0.722 0.749
0.5 0.894 0.873 0.785 0.807 0.671 0.661 0.463 0.492
1 0.735 0.695 0.656 0.668 0.469 0.459 0.297 0.314
2 0.584 0.556 0.522 0.534 0.308 0.299 0.173 0.182
5 0.437 0.427 0.381 0.398 0.170 0.168 0.080 0.086
10 0.365 0.324 0.310 0.298 0.107 0.101 0.044 0.044

Table 2.2: Table of the optimum coefficients C∗
s and C∗

µ for non-equilibrium Couette
and Poiseuille flows.

(Su)p =
N∑

i=1

(ui)p,

and

(Suy)p =
N∑

i=1

(ui)p

(
η2

i − ηi

)
.

Once the free parameters Gp1 and Gp2 are found, they uniquely determine the slip

coefficient and viscosity model coefficient that will best capture the non-equilibrium

velocity profile in a linear least squares sense:

Cs(Kn) = − Gp1

Gp2

(
2−σν

σν

)

Kn
,

and

Cµ(Kn) = − ρfh2

2Gp2µ0

.

Using the database of DSMC cases as reference, it is possible to generate the best

slip and viscosity model coefficients to match the Navier-Stokes solution to each

non-equilibrium solution. The optimum coefficients are found to match all the non-

equilibrium flows in the database to within an L2 error of 2.5%.
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2.5 New Model Laws

In the previous section, the optimum coefficients C∗
s and C∗

µ are found in order

to fit the corrected Navier-Stokes solution to every case in the DSMC database and

listed Table 2.2. These optimum coefficients are found using the standard linear

least squares method and represent the Navier-Stokes solution that fits the non-

equilibrium data with the minimum L2 error. New unified models similar to the

KB and BPB models can be constructed with the optimum coefficients C∗
s and C∗

µ

found in the previous section. A unified model is designed to capture the Knudsen

number dependence of the continuum corrections (2.3) and (2.4) to the Navier-Stokes

solution. The goal is to have an explicit functional form for Cs(Kn) and Cµ(Kn) that

yields accurate Navier-Stokes approximation to all the non-equilibrium flows in the

database. One possible model would recover the optimum coefficient C(Kn∗) = C∗

when at the same conditions Kn∗ as the non-equilibrium database using a piece-wise

approximation to the data (e.g. cubic spline). However, the exact match of the

optimum coefficient C∗ is not necessary given the nature of the approximation; more

often a single functional form is preferred.

There are several advantages to selecting a single function model over a cubic

spline or other piece-wise approximation. First, any scatter present in the optimum

coefficients can potentially be smoothed out by a single function designed to minimize

its distance to the data. A cubic spline must intersect every given data point, thus

its representation of the scatter may yield unnecessary fluctuations in the resulting

curve. Second, while both methods are suitable for interpolation of the known non-

equilibrium solution, the single function model can be trained for extrapolation by

including known asymptotic results. For example, the BPB model is designed to
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recover the correct shear stress in both the continuum Kn → 0 and free molecular

Kn → ∞ limits. Third, unlike a spline model, the single function can enforce

other known physical properties of the process (e.g. monotonicity). Finally, the

importance of each non-equilibrium case in the database may not be equal when

trying to find a continuum correction with uniform accuracy across all degrees of

rarefaction. The construction of the single function model enables the weighting

of the relative importance of each non-equilibrium solution. No such weighting is

possible with a piece-wise approximation, all the points are of equal weight.

2.5.1 Non-linear data fitting

The approximate functional dependence of the optimum coefficients Cs(Kn) and

Cµ(Kn) is found by a least squares minimization technique. The optimum coeffi-

cients C∗
s and C∗

µ in Table 2.2 demonstrate a monotonic decrease in magnitude with

increased rarefaction Kn. This observation precludes the use of a polynomial model

function as an accurate representation of the data. In fact, most model functions with

linear parameters provide inadequate representations of the data in Table 2.2. Thus,

non-linear models are selected to construct the new unified models. The drawback

to non-linear models is that the simple linear least squares technique of Section 2.4 is

no longer applicable. Instead, the iterative Levenberg-Marquardt method [93, 107]

is used to minimize the least squares error of the non-linear model relative to the

optimum coefficients C∗
s and C∗

µ.

The Levenberg-Marquardt method finds the best-fitting, non-linear model by

combining two common minimization techniques. First, consider a general non-linear

model for the optimum coefficients

C = C(Kn; a),
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where C is either unified model coefficient (Cs or Cµ) and a = (a1, . . . , am) are the

unknown, non-linear model parameters. The quality of the fit of a non-linear model

given a specific parameter set a is quantified by a merit function χ2 defined by

χ2(a) =
N∑

i=1

[
C∗ − C(Kn; a)

σi

]2

, (2.22)

where the model C(Kn; a) fits the N data points from the DSMC database, and σi

is an importance weight of the ith datum. The best fitting model is defined as the

set of parameters a that minimizes (2.22).

One method of minimizing χ2 is to use the second-order Taylor expansion of

(2.22) in terms of the parameter set a

χ2(a) ≈ γ − d · a +
1

2
atDa, (2.23)

where γ ∈ R, d ∈ Rm, and D ∈ Rm×m represent the zeroth, first and second

order terms of the expansion. If one knows a set of parameters ai near the function

minimum at a∗, the location of the minimum can be estimated using the second-order

expansion (2.23) and the local gradient of χ2

a∗ = ai + D−1 ·
[
−∇χ2(ai)

]
. (2.24)

The matrix D in equations (2.23) and (2.24) is composed of all the second order

derivatives of χ2 at a = ai and is called the Hessian matrix. The method of finding

the minimum via (2.24) is referred to as the inverse Hessian method, and is accurate

when one has a set of parameters a in the neighborhood of the minimum. However,

when ai is not near the minimum, the inverse Hessian method may lead to a poor

local approximation of the minimum.

If the inverse Hessian method can not give a good local estimation to the min-

imum, the popular steepest descent (ascent) method can provide an updated guess
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of the parameters ai+1 in the direction of the minimum [143]. The direction toward

the minimum value is approximated with the local gradient of χ2 at ai and a step

size in this direction is chosen to update the current guess of the non-linear model

parameters. Specifically,

ai+1 = ai − κ∇χ2(ai),

where the constant κ is the step size in the direction of the minimum and is small

enough so as not to exhaust the downhill direction.

The clever idea behind the Levenberg-Marquardt method is the seamless blend-

ing of the two minimization techniques: the inverse Hessian method and steepest

descent method. The goal is to rely on the steepest descent method when the cur-

rent guess for ai is thought to be far from the minimum, then switch to the inverse

Hessian method near the minimum. The Levenberg-Marquardt method combines

both minimization techniques into a single iteration with a non-dimensional correc-

tion factor φ used to measure the relative strength of each method’s contribution.

When φ � 1, the inverse Hessian method is dominant; and when φ � 1, the steepest

descent method dominates. At each new iteration ai+1, the merit function χ2(ai+1)

is calculated. If the update improves χ2(ai+1) < χ2(ai), the factor φ is reduced to

make the contribution of the inverse Hessian method more important. If the update

does not improve χ2(ai+1) ≥ χ2(ai), the update is discarded and the factor φ is

increased to make the contribution of the steepest descent method more important.

The updating process continues until a suitable stopping criterion is reached. Exact

details for implementing the Levenberg-Marquardt method are given in [147].
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2.5.2 Model sensitivity

Previous constructions of unified models for Poiseuille and Couette flows have

not discussed the sensitivity of the models at various Knudsen numbers [69, 15, 12,

11]. A more recent evaluation [112] of the unified models discusses the increased

sensitivity at higher Knudsen numbers. At large Knudsen numbers, this sensitivity

is shown to produce large errors when the unified models are used to predict non-

equilibrium flows from a different database than used in their construction. It is

crucial to understand the effect of sensitivity on producing accurate unified models

and evaluating their range of applicability. In this investigation, a concrete measure

of the model sensitivity is developed and used to minimize the effective error in the

unified models for all degrees of rarefaction.

The unified model construction in [112] used an ad hoc graphical search to find

the non-linear parameters that minimize the model’s fit to the optimum coefficients.

The observed sensitivity at high Knudsen numbers coupled with scatter found at low

Knudsen numbers prompted this author to exclude the data from Kn ≤ 0.02 in the

previous non-linear model constructions. For this investigation, new unified models

for Couette and Poiseuille are found using the more elegant Levenberg-Marquardt

method. Furthermore, the sample data is weighted using the σi terms in (2.22). If

the accuracy of the continuum correction is very sensitive to the choice of Cs and

Cµ at a specific Kn, then σi is chosen to be smaller than average to increase the

importance of matching the model to the specific datum. Conversely, if the choice

of Cs and Cµ at a specific Kn does not have a pronounced effect on the accuracy,

then σi is chosen to be larger than average. The basic idea of the new construction

is to generate a reasonable approximation to the models sensitivity and weight the

data accordingly to obtain a model with uniform accuracy for all Knudsen numbers
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tested.

In general, the non-linear model can not exactly match all the data points. To

determine which data points should be matched the closest, the sensitivity of each

measured flow parameter to changes in the correction factors (Cs and Cµ) is found.

Given an arbitrary flow measurement P , the dependence of a coefficient C from

the unified model (either Cs or Cµ) can be approximated by a first-order Taylor

expansion around the optimum coefficient C∗ found in Table 2.2

P (C) ≈ P (C∗) +
∂P

∂C

∣
∣
∣
∣
C=C∗

· (C − C∗).

The sensitivity of the flow parameter P to a change ∆C = (C − C∗) is defined by

the value of the first derivative in the Taylor series evaluated at C = C∗

∆P = P − P (C∗) ≈ ∂P
∂C

∣
∣
C=C∗

· ∆C

|∆P | ≈ |G||∆C|

The sensitivity |G| is an estimation of the magnitude of change in the flow parameter

|∆P | when there is a change in the continuum correction |∆C|. If the sensitivity of

the Navier-Stokes solution |G(Kn)| is much larger than average at a specific datum,

then it is more important that the model captures this point. In order to reflect this

design ideal, the merit function χ2 (2.22) to be minimized when searching for the

best model is weighted by the sensitivity

σi = |G(Kni)|−1.

For Couette flow, the unified model coefficients Cs and Cµ affect both the velocity

profile and the shear stress. To quantify the effect of changing these coefficients,

the first order Taylor expansions of the Navier-Stokes solutions are found for the

non-dimensional slip velocity Vs and the non-dimensional shear stress Txy. The slip
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ṁ v Cµ w Poiseuille

Figure 2.4: Sensitivity of the model coefficients Cs and Cµ.

velocity is obtained by normalizing the solution of (2.16) at the wall η = 0 by half

the difference in the wall speeds 1
2
(U1 − U0)

Vs(Cs) =
2U0

U1 − U0
+

2CsKn

1 + 2CsKn
. (2.25)

Note the slip velocity of the corrected Navier-Stokes solution only depends on Cs.

The sensitivity of the Couette slip velocity to the slip coefficient Cs is found from

the first-order Taylor expansion of (2.25) around the point Cs = C∗
s

|G[us(Cs)]| =
2Kn

(1 + 2C∗
s Kn)2

. (2.26)

The optimum values of C∗
s are taken from Table 2.2. In Figure 2.4, the sensitivity of

the slip velocity to changes in the slip coefficient is found to increase with Knudsen

number by an order of magnitude over the range 0.01 ≤ Kn ≤ 10. All the sensitivities

presented in Figure 2.4 are normalized by the minimum value found in the range

0.01 ≤ Kn ≤ 10. Any changes this normalization makes to the importance weighting

σi can be factored out of the merit function χ2, and thus have no influence on the

Levenberg-Marquardt minimization technique.



63

The Navier-Stokes solution to the Couette flow shear stress (2.18) is normalized

by the continuum shear stress τxy = µ0(U2 − U1)/h

Txy(Cs, Cµ) =
Cµ

1 + 2CsKn
.

The sensitivity of the shear stress to changes in the unified model coefficients is found

by the first-order Taylor expansion in each coefficient around its optimal value

|G[τxy(Cs)]| =
2C∗

µKn

(1 + 2C∗
s Kn)2

, (2.27)

and

|G[τxy(Cµ)]| =
1

1 + 2C∗
s Kn

. (2.28)

Similar to the slip velocity, the sensitivity of the shear stress to the slip coefficient Cs

varies by an order of magnitude, in Figure 2.4. The sensitivity |G[τxy(Cs)]| increases

with Knudsen number until a maximum factor of 12 is reached at Kn = 0.5, then

decreases to a factor of 5 at Kn = 10. Since there are two sensitivity estimates for the

slip coefficient (2.26) and (2.27), only the sensitivity associated with the slip velocity

|G[us(Cs)]| (2.26) is used for the importance weighting σi of the merit function χ2.

The sensitivity of the shear stress to the viscosity correction Cµ decreases by nearly

an order of magnitude with increasing Knudsen number. As the only measure of

sensitivity for the viscosity correction affect on Couette flow, |G[τxy(Cµ)]| in (2.28)

is used for the importance weighting σi of the merit function χ2.

For Poiseuille flow, the unified model coefficients Cs and Cµ both affect the ve-

locity profile. The sensitivity is measured for the non-dimensional M , defined as the

velocity in (2.17) averaged over the channel and normalized by the quantity ρfh2/µ0

M(Cs, Cµ) =
1

2Cµ

(

CsKn +
1

6

)

. (2.29)
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Note the normalization of the average velocity is such that any error in (2.29) is

equivalent to the normalized error in mass flux and number flux. The sensitivity

of the average velocity to the unified coefficients is found again from the first-order

Taylor expansion of (2.29) around the optimum coefficients C∗
s and C∗

µ

|G[ṁ(Cs)]| =
Kn

C∗
µ

,

and

|G[ṁ(Cµ)]| =
1

2C∗2
µ

(

C∗
s Kn +

1

6

)

.

In Figure 2.4, the sensitivity of the average velocity increases monotonically with

Knudsen number for both coefficients. The sensitivity to the slip coefficient Cs

is over 20,000 times larger at Kn = 10 than at Kn = 0.01. Similarly, the sen-

sitivity to the viscosity correction Cµ is 2,200 times larger at Kn = 10 than at

Kn = 0.01. The contrast in the variation of sensitivity between the two flow types

demonstrates that unified Couette flow models tend to yield better results for more

non-equilibrium flows because the errors are more “forgiving” at higher Knudsen

numbers than Poiseuille flow errors.

2.5.3 Candidate models

A total of four non-linear models is tested to find which functional form best

captures the optimum slip coefficient Cs for argon Couette flow. All models rely on

a monotonically decreasing function with an asymptotic limit as Kn → ∞. The

first model is referred to as an arctangent law and adopts the same form as the four

parameter BPB model for the slip coefficient (2.13)

Cs(Kn) = a1 − a2 tan−1(a3Kna4). (2.30)
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The second model, called the power law, is also defined by four parameters but the

arctangent function is replaced with an offset power law relationship

Cs(Kn) = a1 +
a2

(Kn + a3)a4
. (2.31)

The two remaining models only use three parameters in an effort to see if a slightly

simpler non-linear form could be found by eliminating the power scaling of a4 in (2.30)

and (2.31). The Levenberg-Marquardt method can detect when the power scaling

is unnecessary in either of the previous models a4 ≈ 1, thus the three parameter

models use different monotonic functions. They include an exponential decay law

Cs(Kn) = a1 + a2e
−a3Kn,

and a hyperbolic tangent law

Cs(Kn) = a1 − a2 tanh(a3Kn).

The Levenberg-Marquardt method as presented in [147] is used to find the best

fitting non-linear model to the optimum slip coefficient for argon Couette flow. The

model errors in the merit function (2.22) are weighted using the inverse of the gain

for the slip coefficient found in (2.26)

σi = |G[us(Cs)]|−1. (2.32)

Models with coefficients used as exponents tend to produce very unstable iterations

with the Levenberg-Marquardt method, even with a drastic reduction (10−3) in the

update step size. As a quick stability fix, the exponent parameter is held constant

through the Levenberg-Marquardt iteration. Once the method converges to the best

fitting model for a given exponent, a new exponent is calculated using the bisection

method in the neighborhood of the single global minimum of the merit function χ2.
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Name Model Form a1 a2 a3 a4 χ2(a)
Arctan Law a1 − a2 tan−1(a3Kna4) 1.546 0.869 1.357 0.545 1.352
Power Law a1 + a2

(Kn+a3)a4
0.180 0.631 0.286 0.532 1.444

Exp Law a1 + a2e
−a3Kn 0.408 0.821 0.874 - 3.456

Tanh Law a1 − a2 tanh(a3Kn) 1.178 0.760 0.615 - 5.002

Table 2.3: Candidate non-linear model laws for the Couette flow slip coefficient for
argon gas.
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Figure 2.5: Comparison of the four non-linear models ability to capture the optimum
slip coefficient for the Couette flow of argon gas.

With the new exponent parameter fixed, the Levenberg-Marquardt method is used

again to calculate the best-fitting model. The process is repeated until the exponent

parameter corresponding to the global minimum of χ2 is found.

The best fitting coefficients found with the fixed-exponent Levenberg-Marquardt

method and the corresponding merit function χ2 are presented in Table 2.3. The

four parameter models fit the optimum Cs two to three times better than the three

parameter models. A visual comparison of all four models to the actual optimum

coefficients is given in Figure 2.5. It is clear that the three parameter models are

too “stiff” to accurately capture the shape of the Knudsen number dependence of



67

Cs. The power scaling offered by the coefficient a4 in the offset power law (2.31)

and arctangent law (2.30) is needed to appropriately stretch the non-linear model in

the Kn range to fit the curve at the larger Knudsen numbers. The error sensitivity

of the slip coefficient is ten times greater for Kn ≥ 0.5 than for Kn = 0.01. Using

the sample weighting proposed (2.32) yields nearly exact matches of the optimum

coefficient for both the power law and arctangent law for Kn ≥ 0.5. The only

noticeable difference in the four parameter models occurs for Kn < 0.05 when the

sensitivity of the slip coefficient is comparatively small.

2.5.4 Model Selection

Given the success of the non-linear models shown in Figure 2.5, only the arct-

angent law (2.30) and the offset power law (2.31) are considered candidates for the

remaining model selection. The best-fitting model is found for the optimum slip coef-

ficient C∗
s and viscosity correction C∗

µ for both Couette and Poiseuille argon gas flows

from Table 2.2. The fixed-exponent Levenberg-Marquardt method described in the

previous section is used to find the best-fitting parameters to the proposed non-linear

models. The merit function (2.22) is weighted using the appropriate sensitivity cal-

culations from Section 2.5.2. It is important to recall that the slip coefficient Cs for

Couette flow has two sensitivities; one corresponding to its effect on the slip velocity

and another for its effect on the average shear stress. While the two sensitivities

are similar in Figure 2.4, only the sensitivity derived from the slip velocity is used

because the slip velocity is solely influenced by the slip coefficient.

The best-fitting non-linear models are found for matching the optimum slip co-

efficient C∗
s and viscosity correction C∗

µ in Figure 2.6. In a previous study [112], the

optimum coefficients for both argon and nitrogen gas flows are combined to generate
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Figure 2.6: Non-linear model construction for the optimum continuum corrections
for argon gas flows: (a) Couette flow slip coefficient Cs; (b) Couette flow
viscosity correction Cµ; (c) Poiseuille flow slip coefficient Cs; and (d)
Poiseuille flow viscosity correction Cµ.
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a single unified model for both gases. This is motivated in part because the optimum

coefficients for the two gases are within 5% for almost every case when Kn ≥ 0.1.

However, even a 0.1% difference between the coefficients could result in an error of

over 10% for Poiseuille flows at high Knudsen numbers (i.e. Kn ≥ 1). From the

results on the model sensitivity in Figure 2.4, this is to be expected. Therefore,

the new unified models constructed in this investigation will only use the optimum

coefficients for the argon cases.

For the Couette flow cases, the power law is found to give the best overall fit to

both sets of optimum coefficients. In fact, the optimum exponents in the power law

are sufficiently close to aesthetically appealing values {1/2, 2} that the cleaner form

is adopted while accepting a minimal (0.1%) increase in the merit function. The new

unified model proposed in this investigation for argon Couette flow is

Cs(Kn) = 0.161 +
0.641√

Kn + 0.262

Cµ(Kn) = 0.266 +
6.288

(Kn + 2.949)2
. (2.33)

For the Poiseuille flow case, the arctangent law is found to give the superior fit for

both optimum coefficients. The new unified model proposed in this investigation for

argon Poiseuille flow is

Cs(Kn) = 1.543 − 0.983 tan−1(1.935Kn0.669)

Cµ(Kn) = 1.051 − 0.671 tan−1(2.091Kn0.835). (2.34)

2.5.5 Model Error

The new unified models for Couette (2.33) and Poiseuille (2.34) flows are tested

against the non-equilibrium cases in the DSMC database. In addition to the new

models, the BPB model (2.13) and (2.14) for Couette flow and the KB model (2.10)
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and (2.11) are also tested against the database. It is important to note that the accu-

racy shown by the models in these next examples is not a measure of their predictive

power. Instead, it is a measure of how close a corrected Navier-Stokes solution can

match a non-equilibrium solution and how close can the Knudsen number depen-

dence of those corrections can be approximated. The non-equilibrium solutions from

the database are used to construct accurate corrections to the Navier-Stokes solution

through the unified models. Thus, the unified models are not really predicting the

non-equilibrium results rather they are only reflecting the accuracy of the data fit.

The error measures used for comparison are the L2 error (2.21) of the Couette and

Poiseuille velocity profiles and the average shear stress τxy throughout the Couette

channel. The error in slip velocity is not used because it is found to closely track with

the L2 error in the velocity profile [112]. The error in the Poiseuille flow mass flux

is not used because it is bounded from above by the L2 error in the velocity profile

and it too closely tracks the L2 error. The error in wall shear stress is not used for

Poiseuille flow because it only depends on the density, body force and channel height

(2.19). Since both the DSMC method and the corrected Navier-Stokes equation

conserve momentum in detail, the wall shear stress is independent of the method

used for its calculation. Thus, the wall shear stress will be identical and is not useful

in evaluating these models.

Both the new unified Couette model (2.33) and the BPB model recover the non-

equilibrium Couette velocity profiles to within an L2 error norm of 2.5% for 0.01 ≤

Kn ≤ 10 as illustrated in Figure 2.7. Neither case has an error more than 1%

larger than the best possible error. The best possible error is the minimum L2 error

found by the linear least squares method when finding the optimum coefficients.

Furthermore, the new model performance appears to be independent of operating
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Figure 2.7: L2 error in the velocity profiles of the continuum corrections for Couette
flow.

fluid when predicting the velocity profile. The new unified model constructed solely

from non-equilibrium argon cases produces a similar error for the non-equilibrium

nitrogen cases for 0.01 ≤ Kn ≤ 10.

The new unified model (2.33) recovers the average Couette channel shear stress

to within 5% for 0.01 ≤ Kn ≤ 10 as illustrated in Figure 2.8. Compared to the

unified model proposed in [112], the new model is almost 2.5 times more accurate.

For argon Couette flows, using the sensitivity to weight the non-linear model error

has effectively distributed the error across all Knudsen numbers in the database. The

non-equilibrium nitrogen cases using the new unified model predominantly have a

larger error than the argon cases with a maximum error of over 10%. The difference

in shear stress error between the two gas types indicates that a unified model is most

accurate for the cases from which it is derived. The BPB model shows a considerable

error in the average shear stress at low Knudsen numbers with a maximum error of

18%. Does this mean that the new unified model is superior to the other models
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Figure 2.8: Relative error in the average shear stress τxy of the continuum corrections
for Couette flow.

in the literature? No, it is only superior on its own database and simply further

demonstrates the sensitivity of the unified models to their construction schemes and

assumptions. The BPB model is constructed from a database of linearized Boltzmann

solutions and reports a shear stress error of only 0.3% when compared to its own

database [12].

The new unified model recovers the non-equilibrium Poiseuille velocity profile

to within an L2 error of 2% for 0.01 ≤ Kn ≤ 10 which is within 1% of the best

possible L2 error norm. The nitrogen cases using the new unified model show a

maximum error of 8%, and for all cases when Kn ≥ 0.05, the error is at least twice

as great as the argon cases. The model sensitivity to the operating conditions of

the database at high Knudsen numbers is illustrated by the difference between gas

species. It indicates that any unified Poiseuille model should only be applied to the

working fluid represented in the database used to design the model for large Knudsen

numbers. The KB model has a maximum L2 error of 20% in its Poiseuille velocity
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Figure 2.9: L2 error in the velocity profiles of the continuum corrections for Poiseuille
flow.

profile. Again, this drastic departure in performance at large Knudsen numbers is

due to the differences in the non-equilibrium databases used to construct the models

presented here.

2.6 Empirical Model Prediction Performance

The investigation demonstrates that it is possible to construct models for the slip

and viscosity coefficients in such a manner that the corrected Navier-Stokes solutions

accurately capture the non-equilibrium solutions in the DSMC database. However,

this is only a measure of the quality of the data fit the unified models are able to

achieve, and is not a testament to their use as a predictive design tool. In order to

understand the ability of a model constructed from a database of non-equilibrium so-

lutions to predict other flows outside the database, the following five cases are tested:

interpolation and extrapolation of the DSMC cases, combined Couette and Poiseuille

flow, wall surfaces with partial momentum accommodation, helium gas flows, and

channel flows with uniform suction and injection. In each case, only the Couette and
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Poiseuille models developed in this investigation are compared to the DSMC results.

In Figures 2.1 and 2.2, the velocity profile of the Navier-Stokes solution using the

new unified models (solid line) is presented with the non-equilibrium solution from

the DSMC database for argon Couette and Poiseuille flows at Kn = 0.01, 0.1, 1,

and 10. As a reference for the quality of the predictions, the results in Figure 2.1

demonstrate the ability of our Couette model to capture the velocity profile of the

DSMC Couette solution to within an L2 error norm of 2%, and a shear stress error

of 4%. Similarly for Poiseuille flow in Figure 2.2, the new unified Poiseuille model is

able to capture the velocity profile of the DSMC solution to within an L2 error norm

of 2%.

2.6.1 Interpolation and Extrapolation

Couette and Poiseuille argon gas flows are predicted using the models at Kn = 0.7

and Kn = 20, which is an interpolation and extrapolation of the cases used in the

databases. For the interpolation case Kn = 0.7, the models predict all measurable

error quantities within the baseline database accuracy. This indicates that an em-

pirical model can serve as a tool to evaluate different operating densities of the same

geometry over a wide range of Knudsen numbers, if there are enough non-equilibrium

solutions available to construct the model. The number of non-equilibrium cases re-

quired in the database depends on the fidelity hoped to be achieved by the model and

the complexity of the Knudsen number dependence of the system. For the extrapo-

lation case Kn = 20, the velocity profiles of both flow types are within the baseline

2% accuracy. However, the average shear stress predicted by the new Couette model

is in error by 30%. This is a consequence of selecting a purely empirical model

form in (2.33). The BPB model (2.14), which is designed specifically to recover the
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asymptotic value in the free molecular limit, predicts the shear stress to 0.01%.

2.6.2 Combination of Couette and Poiseuille Flow

The simplified Navier-Stokes equations for the Couette (2.9) and Poiseuille (2.8)

flows considered in this investigation each reduce to a single linear differential equa-

tion for the velocity profile. Therefore, in the continuum limit, a flow that is a

combination of Couette and Poiseuille flows can be solved as the superposition of a

Couette solution and a Poiseuille solution. However, the Boltzmann equation, which

is valid for flows ranging from continuum to free molecular, has a nonlinear colli-

sion term which prevents the linear superposition of the two flows in the transition

regime. If the velocity distribution function within the flow is still close to equilib-

rium, then the error due to the non-linearity is small. In order to evaluate the effect

of the non-linearity, a combination Couette and Poiseuille argon flow at Kn = 1 is

tested. The Navier-Stokes result is obtained by decomposing the flow into a Couette

and Poiseuille contribution, solving each separately with the unified Couette and

Poiseuille models developed in this investigation, and then adding the two solutions

together under the principle of superposition. In Figure 2.10, the DSMC solution

(circles) and the Navier-Stokes solution (solid line) using our models are presented

for the combined Couette and Poiseuille velocity profile at Kn = 1. The lower wall

is fixed while the upper wall moves at 20 m/sec in the direction of the driving force.

The driving force combined with the moving wall boundary yields a maximum ve-

locity of about 30 m/sec in the DSMC solution. The Navier-Stokes solution predicts

the entire velocity profile resulting to within an L2 error of 1%, which is the same as

the reference Poiseuille case at Kn = 1. Moreover, the wall shear stress error is only

2% and is less than the reference Couette flow case. It is important to note that the
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Figure 2.10: Combined Couette and Poiseuille flow for Argon gas at Kn = 1.

Poiseuille solution contributes 60% of the wall shear stress, and that the Poiseuille

wall shear stress is identically solved by both the Navier-Stokes and DSMC method.

In Figure 2.10, the largest error in the Navier-Stokes prediction of the velocity profile

occurs near the wall where the slip velocity is 5% larger than the DSMC result. This

slip velocity error is slightly larger than the error magnitude found in the reference

Poiseuille case at Kn = 1. Overall, the effect of any non-equilibrium non-linearity

appears small, and the decomposition of two flow types is appropriate in this case.

2.6.3 Tangential Momentum Accommodation Coefficient

In order to determine the effect the TMAC has on the models’ performance, argon

gas Couette and Poiseuille flows are simulated for a TMAC equal to 0.8 and 0.5 at

Kn = 1. For the Couette flows, the TMAC has no effect on the accuracy of the

velocity profile, with the Couette model predicting the profiles to the same accuracy

as the baseline. However, the shear stress error triples to 6% for a TMAC = 0.8 and

is 5 times larger for a TMAC = 0.5. In Figure 2.11, the DSMC solution (circles)
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Figure 2.11: Poiseuille flow for Argon gas with different TMACs at Kn = 1: (a)
TMAC = 0.8; and (b) TMAC = 0.5.

and the Navier-Stokes solution (solid line) using the new unified Poiseuille model are

presented for the Poiseuille velocity profiles at Kn = 1, with the TMAC equal to 0.8

and 0.5. For σv = 0.8, the L2 error between the velocity profiles predicted by DSMC

and the Navier-Stokes equation is twice as large as the reference Poiseuille case at

Kn = 1. However, as shown in Figure 2.11, the Navier-Stokes prediction worsens

when the TMAC equals 0.5. In this case, the Navier-Stokes solution with the new

Poiseuille model over-predicts the velocity across the entire channel with an error

five times that found in the reference Poiseuille case at Kn = 1. The deviation from

equilibrium is intricately coupled with the range of direct influence of the wall on the

gas molecules of the flow. As the Knudsen number increases, so does the probability

of finding a molecule whose last collision was with the wall. It is reasonable to assume

that the TMAC will be a sensitive factor at higher Knudsen numbers. Therefore,

care should be exercised when using an empirical model to predict a flow with a

TMAC value different from that used in the database to construct the model.
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Figure 2.12: Poiseuille flow for different gases at Kn = 1 (a) Nitrogen and (b) He-
lium.

2.6.4 Helium Gas Flows

The molecular weight of helium is one tenth that of argon, which means the most

probable molecular speed of helium is over 3 times faster than argon. By comparison

the difference between the most probable molecular speeds of argon and nitrogen

is only 16%. While the optimum coefficients found in the database for each gas

(Table 2.2) are similar, the errors at high Knudsen numbers are larger when the

argon model is used for nitrogen gas flows. The large difference in molecular speeds

between the helium cases and the models’ database could affect the accuracy of the

models’ prediction. In order to evaluate this large change in molecular speeds, helium

Couette and Poiseuille flows are simulated at Kn = 1. The helium gas is found to

have no effect on the ability of the new unified Couette model to predict Couette

velocity profile, the L2 error is within the model accuracy of 2% for the baseline

case. In Figure 2.12, the DSMC solution (circles) and the Navier-Stokes solution

(solid line) using our Poiseuille model are presented for the Poiseuille velocity profile

of helium gas at Kn = 1. The increase in the random or thermal speed due to the

lighter helium gas introduces more statistical scatter in the DSMC solution than the
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argon and nitrogen cases. The increased scatter in the velocity profile is illustrated

in Figure 2.12, but the overall scatter is still less than 3% across the channel. For the

helium Poiseuille flow, the Navier-Stokes solution over-predicts the DSMC velocity

profile throughout the channel resulting in a 12% higher mass flux than the DSMC

solution. Furthermore, the error in the L2 norm of the velocity profile is 15%, which is

over 7 times larger than the reference Poiseuille case at Kn = 1. The absence of error

in the Navier-Stokes prediction for Couette flow is due to the viscosity independence

of the velocity profile and further differentiates the model performance between flow

types.

2.6.5 Body force driven flow with uniform rates of suction and injection

In order to test a one dimensional flow with a non-zero convective acceleration,

the boundary conditions for a body force driven flow are changed to include a uni-

form fluid injection at the lower wall and a uniform suction at the upper wall. In

Figure 2.13, the DSMC solution (circles) and the Navier-Stokes solution (solid line)

using the new unified Poiseuille model are presented for the velocity profile of a body

force driven flow with uniform rates of suction and injection for argon gas at Kn = 1.

The body force is chosen to drive the flow at a maximum velocity of 20 m/sec, while

the injection and suction rates maintain a constant 20 m/sec cross flow. The presence

of cross flow in the solution skews the normally symmetric Poiseuille velocity profile

in the direction of the cross flow. This asymmetry in the DSMC solution creates a

10% difference between the slip velocity at the upper and lower wall boundaries, and

shifts the location of the maximum velocity from the center by 8% of the channel

width. The asymmetry in the Navier-Stokes solution due to the cross flow is not as

pronounced as in the DSMC solution. As illustrated in Figure 2.13, the difference
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Figure 2.13: Force driven duct flow with uniform suction and injection at the walls
for Argon gas at Kn = 1.

between the upper and lower slip velocities is less than 7% in the Navier-Stokes solu-

tion, while the location of the maximum velocity has shifted only 2% of the channel

width. Furthermore, the difference in the velocity gradient at the walls between

the DSMC and Navier-Stokes solutions creates an error in the wall shear stress of

8%. The Navier-Stokes solution using the new unified Poiseuille model is able to

predict the mass flux to within 1% of the DSMC solution, in spite of missing the

key changes in the shape of the velocity profile due to the cross flow. The Poiseuille

model does not appear to follow the change of physics for the non-zero convective

acceleration. Thus, it is not recommended to use the Poiseuille model developed in

this investigation for complex flows when the Knudsen number is larger than 0.1.

2.7 Summary

There were two goals in this investigation. The first was to construct new uni-

fied Couette and Poiseuille models based on empirical corrections in order for the
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Navier-Stokes solution to match a wide range of known non-equilibrium flows. The

second was to evaluate their effectiveness as a predictive design tool. A database of

non-equilibrium solutions was first simulated with DSMC for Couette and Poiseuille

flows of argon and nitrogen, for Knudsen numbers ranging from 0.01 to 10. Then

the optimum slip and viscosity model coefficients for the Navier-Stokes solution were

found for each flow condition so that the velocity profile and shear stress matched the

DSMC data in a linear least squares sense. Next, models were constructed for each

flow type in order to capture the Knudsen number dependence of the slip and viscos-

ity model coefficients. The new unified Couette and Poiseuille models developed in

this investigation demonstrated their ability to capture all the non-equilibrium results

in the DSMC database for Couette flows with an L2 error norm in the velocity profile

of 2% and a shear stress error of 5%. Similarly for Poiseuille flows, the Poiseuille

model captured the results in the DSMC database with all velocity and mass flux

errors within 2%. The performance of the Couette and Poiseuille models developed

here is similar to other unified models proposed by Beskok and Karniadakis, and

Bahukudumbi, Park, and Beskok. All models, even those purposely used on flows

that were not their intended design, were accurate for near equilibrium conditions at

Knudsen numbers less than or equal to 0.1. Above this Knudsen number, the cor-

rection to the viscosity model coefficient indicates that the error in the shear stress

closure is at least 10% for Couette flows and 20% for Poiseuille flows. The models’

performance capturing the DSMC database was very sensitive in the transition and

free molecular regimes. Generally, as the Knudsen number increases, so does the

error using any model that was not explicitly constructed from the database used

in the comparison. The new unified Couette and Poiseuille models developed in

this investigation were able to predict flows that are an interpolation of the DSMC
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database to a similar accuracy as the database cases themselves. However, a lack

of asymptotic information in the Couette shear stress correction led to a 30% error

for the extrapolation case Kn = 20. In addition, a combination of both models

was able to predict a combined Couette and Poiseuille flow in the transition regime.

The Couette model was successful in predicting the velocity of all the cases because

the Navier-Stokes solution is independent of any errors in the shear stress closure

due to non-equilibrium. However, the Poiseuille model was not as successful in pre-

dicting flows with partial wall accommodation, helium gas, and non-zero convective

acceleration terms. The models developed in this investigation are empirical correc-

tions to a continuum solution that has little physical accuracy in the transition and

free molecular regimes, and the errors found when pushing the models outside the

database in these regimes are expected.



CHAPTER III

QUASI-MONTE CARLO CONVERGENCE

Low speed, non-equilibrium gas flows represent one of the most challenging fluid

simulation problems. As noted in Section 1.2.1, traditional CFD techniques based

on near continuum approximations fail to accurately simulate non-equilibrium flows

because the no-slip boundary condition and transport closures are no longer valid.

This loss of validity is attributed to the deviation of the flow from local thermody-

namic equilibrium. There is an insufficient number collisions occurring in the near

wall region for the flow to relax to the wall conditions. Similarly, there is an insuf-

ficient number collisions occurring throughout the flow to represent the continuum

transport of mass, momentum, and energy. The DSMC method of Bird [16] is a

particle method that is able to obtain physically accurate non-equilibrium solutions

by actually simulating the probabilistic behavior of the gas based on kinetic theory.

While accurate, the DSMC method suffers from long simulation times compared to

the Navier-Stokes solutions (see Section 1.2.2). Moreover, when the average velocity

of the flow in interest becomes sufficiently small relative to the random fluctuations

associated with the thermal energy of the gas, the DSMC method becomes compu-

tational intractable in practice.

The goal of this investigation is to try and obtain an accurate and efficient simu-

83
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lation of low speed, non-equilibrium gas flows for micro-scale applications. The first

approach of this investigation (see Chapter II) provides empirical corrections to the

no-slip boundary condition, and the continuum shear stress closure for the Navier-

Stokes equations to be applied to non-equilibrium flows. Because non-equilibrium

solutions are needed a priori for such corrections, the empirical approach has unsat-

isfyingly limited predictive capabilities. The second approach of this investigation,

which is covered in the remaining chapters, is to develop a quasi-Monte Carlo (QMC)

particle technique. QMC is an approximate integration technique that uses the same

framework as the Monte Carlo method to obtain an estimate by averaging samples

of the integrand. The appeal of the QMC technique is that, in theory, the method

enjoys a near linear error convergence rate with the number of samples. In contrast,

the Monte Carlo method converges in O
(
N−1/2

)
time with N samples. It is this

slow error convergence rate that impedes the application of the DSMC method to

low speed, non-equilibrium flows. Thus, a QMC particle method has the potential to

retain the physical accuracy of the DSMC simulation, while computing the desired

solution in significantly less time than DSMC.

The remainder of the chapter is devoted to the review of the basic theory of

quasi-Monte Carlo integration as a means to improve the error convergence rate of

DSMC. In Section 3.1, the theory concerning the error of the general Monte Carlo

and QMC integration methods is presented. The anticipated performance gains as-

sociated with the QMC theory are attributed to the result of Koksma and Hlawka.

Their result states that the integral approximation error of any sampling method,

Monte Carlo or QMC, is bounded by two quantities, the discrepancy of the sample

points, and the variation of the integrand. While the concepts of discrepancy and

variation are common in real analysis, they typically are not discussed in regards
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to most computational fluid techniques. For this reason, an engineering description

with examples is provided in Section 3.2 for the discrepancy, and Section 3.3 for the

variation. The QMC method improves the error convergence of its integral approx-

imation by sampling the integrand with a point set with a lower discrepancy than

random. In Section 3.4, two approaches for producing these low-discrepancy point

sets are reviewed. Specifically, the advantages of using a low-discrepancy sequence

instead of an optimal integration lattice are highlighted for applications of the QMC

method in this investigation.

3.1 Integration Error

In order to understand when the computational costs associated with the DSMC

method become intractable for low speed non-equilibrium flows, the general theory

behind Monte Carlo integration is presented in this section. Quasi-Monte Carlo

(QMC) integration attempts to improve the error convergence rate of Monte Carlo

by replacing the random sample points with a “better” distribution. The theory

behind QMC integration is also presented in this section; specifically, as it relates to

the ability of QMC to achieve a superior error convergence rate to Monte Carlo in

an asymptotic sense. Unfortunately, the integration error theory of Monte Carlo and

QMC is based on the asymptotic accuracy as the number of sample points used in

the approximations tends toward infinity. Moreover, the bounds associated with the

integration error are not necessarily very tight. Thus, for integral approximations in

practice (i.e. finite time and memory), one must directly compare the two methods

for each specific problem to ascertain which is faster.
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3.1.1 Monte Carlo Integration Error

Monte Carlo integration approximates the integral of a function by averaging

randomly selected function samples taken within the integration domain. These

function samples are all of equal weight. Hence, Monte Carlo integration yields a

rather simple numerical approximation [47]

∫

[0,1]s
f(u)du ≈ 1

N

N∑

i=1

f(xi), with xi ∈ U (0, 1)s, (3.1)

where xi ∈ U (0, 1)s denotes that the vectors xi are sampled from a uniform distri-

bution taken over the unit hypercube [0, 1]s.

Before proceeding, a brief discussion on the integration domain and the distribu-

tion of the random variates is necessary. In the Monte Carlo approximation (3.1),

the integration domain is assumed to be unit hypercube [0, 1]s; however, this need

not always be the case. In general, Monte Carlo integration can be used on any

integration domain R, provided there exists a means to generate uniform samples

on R,
∫

R
f(u)du ≈ λs(R)

N

N∑

i=1

f(xi), with xi ∈ R,

where the sample average is corrected by a factor equal to the volume of the domain

λs(R). There is, however, a practical reason for limiting Monte Carlo integration

to the unit hypercube. Specifically, there is no known direct means1 to produce a

random variate except from a uniform distribution on a finite interval [78]. The

pseudo random number generators (PRNGs) that serve as the backbone of modern

Monte Carlo integration only produce uniformly distributed variates in a finite inter-

val [a, b]. Thus, any implementation of Monte Carlo integration using a PRNG must

ultimately represent an integral over a finite domain [a1, b1]× [a2, b2]×· · ·× [as, bs]. It

1The term “direct means” used here refers to deterministic algorithms implemented on a com-
puter and excludes the use of precomputed tables of variates, such as [32].
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is then a straightforward process to apply a linear transformation to each dimension

of the integration domain to map the finite intervals to the unit hypercube.

Random variates with non-uniform distributions must be obtained by a transfor-

mation of a uniform distribution (e.g. the inverse cumulative, or transform, method,

the acceptance-rejection method, and the rectangle-wedge-tail method [78]). While

a general Monte Carlo method can be analyzed mathematically for any arbitrary

probability space, any computer implementation of the method must be reducible

to a sampling problem using uniformly distributed variates. Therefore, the Monte

Carlo approximation using uniformly distributed variates over the unit hypercube

represents the vast majority of practical applications for the method. For this reason,

the scope of Monte Carlo integration covered is limited to the approximation in (3.1)

in this investigation. As a matter of convenience, let I
s

denote the unit hypercube

consisting of closed unit intervals [0, 1]s, and Is denote the unit hypercube consisting

of half-open unit intervals [0, 1)s. While the distinction between the two sets I and

Is is important to mathematicians, it has little impact on the actual implementation

of the Monte Carlo method considered here.

The error in the Monte Carlo approximation (3.1) depends on the number of

sample points N and the variance of the integrand. The variance σ2(f) of a function

f is defined by

σ2(f) =

∫

I
s

(

f(u) − E(f)
)2

du,

where E(f) =
∫

I
f(u)du denotes the expected value of the integral of f . An estimate

of the expected error in the Monte Carlo approximation is obtained by averaging the

error using every possible random vector x1,x2, . . . ,xN to yield

∫

I

∫

I

· · ·
∫

I
s

(

1

N

N∑

n=1

f(xn) − E(f)

)2

dx1dx2 · · · dxN =
σ2(f)

N
. (3.2)
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The square root of (3.2) is referred to as the standard error and is equal to σ(f)/
√

N ,

where σ(f) is the standard deviation of f . If the standard deviation is bounded, the

central limit theorem [47] yields a stronger form for the error bound

lim
N→∞

Prob

[

c1σ(f)√
N

≤ 1

N

N∑

n=1

f(xn) − E(f) ≤ c2σ(f)√
N

]

=
1√
2π

∫ c2

c1

e−t2/2dt. (3.3)

Therefore, the expected convergence rate of Monte Carlo integration is O
(
N−1/2

)
,

where N is the number of samples. It is important to note that the error bound (3.3)

is independent of the dimension of the integral.

Often for practical applications of Monte Carlo integration, one is interested in

the relative error of the approximation; that is, the magnitude of the error normalized

by the expected value. Using the result in (3.3), the relative error is bound, with

95% certainty, 2 by the following inequality,

∣
∣
∣

1
N

∑N
n=1 f(xn) − E(f)

∣
∣
∣

E(f)
≤ 1.4√

N

(
σ(f)

E(f)

)

. (3.4)

Note that the relative error is directly proportional to the ratio of the standard

deviation to the expected value σ(f)/E(f) in addition to the O
(
N−1/2

)
dependence

on sample size. Suppose, for example, the standard deviation of some function is ten

times greater than the expected value of its integral, i.e. σ(f)/E(f) = 10. In order

to approximate this integral to within 1% of its true value (with a 95% confidence

interval) using the Monte Carlo method, one is required to average N = 2 · 106

independent samples of the function. Hence, for low speed, non-equilibrium gas

flows, where the standard deviation of the velocity distribution function can be more

than 1000 times greater the bulk flow velocity, the number samples required for an

accurate DSMC simulation can extend beyond the trillions.

2The actual probability the relative error is within the prescribed bound is erf(1.4) ≈ 0.95228512.
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3.1.2 Quasi-Monte Carlo Integration Error

Quasi-Monte Carlo (QMC) integration is carefully designed to improve the con-

vergence rate of Monte Carlo by substituting the random variates in (3.1) with more

evenly distributed samples. The name QMC applies to any integration approxima-

tion that uses equally weighted samples like Monte Carlo (3.1), but offers a near linear

theoretical convergence rate O (N−1(log N)s−1). The near linear error convergence

rate of QMC represents a significant improvement to the O
(
N−1/2

)
convergence rate

of Monte Carlo. For the probabilistic simulation of low speed non-equilibrium gas

flows, achieving near linear convergence with QMC has the potential to improve the

computation time required for such flows by orders of magnitude over traditional

DSMC. In order to understand how it is possible for QMC integration to obtain

this dramatic increase in performance, one must begin with the cornerstone of QMC

theory – the Koksma-Hlawka inequality (see [127] p. 18 for a proof).

Theorem 3.1 (Koksma-Hlawka inequality) If f has bounded variation VHK(f)

on Is in the sense of Hardy and Krause, then, for any point set P = {x1, . . . ,xN} ∈

Is, one has
∣
∣
∣
∣
∣

1

N

N∑

i=1

f(xi) −
∫

[0,1]s
f(u)du

∣
∣
∣
∣
∣
≤ VHK(f)D∗

N(P ), (3.5)

where D∗
N(P ) denotes the star discrepancy of the point set P .

Koksma [81] first proved the result (3.5) in one dimension, and Hlawka [66] ex-

tended the result to the multi-dimensional case. An explanation and proof of the

one dimensional result of Koksma is given in [127] (see Theorem 2.9). The Koksma-

Hlawka inequality provides an error bound to any integral approximation using

equally weighted samples. Fundamentally, the Koksma-Hlawka inequality separates

the integral approximation error into two components; the contribution due to the
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integrand behavior, i.e. variation VHK(f); and the contribution due to the choice of

sample points, i.e. discrepancy D∗
N(P ). In contrast to the probabilistic error associ-

ated with Monte Carlo (3.3), the Koksma-Hlawka inequality is entirely deterministic

for a given function and point set.

The goal of QMC integration is to improve on Monte Carlo error convergence for

any integrand with bounded variation. In order to accomplish this, QMC strives to

use point sets for sampling the integrand with a theoretical star discrepancy lower

than the average random sequence used for Monte Carlo. The star discrepancy

of a random sequence has an O
(
N−1/2(log log N)1/2

)
convergence rate (expected)

[47]. Given the extremely slow growth of the (log log N) term, the error bound

from the Koksma-Hlawka inequality (3.5) is roughly the same order as obtained

from the Central Limit Theorem O
(
N−1/2

)
. Rather than using random variates,

QMC integration generates its samples from point sets that have a star discrepancy

with an asymptotic convergence of O (N−1(log N)s−1), where s is the dimension of

the integrand. Sequences and point sets that achieve this near linear convergence

are referred to as low-discrepancy sequences and low-discrepancy points sets. As a

consequence of the Koksma-Hlawka inequality (3.5), the theoretical error convergence

of QMC integration using a low-discrepancy sequence is O (N−1(log N)s−1), which

is superior to Monte Carlo method. In order to understand the construction and

implementation of the QMC method, the concepts of discrepancy and variation are

discussed in Sections 3.2 and 3.3 respectively.

3.2 Discrepancy

Informally, the discrepancy of a point set P is a measurement of how evenly

distributed, or balanced, the points of P are within a specified domain D. For an
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“even distribution” of points, there should be no regions of the domain that have

an appreciably higher or lower density of points relative to the rest of the domain.

This notion is quantified by the discrepancy as the average difference between the

fraction of points from P in any subregion d ⊆ D and the volume ratio of d to D.

Hence, a point set with a smaller discrepancy yields a more balanced distribution

of points throughout the domain. A set of points is uniformly distributed if every

subregion d ⊆ D contains a fraction of the point set equal to the volume ratio d to

D. In this case, which can only occur for an infinite point set, the discrepancy of

the uniformly distributed point set is zero. Intuitively, a more balanced distribution

of sample points throughout the integration domain should yield a more accurate

approximation of the integral in (3.5). It is precisely this connection between the

distribution of sample points and the integration error that the Koksma-Hlawka

inequality captures with the discrepancy measure. In regards to general domains,

for the reasons mentioned earlier in Section 3.1, all analysis in this investigation is

limited to the unit hypercube.

Formally, the definition of the discrepancy of a point set requires a family of sets

of the unit hypercube and a norm over family of sets to be specified. For a point set

P ∈ I
s
with N points, the discrepancy DN(P ;F) over the family of sets F is defined

as

DN(P ;F) =
norm
B∈F

(
A(P ; B)

N
− λs(B)

)

, (3.6)

where A(P ; B) is the counting function that denotes the number of points from P

that are contained within the set B. Note that every set B ∈ F is contained within

I
s
.

There are four basic families of sets that are commonly used in the definition of

discrepancy. The first family of sets is J ∗, and consists of all the half-open intervals
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on I
s

with one vertex at the origin; that is

J ∗ =

{
s∏

i=1

[0, ai) : 0 ≤ ai ≤ 1 and 1 ≤ i ≤ s

}

. (3.7)

The family J ∗ is used to define the star discrepancy found in the Koksma-Hlawka

inequality (3.5). The second family of sets is J , which is a generalization of J ∗, and

consists of all the half-open intervals on I
s
; that is

J =

{
s∏

i=1

[ai, bi) : 0 ≤ ai < bi ≤ 1 and 1 ≤ i ≤ s

}

. (3.8)

The family J is used to define the extreme discrepancy. The third family of sets is

H, and consists of all the half-spaces obtained by a hyperplane intersecting I
s
. That

is, H is the set of point x ∈ I
s

that satisfies

n · (x − x0) ≥ 0, (3.9)

for all unit vectors n ∈ Rs, and all x0 ∈ I
s
. The family H is used to define a

type of isotropic discrepancy that appears in the study of 3D computer graphics

rendering. The fourth family of sets is C, and consists of all the convex polytopes

contained within I
s
. The family C is used to define the general isotropic discrepancy

encountered in mathematics literature. However, the general isotropic discrepancy

defined by C is nearly impossible to compute in practice; as such, no explicit form of

the family C is provided here.

In order to complete the definition in (3.6), it is necessary to discuss the concept

of a norm over a family of sets. The most common discrepancy norm found in the

discussion of QMC integration is the norm used for the star discrepancy, which is

the L∞ norm. The L∞ norm over a family of sets is defined in analogous manner as

the L∞ norm of a vector. Specifically, the L∞ discrepancy of the point set P over a
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general family of sets F is given by

DN(P ;F) = sup
B∈F

∣
∣
∣
∣

A(P ; B)

N
− λs(B)

∣
∣
∣
∣
. (3.10)

The L∞ discrepancy is the measure of the maximum deviation of the point density

from the average density of points throughout the domain. When the point set

is used to sample a function for an integral approximation, the L∞ discrepancy is

necessary to establish the deterministic upper bound on the error in the Koksma-

Hlawka inequality (3.5).

Another discrepancy norm encountered less frequently is the L2 norm, which

again is similar to its vector space analogue. For families of sets where the member

sets are easily defined by a few independent variables, an L2 norm of the argument in

(3.6) can be obtained by integrating over all the member sets. Consider, for example,

the family of sets J ∗. Define each set B ∈ J ∗ by a single vector x ∈ I
s

such that

B(x) =
∏s

i=1[0, xi). In this case, let T ∗
N denote the L2 discrepancy of the point set

P over J ∗; hence,

T ∗
N(P ) =

(
∫

x∈I
s

(
A
(
P ; B(x)

)

N
−

s∏

i=1

xi

)2

dx

)1/2

. (3.11)

The advantage of the L2 discrepancy is that it can be calculated directly without

a costly search for the supremum value, unlike the L∞ norm. In general, either

advanced orthogonal range searching structures or exhaustive searches are required

to find the exact L∞ discrepancy of a general point set, which are discussed in

greater detail in the following section. More recent work, by Hickernell [62], extends

the concept of the L2 norm over a family of sets to the general Lp norm in order to

create an entire class of Lp discrepancies.
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3.2.1 Calculation of the star discrepancy D∗
N

The star discrepancy D∗
N of a point set P is the L∞ norm over the family of sets

J ∗ given in (3.7). Hence, D∗
N(P ) is defined as

D∗
N(P ) = sup

B∈J ∗

∣
∣
∣
∣

A(P ; B)

N
− λs(B)

∣
∣
∣
∣
. (3.12)

The star discrepancy D∗
N is the most common discrepancy measure found in the QMC

literature because of its role in the Koksma-Hlawka inequality (3.5). Moreover, the

asymptotic convergence of most low-discrepancy sequences is established in terms of

their star discrepancy. For these reasons, the star discrepancy is given the greatest

attention in this investigation with regards to the calculation of discrepancy.

For a one dimensional sequence P = (x1, . . . , xN ), ordered such that 0 ≤ x1 ≤

x2 ≤ · · · ≤ xn ≤ 1, the star discrepancy of P is calculated from

D∗
N(P ) =

1

2N
+ max

1≤n≤N

∣
∣
∣
∣
xn − 2n − 1

2N

∣
∣
∣
∣
. (3.13)

A derivation of (3.13) is found in [127] (see Theorem 2.6). The calculation in (3.13)

requires N evaluations of the absolute value term in order to obtain the maximum.

However, this is under the assumption of an ordered point set, which is generally

not the case. The cost of sorting a point set is, on average, O (N log N) using any

of the popular techniques like Quicksort or Heapsort [31, 79]. Therefore, the cost of

calculating the one dimensional star discrepancy D∗
N(P ) is also O (N log N).

For a multi-dimensional sequence, the process of calculating the star discrepancy

becomes decidedly more complex. The presence of the discontinuous counting func-

tion A(P ; B) prevents popular methods employed for well-behaved functions, such

as the conjugate gradient method [147], from being used to find the supremum value

in (3.12). Left with only a brute force search of an infinite set of intervals, it is neces-

sary to reduce J ∗ to a finite set of candidate intervals B∗. Restricting the candidate
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Figure 3.1: Illustration of the possible supremum values in the calculation of the star
discrepancy D∗

N(P ) of a two dimensional point set P .

intervals to only those that produce local extrema for the absolute value function in

(3.12), reduces the number of intervals that must be checked to find the supremum

value. Fortunately, for a finite point set, the number of candidate intervals in B∗ is

also finite.

In order to illustrate how the reduction in candidate intervals is achieved, consider

the random two dimensional sequence given in Figure 3.1. For the set of intervals

B(x) defined as

B(x) = [0, x) × [0, 1/2), for 0 ≤ x ≤ 1,

the absolute value function from (3.12),

δ(x) =

∣
∣
∣
∣
∣

A
(
P ; B(x)

)

N
− λs

(
B(x)

)

∣
∣
∣
∣
∣
,

is also plotted in Figure 3.1. Note that the local extrema of δ(x) occur whenever x

is equal to the location of a point in P with a y coordinate less than 1/2 or when

x = 1. Specifically, these locations correspond to intervals with a point in P on the

x − boundary of the interval. Therefore, to find the supremum value over the sets

B(x), one only needs to evaluate the function δ(x) at seven values of x (technically

13 locations– as both sides of the discontinuous jump should be checked).
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In fact, for any multi-dimensional point set P , the set of candidate intervals for

the supremum search can be reduced to only intervals that possess points in P or 1

on each boundary. To state this in a slightly more general form, let P = (x1, . . . ,xN)

represent an s-dimensional set of points, with each point for 1 ≤ n ≤ N defined as

xn = (x
(1)
n , . . . , x

(s)
n ). Next let Pi represent the set of the ith coordinates from each

point xn ∈ P , that is Pi = (x
(i)
1 , . . . , x

(i)
N ). The set of candidate intervals B∗ is then

defined by

B∗ =

{
s∏

i=1

[0, xi) and
s∏

i=1

[0, xi] : xi ∈ Pi ∪ 1, 1 ≤ i ≤ s

}

. (3.14)

Note that both the half-closed and closed intervals must be included in B for the

following reason. Given a point p ∈ Pi, the local maxima can occur in either direction

xi → p− and xi → p+, as demonstrated by the discontinuous jumps in Figure 3.1.

The maximum number of potential candidates for the supremum in (3.12) is now

reduced to a finite value equal to card(B) = (2(N + 1))s. Hence,

D∗
N(P ) = sup

Bc∈B

∣
∣
∣
∣

A(P ; Bc)

N
− λs(Bc)

∣
∣
∣
∣
. (3.15)

In order to understand why the supremum search in (3.12) can be reduced to

the finite set of intervals that have a point in P or 1 on each boundary, consider the

following argument. Suppose the supremum value of (3.12) is obtained for the closed

interval B(x) =
∏s

i=1[0, xi] ∈ J ∗ defined by the vector x = (x1, . . . , xs), and that

B(x) /∈ B∗. Then, there exists at least one dimension of B(x) without a point from P

on its boundary; that is to say xk /∈ Pk for some k. If such a dimension of the interval

B(x) were to exist, one could perturb slightly the interval to change its volume

measure without changing the number of points from P that it contains. Thus, there

would exist vectors x− = (x1, . . . , xk − ε, . . . , xs) and x+ = (x1, . . . , xk + ε, . . . , xs),
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defined for ε > 0, such that

A
(
P ; B(x−)

)
= A

(
P ; B(x)

)
= A

(
P ; B(x+)

)
,

and

λs

(
B(x−)

)
< λs

(
B(x)

)
< λs

(
B(x+)

)

Therefore, the absolute value term in (3.12) for either B(x−) or B(x+) will be greater

than the supremum value associated with B(x), which contradicts the initial assump-

tion. Hence, a closed interval must be in B∗ if it is to yield the supremum value for

the discrepancy. The same argument can be applied to half-open intervals to con-

clude that the supremum value in (3.12) must be associated with a candidate interval

in B∗.

While the family of sets B∗ contain all the possible candidate intervals for the

supremum value in (3.12), not every interval in B∗ is necessarily a valid candidate.

Specifically, the definition of B∗ decouples the dimensions of each point in P making

it possible to have a candidate interval without a point from P on the boundary.

For example, consider the simple set P = {( 1
4
, 1

3
), (1

2
, 2

3
)}. The interval [0, 1

4
) × [0, 2

3
)

is in B∗, but it does not have a point on its y = 2
3

boundary. In addition, points in

P that share a common coordinate value produce duplicate intervals in B∗ that can

also be excluded. However, the number of potential candidate intervals in B∗ for the

supremum search remains O (N s), even after excluding these pathological cases.

In order to determine the computational complexity required for calculating the

multi-dimensional star discrepancy, the cost of evaluating each candidate interval

in the supremum search of B∗ is needed. For each candidate interval, the absolute

value term in (3.15) is calculated to determine its supremum value. The main cost of

evaluating the absolute value term is attributed to the counting function A(P ; Bc).
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Simply counting the number of x ∈ P that are also x ∈ Bc will calculate A(P ; Bc) in

O (N) steps, yielding an overall calculation cost of O (N s+1) for the star discrepancy.

However, it is possible to calculate A(P ; Bc) without querying every point in P if the

point set is ordered in some manner. More specifically, if the points of P are stored

in an s dimensional orthogonal range tree [37], then A(P ; Bc) can be calculated in

O ((log N)s) steps. The one time cost of constructing the orthogonal range tree is

O (N(log N)s−1),3 yielding an overall calculation cost of O (N(log N)s) for computing

the star discrepancy.

The computational savings obtained using the orthogonal range trees for the cal-

culation of A(P ; Bc) decreases as the sequence dimension increases. Moreover, as the

sequence dimension increases, the data structures associated with orthogonal range

trees become increasing more complicated. Regardless of the means used to calcu-

late A(P ; Bc), the star discrepancy calculation is always limited by the complexity

of the candidate interval set, which is O (N s). Thus, for the large sequences (in

both dimension and length) needed in this investigation, any exhaustive search of

the candidate intervals Bc ∈ B∗ for the supremum is impractical.

Instead of trying to find the exact value of the star discrepancy D∗
N(P ) using an

exhaustive search for the supremum in (3.12), one can obtain an estimate D
∗
N(P ) by

limiting the supremum search to an even smaller set of intervals S than the family

B∗. That is,

D∗
N(P ) ≈ D

∗
N = sup

B∈S

∣
∣
∣
∣

A(P ; B)

N
− λs(B)

∣
∣
∣
∣
. (3.16)

Further computational savings can be realized if one defines the candidate intervals in

S independently of the point set P , because the calculation of the counting function

is greatly simplified. In this case, the points of P are first sorted into the intervals of

3The memory cost of storing the orthogonal range tree is also O
(
N(log N)s−1

)
.
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S via the Pigeon-Hole sort (or counting sort) [31] in linear time O (N).4 Then, with

the points sorted, the counting function can be calculated in constant time O (1) for

every candidate interval in S. While the resulting Pigeon-Hole algorithm for the star

discrepancy estimate D
∗
N is rather inelegant, it is efficient with a total computational

cost of O (N + card(S)). Thus, by choosing the set S such that card(S) � card(B∗),

the performance is much faster than the exact calculation using the supremum search.

Furthermore, the Pigeon-Hole algorithm for the star discrepancy estimate D
∗
N does

provide a consistent approximation with a known error bound. It is to be expected

that the assured accuracy of the star discrepancy estimate D
∗
N will decrease when

the number of candidate intervals in S decreases.

For this investigation, the reduced set S in the Pigeon-Hole algorithm for the star

discrepancy estimate D
∗
N is taken to be the set of equally spaced intervals defined by

S =

{
s∏

i=1

[0, ni

M
) : 1 ≤ ni ≤ M

}

, (3.17)

where M is a constant denoting the number of intervals in each dimension. The

number of intervals that must be checked to find the supremum in (3.16) is M s.

Since the intervals are equally spaced, the Pigeon-Hole sort is accomplished in O (N)

time yielding an overall computational cost of O (N + M s). The accuracy of the star

discrepancy approximation using the definition of S in (3.17) is found to be

0 ≤ D∗
N(P ) − D

∗
N(P ) ≤ 1 −

(

1 − 1

M

)s

≈ O
(
M−1

)
. (3.18)

A more elaborate algorithm for approximating the star discrepancy with a reduced

set of candidate intervals is considered by Thiémard [175], which allows for variably

spaced intervals to improve the accuracy.

4The Pigeon-Hole sort is performed in linear time when their exists a continuous map from the
sorting range to the sorting intervals (or bins) that can be computed in constant time, e.g. intervals
of equal size. Otherwise, the sorting interval is determined using O (log N) comparisons, which
yields an overall computation time of O (N log N).
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In order to understand its actual implementation, the Pigeon-Hole algorithm for

the star discrepancy estimate D
∗
N is presented in greater detail here. The algorithm

can be extended to any number of dimensions, but in the interest of keeping the index

notation as simple as possible, only the calculation in two dimensions is considered

here. Define the matrices E,A ∈ RM×M to represent the counting function over the

following discrete intervals:

Emn = A
(
P ; [m−1

M
, m

M
) × [n−1

M
, n

M
)
)

Amn = A
(
P ; [0, m

M
) × [0, n

M
)
)
.

The matrix E is calculated from the Pigeon-Hole sort of the sequence P , with a

computational cost O (N). The matrix A is determined from the matrix E through

the recursive construction given by

A11 = E11,

Am1 = Em1 + Am−1,1 2 ≤ m ≤ M,

A1n = E1n + A1,n−1 2 ≤ n ≤ M,

Amn = Emn + Am−1,n + Am,n−1 − Am−1,n−1 2 ≤ m,n ≤ M. (3.19)

The calculation of the matrix A using (3.19) is performed in O (M 2) time. Once

the matrix A is obtained for a given point set P , the approximation to the star

discrepancy D
∗
N(P ) is calculated by

D
∗
N(P ) = max

1≤m,n≤M

∣
∣
∣
∣

Amn

N
− mn

M2

∣
∣
∣
∣
. (3.20)

The maximum value of (3.20) is tracked while the matrix A is constructed; thus, the

total cost for estimating the star discrepancy D
∗
N(P ) is O (N + M 2). Furthermore,

from the result in (3.18), the error in the star discrepancy approximation D
∗
N(P ) is
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Figure 3.2: Convergence of the approximate star-discrepancy D
∗
N in two dimensions:

(a) varying the numbers of sorting bins M for the Halton sequence; and
(b) comparing several different types of point sets.

at most given by

D∗
N(P ) − D

∗
N(P ) <

2

M
− 1

M2
. (3.21)

Example calculations using the preceding algorithm to approximate the star dis-

crepancy (3.20) of the low-discrepancy Halton sequence [56] are presented in Figure

3.2(a). In particular, three different values of M , the number of discrete intervals in

each dimension, are considered for the Halton sequence. Using the result in (3.21),

the maximum possible error associated with approximate star discrepancy D
∗
N(P ) is

roughly 0.02, 0.002, and 0.0002 when M = 102, 103, and 104, respectively. However,

in Figure 3.2(a), there does not appear to be a significant difference between the

star discrepancy approximations despite the maximum possible error varying by two

orders of magnitude. It is important to note that the upper bound in (3.21) corre-

sponds to the rather improbable pathological case when all the points are distributed

arbitrarily close to the domain edges at x = 1 and y = 1. The lack of sensitivity

to number of discrete intervals M is due in large part to the fact that, as a low-

discrepancy sequence, the construction of the Halton sequence attempts to maintain

a near constant point density throughout the domain. Hence, for any size interval,
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the fraction of points contained within the interval should scale appropriately.

Further examples of the approximate star discrepancy calculation (3.20) are given

in Figure 3.2(b) to demonstrate the convergence of some common point sets. As

expected, the star discrepancy of the random sequence used in the Monte Carlo con-

verges roughly as O
(
N−1/2

)
for N samples. The low-discrepancy Halton sequence

has a star discrepancy that is much better than the random sequence for all sequence

lengths presented. The star discrepancy of the Halton sequence has an initial con-

vergence rate that is near linear; however, for N > 104, the convergence rate is less

than linear, yet still better than random. It is important to note that the less than

theoretical convergence observed for the Halton sequence does not preclude it from

being a low-discrepancy point set. The Halton sequence receives a low-discrepancy

classification because it can be proven mathematically that the star discrepancy con-

verges asymptotically D∗
N(P ) ≈ O (N−1(log N)s−1) as N tends to infinity. Thus, the

results in Figure 3.2 are only indicative of the performance of the Halton sequence

for these set sizes.

Another example of a low-discrepancy point set is the optimum integration lat-

tice obtained from Korobov’s method of good lattice points [82, 83]. In Figure 3.2,

the optimum lattice achieves an even faster star discrepancy convergence than the

Halton sequence. In general, optimum integration lattices typically have a lower dis-

crepancy than low-discrepancy sequences for the same number of points; the reasons

for this are presented later in Section 3.4. The final example to note in Figure 3.2

is the set of equally spaced Cartesian grid points. This is the same set of sample

points used by the open Newton-Cotes formulas for integral approximations [20].

The Newton-Cotes formulas can be extremely powerful for integrals in one dimen-

sion when different sample weights are selected to achieve a high order accuracy.
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However, methods that sample an integrand at Cartesian grid points have an error

convergence rate that decreases significantly with increasing dimension. This prop-

erty shared by the Newton-Cotes formulas and Gaussian quadrature is referred to as

“the curse of dimensionality [127].” For the open Newton-Cotes formulas, the poor

error convergence in large dimensions is indicated by the asymptotic convergence of

the star discrepancy, which is O
(
N1/s

)
(see Theorem 3.14 in [127]). In Figure 3.2,

the observed convergence rate of the star discrepancy of the two dimensional Carte-

sian grid points is consistent with theory (i.e. O
(
N−1/2

)
), and appears the same as

a random sequence.

3.2.2 Calculation of the extreme discrepancy DN

The extreme discrepancy DN of a point set P is the L∞ norm over the family of

sets J given in (3.8). Hence, DN(P ) is defined as

DN(P ) = sup
B∈J

∣
∣
∣
∣

A(P ; B)

N
− λs(B)

∣
∣
∣
∣
. (3.22)

An upper and lower bound on the extreme discrepancy is established in terms of the

star discrepancy such that

D∗
N ≤ DN ≤ 2sD∗

N . (3.23)

The family of sets J ∗, that the star discrepancy is based upon, is a strict subset

of the family of sets J ; hence, the star discrepancy serves as a lower bound for the

extreme discrepancy in (3.23). By constructing the counting function and volume

measure of a general interval in J from a linear combination of intervals in J ∗, the

upper bound on the extreme discrepancy (3.23) is obtained in [85].

For a one dimensional sequence P = (x1, . . . , xN ), ordered such that 0 ≤ x1 ≤

x2 ≤ · · · ≤ xn ≤ 1, the extreme discrepancy of P is calculated from

DN(P ) =
1

N
+ max

1≤n≤N

( n

N
− xn

)

− min
1≤n≤N

( n

N
− xn

)

.
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A proof of the preceding result is given in [127]. As with the star discrepancy

calculation (3.13), the asymptotic computational cost for the extreme discrepancy of

a one dimensional sequence is O (N log N); because the calculation is limited by the

sorting of the point set.

The exact calculation of the extreme discrepancy for a multi-dimensional se-

quence follows the same procedure as the star discrepancy calculation described in

Section 3.2.1. The key difference is that the intervals in J do not require a vertex

at the origin. Using the same argument as in the star discrepancy calculation, each

dimension of a candidate interval, for the supremum search in (3.22), must have

points in P or 0 or 1 for a boundary. Hence, the number of candidate intervals

in the exact calculation of the multi-dimensional extreme discrepancy increases to

O (N 2s). The cost of evaluating the counting function in (3.22) is the same as in

the star discrepancy calculation; that is, O ((log N)s) if the points in P are stored

in an orthogonal range tree. Thus, the total cost of calculating the exact extreme

discrepancy is O ((N 2 log N)s). Similar reasoning can be applied to the approximate

calculation of the extreme discrepancy to yield an O (N + M 2s) computational cost,

using M equally spaced intervals in each dimension for the supremum search.

3.2.3 Calculation of the quadratic mean discrepancies T ∗
N and TN

The quadratic mean star discrepancy T ∗
N of a point set P is the L2 norm over the

family of sets J ∗ given in (3.7). The explicit definition of T ∗
N(P ) was given previously

in (3.11). Given the analogue between D∗
N and the L∞ norm, it is natural that the

star discrepancy is an upper bound on the quadratic-mean star discrepancy; that is

Cs

(
D∗

N(P )
) s+2

2 ≤ T ∗
N(P ) ≤ D∗

N(P ),
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where the lower bound on the quadratic-mean star discrepancy is proven by Nieder-

reiter in [124]. Note that Cs is a function that depends only on the dimension of

the sequence s. It is possible to establish an integration error bound similar to the

Koksma-Hlawka inequality (3.5) using T ∗
N instead of D∗

N , see Zaremba’s proof in [192]

for functions with continuous mixed partial derivatives. Also, an even more direct

relationship between the quadratic-mean discrepancy and the expected integration

error is established by Woźniakowski in [190]. The results in [190] offer a much more

optimistic error bound than the Koksma-Hlawka inequality for a certain class of

functions that are not of bounded variation in the sense of Hardy and Krause.

In [183], Warnock establishes that T ∗
N(P ) can be calculated directly from

(T ∗
N)2 = 3−s +

1

N2

N∑

m=1

N∑

n=1

s∏

i=1

(1 − max(xm,i, xn,i)) −
2−s+1

N

N∑

n=1

s∏

i=1

(1 − x2
n,i). (3.24)

The double sum in the calculation (3.24) implies that the asymptotic computation

cost is O (N 2) with an implied coefficient that increases linearly with the dimension

s. For a multi-dimensional sequence, this is a vast improvement over the calculation

of the star discrepancy D∗
N in Section 3.2.1. Moreover, the calculation is easier to

implement than the star-discrepancy calculation because there is no need for sorting

the point set. As outlined by Heinrich in [59], some calculation of the double sum

can be avoided, if the ordering of the points is exploited, to yield a computation cost

of O (N(log N)s).

The quadratic mean extreme discrepancy TN of a point set P is the L2 norm over

the family of sets J given in (3.8). Hence, TN(P ) is defined as

TN(P ) =

(
∫

x,y∈I
s

xi<yi, 1≤i≤s

(
A
(
P ; B(x,y)

)

N
−

s∏

i=1

(yi − xi)

)2

dx

)1/2

.

Using the same approach as in [183], Morokoff in [116] establishes the following direct



106

calculation for TN(P ):

T 2
N = 12−s +

1

N2

N∑

m=1

N∑

n=1

s∏

i=1

min(xm,i, xn,i) · (1 − max(xm,i, xn,i))

−2−s+1

N

N∑

n=1

s∏

i=1

xn,i(1 − xn,i).

As before, the double sum in the preceding calculation implies that the asymp-

totic computation cost of TN(P ) is O (N 2) with an implied coefficient that increases

linearly with the dimension s. The quadratic mean extreme discrepancy does not

generally appear in the QMC literature because no direct connection between the

integration error and TN has been established. Although, it is conjectured in [116]

that TN < T ∗
N .

3.2.4 Calculation of the isotropic discrepancies HN and JN

The half-plane discrepancy HN of a point set P is the L∞ norm over the family

of sets H given in (3.9). Hence, HN(P ) is defined as

HN(P ) = sup
B∈H

∣
∣
∣
∣

A(P ; B)

N
− λs(B)

∣
∣
∣
∣
. (3.25)

The half-plane discrepancy HN is a useful error measure that occurs in some applica-

tions of ray tracing used in 3-D computer graphics rendering. Specifically, when two

3-D objects overlap on the computer screen, pixels on the visual boundary between

the objects are often sampled with several rays to approximate the display color. If

a boundary pixel is viewed as a unit square, then the half-plane discrepancy HN(P )

is the maximum possible color error produced when sampling the pixel from rays

originating at the points in P .

In the context of ray tracing techniques for 3-D computer graphics rendering,

a very in-depth description is presented in [37] for the algorithm to calculate the

half-plane discrepancy in two dimensions. Similar to the supremum search for the
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star and extreme discrepancies in Sections 3.2.1 and 3.2.2, one must consider all the

possible candidate half-planes in H that could produce the supremum value in (3.25).

It turns out, there are two types of half-planes that can produce the necessary local

extrema of (3.25); hence, one can restrict his/her supremum search to only them.

Type 1 half-planes intersect a single point in P and a vertex of the unit square I
2
,

and half-planes intersecting a single point in P at such an angle as to maximize or

minimize the volume measure λs(B) in (3.25). The number of candidate Type 1

half-planes is O (N) because the number of local extrema associated with each single

point is finite. Type 2 half-planes intersect any two points in P yielding O (N 2)

potential candidate half-planes.

If one proceeds to calculate the absolute value in (3.25) using an exhaustive query

to determine the membership of the points P in the candidate half-plane, the result-

ing algorithm to calculate HN in two dimensions requires O (N 3) steps. However, the

algorithm presented in [37] is able to calculate the half-plane discrepancy in O (N 2)

steps, which is optimal in the sense that it is the same order as the computational

complexity of the problem. The algorithm in [37] achieves this improvement through

the clever use of data structures to exploit the duality transform between the point

set P and an arrangement of lines in 2-space. For calculating the half-plane discrep-

ancy HN in s dimensions, the computational complexity, i.e. the number of candidate

half-planes for the supremum search, is O (N s). Regardless of the algorithm actu-

ally used to find the supremum value in (3.25), the computational cost must be at

least as great as the computational complexity. Therefore, the cost to calculate the

half-plane discrepancy suffers from the same polynomial growth with dimension that

plagues the algorithms for the star and extreme discrepancies.

The isotropic discrepancy JN of a point set P is the L∞ norm over the family C
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of all convex subsets of I
s
. Hence, JN(P ) is defined as

JN(P ) = sup
B∈C

∣
∣
∣
∣

A(P ; B)

N
− λs(B)

∣
∣
∣
∣
. (3.26)

Niederreiter and Wills [128]5 establish an upper and lower bound on the isotropic

discrepancy JN in terms of the extreme discrepancy to yield

DN(P ) ≤ JN(P ) ≤ 4sDN(P )1/s. (3.27)

The relatively weak convergence of the upper bound in (3.27) implies that it is

possible to have poor error convergence O
(
N−1/s

)
when using QMC integration on

some discontinuous functions. Unfortunately, the exponent 1/s in the upper bound

of (3.27) that indicates the potential for poor convergence can not be improved upon,

as Zaremba [193] demonstrates by example.

In an effort to understand the connection between the isotropic discrepancy

JN(P ) and the approximation of a discontinuous integral, consider the following

example of a function comprised entirely of convex discontinuities not aligned with

the principle axes. Let F (x) denote the composition of M discontinuous functions

given by

F (x) =
M∑

i=1

αiφCi
(x), (3.28)

where αi is a finite non-zero constant, and φCi
is the characteristic function of the

convex set Ci ∈ C for 1 ≤ i ≤ M . The characteristic function φC(x), with x ∈ I
s

is

defined by

φC(x) =







1 if x ∈ C

0 otherwise.

Since the discontinuities are not aligned with the principle axes, the function in

(3.28) is not of bounded variation in the sense of Hardy and Krause (the concept of

5For an English account their results refer to [85, 127]. The result in [85] contains a more detailed
analysis but of a slightly weaker result than [128]
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variation will be discussed in greater detail in Section 3.3). As such, the Koksma-

Hlawka inequality (3.5) can not be used to provide information regarding the error

convergence rate of the approximation of the integral of F .

While the Koksma-Hlawka inequality can not be used in this case, an alternate

error bound can be established using the isotropic discrepancy defined in (3.26).

Starting with the basic error definition, the contribution of each discontinuous char-

acteristic function can be separated by the triangle inequality to yield
∣
∣
∣
∣
∣

1

N

N∑

n=1

F (xn) −
∫

I
s
F (u)du

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

M∑

i=1

αi

(

1

N

N∑

n=1

φCi
(xn) −

∫

I
s
φCi

(u)du

)∣
∣
∣
∣
∣

≤
M∑

i=1

∣
∣
∣
∣
∣
αi

(

1

N

N∑

n=1

φCi
(xn) −

∫

I
s
φCi

(u)du

)∣
∣
∣
∣
∣

(3.29)

Note that φCi
is a simple characteristic function for the convex set Ci; and that the

terms inside the parentheses in (3.29) are related to the terms from the discrepancy

definition via

1

N

N∑

n=1

φCi
=

A(P ; Ci)

N
,

and
∫

I
s
φCi

(u)du = λs(Ci).

Hence, applying the Hölder inequality to (3.29) yields
∣
∣
∣
∣
∣

1

N

N∑

n=1

F (xn) −
∫

I
s
F (u)du

∣
∣
∣
∣
∣
≤

M∑

i=1

|αi|
∣
∣
∣
∣

A(P ; Ci)

N
− λs(Ci)

∣
∣
∣
∣
. (3.30)

Since Ci ∈ C for 1 ≤ i ≤ M , the definition of isotropic discrepancy in (3.26) implies

that
∣
∣
∣
∣

A(P ; Ci)

N
− λs(Ci)

∣
∣
∣
∣
≤ sup

B∈C

∣
∣
∣
∣

A(P ; B)

N
− λs(B)

∣
∣
∣
∣
= JN(P ),

which further simplifies the error bound in (3.30) to yield
∣
∣
∣
∣
∣

1

N

N∑

n=1

F (xn) −
∫

I
s
F (u)du

∣
∣
∣
∣
∣
≤ JN(P )

M∑

i=1

|αi|. (3.31)
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It is important to remember that the result in (3.31) is only an upper bound on

the integration error. The use of the triangle and Hölder inequalities along with the

supremum value associated with the isotropic discrepancy indicates the bound may

not be very tight. However, it does imply that there is a potential for the QMC

method to have poor error convergence, possibly as slow as O
(
N−1/s

)
when the

integrand contains discontinuities not aligned with the principle axes. Furthermore,

(3.31) suggests that increasing the number and size of the discontinuities of a function

will have a negative impact on the accuracy of its integral approximation. Even if a

function F (x) = f(x) + αφC(x) is composed of a continuous function f and a single

convex discontinuity φC , the potential for poor QMC convergence still exists. The

preceding analysis can be repeated in this case to yield the following similar result:

∣
∣
∣
∣
∣

1

N

N∑

n=1

F (xn) −
∫

I
s
F (u)du

∣
∣
∣
∣
∣
≤ D∗

N(P )VHK(f) + αJN(P ).

In practice, the observed error convergence of the QMC integral approximation

for a function with discontinuities not aligned with the primary axes is better than

O
(
N−1/s

)
(see [115, 117, 120, 146] for examples). However, the presence of such

discontinuities does have a significant negative impact on the error; and in general,

near linear convergence of the QMC approximation is not obtained. Recall that

the result in (3.27) is an upper bound, and only indicates the potential for a lower

error convergence rate in this case. The bound in (3.27) also implies that the error

convergence rate may worsen as the problem dimension increases, which is, in fact,

supported by the discontinuous integrals tested in [117]. Despite the degradation in

performance with increasing dimension, the error convergence rate of QMC typically

remains at least as fast as the Monte Carlo convergence rate; that is, O
(
N−1/2

)
.

Press and Teukolsky [146] suggest that the QMC error convergence rate ap-
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proaches O
(
N−1/2

)
when the surface area of the discontinuities is large relative

to the volume of the integration domain. In the neighborhood of a discontinuity,

the chance a specific point from a low-discrepancy sequence lands on either side of

the discontinuity approaches a random process. Thus, for functions dominated by

discontinuous surfaces, the QMC performance approaches that of Monte Carlo. Ex-

tending the observation in [146] to a more rigorous framework, Morokoff [117] proves

a more optimistic upper bound on the isotropic discrepancy

JN(P ) ≤ CsN
1−sDN(P )1/(2s−1), (3.32)

under the assumption of true randomness near the boundary of the discontinuity.

Here the coefficient Cs depends only on the dimension s of the problem. The result

of Morokoff (3.32) supports the observation that the QMC error rate is at least as

fast as the Monte Carlo convergence rate O
(
N−1/2

)
.

The calculation of the isotropic discrepancy JN(P ) is a computationally in-

tractable problem for all but the smallest point sets P . Consider for a moment

the calculation of a lower bound to JN(P ) in two dimensions. Instead of finding the

supremum in (3.26) over all possible convex sets in C, restrict the supremum search

to the family T consisting of all the triangle sets contained in I
2
. As with the other

L∞ discrepancy calculations, any triangle set that has two points from P on each

boundary is a potential candidate for the supremum value taken over T . Thus, the

number of candidate triangles in T is O (N 6), where the maximum cost of evaluating

the absolute value term in (3.26) for each candidate triangle is O (N). The computa-

tional complexity of the supremum search for calculating this triangular discrepancy

is then between O (N 6) and O (N 7). An example of the triangular discrepancy cal-

culation using a Monte Carlo approach is given in [60]. In order to calculate the
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isotropic discrepancy JN(P ), one must not only consider the supremum over every

triangular set, but also over every convex quadrilateral set O (N 8), pentagonal set

O (N 10), hexagonal set O (N 12), and so forth up to an N − sided set. Note that this

significant amount of computational effort is required for just the two dimensional

isotropic discrepancy, which represents considerably more calculation effort than the

star and extreme discrepancies in two dimensions.

3.3 Variation

Informally, the variation V (f) of a function f is a measure of the “smoothness” of

the function. The continuity of a function and its derivatives affect the magnitude of

the variation. If two functions are continuous, the function with a smaller variation

measure will typically appear smoother, and have smaller gradients. Geometrically,

if an integral is interpreted as the volume contained by the function surface, the vari-

ation of the function is a rough measure of its surface area1. Consider the following

function on the unit interval

f1(x, τ) = 1 + cos
(
τx2
)
, (3.33)

where τ is a positive parameter. The function f1(x, τ) is plotted in Figure 3.3(a)

for the parameter values τ = 10 and 100. Both functions contain nearly the same

volume under the curve; however, the surface area containing the volume is much

larger for the τ = 100 case. The function f1(x, 100) is decidedly less smooth than

f1(x, 10) because there are 10 times as many function extrema in the τ = 100 case

(excluding the end points). The variation measure reflects this change in smoothness

and is inexorably connected to the number and magnitude of the local extrema of

1Here the terms volume and surface area refer to their multi-dimensional analogues.
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Figure 3.3: Examples of functions with bounded variation: (a) plot of the functions;
and (b) integration error convergence.

a function. As such, the variation V (f1(x, 100)) is roughly 10 times large than the

variation V (f1(x, 10)).

In addition to being a measure of “smoothness,” a function’s variation also serves

as a sensitivity measure for the approximation of its integral. It is this role as a

measure of sensitivity that is of primary interest to this investigation. Recalling the

Koksma-Hlawka inequality (3.5), the error in the integration approximation using

equally weighted samples is directly proportional to the variation of the integrand.

In order to highlight the relationship between variation and integration error, a

perturbation analysis is performed on the integral approximations obtained from

two similar point sets. Restricting the analysis to functions in C1
[a,b], consider two

point sets X = {x1, . . . , xN} ∈ [0, 1] and Y = {y1, . . . , yN} ∈ [0, 1]. Here, C1
[a,b] is the

set of all continuous functions with continuous first derivatives over the interval [a, b].

Next, suppose these two point sets are similar enough that the difference between

any corresponding pair of points is bounded by a constant, that is |xn − yn| < ε for

1 ≤ n ≤ N . If the bounding constant ε is sufficiently small, the difference in the

integral approximations sampling X and Y can then be approximated with a first
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order Taylor expansion to yield
∣
∣
∣
∣
∣

1

N

N∑

n=1

f(xi) −
1

N

N∑

n=1

f(yi)

∣
∣
∣
∣
∣
≈ 1

N

∣
∣
∣
∣
∣

N∑

n=1

(xn − yn)
∂f

∂x

∣
∣
∣
∣
x=xn

∣
∣
∣
∣
∣
.

Applying the triangle inequality to bring the absolute value inside the summation,

one is able to bound the Taylor expansion

1

N

∣
∣
∣
∣
∣

N∑

n=1

(xn − yn)
∂f

∂x

∣
∣
∣
∣
x=xn

∣
∣
∣
∣
∣

≤ 1

N

N∑

n=1

|xn − yn|
∣
∣
∣
∣

∂f

∂x

∣
∣
∣
∣
x=xn

≤ ε

N

N∑

n=1

∣
∣
∣
∣

∂f

∂x

∣
∣
∣
∣
x=xn

(3.34)

Thus, the difference between integration approximations using similar point sets

depends on the magnitude of the integrand’s gradients.

It is common in many numerical methods, when the solution is not known, to

evaluate the accuracy of the method based on the change in the final result when

the numerical solution is perturbed. If the change in the final result is acceptably

small, the numerical solution can be taken with greater confidence. If the numerical

result is found to vary wildly under small perturbations, then the accuracy of the

numerical method is suspect. Based on (3.34), it is clear that the sensitivity of

the integration approximation to perturbations depends on the magnitude of the

integrand’s gradients. As mentioned earlier, a function with larger gradients typically

has a larger variation measure. Therefore, approximating the integral of a function

with a larger variation measure yields a numerical solution more sensitive to the

sample point sets, which indicates a less reliable solution. While the relationship

is qualitative at this point, the result (3.34) is consistent with the Koksma-Hlawka

inequality. In the next section, an explicit connection between the gradients of a

function and its variation is established, upon which, the result (3.34) is found to

closely relate to the one dimensional proof of the Koksma-Hlawka inequality in [127]

(see Theorem 2.9).
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3.3.1 Variation in one dimension

Formally, the variation of a one dimensional function is defined by:

Definition 3.2 A function f defined on an interval [a, b] is said to be of bounded

variation if there exists a positive constant C such that

N∑

n=1

|f(xn) − f(xn−1)| ≤ C (3.35)

for every partition

a = x0 < x1 < · · · < xN = b

of [a, b] by points of subdivision x1, . . . , xN−1.

The smallest constant C that satisfies (3.35) is then defined as the variation V (f) of

the function f on [a, b].

If the function f is monotonic over the domain [a, b], then the variation is simply

the magnitude of the difference between the function evaluated at the endpoints

V (f) = |f(b) − f(a)|.

Similarly, if the domain [a, b] of the function f can be completely partitioned into

subintervals [a, y1), [y1, y2), . . . , [yk−1, yk), [yk, b] such that f is monotonic over each

subinterval, then the variation on [a, b] is calculated by the sum of the variation over

each subinterval. Hence,

V (f) = |f(y1)−f(a)|+|f(y2)−f(y1)|+· · ·+|f(yk)−f(yk−1)|+|f(b)−f(yk)|. (3.36)

As long as the partition points y1, y2, . . . , yk include every local extrema of the func-

tion f in the interval [a, b], the resulting partition satisfies the monotonicity constraint

necessary for (3.36). If f ∈ C1
[a,b], that is to say that f is a continuous function with
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a continuous first derivative on [a, b], then the fundamental theorem of calculus can

be repeatedly applied to simplify (3.36) and yield

V (f) =

∫ y1

a

∣
∣
∣
∣

∂f

∂x

∣
∣
∣
∣
dx +

∫ y2

y1

∣
∣
∣
∣

∂f

∂x

∣
∣
∣
∣
dx + · · · +

∫ yk

yk−1

∣
∣
∣
∣

∂f

∂x

∣
∣
∣
∣
dx +

∫ b

yk

∣
∣
∣
∣

∂f

∂x

∣
∣
∣
∣
dx

=

∫ b

a

∣
∣
∣
∣

∂f

∂x

∣
∣
∣
∣
dx. (3.37)

Thus, the calculation of V (f) on [a, b] requires all the local extrema of f to be

found in [a, b] in order to apply (3.36). Alternatively, the variation can be calculated

directly from (3.37), when the indicated derivative is well-defined.

Returning to the example of the function f1(x; τ) in (3.33), the variation is cal-

culated by first identifying the local extrema of the function. The local extrema of

f1(x; τ) occur when the cosine argument is an integer multiple of π. More specifically,

the maximum value f1(x; k) = 2 is obtained whenever τx2 equals an even multiple

of π, and a minimum value f1(x; τ) = 0 is obtained whenever τx2 is equal to an odd

multiple of π. The number of extrema located within the interval (0, 1) is equal to

dτ/πe − 1. Note that each extrema of f1(x; τ) in the interval (0, 1) contributes a

value of 2 to the sum for the variation in (3.36). After including the contribution of

the endpoints, an explicit formula for the variation of f1(x; τ) is then given by

V (f1(x; τ)) =







2 (dτ/πe − 1) + f1(1; τ) if dτ/πe is even

2dτ/πe − f1(1; τ) otherwise.

(3.38)

Using the result (3.38), the variation is calculated for three representative values of

τ = 10, 100, and 1000

V (f1(x; 10)) = 6.161

V (f1(x; 100)) = 63.86

V (f1(x; 1000)) = 637.6.

In order to better understand the effect of variation on the integration error, the

integrals f1(x; τ) for τ = 10, 100, and 1000 are approximated using a set EN of N
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points with equal spacing

EN =

{
2n − 1

2N
: 1 ≤ n ≤ N

}

. (3.39)

The star discrepancy of the set D∗
N(EN) = 1/2N is the minimum attainable for a

one dimensional N -point sequence (see Theorem 2.6 [127]). The relative integration

error of the representative functions is given in Figure 3.3(b). For a fixed sequence

size, the integration error is found to be directly proportional to the variation which

is consistent with the Koksma-Hlawka inequality (3.5). An increase in the varia-

tion of f1(x; k) by an order of magnitude yields an increase in error by roughly an

order of magnitude. Since the star discrepancy of EN converges linearly, the error

bound given by the Koksma-Hlawka inequality also converges linearly. However,

it is interesting to note that in Figure 3.3(b), the actual numerical results appear

to converge quadratically O (N−2). The Koksma-Hlawka inequality (3.5) does not

consider the periodicity of the integrand which can significantly improve the accu-

racy of the integration approximation. Thus, it is important to remember that the

Koksma-Hlawka inequality only serves as an upper bound on the error, and can be

overly pessimistic; especially when the sequence is well-distributed and the integrand

is sufficiently periodic.

It is possible for a function to have a finite integral evaluation but an unbounded

variation. An obvious example is a monotonic function that rapidly approaches

infinity at an endpoint of the integration domain. The function f2(x) defined on the

interval (0, 1] as

f2(x) =
e−x

√
x

, (3.40)

is such an example

lim
x→0

f2(x) → ∞ and

∫ 1

0

f2(x)dx =
√

πerf(1).
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Figure 3.4: Examples of functions with unbounded variation: (a) plot of the func-
tions; and (b) convergence of the integration error.

A plot of the function f2(x) is given in Figure 3.4(a). While every unbounded function

has an unbounded variation, the converse is not necessarily true. Functions that are

bounded throughout the integration domain can still possess an unbounded variation.

Consider the function f3(x) defined on the interval (0, 1] as

f3(x) = x sin(x−1). (3.41)

The function f3(x) is bounded on the domain,

lim
x→0

f3(x) = 0,

see Figure 3.4(a), and has a definite integral evaluation

∫ 1

0

f3(x)dx =
1

2
(sin(1) + cos(1) + Si(1)) − π

4
,

where Si(z) =
∫ z

0
x−1 sin(x)dx is the so-called “sine integral” found in integration

tables [1] or calculated using software like Mathematica [189]. On the interval (0, 1]

the argument of sine function has a range in [1,∞) and thus yields an infinite number

of local extrema. The presence of an infinite number of extrema alone is not enough to

prove that a function has unbounded variation. For example, the function x2 sin(x−1)
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has an infinite number of extrema but also a bounded variation on the interval (0, 1].

The key is in the magnitude of consecutive extrema. The extrema of the function

sin(x−1) are ±1, and nearly all are located near x = 0. As a result, the contribution

from these near zero extrema to the total variation is small enough in the case of

x2 sin(x−1) to yield a bounded variation.

To prove a function has an unbounded variation, it is sufficient to show a specific

partition of the interval can not be bounded by any constant C in the definition

(3.35). Define the following partition P = {y1, y2, . . . , y2N−1} for 1 ≤ n < 2N

yn =







2
(2n−1)π

if n is odd

2
nπ

if n is even

.

Note the points of subdivision are decreasing in magnitude 0 < y2N−1 < y2N−2 · · · <

y1 < 1, and are chosen such that when n is odd sin(y−1
n ) = 1 and when n is even

sin(y−1
n ) = 0. The variation measure of f3 for this specific partition is denoted by

V (f3; P ) and has an explicit form

V (f3; P ) =
2N∑

n=1

|f3(yn) − f3(yn−1)|,

defining y0 = 1 and y2N = 0 as the interval endpoints. A simple lower bound is

established for V (f3; P ) by considering the consecutive pairs of subdivision points P

and omitting the contribution by y0 and y1

V (f3; P ) >
N−1∑

n=1

4

(4n + 1)π
. (3.42)

However, there is an infinite number of local extrema; and when the partition P is

extended by increasing N , the summation in the lower bound of (3.42) is unbounded

lim
N→∞

N−1∑

n=1

4

(4n + 1)π
→ ∞.
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Thus, the variation measure V (f3; P ) is unbounded. If there exists a specific partition

of a function that yields an unbounded variation measure, then by definition (3.35)

there is no finite constant bounding the variation. Therefore, the function f3 (3.41)

does not have bounded variation on the interval [0, 1].

In an effort to observe the potential consequences of unbounded variation on

the integral approximation of a function, the error convergence is given in Figure

3.4(b) for the functions f2 in (3.40) and f3 in (3.41). Similar to the examples in

Figure 3.3, the integrals approximations are obtained by sampling the functions with

the minimum discrepancy point set EN defined in (3.39). Both functions converge

for the number of samples provided, but the unbounded function f2(x) = e−x/
√

x

converges much slower than the bounded function f3(x) = x sin(x−1). However, it

should be noted that this does not represent a general observation. In fact, the

converse is shown to be true for the multi-dimensional test integrals considered in

[115, 117, 120, 146]. The convergence of the integral approximation of an unbounded

function primarily depends on the strength of the singularity, that is the rate at which

the function approaches infinity. The practical lesson to be taken from these functions

with unbounded variation is the following. If the Koksma-Hlawka inequality does

not bound the integration error because a function is of unbounded variation, then

it is difficult to make any assurances regarding the error convergence rate.

3.3.2 Variation in multiple dimensions

Unlike the definition of variation in one dimension, the variation in multiple

dimensions does not have a universal definition. This is primarily due to the fact that

there are many different ways to partition a multi-dimensional integration domain,

and to measure the fluctuations of a function over these partitions. Hence, a specific
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definition of multi-dimensional variation must include both the family of partitions

and the fluctuation measure over these partitions. The most common definitions of

multi-dimensional variation, including those used in this investigation, are named

after the mathematician(s) who first proposed or studied them.

For QMC integration, the two important definitions of multi-dimensional varia-

tion are the variation in the sense of Vitali and the variation in the sense of Hardy

and Krause. The importance of the variation in the sense of Hardy and Krause is

evident from its role in the Koksma-Hlawka inequality. The variation in the sense

of Vitali is important as it is used to calculate the variation in the sense of Hardy

and Krause. For both types of multi-dimensional variation, the only family of par-

titions considered are those consisting solely of subintervals. Here, a subinterval

in s dimensions is simply another way to refer to a hyper-rectangle of the form

∏s
i=1[ai, bi), where 0 ≤ ai < bi ≤ 1 for 1 ≤ i ≤ s. The complete definitions for

the multi-dimensional variations of Vitali, and Hardy and Krause are provided in

the paragraphs that follow. While multi-dimensional variation is important to the

study of QMC methods, it is somewhat difficult to find introductory analysis texts

that cover the concept of variation beyond one dimension. Owen [136], in his Stan-

ford Department of Statistics technical report, reviews many important properties

of multi-dimensional variation; in particular, as it applies to QMC integration.

The definitions provided in this investigation for multi-dimensional variation fol-

low closely those of Niederreiter in [127]. For a function f(x), with x ∈ I
s
, the

variation of f in the sense of Vitali is defined by

V (s)(f) = sup
P∈P

∑

J∈P

|∆(f ; J)| , (3.43)

where P is the family of all partitions over I
s

into subintervals, J is a specific subin-
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terval from a given partition P ∈ P . Here, ∆(f ; J) denotes the alternating sum of

the values of f evaluated at the vertices of the subinterval; that is to say that func-

tion values at adjacent vertices have opposite signs. For example, given a function

f(x1, x2) over two dimensions, and the subinterval j = [a1, b1) × [a2, b2) then

∆(f ; J) = f(a1, a2) − f(a1, b2) + f(b1, b2) − f(b1, a2).

It is important to note because of the absolute value in (3.43), the actual sign choice

of a particular vertex is not important, only that adjacent vertices have opposite

signs.

In an analogous manner to the one dimensional result in (3.37), a more explicit

form for the variation in the sense of Vitali,

V (s)(f) =

∫ 1

0

· · ·
∫ 1

0

∣
∣
∣
∣

∂sf

∂u1 · · · ∂us

∣
∣
∣
∣
du1 · · · dus, (3.44)

is applicable whenever the indicated partial derivative is continuous on the integra-

tion domain. Regardless of the means by which the variation is calculated, if V (s)(f)

is found to be finite, then the function f is said to be of bounded variation in the

sense of Vitali.

In order to construct the definition of variation in the sense of Hardy and Krause,

some additional notation is necessary. For 1 ≤ k ≤ s and 1 ≤ i1 < i2 < · · · < ik ≤ s,

let V (k)(f ; i1, . . . , ik) denote the variation in the sense of Vitali of the restriction of

f to the k dimensional face F of the unit hypercube given by

F =
{
(u1, . . . , us) ∈ I

s
: uj = 1 for j 6= i1, . . . , ik

}
.

Then the variation of f in the sense of Hardy and Krause is defined by

VHK(f) =
s∑

k=1

∑

1≤i1≤i2≤···≤ik≤s

V (k)(f ; i1, . . . , ik). (3.45)
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Keeping with prior convention, if VHK(f) is found to be finite, then the function f

is said to be of bounded variation in the sense of Hardy and Krause.

Morokoff in [117] questions the effect variation has on the integration error based

on the results approximating several multi-dimensional test integrals. One particular

example from [117], that casts doubt on the role of variation, involves two nearly

identical functions over x ∈ I
s
:

g(x) =
s∏

i=1

xi, and

h(x) =
s∏

i=1

(1 − xi). (3.46)

With a simple variable transformation, it is clear that the two functions g(x) and h(x)

have the same integral value over I
s
. Furthermore, given the problem symmetry, it

should be expected that both integral approximations should have the same expected

accuracy. The Koksma-Hlawka inequality, however, does not imply that the accuracy

will be the same because the variation in the sense of Hardy and Krause differs

greatly in the multi-dimensional case. Specifically, VHK(g) = 2s−1 and VHK(h) = 1.

The variation in the sense of Hardy and Krause is constant with dimension for the

function h because the function has a constant value of zero on every face of the unit

hypercube whenever xi = 1 for at least one dimension 1 ≤ i ≤ s. As a result, all the

terms in the summation in (3.45) except V (s)(f) are zero. Again, it is important to

remember that the Koksma-Hlawka inequality only serves as an upper bound to the

integration approximation error.

Using a similar two dimensional example as in (3.46), the integral approximations

to the functions

f4(x, y) = (x − 1)2(y − 1)2, and

f5(x, y) = x2y2, (3.47)
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Figure 3.5: Integration error of several test functions using a two dimensional Halton
sequence.

are found using the two dimensional low-discrepancy Halton sequence (see Appendix

C). Note that VHK(f4) = 1 and VHK(f5) = 3. In Figure 3.5, the error convergence

rate for both functions is nearly linear as expected from a low-discrepancy sequence;

but more importantly, the actual integration error of both functions is almost iden-

tical. Hence, the expected result is obtained, even though the Koksma-Hlawka in-

equality suggests that it would be possible for the function f5 to have up to 3 times

greater integration error than f4. In order to best assess the performance with the

low-discrepancy Halton sequence in Figure 3.5, the error given represents the average

of 16 calculations of the integral approximation using consecutive subsequences for

each function.

The effect of variation on the expected integration error becomes more impor-

tant when the integrands contain discontinuities. Discontinuous integrands are very

important to many types of Monte Carlo simulation because they occur whenever a

yes/no decision is made in the simulation. Unfortunately, when the discontinuities

of a function are not aligned with the partition boundaries in (3.43), the resulting
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1 1

OO 1 1

Figure 3.6: Bounded variation in the sense of Vitali of two simple indicator function
on [0, 1)2: (left) V (2)(f) = 1; and (right) V (2)(f) = 14.

multi-dimensional variation in the sense of Vitali is not bounded. Moreover, if a

function is not of bounded variation in the sense of Vitali (and by extension, Hardy

and Krause), then the Koksma-Hlawka inequality does not bound the integration er-

ror of the function. Without the Koksma-Hlawka inequality, little can be established

regarding the expected error convergence rate. For the variation definitions of Vitali

and Hardy and Krause, all the partition boundaries are aligned with principal axes.

Thus, if a function possesses a discontinuity that is not aligned with the principle

axes, it will not be of bounded variation in the sense of Hardy and Krause.

In Figure 3.6, two examples of discontinuous indicator functions are given along

with their associated variation in the sense of Vitali. Here, the shaded region repre-

sents a function value of one and the non-shaded region represents a function value

of zero. Since, their discontinuities are aligned with the primary axes (x and y), their

variation in the sense of Vitali is bounded. Furthermore, since the function in both

cases is constant along the boundaries x = 1 and y = 1, the variation in the sense of

Vitali equals the variation in the sense of Hardy and Krause. The function

f6(x, y) = H(xc − x)H(yc − y),
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Figure 3.7: Variation of an indicator function f on [0, 1)2 using different domain
partitions: (left) V (f ; P4) = 17

2
; and (right) V (f ; P8) = 33

2
.

is representative of a discontinuous multi-dimensional function with bounded varia-

tion as illustrated in Figure 3.6(a). Here H(x) represents the Heaviside step function

defined by

H(x) =







1 if x > 0

1
2

if x = 0

0 if x < 0.

.

For xc = yc = 2−1/2, the convergence of the integration error for f6 is plotted in

Figure 3.5. Not only is the error convergence rate of f6 nearly linear, it is almost the

same magnitude as the two continuous functions f4 and f5 from (3.47).

In order to understand why a function with discontinuities not aligned with the

principle axes is not of bounded variation in the sense of Vitali, consider the circular

indicator function

f7(x, y) = H(r2
c − x2 − y2), (3.48)

given in Figure 3.7. Now, if f7 is of bounded variation, then there must exist some

constant that bounds the summation in (3.43) for every possible partition. However,

this is not the case, because one can construct a simple family of partitions such
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that the summation term in (3.43) is shown to grow without bound. First sub-

divide the circle radius along the x axis into M subintervals. Then divide each of

these subintervals into two more subintervals such that the boundary between these

subintervals intersects the discontinuity boundary, see Figure 3.7 for examples of

these partitions.

To state this more concretely, let PM represent the partition of the integration

domain explicitly defined by

PM =
{ [

0, 1
M

rc

)
× [0, y1),

[
1
M

rc,
2
M

rc

)
× [0, y2), . . . ,

[
M−1

M
rc, rc

)
× [0, yM ),

[
0, 1

M
rc

)
× [y1, 1),

[
1
M

rc,
2
N

rc

)
× [y2, 1), . . . ,

[
M−1

M
rc, rc

)
× [yM , 1),

[rc, 1) × [0, 1)
}

.

Here yn is the point where the subinterval boundaries intersect the discontinuity

boundary at

yn =
1

2

(√

r2
c −

(
n−1
N

)2
+

√

r2
c −

(
n
N

)2
)

, for 1 ≤ n ≤ M.

Let V (s)(f ; PM) represent the evaluation of the summation in (3.43) for the specific

partition PM . Hence,

V (s)(f ; PM) =
∑

J∈PM

|∆(f ; J)| ,

where J is a subinterval of PM . For the circular indicator function f7 in (3.48),

V (s)(f7; PM) = M + 1
2
,

which grows without bound as M increases. Note that V (s)(f ; PM) is a lower bound

for the variation in the sense of Vitali. Therefore, the function f7 is not of bounded

variation in the sense of Vitali; and thus by extension, it is also not of bounded

variation in the sense of Hardy and Krause.
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Now consider the function f7 in (3.48), and f8 defined by

f8(x, y) = H(y − x), (3.49)

which both possess a discontinuity not aligned with the principle axes. The integra-

tion error using the low-discrepancy Halton sequence to sample the discontinuous

functions f7 and f8 are plotted in Figure 3.5. Note for the circular indicator func-

tion f7 that rc = 2/π. In both cases, the error convergence rate is approximately

O
(
N−3/4

)
, which yields a greater error for the same number of samples (N > 128)

than the functions with bounded variation. Thus, it appears that when a function

is not of bounded variation that the error convergence rate is negatively impacted.

As illustrated by the examples of Morokoff [117], the connection between a func-

tion’s variation and its associated integration error, with respect to the Koksma-

Hlawka inequality, is questionable. When a function is not of bounded variation in

the sense of Hardy and Krause, the Koksma-Hlawka inequality does not provide any

information about the error convergence. This does not mean the integral approxi-

mation will not converge in practice, only that the unbounded variation prevents an

upper error bound from being established. Despite the lack of a direct link between

a function’s variation and the magnitude of the error in its integral approximation,

unbounded variation is typically a strong indicator that the error convergence rate

will be less than the star discrepancy. It should be stressed that when a function

possesses unbounded variation due to discontinuities not aligned with the principle

axes, the resulting error convergence rate of the integral approximation is negatively

impacted. This is supported by the preceding examples in (3.48) and (3.49), and the

discontinuous test integrals in [115, 117, 120, 146]. Moskowitz, in [120], investigates

smoothing techniques to eliminate the discontinuities directly from an integrand and
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also the discontinuities that are introduced when the acceptance-rejection sampling

technique is used. In general, such discontinuous integrands should be modified or

avoided when constructing a QMC method in order to achieve the best possible error

convergence rate.

3.4 Low discrepancy sequences versus optimal integration
lattices

Now that the concepts of discrepancy and variation have been discussed in the

context of the Koksma-Hlawka inequality, it is time to focus on finding point sets

P that are low-discrepancy, that is D∗(P ) ≈ O (N−1(log N)s−1). In the sample

star discrepancy calculations presented in Figure 3.2, two types of low-discrepancy

point sets are briefly introduced: the Halton sequence, and the Korobov lattice.

The Halton sequence is a specific example of a low-discrepancy sequence, and the

Korobov lattice is a specific example of an optimal integration lattice. The low-

discrepancy sequence and the optimal integration lattice constitute two fundamental

classes of low-discrepancy point set design. Typically, for the same number of points,

it is possible to find an optimal integration lattice with a lower discrepancy than a

sequence. However, in practice, the low-discrepancy sequences are preferred for quasi-

Monte Carlo integration when applied to particle-type problems. The two design

classes are compared for the remainder of this section, and the practical advantages

of low-discrepancy sequences, as they apply to particle problems in this investigation,

are highlighted.

A sequence, in general, is a set of points P = (xm, xm+1, . . .) such that each point

xn is defined by its position n for n ≥ m (where m is typically zero or one) [149]. A

low-discrepancy sequence is a sequence of points constructed in such a manner that
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the star-discrepancy of the first N points of the sequence is as low as practicable for

all N ≥ 0. It should be noted that this does not mean that the star discrepancy of

a low-discrepancy sequence will monotonically decrease with N . At some values of

N during the construction of a low-discrepancy sequence, it is necessary for the star

discrepancy to increase in order to ensure a lower discrepancy for larger values of N .

These increases are small enough to maintain an overall asymptotic convergence of

the star discrepancy of the first N points of a low-discrepancy sequence to be D∗(P ) ≈

O (N−1(log N)s−1). Hence, the general trend for a low-discrepancy sequence is to

have its star discrepancy to converge nearly linearly to zero.

As an example, the convergence of the star discrepancy of the low-discrepancy van

der Corput sequence in base 2 is given in Figure 3.8. Note that the star discrepancy

of the van der Corput sequence does not monotonically decrease. However, the star

discrepancy does achieve a near linear convergence rate for any sequence length,

which is superior to a random sequence. Also note in Figure 3.8, that at regularly

spaced intervals on the logarithmic scale, the star discrepancy of the van der Corput

sequence has local minima nearly an order of magnitude less than similar sequence

lengths. These minima correspond to sequence lengths that are a power of 2, and

are a consequence of the construction of the van der Corput sequence in base 2.

The construction of low-discrepancy sequences is discussed in much greater detail in

Chapter IV.

In contrast to the low-discrepancy sequence, given an N point optimal integration

lattice L, any strict subset of L is not required to be an optimal integration lattice.

Consider the following one dimensional case, the point set P = (x1, . . . , xN) achieves

the minimum possible star discrepancy of D∗
N(P ) = 1/2N [127] when the points of
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Figure 3.8: Illustration of the star discrepancy D∗
N(P ) convergence for different one-

dimenisional point sets P .

P are given by

xn =
2n − 1

2N
for 1 ≤ n ≤ N, (3.50)

which represents an optimal integration lattice. Note that the set of all optimal

one dimensional lattices is equivalent to the family of sets EN , for N = 1, 2, . . .,

defined in (3.39), which accounts for the super-linear error convergence observed in

Figures 3.3 and 3.4. Since an optimal integration lattice is not required to reuse

the points found for smaller lattices, there are fewer restrictions on the selection of

points in P compared to a low-discrepancy sequence. As a result one would expect

that a lower discrepancy could be achieved with an N point optimal integration

lattice compared to a low-discrepancy sequence of the same size. For example, in

Figure 3.8, the optimal one dimensional integration lattice in (3.50) is indeed found

to possess a lower discrepancy than the low-discrepancy van der Corput sequence for

any size point set. It should be noted that one can not select just any points for an

optimal integration lattice, there are some conditions from group theory that apply

to the definition of an integration lattice. However, these conditions are not nearly as
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restrictive as those placed on the construction of a low-discrepancy sequence. More

information on the formal definition of an integration lattice can be found in great

detail in [127, 160].

While having fewer restriction than a low-discrepancy sequence, an optimal lattice

does has more restrictions than a general point set. However, it would be impractical

to try and find a general low-discrepancy point set in most cases. The star discrep-

ancy D∗
N(P ) of an s-dimensional point set P = (x1, . . . ,xN) is a continuous function

with respect to each coordinate of each point in the set P [127], but its derivative is

not well-defined everywhere in the domain. While a function minimization routine

based on the local gradient, such as the method of steepest descent [147], is not appli-

cable, it would be possible to use a general minimum search. However, for the number

of points typically needed for accurate integration, the large dimensions of the min-

imization problem would limit the possible search techniques to the simple Monte

Carlo search. In this case, one would essentially generate random point sets which are

known to have a poor expected star discrepancy D∗
N(P ) = O

(
N−1/2(log log N)1/2

)
;

and hope to find one by luck that yields an extremely low discrepancy. Furthermore,

even this simple Monte Carlo search method requires the discrepancy to be evaluated

for each candidate point set; and from Section 3.2, the cost of calculating the exact

value of the discrepancy for even a single point set is extremely prohibitive.

As mentioned earlier, one of the advantages of the optimal integration lattice

is that often it is possible, at least in theory, to find a lattice with a lower star-

discrepancy than a low-discrepancy sequence with the same number of points. In

addition to this potential advantage, an optimal integration lattice is also able to

exploit the regularity of a periodic integrand to achieve a super-linear error conver-

gence rate. Here, the regularity of a function f(x), with x ∈ I
s
, refers to the rate at
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which its Fourier coefficients, defined by

f̂(h) =

∫

I
s
f(x)e2πix·hdx for all h ∈ Zs,

converge toward zero. Specifically, let α > 1 and C > 0 represent real numbers such

that
∣
∣
∣f̂(h)

∣
∣
∣ ≤ C

(
s∏

i=1

max(1, hi)

)−α

, (3.51)

then α is said to describe the regularity condition on the function f . The larger the

value of α for an integrand, the faster the approximation using an optimal integration

lattice will converge.

It is possible to establish for optimal integration lattices a better convergence

rate than for low-discrepancy sequences because the lattice error lends itself well

to Fourier analysis, which provides a tighter bound than the Koksma-Hlawka in-

equality. However, the quadratic (and higher) convergence possible with the optimal

integration lattices only occurs for a special class of functions when α ≥ 2. It should

be noted that this condition is much more restrictive than being of bounded vari-

ation in the sense of Hardy and Krause. As such, the Koksma-Hlawka inequality

applies to many more types of functions than just those able to achieve super-linear

convergence with an optimal integration lattice.

The general advantage of using a low-discrepancy sequence is that the actual

building of the sequence is a constructive process. That is to say a low-discrepancy

sequence can be made any length and dimension by repeating a few relatively sim-

ple steps. Furthermore, if one has already calculated the first N points of a low-

discrepancy sequence in s dimension, these are retained if one wishes to increase

the sequence length or the problem dimension. In contrast, the optimal integra-

tion lattices while proven to exist, can not be built in a constructive manner. For
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dimensions greater than 2, one must generally use an exhaustive search to find an

optimal integration lattice with N points.6 Without any means to guide the search

for an optimum lattice, one is forced to check every possible lattice in an exhaustive

search, which is a non-constructive process. Thus, if more lattice points are needed

to improve the accuracy, or if the problem dimension increases, the current optimal

lattice found must be discarded and the entire exhaustive search repeated.

In spite of its potential for a lower discrepancy and super-linear convergence, the

low-discrepancy sequence is actually preferred over the optimal integration lattice for

particle-type QMC integration. There are two main reasons why the low-discrepancy

sequence is preferred in this case. The first reason is that for many particle simu-

lations it is not known a priori how many samples are necessary to achieve an ac-

ceptable error. If one were to generate a fixed number of samples in a QMC particle

simulation, but found the accuracy was unsatisfactory, one could simply forge ahead

and continue the low-discrepancy sequence by adding new samples as necessary with

minimal computational effort. However, the same could not occur for the optimal

integration lattice which must be discarded and a new larger lattice would have to

be found in its place.

The second reason is that the size of the point sets needed for a QMC particle

simulation are generally much larger than the size of the optimal integration lattices

that can be found in practice. For example, the particle simulations presented in

Chapter VI use low-discrepancy discrepancy point sets containing 226 points in 300

dimensions. Generating these points from any of the low-discrepancy sequences

considered in Section 4.3 can be achieved in a matter of a couple minutes on a single

3GHz processor. Unfortunately, finding an optimal integration lattice of the same

6This is an active area of research within the QMC community with Sloan [160], and Dick and
Kuo [42], among others investigating more constructive integration lattice designs.
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size, ignoring the memory limitations, would require several lifetimes using a modern

desktop computer. Simple search algorithms for lattices with the special form of

Korobov [82, 83] require a minimum of 1
2
N2s operations, where N is the number of

points in an s-diemnsional lattice [106].7 More general search algorithms are often

combinatorially in nature and thus the computational cost grows exponentially with

the lattice dimension (see the algorithms in [17, 70, 104, 106]).

Furthermore, for most particle simulations like DSMC, the whole purpose of

adopting the particle formulation is to avoid solving the integrand directly. Without

the explicit form of the integrand available, it is difficult to properly periodize the

integrand using the techniques in [160] to ensure that the regularity condition (3.51) is

satisfied. If the integrand does not meet the necessary regularity condition, then the

super-linear convergence of the optimal integration lattice is not assured. Given the

practical advantages of low-discrepancy sequences over optimal integration lattices

for QMC particle simulations, only low-discrepancy sequences are considered for this

investigation. Their construction and performance in QMC integration is detailed in

the following chapter.

7Specifically, at least 6 · 1017 opeartions are required to find the optimum Korobov integration
lattice that is the same size as the largest low-discrepancy sequence used in this investigation
(N = 226 and s = 300).



CHAPTER IV

LOW-DISCREPANCY SEQUENCES

The main purpose of this chapter is to review the algorithms used in this investi-

gation to generate the pseudo-random and low-discrepancy sequences needed for the

Monte Carlo and quasi-Monte Carlo (QMC) particle simulations. A low-discrepancy

sequence is a deterministic sequence of points (P = x0,x2, . . .), with a star discrep-

ancy that asymptotically approaches zero as rapidly as possible. From the lower

bound of Roth [150], the fastest theoretical convergence of the star discrepancy of

any sequence is nearly linear. That is,

D∗
N(P ) > CsN

−1(log N)(s−1)/2, (4.1)

for some constant Cs that depends on the sequence dimension s ≥ 2. No sequence

is actually known to achieve the lower bound of Roth (4.1); however, there are

many sequence constructions known to achieve a slightly slower convergence rate

that is still nearly linear. If the star discrepancy of a sequence converges to zero

at least as fast as D∗
N(P ) = O (N−1+ε) for all ε > 0, then the sequence is re-

ferred to as a low-discrepancy sequence. There are four types1 of s-dimensional

low-discrepancy sequences tested in this investigation for the QMC method: (i) the

1For reference, the van der Corput sequence and the Sobol’ sequence are also included in Ap-
pendices A and D, respectively.

136
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Weyl-Richtmyer sequence (D∗
N = O (N−1+ε) for all ε > 0 – see Appendix B); (ii) the

Halton sequence (D∗
N = O (N−1(log N)s) – see Appendix C); (iii) the Faure sequence

(D∗
N = O (N−1(log N)s) – see Appendix E); and (iv) the Niederreiter sequence in

base 2 (D∗
N = O (N−1(log N)s) – see Appendix F).

As noted in Chapter III, the Koksma-Hlawka inequality (3.5) establishes an error

bound on the integral approximation obtained for a general set of points P used to

sample the integrand, which is a function of the star-discrepancy of P . In partic-

ular, for a function f of bounded variation in the sense of Hardy and Krause, the

error in the integral approximation of f converges to zero at the same rate as the

star discrepancy. When a low-discrepancy sequence is used to generate the sample

points for the integrand, the integral approximation therefore has a near-linear con-

vergence rate as well. This type of numerical approximation is then referred to as

quasi-Monte Carlo integration. The theoretical error convergence rate of the QMC

method is superior to the O
(
N−1/2

)
convergence rate associated with the Monte

Carlo method; and this is the motivating factor for developing a particle simulation

based on the method. A better integral approximation is obtained from the QMC

method because the points used to sample the integrand are more evenly-distributed

throughout the domain than the random sequence used in the Monte Carlo method.

To illustrate this difference in the point distribution of the two sequences, the first

256 points of the low-discrepancy Halton sequence and the pseudo-random sequence

are plotted in Figure 4.1. As noted by Press and Teukolsky in [146], each new ele-

ment of a low-discrepancy sequence is added to the integration domain at a location

that “maximally avoids” all the previous sequence elements, thereby producing a

distribution of points that is much more uniform than random. In contrast, each

element of the pseudo-random sequence is generated independently of the previous
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Figure 4.1: The first 256 points of a two dimensional sequence: (a) the pseudo-
random sequence; and (b) the Halton sequence in prime bases p1 = 2
and p2 = 3. Note a filled circle denotes one of the first 128 elements of
the sequence and an open circle denotes one of the second 128 elements.

elements, resulting in regions of the domain that are both much more sparsely and

densely populated than average.

To briefly summarize, the Weyl-Richtmyer sequence is perhaps the simplest low-

discrepancy sequence to actually construct; however, the sequence is the least popular

in the QMC literature and there is no widely accepted standard for its implementa-

tion. As a consequence, a special construction of the Weyl-Richtmyer low-discrepancy

sequence, termed the BCF-3 sequence, is proposed in Section 4.1 based on heuristic

arguments that suggest it is particularly well-suited for the QMC particle simulations

developed here. The actual process for constructing the BCF-3 sequence is outlined,

along with examples of the constructive elements of the sequence, in Section 4.2.

Finally, in Section 4.3, the algorithmic implementation of the pseudo-random se-

quence and the four low-discrepancy sequences is discussed and a comparison of the

computation time for generating the sequences is presented.
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4.1 A Special Construction of the Weyl-Richtmyer Sequence

The Weyl-Richtmyer sequence is the oldest low-discrepancy sequence found in

literature; however, it rarely appears in modern applications of the QMC method.

In [186], Weyl first defines the sequence and proves that it satisfies certain desirable

uniformity conditions on the distribution of its points (see Theorems B.1 and B.2).

These uniformity conditions imply that the Weyl-Richtmyer sequence x1,x2, . . . ∈

I
s

generates a mathematically consistent approximation for the integral of a well-

behaved function f(u) with u ∈ I
s
, when the sequence is used to sample f(u) . That

is,
∫

I
s
f(u)du = lim

N→∞

1

N

N∑

n=1

f(xn), (4.2)

where f is Riemann integrable. This important connection between the distribution

of a sequence and its corresponding integral approximation ultimately led to the

development of the more formal Koksma-Hlawka inequality [66, 81], which, as noted

in Chapter III, serves as the cornerstone of the QMC method. Richtmyer, in [148],

proves that the sequence of [186] is able to achieve near-linear error convergence

under certain specified conditions2 when used for the integral approximation in (4.2).

In addition to the theoretical convergence results, Richtmyer [148] implements the

sequence of [186] in the first numerical QMC simulation, and first coins the term

“quasi-Monte Carlo method.” It should be noted that there is no “official” name for

the sequence originally defined in [186] that appears on a consistent basis throughout

the literature.3 For convenience, the sequence is referred to as the “Weyl-Richtmyer

2The proof of Richtmyer in [148] assumes the function to be integrated has an absolutely con-
vergent Fourier series. Additional results are also developed for the special case when the Weyl-
Richtmyer sequence is constructed from a set of algebraic irrational numbers that are linearly
independent over the rationals.

3Examples can be found in literature referring to the same sequence as the “Weyl sequence” [41]
and the “Richtmyer sequence” [68], while still others leave the sequence nameless [127].
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sequence” throughout this investigation, in recognition of the contributions of both

Weyl [186] and Richtmyer [148].

The actual construction for the elements of the Weyl-Richtmyer sequence is re-

markably simple compared to the other types of low-discrepancy sequences encoun-

tered in this investigation (see Appendices B-F for more details). An s-dimensional

Weyl-Richtmyer sequence is defined by an ordered set z = (z1, . . . , zs) of s irrational

numbers that are linearly independent over the rationals.4 The nth element of the

s-dimensional Weyl-Richtmyer sequence S(z) = x0,x1, . . . ∈ I
s

is then defined as

xn = ([nz1], [nz2], . . . , [nzs]) ∈ I
s
, (4.3)

where [·] denotes the fractional part of the argument; expressed alternatively, [x] =

x−bxc where b·c is the standard floor function. Once the set z is selected, it is easy

to design an algorithm to generate the Weyl-Richtmyer sequence S(z) using (4.3),

which is discussed further in Section 4.3. Based on a result of Niederreiter [123],

the extreme discrepancy of the Weyl-Richtmyer sequence DN(S(z)) = O (N−1+ε)

for all ε > 0, when the set z is constructed from algebraic irrational numbers that

satisfy the linear independence criterion. The Weyl-Richtmyer sequences considered

in this investigation are all constructed from quadratic irrational numbers (i.e. real

numbers that contain a square root of a square free integer). Consequently, due

to the result in [123], they are considered low-discrepancy sequences because the

extreme discrepancy has near-linear convergence to zero as the sequence length N

tends to infinity.5

4A set (z1, . . . , zs) is defined as linearly independent over the rationals if there is no non-trivial
solution to the equation a1z1 + · · · + aszs = 0 when a1, . . . , as ∈ Q.

5While the convergence of the discrepancy of the Weyl-Richtmyer sequence is still near-linear,
the rate of convergence is O

(
N−1+ε

)
for all ε > 0 is slightly slower in an asymptotic sense than the

O
(
N−1(log N)s

)
convergence found for the s-dimensional Halton, Faure, Sobol’, and Niederreiter

sequences.
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In order to discuss the discrepancy in the special case of a one dimensional Weyl-

Richtmyer sequence, it is necessary to introduce the concepts of a continued fraction

and a simple continued fraction.

Definition 4.1 The continued fraction is a representation of a real number z by a

sequence, possibly infinite, of nested fractions; specifically,

z = a0 +
1

a1 +
1

a2 +
1

· · ·

an−1 +
1

an

, (4.4)

where the coefficients a0, . . . , an are real-valued, and the coefficients a1, . . . , an are

strictly positive.

It is rather cumbersome to express a continued fraction explicitly in its full form;

therefore, in this investigation, the following compact notation is adopted for the

continued fraction in (4.4)

z = 〈a0, a1, a2, . . . , an〉.

Definition 4.2 The simple continued fraction is a continued fraction representation

of a real number z = 〈a0; a1, a2, . . . , an〉 with all integer coefficients.

As is common in literature, the term continued fraction is used throughout this

investigation to refer to both types in Definition 4.1 and Definition 4.2 for ease of

reading. In fact, every continued fraction that is found here can be assumed to

be a simple continued fraction, except where explicitly stated otherwise. The basic
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properties of continued fractions are covered in [78, 131], and a more thorough review

of the mathematical theory is available in [75].

Suppose there exists an irrational number z and a constant integer k such that the

continued fraction of z = 〈a0, a1, . . .〉 has coefficients that satisfy ai ≤ k for all i. In

this special case, there exists a known upper bound on the extreme discrepancy of the

one dimensional Weyl-Richtmyer sequence S(z) generated from z. More specifically

(see Corollary 3.5 [127]),

DN (S(z)) < G(k)
log(N + 1)

N
for all N ≥ 1, (4.5)

where G(k) = 2
log 2

for k = 1, 2, 3, and G(k) = k+1
log(k+1)

for k ≥ 4. The one dimen-

sional Weyl-Richtmyer sequence S(z) therefore achieves a smaller upper bound on its

extreme discrepancy when the coefficients of the continued fraction of z are smaller.

From the theory of continued fractions [75, 131], the irrational number z is said to

be poorly approximated by the rationals when the coefficients are relatively small

in the continued fraction representation of z.6 The Koksma-Hlawka inequality (3.5)

therefore suggests that a better one dimensional integral approximation is expected

when the integrand is sampled by a Weyl-Richtmyer sequence S(z), where z is poorly

approximated by the rationals.

In general, the specific constructive elements used to generate a low-discrepancy

sequence affect the implied constant in the asymptotic bound on the discrepancy of

the sequence. Unfortunately, there is no currently known method to determine the

constant C(z) in the discrepancy bound DN(S(z)) < C(z)N−1+ε (for all ε > 0) for

the multi-dimensional Weyl-Richtmyer sequence. The mathematical development of

the other low-discrepancy sequences7 considered in this investigation, however, has

6In fact, the golden ratio φ = 1
2 (1 +

√
5), or phi, has the continued fraction representation

〈1, 1, 1, . . .〉, which leads some (e.g. see [97]) to refer to phi as the most irrational number.
7These include: the Halton Sequence (Appendix C); the Faure sequence (Appendix E); the
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been much more successful; and the implied constant in the asymptotic discrepancy

bound is explicitly defined in terms of their constructive elements. As a result, it is

possible to define an optimal set of constructive elements for generating each of these

other low-discrepancy sequences such that the implied constant in their respective

asymptotic discrepancy bounds D∗
N = O (N−1(log N)s) is minimized. Note that more

detail on the optimum sets of constructive elements for these sequences is given in

Section 4.3 and Appendices C-F. The problem of finding the exact form of the implied

constant C(z) for the Weyl-Richtmyer sequence S(z) is deeply rooted in the theory of

Diophantine approximation, which has stymied progress since the asymptotic results

of Niederreiter [123], Schmidt [155], and Zinterhof [194]. Niederreiter in [124] suggests

that it may be possible to adapt the Jacobi-Perron algorithm [13] to develop an

analogue to the one dimensional case, which identifies sets of irrational numbers

that are poorly approximated by the rationals. There does not, however, appear

any reference to this approach ever being successfully implemented in the literature

review performed by the author. The modern development of practical applications

for the QMC method has always been led by the mathematical progress in low-

discrepancy sequences. As such, the absence of a known optimum set of irrational

numbers for the Weyl-Richtmyer sequence may contribute, at least in part, to its

current lack of popularity in the QMC literature.

The Weyl-Richtmyer sequence still holds some appeal due to the simplicity of its

construction in spite of the problems encountered in its mathematical development.

Without a rigorous mathematical result to guide the selection of the set of irrational

numbers z used to generate the Weyl-Richtmyer sequence (except for the one di-

mensional result), the following engineering strategy is then proposed here. Note

Sobol’ sequence (Appendix D); and the Niederreiter sequence (Appendix F).
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in the construction of the multi-dimensional Weyl-Richtmyer sequence S(z) in (4.3)

that each dimension of the sequence is actually a one dimensional Weyl-Richtmyer

sequence. Each irrational number in the set z is then chosen in such a manner as

to achieve the lowest possible value for the constant G(k) = 2
log 2

in the discrepancy

bound (4.5). This implies that all the irrational numbers in z have continued fraction

representations in which all the coefficients are less than or equal to 3. When the

irrational numbers in z are selected in this manner the Weyl-Richtmyer sequence is

referred to as a BCF-3 (Bounded Continued Fraction) sequence in this investigation.

The actual construction of z for the BCF-3 sequence is discussed in greater detail in

Section 4.2.

In addition to the BCF-3 sequence, there are two other Weyl-Richtmyer sequences

considered in this investigation: (i) the original implementation of Richtmyer in

[148]; and (ii) the formulation discussed in the review paper of James [68]. In [148],

Richtmyer constructs a 255 dimensional sequence using all the possible multiplicative

combinations of the square roots of the first 8 prime numbers. More specifically, the

set z = (z1, . . . , z255) is defined by

zi =
(√

2
)ξ8,2(i)(√

3
)ξ7,2(i) · · ·

(√
19
)ξ1,2(i)

for 1 ≤ i ≤ 255, (4.6)

where the vector ~ξ2(i) = (ξ1,2(i), ξ2,2(i), ξ3,2(i), . . .) denotes the base 2 representation

of the integer i as defined in (A.1). The somewhat curious construction of the set z

in [148] was driven by the memory limitations of the computing machines in 1951,

and was thus selected because only 8 irrational numbers would need to be stored.

In [68], the ith irrational number zi ∈ z for the Weyl-Richtmyer sequence is defined

simply as

zi =
√

pi for n ≥ 1, (4.7)
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Figure 4.2: Comparison of the constant in the bounding inequality for the extreme
discrepancy DN ≤ CiN

−1 log(N + 1) for each dimension 1 ≤ i ≤ 255 of
different Weyl-Richtmyer sequences.

where pi is the ith smallest prime number.

By definition, the largest continued fraction coefficient found for the irrational

numbers used to construct the BCF-3 sequence is 3. In comparison, the largest con-

tinued fraction coefficient present among the 255 irrational numbers defined for the

original implementation of Richtmyer (4.6) is 6228 (for z255 =
√

9699690). Similarly,

the largest continued fraction coefficient present among the first 255 irrational num-

bers defined for the formulation of James (4.6) is 80 (for z255 =
√

1613). To illustrate

the actual effect of the continued fraction coefficients on the observed discrepancy

bound DN(S(zi)) < CiN
−1 log(N + 1), the constant Ci is given in Figure 4.2 for the

first 255 dimensions of each of the Weyl-Richtmyer sequences considered in this in-

vestigation. It should be noted that the results in Figure 4.2 are empirical by nature,

and the value of Ci is determined to be the smallest value that satisfies the inequality

DN(S(zi)) < CiN
−1 log(N +1) for all sequence lengths 1 ≤ N ≤ 216. Although lower

than the actual theoretical upper bound given in (4.5), the empirical bounding con-
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stants Ci are consistent with the expected behavior for these sequences. That is, the

BCF-3 sequence typically has the lowest observed bounding constant, the sequence

defined by James (4.6) has the next lowest bounding constant, and the sequence for

the original implementation of Richtmyer (4.6) has the highest bounding constant.8

It is interesting to note that the Weyl-Richtmyer sequence is the only multi-

dimensional low-discrepancy sequence that can be constructed in a manner such

that each dimension is actually a one dimensional low-discrepancy sequence that

achieves the lowest theoretical discrepancy bound. As the dimension of the other

low-discrepancy sequences considered in this investigation increases, so too does the

one dimensional discrepancy bound on the highest sequence dimension. This unique

property of the Weyl-Richtmyer sequence is appealing; however, it does raise the

question: “what is the benefit of having a good distribution of sample points in

each dimension of a multi-dimensional integral approximation?” In the extreme case

where each dimension of an s-dimensional function is completely separable under the

integral operator (e.g. f(x) = x1+· · ·+xs)), the approximation of the integral of f(x)

reduces to s one dimensional integrals. Of all the possible Weyl-Richtmyer sequences,

the BCF-3 sequence yields the lowest theoretical error bound on the QMC integration

error in this case due to the Koksma-Hlawka inequality (3.5) and the discrepancy

bound in (4.5). Similarly, when the dimensions of a function are weakly-coupled

under the integral operator, it is also expected that the BCF-3 sequence will yield a

good approximation when used for the QMC integral approximation.

As presented in Section 5.5, each dimension of the low-discrepancy sequence is

used to determine a new particle location within the free molecular duct for the

8For 1 ≤ i ≤ 255, the following statistics on the bounding constant Ci are obtained for the three
Weyl-Richtmyer sequences: (i) the original implementation of Richtmyer (4.6) – mean Ci = 4.00,
min Ci = 0.83, max Ci = 51.5; (ii) the formulation of James (4.7) – mean Ci = 1.54, min Ci = 0.87,
max Ci = 5.66; and (iii) the BCF-3 sequence – mean Ci = 0.96, min Ci = 0.82, max Ci = 1.11.
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QMC particle simulation. While the trajectory angles generated for the new particle

locations are physically independent of the previous trajectory angles,9 the actual

particle locations are not. In fact, the calculation of a next location for the particle

is most affected by its current location. As the number of particle moves separating

two trajectory locations increases, the impact of the earlier location on the future

location diminishes. That is, the location of the particle after its 1st move has a

much greater affect on the location of the particle after its 2nd than after its 10th

move. It is therefore reasonable to expect that some dimensions of the QMC particle

simulation will be weakly-coupled. The arguments presented here are by no means

rigorous; however, there does appear to be enough practical reasons to justify the

development and testing of the BCF-3 sequence in this investigation for the QMC

particle simulation.

4.2 Creating a Weyl-Richtmyer sequence with bounded con-
tinued fractions

To facilitate the discussion of the Weyl-Richtmyer sequence with bounded con-

tinued fractions, the concept of the BCF-k sequence is formally defined first.

Definition 4.3 The s-dimensional BCF-k sequence is a Weyl-Richtmyer sequence

S(z) constructed from a set of irrational numbers z = {z1, . . . , zs} such that the

simple continued fraction of each irrational number zi ∈ z (for 1 ≤ i ≤ s) consists

only of coefficients less than or equal to the integer k.

As previously noted, there is some practical motivation for using a BCF-k sequence

in a QMC particle simulations when the bounding constant k is small. The BCF-3

sequence, in particular, attains the lowest theoretical bound on the one dimensional

9This is a direct consequence of the assumption that the boundaries of the free molecular duct
are fully-diffuse walls.
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extreme discrepancy for each coordinate of the sequence. Definition 4.3 of the BCF-k

sequences is merely categorical in nature; as such, it unfortunately does not offer any

insight into the actual construction of the sequence.

The continued fraction representation of any of the irrational numbers used to

construct the Weyl-Richtmyer sequence must contain an infinite number of coeffi-

cients (see Theorems 7.7 and 7.9 in [131]). Otherwise, if a number x has a continued

fraction with a finite number of coefficients, then x is equivalently represented by

a finite number of integer division operations. This would imply that x is a ratio-

nal number. The construction of the BCF-k sequences thus requires the following

two problems to be addressed: (i) how does one ensure that an infinite sequence of

continued fraction coefficients remain bounded; and (ii) how does one ensure that

the irrational numbers generated from the infinite continued fraction remain linearly

independent over the rationals? Fortunately, there exists a simple method to solve

both of these problems by constructing the BCF-3 sequence from quadratic surds.

A quadratic surd is an irrational number z of the form

z =
b ± c

√
d

e
,

where b, c, d, e are integers, and d > 0 and squarefree. In a theorem originally due

to Lagrange (see Theorem 7.19 in [131]), the continued fraction of a quadratic surd

is periodic. Stated more formally, if the continued fraction of a quadratic surd

z = 〈a0, a1, . . .〉, then for some integer r ≥ 0 there exists an integer T such that the

coefficients satisfy

ai+T = ai for all i ≥ r. (4.8)

The period of the continued fraction for the quadratic surd is then defined as the

smallest integer T that satisfies the condition in (4.8). For example, the continued
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fraction of the quadratic surd (6 +
√

2)/10 is given by

6 +
√

2

10
= 〈0, 1, 2, 1, 6, 1, 6, 1, 1, 6, 1, . . .〉 = 〈0, 1, 2, 1, 6, 1〉,

where the pattern {1, 6, 1} (period T = 3) repeats infinitely. Note that a vinculum,

or over-line, is used throughout this investigation to denote an infinitely repeating

pattern of the continued fraction coefficients. The advantage of the quadratic surds is

that it is possible to determine the upper bound on the infinite sequence of continued

fraction coefficients simply by checking a finite number of coefficients; specifically,

the first r + T coefficients (using the notation of (4.8)). It is possible to calculate

the continued fraction of a quadratic surd using the procedure described by Knuth

(see [78] p. 358) to generate the coefficients until the period is identified.10 Once the

complete periodic continued fraction is known, it is a simple matter to then provide

an upper bound on its coefficients.

It is preferable, with respect to construction of the BCF-k sequences, to be able

to convert a known periodic continued fraction with coefficients bounded by k to a

closed-form representation of the irrational number. The alternative is to calculate

the continued fractions of randomly selected quadratic surds using the procedure in

[78] to check if the coefficients are bounded by k; this is an extremely inefficient

method.11 A general method for calculating an irrational number z directly from its

continued fraction is obtained from the converging series of rational approximations

to z. Given the continued fraction of an irrational number z = 〈a0, a1, . . .〉, define

ri = 〈a0, a1, . . . , ai〉 as the ith rational convergent to z for all i ≥ 0. The ith rational

10A word of caution is in order because the calculation of the continued fraction coefficients is
extremely sensitive to round-off errors. Even under practical conditions using standard IEEE 64-
bit double precision arithmetic, the procedure of Knuth [78] may become unstable after calculating
only the first 10 coefficients.

11Except for a few special forms, it is difficult to determine the exact pattern of the continued
fraction coefficients by inspection alone without actually performing the calculation procedure in
[78].
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convergent z is calculated by ri = pi/qi, where pi and qi are defined by the following

recursive formulae (see [127] p. 219),

p−2 = 0, p−1 = 1, pi = aipi−1 + pi−2 for i ≥ 0,

q−2 = 1, q−1 = 0, qi = aiqi−1 + qi−2 for i ≥ 0.

(4.9)

Note that the denominators q0, q1, . . . of the rational convergents monotonically in-

crease (i.e. 1 = q0 ≤ q1 < q2 < · · · ) because the continued fraction coefficients

a1, a2, . . . are strictly positive by definition. More importantly, the ith rational con-

vergent to z is bound in the following equation (see Theorem 7.11 [131]),

|z − ri| <
1

qiqi+1

for i ≥ 0,

implying, as the name already suggests, that the series r0, r1, r2, . . . converges to

the irrational number z. From the standpoint of generating the actual elements of

the BCF-3 sequence for QMC integration, the series of rational convergents is an

acceptable technique to calculate an irrational number from its continued fraction

to the necessary accuracy on a finite precision machine. However, it is impossible to

establish that a set of irrational numbers is linearly independent over the rationals

by merely inspecting their respective continued fractions. The series of rational

convergents defined by the recursive formulae in (4.9) is therefore an unsatisfactory

method for producing the set of irrational numbers for the BCF-3 sequence because

the necessary condition for establishing low-discrepancy (i.e. linear independence

over Q) cannot be proven.

While there may not exist a general method to determine the exact closed-form

representation of any irrational number from its infinite continued fraction, there is

a simple technique for converting a periodic continued fraction into its corresponding

quadratic surd. To illustrate this technique, consider the simple case of determining
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the quadratic surd z with a continued fraction 〈1, 3〉. Writing out the continued

fraction yields

z = 1 +
1

3 +
1

1 +
1

3 +
1

· · ·

.

Note that the region marked by the box is also a periodic continued fraction; in fact,

it is the same continued fraction as z. Hence,

z = 1 +
1

3 +
1

z

, (4.10)

or z = 〈1, 3, z〉. Simplifying the fraction terms in (4.10) yields a quadratic equation

for z

3z2 − 3z − 1 = 0,

with solutions z = (3 ±
√

21)/6. However, the solution z = (3 −
√

21)/6 < 0 is not

possible because all the terms in the continued fraction are positive. Therefore,

z = 〈1, 3〉 = (3 +
√

21)/6.

The process described for z = 〈1, 3〉 can be generalized to solve the exact closed-

form of the quadratic surd represented by any periodic continued fraction. For

purposes of numerical stability, however, only the quadratic surds that possess a

purely periodic continued fraction are considered. Let 〈a0, . . . , aT−1〉 represent the

purely periodic continued fraction of an irrational number z with a period T . As

with the simple case, the irrational number z can be represented by an implicit
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relationship using a general continued fraction with a finite number of coefficients;

that is,

z = 〈a0, . . . , aT−1, z〉. (4.11)

The recursive procedure defined in (4.9) for calculating the rational convergents is

applicable to general continued fractions as well. Therefore, the implicit relationship

(4.11) is simplified to yield

z =
pT

qT

=
pT−1z + pT−2

qT−1z + qT−2

, (4.12)

where p0, . . . , pT−1 and q0, . . . , qT−1 are calculated from the continued fraction coeffi-

cients a0, . . . , aT−1 using (4.9) as previously described. The implicit result in (4.12)

can be rewritten to yield a quadratic equation for z

qT−1z
2 − (pT−1 − qT−2) z − pT−2 = 0,

with a unique positive solution

z =
(pT−1 − qT−2) +

√

(pT−1 − qT−2)
2 + 4pT−2qk

2qT−1

. (4.13)

It is important to note that the calculation in (4.9) for series of rational convergents

ri = pi/qi for i = 0, 1, . . . becomes increasingly at risk to overflow errors as i increases.

By only considering purely periodic continued fractions, this risk is alleviated to some

extent by avoiding the additional calculation of the rational convergents associated

with the non-repeating part of the continued fractions. To further reduce the risk of

overflow errors, the set of irrational numbers used to construct the BCF-k sequences

is calculated from continued fractions with the smallest possible period.

Now that a method is known to be capable of finding the closed-from quadratic

surd associated with a purely periodic continued fraction, it is possible to detail how
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the set of irrational numbers z = (z1, . . . , zs) used to generate an s-dimensional BCF-

k sequence S(z) is constructed. Let Zk denote an ordered infinite set of irrational

numbers given by the following continued fractions,

Zk =
(
〈1〉, 〈2〉, . . . , 〈k〉,

〈1, 1〉, 〈1, 2〉, . . . , 〈1, k〉,

〈2, 1〉, 〈2, 2〉, . . . , 〈2, k〉, . . .
...

〈k, 1〉, 〈k, 2〉, . . . , 〈k, k〉,

〈1, 1, 1〉, 〈1, 1, 2〉, . . . , 〈1, 1, k〉, . . .
)
. (4.14)

By virtue of its design, Zk defines an infinite set of purely periodic continued fractions

that only contain coefficients less than or equal to k. Any linearly independent set

of irrational numbers z over the rationals that is a subset of Zk (4.14) can thus be

used to construct a low-discrepancy BCF-k sequence.

As noted, there does not exist a general method to verify a set of irrational

numbers is linearly independent over the rationals based solely on their continued

fractions. It is possible, however, to quickly establish if a set of quadratic surds is

linearly independent over the rationals using a very powerful theorem of Besicovitch.

In [14], Besicovitch proves the necessary and sufficient conditions for a set of alge-

braic irrational numbers to be linearly independent over the rationals. Besicovitch’s

theorem, as it pertains to the construction of a BCF-k sequence, implies that a set of

quadratic surds is linearly independent over the rational if and only if the squarefree

integers appearing in the square roots of the quadratic surds are distinct. With the

aid of Besicovitch’s theorem, the set z of irrational numbers needed to construct a

BCF-k sequence is then found by converting the continued fractions in Zk (4.14)
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to quadratic surds, and then simply eliminating from consideration any irrational

numbers that are not linearly independent.

Let z′
i denote the irrational number corresponding to the ith continued fraction

in the ordered set Zk in (4.14). Also, let D denote a set of squarefree integers

used to track the linear independence of the quadratic surds. The set of irrational

numbers z = (z1, . . . , zs) used to generate an s-dimensional BCF-k sequence is then

constructed using the following algorithm:

Algorithm 4.1

1. Initialize i = 1, D = ∅, and z = ∅ (here ∅ denotes the null, or empty, set).

2. Find the quadratic surd z′
i = (bi ± ci

√
di)/ei, where bi, ci, di, ei ∈ Z and di is

positive and squarefree, by converting the ith continued fraction in Zk (4.14)

to a closed-form using equations (4.11-4.13).

3. If di /∈ D, then add z′
i to the set z and di to the set D.

4. Increment i.

5. If card (z) < s, then go to Step 2. Otherwise stop, as the set z now contains s

irrational numbers with continued fraction coefficients bounded by k that are

linearly independent over the rationals.

Note that the set of periodic continued fractions Zk (4.14) contains many duplicates

of the same irrational number. For instance, the continued fractions 〈1〉,〈1, 1〉, and

〈1, 1, 1〉 clearly represent the same repeating pattern, and thus the same irrational

number. The conversion from a periodic continued fraction to a quadratic surd

using equations (4.11-4.13) yields the same result even if the period of the repeating

coefficients is an integer multiple of the smallest period. Therefore, with respect to
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Continued Quadratic
Set z Fraction Surd

z1 〈1〉 1+
√

5
2

z2 〈2〉 1 +
√

2

z3 〈3〉 3+
√

13
2

z4 〈1, 2〉 1+
√

3
2

z5 〈1, 3〉 3+
√

21
6

z6 〈2, 3〉 3+
√

15
3

z7 〈1, 1, 2〉 2+
√

10
3

z8 〈1, 1, 3〉 3+
√

17
4

z9 〈1, 2, 2〉 5+
√

85
10

z10 〈1, 2, 3〉 4+
√

37
7

Table 4.1: The first 10 irrational numbers used in the set z used to generate the
BCF-3 low-discrepancy sequence.

actual implementation of the algorithm, it is much simpler to generate the entire

set of continued fractions Zk (4.14), and eliminate the duplicates during the linear

independence check in Step 3 of Algorithm 4.1.

There is some impetus to construct the BCF-k sequence for use in QMC particle

simulations; especially, as previously noted, in the case when k = 3. To illustrate

the algorithm presented here for producing the set of irrational numbers z needed to

generate a BCF-k sequence, the first 10 irrational numbers found by Algorithm 4.1

are given in Table 4.1 for the BCF-3 sequence. The s-dimensional BCF-3 sequence

is generated from the ordered set of irrational numbers z = (z1, . . . , zs), where zi is

the ith quadratic surd added to the set z in Step 3 of Algorithm 4.1. Because the

BCF-k sequence has not been the focus of any previous research into low-discrepancy

sequences, there is no established standard choice for the set of irrational numbers

used to construct the sequence. Thus, the construction of z = (z1, . . . , zs) defined

here is adopted throughout this investigation for the BCF-3 sequence.
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The other low-discrepancy sequences used in the QMC particle simulations of

this investigation (the Halton, Faure, and Niederreiter (b = 2) sequences) have a

standard set of constructive elements that is used to generate the sequence.12 These

standard sets of constructive elements are typically chosen because they yield op-

timal performance in a certain theoretical sense. In particular, the Halton, Faure,

and Niederreiter sequences have theoretical upper bounds on their star-discrepancy,

which are minimized when generated from their standard constructive elements.

While the actual asymptotic convergence rate for the star-discrepancy of these se-

quences O (N−1(log N)s−1) is unchanged by the selection of the constructive ele-

ments; the implied constant of the convergence rate is affected. Without a simi-

lar theoretical upper bound on the star-discrepancy of a multi-dimensional Weyl-

Richtmyer sequence, there is no obvious set of irrational numbers for generating the

BCF-k sequence that should be made standard. However, there may be some practi-

cal advantage to be gained if the set of irrational numbers z for the BCF-k sequence

is selected such that the correlation between any two dimensions of the sequence

attains a minimum in some sense (see Section 6.4). Further investigation regarding

the correlation of the BCF-k sequences is saved for future research.

For each of the low-discrepancy sequences tested in this investigation for the

QMC particle simulations, the maximum required dimension of the sequences is 300.

While there clearly exists an infinite number of continued fractions with coefficients

bounded by a constant k ≥ 2, it is not rigorously established if Algorithm 4.1 is

capable of producing an infinite set of linearly independent irrational numbers for

the BCF-k sequence. Let νk(T ) denote the number of linearly independent quadratic

12The standard constructions of the s-dimensional low-discrepancy sequences are as follows: (i)
the Halton sequence is constructed using the s smallest primes; (ii) the Faure sequence is constructed
in the smallest prime base greater than or equal to s; and (iii) the Niederreiter sequences in base 2
is constructed from the s irreducible polynomials in F2[x] with the smallest degree.
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Figure 4.3: The number νk(T ) of linearly independent quadratic surds which have a
purely periodic continued fraction with coefficients bounded by k and a
period less than or equal to T .

surds with a periodic continued fraction of the form 〈a0, . . . , am−1〉, with m ≤ T , and

ai ≤ k for 1 ≤ i ≤ m. Because of the prescribed order of the set Zk (4.14), the

number νk(T ) equals the maximum dimension of the BCF-k sequence that can be

constructed using Algorithm 4.1 to search all periodic continued fraction patterns

with a period less than or equal to T . Figure 4.3 illustrates the growth of νk(T ) as the

maximum period length T increases, for different bounding constants k. The number

νk(T ) appears to grow exponentially with the period length T ; that is, νk(T ) ∝ T α(k),

where α(k) only depends on the bounding constant k. The exponential growth of

νk(T ) in Figure 4.3 suggests that there is most likely an infinite number of irrational

numbers with bounded continued fractions that are linearly independent over the

rationals. No formal proof is considered here, however.13 Most importantly, note

that ν3(7) = 306, indicating that algorithm 4.1 is indeed capable of producing the

13Most likely, buried somewhere in the number theory literature of the 20th century, there already
exists a proof of the infinitude of linearly independent irrational numbers with bounded continued
fractions. Unfortunately, the author is not able to locate such a proof at this time.
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maximum required dimension for the BCF-3 sequence needed in the QMC particle

simulations of this investigation.

4.3 Sequence Implementation

All the particle simulations for free molecular duct flow presented in this investi-

gation are based on a sequence of vectors that are uniformly distributed throughout

the unit hypercube I
s
; that is, x1,x2, . . . ∈ U (0, 1)s. Each element of the sequence

xn ∈ I
s

is used to generate up to s particle moves14 for the nth sample trajectory

representing the particle behavior (see Section 5.5 for more details on the particle

methods). Thus, it is important to understand the computational cost of generat-

ing the uniformly distributed sequence of vectors when assessing the computational

performance of the particle simulation. There are five types of sequences that are

employed in the various particle simulations presented here: the pseudo-random se-

quence; the Weyl-Richtmyer sequence; the Halton sequence; the Faure sequence; and

the Niederreiter sequence in base 2. As reviewed in Appendices B-C,E-F, the four

low-discrepancy sequences tested in this chapter have vastly different construction

techniques; therefore, the computation time to implement the sequences is expected

to vary considerably.

A comparison is given in Figure 4.4 of the computation time required to generate

the five sequences used for particle simulations in this investigation with the sequence

dimension s in the range 8 ≤ s ≤ 256. For some of the sequences implemented here,

the per-element cost of generating the sequence increases with the sequence length.

In order to minimize the possible effect of sequence length, the results in Figure 4.4

are based on the computation time needed to generate the first N = 227 sequence

14The traditional test particle Monte Carlo method may not require all s dimensions to generate
a sample trajectory because the particle may escape the duct in less than s moves.
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Figure 4.4: Comparison of the computation time needed to generate the pseudo-
random sequence and the low-discrepancy sequences: (a) the computa-
tion time to generate a sequence of length N = 106; and (b) the computa-
tion time to generate the low-discrepancy sequence (N = 106) normalized
by the time for the pseudo-random sequence.

elements.15 The sequence length N = 227 corresponds to the maximum sequence

length of the low-discrepancy sequence used in any of the QMC simulations in this

chapter. It is important to note that the relative impact of the sequence genera-

tion on the total simulation time depends on the physical problem being simulated.

Specifically, the importance of the sequence generation cost depends on the number

of additional operations that must performed to transform a sequence element xn

into a sample representing the simulated stochastic process. For the particle simula-

tions of the free molecular conductance probability in a duct, the cost of generating

any sequence tested here contributes between 5% to 15% of the total simulation

cost (except the Faure sequence). The high cost of generating the Faure sequence

contributes more than 50% to the total simulation cost.

Before discussing the specific differences in the computational cost of the se-

15Except for the Faure sequence, which is based on the computation time to generate only the first
N = 225 element. A smaller sequence length is used in this case because of the length computation
time associated with generating the Faure sequence. Moreover, the per-element cost of generating
the Faure sequence increases with the sequence length. Thus, the performance of the Faure sequence
is actually 10% to 20% worse than the results in Figure 4.4.
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quences used in the particle simulations, two additional points about their general

implementation must be made. First, all the sequences are generated using the same

hierarchy of abstract C++ class objects that is employed in the particle simulations

presented in Sections 6.3 and 6.5. The multi-level hierarchy allows all the basic se-

quence operations needed by the actual simulation to be performed using the same

base class; e.g. retrieving the components of a sequence element, and initiating the

calculation of the next sequence element. Once the update is initiated, the specific

construction details that are unique to the individual sequences are then performed

in classes derived from the base class, which serves to hide their implementation

from the main program. The benefit of the object-oriented program design is that

the same particle simulation can be performed using any of the 5 sequences tested

here without any changes to the main program despite the vast differences in actual

sequence construction. However, the additional overhead associated with the hier-

archy of abstract C++ class objects yields approximately 10% higher computation

time than a dedicated sequence generation program. Second, the computation time

for generating the sequences in Figure 4.4 includes a summation over all the compo-

nents of each sequence. This summation is equivalent to a Monte Carlo, or QMC,

approximation of the multidimensional integral,

∫

I
s
(u1 + · · · + us)du ≈ 1

N

N∑

n=1

s∑

i=1

xi,n, (4.15)

using the sequence xn = (x1,n, . . . , xs,n) for n = 1, 2, . . .. The simple summation

ensures that each component of every sequence element generated is actually used

at some later point during the execution of the program. This is important when

performing timing studies because some compiler optimization techniques are robust

enough to exclude certain calculations from the sequence generation if it is detected
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that the sequence element is never used in the program. In some extreme cases,

the compiler is clever enough to eliminate the entire sequence calculation yielding a

computation time of zero. Note that the integral in (4.15) has an exact value of s/2

which can be used as a check value for the sequence generation.

Among the five sequences tested in the timing comparison in Figure 4.4, the

generation of the Niederreiter sequence in base 2 is clearly the fastest. Specifically, the

Niederreiter sequence in base 2 is three times faster than the pseudo-random sequence

and the Weyl-Richtmyer sequence. The closest competitor is the Halton sequence in

large dimensions, where the Niederreiter sequence remains at least 40% faster. The

computation time for the Niederreiter sequence scales near linearly with the sequence

dimension s, with almost no variation in cost with increasing sequence length. On

the other end of the performance spectrum is the Faure sequence, which is 8-10

times slower than the pseudo-random sequence. The computation time of the Faure

sequence also demonstrates a non-linear dependence on the sequence dimension and

a per-element cost that increases with the sequence length. The computation time

for the Halton, Weyl-Richtmyer, and pseudo-random sequences are all approximately

on the same order. Both the generation of the Weyl-Richtmyer and pseudo-random

sequences demonstrate nearly identical scaling with the sequence dimension, with

the random sequence being slightly faster (between 10% to 30%); there is almost

no variation in cost with increasing sequence length. The computation time for

the Halton sequence has a strong dependence on the sequence dimension; however,

it becomes relatively more efficient for longer sequences. For example, when the

sequence dimension s = 8, the Halton sequence is 5 times slower than the pseudo-

random sequence; yet, when the sequence dimension s = 256, the Halton sequence

is actually 2 times faster than the pseudo-random sequence. Overall, the relative
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computation times of the sequences tested in this investigation are consistent with

earlier timing studies that appear in literature [48, 18, 116]. In order to understand

the performance trends illustrated in Figure 4.4, the algorithmic implementation of

each sequence tested in this investigation is briefly reviewed in the subsections that

follow.

4.3.1 The pseudo-random sequence

The pseudo-random sequence is constructed using the pseudo-random number

generator random() that is part of the standard Linux C package used by both the

GNU C/C++ and the Intel C/C++ (version 8.0) compilers, for all the Monte Carlo

simulations presented in this investigation. Quoting the Linux manual pages for

random(), the function produces an unsigned 32-bit integer z ∈ [0, 231 − 1] using

a “non-linear additive feedback random number generator.” A general discussion

of the design and implementation of additive feedback number generators is given

by Knuth in [78], and the benefits of nonlinear generators are given in the review

papers of L’Ecuyer [90, 91]. In order to obtain a pseudo-random sample from the

uniform distribution U (0, 1), the integer z obtained from the function random() is

scaled to the unit interval by multiplying z by the inverse maximum possible integer,

RAND MAX = 231 − 1, that can be generated.

Generating a pseudo-random sequence in s dimensions simply requires s calls of

the random() function and s multiplications to scale the sequence to I s. Conse-

quently, the computational time for the pseudo-random sequence implemented here

scales linearly with the sequence dimension as illustrated in Figure 4.4. While the

exact operation count of the random() function is not known by the author, a lower

bound can be determined for comparison to the other low-discrepancy sequences
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based on the implementation of the simpler additive feedback generator. The addi-

tive feedback generators with the lowest operation count are the lagged Fibonacci

generators [78]. These generators are exceedingly fast and only require a single 32-bit

addition, two references of non-sequential memory, and an increment of two memory

pointers.

4.3.2 The Weyl-Richtmyer sequence

The mathematical description and asymptotic performance of the low-discrepancy

Weyl-Richtmyer sequence is found in Appendix B. The construction of the Weyl-

Richtmyer sequence in s dimensions requires a vector z = (z1, . . . , zs) of irrational

numbers to be selected that are linearly independent over the rationals. Let xn =

(x1,n, . . . , xs,n) ∈ I
s

denote the nth element of Weyl-Richtmyer sequence, then the

sequence is defined using the vector z by

xn = ([nz1], . . . , [nzs]) ,

where the square brackets [·] denote the fractional part of the argument, i.e. [y] =

y − byc. The generation of the Weyl-Richtmyer sequence can be recast in a more

computationally efficient form by noting that

xn = ([z1 + x1,n−1], . . . , [zs + xs,n−1]) , (4.16)

with x0 = (0, . . . , 0). Thus, it is possible to construct each element of the Weyl-

Richtmyer sequence from the previous element with only s operations of addition

and s operations to remove the integer part of the value.

In practice, it is not possible to calculate the exact Weyl-Richtmyer sequence

because the irrational numbers in z can only be approximated using finite precision

arithmetic. Therefore, one must select the working precision in which to perform the
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operations in (4.16) in order to maintain a consistent level of accuracy throughout

the construction of the sequence. In order to determine the appropriate working

precision, assume that the irrational number z has the maximum possible truncation

error of one half-bit when represented in this finite precision. As the truncation error

propagates through the calculation in (4.16), the nth element of the sequence calcula-

tion loses blog2 nc bits of accuracy due to the initial half-bit error in z. To maintain

an accuracy of m bits throughout the calculation of a Weyl-Richtmyer sequence with

a maximum length Nmax, the irrational numbers z must be stored and the calculation

in (4.16) must be performed with m + blog2 Nmaxc bits of precision. The maximum

length restriction of any of the other sequences considered in this investigation is

Nmax = 232, which is adopted as a suitable limit for the implementation of the Weyl-

Richtmyer sequence considered here. The calculations that generate samples for the

conductance probability in the particle simulations are performed using 64-bit float-

ing point arithmetic.16 Moreover, the accuracy of the QMC simulation is so precise

for certain duct geometries that the relative error is actually less than the machine

error ε = 1.2 · 10−7 of the 32-bit floating point arithmetic.17 Therefore, it makes

sense to adopt the requirement that the working precision of the Weyl-Richtmyer

sequence calculation in (4.16) maintains accuracy comparable to the 64-bit floating

point precision for a maximum sequence length Nmax = 232.

A simple method for obtaining this level of accuracy uses 3 standard unsigned

32-bit integers to store a 96-bit representation of the irrational number z, and the

nth element xn, for each dimension of the Weyl-Richtmyer sequence. Note that the

subscripts for z and xn, which denote the dimension of the sequence, are omitted

in this part of the discussion for clarity. As a result of the [·] operation in (4.16),

16The IEEE standard 64-bit, double precision, floating point arithmetic.
17The IEEE standard 32-bit, single precision, floating point arithmetic.
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the sequence element xn remains in the unit interval [0, 1) for all n ≥ 0. Based on

similar reasoning, the integer part of z does not affect the sequence calculation in

(4.16); only [z] ∈ [0, 1) must be stored. Since the quantities xn and [z] remain in

the unit interval throughout the construction of the Weyl-Richtmyer sequence, it is

possible to perform the extended precision calculation using fixed point arithmetic

rather than floating point arithmetic. There are three advantages of fixed point

arithmetic over floating point arithmetic: (i) it is much simpler to design extended

precision algorithms using fixed point arithmetic; (ii) it is faster to perform the basic

operations of fixed point arithmetic because there is no need to normalize the result

after each intermediate step; and (iii) the operation [·] for obtaining the fractional

part of the argument can be implemented at no cost by simply ignoring the addition

overflow. One drawback to working in fixed point arithmetic is that values close to

zero are unnormalized resulting in a minor loss of relative accuracy.

Using fixed point arithmetic scaled for the unit interval, the 96-bit representation

for [z] and xn are formed by

[z] ≈ 0. b96 . . . b65
︸ ︷︷ ︸

word w3

b64 . . . b33
︸ ︷︷ ︸

word w2

b32 . . . b1
︸ ︷︷ ︸

word w1

, (4.17)

and

xn ≈ 0. b96 . . . b65
︸ ︷︷ ︸

word v3,n

b64 . . . b33
︸ ︷︷ ︸

word v2,n

b32 . . . b1
︸ ︷︷ ︸

word v1,n

, (4.18)

where the computer words w1, w2, w3 and v1,n, v2,n, v3,n are standard unsigned 32-bit

integers. Adopting the notation from (4.17) and (4.18), the calculation of each dimen-

sion of the Weyl-Richtmyer sequence xn is performed with 96-bit working precision
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by the following algorithm:

v1,n = v1,n−1 + w1,

v2,n =







v2,n−1 + w2 + 1 if v1,n < w1.

v2,n−1 + w2 otherwise,

v3,n =







v3,n−1 + w3 + 1 if v2,n < w2.

v3,n−1 + w3 otherwise,

xn ≈ v3,n

232
+

v2,n

264
. (4.19)

The algorithm (4.19) is essentially the same technique that is taught in primary school

for basic addition, the only difference here is that the operations are performed in

base 232 instead of base 10. It is possible at some point during the calculation of vi,n

(for i = 1, 2, 3), that the true value of vi,n−1+wi is actually greater than 232. Referred

to as an overflow calculation, the information that should have been represented by

the 33rd bit in this case is lost in the 32-bit representation of vi,n. While some

programming languages may allow direct access to an overflow flag associated with

calculation; in general, it is possible to detect a calculation overflow by checking if

vi,n < wi. A calculation overflow has occurred when vi,n < wi is true and the 33rd bit

must be added to the next most significant word vi+1,n; this process is also referred

to as a carry operation. Any overflow that occurs for the most significant word v3,n

that represents xn can be ignored as it adds simply one to the integer value which

is ignored by virtue of the [·] operation in (4.16). Thus, the construction of each

dimension of each element of the Weyl-Richtmyer sequence using (4.19) is performed

using 3 addition operations and 2 carry operations.

The minimum guaranteed accuracy of the first 232 elements of the Weyl-Richtmyer

sequence when generated by (4.19) is ε = 2−64, this error is absolute because the
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calculations in (4.19) are performed using fixed point arithmetic. The 64-bit floating

point representation of a number uses 52 bits to store the mantissa, excluding the

implied bit due to normalization while the remaining 12 bits are reserved for the

sign and exponent. Consequently, for the first 232 sequence elements, there is an

additional 12 bits of accuracy available when converting from the 96-bit fixed point

representation to the 64-bit floating point representation. Thus, the conversion is

performed without loss for all values of xn ∈ [2−12, 1). There may be some loss in the

conversion depending on the value of n, for values of xn < 2−12. Because the accuracy

loss due to the accumulation of roundoff error in the calculation of xn is blog2 nc,

it implies that there is actually 44 − blog2 nc extra bits available for the conversion

instead of 12. Therefore, any actual loss of accuracy during the conversion from

96-bit fixed point representation to the 64-bit floating point representation occurs

rarely. If this implementation of the Weyl-Richtmyer sequence is applied to a QMC

integration of a function with a singularity at zero, there may be some noticeable

effect due to the fixed point calculations. However, the presence of such a singularity

would make any application of the QMC method suspect. For the QMC simulation

of the conductance probability in a free molecular flow, the resulting integrand is

smooth and bounded, and any effect due to the lack of floating point arithmetic is

negligible at best.

With the algorithm (4.19) for constructing the Weyl-Richtmyer sequence in place,

the focus now shifts to the selection of the set z of s irrational numbers used to gen-

erate the sequence. Unlike the other low-discrepancy sequences, there does not exist

any mathematical theory to guide the selection of z for the multi-dimensional Weyl-

Richtmyer sequence. For the Halton, Sobol’, Faure, and Niederreiter sequences, it is
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possible to choose the constructive elements18 such that the asymptotic constant in

the discrepancy bound for the sequence is minimized. Except in the one dimensional

case, there is not a comparable result to exploit for the Weyl-Richtmyer sequence.

Based on the heuristic arguments in Section 4.1, there is some motivation to select

z from the set of irrational numbers with continued fraction coefficients that are all

bounded by a small constant integer. Such a sequence is referred to as a BCF-k

sequence in this investigation and is defined as follows. A Weyl-Richtmyer sequence

is a BCF-k sequence if all the continued fraction coefficients of the irrational numbers

in z used to construct the sequence are less than or equal to the integer k. Please

refer to [75, 131] for a thorough review of the theory of continued fractions. Based

on the theoretical results [127] and the empirical results (see Figure 4.2), when the

bounding constant k on the continued fraction coefficients is smaller for a given irra-

tional number z, there is also a smaller constant in the extreme discrepancy bound

(4.5) for the sequence constructed from z. In fact, the theoretical bound in (4.5) is

the smallest when k = 1, 2, 3. Therefore, the BCF-3 sequence is of practical interest

here for the QMC particle simulation because, at the very least, the sequence is ex-

pected to yield a good QMC approximation for problems where the dimensions are

weakly-coupled under the integral operator.

To find the best representative of a Weyl-Richtmyer sequence for comparison to

the other low-discrepancy sequences, the same three sets of irrational numbers tested

in Figure 4.2 are used for the QMC particle simulations of free molecular duct flow.

Specifically, these include the following choices of the irrational set z: (i) the origi-

nal implementation of Richtmyer [148] using combinations of the square roots of the

18The term “constructive elements” used here refers to the prime bases of the Halton and Faure
sequences, the primitive polynomials of the Sobol’ sequence, and the irreducible polynomials of the
Niederreiter sequence.
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first 8 prime numbers, as defined in (4.6); (ii) the formulation described in the review

paper of James [68] using the square roots of the smallest prime numbers, as defined

in (4.7); and (iii) the BCF-3 sequence using the procedure outlined in Section 4.2.

It is important to note that the actual development of the QMC particle simulation

appears later in Section 5.5. However, it is necessary to present some results of the

QMC particle simulation here in order to establish which Weyl-Richtmyer sequence

yields the best performance. The results given in this section for the particle simula-

tions are, therefore, only discussed in terms of the general error convergence without

any mention to the specific implementation details of the QMC method.

The performance of the QMC particle simulation for approximating the conduc-

tance probability for free molecular duct flow is given in Figure 4.5 for a duct length

to height ratio L in the range of 0.5 ≤ L ≤ 9.5, using the three Weyl-Richtmyer

sequences. To reduce the noise in the error convergence results in Figure 4.5, 512

ensembles of the traditional test particle Monte Carlo simulation are collected and

then averaged together. Similarly, 16 ensembles of the QMC particle simulation

are also averaged together.19 Compared to the other two classic Weyl-Richtmyer

sequences, the BCF-3 sequence produces the lowest relative error at N = 223 for

all the duct geometries under consideration (see Figure 4.5(a)). In particular, the

BCF-3 sequence yields an error that is significantly smaller than the traditional test

particle Monte Carlo simulation by a factor of 104 when L = 9.5, and by a factor of

12 when L = 9.5. Furthermore, for most of the duct geometries tested, the BCF-3

sequence produces an error that is 1.5 to 3 times smaller than the other two classic

implementations of the Weyl-Richtmyer sequence.

The error convergence rate, for each particle simulation (Monte Carlo and QMC),

19The 16 ensembles for the QMC simulation are constructed from 16 equal length subsequences
of the same low-discrepancy sequence.
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Figure 4.5: QMC performance comparison using different Weyl-Richtmyer low-
discrepancy sequences: (a) the relative error after N = 223 samples;
(b) the power law exponent for the error convergence rate; (c) the power
law constant for the error convergence rate; and (d) the maximum error
at which the QMC simulation remains faster than DSMC.
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is modeled as a power law; that is, the error E = cN γ, where N is the number of

samples. The power law exponent γ and the power law constant c are given in Figure

4.5(b) and (c) respectively for each of the duct geometries tested. Interestingly, the

BCF-3 sequence has the slowest error convergence rate (i.e. the power law exponent

γ is the least negative) of all the Weyl-Richtmyer sequences. The BCF-3 sequence

is still able to achieve the lowest error after N = 223 samples, in spite of its slower

convergence rate, because its power law constant c is significantly smaller than the

other sequences (see Figure 4.5(c)). More specifically, the power law constant for

the convergence of the BCF-3 sequence is 1.5 to 15 times smaller than the other

two Weyl-Richtmyer sequences when the duct length to height ratio L is in the

range 1 ≤ L ≤ 8.5. This performance observed for the BCF-3 sequence is to be

expected from its intended design. Each dimension of the BCF-3 sequence, after all,

is designed to have the lowest possible bounding constant for the convergence of the

one dimensional discrepancy. The BCF-3 sequence should then, as a consequence

of the Koksma-Hlawka inequality, also possess the lowest bounding constant on the

error convergence in QMC simulations where the problem dimensions are weakly-

coupled under the integral operator.

The power law models of the error convergence for the Monte Carlo and QMC

particle simulation can be combined with the overall computation time to determine a

critical relative error Ecrit level that serves as a demarcation between the performance

of the two methods. Recall from Figure 4.5(b) that the convergence rate of the QMC

methods is greater than the rate of the Monte Carlo method O
(
N−1/2

)
for all the

Weyl-Richtmyer sequences and duct geometries tested. Consequently, the simulation

time to reach any error level below Ecrit is faster for the QMC particle simulation

than the Monte Carlo method (i.e. the computation time τqmc < τmc). A larger value



172

for the critical error Ecrit, therefore, indicates that the QMC simulation is the more

computationally efficient method for a wider range of desired simulation accuracies.

As shown in Figure 4.5(d), the BCF-3 sequence has the largest critical error Ecrit

(where τqmc < τmc) by virtue of having the smallest power law constant for the

error convergence. In fact, for duct geometries with L ≤ 6.5, the QMC simulation

with the BCF-3 sequence is faster than the Monte Carlo method for achieving any

relative error less than 10%, which covers most simulation accuracy levels of practical

interest. Thus, the BCF-3 sequence developed here is used for the QMC simulations

as the representative low-discrepancy Weyl-Richtmyer sequence for the remainder of

the investigation.

The cost of implementing the different Weyl-Richtmyer sequences is not a factor

because the choice of irrational numbers z used in the construction does not affect the

calculation in (4.16). The generation of the BCF-3 sequence requires three addition

operations and two carries to be performed for each dimension of each sequence

element, and each dimension is constructed in the same manner. Hence, the cost of

generating the BCF-3 sequence is expected to be linear with sequence dimension s.

There is, however, a slight increase in computation time with s when compared to

the random sequence that has a true linear dependence between computation time

and sequence dimensions, as shown in Figure 4.4(b). The computation time for the

BCF-3 sequence is 10% slower than the random sequence when s = 8, and 30% slower

when s = 256. The slight non-linear increase in computational cost with dimension

is most likely attributed to the increased amount of computer memory that must

be accessed by the algorithm in (4.16). These types of performance effects depend

on the relative size and architecture of the L1 and L2 memory caches on the actual

computer chip, and the compiler options used to create an executable version of the
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code.

4.3.3 The Halton sequence

The mathematical description and asymptotic performance of the low-discrepancy

Halton sequence is found in Appendix C. The ith dimension of Halton sequence used

in this investigation is generated from a one dimensional van der Corput sequence in

base pi, where pi is the ith smallest prime number for 1 ≤ i ≤ s.20 It is often conve-

nient to describe the base b van der Corput sequence in terms of the inverse radical

function χb(n) (see Appendix A) Specifically, the sequence (χb(0), χb(1), χb(2), . . .)

represents the van der Corput sequence in base b. The base b representation func-

tion ~ξ(n) in (A.1) can be combined with the definition of χb(n) in (A.2) to yield a

recursive form for χb(n) given by

χb(n) =







1
b

(
χb(bn

b
c) + mod(n, b)

)
if n > 0

0 otherwise.

(4.20)

The recursive form in (4.20) is appealing because it can be implemented as a single-

line function in most programming languages; however, it is exceedingly wasteful.

The calculation of each recursive step of χb(n) requires one addition, multiplication,

division, and modulo operation. Furthermore, the number of steps m until the

recursion terminates for the nth element of the van der Corput sequence is equal to

the number of digits in the base b representation of n; i.e. m = blogb nc + 1.

In order to understand why most of the operations performed in the recursive

form (4.20) are unnecessary, consider the following calculation of (b− 1) consecutive

elements of a base b van der Corput sequence. Let k denote any non-negative integer,

and suppose the (bk)th element of the van der Corput sequence χb(bk) is known. Then

20Except where otherwise noted in Section 6.4.



174

the next (b − 1) elements of the sequence are found from the more computationally

efficient recursion,

χb(bk + r) = χb(bk + r − 1) +
1

b
, for r = 1, 2, . . . , b − 1. (4.21)

At the very worst, one need only perform the direct calculation of the inverse radical

function χb(n) using (4.20) (or any other means) when n ≡ 0 (mod b), only occurring

for (1
b
)th of the sequence elements. The remaining fraction of the elements (equal

to b−1
b

) may be calculated by a single addition of the constant 1
b

to the previous

sequence element. This simplification offers a tremendous decrease in computation

time over the direct calculation of the inverse radical function for every element of

the van der Corput sequence. Moreover, the average cost of computing the van der

Corput sequence in base b decreases as b increases.

In the original description of Halton sequence in [56], Halton provides a very effi-

cient algorithm for constructing the van der Corput sequences based on the additive

recursion in (4.21). Furthermore, the algorithm in [56] does not perform the full

recursion in (4.20) for the nth sequence element when n ≡ 0 (mod b). In this case,

the algorithm finds χb(n) using the previous element χb(n) in α steps, where α is the

largest integer such that n ≡ 0 (mod bα). While the algorithm in [56] is extremely

fast, it is not generally stable using finite precision arithmetic. In [57], Halton and

Smith discuss general conditions for preventing the onset of an unstable sequence

calculation and they outline a modification to the original algorithm in [56] to avoid

one type of instability without affecting the computation time. In comparison to

the other sequences implemented in this investigation, the modified algorithm in [57]

generates the Halton sequence in the second fastest overall computation time; only

the Niederreiter sequence in base 2 is generated faster. Typically, the generation of
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Niederreiter sequence in base 2 is approximately 30-35% faster than the modified

Halton algorithm for the sequence dimensions and lengths under consideration here.

Initially in this investigation the Halton sequence was implemented using the

modified algorithm outlined in [57]. However, a numerical instability was eventually

discovered in the generation of the higher dimensions of the sequence; specifically

when the prime bases are greater than 1,000. When generating a dimension of the

sequence in base b, the instability would occur sometimes for the calculation of the

nth element when n ≡ 0 (mod b). The floating point calculations are performed too

close to the machine precision, in these cases of instability. It is not clear to the

author at this time how to prevent the stability problem in all the dimensions of

the sequence; and the details of the modifications suggested in [57] are only briefly

sketched. Fox in [48] also follows the modified algorithm of Halton and Smith [57];

moreover, Fox provides an explicit method to check the anticipated stability of the

sequence generated. Unfortunately, the stability check in [48] appears only in the

source code accompanying the journal article. Instead of updating a 2 decade old

FORTRAN77 code and verifying is reliability for the sequence dimensions needed

here, the simple but costly full recursion definition in (4.20) is used as necessary to

maintain a stable calculation.

The numerical instability is only present for the calculation of the nth element of

the Halton sequence, when n is divisible by the base b of the associated van der Corput

sequence. In contrast, the additive recursion in (4.21) that is used to construct the

(b − 1) consecutive elements is always a stable operation. Consequently, to achieve

a stable construction of the Halton sequence, a stable calculation of χb(n) is needed

when n ≡ 0 (mod b). In the initial implementation of the Halton sequence, the

instability occurs because of the presence of truncation errors in the floating point
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calculations. Alternatively, the full recursion in (4.20) avoids such truncation errors

by treating the division and floor operations in the argument of χb(bn/bc) as integer

calculations. Thus, the final implementation of the Halton sequence used in this

investigation may be stated as follows. Let xn denote the nth element of a Halton

sequence in s dimensions; that is, xn =
(
χp1

(n), χp2
(n), . . . , χps

(n)
)
, where pi is the

ith smallest prime for 1 ≤ i ≤ s.21 Then for each sequence dimension 1 ≤ i ≤ s, the

inverse radical function χpi
(n) is calculated using the full recursion in (4.20), only if

n ≡ 0 (mod pi); otherwise, χpi
(n) is calculated using the additive recursion in (4.21).

The resulting method is slower than the modified Halton method in [57], espe-

cially for sequences with few dimensions constructed in small prime bases. While it

is generally appealing to use the most computationally efficient methods to generate

the sequences, the performance loss in the final implementation of the Halton se-

quence is not a primary concern of this investigation. Even with the most efficient -

albeit unstable implementation - the Halton sequence is slower than the Niederreiter

sequence in base 2. In fact, it is the Niederreiter sequence in base 2 that is shown

in Section 6.3 to offer the best error convergence, irrespective of computation time,

for nearly all of the duct geometries simulated in this chapter. Therefore, even with

the best possible algorithmic implementation for the Halton sequence, it still would

not serve as the best representative of the QMC particle simulations for comparisons

with Monte Carlo.

As the dimension of the Halton sequence increases, so too does the prime base

used in the construction of the van der Corput sequences increase for each dimension.

Thus, the fraction of sequence components calculated with the additive recursion in

(4.21) also increases with the sequence dimension. Let η denote the fraction of

21Except where otherwise noted in Section 6.4.
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Figure 4.6: The fraction of the components η of Halton sequence in s dimensions
that can be calculated using the simple additive recursion.

sequence components calculated with the additive recursion, then the dependence

of η on the sequence dimension is illustrated in Figure 4.6. The combined effect

of the initial rapid decrease in η with the sequence dimension, and the tremendous

cost savings attributed to the additive recursion, results in only a 50% increase in

computation time when the sequence dimension is increased 8-fold from s = 8 to

s = 64. Consequently, the computation time for the Halton sequence does not

increase linearly with sequence dimension s. In fact, when compared to the random

sequence that has a construction time linearly increasing with dimension, the Halton

sequence, as implemented here, is 5 times slower for s = 8 and 3 times faster for

s = 256, as shown in Figure 4.4.

4.3.4 The Faure sequence

The mathematical description and asymptotic performance of the low-discrepancy

Faure sequence is found in Appendix E. The construction of the Faure sequence in s

dimensions requires a prime base q ≥ s to be selected in which all the operations are
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performed. In order to minimize the constant in the asymptotic discrepancy bound

in (E.1), q is selected to be the smallest prime number greater than or equal to s.22

The implementation of the Faure sequence in this investigation follows in part the

algorithm of Fox [48]. The calculation of each dimension of each sequence element

begins with a matrix-vector multiplication using the binomial coefficient matrix C

defined in (E.2). For each dimension, the vector result of the matrix-vector multipli-

cation is then mapped to the final value of the sequence element in the unit interval

[0, 1) by taking its dot product with the constant vector (q−1, q−2, . . . , q−k−1), where

the maximum sequence length considered is less than qk+1.

Faure [46] originally defines the construction of his sequence in terms of the

powers of the binomial coefficient matrix; that is, C,C2, C3, . . . , Cq−1. However, in

an effort to reduce the memory overhead as suggested by Fox in [48], only the matrix

C is pre-computed and stored in the implementation of this investigation. The

remaining matrix powers are computed implicitly using the recursive definition of

the matrix-vector operation given in (E.3). It is important to note that the matrix-

vector multiplication using C is performed over the finite field Fq, which requires

modular arithmetic. A key difference between the implementation presented here

for the Faure sequence and the algorithm proposed by Fox in [48] is how these field

operations are performed. The finite field calculations, in this investigation, are

performed using pre-computed tables for the addition and multiplication operations

over Fq. In contrast, the algorithm of Fox uses the standard definitions of addition

and multiplication for the matrix-vector multiplication, and then performs a modulo

operation in base q for each row of the matrix. The savings in computational time

associated with the pre-computed field operation tables is 15% to 20%, where the

22Except where otherwise noted in Section 6.4.
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higher savings occurs when the Faure base q is small, or the sequence length is long.

The use of pre-computed field operation tables is not a new idea to the construction

of low-discrepancy sequences, and has been employed by Bratley et. al. in [19] for

the generation of the general Niederreiter sequence in bases b > 2.

The majority of the computational cost of the Faure sequence is due to the matrix-

vector multiplication. In order to calculate the nth element of the Faure sequence,

the minimum required size of matrix C must be at least m × m, where m is the

number of digits in base q needed to represent n (i.e. m = blogq nc + 1). Some

savings can be achieved in this step by exploiting the fact that the matrix C is upper

triangular, and the entire matrix is not needed to compute every sequence element.

In this case, the matrix-vector multiplication is performed with 1
2
m(m + 1) addition

and multiplication operations over Fq. The result of the matrix-vector multiplication

is then mapped to the unit interval for the final value of the sequence element with

m addition and multiplication operations. Therefore, the total operation count is

O (m2) for generating each dimension of each element of the Faure sequence. Note

that the minimum size m of the matrix C increases with the sequence length; thus,

the per-element computational cost also increases with the sequence length.

In spite of the various attempts at minimizing the computational costs, the total

number of operations necessary to construct the Faure sequence far exceeds any

other sequence implemented in this investigation.23 Consequently, the time required

to generate the Faure sequence is approximately 8-10 times greater than any other

in this investigation (see Figure 4.4). Interestingly, the minimum required size of the

matrix C is generally larger when the Faure base q is smaller for the same sequence

23The implementation of the general Niederreiter sequence in a base greater than 2 also requires
a similar matrix-vector multiplication over a finite field. As such, the general Niederreiter sequence
requires approximately the same computation time as the Faure sequence. However, the sequence
is not considered for the QMC particle simulations in this investigation.
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length. The increase in the computation cost is thus partially offset as the sequence

dimension s increases (and hence q) because the matrix C has fewer elements. As a

consequence, the slope of the computation time versus sequence dimension in Figure

4.4 is initially less than the sequences with a linear dependence on dimension (e.g.

the pseudo-random sequence).

4.3.5 The Niederreiter sequence in base 2

The mathematical description and asymptotic performance of the low-discrepancy

Niederreiter sequence is found in Appendix F. The s-dimensional Niederreiter se-

quence in base 2 is constructed from s distinct irreducible polynomials over the finite

field F2 with the smallest possible degree.24 Each dimension of the Niederreiter

sequence uses one of the distinct irreducible polynomials in F2[x] to construct the

matrix transform A defined in (F.4). The order of the irreducible polynomials is

chosen such that for any sequence dimension k, the degree of the polynomial used to

construct the kth dimension is less than or equal to the degree of the polynomial used

to construct the (k +1)th dimension. Because of the enumeration technique adopted

in this investigation to generate the irreducible polynomials in F2[x], the exact order

of the polynomials is the same as the table given in the appendix of [96].

The implementation of the Niederreiter sequence in base 2 in this investigation

closely follows the algorithm developed by Bratley et. al. in [19]. Their algorithm

exploits two key features of the base 2 Niederreiter sequence in order to produce a very

computationally efficient method for generating the sequence. In addition to these

performance enhancements, the algorithm in [19] uses a leading zero correction to

the components in the A matrix (F.4) used to generate each dimension. The leading

zero correction reduces the correlation problems present between the dimensions of

24Except where otherwise noted in Section 6.4.
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the sequence at startup, and is adopted in this investigation as well.

The general construction of the Niederreiter sequence in an arbitrary base q,

where q is a prime power, requires a matrix-vector multiplication over Fq similar to

the Faure sequence. The first key feature that Bratley et. al. exploit is that in base

2 the elements of the matrix A (F.4) used in the matrix-vector multiplication are

simply ones and zeros. It is therefore possible to represent an entire row of the matrix

A as a single computer word, using each bit to represent an element of the matrix.

In doing so, the matrix-vector operation for the Niederreiter sequence in base 2 is

reduced to an operation equivalent to a vector dot product. In this investigation the

computer word is chosen to be the IEEE standard 32-bit unsigned long integer that

is used by the C/C++ compilers on the Linux platform. Therefore, the maximum

length of the Niederreiter sequence in base 2 that can be constructed here is N = 232,

which is sufficient for all the QMC simulations performed in this investigation.

The second key feature that Bratley et. al. exploit is that the binary Gray code

can be used to represent the sequence order for the Niederreiter sequence in base

2.25 Using the binary gray code to change the sequence order was first proposed

by Antonov and Saleev in [2] for the low-discrepancy Sobol’ sequence. The binary

gray code modification in [2] essentially permutes the original order of the Sobol’

sequence in blocks of 2i elements, for i = 1, 2, . . ., without affecting the asymptotic

bounds on its star discrepancy. Note that the construction of the nth element of

Sobol’ sequence requires the binary representation of the n for the calculation (see

Appendix D). For each non-zero bit in the binary representation of the n, a single

bit-wise XOR operation is performed using a set of constant computer words referred

to as “direction numbers” by Sobol’. The results of these bit-wise XOR operations

25The binary Gray code is linked to many classic mathematical puzzles, such as the Towers of
Hanoi and the baguenaudier ring puzzles [52].
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are then accumulated for each non-zero bit to generate the actual element of the

Sobol’ sequence. The advantage of using the binary gray code to represent the

sequence order n is that there is only one bit difference between consecutive values

of n. Therefore, using the binary Gray code, each element of the Sobol’ sequence

is calculated from the previous element of the sequence using a single bit-wise XOR

operation for each dimension. In contrast, the original construction of the nth element

of the Sobol’ sequence requires up to blog2 nc + 1 bit-wise XOR operations for each

dimension. Moreover, each of the bits of n must be checked for non-zero values to

determine the number of bit-wise XOR operations that are performed, which further

adds to the computational cost of the original construction of the Sobol’ sequence.

For the binary Gray code modification to the Sobol’ sequence, Antonov and Saleev

report in [2] a reduction in computation time by a factor of 5.6 over the original

design for generating 5 · 105 sequence elements. Furthermore, the computational

cost associated with the binary Gray code modification increases with the sequence

length due to the need to check more bits of the sequence order number n.

The Niederreiter sequence in base 2 is nearly identical to the Sobol’ sequence.

The constant “direction numbers” used in the construction of the Sobol’ sequence

are equivalent to the columns of the matrix A (F.4) used in the construction of the

Niederreiter sequence in base 2. Similarly, the accumulation of the bit-wise XOR

operations for the Sobol’ sequence is equivalent to the general matrix-vector multi-

plication for the Niederreiter sequence in base 2. Bratley et. al. in [19] exploit these

similarities between the two sequences to apply the binary Gray code modification

of Antonov and Saleev [2] in the same manner to the Niederreiter sequence in base

2. The resulting algorithm in [19] achieves a similar computational speedup as in

[2] because the entire matrix-vector multiplication is replaced by a single bit-wise
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XOR operation in each dimension. Therefore, because of the apparent performance

enhancements, the implementation of the Niederreiter sequence in base 2 in this

investigation follows closely the algorithm design of Bratley et. al. in [19].

The generation of each sequence element xn of the Niederreiter sequence in base

2 requires the determination of the Gray bit of n. In the Gray code representation

of n, the Gray bit is the bit that changes parity from n−1 to n. Hence, the Gray bit

indicates which column of the matrix A (F.4) is used in the bit-wise XOR operation

for each dimension to update the sequence from xn−1 to xn. The Gray bit of an

integer n corresponds to the location of the least significant zero in the standard

binary representation of n, making it relatively simple to determine. The update of

the s dimensional Niederreiter sequence in base 2 is performed with s bit-wise XOR

operations, once the Gray bit is known. The bit-wise XOR operation is comparable

to a single addition operation, although generally faster because there is no need to

perform a carry operation for each bit. In addition to the bit-wise XOR operation,

a multiplication is also needed for each dimension to scale the result to the unit

interval in the same manner as the random, Weyl-Richtmyer, and Faure sequences.

Note that the search for the Gray bit is only performed once for each sequence

element xn, regardless of dimension. While the implementation of the Niederreiter

sequence in base 2 indicates that its computation time is not truly linear with the

sequence dimension, the additional one-time cost of determining the Gray bit has

little impact on the near linear scaling observed in Figure 4.4. Most importantly the

Niederreiter sequence in base 2 has the lowest computation cost of all the sequences

tested because it has the lowest operation count. Specifically, the implementation

of the Niederreiter sequence in base 2 in this investigation is 3 times faster than the

random sequence for all sequence dimensions.



CHAPTER V

THE SIMULATION OF FREE MOLECULAR

FLOW IN A TWO DIMENSIONAL DUCT

The intended goal of this investigation is to obtain an accurate and efficient

simulation of low speed, non-equilibrium gas flows for microscale applications; and

two approaches to achieve this goal are considered. The first approach is to apply

empirical corrections to the Navier-Stokes equations in order to account for the non-

equilibrium effects, which is covered in detail in Chapter II. The second approach

is to develop a quasi-Monte Carlo (QMC) particle simulation, that achieves a faster

error convergence rate than the O
(
N−1/2

)
rate associated with DSMC (where N

is the number of independent samples). In Chapter III, the theory behind general

QMC integration is given, and the possible existence of a particle method with near

linear error convergence O (N−1(log N)s−1) is shown. QMC integration improves

on the O
(
N−1/2

)
convergence rate by replacing the random (or pseudo-random) se-

quence used in traditional Monte Carlo methods with a deterministic version, termed

a low-discrepancy sequence, that attains a more uniform distribution throughout the

integration domain. In Chapter IV, a new construction of the Weyl-Richtmyer se-

quence is presented, and the algorithmic implementation of all the low-discrepancy

sequences tested in this investigation is reviewed as well. The purpose of Chapter V

184
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is to develop the best possible QMC particle method for free molecular (collision-less)

gas flow through a finite length duct in two dimensions. In particular, the principles

used to develop the QMC particle simulation in this investigation are based on other

successful QMC particle simulations constructed for model radiation transport and

global luminosity problems. The resulting QMC particle method presented in this

section for free molecular flow is then shown to have a superior error convergence

rate than traditional DSMC.

The last 20 years has seen a surge in research for developing the method of QMC

integration for several particle-type applications. Sarkar and Prasad [153] develop a

QMC method for one dimensional particle transport through a solid medium with

bi-directional scattering. Spanier [167] (with Li [168]) also develops QMC methods

for model transport problems, and for a finite-state stochastic process represented

by a Markov chain. QMC methods are constructed for ray-tracing applications by

Keller [71, 72] for the problem of global luminosity, and by Kersch et. al. [74] for

the radiative heat transfer found in semiconductor processing. Several stochastic

systems in which the simulated particles follow a random-walk, or Brownian motion,

have been solved using QMC methods. In particular, these QMC applications are

developed by Caflisch and Moskowitz [23] for the Feynman-Kac integral, Morokoff

and Caflisch [115] for one dimensional heat diffusion, and Moskowitz [119] for two

quantum mechanical systems.1

Despite the potential for success illustrated in the aforementioned examples, it is

the understanding of the author that no QMC particle method has ever demonstrated

significant improvement over the DSMC simulation of the full Boltzmann equation,

with respect to numerical convergence or computation time. Babovsky et. al. [8, 9]

1In [119], the quantum mechanical systems are simulated for the three dimensional harmonic
oscillator, and the ground state energy of the helium atom.
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propose a “low-discrepancy” selection procedure for choosing the particle collision

pairs in a Nanbu-type2 DSMC method. Unfortunately, the actual implementation

of this low-discrepancy collision process into a full Boltzmann simulation creates a

non-physical loss of particle energy in the simulations performed in [9].

Lécot and Coulibaly extend the concept of the low-discrepancy collision process

from [8, 9], and apply it to several different model particle collision problems. In

particular, the Boltzmann solution of the Krook and Wu problem3 is studied by

Lécot in [86, 87, 88]. Lécot is able to demonstrate that the low-discrepancy colli-

sion process simulated for the Krook and Wu problem does achieve a more uniform

distribution of particle velocities than the Nanbu-type Monte Carlo simulation. The

uniformity of the velocity distributions in [86, 87, 88] is defined in a specific sense

using a general discrepancy measure; however, the connection of this discrepancy

measure to the actual accuracy of the simulation for quantities of engineering inter-

est (e.g. temperature) is not clear. Lécot and Coulibaly [89] more rigorously develop

a QMC method based on a linearized collision model for a spatially homogeneous

gas4, which is demonstrated to have a slightly faster error convergence rate (i.e.

O (N−0.55) to O (N−0.60)) than DSMC. While the relative error of the QMC method

is lower than traditional DSMC, the computational cost of the QMC method is also

3-6 times greater. Thus, it is not clear at which error levels the QMC method in

[89] actually becomes faster than DSMC. Even though a QMC particle simulation of

the Boltzmann equation with near-linear convergence is not demonstrated, the afore-

mentioned research does establish many important mathematical proofs regarding

2See Nanbu’s original paper [121] for the specific details on the method.
3Krook and Wu in [84] present an exact solution to the Boltzmann equation under the simplifying

assumptions that the velocity distribution function is spatially uniform, and the collisions occur
between Maxwell molecules.

4Coulibaly and Lécot also develop a QMC method for even simpler linear models of a Boltzmann-
type equation in [33].
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the theoretical convergence of a QMC simulation of the collision process.

The development of the QMC particle simulation in this investigation follows

more of an engineering path than the previous work for the Boltzmann equation [8, 9,

33, 86, 87, 88, 89], which is more focused on the mathematical and theoretical aspects

of the method. In particular, this investigation is concerned with the numerical

convergence rate that can be achieved in practice by the QMC particle simulation;

and the error level at which the QMC particle simulation is faster than traditional

Monte Carlo. The goal of this chapter is to demonstrate if it is possible to develop

a QMC particle simulation of free molecular (collision-less) duct flow with a near

linear error convergence rate. The QMC Boltzmann simulations presented in [9,

33, 86, 87, 88, 89] are all for a spatially homogeneous, infinite expanse of gas. Thus,

there is no simulation of the advection of particles or the stochastic particle-boundary

interactions, which are both necessary for free molecular flow and the full Boltzmann

equation. If it is not possible to achieve near-linear error convergence under the

simplified condition of free molecular flow, it is unlikely that an efficient QMC particle

simulation could be developed for the full Boltzmann equation.

Unlike the model collision simulations [9, 33, 86, 87, 88, 89], the QMC particle

simulation of free molecular flow is actually very similar to the ray-tracing simula-

tions used for global luminosity [71, 72], and radiative heat transfer [74]. In fact,

the distribution of trajectory angles for the simulated particles is the same for all

boundary reflections, regardless of the simulated particle representing a gas molecule,

a light ray, or a packet of radiative energy. The QMC methods developed for the

global luminosity and radiative heat transfer applications demonstrate a noticeable

improvement in the error convergence over traditional Monte Carlo. Unfortunately,

the fastest error convergence rate observed in [71, 72, 74] is only O (N−0.66), which
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is still less than the near-linear theoretical convergence. The results from these ray-

tracing applications imply that it is most likely possible to construct an efficient

QMC particle simulation for free molecular flow. However, the QMC method in

[71, 72, 74] is only applied to a few specific ray-tracing problems. As a consequence,

it is difficult to determine the possible magnitude of any performance gains achieved

by QMC simulation for free molecular flow based solely on these other ray-tracing

results.

There is also a significant difference between free molecular flow and the other ray-

tracing applications, which further compounds the problem of making an accurate

assessment about the QMC simulation of free molecular flow from the results in [71,

72, 74]. Unlike the ray-tracing simulations for global luminosity and radiative heat

transfer, there is no absorption of the simulated particles at the wall surfaces in free

molecular flow.5 The presence of natural surface absorption is beneficial with respect

to the performance of the QMC methods because it reduces the dimensionality of the

problem. And as well-noted throughout the literature for many different applications

[23, 74, 114, 116, 117, 118, 120, 146, 153, 167], the performance of the QMC method

tends to decline as the problem dimension increases. Consequently, the QMC particle

simulation of free molecular flow would likely have worse performance than observed

in [71, 72, 74], if used for similar geometries. Because of the lack of conclusive

evidence from the available literature, the purpose of this chapter is to demonstrate

that it is indeed possible to create a QMC particle simulation for free molecular flow

with near-linear error convergence.

In spite of achieving near-linear error convergence, the QMC particle simulation

5There are special cases of free molecular flow (e.g. chemical vapor deposition (CVD), and
ionization) in which there is a natural absorption of the simulated particles; however, these cases
are not considered in this investigation.
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developed in this chapter is not the fastest simulation method for free molecular

duct flow. While the QMC particle simulation is clearly faster than the traditional

test particle Monte Carlo method, other techniques that directly approximate the

probability distributions associated with the problem are the fastest. There may be

specific flow problems (e.g. TMAC < 1) when the QMC particle is the fastest simula-

tion technique because of the presence of singularities in the probability distribution.

However, these particular cases are not the focus of this investigation. The overar-

ching goal of this chapter and Chapter VI is to better understand how an efficient

QMC particle simulation is constructed, not to develop the best overall method for

free molecular duct flow. It is important to address the potential problems and limi-

tations facing the QMC particle simulation for free molecular flow because they will

be inherited in any simulation of the full Boltzmann equation. Therefore, the QMC

particle simulation developed here is thoroughly tested in Chapter VI to determine

its range of applicability, explore the dimension problems related to the method, and

consider possible techniques to better avoid the limitations of the method.

An outline of the chapter organization is as follows. In Section 5.1, the funda-

mental probability distributions are derived for free molecular flow in a rectangular

duct with a constant cross-section area. These probability distributions serve as the

foundation on which all the simulation methods presented in this chapter are devel-

oped. The whole reason for developing a QMC particle simulation is motivated by

the relatively slow convergence of the DSMC method. It is, therefore, very undesir-

able to use the DSMC solution to validate that the new QMC particle simulation

has a faster error convergence rate and greater accuracy.6 Instead, alternative meth-

6For the example presented in Section 5.5, the QMC particle simulation is able to achieve a
relative error of 10−7 in less than 6 minutes on a 3.06 GHz Intel Xeon processor. In contrast, the
traditional test particle Monte Carlo method would require over 1013 sample trajectories and at
least 151 days to reach the same level accuracy on the same machine.
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ods based on the simulation of the probability distributions directly are used for

validating the performance gains of the QMC particle simulation. The construction

details of these alternative simulations provide additional physical insight into the

free molecular flow problem, which is useful in the development of the QMC particle

simulation. As such, they are presented in Section 5.2 for the Markov chain simu-

lation; Section 5.3 for the finite-state linear system simulation; and Section 5.4 for

the Nyström method. Finally, the construction of the particle methods is reviewed

in Section 5.5; and most importantly, the QMC particle simulation of free molecular

duct flow is shown to achieve near-linear error convergence.

5.1 Basic Kinetics of Free Molecular Duct Flow

The study of internal7 free molecular flows is one of the classic problems of gas

kinetic theory. Estimation of the molecular flow rates through ducts and pipes was

performed initially by Knudsen [76, 77], von Smoluchowski [181], and Dushman [43],

both analytically and experimentally. The analysis of the molecular flow rates was

extended further by Lorentz [102] and Clausing [30]. The results of Clausing are of

specific interest to this investigation because they yield perhaps the best analytical

estimate of the molecular flow rate through two dimensional ducts of finite length.

A review of the early development of gas kinetic theory for these internal flows is

given by Loeb in [98]. The first numerical simulations using the test-particle Monte

Carlo method were performed by Davis [36] to calculate the free molecular flow

rates through finite length pipes, concentric pipes, and elbows. A review of the

performance and statistical properties of the test particle Monte Carlo method is

7The study of external free molecular flows is also a classic problem with many important
applications to space system designs. A review of free molecular aerodynamics can be found for
these applications in [54, 154].
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given in the monograph of Bird [16].

The simulation techniques developed in this chapter for free molecular duct flow

are based on the following problem assumptions. The duct inlet is assumed to

be connected to a reservoir of infinite expanse, filled with a spatially homogeneous

distribution of gas molecules in local thermodynamic equilibrium. Macroscopically,

the temperature of the gas in the inlet reservoir is held constant, and the average

gas velocity is zero. Furthermore, the gas density is assumed to be sufficiently low

such that the mean free path of the gas molecules in the inlet reservoir is many times

larger than the height of the duct. At the other end, the duct outlet is assumed to

be connected to a reservoir of infinite expanse, which is held at a perfect vacuum.

As a consequence of the low gas density throughout the system, any occurrence

of inter-molecular collisions within the duct is exceedingly rare; and as such, they

are neglected by the assumption of free molecular flow. The assumption that the

reservoirs are of infinite expanse is important because it implies that these four

additional conditions are also true: (i) the distribution of gas molecules entering the

duct at the inlet plane is spatially uniform; (ii) the flow conditions inside the two

reservoirs are constant in time; (iii) the gas molecules that escape the duct have no

local effect on any new molecules that may enter the duct interior; and (iv) the gas

molecules that escape the duct have no global effect on the flow conditions inside the

reservoirs themselves.

In addition to these assumptions about the flow conditions in the problem, there

are also the following assumptions based on the duct geometry. Specifically, the

duct has a finite length ` and a constant rectangular cross-section with a height

h and width w. The duct width is many times larger than the height (w � h);

thus, any flow changes in the direction of the width are negligible, and the geometry
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can be considered two dimensional. The surfaces of the duct wall are sufficiently

rough such that any gas molecule colliding with the wall is assumed to undergo a

diffuse reflection with the surface. During a collision, a gas molecule is assumed to

remain in contact with the surface for a long enough time as to fully accommodate

to the thermodynamic conditions at the wall. Stated alternatively, the wall surfaces

of the duct are assumed to have a tangential momentum accommodation coefficient

(TMAC) and a thermal accommodation coefficient equal to one (see [109, 179, 54,

154] and Chapter II). Finally, the temperature of the duct walls is assumed to be

constant everywhere and equal to the inlet reservoir temperature. Thus, any local

heating or cooling at the surface caused by the energy exchange between the gas

molecules and the wall is neglected.

There is only one flow quantity of interest that is calculated for the simulation

methods developed in this chapter for internal free molecular flow. This quantity,

which is denoted by Ψ, is the probability a particle enters the duct at the inlet and

eventually escapes the duct through the outlet after any number (possibly infinite) of

collisions with the interior walls of the duct. Given a fixed interval of time ∆t, let Ntot

denote the total number of particles that enter the duct from the inlet reservoir in

time ∆t. The total number of particles Ntot entering the duct can be subdivided into

three categories: (i) Nin is the number of particles that escape the duct through the

inlet in time ∆t; (ii) Nout is the number of particles that escape the duct through the

outlet in time ∆t; and (iii) Nduct is the number of particles that have yet to escape and

still remain within the duct after time ∆t. Once a specific particle escapes the duct

interior it is not allowed to re-enter the domain; hence, Ntot = Nin+Nout+Nduct. The

free molecular flow quantity Ψ can then be considered, in a more physical context, as

the fraction of the total particles entering the duct that eventually escape the duct
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through the outlet. That is,

Ψ = lim
∆t→∞

Nout

Ntot

.

Once the non-dimensional flow quantity Ψ is known for a particular duct geometry, it

can be used to calculate a wide range of dimensional mass flow rates for the geometry.

This is assuming, of course, that the gas density at the inlet and outlet reservoirs is

sufficiently low enough relative to the length scales of the duct for the gas flow to be

considered in the free molecular regime.8

There does not seem to be a consensus in the literature over the exact name for

the free molecular flow quantity Ψ. In [43], Dushman borrows from the electrical

analogue of the problem and refers to its dimensional form as the “conductivity,”

which measures the ease at which particles are able to flow through the duct geom-

etry. In [30], Clausing defines Ψ as the Durchlaufswahrscheinlichkeit which loosely

translates into the “probability of running through [the duct].” Since both of these

names lend some insight into the physical nature of the flow quantity being simu-

lated, as a compromise, Ψ is referred to as the “conductance probability” throughout

this investigation. Actual calculations of the conductance probability Ψ have been

performed by Clausing [30], using an approximate analytical solution for finite length

ducts and pipes; and by Davis [36], using the test particle Monte Carlo simulation

for cylindrical pipes and elbows.

The collision-less Boltzmann equation9 provides the mathematical description for

free molecular gas flow (see [16, 54, 154, 179] for more examples). Let the distribu-

tion function F = F (x,v, t) represent the number of particles located within the

8Note that Ψ can also be used to calculate the net mass flow rate when both the inlet and outlet
reservoirs contain some finite gas density because the particle-particle interactions are ignored in
the free molecular regime. Thus, in this regime, the flow from the outlet to the inlet is independent
of the flow from the inlet to the outlet, and both can be calculated from Ψ.

9Also referred to as the Vlasov equation.
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infinitesimal neighborhood of the spatial location x = (x1, x2, x3) that travel at a

velocity in the infinitesimal neighborhood of v = (v1, v2, v3) at time t. The evolution

of this distribution function F (x,v, t) is governed by the collision-less Boltzmann

equation. Assuming that there are no external forces present in the free molecular

flow, the collision-less Boltzmann equation is given by

∂F

∂t
+ v1

∂F

∂x1

+ v2
∂F

∂x2

+ v3
∂F

∂x3

= 0. (5.1)

However, the calculation of the conductance probability Ψ, based on the previously

stated assumptions, does not actually require the collision-less Boltzmann equation

(5.1) to be solved formally.10 In fact, all the conductance probability simulations

developed in this chapter are constructed solely from the physical behavior of the

gas molecules at the boundaries of the duct, without ever using the collision-less

Boltzmann equation in (5.1) directly. This should not be too surprising because the

collision-less Boltzmann equation is, after all, a linear hyperbolic equation with a

standard method of characteristics type solution. The information traveling along

the solution characteristics, in this case, relates to the number of gas molecules in

a particular region of velocity space. In addition, these solution characteristics are

independent of each other because no inter-molecular collisions are assumed to occur

in free molecular flow. Therefore, the information traveling along the characteristics

remains constant, and is determined entirely by the boundary conditions of the

problem.

There are three types of boundary conditions for free molecular duct flow: (i)

the inflow boundary condition; (ii) the outflow boundary condition; and (iii) the

diffuse gas molecule reflections at the duct wall. The inflow boundary condition is

10A more formal treatment of the solutions of the Boltzmann equation can be found in the
excellent monographs of Cercignani [25] and Kogan [80]
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determined by the velocity distribution of the gas molecules crossing the plane of

the duct from the inlet reservoir. Because of the assumption of local thermodynamic

equilibrium and zero bulk velocity, the velocity distribution of the gas molecules in

the inlet reservoir follows a Maxwellian distribution M(v). That is,

M(v) =
( m

2πkT

)3/2

exp

(

−m|v|2
2kT

)

for v1, v2, v3 ∈ (−∞,∞), (5.2)

where v = (v1, v2, v3) is the velocity of the gas molecule, m is the mass of a single gas

molecule, k is Boltzmann’s constant, and T is the temperature in the inlet reservoir.

Let Φp(v) denote the velocity distribution of the gas molecules crossing the plane of

the duct from the inlet reservoir, which is then given by

Φp(v) = 2
( πm

2kT

)1/2

v1M(v) for v1 ∈ (0,∞) and v2, v3 ∈ (−∞,∞), (5.3)

where v1 is the velocity component normal to the inlet plane (positive direction

pointing toward the duct). Note the additional velocity term in (5.3) is to account

for the probability of a gas molecule actually fluxing across the inlet plane from the

gas reservoir in an infinitesimal span of time. The probability distribution Φp(v) is

constant everywhere on the inlet plane, and the flux of particles from the duct to

the reservoir across the inlet plane has no effect on the boundary condition, based

on the previous assumptions about the inlet reservoir. Thus, the velocity distribu-

tion Φp(v) (5.3) of the gas molecules crossing the plane of the duct from the inlet

reservoir completely defines the necessary inflow boundary condition to determine

the conductance probability Ψ of the duct.11

The outflow boundary condition is located at the plane connecting the duct to

the outlet reservoir, which makes this boundary condition the simplest because the

11If the dimensional mass flow rate is to be calculated for the duct, then the particle number
density inside the inlet reservoir is necessary as well.
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reservoir is a perfect vacuum. As a consequence, there is zero flux of particles across

the outlet plane from the vacuum to the duct. Moreover, the flux of particles from

the duct to the reservoir across the outlet plane has no effect on the outflow boundary

condition, based on the previously stated assumptions about the reservoirs.

The third boundary condition, the gas molecule reflections at the duct wall, is

often evaluated in terms of the following model description of the physical collision

process for a fully diffuse wall. When a gas molecule first collides with a diffuse wall,

it is assumed to be temporarily absorbed by molecular structure of the wall surface.

During this absorption period, the energy of the gas molecule relaxes, or accom-

modates, to the same thermodynamic state as the wall surface. After which point

the gas molecule is re-emitted from the wall surface into the duct as if it is crossing

the wall plane from a reservoir of gas molecules in local thermodynamic equilibrium

with the wall temperature. Classic results from molecular beam experiments indicate

that there is actually a finite absorption period.12 However, in this investigation, the

absorption, accommodation, and re-emission processes of the colliding gas molecules

are assumed to occur instantaneously. Given a fixed interval of time ∆t, the num-

ber of molecules re-emitted at a particular wall region in ∆t is equal to number of

molecules colliding with the same region in ∆t. Since the wall temperature is the

same as the inlet reservoir temperature, the velocity distribution of the re-emitted

gas molecules crossing the wall plane is the same as the inflow boundary condition

Φp(v) (5.3).

Now that the boundary conditions of the free molecular duct flow are defined, it

is possible to further simplify them for the specific calculation of the conductance

probability Ψ. In particular, the duct geometry is assumed to be two dimensional,

12For example, an average absorption time of 3 · 10−5 seconds is found for argon gas in a glass
capillary tube at 90◦K (see the review of molecular beam given by de Boer in [38]).
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which can be used to simplify the inflow and the diffuse wall reflection boundary

condition Φp(v) in (5.3). If the v3 velocity component is taken to be in the direction

of the duct width, the probability distribution function Φp(v) can be integrated over

all possible velocities, v3 ∈ (−∞,∞), to yield a distribution function for the two

critical dimensions of the duct geometry. Specifically,

Φp(v1, v2) =
2√
π

( m

2kT

)3/2

v1 exp
(

− m

2kT
(v2

1 + v2
2)
)

,

where v1 ∈ (0,∞) in the direction normal to the plane, and v2 ∈ (−∞,∞) in

the direction parallel to the plane. The distribution Φp can be further simplified

using a polar transformation of the Cartesian velocity components (v1, v2) into a

two dimensional speed vr and a trajectory angle θ (measured from the normal of

the plane). After the coordinate transformation, the velocity distribution of the gas

molecules crossing the plane into the duct (either from the inlet reservoir or a wall

reflection) is given by

Φp(vr, θ) =
2√
π

( m

2kT

)3/2

v2
r cos θ exp

(

− m

2kT
(v2

r)
)

, (5.4)

where vr ∈ (0,∞) and θ ∈ (−π
2
, π

2
). Note that an additional velocity term vr is

included in (5.4) to account for the Jacobian of the coordinate transformation for

the differential elements of velocity space dv1dv2 and vrdvrdθ associated with their

respective distribution functions.

The velocity distribution (5.4) of the gas molecules crossing the plane into the

duct can be separated into two independent functions fvr
(vr) and fθ(θ) such that

Φp(vr, θ) = fvr
(vr)fθ(θ).

The trajectory angle θ of a gas molecule entering the duct from the inlet reservoir

(or reflecting from the duct wall) is therefore independent of its two dimensional
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speed vr. The velocity (vr, θ) of a gas molecule is not affected by body forces and

collisions while traveling within the duct interior, as indicated by the collision-less

Boltzmann equation (5.1). Thus, the entire trajectory is determined by the points

where the gas molecule intersects with the boundaries (inflow, outflow, and wall

reflections) of the duct. These points along the boundary are found solely from

the trajectory angle and the specific duct geometry, and are independent of the

two dimensional molecular speed vr. In addition, the calculation of the conductance

probability Ψ only depends on the final location of the gas molecule trajectory (either

an intersection with the inlet plane or the outlet plane). Therefore, the calculation

of the conductance probability Ψ under the previously stated assumptions for the

free molecular duct flow is only dependent on the distribution of trajectory angles

fθ(θ) at the boundary planes. By integrating the molecular speed vr over all possible

values (0,∞) in (5.4), the distribution of trajectory angles fθ(θ) is given by,

fθ(θ) =
1

2
cos θ for θ ∈ (−π

2
, π

2
). (5.5)

Note that the angle θ is measured relative to the normal of the boundary plane.

From the standpoint of a Monte Carlo particle simulation, it is very easy to gen-

erate sample trajectory angles from the cosine distribution in (5.5). However, for

the two dimensional duct geometry, it is far more efficient in terms of computation

time to work with the particle position on the boundaries of the duct instead of the

actual trajectory angle. By avoiding the direct usage of the particle trajectory angle,

the resulting Monte Carlo simulation is able to eliminate the costly evaluations of

trigonometric and inverse trigonometric functions in favor of simple square root cal-

culations. Furthermore, it is easier to develop all the simulation methods considered

in this investigation for free molecular duct flow, including the non-particle based
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Figure 5.1: Illustration of the two basic probability distributions used in the simula-
tion of free molecular duct flow: (a) the perpendicular transition proba-
bility T⊥(x, y); and (b) the parallel transition probability T‖(x, z; µ).

techniques, using the particle position on the domain boundary instead of the tra-

jectory angle. In order to simulate free molecular duct flow in two dimensions, two

types of particle moves from the domain boundary must be considered: (i) moves

between the perpendicular boundaries; and (ii) moves between the parallel bound-

aries. These moves are direct, i.e. only the first boundary intersected by a particle

is considered. Multiple reflections between boundaries must be treated as a series of

single moves by the particle from boundary to boundary.

There are two basic probability distributions corresponding to the two types of

particle moves from the domain boundary. The first probability distribution is the

perpendicular transition probability, which is denoted by T⊥(x, y); an illustration

of T⊥(x, y) is given in Figure 5.1(a). Given two perpendicular lines X and Y , let

x denote the distance of a particle on line X from the intersection X ∩ Y . The

perpendicular transition probability is defined such that T⊥(x, y)dy is the probability

a particle at x ∈ X , with a trajectory angle following a cosine distribution, directly

intersects the line Y in the infinitesimal interval [y, y +dy). Here y is measured from

the same intersection X ∩Y as x. The perpendicular transition probability T⊥(x, y)
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is then calculated by integrating the cosine distribution of the trajectory angle over

the appropriate interval, that is

lim
dy→0

T⊥(x, y)dy = lim
dy→0

∫ tan−1(x
y )

tan−1( x
y+dy )

1

2
cos θdθ.

Taking the appropriate limits, one obtains

T⊥(x, y) =
xy

2(x2 + y2)3/2
. (5.6)

It is important to note that the symmetry of the trajectory angle distribution fθ(θ)

in (5.5) implies that the result for T⊥(x, y) in (5.6) is valid for particles on both sides

of the line Y , provided the distance x is measured in a positive sense for both cases.

Similar to T⊥(x, y), the second probability distribution used in the construction

of the simulation methods is the parallel transition probability, which is denoted by

T‖(x, z; µ); an illustration of T‖(x, z; µ) is given in Figure 5.1(b). Given two parallel

lines X and Z that are separated by a distance `, let x denote the distance of a

particle on line X from some reference line perpendicular to both X and Z. The

parallel transition probability is defined such that T‖(x, z; µ)dz is the probability a

particle at x ∈ X , with a trajectory angle following a cosine distribution, directly

intersects the line Z in the infinitesimal interval [z, z + dz). Here z is the distance

relative to the same perpendicular line as x. The parallel transition probability

T‖(x, z; µ) is then calculated by integrating the cosine distribution of the trajectory

angle over the appropriate interval, that is

lim
dz→0

T‖(x, z; µ)dy = lim
dz→0

∫ tan−1(x−z
µ )

tan−1(x−z−dz
µ )

1

2
cos θdθ.

Taking the appropriate limits, one obtains

T‖(x, z; µ) =
µ2

2
(
(x − z)2 + µ2

)3/2
. (5.7)
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Note that the parallel transition probability only depends on the magnitude of |x−z|

and not the direction because of the symmetry of the trajectory angle distribution

fθ(θ) in (5.5).

5.2 Markov Chain Simulation

The Markov chain simulation is perhaps the most straightforward, non-particle

method for calculating the conductance probability. A Markov chain represents

the stochastic behavior of a given population moving at random between a finite

number of states. While the movement between states is not deterministic, the

probability p ∈ [0, 1] is known for the transition of a population member from one

state to another. Since the Markov chain represents a stochastic process satisfying

the Markov property (see [47] for more details), the evolution of the population is

discrete in the following sense. Given an initial realization of the population P0 (i.e.

the initial distribution of population members between the system states), any future

realization Pn depends only on the realization that immediately precedes it Pn−1 for

all n ≥ 1. Furthermore, for the simulation considered here, the transition probability

between states is constant throughout the evolution of the population; and as such,

the underlying stochastic process is referred to as a discrete-time, time-homogeneous

Markov chain.13

In order to simulate the conductance probability as a Markov chain, the popula-

tion under consideration is taken to be the gas molecules that enter the duct from

the inlet. The boundaries associated with the duct, the inlet plane, outlet plane, and

interior walls, are taken to be the finite states of the system. A gas molecule belongs

13The reference to time is an artifact of its common usage for stochastic processes evolving in
time. However, the terminology is still used for any ordered set of realizations of the popula-
tion (P0, P1, P2, . . .), that satisfies the aforementioned conditions; regardless of the actual physical
processes responsible for changes in the population.
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to the state corresponding to its last intersection with the boundary of the duct. The

duct inlet plane and outlet plane are each treated as single states, while the interior

duct wall is divided into N distinct intervals of uniform size that cover the entire wall

boundary. As the number of interior states N increases, so too does the accuracy

of the Markov Chain simulation for calculating the conductance probability. The

transition probability between two states is simply the probability a gas molecule

leaving the boundary region of the first state will next intersect the boundary at a

region corresponding to the second state. The evolution of the Markov chain is not

consistent with physical time because the gas molecules, in general, have different

transit times between boundary intersections. However, the gas flow is collision-less

which means there is no interaction between molecules during the transition time

between boundary interaction. Hence, the Markov chain is able to decouple the

stochastic evolution of the gas molecules from their individual transit times while

still remaining physically accurate. For the simulation of the conductance probabil-

ity, one is interested in solving for the expected (or average) long-term behavior of

the stochastic system. Specifically, the conductance probability is determined from

the long-term average fraction of the gas molecules that enter the duct through the

inlet plane that then eventually escape through the outlet plane.

The expected behavior of any Markov chain can be represented by a linear system,

v(n) = Av(n−1), (5.8)

where the vector v(n) represents the expected distribution of the population among

the states at the nth realization of the system, and the matrix A (also known as the

Markov matrix), represents the transition probabilities between the system states.

For the Markov chain simulation of the conductance probability with N interior wall
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states, each element v
(n)
i of the vector v(n) ∈ RN+2 in (5.8) represents the average

number of gas molecules occupying state i at the nth realization of the system.

Similarly, each element Aij of the matrix A ∈ [0, 1](N+2)×(N+2) in (5.8) represents the

probability that a molecule leaving state j will undergo its next intersection with

the duct boundaries within state i. Each realization n of the system corresponds to

the distribution of gas molecules among the states of the duct after undergoing n

intersections with the boundary (or equivalently, n particle moves).

Since the conductance probability Ψ only involves the fraction of molecules that

eventually escape the duct through the outlet, the vector v(n) need not represent

the total number of gas molecules in each state. Instead, it is sufficient to only con-

sider the average fraction of the total number of gas molecules. That is, the vector

v(n) is normalized such that v
(n)
i now represents the probability a gas molecule is in

state i after n moves. It is this representation of the v(n) ∈ [0, 1]N+2, as the average

fraction of molecules distributed among the system states, that is assumed for the

rest of the investigation. Note that all the matrix and vectors in (5.8) now represent

actual probabilities; and thus, their components are restricted to real numbers in the

unit interval [0, 1]. Given an initial probability distribution v(0) of the gas molecules

entering from the inlet, the expected distribution of the molecules among the states

of the duct after n moves is determined by simply repeating the matrix-vector mul-

tiplication in (5.8). The conductance probability is therefore found by calculating

long-term behavior of the stochastic system (i.e. limn→∞ v(n)).

The specific construction of the transition matrix A and initial probability dis-

tribution vector v(0) are determined from the perpendicular T⊥ and parallel T‖ tran-

sition probabilities derived in Section 5.1. The transition matrix A is divided into

several different blocks, each corresponding to different physical processes within
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the stochastic system. This organization serves to facilitate the development of the

Markov chain simulation, and to establish a consistent notation between the other

simulation techniques presented later in this chapter. Assuming States 1, . . . , N rep-

resent the interior states of the duct wall, the matrix A is defined by the following,

A =

















K11 · · · K1N 0 0

...
...

...
...

KN1 · · · KNN 0 0

g1 · · · gN 1 0

h1 · · · hN 0 1

















, (5.9)

where the components Kij form an N × N matrix K that represents the transition

probability between the interior wall states only, the components gi form a vector g

that represents the probability a gas molecule at the wall state i intersects the inlet

boundary (State N+1) during its next move, and the components hi form a vector

h that represents the probability a gas molecule at the wall state i intersects the

outlet boundary (State N+2) during its next move. An illustration of the different

components of the transition matrix A in (5.9) is given in Figure 5.2.

There are two important points to be noted about the transition matrix A that

are true in general for any Markov matrix. First, there is no loss of gas molecules

from the system. That is, if a gas molecule begins the simulation in some initial

state prescribed by v(0), then it must remain in one of the system states for all

subsequent realizations of the population v(n) for n ≥ 1. Since the initial distribution

v(0) is normalized to represent the average fraction of particles in each state (i.e.

∑N+2
i=1 v

(0)
i = 1), then all future realizations of v(n) for n = 1, 2, . . . also satisfy the

normalization condition. The existence of this condition is confirmed by the fact

that the sum of every column of matrix A (5.9) is equal to one. Second, the original
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Figure 5.2: Illustration of the different types of transition probabilities for the gas
molecules in the Markov chain simulation: (a) the initial probability dis-
tribution of molecules from the inlet b, and the transition probability
matrix K between the interior wall states of the duct; and (b) the prob-
ability of escaping the interior wall states through the inlet g and outlet
h states.
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assumptions for the free molecular duct flow problem eliminate the possibility of the

gas molecules re-entering the duct once they have escaped through either the inlet

or outlet planes. Thus, when a gas molecule enters either the inlet or outlet state it

is essentially trapped in that state, unable to leave for the rest of the simulation. In

general, a state within the Markov chain that does not allow its members to leave

is referred to as an absorbing state. An absorbing state appears in the transition

matrix A in (5.9) as a column of zeros except for a one on the matrix diagonal.

In a manner similar to the transition matrix A in (5.9), the initial probability

distribution v(0) is also divided into two parts corresponding to different stochastic

processes. The initial probability distribution v(0) is given by

v(0) = (b1, . . . , bN , 0, ρ(L))T , (5.10)

where the elements bi form a vector b that represents the probability of a gas molecule

entering the duct through the inlet and first striking the wall at the ith interior state,

and ρ(L) represents the fraction of particles that reach the outlet directly from the

inlet without ever colliding with the walls of the duct. An illustration of the initial

probability distribution of molecules from the inlet b is given in Figure 5.2.

Before proceeding with the actual calculation of the transition matrix A and the

initial probability distribution v(0), it is necessary to first address the dimensional

scale and symmetry of the duct geometry. The calculation of the conductance prob-

ability only depends on the distribution of trajectory angles fθ(θ) (5.5) for the gas

molecules leaving the boundaries of the duct, based on the development in Section

5.1. The actual dimensional scale of the duct geometry is not needed to calculate

the next intersection of a gas molecule with the duct boundary, when only using

the trajectory angle θ of the gas molecules. Instead, the ratio of the duct length
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` and duct height h is all that is necessary to completely determine the boundary

intersection points of the gas molecule from the trajectory angle. Therefore, the

dimensions of all the duct geometries considered in this investigation are normalized

by the duct height. This implies that all geometries have a height equal to one, and

length L = `/h equal to the duct length to height ratio.

Geometrically, there are two planes of symmetry in the rectangular ducts illus-

trated in Figure 5.2 for the free molecular flow: (i) a left-right symmetry plane

between the inlet and outlet planes; and (ii) a top-bottom symmetry plane between

the upper and lower duct walls. It is not possible to exploit the left-right symmetry

plane in the calculation of the conductance probability. While the inlet and outlet

states are symmetric in a geometric sense, the physical processes occurring at the

two states is vastly different. As such, both the inlet and outlet must be included

in any valid calculation of the conductance probability. The top-bottom symmetry

plane, however, can be exploited in the calculation of the conductance probability.

This is due to the fact that the distribution of trajectory angles fθ(θ) (5.5) is sym-

metric about the surface normal, which makes the walls physically indistinguishable

from each other.14 It is wasteful, in terms of computation time and memory, to

include both the upper and lower walls in the Markov chain simulation; in fact, this

is true for all the simulations developed in this chapter. Therefore, only one duct

wall and the top-bottom symmetry plane are simulated during the calculation of the

conductance probability.

All the quantities needed to construct the transition matrix A in (5.9) and the

initial probability distribution v(0) in (5.10) for the Markov chain simulation are

14The upper and lower duct walls are indistinguishable in terms of both the initial probability
distribution of gas molecules first intersecting the duct wall from the inlet, and the diffuse reflection
of gas molecules from the wall surface.
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determined from the basic transition probabilities developed in Section 5.1. More

specifically, the perpendicular transition probability T⊥(x, y) in (5.6), and the parallel

transition probability T‖(x, z; µ) in (5.7) are integrated over the appropriate intervals

to obtain the necessary probabilities for A and v(0). Let 0 = x1 < x2 < · · · < xN+1 =

L denote the endpoints of the interior wall states such that the interval [xi, xi+1) is

the location of the ith state. Note that all the interior wall states are the same length

∆x = xi+1 − xi = L/N , for 1 ≤ i ≤ N . The probability Kij of a gas molecule

leaving the wall at state j and intersecting the wall at state i is found from the

parallel transition probability T‖(x, z; µ), with the separation distance µ = 1 set to

the non-dimensional duct height. That is,

Kij =
1

∆x

∫ xj+1

xj

∫ xi+1

xi

T‖(x, z; 1)dzdx

=
1

2∆x

(√

1 + (xi+1 − xj)2 −
√

1 + (xi − xj)2

−
√

1 + (xi+1 − xj+1)2 +
√

1 + (xi − xj+1)2

)

. (5.11)

Note that the function T‖(x, z; `) is symmetric in its arguments, i.e. T‖(x, z; `) =

T‖(z, x; `). Thus, the integration order in (5.11) can also switched to obtain Kij =

Kji, which implies that the matrix K is symmetric. The probability of reaching state

i from state j from a reflection about the symmetry line is the same as reaching the

mirror image of state i on the opposing wall, as illustrated in Figure 5.2(a) (note

that the non-simulated, or ghost states, are denoted with a prime). Therefore, the

calculation of the interior state transition probability K is the same for the one-wall

and two-wall Markov chain simulations.

The remaining quantities needed to construct the transition matrix A are found

in the same manner as K. The probability gi of a gas molecule escaping the wall

at state i through the inlet is found from the perpendicular transition probability
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T⊥(x, y) from (5.6),

gi =
1

∆x

∫ xi+1

xi

∫ 1

0

T⊥(x, y)dydx

=
1

2
− 1

2∆x

(√

x2
i+1 + 1 −

√

x2
i + 1

)

. (5.12)

Because the distribution of trajectory angles fθ in (5.5) is symmetric, the probability

hi of a gas molecule escaping the wall at state i through the outlet is the same as the

calculation for gi except with the integration variable x in (5.12) replaced by L− x.

Hence,

hi =
1

∆x

∫ xi+1

xi

∫ 1

0

T⊥(L − x, y)dydx

=
1

2
− 1

2∆x

(√

(xi − L)2 + 1 −
√

(xi+1 − L)2 + 1
)

. (5.13)

Note that as a result of the problem symmetry hi = gN+1−i, for 1 ≤ i ≤ N . For

the two-wall Markov chain simulation, the escape probability (inlet or outlet) must

be considered for both walls, which would double the total escape probability for

the one-wall Markov chain simulation. However, the number of gas molecules in

each state of the two-wall simulation is half of the one-wall simulation. Thus, the

calculation of gi and hi is the same for both the one-wall and two-wall Markov chain

simulations.

Continuing in the same manner, the quantities needed for the initial probability

distribution v(0) in (5.10) are also calculated. The probability bi of a gas molecule

entering the duct through the inlet and directly intersecting the wall at state i is

found from the perpendicular transition probability,

bi = 2

∫ 1

0

∫ xi+1

xi

T⊥(x, y)dydx

= xi+1 − xi +
√

x2
i+1 + 1 −

√

x2
i + 1. (5.14)
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The initial probability distribution for the interior states is the only quantity in A and

v(0) that is different between the one-wall and two-wall Markov chain simulations.

For the one-wall simulation, all the molecules that would normally reach state i and

state i′ in the two-wall simulation are combined into a single state, which is why the

factor of 2 appears in front of the integral in (5.14). Thus, the value of bi for the

one-wall simulation is exactly twice that of bi for the two-wall simulation, for the

same state (either i or i′).

The final quantity needed for the Markov chain simulation is the probability ρ(L)

that a molecule entering the duct at the inlet will directly escape through the outlet

without ever colliding with the wall. The direct escape probability ρ(L) is found from

the parallel transition probability T‖(x, z; µ), with the separation distance µ = L set

to the non dimensional duct length to height ratio,

ρ(L) =

∫ 1

0

∫ 1

0

T‖(x, z; L)dzdx

=
√

L2 + 1 − L. (5.15)

Note that the probability a molecule escapes the duct without colliding with the

wall tends to zero as the duct length increases, which is consistent with the expected

behavior of free molecular gas flow.

At this point all the matrix and vector quantities in (5.8) are defined, and now

the focus can shift to the calculation of the long-term behavior of the Markov chain

for the simulation of the conductance probability. Let Ψn denote the probability

that a particle escapes the duct through the outlet plane while only colliding with

the interior walls n or fewer times. In this investigation (see Figure 5.2), the outlet

state corresponds to the (N + 2)th coordinate v
(n)
N+2 of the gas molecule probability
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distribution v(n). Hence,

Ψn = v
(n)
N+2 = eT

N+2A
nv(0), (5.16)

where ei is the elementary vector consisting of all zeros except for the ith compo-

nent which is one. As noted earlier, the conductance probability is the fraction of

molecules that enter the duct and eventually escape through the outlet at some fu-

ture time. Thus, it is necessary to consider the gas molecules that escape through

the outlet after any given number of interior wall collisions, or particle moves. The

conductance probability is therefore determined by the limit of Ψn as the number of

particle moves n approaches infinity,

Ψ = lim
n→∞

Ψn = lim
n→∞

eT
N+2A

nv(0). (5.17)

It is very important to note that equality in (5.17) is only with respect to the Markov

chain representation of the stochastic process, and it does not hold for the true

conductance probability of the free molecular duct. The actual motion of the gas

molecules is continuous throughout the duct, and is not limited to a finite number

of interior states. The Markov chain is only an approximation to the real stochastic

process, which, in actuality, is an uncountably infinite-state Markov process. There-

fore, there exists a truncation error between the conductance probability of Markov

chain simulation in (5.17), that depends on the number N of interior wall states.

The critical computing task of the Markov chain simulation is to effectively cap-

ture the expected long-term behavior of the stochastic system in order to yield a

consistent estimate of the conductance probability. Specifically, this requires an

accurate approximation of the limit limn→∞ Anv(0) in (5.17) for the conductance

probability Ψ. There are three solution techniques implemented in this section for

approximation of this limit: (i) a complete eigensystem decomposition of the tran-
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sition probability matrix A; (ii) a successive squaring of the transition probability

matrix A; and (iii) a marching technique where the initial probability distribution

v(0)is simply multiplied by the matrix A repeatedly. It should be noted that only the

solution technique (i) actually attempts to solve for the limit in (5.17) directly. The

other two methods adopt an iterative approach and solve for the probability Ψn in

(5.16) for an increasing number n of interior wall collisions. The iterative approaches

(ii) and (iii) continue until the following stopping criterion is reached,

|Ψa − Ψb|
Ψb

< ε with a < b, (5.18)

at which point the probability Ψb is taken as an approximation to the conductance

probability Ψ in the Markov chain simulation. In this investigation, ε = 10−14 is

used for the stopping criterion (5.18) of the iterative Markov chain simulations.15

The transition probability matrix A in (5.9), or Markov matrix, is diagonalizable

[50, 176]. That is,

A = XΛX−1,

where the matrix X is the complete set of eigenvectors of A (each column of X is a

distinct eigenvector), and Λ is a diagonal matrix with the corresponding eigenvalues

of X. If the complete eigensystem XΛX−1 is known for A, it is then possible to find

the following limit exactly,

lim
n→∞

An = XΛX−1XΛX−1 · · ·

= lim
n→∞

XΛnX−1,

when the limit limn→∞ Λn exists. All the eigenvalues λ on the diagonal of Λ, for

the transition probability matrix A in (5.9) are real valued and in the interval (0, 1];

15Note that the stopping criterion ε = 10−14 is the same criterion adopted for the conjugate
gradient solver used in the finite-state linear system simulation presented in Section 5.3.
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therefore, the limit limn→∞ Λn exists. In general, the calculation of the eigensys-

tem of an N ×N matrix A requires O (N 2) operations to obtain the complete set of

eigenvalues, and up to O (N 3) operations to obtain the complete eigensystem decom-

position A = XΛX−1. Unfortunately, high-performance eigensystem solvers require

sophisticated algorithm development that is beyond the scope of this investigation.

Thus, for the first solution technique considered in this section, the mathematical

software MATLAB [105] is used in this investigation to solve the complete eigensys-

tem for the transition probability matrix A (5.9). Once the eigensystem A = XΛX−1

is found, the exact limit for the Markov chain in (5.17) is calculated for the conduc-

tance probability Ψ. Note that the overhead present in MATLAB does not make

direct timing comparisons possible for the other solution techniques, which use opti-

mized, problem-specific algorithms compiled in C/C++. It is possible, however, to

illustrate the general convergence rate of the eigensystem solution technique for the

Markov chain simulation.

It is important to recall that the conductance probability Ψ in (5.17) is only

exact for the finite state Markov chain approximation, and not the true continuous

stochastic process. As such, even the exact limit for Ψ in (5.17) is still only an

approximation, albeit a consistent one, to the true conductance probability of the

free molecular duct. Since there exists a truncation error caused by the finite-state

approximation of the continuous system, the accuracy of the limit limn→∞ Ψn only

needs to be within this truncation error to maintain a consistent approximation. The

complete eigensystem of the A matrix (5.9) does provide a tremendous amount of

detail about the transient behavior of the stochastic system as the Markov chain

converges to the long-term system equilibrium. However, this amount of detail is

simply not necessary for accurately calculating the conductance probability Ψ of a
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free molecular duct. Consequently, the eigensystem solution technique appears, and

justifiably so, as a significant amount of unnecessary work for calculating the exact

limit for Ψ in (5.17). In general, there are more efficient approaches for approximating

the limit limn→∞ Annv(0), as illustrated by the other two solution techniques.

The second solution technique considered in this section approximates the limit

limn→∞ An by simply squaring the transition probability matrix A (5.9) repeatedly.

That is, the matrix A is first multiplied by itself to obtain A2, the matrix A2 is

then multiplied by itself to obtain A4, . . ., and so forth. The result of m successive

squarings of the matrix A (i.e. A,A2, A4, . . . , A2m

) clearly converges exponentially

to the limit limn→∞ An. As a consequence, only a small number of successive squar-

ings are expected to be necessary in order to obtain an accurate approximation of

the limit for the conductance probability. By modifying the indices in (5.16), let

Ψm = eT
N+2A

2m

v(0) represent the probability a gas molecule in the Markov chain

simulation reaches the outlet state within the first 2m particle moves. To simulate

the conductance probability with the Markov chain, the successive squaring of the

the A matrix continues until the stopping criterion in (5.18) for Ψm−1 and Ψm is

reached. Using this stopping criterion, less than 10 successive squarings of the A

matrix (5.9) are typically needed to approximate the conductance probability for the

free molecular duct lengths considered in this investigation. While the total number

of successive squarings is very small, a single multiplication of two N × N matrices

still requires O (N 3) operations. Therefore, the overall operation count of the second

solution technique for the Markov chain simulation is O (N 3) as well.

The third solution technique, referred to as the marching method, approximates

the limit limn→∞ Anv(0) by directly calculating each update of the probability dis-

tribution vector (v(1),v(2), . . .) using (5.8). After each calculation of probability
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distribution v(n) for n = 1, 2, . . ., the approximation Ψn (5.16) to the conductance

probability is found. The Markov chain simulation using the marching method con-

tinues until successive approximations, Ψn−1 and Ψn, of the conductance probability

satisfy the stopping criterion in (5.18). The primary cost of the marching method

is the matrix-vector calculation performed in (5.8) for the update of the probability

distribution v(n), which requires O (N 2) operations. The overall cost of the Markov

chain simulation using the marching method, however, depends on the total num-

ber of successive approximations of Ψn (5.16) needed until the stopping criterion is

reached. Let s denote the smallest number of particle moves necessary for Ψs−1 and

Ψs to reach the stopping value ε = 10−14 in (5.18). If λ1 denotes the largest eigenvalue

of the A matrix (5.9) less than one, then s can be estimated by the following,

s ≈ log ε

log λ1

. (5.19)

The eigenvalue λ1 approaches a constant value as the number of interior wall states N

increases; and thus, the total number of particle moves needed to reach the stopping

criterion s for the marching method approaches a constant value as well.16 Therefore,

the overall operation count using the marching method remains O (N 2), which is

asymptotically the lowest computational cost of the three solution techniques for the

Markov chain simulation.

The conductance probability Ψ is found for a free molecular duct with a length

to height ratio L = 2 using the three different solution techniques for the Markov

chain simulation. More specifically, the Markov chain simulation is performed using

systems with 8 ≤ N ≤ 8192 interior wall states (except for the MATLAB solution of

16It is interesting to note that the largest eigenvalue λ1 < 1 has a strong dependence on the
duct length to height ratio L. In particular, λ1 monotonically tends to one as L increases. For the
range of free molecular duct geometries considered in this investigation (0.5 ≤ L ≤ 10), the number
of updates needed to reach the stopping criterion s increases from s = 22 (L = 0.5) to s = 500
(L = 10).
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Figure 5.3: Convergence of the relative error in the Markov chain simulation of the
conductance probability Ψ (for L = 2): (a) error convergence with re-
spect to the number of interior wall states N ; and (b) error convergence
with respect to the computation time τ .

the eigensystem which only uses up to N = 4096 interior states). The convergence

of the relative error17 for these Markov chain simulations is given in Figure 5.3.

There is no visual difference between the error convergence of the three different

Markov chain simulations with respect to the number of interior wall states N , as

illustrated in Figure 5.3(a). This is to be expected because any differences between

the approximation of Ψ using three solution techniques should be on the order of the

stopping value ε = 10−14 in (5.18). Furthermore, the relative error of the Markov

chain simulation in Figure 5.3(a) clearly demonstrates quadratic convergence with

respect to the number of interior wall states N . That is to say, if the number of

interior wall states N is doubled, then the accuracy of the conductance probability

Ψ found by the Markov chain simulation is quadrupled.

Unlike the error convergence with respect to N , the error convergence of the three

different solution techniques is noticeably different with respect to the computation

17The relative error is the difference between the simulation solution and the exact solution
normalized by the exact solution. Here the “exact” solution is taken from the more accurate
Nyström method which is shown in Section 5.4 to have a stable relative error less than 10−12 for
the duct lengths under consideration.
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time τ , as illustrated in Figure 5.3(b). Not surprisingly, the Markov chain simulation

using MATLAB to calculate the complete eigensystem of the A matrix (5.9) is the

slowest Markov chain simulation, regardless of the desired accuracy. The error con-

vergence of the MATLAB method with respect to time is O (τ−0.76), which indicates

that the algorithm MATLAB uses to solve the eigensystem with N interior states

requires approximately O (N 2.63) operations. The successive squaring technique is

the next fastest Markov chain simulation (except for the N = 8 case). The error

convergence of the successive squaring with respect to time is O (τ−0.64) because the

matrix multiplication process is O (N 3); and as a consequence, the method has the

slowest asymptotic convergence rate of the three methods in terms of computation

speed. The marching method is consistently the fastest Markov chain simulation

to reach almost all the error levels tested; and as anticipated, its convergence with

respect to time is approximately linear. As an example of its speed, the marching

method is 8 times faster reaching an error level of 10−5 (N = 128) than the successive

squaring technique; and over 90 times faster than the MATLAB method. It should

be noted that in cases when the number of updates needed by marching method to

reach the stopping criterion (5.18) is greater than the number of interior wall states

N the operation count is really O (N 3). Therefore, it is possible for the successive

squares technique to actually be faster in some instances as illustrated in Figure

5.3(b).

5.3 Finite State Linear System Simulation

It is possible, using the same finite state representation of the free molecular duct

as the Markov simulation in Section 5.2, to construct an even faster method for calcu-

lating the conductance probability. To achieve this improved performance one must
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slightly alter the physical viewpoint of the Markov chain simulation. Rather than

tracking the evolution of v(n) in (5.8) for the expected distribution of the molecules

after n moves, suppose one knew the probability that a molecule at a specific interior

wall state would eventually escape the duct through the outlet. Let fi denote the

probability a gas molecule in the interior wall state i escapes the outlet after any

number of moves (possibly infinite). If the vector f = (f1, . . . , fN) is known, then

the conductance probability can be calculated from the known quantities b (5.14)

and ρ(L) (5.15) used previously in the Markov chain simulation. That is,

Ψ = f · b + ρ(L). (5.20)

Again, it is important to note that the result in (5.20) is exact with respect to the

finite state stochastic process, but not the true continuous process. The solution in

(5.20), however, serves as a consistent approximation of the true stochastic process of

free molecular duct flow to within a truncation error, which decreases as the number

N of interior wall states increases.

The probability fi of a molecule eventually escaping the duct from state i through

the outlet is equal to the probability the molecule directly escapes the outlet on its

next move, plus the probability it jumps to any other interior wall state and even-

tually escapes through the outlet from that state. Accordingly, using the previously

derived vector and matrix quantities b (5.14) and K (5.11) for the Markov chain

simulation, an implicit formula can be given by

fi = hi +
N∑

j=1

Kjifj,

which in matrix-vector notation becomes

f = h + KT f . (5.21)
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The vector f , for the eventual outlet escape probability, is then found by rearranging

the linear system in (5.21) to yield

f = −(K − I)−1h, (5.22)

where I represents the N × N identity matrix. Recall from Section 5.2 that the

matrix K is symmetric; thus, its transpose can be dropped from the result in (5.22).

The solution to the linear system (5.22) exists for all finite duct lengths,18 and can

be solved by any one of the many available methods [176, 189, 105, 147, 20]. Once

the eventual outlet escape probability f is known, the conductance probability of the

duct is then determined from (5.20).

The linear system solution in (5.22) for the eventual outlet escape probability f

is found using the iterative conjugate gradient method [176], for this investigation.

The relative error used as the stopping criterion for the iterative method is taken to

be the same as for the Markov simulation in Section 5.2 (i.e. ε = 10−14). Similar

to the Markov chain simulation, the error of the linear system simulation is taken

relative to the Nyström method, which is discussed in greater detail in Section 5.4.

The error convergence and computation time are given in Figure 5.4 for the linear

system simulation of the conductance probability. Specifically, the relative error19

and the computation time20 are found for three different duct length to height ratios

(L = 2, 5, 10), and for a number of interior states N in the range 8 ≤ N ≤ 216.

Both the linear system simulation and the Markov chain simulation both repre-

18As the duct length to height ratio approaches infinity, the associate K matrix in the finite state
linear system simulation becomes more ill-conditioned and approaches a singular matrix in this
limit. However, for duct length to height ratios L ≤ 100, the common methods for solving linear
systems of equations encounter no noticeable stability problems.

19The relative error is the difference between the simulation solution and the exact solution
normalized by the exact solution. Here the “exact” solution is taken from the more accurate
Nyström method which is shown in Section 5.4 to have a stable relative error less than 10−12 for
the duct lengths under consideration.

20The computation time τ is for a single 3.06 GHz Intel Xeon processor.
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Figure 5.4: Convergence of the relative error in the finite-state linear system sim-
ulation of the conductance probability Ψ (for L = 2, 5 and 10): (a)
convergence with respect to the number of interior duct states N ; and
(b) convergence with respect to the computation time τ .

sent the same discrete stochastic process. Since both methods use a stopping criterion

of ε = 10−14, the error convergence (or equivalently, the conductance probability) is

expected to appear the same for the L = 2 case. As with the Markov chain simu-

lation, the error in Figure 5.4(a) displays quadratic convergence with an increasing

number N of interior wall states. Furthermore, given the same number N of interior

wall states, the error of the linear system simulation is found to increase with the

duct length to height ratio L.

In most cases, including the results from this investigation, the conjugate gradient

method for solving linear systems typically requires O (N 2) operations for an N ×N

matrix. Thus, the error convergence relative to the computation time τ is expected

to be linear as illustrated in Figure 5.4(b). The O (τ−1) error convergence rate

is the same as achieved by the Markov chain marching simulation of Section 5.2;

however, the linear system simulation is approximately 5-7 times faster. Note that

the error convergence relative to the computation time slows down as the duct length

to height ratio increases. The slower time is not only due to the increase in error seen
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in Figure 5.4(a); there is also an additional increase in computation cost attributed

to the slower convergence of the conjugate gradient method as the duct length to

height ratio increases.

5.4 Nyström method

It is possible to develop an alternate simulation method for the conductance

probability by considering what happens to the finite state linear system simulation

developed in Section 5.3 when it is extended to the continuous limit. In the contin-

uous limit, the vectors in (5.21) become continuous functions and the matrix-vector

operation becomes an integral kernel operator. As a result, the continuous form of

(5.21) becomes an implicit integral equation defining an unknown function instead of

the eventual outlet escape probability vector f . Specifically, the integral equation of

this continuous form is classified as a Fredholm integral equation of the second kind

(see [3, 7, 34, 40] for more background on the theory). There exists analytical series

solutions to the Fredholm integral equations; however, these series solutions are not

always easy to represent in a closed-form. Unfortunately the integral equation re-

sulting from the simulation of the conductance probability falls under this category,

meaning no exact closed-form solution is known (at least by the author).

Although an exact solution is elusive for the free molecular conductance proba-

bility, there is a very robust numerical technique, referred to as the Nyström method

(see [7, 40]), for solving Fredholm integral equations of the second kind. The Nyström

method approximates the solution of the integral equation simply by discretizing the

integral kernel operator with an appropriately selected numerical integration rule

(e.g. Newton-Cotes, Gauss-Legendre, etc.). The integral equation, once discretized,

becomes a well-defined linear system that can be solved for certain points of the



222

unknown function. The solution procedure is the same as the finite state linear

system simulation; thus, the method developed earlier in Section 5.3 is actually an

example of the Nyström method. The finite state linear system simulation, however,

is a relatively crude implementation of the Nyström method, as there are many nu-

merical integration rules available that offer much greater accuracy than the second-

order global accuracy observed in Section 5.3. Specifically in this investigation, the

Nyström method is used in conjunction with the Gauss-Legendre integration rules,

which are the most accurate for most well-behaved one dimensional integrals.

The resulting Nyström method is, in fact, the most accurate simulation technique

developed in this investigation for the free molecular conductance probability. In fact,

for certain duct geometries, the Nyström solution appears to be accurate to within

machine precision. In addition to its accuracy, the Nyström method is also the fastest

simulation technique developed in this investigation, including the QMC particle

simulation developed in Section 5.5. The primary computational cost of the Nyström

method is the solution of the linear system associated with the discretized integral

equation; and, in this investigation, the size of the linear system does not exceed 150

unknowns. As such, solving such small linear systems requires only a trivial amount

of time on a modern computer. It is important, however, to remember that the

primary goal of developing the QMC particle simulation in this investigation is not to

merely obtain the fastest possible simulation. Rather, the goal is to better understand

the abilities and limitations of the QMC method when applied to particle simulations.

In particular, the focus is to build a foundation from which more general QMC

particle simulations can be developed that achieve an error convergence superior to

traditional DSMC.

Continuous analogues of the matrix and vector quantities in (5.20) and (5.21)
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are required to solve for the free molecular conductance probability Ψ using the

Nyström method. As with all the simulation techniques developed in this chapter,

the duct geometry is assumed to have a length to height ratio equal to L. Let

K(x, y) represent the continuous analogue of the transition probability matrix K

given in (5.11). The function K(x, y) then denotes the probability that a particle on

the duct wall at x will next collide with the opposite duct wall in the infinitesimal

neighborhood of y. The transition probability function K(x, y) is thus determined

directly from the parallel transition probability T‖ in (5.7) with µ = 1, which is equal

to the non-dimensional duct height. That is,

K(x, y) = T‖(x, y; 1)

=
1

2 ((x − y)2 + 1)3/2
. (5.23)

Because the duct geometry is symmetric along the centerline, the transition proba-

bility function K(x, y) is the same if the location y is on the opposite duct wall from

x, and if y is on the same wall assuming a reflection at the symmetry plane. As with

the other simulation techniques in Sections 5.2 and 5.3, the symmetry of the duct

geometry allows for simulation to be reduced to a single wall, which is adopted here

for the Nyström method.

Similarly, let h(x) represent the continuous analogue of the outlet escape prob-

ability vector h given in (5.13). The function h(x) denotes the probability that a

particle on the duct wall at x will escape the duct through the outlet on its next

move. The outlet escape probability function h(x) can be calculated in terms of the
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perpendicular transition probability T⊥ in (5.6); that is,

h(x) =

∫ 1

0

T⊥(L − x, y)dy

=
1

2

(

1 − L − x
√

(L − x)2 + 1

)

. (5.24)

Note that the symmetry condition permits one or both of the duct walls to be

simulated using the same outlet escape probability function h(x) in (5.24). Next, let

b(x) represent the continuous analogue of the initial probability distribution vector

b given in (5.14). The initial probability distribution function b(x) denotes the

probability that a particle entering the duct through the inlet will first collide with the

duct wall in the infinitesimal neighborhood of x. The initial probability distribution

function b(x) can likewise be calculated in terms of the perpendicular transition

probability T⊥ in (5.6); more specifically,

b(x) =

∫ 1

0

2T⊥(x, y)dy

= 1 − x√
x2 + 1

. (5.25)

Note that the 2 appears in the integral in (5.25) because only one duct wall is

simulated in the Nyström method presented here; and the fact that the particle

may first collide with either the top or bottom wall must be accounted for. If both

duct walls are simulated, then a different form of the initial probability distribution

function b(x) (5.25) is needed.

To complete the process of finding continuous analogues of the matrix and vector

quantities in (5.20), let f(x) represent the continuous form of the eventual outlet

escape probability vector f . The function f(x) denotes the probability a particle

located on the duct wall at x will eventually escape the duct through the outlet

after any number of wall collisions (possibly infinite). Moreover, the probability
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f(x) of a particle eventually escaping the duct from x through the outlet is equal

to the probability the particle directly escapes the outlet on its next move, plus the

probability it jumps to any other interior wall state and eventually escapes through

the outlet from that point. It is therefore possible to define f(x) in terms of the

following implicit integral equation,

f(x) = h(x) +

∫ L

0

K(x, y)f(y)dy. (5.26)

Note that the implicit integral equation in (5.26) is the continuous analogue of the

linear system derived in (5.21) with the matrix-vector operation replaced by the

integral kernel operator. Once the eventual escape probability distribution function

f(x) is known, the conductance probability Ψ for the free molecular duct is then

given by

Ψ =

∫ L

0

b(x)f(x)dx + ρ(L), (5.27)

where ρ(L) (5.15) is the probability of a particle directly escaping the duct from the

inlet.

The implicit integral equation for f(x) in (5.26) is an example of a linear Fredholm

integral equation of the second kind (see [3, 7, 34, 40] for more details regarding

the theory behind these integral equations). There exists an analytical solution,

referred to as the Neumann series, for the linear Fredholm integral equation of the

second kind. To define the Neumann series for the free molecular duct flow, let fn(x)

denote the probability a particle at x will escape through the outlet of the duct after

colliding with the wall n or fewer times. It is possible to determine the Neumann

series, f0(x), f1(x), . . ., explicitly using the following iterative definition,

f0(x) = h(x)

fn+1(x) = h(x) +

∫ L

0

K(x, y)fn(y)dy for n = 1, 2, . . ..
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Therefore, the solution for f(x) in the integral equation (5.27) is simply the limit of

this Neumann series; that is,

f(x) = lim
n→∞

fn(x). (5.28)

The Neumann series (5.28) converges uniformly to f(x) if the function norm ‖K(x,y)‖

of the integration kernel is strictly less than one. While the Neumann series repre-

sents an analytical solution to the linear Fredholm integral equation of the second

kind, it should be noted that there is no guarantee the series can be evaluated in

terms of known functions. In the case of the free molecular duct flow, the author is

unable to find a closed-form for the Neumann series solution of the integral equation

in (5.26).

The convergence of the Neumann series (‖K(x, y)‖ < 1) is a sufficient condition

for the Nyström approximation of f(x) in (5.26) to converge to the true function.

The particular choice of the function norm does not matter when establishing the

convergence of the Neumann series and any of the easy to calculate norms, such as

the Frobenius, L1, or L∞ norms, may be used. A brief review of function norms can

be found in [40], and their treatment is essentially the same as their counterparts for

the finite-dimensional matrix and vector norms [176]. For a general integration kernel

Ξ(x, y) defined on the function space L 2(a, b)21, the Frobenius norm ‖Ξ(x, y)‖F is

defined by

‖Ξ(x, y)‖F =

(∫ b

a

∫ b

a

|Ξ(x, y)|2dxdy

)1/2

.

The Frobenius norm over the interval (0, L) of the transition probability function

K(x, y) (5.23) is then given by

‖K(x, y)‖F =
1

4

(
L2

L2 + 1
+ 3L tan−1 L

)1/2

. (5.29)

21The function space L 2(a, b) is the set of all functions f(x) defined on the interval (a, b) that

satisfy the condition
∫ b

a
|f(x)|2dx < ∞ in the Lebesgue sense (see Chapter 1 of [40] for more details).
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Figure 5.5: The Frobenius, L1 , L2, and L∞ norms of the transition probability func-
tion K(x, y) used to solve the conductance probability in a free molecu-
lar duct. Note that ‖K(x, y)‖2 = λ1, which is the largest eigenvalue of
K(x, y), and that the second largest eigenvalue λ2 is included for refer-
ence.

Unfortunately, the Frobenius norm ‖K(x, y)‖F (5.29) is only less than one when

L ≤ 3.819 as shown in Figure 5.5. Based on the Frobenius norm alone, the Nyström

method is not guaranteed to yield a consistent approximation of f(x) in (5.26) for

all the duct geometries tested in this investigation.

As it turns out, the L1 and L∞ norms are better choices for establishing the bound

‖K(x, y)‖ < 1 on the transition probability function (5.23). For a general integration

kernel Ξ(x, y) defined on the function space L 2(a, b), the L1 norm ‖Ξ(x, y)‖1 is

defined by

‖Ξ(x, y)‖1 = sup
y∈(a,b)

∫ b

a

|Ξ(x, y)|dx,

and similarly the L∞ norm ‖Ξ(x, y)‖∞ is defined by

‖Ξ(x, y)‖∞ = sup
x∈(a,b)

∫ b

a

|Ξ(x, y)|dy.

Clearly, the L1 and L∞ function norms are the continuous analogues of their respec-

tive matrix norms; that is, the L1 matrix norm is equal to the maximum column
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sum of the matrix and the L∞ matrix norm is equal to the maximum row sum of the

matrix [176]. Since the transition probability function K(x, y) (5.23) is symmetric,

the L1 and L∞ norms of the integration kernel are the same. Specifically,

‖K(x, y)‖1 = ‖K(x, y)‖∞ =
L√

L2 + 4
. (5.30)

The result in (5.30) implies that ‖K(x, y)‖1 = ‖K(x, y)‖∞ < 1 for all duct geometries

L > 0, as illustrated in Figure 5.5, thus, the Neumann series (5.28) converges to the

eventual outlet escape probability f(x) in (5.26). Most importantly, the Nyström

method developed here is guaranteed to yield a consistent approximation to f(x)

in (5.27) for the simulation of the free molecular conductance probability Ψ. It is

interesting to note that in the limit as L → ∞, the L1 and L∞ norms monotonically

approach one, which indicates the Neumann series converges more slowly as the duct

to length ratio L increases. This seems to suggest that it may become more difficult

to obtain an accurate Nyström solution in the limit as well.

While not representable in closed-form, the L2 function norm offers useful insight

into the physical process being simulated, which can, in turn, be exploited by other

numerical methods. For any symmetric integration kernel Ξ(x, y) defined on the

function space L 2(a, b), the L2 function norm is defined as ‖Ξ(x, y)‖ = λ1, where λ1

is the largest eigenvalue22 of the kernel. Unfortunately, it is difficult to find a closed

form for the eigenvalues of an integration kernel without some a priori knowledge

of the likely functional form of the associate eigenfunctions. The integral kernel

K(x, y) for the transition probability distribution in (5.26) is not exempt from this

complication and the eigenvalues of K(x, y) must be determined numerically. Note

that if the complete set of eigenvalues and eigenvectors of K(x, y) were known in

22If there exists a function ω(x) ∈ L 2(a, b) such that
∫ b

a
Ξ(x, y)ω(y)dy = λω(x) for all x ∈

(a, b), then the function ω(x) is defined as the eigenfunction of the kernel Ξ(x, y) with an associate
eigenvalue λ.
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closed form, it would be possible to obtain a closed form solution for the Neumann

series solution of f(x) in (5.28), and ultimately, the conductance probability Ψ. In

this investigation, the L2 norm ‖K(x, y)‖2 is determined by using the classic power

iteration [176] to find the largest eigenvalue of the integration kernel K(x, y).23 This

calculation of the L2 norm ‖K(x, y)‖2 using the power iteration is given in Figure

5.5. As with the other function norms, the L2 norm monotonically increases with

the duct to length ratio L (see Figure 5.5); additionally, it appears to be bounded

from above the L1 and L∞ norms.

The physical significance of the L2 norm ‖K(x, y)‖2 becomes apparent when one

considers the probability a particle remains within the duct after a given number of

wall collisions. In particular, let ϕn(x) denote the probability a particle collides with

the duct wall in the infinitesimal neighborhood of x after undergoing n previous wall

collisions. It is possible to determine ϕn(x) explicitly from the following iterative

definition

ϕ0(x) = b(x)

ϕn+1(x) =

∫ L

0

K(x, y)ϕn(y)dy for n = 1, 2, . . .. (5.31)

Next let ϕn denote the probability a particle remains within the duct after (n + 1)

wall collisions; hence,

ϕn =

∫ L

0

ϕn(x)dx. (5.32)

The probability ϕn of a particle remaining within the duct after (n+1) wall collisions

is then calculated24 in Figure 5.6(a) for three different duct geometries (L = 2, 5, 10).

23The power iteration in [176] is only developed for finding the largest eigenvalue of a symmetric,
finite-dimensional matrix. It is possible to adapt the matrix power iteration algorithm into a
form for symmetric integration kernels simply by replacing the matrix-vector operations with their
appropriate continuous integral analogues. All the integrals in the power iteration performed here
are approximated using an 80-point Gauss-Legendre integration rule.

24The integrals in (5.31) and (5.32) necessary for calculating ϕn are approximated numerically
using an 80-point Gauss-Legendre integration rule, as with the power iteration.
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Figure 5.6: The probability ϕn of a particle remaining within the duct after n + 1
wall collisions (for L = 2, 5 and 10): (a) convergence of ϕn to zero as the
number of wall collisions increases; and (b) convergence of the successive
ratio ϕn+1/ϕn to a constant value.

The convergence of ϕn, for all duct geometries tested, appears to be linear on the

semi-log scale plot. As a result, the probability ϕn of a particle remaining within the

duct after (n + 1) wall collisions is closely approximated by an equation of the form

ϕn ∝ kn, (5.33)

where k is some constant that depends on the length to height ratio L.

In order to approximate k, the successive ratio ϕn+1/ϕn is found in Figure 5.6(b).

That the successive ratio appears to converge to a constant value k suggests the

following process physically occurs in free molecular duct flow regardless of the sim-

ulation technique used to solve it. Given a population of particles entering the free

molecular duct, roughly the same fraction k of the remaining population is likely to

stay within it after each subsequent wall collision.25 Conversely, the fraction (1− k)

is likely to escape the duct from the remaining population after each subsequent wall

collision. Based on inspection, the value of this constant k is equal to the L2 norm

‖K(x, y)‖2 as illustrated in Figure 5.6(b). Therefore, the average fraction of particle

25This is excluding the first several wall collisions where the initial probability distribution exerts
some effect on the probability of escaping the duct back through the inlet.
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population beginning inside the duct that still remains inside after n moves is closely

approximated by ‖K(x, y)‖n
2 . This result serves as a useful estimate in determining

the appropriate number of moves in the sample trajectories generated for the absorp-

tion weighted Monte Carlo and quasi-Monte Carlo simulations (developed in Section

5.5).

It is not surprising that the constant k in (5.33) is equal to ‖K(x, y)‖2, because

the power iteration algorithm for calculating the largest eigenvalue of an integration

kernel is very similar to the calculation of ϕn+1/ϕn using (5.31) and (5.32). The ratio

λ2/λ1 of the largest and second largest eigenvalues affects the rate at which the power

iteration converges to the eigenvalue; specifically, the convergence slows as λ2/λ1 →

1. Based on the value of λ2 (see Figure 5.5) for the transition probability K(x, y),

the same behavior is observed in Figure 5.6(b) for the successive ratio ϕn+1/ϕn.

The Nyström method solves the linear Fredholm integral equation of the second

kind by suitably discretizing the integral kernel operator and then solving the result-

ing linear system directly, as done previously in Section 5.3. Let In(a, b) = {x,w}

denote an n-point numerical integration rule with sample points x = (x1, . . . , xn) ∈

(a, b) and sample weights w = (w1, . . . , wn) subject to the constraint
∑n

i=1 wi =

(b − a)−1. Given any function φ(u) defined on the interval u ∈ [a, b], the n-point

integration rule then approximates the integral of φ(u) by the following weighted

average of the function samples,

∫ b

a

φ(u)du ≈
n∑

i=1

wiφ(xi).

The Nyström method using In(0, L) reduces the integral equation for the eventual

outlet escape probability f(x) in (5.26) to the following system of n linear equations,

f(xi) = h(xi) +
n∑

j=1

wjK(xi, xj)f(xj) for i = 1, . . . , n, (5.34)
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in n unknowns, f(x1), . . . , f(xn). Any linear system solver can then be used to

calculate the unknowns f(x1), . . . , f(xn) in (5.34); in this investigation, the standard

Gaussian elimination with partial pivoting [176] is adopted. While there exists linear

system solvers with better asymptotic performance than Gaussian elimination, here

the maximum number of points n in the integration rule is 150. Therefore, solving

the linear system in (5.34) with Gaussian elimination requires a minimal amount of

time on any modern computer.

The Nyström method does not solve the eventual outlet escape probability f(x) in

(5.26) completely. Instead, the Nyström method approximates specific values of the

function f(xi) at locations corresponding to the sample points x in the integration

rule In(0, L). That the Nyström method only solves for f(x) at a limited number

of locations is of no consequence when calculating the conductance probability Ψ

of the free molecular duct flow. To calculate the conductance probability Ψ, the

integral of f(x) must also be approximated in (5.27), which corresponds perfectly

with respect to the Nyström method since f(x) is only known at the sample points

of the integration rule. Therefore, the Nyström method using the integration rule

In(0, L) yields the following estimate of the conductance probability (5.27),

Ψ = ρ(L) +
n∑

i=1

wif(xi)b(xi), (5.35)

where ρ(L) (5.15) is the probability of a particle directly escaping the duct from the

inlet and b(x) (5.25) is the initial probability distribution function. In this investi-

gation, the numerical integration rule In(0, L) of the Nyström method is chosen to

be the n-point Gauss-Legendre integration rule appropriately scaled to the interval

[0, L] (see [1, 20] for tables of {x,w}). The Gauss-Legendre rules are perhaps the

most accurate numerical approximation to the integral of a well-behaved, one di-
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mensional function over a finite interval, which is why they are selected here for the

Nyström approximation (5.35) to the conductance probability.

Despite the best efforts to find the set of eigenfunctions for the transition proba-

bility function K(x, y) (5.26), they remain elusive to the author; thus, no analytical

series solution to the conductance probability Ψ is available. Given that the Nyström

method is the most accurate simulation technique presented in this chapter, its accu-

racy can only be verified by comparing the solution to itself. The Nyström method

described in (5.34) and (5.35) is solved using every n-point Gauss-Legendre integra-

tion rule in the range 4 ≤ n ≤ 150, to determine the best possible approximation to

the exact value of the conductance probability Ψ. The Nyström solutions for 10 con-

secutive integration rules are then averaged together to determine the sample mean

and sample variance.26 The sample mean which is found to have the lowest sam-

ple variance is then taken to be the best possible approximation of the conductance

probability by the Nyström method. The motivation for adopting this strategy is

based on the convergence pattern of the Nyström method observed when the number

n of Gauss-Legendre points increases in Figure 5.7. In particular, the relative error

found in Figure 5.7 is the normalized difference between the Nyström solution using

a specific n-point Gauss-Legendre rule and the best possible approximation deter-

mined from the sample statistics. The error convergence of the Nyström solution to

the conductance probability follows the same basic pattern for all the free molecular

duct geometries tested in this investigation. There are three parts to the convergence

pattern illustrated in Figure 5.7: (i) rapid initial convergence of the Nyström solution

to a minimum error level; (ii) stabilization around this minimum error level for at

least the next 10 Gauss-Legendre rules; and (iii) eventual divergence of the Nyström

26That is, the solution mean and variance are taken by averaging the result of the Nyström
method using the n, n + 1, . . . , n + 9-point integration rules, for 4 ≤ n ≤ 141.
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Figure 5.7: Error convergence of the Nyström method using an n-point Gauss-
Legendre rule to solve the conductance probability Ψ.

solution as a result of the accumulation of round-off error.

The Nyström solution for the conductance probability of the L = 2 duct geom-

etry achieves a minimum relative error of approximately 10−16 for all the n-point

Gauss Legendre rules in the range 21 ≤ n ≤ 80, as shown in Figure 5.7.27 The

accuracy and speed of the Nyström method clearly makes it the best simulation for

the conductance probability. For example, using the finite state linear system with

the much cruder integral approximation (see Section 5.3), requires N = 216 interior

states to be simulated in order to reach the same accuracy as the Nyström method

using a 13-point integration rule. Since both methods obtain their approximation in

part by solving a linear system, the difference in computation time between the two

methods is tremendous (i.e. solving a 216 × 216 system versus a 13 × 13 system). It

appears in Figure 5.7 that the accuracy of the Nyström method decreases as the duct

length to height ratio L increases. In addition, the number of Gauss-Legendre rules

that produce a solution near the minimum error observed in the stabilization region

27Note that this error level is at or near the machine precision.
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decreases. More specifically, the error in the Nyström solution for the L = 5 duct

geometry is slightly higher, achieving a minimum error of approximately 2 ·10−15 for

all the n-point Gauss Legendre rules in the range 49 ≤ n ≤ 88. The error in the

Nyström solution for the L = 10 duct geometry is higher still, achieving a minimum

error of approximately 10−13 for all the n-point Gauss Legendre rules in the range

84 ≤ n ≤ 98. Of all the integration rules, the 80-point Gauss-Legendre rule is found

to consistently yield one of the best approximations of the conductance probability

using the Nyström method. In fact, the relative error of the Nyström method using

the 80-point Gauss-Legendre rule is less than 10−12 for all the duct geometries in the

range tested in this investigation (0.5 ≤ L ≤ 10).

While there is no exact solution available to compare with the Nyström method,

it is possible to check the numerical solution obtained in this investigation against the

approximate solution of Clausing [30]. The solution in [30] is obtained by assuming

the eventual outlet escape probability f(x) in (5.26) is a linear function in x. Given

the symmetry of the duct, the assumed linear form of f(x) can be represented in

terms of a single free parameter α(L), which is permitted to vary with the duct

length to height ratio L. In [30], the free parameter α(L) is calculated differently

for the wide duct regime L < 1 and the narrow duct regime L > 1. The form

of α(L) in the wide duct regime (L < 1) is designed to yield the correct solution

in the limit L → 0. Similarly, the form of α(L) in the narrow duct regime (L >

1) is intended to produce the correct asymptotic convergence of the conductance

probability (i.e. Ψ = O (L−1 log L)) in the limit L → ∞. The approximate solution of

the conductance probability given by Clausing [30] is in agreement with the Nyström

method developed in this investigation, as illustrated in Figure 5.8. Specifically, the

difference between the two solutions is negligible (i.e. less than 0.06%) in the wide
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Figure 5.8: Comparison of the conductance probability Ψ calculated from the
Nyström method and the approximation of Clausing.

duct regime of L < 1. The difference, however, appears to grow steadily as the duct

becomes more narrow reaching a difference of more than 4% for the L = 20 duct

geometry.

5.5 Particle Methods

There are three particle simulations tested in this investigation for free molecular

flow in a two dimensional duct: (i) the traditional test particle Monte Carlo simula-

tion; (ii) the absorption weighted Monte Carlo (AWMC) particle simulation; and (iii)

the quasi-Monte Carlo (QMC) particle simulation. In Section 5.5.1, the implementa-

tion of the test particle Monte Carlo simulation is discussed, and the convergence of

the method is demonstrated for a duct geometry with a length to height ratio L = 2.

Two attempts are also made to convert the test particle simulation directly into a

computationally efficient QMC simulation by simply replacing the pseudo-random

number generator with a low-discrepancy sequence. These initial attempts, however,

do not produce a QMC particle simulation with a near-linear error convergence as
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intended. In Section 5.5.2, the implementation of the AWMC simulation is reviewed

and convergence is shown for the same duct geometry as the test particle Monte

Carlo simulation. Absorption weighting is a variance reduction technique that is

commonly used in the Monte Carlo simulation of radiation transport. Because the

variance of the AWMC simulation is lower than the test particle Monte Carlo sim-

ulation, the AWMC simulation has a lower relative error for the same number of

samples. The absorption weighting technique also provides an alternate form for the

particle simulation that is more amenable to QMC integration than the traditional

test particle formulation, based on the results of Sarkar and Prasad [153]. The QMC

particle simulation is therefore developed using the absorption weighting technique in

Section 5.5.3, and near-linear convergence is demonstrated for the same test case as

the test particle Monte Carlo simulation. Most importantly, this section establishes

that it is possible to construct a QMC particle simulation of free molecular flow that

achieves the theoretical near-linear error convergence rate.

5.5.1 Test Particle Monte Carlo Method

The test particle Monte Carlo simulation is one of the earliest applications of

the Monte Carlo method to fluid flows. Davis [36], in particular, develops the test

particle Monte Carlo method for free molecular flow through several different pipe

and duct geometries. Based on the definition of Hammersley and Handscomb [58],

the test particle method is an example of direct simulation Monte Carlo; that is,

the stochastic events being simulated correspond directly to the real-life physical

processes they represent. Specifically, the method simulates the actual trajectory

path of the gas molecules (also referred to here as simply particles) as they travel

through the duct under the conditions of free molecular flow. As a consequence,



238

the test particle Monte Carlo simulation is, perhaps, the most intuitive approach to

approximating the conductance probability of a free molecular duct.

As noted, the conductance probability Ψ of a duct is defined as the fraction of

particles that enter the duct at the inlet and then eventually escape the duct through

the outlet. To obtain an approximation of Ψ using direct simulation, many randomly

generated particle trajectories are collected to produce a physically accurate repre-

sentation of the free molecular flow through the duct. There are two basic random

events that occur during a particle trajectory: (i) the initial entry of the particle

into the duct through the inlet; and (ii) the particle collisions with the fully diffuse

walls of the duct. The probabilistic outcomes of both of these events can be de-

scribed in terms of the cosine distribution of trajectory angles given in (5.5). It is

more convenient, however, to work with these probabilistic outcomes in terms of the

location along the wall of the next particle collision instead of the trajectory angle.

The probability distribution functions that govern the next location where a particle

collides with the wall can be calculated using the perpendicular T⊥ (5.6) and parallel

T‖ (5.7) transition probabilities defined in Section 5.1. The test particle Monte Carlo

simulation then tracks these physically accurate particle trajectories from the point

of entry into the duct until the particle escapes the interior. While a single random

particle trajectory offers little about the expected behavior of the free molecular flow,

the collected average of a large number of random trajectories is able to provide a

tremendous amount of information. The conductance probability Ψ, which is of spe-

cific interest to this investigation, is approximated by simply counting the fraction of

the sample trajectories that result in a particle escaping the duct through the outlet.

If more sample trajectories are used in test particle Monte Carlo simulation, then

naturally the approximation of Ψ is expected to be more accurate.
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To proceed more formally, for a duct with a length to height ratio L define

T (n) =
{

y
(n)
0 , z

(n)
1 , z

(n)
2 , . . . , z(n)

e

}

(5.36)

as the nth particle trajectory, where y
(n)
0 ∈ [0, 1] is the point on the inlet plane where

the particle enters the duct, and z
(n)
1 , . . . , z

(n)
e−1 ∈ [0, L] are points along the interior

walls where the particles collide. The last point z
(n)
e in the trajectory T (n) indicates

when the particle escapes the duct, and as such, z
(n)
e is the only wall location not in

the interval [0, L]. Since it is possible to have a particle trajectory with an infinite

number of wall collisions, the index e of the last point in the trajectory can be any

positive integer. The point z
(n)
e represents the location where an imaginary wall

collision would occur if the duct is assumed to be of infinite length. Two notes need

to be stated about the particle trajectory T (n) as it is used for this investigation:

(i) if it is clear from the context of the discussion that only a single trajectory is

being considered, then the superscript (n) is omitted for convenience; and (ii) the

positions of the particle trajectory are represented in terms of a non-dimensional

length normalized by the duct height. Each trajectory is given a score Smc(T
(n)) to

determine its contribution to the estimate of the conductance probability. Since

the conductance probability is approximated by counting the fraction of sample

trajectories that result in the particle escaping the duct through the outlet, the

trajectory score Smc(T
(n)) is simply an indicator function. Specifically,

Smc(T
(n)) =







1 if z
(n)
e > L

0 if z
(n)
e < 0.

(5.37)

The test particle simulation then yields the following approximation to the conduc-

tance probability Ψ given by

Ψ =
1

N

N∑

n=1

Smc(T
(n)), (5.38)
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where N is the total number of sample trajectories simulated.

It is important to understand that the particle trajectories are independent of

each other in the estimate of conductance probability (5.38). Therefore, the trajec-

tories may be generated in any order, simultaneously or serially, without affecting the

accuracy of the test particle simulation. This is not surprising because free molecular

flow is a mathematical approximation to a flow regime where particle-particle colli-

sions are exceedingly rare; thus, the particle trajectories should appear independent

in the simulation. Serial generation of the sample particle trajectories is typically

the fastest computation approach (see Bird [16]), and is the approach adopted in this

investigation. There is no difference in the total number of mathematical operations

between the serial and simultaneous generation of the sample trajectories. There is,

however, a major difference in the overall memory required during the execution of

the algorithm. As previously noted, a particle that undergoes a collision with a dif-

fuse wall loses all memory of it previous trajectory. Thus, at any given point during

the generation of the sample trajectory, only two positions ever need to be stored in

memory: (i) the current position of the particle on the boundary of the duct; and (ii)

the future position of the next wall collision. If the sample trajectories are generated

simultaneously rather than serially, significantly more memory is necessary to store

each pair of locations for every trajectory being simulated. As such, the memory la-

tency ultimately determines the computational cost difference between the serial and

simultaneous generation of the sample trajectories. The memory required for serial

generation is typically so small that the complete algorithm is able to be executed

from the processor chip cache of most modern desktop computers. In contrast, the

simultaneous generation of the sample trajectories typically requires a large number

of calls to the computer’s RAM; especially, as in this investigation, when more than
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a million samples are needed. Consequently, the simultaneous generation of the sam-

ple trajectories runs significantly slower as the memory latency is roughly an order

of magnitude greater for accessing the RAM than the chip cache.

The first point y0 of a trajectory T corresponds to the point where the particle

enters the interior of the duct from the inlet. As stated in the initial problem de-

scription (see Section 5.1), the inlet of the duct is attached to a reservoir of infinite

expanse, and the gas molecules in the reservoir are assumed to be in local thermody-

namic equilibrium with zero drift velocity. These assumptions imply that a particle

is equally likely to cross the inlet plane at any point y0 ∈ [0, 1] Therefore, y0 = u,

for each trajectory generated in the test particle simulation, where u ∈ U (0, 1) is a

uniformly distributed, random variate in the interval [0, 1].

The second point z1 of a trajectory T corresponds to the point where the particle

first collides into the interior duct wall. Or, if the particle escapes the duct directly,

z1 is the imaginary location the particle would collide with the wall if the duct was of

infinite length. To include both possibilities, the interior duct wall and its imaginary

extension are collectively referred to as the wall plane. Let b′(y0, z1) denote the

probability a particle on the inlet plate at y0 first intersects either the top or bottom

wall plane at z1. It is possible to define b′(y0, z1) in terms of the perpendicular

transition probability T⊥ (5.6) as follows,

b′(y0, z1) = T⊥(y0, z1) + T⊥(1 − y0, z1)

=
y0z1

2 (y2
0 + z2

1)
3/2

+
(1 − y0)z1

2
(
(1 − y0)

2 + z2
1

)3/2
. (5.39)

Note that z1 is simply the downstream distance from the inlet regardless of the

wall surface. Both the probability of intersecting with the lower wall plane (first

term) and the probability of intersecting with the upper wall plane (second term)



242

are included in the distribution (5.39). This first intersection with the wall plane

is the only time during the test particle simulation that the distinction between

the upper and lower walls is made. There is no difference in the treatment of the

walls for all the subsequent particle moves, z2, . . . , ze, because of the symmetry of

the duct and the symmetry of the parallel transition probability T‖ in (5.7). To

generate a sample point z1 for a trajectory, the inverse cumulative transform method

(see [47]) is applied to the distribution function b′(y0, z1) in (5.39). It is difficult to

obtain an explicit inverse of the integral of b′(y0, z1); however, it is possible to obtain

the inverses of the integrals of each term in (5.39) separately. Each term in (5.39)

corresponds to a particle moving toward either the upper or lower wall plane, and

both events have an equal 50% probability of occurring. It is, therefore, natural

to divide the generation of the sample point z1 into these two type of events. Let

B′−1(u; y0) denote the inverse cumulative distribution function of b′(y0, z1) in (5.39).

Hence, the first trajectory location z1 along the duct wall is generated by

z1 = B′−1(u; y0) =







2y0

√
u(1−u)

1−2u
if u < 1

2

2(y0 − 1)

√
u(1−u)

1−2u
if u > 1

2
,

(5.40)

where u ∈ U (0, 1) is a uniformly distributed, random variate in the interval [0, 1]\{ 1
2
}.

Note that the case u = 1
2

produces a particle moving exactly parallel to the duct

wall (i.e. z1 → ∞), and must be handled accordingly if the specific source used for

the random variates contains this value. After z1 is generated for each trajectory

in the test particle simulation, one must check if the particle has escaped the duct

(i.e. z1 > L). If the particle has escaped, then the trajectory is terminated (e = 1),

its score Smc(T ) is added to the running average approximation in (5.38) for the

conductance probability, and a new trajectory is started (as necessary for greater

accuracy).
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If the particle does not directly escape from the inlet, additional trajectory lo-

cations z2, . . . , ze are generated until it eventually escapes at ze with e ≥ 2. These

locations in the trajectory only involve particle moves between the two parallel wall

planes; as such, they are governed by the same probability distribution used for the

integral kernel K(x, y) in the Nyström method of Section 5.4. It is simpler, with

respect to the inverse cumulative distribution, to represent the transition probability

K(zi, zi+1) (5.23) in terms of the difference ∆z = zi+1 − zi between successive tra-

jectory locations. The probability K(∆z) a particle leaving the wall after a diffuse

collision will strike the opposite wall a distance ∆z from the original location is then

given by

K(∆z) =
1

2
(
(∆z)2 + 1

)3/2
. (5.41)

Each new location of the trajectory, z2, . . . , ze, is then generated from the inverse

cumulative transform of (5.41) defined as K−1(u). Hence,

zi+1 = zi + K−1(u)

= zi +
u − 1

2
√

u(1 − u)
, for 2 ≤ i ≤ e, (5.42)

where u ∈ U (0, 1) is a uniformly distributed, random variate in the interval (0, 1).

Note that the cases u = 0 and u = 1 correspond to ∆z → −∞ (escape through the

inlet), and ∆z → ∞ (escape through the outlet), respectively. If the specific source

for the random variates includes these values, they must be handled accordingly.

After each new trajectory location zi (with 2 ≤ i ≤ e) is generated in (5.42), one

must check if the particle has escaped the interior of the duct. If zi < 0 or zi > L,

then, by definition, i = e and the sample trajectory is terminated. The trajectory

score Smc(T ) is then added to the running average approximation in (5.38) for the

conductance probability and a new trajectory is started (as necessary). The test
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Figure 5.9: The relative error of different particle simulations of the conductance
probability Ψ (for L = 2).

particle simulation is now completely defined by these three basic steps for producing

a sample trajectory in (5.36): (i) generating the inlet plane location y0 from U (0, 1);

(ii) generating the first intersection with the wall plane z1 using (5.40); and (iii)

generating any necessary subsequent moves z2, . . . , ze between the interior walls of

the duct using (5.42).

In the preceding discussion of the test particle simulation, no method is pre-

scribed for generating any of the random variates u ∈ U (0, 1) needed. The test

particle Monte Carlo simulation is obtained when the random variates u ∈ U (0, 1)

are produced from a pseudo-random number (PRN) generator appropriately scaled

to the unit interval. Figure 5.9 demonstrates that the relative error28 in the conduc-

tance probability Ψ does indeed converge for the test particle Monte Carlo simulation

of a free molecular duct with a length to height ratio L = 2. The convergence rate of

the test particle Monte Carlo simulation is O
(
N−1/2

)
(where N is the number of sam-

28The relative error is the difference between the simulation solution and the exact solution
normalized by the exact solution. Here the “exact” solution is taken from the more accurate
Nyström method which is shown in Section 5.4 to have a stable relative error less than 10−12 for
the duct lengths under consideration.
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ple trajectories generated), which is the expected rate of all Monte Carlo methods.

In general, Monte Carlo methods usually have a noticeable amount of fluctuations

present in their error convergence results, and the test particle simulation is no excep-

tion. The fluctuations present in the error convergence of any Monte Carlo method

follow the Central Limit Theorem; thus, they can be reduced simply by averaging

together independent ensembles of the same simulation. To reduce these fluctuations

and better illustrate the expected convergence of the method, 512 ensembles of the

test particle Monte Carlo simulation are collected to obtain the results in Figure 5.9.

As noted in Chapter III, a QMC simulation has the potential of achieving a near-

linear error convergence rate that is superior to the O
(
N−1/2

)
convergence of the test

particle Monte Carlo simulation. The QMC method tries to attain this improved

convergence by replacing the usual pseudo-random sequence used in Monte Carlo

with a sequence that is more uniformly distributed throughout the domain being

sampled (i.e. a low-discrepancy sequence). A better distribution of sample points

is thus expected to yield a better approximation to the integral being sampled. An

obvious first attempt to develop a QMC particle simulation for the free molecular

conductance probability would be to use a one dimensional low-discrepancy sequence

to generate the random variates u ∈ U (0, 1) instead of the PRN generator. The

sequence produced by the PRN generator and the one dimensional low-discrepancy

sequence are both uniformly distributed in the unit interval. However, with respect to

the star-discrepancy of the two sequences, the low-discrepancy sequence is expected

to be significantly more uniform.29 To test this initial approach for developing a

QMC particle simulation, the van der Corput sequence in base 3 (see Appendix A)

29Because elements of a low-discrepancy sequence are more uniformly distributed than a random
sequence of equivalent length, they are sometimes referred to as “sub-random” sequences in the
literature (see [146, 147]).
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is used in place of the PRN generator in the test particle simulation. Despite the

best intentions of the design, Figure 5.9 clearly demonstrates that the test particle

simulation using the van der Corput sequence in base 3 does not converge to the

correct solution, for the L = 2 duct geometry.

The dismal performance of this first attempt at a QMC particle simulation leads

to the obvious question, “What went wrong?” The problem in the test particle simu-

lation can be traced back to the definition of the random variates u ∈ U (0, 1) needed

to produce the sample trajectories. A random variate u ∈ U (0, 1), by definition, is

uniformly distributed in the unit interval and each random variate is independent of

all the other variates generated. It is the latter part of this definition that causes the

convergence problems for the low-discrepancy sequences. While a good PRN genera-

tor is designed such that each number produced appears independent of any previous

number generated, the design of the low-discrepancy sequence is exactly the oppo-

site. As noted by Press and Teukolsky in [146], the elements of a low-discrepancy

sequence effectively “know” the location of all the other elements in the sequence,

and each new element is added so as to “maximally avoid” all the previous elements.

It is by virtue of this design that the low-discrepancy sequences are able to achieve a

more even distribution of points than a random sequence; yet at the same time, the

elements of each dimension of a low-discrepancy sequence are highly dependent on

each other. Therefore, the elements of a one dimensional low-discrepancy sequence

can not accurately represent a random variate u ∈ U (0, 1) because they fail to satisfy

the necessary independence condition.

The test particle simulation using the van der Corput sequence is physically

inconsistent because the interdependence of the low-discrepancy sequence elements

prevents them from accurately representing random variates. To better understand
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Figure 5.10: Illustration of the non-physical molecular movement within the duct
associated with a one dimensional low-discrepancy sequence: (a) using
the base 2 van der Corput sequence (χ2(17), . . . , χ2(23)); and (b) using
the base 31 van der Corput sequence (χ31(17), . . . , χ31(23)).

this loss of physical accuracy, actual particle trajectories are displayed in Figure 5.10

for the test particle simulation using the van der Corput sequences in bases 2 and

31. The particles simulated using the van der Corput sequence in base 2 alternate

directions after each move, which causes the trajectory in Figure 5.10(a) to bounce

back and forth around a central location in the duct. This is a direct consequence of

the construction of the sequence because any pair of consecutive elements xi, xi+1 of

the van der Corput sequence in base 2 is always split into opposite halves of the unit

interval. That is, xi < 1
2

and xi+1 ≥ 1
2
, or vice-versa. Since the trajectory locations

generated by (5.42) move the particle toward the outlet when the random variate

u > 1
2

and toward the inlet when u < 1
2
, the particle behavior in Figure 5.10(a) is

produced.
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The particle behavior is much different for the test particle simulation using

the van der Corput sequence in base 31. Figure 5.10(b) illustrates that the test

particle trajectory generated by part of this sequence marches toward the outlet

with increasingly longer reflections. As before, the pathological behavior in the

particle trajectory is due to the specific construction details of the van der Corput

sequence. Consider the following block of consecutive elements of the van der Corput

sequence in base 31: {xn, xn+1, . . . , xn+30}, with n ≡ 0 (mod 31). For each of these

blocks, the first element xn is found somewhere within the interval [0, 1
31

), and the

remaining elements xn+1, . . . , xn+30 are exactly 1
31

greater than the previous element

(i.e. xi+1 = xi + 1
31

for i = n + 1, . . . , n + 30). As a consequence, the trajectory

locations generated by (5.42) move the particle with more oblique reflections toward

the outlet when produced by the second half of the block {xn+16, . . . , xn+30}, as shown

in Figure 5.10(b). Conversely, the trajectory locations produced by the first half of

the block {xn, . . . , xn+14} move the particle with more acute reflections toward the

inlet. The particle behavior demonstrated for the test particle simulation using the

van der Corput sequence in base 31 is similar to that found for any van der Corput

sequence in relatively large base. Using the van der Corput sequence in base 2 and

31, the resulting particle behavior in both cases is a grossly inaccurate representation

of the true physical collision process occurring at the wall.

A better approach to designing a QMC particle simulation would be to replace

the one dimensional low-discrepancy sequence tested with a multi-dimensional low-

discrepancy sequence. For a sufficiently long sequence30, the coordinates of each

multi-dimensional sequence element appear as uniformly distributed, independent

variates in the unit interval; albeit with a much more uniform distribution than

30A more thorough discussion on the length of a low-discrepancy sequence necessary for the
coordinates of the sequence to appear independent, or uncorrelated, is given in Section 6.4.
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a random sequence. Given that the dimensions of a low-discrepancy sequence are

independent, each coordinate of an (e + 1)-dimensional sequence element can be

used to generate a distinct trajectory location without producing the non-physical

behavior demonstrated in Figure 5.10. More specifically, if xn = (x1,n, . . . , xe+1,n) ∈

I
e+1

denotes the nth element of an (e+1)-dimensional low-discrepancy sequence, then

the trajectory locations in T (n) (5.36) are generated by using: x1,n as a random variate

for y
(n)
0 , x2,n as a random variate for z1,n, . . ., and so forth. The implementation of the

test particle simulation with a multi-dimensional low-discrepancy sequence requires

some additional consideration because the number of independent variates needed

for each sample trajectory e + 1 is not constant. This is somewhat problematic

for most low-discrepancy sequences because they are most efficiently generated from

the previous sequence element, which requires all the sequence dimensions to be

generated, even if not used by the simulation. Two options are available to handle

the varying number of particle moves per trajectory encountered in the test particle

simulation: (i) generate a low-discrepancy sequence using a sufficiently large number

of dimensions to accommodate all possible trajectory lengths to be simulated; or

(ii) adopt a less efficient technique for generating the low-discrepancy sequence that

allows each dimension to be generated as needed. While option (i) uses a much more

efficient technique for generating the sequence, it tends to be extremely wasteful as

the average number of trajectory moves is many times smaller than the number of

moves in the longest trajectory. Because the additional cost of generating the extra

dimensions of the sequence as needed is less than generating the entire sequence

using option (i), option (ii) is selected for the Halton sequence.

The test particle simulation using the Halton sequence is used to approximate the

conductance probability of a free molecular duct with a length to height ratio L = 2.
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Figure 5.9 demonstrates that the relative error of the test particle simulation using

the Halton sequence appears to converge, unlike the test particle simulation using

the one dimensional van der Corput sequence. In this case, using a multi-dimensional

low-discrepancy sequence has eliminated the previous problem of generating indepen-

dent random variates for the test particle simulation. The test particle simulation

using the Halton sequence yields a lower error than the traditional test particle Monte

Carlo method when the sample size N > 256. Furthermore, the test particle simula-

tion using the Halton sequence is almost an order of magnitude more accurate than

Monte Carlo, when the sample size N > 105. While substituting the PRN generator

with the Halton sequence improves the performance, the error convergence rate of

the test particle simulation using the Halton sequence is nowhere near the theoretical

near-linear error convergence rate of a QMC method.

Unfortunately, the test particle simulation in its current form can not use the

Koksma-Hlawka inequality (3.5) to bound the simulation error because the inte-

grand of the problem is not of bounded variation in the sense of Hardy and Krause.

Without the Koksma-Hlawka inequality, however, there is no guarantee that the

test particle simulation will have near-linear asymptotic convergence. Any multi-

dimensional function with a discontinuity not-aligned with the principle axes is not

of bounded variation in the sense of Hardy and Krause, as noted in Chapter III.

The presence of the YES/NO decisions in the generation of the sample trajectories

produce a tremendous amount of discontinuities in the integral representation31 of

the test particle simulation; and almost all of the discontinuities are not aligned with

31The formal integral representation of the test particle simulation is not given here; however,
an approximate integral form is given as the summation in (5.38). A YES/NO decision is made
whenever the test particle simulation checks if a trajectory location zi is still within the interior of
the duct [0, L]. This process then appears in the integrand as the discontinuous indicator function
used to score the trajectory Smc(T ) in (5.38).



251

the principle axes. When a function contains these pathological discontinuities, it is

common that the QMC approximation of its integral will fail to achieve near-linear

convergence, and will offer only a slightly better convergence rate than the Monte

Carlo approximation (see [115, 117, 120]). To obtain a QMC particle simulation with

a higher error convergence rate, one is motivated to find an alternate formulation of

the problem that eliminates the YES/NO decisions in the simulation that lead to

discontinuities. One such formulation can be found using a classic variance reduction

technique presented in the following subsection.

5.5.2 Absorption Weighted Monte Carlo Method

The absorption weighted Monte Carlo (AWMC) method is a variance reduction

technique that is nearly as old as the Monte Carlo method itself. One of the ear-

liest applications for the AWMC method is the simulation of radiation transport

for shielding applications (see [166] for an example). In particular, the amount of

radiation that escapes containment is important to know for safety considerations.

The process of the radiation shield absorbing an energetic particle is probabilistic in

nature; the goal of a good shield is to absorb as many energetic particles as possible.

If the vast majority of the energetic particles are absorbed by the shield, then only a

relatively small fraction of the total particles simulated by the Monte Carlo method

make a contribution to the escape estimate. This, unfortunately, makes obtaining

an accurate escape estimate very costly. To achieve a more efficient simulation, the

AWMC method essentially prevents the stochastic absorption process from occur-

ring along the trajectory of the energetic particle. For example, if there is a 90%

chance an energetic particle will be absorbed by the shield along a given segment

of its trajectory, then the simulated particle weight is reduced by a factor of 10.
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Because the particle weight is reduced by the probability of not being absorbed, the

AWMC method remains physically consistent with the original problem. All the tra-

jectories generated in the AWMC method are then able to contribute to the escape

estimate. However, the contribution of each absorption weighted trajectory is much

less than the trajectories that escape the original Monte Carlo simulation because of

the reductions in the simulated particle weight.

The equivalent probabilistic absorbing process in the test particle simulation cor-

responds to the random escape of particles through the inlet and outlet of the duct.

Thus, the absorption weighted (AW) formulation of the test particle simulation pre-

vents the simulated particles from leaving the duct interior, thereby eliminating the

YES/NO decisions present in the original simulation. To maintain a physically con-

sistent particle trajectory, the weight of the simulated particles must be reduced each

time they collide with the wall. Specifically, the particle weight is reduced by the

probability that the particle would escape from its given location during its next

move, if it were allowed to do so. Fortunately, this probability can be easily calcu-

lated for any position within the duct using the outlet escape probability distribution

h(x) (5.24) developed for the Nyström method in Section 5.4. Due to the symme-

try present in the duct geometry and the distribution of the trajectory angles fθ(θ)

(5.5), the inlet escape probability g(x) = h(L − x). Since the simulated particles

of the AW method are not allowed to escape the duct, let alone the outlet, a new

trajectory score must also be used to estimate the conductance probability. The new

trajectory score is then equal to the sum, over all trajectory moves, of the probability

that a particle escapes the duct through the outlet during a given move, which can

be determined from the outlet escape probability distribution h(x) (5.24) as well.

The resulting simulation using the AW formulation is physically consistent with the
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original test particle simulation with the following two important improvements: (i)

the variance of the simulation is lower; and (ii) the YES/NO decisions in the original

formulation have been eliminated.

To proceed more formally, for a duct with a length to height ratio L define

T
(n)

=
{

z
(n)
1 , z

(n)
2 , . . . , z(n)

s

}

, (5.43)

as the nth particle trajectory of the AW simulation, where z
(n)
1 , . . . , z

(n)
s ∈ [0, L] are

the points along the interior walls where the particle collides. There are two key

differences between the AW trajectory T
(n)

(5.43) and the test particle Monte Carlo

trajectory T (n) (5.36): (i) the first collision with the wall interior z
(n)
1 of the AW

trajectory is calculated without considering where the particle first intersects the

inlet plane; and (ii) the number of particle moves s is fixed for all AW trajectories.

In general, the number of particle moves s per trajectory is taken to be sufficiently

large so as to ensure that the weight of the simulated particle at the end of the

trajectory is negligible. Each trajectory is given a score Sawmc(T
(n)

) to determine its

contribution to the estimate of the conductance probability. Specifically,

Sawmc(T
(n)

) = ρ(L) +
s∑

i=1

wih(z
(n)
i ), (5.44)

where ρ(L) (5.15) is the probability a particle escapes the duct directly from the inlet

with no wall collisions, wi is the weight of the simulated particle at the ith location of

the trajectory, and h(z) (5.24) is the probability a particle directly escapes through

the outlet from z on the next move. The initial weight w1 of the simulated particle

at the first collision with the wall z1 must exclude the fraction of particles that would

normally escape the duct directly; that is, w1 = 1 − ρ(L). Each subsequent particle

weight wi (for 2 ≤ i ≤ s) must exclude the fraction of particles that would normally
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escape the duct (through both the inlet and outlet) from the location zi−1. Hence,

wi = wi−1

(
1 − h(L − zi−1) − h(zi−1)

)
.

The AW simulation then yields the following approximation to the conductance

probability Ψ given by

Ψ =
1

N

N∑

n=1

Sawmc(T
(n)

), (5.45)

where N is the total number of sample trajectories simulated.

The process of scoring the trajectories for the AW method is illustrated in Figure

5.11 in an effort to better understand Sawmc(T ) in (5.44). At the start of the ith

trajectory move, the simulated particle is located on the duct wall at zi ∈ [0, L] with

a particle weight wi (for i = 1, . . . , s). For each trajectory location zi, the probability

g(zi) = h(L−zi) of a particle escaping the duct from zi through the inlet directly (i.e.

with no other wall collisions) is calculated. Note that this probability is equivalent

to the fraction of particles that would escape from zi during the next move of the

test particle simulation. Also calculated is the probability h(zi) (5.24) of a particle

escaping the duct from zi directly through the outlet. Because the simulated particles

in the AW method are not allowed to escape the interior of the duct, the fraction of

particles that would normally escape from zi in the test particle simulation must be

accounted for by reducing the particle weight; i.e. wi+1 = wi(1 − h(L − zi) − h(zi)).

For the same reason, one must add the fraction of the simulated particle wih(zi) that

would normally escape the outlet to the trajectory score in (5.44) for the AW method.

This process of eliminating the particle fraction that would normally escape the duct

(in the test particle simulation) from the simulated particle weight is illustrated in

Figure 5.11(a).

After the inlet g(zi) = h(L − zi) and outlet h(zi) escape probabilities have been
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Figure 5.11: Generating the sample trajectory for the absorption weighted (AW)
method: (a) removing the fraction of particles that escape the duct from
the simulated particle weight; (b) finding the next trajectory location
from the probability distribution function K(zn, zn+1) and excluding the
particles that escape the inlet g(zn) = h(L − zn) and the outlet h(zn);
and (c) the particle trajectory is updated repeatedly until the weight of
the particle remaining in the duct is reduced to a negligible level.
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found, the next wall collision zi+1 can be generated for the AW sample trajectory.

In the test particle simulation, the new trajectory locations are generated from the

transition probability distribution K(∆z) (5.41). In order to remain physically con-

sistent with the problem, the AW method uses the same distribution K(∆z) and

inverse cumulative distribution K−1(u) (5.42) as the test particle simulation. The

generation of the new trajectory location from K−1(u), however, must be slightly

modified to prevent the simulated particles from escaping the interior of the duct.

In particular, the new trajectory location zi+1, generated in (5.42), is less than zero

(i.e. escaped through the inlet) whenever the random variate u ∈ U (0, 1) is in the

interval [0, g(zi)). Similarly, the new trajectory location zi+1 is greater than L (i.e.

escaped through the outlet) whenever the random variate u ∈ (1−h(zi), 1). A physi-

cally consistent trajectory is thus produced for the AW method by simply restricting

the uniform variate u to the interval [g(zi), 1 − h(zi)]. That is, the trajectory moves

z2, . . . , zs of the AW method are generated using K−1(u) (5.42) with a random variate

u ∈ U (g(zi), 1 − h(zi)), as shown in Figure 5.11(b). The process of generating each

new location of the AW trajectory is repeated until the final trajectory location zs

(see Figure 5.11(c)). At this point along the AW trajectory, the particle weight ws

remaining in the duct should be negligibly small so as not to affect the approximation

of the conductance probability in (5.45).

The procedure for determining the first wall collision z1 must be stated in order

to completely define the generation of the sample AW trajectories T in (5.43). As

noted previously, the first wall collision z1 does not rely on the initial location y0

at which the particle crosses the inlet plane. Instead, the initial probability distri-

bution function b(z) (5.25) developed for the Nyström method is used to generate

z1 directly. The initial probability distribution function b(z) gives the probability
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a particle collides in the infinitesimal neighborhood of z on the wall plane directly

from the inlet without undergoing any other wall collisions. Therefore, the inverse

cumulative distribution function B−1(u) of b(z) can be used to generate the location

of the first wall collision z1; specifically,

z1 = B−1(u) =
u(2 − u)

1 − u
, (5.46)

where u is a uniformly distributed random variate.

As with the other particle moves generated for the AW trajectory, some care

must be used when selecting the interval over which the random variates in (5.46)

are distributed. The initial probability distribution function b(z) gives the probability

that the particle first intersects the wall plane at any location z1 ∈ (0,∞), including

outside the duct. The fraction of particles that first intersect the wall plane at

z1 > L is simply the direct escape probability ρ(L) given in (5.15). To prevent the

simulated particle from escaping the duct on the first move, the uniformly distributed

random variate u in (5.46) is therefore restricted to the interval [0, 1 − ρ(L)]; i.e.

u ∈ U (0, 1 − ρ(L)). As a consequence of preventing any simulated particles from

escaping on the first move, the fraction of particles ρ(L) that would normally escape

the test particle simulation directly must also be added to the AW trajectory score

in (5.44). The AW simulation is now completely defined by these two basic steps

for producing a sample trajectory in (5.43): (i) generating the first intersection with

the wall plane z1 using (5.46) with a random variate u ∈ U (0, 1 − ρ(L)); and (ii)

generating the subsequent moves zi (for i = 2, . . . , s) between the interior walls of

the duct using (5.42) with a random variate u ∈ U (g(zi−1), 1 − h(zi−1)).

No method is prescribed for generating any of the random variates u ∈ U (0, 1)

needed in the preceding discussion of the AW particle simulation. The absorption
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weighted Monte Carlo (AWMC) method is obtained when the random variates u ∈

U (0, 1) are produced from a pseudo-random number (PRN) generator scaled to

the appropriate interval. Figure 5.9 demonstrates that the relative error in the

conductance probability Ψ does indeed converge for the AWMC particle simulation

of a free molecular duct with a length to height ratio L = 2. In this case, there are

45 particle moves for each sample trajectory in the AWMC simulation, leaving at the

end of the trajectory an average particle fraction of approximately 10−9 in the duct.

The truncation error in the AWMC approximation caused by the leftover particle

fraction is negligibly small compared to the overall simulation error. To reduce the

fluctuations present in the error convergence, that occur in almost all Monte Carlo

applications, 32 ensembles of the AWMC method are collected to obtain the results

in Figure 5.9. The expected relative error of the AWMC method is nearly 4 times

smaller than the test particle Monte Carlo method for the same number of samples

N . The lower simulation error for the AWMC method is a direct consequence of

the lower variance in the AW trajectory scores. In fact, the variance σ2
awmc of the

trajectory scores in AWMC method is nearly 16 times smaller than the variance σ2
mc

of the trajectory scores in the test particle simulation. Note that, as a result of

the Central Limit Theorem [47], the factor by which the relative error decreases in

the AWMC method is approximately equal to the square root of the variance ratio

σ2
mc/σ

2
awmc. The convergence rate of the AWMC simulation is O

(
N−1/2

)
(where N

is the number of sample trajectories generated), which, because it is still a Monte

Carlo method, is expected.

Figure 5.12 illustrates the distribution of the trajectory scores for the AWMC

particle simulation of different duct length to height ratios L, including the L = 2

case simulated in Figure 5.9. For reference, the distribution of the trajectory scores
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Figure 5.12: Distribution of the trajectory scores for the AWMC particle simulation
of free molecular duct flows (for L = 2, 5 and 10).

for the test particle Monte Carlo method (5.37) is represented by two delta functions

at zero δ(x) and one δ(x − 1). The weight of the delta function δ(x − 1) is simply

equal to the conductance probability Ψ, and the weight of the delta function δ(x)

must necessarily be equal to (1 − Ψ). As such, the weight of the delta function

at zero increases as the duct becomes narrower (i.e. L increases). Moreover, the

variance of the trajectory scores in the test particle Monte Carlo simulation is given

by σ2
mc = Ψ(1 − Ψ). By comparison, most of the trajectory scores for the L = 2

duct geometry are relatively close to the mean trajectory score (Ψ ≈ 0.542), thereby

resulting in a much lower variance than the test particle Monte Carlo simulation.

Note in Figure 5.12 that as L increases, the distributions of trajectory scores for the

AWMC method become more skewed toward a score zero with the majority of the

scores found in a narrower band. Thus, the trajectory score distributions for the

AWMC method appear to approach the distribution of the test particle Monte Carlo

method as L → ∞, which indicates the amount of variance reduction attained by

the AWMC method is likely to decrease in this limit.
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Figure 5.13: Comparison of the test particle Monte Carlo simulation and the AWMC

simulation (for 0.5 ≤ L ≤ 10): (a) variance σ2 in the trajectory scores;
and (b) the approximate reduction factor for the relative error of the
AWMC particle simulation.

Figure 5.13(a) further supports the observation that the amount of variance re-

duction achieved by the AWMC method decreases as the duct length to height ratio

increases. The variance of the AWMC method is nearly 240 times smaller than

that of the test particle Monte Carlo method when L = 0.5. As the duct becomes

narrower, however, this reduction factor monotonically decreases until the variance

of the AWMC method is only 3.7 times smaller than the test particle Monte Carlo

method when L = 10. The corresponding reduction factor between the relative

error of the two methods is given in Figure 5.13(b). The AWMC method, in any

application, is most effective when the rate of absorption is high. Consequently, the

reduction factor between the relative error of the two methods increases significantly

as L → 0 because the probability of a simulated particle escaping these wider ducts

also increases. The relative error reduction factor monotonically decreases at slower

rate in the other limit as the duct length to height ratio L increases; specifically,

√

σ2
mc/σ

2
awmc decreases from 3 to 1.9 over the range 3 ≤ L ≤ 10, as shown in Figure

5.13(b).
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It is important to note that the mere fact that the AWMC method has a lower

relative error than the test particle Monte Carlo simulation does not make it the

superior method in terms of computational cost. While the relative error is lower in

the AWMC method for the same number of sample trajectories, the computational

cost of generating each trajectory is much larger. The increased computational cost

of the AW trajectories is attributed to two factors: (i) the number of particle moves in

the AW trajectory is typically much larger than the average number of particle moves

in the test particle trajectory; and (ii) there is additional computational overhead

in the calculation of the individual particle moves of the AW trajectory because the

uniformly distributed random variates must be rescaled for each move. The former

is more significant, and is responsible for most of the increase in computational cost

of the AW trajectories for the duct geometries considered in this investigation. Up

until this point in the investigation, the actual number of particle moves needed for

the AW trajectories has not been stated explicitly. The number of interior particle

moves determines the average particle fraction that remains in the duct at the end of

the AW trajectory. Since this particle fraction is simply ignored by the simulation, it

does not contribute anything to the trajectory score in (5.44). It thereby produces a

truncation error in the estimate of the conductance probability in (5.45). As noted in

Section 5.4, the L2 norm of the transition probability kernel ‖K‖2 is approximately

equal32 to the probability of a particle remaining within the duct during its next

move. Therefore, the average leftover particle fraction for an AW trajectory with s

interior moves can be estimated by (1 − ρ(L))‖K‖s
2.

In Figure 5.14(a), the number of particle moves s per trajectory is calculated for

the AWMC simulation of the duct geometries 0.5 ≤ L ≤ 10 assuming 3 different

32The approximation becomes more accurate as the number of particle moves increases (see
Figure 5.6).
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Figure 5.14: Comparison of the test particle Monte Carlo simulation and the AWMC
simulation (for 0.5 ≤ L ≤ 10): (a) average number of particle moves per
trajectory; and (b) the ratio of the total work (particle moves) needed
by the test particle Monte Carlo simulation over the AWMC simulation
to achieve the same error level.

values of ‖K‖s
2. Also found is the average number of particle moves in the test

particle Monte Carlo simulation. The narrower duct geometries (i.e. L > 5) in the

AWMC simulation require nearly two orders of magnitude more particle moves than

the test particle Monte Carlo simulation. However, the relative error in the AWMC

simulation is less than 3 times smaller than the test particle simulation for these duct

geometries (see Figure 5.13(b)), seeming to indicate that the AWMC simulation is

slower overall. To obtain a better estimate of the computation time required for the

two methods, the following work ratio is considered,

Work Ratio =
Nmcsmc

Nawmcsawmc

=
σ2

mcsmc

σ2
awmcsawmc

. (5.47)

Here Nmc and Nawmc are the expected number of sample trajectories needed by the

two methods (test particle Monte Carlo and AWMC respectively) to achieve the

same error level, and smc and sawmc are the expected number of particle moves per

trajectory needed by the two methods. Note that the work ratio only considers

the total number of trajectory moves required by the two simulations, and does not

include any cost differences that may arise in the actual generation of the moves.
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If the work ratio (5.47) is greater than one for a given duct geometry, the AWMC

particle simulation is computationally more efficient than the test particle Monte

Carlo simulation; otherwise, the test particle simulation is the better method. Using

the average number of particle moves given in Figure 5.14(a) and the variance of the

two methods in Figure 5.13, the work ratio (5.47) is calculated in Figure 5.14(b) for

the duct geometries 0.5 ≤ L ≤ 10. The AWMC particle simulation, as anticipated,

is only computationally superior for the widest free molecular ducts simulated (i.e.

L ≤ 1.5). This is verified, at least in part, from the actual timing results for the

L = 2 duct geometry presented in Section 6.1.

5.5.3 Quasi-Monte Carlo Method

The first two attempts at developing a QMC method from the test particle simu-

lation in Section 5.5.1 failed to produce a simulation with a near-linear error conver-

gence rate. The test particle simulation using a one dimensional low-discrepancy se-

quence is not even physically consistent, as the independent random variates needed

for the simulation are not properly represented by the elements of the sequence.

The test particle simulation using a multi-dimensional low-discrepancy sequence con-

verges to the correct solution; even at a rate slightly faster than the Monte Carlo

method. This rate is not even close to being as fast the theoretical near-linear con-

vergence demonstrated for some QMC applications, however. The problem with the

test particle simulation using a multi-dimensional low-discrepancy sequence, as noted

earlier, is caused by the discontinuities produced by the YES/NO decisions in the

trajectory scoring function Smc (5.37).

Sarkar and Prasad [153] encounter a similar problem with the presence of discon-

tinuities in their development of a QMC simulation for a model radiation transport
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problem. They adopt in [153] an alternate formulation of the radiation problem

based on the classic variance reduction technique of absorption weighting. The re-

sulting radiation transport simulation no longer requires any discontinuous YES/NO

decisions to be made during the generation of a sample. The error convergence rate

in [153] approaches the theoretical near-linear limit when a multi-dimensional low-

discrepancy sequence is used to generate the random variates in their absorption

weighted simulation. Since the absorption weighted particle simulation similarly

eliminates the discontinuous YES/NO decisions in the generation of the sample tra-

jectory, the approach of Sarkar and Prasad [153] is adopted here.

The third and final attempt at developing a QMC particle simulation of free

molecular flow is based on the absorption weighted particle simulation developed

in Section 5.5.2. The QMC particle simulation uses the same form for the sample

trajectories T
(n)

(5.43), and the same trajectory score Sawmc(T
(n)

) (5.44) as the

AWMC method in order to estimate the conductance probability Ψ using (5.45). The

only difference is that, instead of a PRN generator, the QMC particle simulation uses

a low-discrepancy sequence to generate the random variates needed to produce the

sample trajectory in (5.43). More specifically, if xn = (x1,n, . . . , xs,n) ∈ I
s

denotes

the nth element of an s-dimensional low-discrepancy sequence, then the trajectory

locations in T
(n)

(5.43) are generated by using x1,n as a random variate for z
(n)
1 ,

x2,n as a random variate for z2,n, . . ., and so forth. It is important to remember

that the random variates generated by the low-discrepancy sequence must also be

appropriately scaled to the correct interval in order to prevent the simulated particles

from escaping the duct. The simulation procedure is now completely defined, and it

is this final version presented here that is referred to as the QMC particle simulation

throughout this investigation.
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In order to test this new QMC particle simulation, a multi-dimensional low-

discrepancy Halton sequence is used to generate the random variates needed for the

sample trajectory. The number of particle moves in each sample trajectory and thus,

the dimension of the Halton sequence, is taken to be 45, which leaves an average

particle fraction of approximately 10−9 in the duct at the end of the trajectory.

Figure 5.9 demonstrates that the relative error in the conductance probability Ψ

converges for the QMC particle simulation of a free molecular duct with a length to

height ratio L = 2. More interesting is the fact that the error convergence rate of the

QMC particle simulation is nearly linear with the number of sample trajectories N .

The accuracy of the QMC particle simulation is clearly superior to the traditional

test particle Monte Carlo method, and after N = 108 sample trajectories the relative

error of the QMC particle simulation is nearly three orders of magnitude smaller (see

Figure 5.9). Because of the near-linear error convergence rate, the cost (in terms

of the number of sample trajectories33) is dramatically less for the QMC particle

simulation. For example, the QMC particle simulation in Figure 5.9 is able to achieve

a relative error of 10−3 and 10−4 using fewer than 4·103 and 5·104 sample trajectories,

respectively. In stark contrast, the Monte Carlo test particle simulation requires more

than 5 ·105 and 5 ·107 sample trajectories, respectively, to achieve the same expected

relative error levels. Most importantly, Figure 5.9 demonstrates that it is possible to

develop a free molecular QMC particle simulation with near-linear error convergence.

Consider the following two dimensional projections of the trajectory scoring func-

tions Smc(T ) (5.37) and Sawmc(T ) (5.44), in order to better understand why the

QMC particle simulation based on the absorption weighted trajectory yields bet-

ter convergence. Let T (x1, x2) represent the test particle trajectory generated when

33The actual cost difference in terms of computational time is given in Section 6.3.
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Figure 5.15: Two dimensional projections of the trajectory score functions: (a) for
the test particle simulation Smc(T (x1, x2)); and (b) for the absorption
weighted simulation Sawmc(T (x1, x2)).

x1, x2 ∈ [0, 1) are taken as the random variates used to produce the first two wall

collisions z1 and z2 in (5.36); and all the other locations y0, z3, . . . , ze are gener-

ated assuming the random variates are equal to one. Similarly, let T (x1, x2) repre-

sent the absorption weighted trajectory generated when x1, x2 ∈ [0, 1) are taken as

the coordinates of the low-discrepancy sequence used to produce the first two wall

collisions z1 and z2 in (5.43); and all the other locations z3, . . . , zs are generated

assuming the other sequence coordinates are equal to one.34 The distribution of

possible trajectory scores of the test particle simulation Smc(T (x1, x2)) is given in

Figure 5.15(a); and the distribution of possible trajectory scores of the test particle

simulation Sawmc(T (x1, x2)) is given in Figure 5.15(b). Because of the manner in

which these projections of the trajectory scoring functions are defined, the variation

34Note that each coordinate of the low-discrepancy (or pseudo-random) sequence xi ∈ [0, 1) for
1 ≤ i ≤ s must be properly scaled from the unit interval to a smaller interval in order to prevent
the particles from escaping the AW simulation.
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in the sense of Vitali (3.43) of Smc(T (x1, x2)) and Sawmc(T (x1, x2)) directly affects

the overall variation in the sense of Hardy and Krause (3.45) of their respective scor-

ing functions. In particular, the variation in the sense of Vitali of Smc(T (x1, x2))

and Sawmc(T (x1, x2)) represent one term in the summation (3.45) for VHK(Smc) and

VHK(Sawmc); and thereby serve as a lower bound for the variation in the sense of

Hardy and Krause.

Note that there exists a discontinuity that is not aligned with the principle axes

(x1, x2) present in the two dimensional projection of the test particle trajectory

scoring function illustrated in Figure 5.15(a). Any function with a discontinuity not

aligned with the principle axes is not bounded in the sense of Vitali (see Section 3.3,

and also [117, 120]). Consequently, the two dimensional projection Smc(T (x1, x2)) of

the test particle scoring function is not of bounded variation in the sense of Vitali,

implying that the overall variation of the scoring function Smc in (5.37) is not bounded

in the sense of Hardy and Krause. Without a finite bound on the variation of Smc

in the sense of Hardy and Krause, the Koksma-Hlawka inequality cannot be used to

bound the error convergence of the test particle simulation given in (5.38). Thus,

there is no theoretical means to establish that the test particle simulation will achieve

near-linear error convergence when used as a QMC method. In contrast, the two

dimensional projection of the AW trajectory scoring function illustrated in Figure

5.15(b) is continuous with a bounded variation in the sense of Vitali approximately

equal to 0.1. The bounded and continuous distribution of trajectory scores in Figures

5.12 and 5.15(b) are a good indication that the scoring function Sawmc (5.44) for the

AW trajectories is likely to be of bounded variation in the sense of Hardy and Krause.

However, this graphical evidence by no means constitutes a rigorous proof. It is

possible, using the basic properties of multi-dimensional variation reviewed by Owen
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Figure 5.16: Effect of the number of particle moves s used per sample trajectory in
the QMC simulation on the overall error of the method. The parenthet-
ical quantities are an estimate ‖K‖s

2 of the particle fraction remaining
in the duct at the end of the trajectory.

in [136], to prove that the scoring function Sawmc is indeed of bounded variation in

the sense of Hardy and Krause. Therefore, the error of QMC particle simulation

developed in this investigation is bounded by the Koksma-Hlawka inequality; and

as such, the method achieves a near-linear error convergence rate in the theoretical

limit as the number of sample trajectories N → ∞.

Up until this point, the effect of the number of particle moves in the AW trajectory

on the truncation error in (5.44) and the overall simulation error in (5.45) have only

been briefly addressed. The QMC particle simulation serves as an excellent test case

to illustrate this effect in greater detail because of the great accuracy achieved by the

method. In particular, the QMC particle simulation is performed using between 20

and 45 particle moves per trajectory for a free molecular duct with a length to height

ratio L = 2. The convergence of the relative error of these QMC particle simulations

is given in Figure 5.16. Note that the parenthetical quantity in the legend of Figure

5.16 is the estimate ‖K‖s
2 of the leftover particle fraction that remains in the duct
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at the end of the sample trajectory. It is clear that the overall accuracy of the QMC

particle simulation improves as the number of particle moves s per sample trajectory

increases. When the number of particle moves s is less than 40, the simulation error

in Figure 5.16 appears to stop converging after reaching an error level approximately

equal to ‖K‖s
2. This indicates that the truncation error caused by the leftover particle

fraction dominates the overall error when the error convergence begins to level off.

In practice, the exact number of particle moves required for a given QMC particle

simulation depends on the desired accuracy of the application. For example, there

is no discernible difference between the error of the QMC simulation using s = 45

(‖K‖s
2 ≈ 10−9) particle moves per trajectory and using s = 40 (‖K‖s

2 ≈ 10−8)

particle moves per trajectory. Both simulations have the same error convergence

and are able to achieve a relative error of 10−7 for the L = 2 duct geometry. There

is, however, some deviation in the error convergence from the s ≥ 40 simulations,

occurring at an error level of 10−6, if the number of particle moves is reduced further

to s = 35 (‖K‖s
2 ≈ 10−7). These results suggest the following rule of thumb, which is

adopted for all the remaining QMC particle simulations tested in this investigation:

the number of particle moves s per sample trajectory is selected such that ‖K‖s
2 is at

least 10 times smaller than the smallest simulation error anticipated and/or desired.



CHAPTER VI

RESULTS FOR FREE MOLECULAR DUCT

FLOW

The QMC particle simulation developed in Section 5.5 for the free molecular

conductance probability is tested for several duct geometries with a length to height

ratio L in the range 0.5 ≤ L ≤ 10. In particular, the QMC particle simulation is

implemented with four of the low-discrepancy sequences presented in Section 4.3:

the Weyl-Richtmyer sequence, the Halton sequence, the Faure sequence, and the

Niederreiter sequence in base 2. Because its construction and implementation is

nearly the same as the Niederreiter sequence in base 2, the Sobol’ sequence is not

tested here. The only substantial difference between the two methods is that the

Niederreiter sequence in base 2 has a slightly smaller constant in the asymptotic

discrepancy bound, which is why it is selected here over the Sobol’ sequence.1 The

error convergence is found for the QMC particle simulation for each duct length

to height ratio L tested and compared to the traditional test particle Monte Carlo

method, as well as the absorption weighted Monte Carlo method discussed in Section

1Both the Niederreiter sequence in base in base 2 and the Sobol’ sequence are constructed from
polynomials over the finite field F2. The Niederreiter sequence uses irreducible polynomials, while
the Sobol’ uses primitive polynomials. The constant in the asymptotic discrepancy bound grows
with the degree of the polynomials F2[x] used in the construction. Every primitive polynomial is
irreducible; however, the converse is not always true. Thus, there are more irreducible polynomials
of low degree available than primitive polynomials resulting in a lower asymptotic error bound for
the Niederreiter in base 2 sequence.

270
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5.5.

The QMC particle simulations yield significant performance gains over the tradi-

tional Monte Carlo methods in terms of both computational cost and accuracy for

most of the duct geometries tested. However, based on the error convergence data

presented here, the performance gains tend to diminish as the duct length to height

ratio L increases. This observed performance loss of the QMC particle simulation is

attributed to the increase in the problem dimension as the duct narrows, which then

requires an increase in the dimension of the low-discrepancy sequence. The impact

of the dimensionality of the low-discrepancy sequence on the accuracy of the QMC

particle simulations is discussed in terms of a non-physical correlation that is present

between the problem dimensions. The extent and magnitude of this correlation is

calculated here. Given that the performance of the QMC particle simulation suffers

as the problem dimension grows, a hybrid QMC/Monte Carlo method is developed

to reduce the effective dimension simulated by the QMC method. While the hybrid

QMC/Monte Carlo method does not actually improve the accuracy of the original

QMC particle simulation, it is able to achieve the same accuracy much faster.

A brief outline of the chapter organization is as follows. In Section 6.1, the con-

ductance probability is found for the free molecular duct with a length to height ratio

L = 2 using the QMC and Monte Carlo particle simulations. The error convergence

of the methods is compared, and a significant reduction in the total computation

time is demonstrated for the QMC particle methods. In Section 6.2, the conduc-

tance probability is calculated for free molecular flow through more narrow duct

geometries (L = 5 and L = 10); and similarly, the error convergence of the particle

methods is compared. In Section 6.3, a more detailed length study of 20 duct ge-

ometries in the range 0.5 ≤ L ≤ 10 are tested by the particle methods in an effort
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to better understand the loss of performance observed in the QMC simulations. The

key difference between these results and the previous two sections is that the perfor-

mance of the particle methods is quantified by the constants of a power law model

fit to the error convergence data. This allows for the performance of the particle

methods to be compared for all duct geometries on a single plot. In Section 6.3,

the impact of correlation between the dimensions of the low-discrepancy sequences

is studied. The magnitude and extent of the correlation is found to increase with

the number of dimensions in the low-discrepancy sequence, and is the likely cause

of the performance loss of the QMC particle simulation. Finally, in Section 6.5, a

hybrid QMC/MC method is introduced which decreases the effective dimension of

the problem simulated by the QMC portion of the method. The resulting hybrid

QMC/MC method shows that is is possible to reduce the computation time of the

original QMC particle simulation without affecting the accuracy of the method.

6.1 The L = 2 Case

The performance of the QMC particle simulation developed in this investigation

for free molecular duct flow is first tested for a short duct with a length to height

ratio L = 2. In the earliest stages of this investigation, the L = 2 duct geometry was

the first to be successfully simulated with QMC method using the low-discrepancy

Halton sequence; the results of which are presented by McNenly and Boyd in [110].

The initial selection of the L = 2 duct geometry was not motivated by any specific

physical concerns. Rather, it was selected to ease the algorithm debugging commonly

associated with developing the new simulation. While its initial selection was perhaps

by happenstance, with the benefit of hindsight the L = 2 duct geometry actually

serves as an excellent starting point for the performance discussion of the QMC
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particle simulation. Specifically, the QMC particle simulation developed here for

the L = 2 case, using a moderate number of low-discrepancy sequence dimensions

(35 ≤ s ≤ 50), clearly demonstrates the superior error convergence rate of the

method compared to the traditional Monte Carlo techniques. Before proceeding to

the actual performance of the QMC particle simulation for the L = 2 geometry,

it is necessary to address some of the specific simulation details that are common

to all of the results presented in this chapter. In particular, any discussion of the

error convergence of a particle simulation requires the following two questions to be

answered: first, how should the simulation error be measured; and second, how many

samples should be simulated?

As to the first question, “how should the simulation error be measured?”, the

relative error2 in the particle simulation is found for the free molecular conductance

probability Ψ of the given duct geometry. Recall from the central limit theorem that

the particle simulations using pseudo-random sequences do not have a deterministic

bound on the simulation error. Thus, for a fixed number of samples, there is a

probabilistic confidence interval on the error in traditional Monte Carlo test particle

method and the absorption weighted Monte Carlo (AWMC) method. Since each

independent3 simulation using the pseudo-random sequences can produce a range of

approximate solutions, ensembles of these simulations are collected to estimate the

average, or expected, simulation error. For the traditional Monte Carlo test particle

method, 512 independent ensembles of the simulation are collected for each case

presented in this chapter. For the AWMC method, which has a lower variance than

2The relative error is the difference between the simulation solution and the exact solution
normalized by the exact solution. Here the “exact” solution is taken from the more accurate
Nyström method which is shown in Section 5.4 to have a stable relative error less than 10−12 for
the duct lengths under consideration.

3That is, the pseudo-random number generator for an independent simulation uses a distinct
seed value to initialize the sequence.
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the traditional Monte Carlo method (see Figure 5.13), only 32 independent ensembles

of the simulation are collected for each case presented in this chapter. In contrast,

it is possible to obtain a deterministic error bound on the QMC particle simulations

from the Koksma-Hlawka inequality (3.5). The relative error found in this section for

the L = 2 duct geometry is calculated using a single ensemble of the QMC particle

simulations. However, it is important to note that, in most cases, the Koksma-

Hlawka inequality does not provide a tight upper bound on the integration error of

the QMC particle simulation. Hence, to obtain a better estimate of the expected

error convergence of the QMC particle simulation, it is common to collect ensembles

of the simulation based on independent subsequences of the same low-discrepancy

sequence. While not used in this section, ensembles of the QMC particle simulation

are collected for the general performance study in the next section (please refer to

Figures 6.7-6.10) to provide a more accurate representation of the error convergence

rate.

As to the second question, “how many samples should be simulated?”, the Central

Limit Theorem provides a probabilistic bound on the simulation error that mono-

tonically decreases with the sample size for the traditional test particle Monte Carlo

method and the AWMC method. Thus, the actual number of samples needed for

these Monte Carlo simulations can be estimated in advanced if the variance of the

simulation is known. Unlike the Monte Carlo simulation, the lack of a tight error

bound provided by the Koksma-Hlawka inequality makes it difficult to determine

from theory alone the number of samples needed for the QMC particle simulation

in practice. In particular, Morokoff and Caflisch note in [116] that the dominant

term N−1(log N)s appearing in the discrepancy bound for most of low-discrepancy

sequences does not actually decrease until N > es. Hence, for the dimension of the
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low-discrepancy sequences used in the QMC particle simulations, the error bound

from the Koksma-Hlawka inequality is not yet decreasing for the sample sizes N

under consideration. However, as previously demonstrated in the development of

the method (see Figure 5.16), the QMC particle simulation still converges for these

sample sizes in practice, albeit with no theoretical assurance that the error will mono-

tonically decrease. In contrast, for the traditional test particle Monte Carlo method

and the AWMC method, the Central Limit Theorem provides at least a probabilistic

bound on the simulation error that monotonically decreases with the sample size. As

a result, one may wonder if checking the QMC simulation error at a specific number

of samples N is a representative estimate of the overall convergence rate compared

to, e.g. N − 1, N +1, N +2047, or any other value of N . More importantly, from an

implementation and performance standpoint, one may ask the following. Are there

specific values of the sample size N (or equivalently the sequence length) which are

known a priori to yield a lower than average integration error or sequence discrep-

ancy? For some low-discrepancy sequences, the answer is, in fact, yes.

As an example, consider the van der Corput sequence in base 2 that is constructed

in Appendix A. Figure 3.8 shows that the star discrepancy of the van der Corput

sequence in base 2 clearly achieves the lowest possible value when the sequence length

N is a power of 2. This behavior in the convergence of the star discrepancy can be

understood from: (i) the concept of the (t, s) − sequence introduced by Niederreiter

in [125]; and (ii) noting that the van der Corput sequence in the example is a (0, 1)

sequence in base 2. From the general definition of the (t, s)−sequence in base b given

in [127], the distribution of the sequence satisfies a desirable uniformity condition

when the sequence length N = bt+1. Moreover, this uniformity condition is satisfied

for every block of bt+1 sequence elements, which suggests that N = kbt+1, for k =
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1, 2, . . ., may yield a better than average approximation from the QMC simulation

using a (t, s) − sequence in base b. Another key feature to note is that for each

subsequent power of b taken for the sequence length, i.e. N = (bt+1, bt+2, bt+3, . . .),

the uniformity condition becomes even stronger.

All the error results presented in this investigation are given on a logarithmic

scale to facilitate comparisons between the convergence rates of the different particle

simulations. Thus, to achieve a uniform spacing on the logarithmic scale, it is natural

to consider sample sizes of N = (2, 22, 23, . . .) when performing QMC simulations

with the Niederreiter sequence in base 2, or the Sobol’ sequence, as both are examples

of (t, s) − sequences in base 2. The Faure sequence is another example of a (t, s)-

sequence; specifically, it is a (0, s)− sequence in base q, where q is the smallest prime

greater than or equal to the sequence dimension s. Then, for the same reasons as the

base 2 sequence, it appears beneficial to stop the QMC simulation using the Faure

sequence for sample sizes of N = (q, q2, q3, . . .). However, the dimension s of the low-

discrepancy sequence required for the QMC particle simulations in this investigation

is typically too large to simulate all but the first couple of powers N = (q, q2, q3, . . .)

because q ≥ s. Instead, it is more practical to consider sample sizes that have a

spacing similar to those tested for other sequences, but with the condition of N ≡ 0

(mod q). Since the parameter t equals zero for the Faure sequence, selecting the

sample sizes from the set N = kq, for k = 1, 2, . . . ensures that at least the basic

uniformity condition is satisfied.

The remaining low-discrepancy sequences considered in this investigation, namely

the Weyl-Richtmyer and Halton sequences, can not be classified as (t, s)− sequences.

This does not, however, preclude the existence of specific sample sizes N (or equiv-

alently sequence lengths) which are known from the construction to have some at-
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tributes that may lead to potentially better discrepancy or simulation approximation.

For any low-discrepancy sequence, the convergence of the star discrepancy guarantees

the existence of a “minimum” set of sequence lengths Mmin = (N1, N2, . . .) with the

property that D∗
Ni

< D∗
N for all N < Ni and i ≥ 1. If actually known, the sequence

lengths contained in M would make favorable points to stop the QMC simulation

and check the results. Except in the one dimensional case4, there is not a construc-

tive method for determining the set Mmin for a general Weyl-Richtmyer sequence.

Given the analogue between the Weyl-Richtmyer sequence and the method of good

lattice points due to Korobov, it may be possible to adopt a similar exhaustive search

for sequence lengths that are optimal in some sense. However, as discussed in Sec-

tion 3.4, such exhaustive searches are computationally intractable for the sequence

lengths and dimensions needed in practice for the QMC particle simulation.

Each dimension of the Halton sequence is generated by a distinct van der Cor-

put sequence in a relatively prime base. While the s dimensional Halton sequence

used in this investigation is constructed from a series of (0, 1) − sequences in bases

p1, p2, . . . , ps, where pi represents the ith smallest prime; the lack of a common base

prevents the Halton sequence from being considered a (t, s)-sequence. However, if

the sequence length N is selected such that

N ≡ 0 (mod p1),

...

N ≡ 0 (mod ps),

then, from the definition of the (0, 1) − sequence, each dimension of the Halton

4By inspecting Theorem 3.3 in [127], the one dimensional Weyl-Richtmyer sequence constructed
from an irrational number z achieves a minimum in the extreme discrepancy bound when the
sequence length N equals the denominator of the rational convergents of z. Specifically, when N is
taken from the set Mmin = (q1, q2, . . .), where ri = pi/qi denotes the ith rational convergent to the
irrational number z determined from the first i terms of the continued fraction representation of z.
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sequence would satisfy the basic uniformity condition of the (t, s)-sequence. These

specific values for the sequence length correspond to N = k ·p1 · · · ps for k = 1, 2, . . ..

Unfortunately, for the number of sequence dimensions s needed for the QMC particle

simulations in this investigation, taking the sample size N to be the product of the

first s primes is much too large to simulate in practice. As with the general Weyl-

Richtmyer sequence, there is no obvious criteria that can be used in practice for

the Halton sequence to select sequence lengths N for the QMC simulation that

have known beneficial properties, such as a lower than average integration error or

sequence discrepancy.

After considering the second question, “how many samples should be simulated?”

the relative error of the various particle simulations is found for the following sample

sizes, or equivalently, sequence lengths N . In order to ensure the additional uni-

formity property attributed to the (t, s) − sequences, the relative error of the QMC

simulation using the Niederreiter sequence in base 2 is found for the sequence lengths

N = (2, 22, . . . , 226). Based on the same reasoning, the relative error of the QMC

simulation using the Faure sequence in base 53 is found for the sequence lengths

N = (53, 53 · 2, . . . , 53 · 220). The Halton and Weyl-Richtmyer sequences are not

(t, s)− sequences, and there is not a similar uniformity condition to be exploited for

the selection of the sequence length N . As such, the relative error in the QMC sim-

ulations using these sequences is found for the sequence lengths N = (2, 22, . . . , 226)

simply to provide uniform spacing on the logarithmic scale and to be consistent with

the other simulations. Unlike the QMC simulations using a (t, s)-sequence, there

is no special number of samples for a Monte Carlo simulation that may produce a

better than average approximation; besides, of course, the monotonic decrease in

the expected error due to the central limit theorem. Thus, for the results in this
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Figure 6.1: Convergence of the relative error for the QMC particle simulation of the
conductance probability Ψ (for L = 2).

chapter, the traditional Monte Carlo test particle method and the AWMC method

are performed for the sample sizes N = (2, 22, . . . , 226) for consistency.

The convergence of the relative error in the conductance probability is given in

Figure 6.1 for the Monte Carlo test particle method, the absorption weighted Monte

Carlo (AWMC) method, and the QMC particle simulations. The QMC particle

simulations are implemented using the four low-discrepancy sequences reviewed in

Section 4.3: the Halton sequence, the BCF-3 sequence, the Faure sequence, and the

Niederreiter sequence in base 2. In the AWMC and QMC simulations, the number

of interior particle moves, and hence the dimension of the sequences is taken to be

s = 50. After 50 moves, the average fraction of the particle that remains in the

duct is approximately 7 · 10−11, which is two orders of magnitude smaller than the

lowest error observed in Figure 6.1 making it an acceptable truncation error. It

is apparent from the results in Figure 6.1 that every implementation of the QMC

particle simulation demonstrates clear superiority over the Monte Carlo methods in
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terms of the error convergence rate.

In order to establish a point of comparison for the QMC simulations, the test par-

ticle Monte Carlo method achieves a relative error of 9.0 · 10−5 at N = 226 samples,

and the AWMC method achieves a relative error of 2.2 · 10−5 for the same number

of samples, as shown in Figure 6.1. The error convergence rate of both methods is

approximately O
(
N−1/2

)
as anticipated, since both Monte Carlo methods are im-

plemented using a sequence of pseudo-randomly generated numbers. Recall from

Section 5.5 that the process of absorption weighting, i.e. the gradual escape of a

fraction of the particle during each move, is a common variance reduction technique.

As a direct consequence of this lower variance, the AWMC method consistently has

a relative error that is more than 4 times smaller than the Monte Carlo simulation

given the same number of samples. While the AWMC method offers greater accu-

racy per sample trajectory than the Monte Carlo method, the computational time

required to generate each sample trajectory is also greater because of the additional

number of interior particle moves. Initial analysis from Section 5.5 on the amount

of computational work required by both Monte Carlo methods to achieve the same

error indicates that, for the L = 2 duct geometry, the AWMC method requires more

work than the Monte Carlo Method (see Figure 5.14). This initial analysis is further

validated here by the timing results presented in Figure 6.2, which demonstrate that

the AWMC method is slightly slower at reaching the same error as the Monte Carlo

method.

The physical interpretation of the free molecular flow is different between the

two Monte Carlo simulations. Consequently, each sample trajectory of the AWMC

method is more accurate than the test particle Monte Carlo method because of the

extra computational work associated with the absorption weighting variance reduc-
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tion technique. Since the QMC and AWMC methods are both based on the same

physical interpretation of the free molecular duct flow, it is improper to compare the

QMC simulation to the less accurate test particle Monte Carlo simulation based on

the number of sample trajectories alone. Instead, it is more appropriate to use the

results from the AWMC method as the representative Monte Carlo simulation when

considering the error convergence of QMC particle simulations relative to the number

of sample particles. In Figure 6.1, the QMC particle simulations using the Niederre-

iter sequence in base 2 and the BCF-3 sequence yield the lowest relative error over all

the sample sizes N considered, with the Niederreiter sequence providing consistently

the best results at the larger values of N . More specifically, after simulating N = 226

sample trajectories, the QMC particle simulation using the Niederreiter sequence in

base 2 is more than 1000 times as accurate as the AWMC method. By compari-

son, the QMC particle simulations using the Halton and BCF-3 sequences are more

than 200 times as accurate as the AWMC method with N = 226 sample trajecto-

ries. While the QMC simulation using the BCF-3 sequence yields a more accurate

approximation than the AWMC method for all sample sizes tested; it is only when

N > 128 that the QMC simulation using the Halton sequence consistently yields a

better estimate than the AWMC method. When the number of sample trajectories

N > 105, the QMC simulation using the Faure sequence yields the least accurate

approximation; however, it is still more than 40 times as accurate as the AWMC

method at N = 226.

Except for the QMC particle simulation using the Halton sequence, the error

convergence for the other QMC simulations is somewhat erratic, making it difficult

to assess the error convergence rate by inspection of Figure 6.1 alone. It is possible

to perform a linear least squares fit to the convergence data in order to obtain an
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estimation of the convergence rate via the power law exponent in (6.1). However,

the power law exponent is found to vary by as much as 5% depending on the number

and location of the data points included in the linear least squares fit. The observed

sensitivity in the power law exponent to the data in Figure 6.1 is a consequence

of using only a single ensemble for each simulation. By collecting more ensembles

for the error convergence of each QMC simulation, the expected error convergence is

much less erratic, which produces a more reliable estimate of the power law exponent.

To evaluate the simulation performance of the L = 2 geometry, the following

expected error convergence rates are found from the results in Figure 6.8 using 16

ensembles for each QMC simulation. When 16 ensembles are collected for each QMC

simulation, the power law exponent is found to vary by less than 2%. The expected

error convergence rate of the QMC simulation using the Niederreiter sequence in

base 2 is O (N−1.04), which is the fastest of all the simulations for this duct geometry.

The QMC simulation using the Halton sequence is the next fastest method, with a

near linear average error convergence rate of O (N−0.97). While slightly slower, the

QMC simulations using the Faure and BCF-3 sequences achieve an average error

convergence rates of O (N−0.84) and O (N−0.78), respectively. However, both are still

significantly faster than the Monte Carlo techniques.

While the initial results in Figure 6.1 for the error convergence are encouraging,

because of the cost differences associated with the QMC simulation it is important

to also consider the simulation error as a function of the total computation time..

In Figure 6.2, the computation time τ is found for each of the particle simulations

performed in this section. As noted before, the cost of calculating each trajectory of

the AWMC is greater than the savings afforded by the variance reduction, making the

traditional Monte Carlo test particle method slightly faster for reaching any expected
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Figure 6.2: Convergence of the relative error with respect to the computation time
τ (in seconds) for the conductance probability Ψ (for L = 2).

error level. Thus, it is more appropriate to use the results from the test particle

method as the representative Monte Carlo simulation when comparing the error

convergence of QMC particle simulations relative to the computation time τ . All of

the QMC simulations of the L = 2 duct geometry yield a higher error convergence

rate than the Monte Carlo simulations (i.e. the power law exponent γ < − 1
2
). Hence,

for each QMC simulation, there exists some critical error level Ecrit to distinguish

if the QMC simulation is actually faster than the Monte Carlo test particle method

in terms of computation time. For the QMC simulations, the combined effect of the

higher convergence rate and higher cost of generating a sample trajectory means that

the QMC simulation is expected to achieve any error level below Ecrit faster than

Monte Carlo.

In Figure 6.2, the QMC simulations using the BCF-3 sequence and the Niederre-

iter sequence in base 2 are the fastest particle methods for reaching any error level

below Ecrit = 10−1, which is achieved after only two sample trajectories. The QMC
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simulation using the BCF-3 sequence is initially the fastest particle method when

the desired accuracy is less than 10−3 because the sequence is specifically designed

to have a very low power law constant c in the estimated error convergence rate

in (6.1). However, the higher error convergence rate and lower sequence generation

cost enable the QMC simulation using Niederreiter sequence in base 2 to consistently

outperform the BCF-3 sequence when the desired accuracy is greater than 10−3. The

QMC simulation using the Halton sequence is the third fastest particle simulation

outperforming the Monte Carlo method for any error level below Ecrit = 10−2. It is

interesting to note that while the QMC simulation using the Halton sequence pos-

sesses a higher error convergence rate than the BCF-3 sequence, the higher cost of

generating the Halton sequence results in a slower QMC simulation for almost all

the error levels tested here. The QMC simulation using the Faure sequence is con-

sistently the slowest QMC simulation considered because of the large computational

cost associated with generating the sequence. In spite of this, the QMC simulation

using the Faure sequence is still faster than the test particle Monte Carlo method

for reaching any error level below Ecrit = 2 · 10−3.

For the L = 2 duct geometry, the QMC simulation using the Niederreiter se-

quence in base 2 offers perhaps the best combination of accuracy and speed of all the

particle simulations. However, in some applications requiring less accuracy, the QMC

simulation using the BCF-3 sequence may be slightly faster by virtue of its design.

The key result of this section is that it is possible to develop a QMC particle simula-

tion that is significantly faster in terms of computation time than is the traditional

test particle Monte Carlo method. In terms of the L = 2 duct geometry, the QMC

particle simulations developed here also achieve a near-linear error convergence rate

in terms of the number of samples N that is superior to the O
(
N−1/2

)
convergence
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of the Monte Carlo methods. Furthermore, the higher error convergence rate enables

the QMC simulations to produce approximations that are orders of magnitude more

accurate than are obtained with the Monte Carlo methods. This is an especially

desirable feature for the particle simulation of low speed rarefied gas flows encoun-

tered in many fluidic MEMS applications. While the overall simulation accuracy

need not be great, the ability to adequately resolve the very slow average, or bulk,

velocity of the gas in the presence of the thermal, or random, speed is critical. For

example, consider a fluidic MEMS device with a bulk velocity of 1 m/sec operating

in a nitrogen gas environment at standard temperature and pressure.5 In order to

resolve the average velocity to a 10% accuracy level (assuming a 95% confidence in-

terval), traditional DSMC requires more than 15 million independent samples of the

flow field to be generated. In contrast, if a general QMC particle method could be

developed with linear error convergence, the resulting simulation would only require

4000 samples to achieve the same accuracy.6

6.2 The L = 5 and L = 10 Cases

The results from Section 6.1 for the L = 2 duct geometry demonstrate that it is

possible to construct a QMC particle simulation with an error convergence rate and

computation time superior to the Monte Carlo methods. Based on these encourag-

ing results, it is natural to extend the QMC particle simulation of the free molecular

conductance probability to include other duct geometries - especially for narrower

ducts that have a larger duct length to height ratio L. This type of duct geometry

5At these conditions, the average speed of the nitrogen molecules is v = 455 m/sec, with a
standard deviation σ = 285 m/sec.

6More specifically, this assumes the QMC particle simulation converges as O
(
N−1

)
with the

same implied constant as the Monte Carlo method. In the case of free molecular duct flow, the
implied constant for the QMC particle simulations is actually less than that of the Monte Carlo
method for nearly all the geometries considered in the next section, as illustrated in Figure 6.9.
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commonly occurs for highly non-equilibrium gas flows found in fluidic MEMS, vac-

uum system designs, and semiconductor manufacturing processes. Here, the error

convergence is found for the L = 5 and L = 10 cases using the Monte Carlo test

particle method, the absorption weighted Monte Carlo (AWMC) method, and the

QMC particle simulation. As before, a single ensemble of the QMC particle sim-

ulation is performed using each of the four low-discrepancy sequences discussed in

Section 4.3. Unfortunately, the results for the QMC particle simulations in the nar-

rower duct geometries L = 5 and L = 10 are not as promising as for the L = 2 case.

There is a noticeable decrease in the performance of the QMC particle simulations

observed as the duct length increases. In fact, only the QMC simulation using the

BCF-3 sequence consistently outperforms the AWMC method for the narrower duct

geometries presented in this section. A longer duct requires a greater number of in-

terior particle moves; hence, a greater number of dimensions for the low-discrepancy

sequence are used in the QMC particle simulation. This problem of dimensional-

ity is well-noted throughout literature for a wide range of QMC applications (see

[23, 74, 114, 116, 117, 118, 120, 146, 153, 167]).

In Figure 6.3, the relative error7 in the conductance probability is found for the

particle simulations of the L = 5 duct geometry. The relative error is obtained for

the same number of samples N as the L = 2 case in Section 6.1; adjusting the

sample sizes for the QMC simulation with the Faure sequence to reflect the change

in the sequence base. In the AWMC and QMC simulations, the number of interior

particle moves, and hence the dimension of the low-discrepancy sequences, is taken

to be s = 120. After 120 moves, the average fraction of the particle that remains

7The relative error is the difference between the simulation solution and the exact solution
normalized by the exact solution. Here the “exact” solution is taken from the more accurate
Nyström method which is shown in Section 5.4 to have a stable relative error less than 10−12 for
the duct lengths under consideration.
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Figure 6.3: Convergence of the relative error for the QMC particle simulation of the
conductance probability Ψ (for L = 5).

in the duct is approximately 2 · 10−9, which is an order of magnitude smaller than

the lowest error observed in Figure 6.3, making it an acceptable truncation error.

As a direct consequence of its lower variance, the AWMC method consistently has a

relative error that is nearly 3 times smaller than the Monte Carlo simulation given

the same number of samples N . For reference, the lowest relative error achieved by

the traditional Monte Carlo test particle method and the AWMC method in this

investigation for N = 226 samples is 1.3 · 10−4 and 4.5 · 10−5 respectively. Overall,

the particle simulations in Figure 6.3 for the L = 5 duct geometry have a relative

error that is larger than the corresponding simulations for the L = 2 case in Section

6.1.

For the L = 5 duct geometry, the QMC simulation using the BCF-3 sequence

is the only simulation with an error that is consistently smaller than the AWMC

method for all sample sizes, as shown in Figure 6.3. The QMC simulation using

Niederreiter sequence in base 2 does not have an error consistently smaller than the
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AWMC method until the number of samples N ≥ 103. With at least N = 105

samples, the QMC simulations using the BCF-3 and Niederreiter sequences achieve

at least an order of magnitude improvement in the relative error over the AWMC

method. The QMC simulation using the Halton sequence eventually reaches the

same order of magnitude improvement over the AWMC when the number of samples

N ≥ 106. For the longest sequence lengths tested (N ≥ 106), the QMC simulation

using the Halton sequence has the lowest error of all the methods; however, the

amount and rate by which the error decreases appear to be anomalous. In contrast,

the Faure sequences does not appear to offer noticeable improvement over the AWMC

method until the number of samples N ≥ 107. Therefore, excluding the results using

the Faure sequence, the QMC particle simulations do offer error convergence that

is superior to the Monte Carlo methods when the number of samples generated is

sufficiently large.

In Figure 6.4, the relative error in the conductance probability is found for the

particle simulations of the L = 10 duct geometry. The relative error is obtained

for the same number of samples N as the L = 2 case in Section 6.1. As with the

L = 5 duct geometry, the sample sizes for the QMC simulation with the Faure

sequence are adjusted to reflect the change in the sequence base. In the AWMC

and QMC simulations, the number of interior particle moves is taken to be s = 300.

After 300 moves, the average fraction of the particle that remains in the duct is

approximately 2 · 10−9, which is two orders of magnitude smaller than the lowest

error observed in Figure 6.4, making it an acceptable truncation error. The AWMC

method, by virtue of its lower variance, consistently has a relative error that is 2.2

times smaller than the Monte Carlo simulation, given the same number of samples

N . As a reference point, the lowest relative error achieved by the traditional Monte
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Figure 6.4: Convergence of the relative error for the QMC particle simulation of the
conductance probability Ψ (for L = 10).

Carlo test particle method and the AWMC method in this investigation, for N = 226

samples, is 1.8 · 10−4 and 8.4 · 10−5 respectively. In general, the particle simulations

in Figure 6.4 for the L = 10 duct geometry have a relative error that is larger than

the corresponding simulations for the L = 5 case. Moreover, the reduction in the

relative error achieved by the absorption weighted technique diminishes as the duct

geometry becomes narrower. This observation is further supported by the results in

Figure 6.7 in connection with the more rigorous length study presented in the next

section.

Regarding the L = 10 duct geometry, the QMC simulation using the BCF-3 se-

quence is again the only simulation with an error that is consistently smaller than the

AWMC method for all sample sizes, as shown in Figure 6.4. The QMC simulation

using the BCF-3 sequence consistently maintains at least an order of magnitude im-

provement in the relative error over the AWMC method when the number of samples

N ≥ 106. The QMC simulation using Niederreiter sequence in base 2 does not have
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an error consistently smaller than the AWMC method until the number of samples

N ≥ 104. Even for the larger sample sizes, the QMC simulation using Niederreiter

sequence in base 2 rarely offers a significant improvement over the AWMC method.

Worse yet are the QMC simulations using the Halton and Faure sequences, which only

achieve an error lower than the AWMC method sporadically, with the approxima-

tion of the Halton sequence generally better than that of the Faure sequence. Thus,

the QMC simulation using the BCF-3 sequence is the only method that achieves an

error convergence that is noticeably superior to the two Monte Carlo methods in this

particular case.8 It is important to note that actual behavior of the error conver-

gence for the QMC particle simulation becomes more erratic as the low-discrepancy

sequence dimension increases. As a result of this observation, one is motivated to

adopt for the QMC simulations the same type of ensemble averaging used to reduce

the fluctuations in the error convergence of the Monte Carlo methods. Therefore,

16 ensembles are averaged for each QMC particle simulation in order to illustrate

more clearly the impact of the duct geometry on the error convergence, for the more

rigorous duct geometry study in Section 6.3.

All low-discrepancy sequences, except for the Weyl-Richtmyer type sequences,

suffer from something referred to as start-up error (see [18, 19, 48, 116]). Specifi-

cally, the start-up error in low-discrepancy sequences refers to the tendency of initial

sequence elements to disproportionately cluster near the origin (0, . . . , 0) of the unit

hypercube. When more elements are added to the sequence, the effect of the near-

origin clustering lessens as the additional sequence members begin to evenly fill in

8Emphasis should be made to note that the BCF-3 sequence is the only method that demon-
strates a clear improvement with a single simulation ensemble of the error convergence results.
However, using 16 ensembles for the L = 10 duct geometry; the expected error at N = 223 samples
for the QMC simulations using the Halton and Niederreiter sequences is actually 3.4 times and 5
times more accurate, respectively, than the AWMC method, as shown in Figure 6.7.
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the remaining volume of the unit hypercube. In general, an increase in the dimension

of low-discrepancy sequence causes a larger start-up error; that is, it takes more se-

quence elements to average out the initial near-origin clustering of elements. In this

investigation, the implementation of the Niederreiter sequence in base 2 attempts to

mitigate the start-up error by adopting the “leading zeros” correction proposed by

Bratley et. al. in [19]. With respect to the Halton and Faure sequences, the start-up

error is generally treated by ignoring the first Nskip elements of the sequence; i.e.

the elements disproportionately clustered near the origin [18, 19, 48, 116].

Unfortunately, there is not an established criterion for selecting Nskip, and an

effective choice depends on the type of sequence, the dimension of the sequence, and

the problem type. The implementations of the Halton and Faure sequences in this

investigation do not skip any of the initial sequence elements because further study

beyond the scope of this investigation is needed to determine suitable choices based

on the duct geometry. The presence of start-up error in these sequences is likely to

contribute to the slower error convergence shown in Figures 6.3 and 6.4 for the L = 5

and L = 10 duct geometries. However, in Section 6.3, the use of ensemble averaging

to smooth the error convergence of the QMC simulations also serves to diminish the

start-up error, since it only appears in the first ensemble. After correcting the startup

error for the Halton and Faure sequences, they are expected to yield a relative error

similar to the BCF-3 sequence when the number of samples N is small.

There is a marked decrease, in all cases, in the performance of the QMC particle

simulations for the duct geometries L = 5 and L = 10 when compared to the L = 2

case in Section 6.1. In addition, the convergence results for a single ensemble of

any of the QMC simulations become more erratic as the duct narrows, complicating

the estimate of the error convergence rate. In an effort to reduce the fluctuations
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found in the error convergence, a more rigorous duct geometry study is presented

in Section 6.3 using 16 ensembles of each QMC particle simulation. The results of

this more detailed geometry study further support the observation that the QMC

simulations become less effective as the duct narrows; that is L increases. There

are a greater number of interior particle moves required to produce each sample

trajectory of the QMC simulation, when the duct length to height ratio L increases.

Consequently, the dimension of the low-discrepancy sequence used by the QMC

simulation must also increase. As noted, the performance problems attributed to

the increase in the dimension of the low-discrepancy sequence are well-documented

throughout literature for many different applications of the QMC method. With

respect to the QMC particle simulations developed in this investigation, an increase

in low-discrepancy sequence dimension produces an increase in particle behavior

that is not physically consistent with the actual problem to be approximated. This

connection between the low-discrepancy sequence dimension and simulated particle

behavior is explored in greater detail in Section 6.4.

6.3 Duct Geometry Study (0.5 ≤ L ≤ 10)

The goal of this section is to develop a clearer understanding of the performance

loss suffered by the QMC particle simulations as the duct length to height ratio L

increases. While the preceding results in Sections 6.1 and 6.2 illustrate this perfor-

mance loss, a more detailed study of the effect of the duct geometry on the QMC

performance is presented here. Specifically, using the QMC particle method, the free

molecular conductance probability is simulated for 20 different duct geometries in

the range of 0.5 ≤ L ≤ 10. For reference, the free molecular conductance probability

test is also found using the traditional test particle Monte Carlo method, and the



293

absorption weighted Monte Carlo (AWMC) method. In order to reduce the fluctu-

ations in the QMC results given in Figures 6.1, 6.3, and 6.4, 16 ensembles of each

QMC particle simulation are averaged together to produce an expected error con-

vergence of the method. The idea of collecting ensembles of the QMC method to

provide a better estimate of its performance is not uncommon, with many examples

available in the literature [23, 115, 116, 117, 118]. In this section, five performance

metrics are calculated for each particle simulation and duct geometry, which include:

(i) the expected relative error after N = 223 sample trajectories; (ii) the error con-

vergence rate; (iii) the single sample error; (iv) the critical error when the QMC

particle simulations are faster than the test particle Monte Carlo method; and (v)

the computation time speedup of the QMC particle simulations.

In order to estimate the error convergence rate and single sample error of the

particle methods, a power law approximation is found for the dependence of the

relative error on the sample size N ,

|Ψ − Ψpart|
Ψ

≈ cNγ. (6.1)

Here Ψ is the exact9 conductance probability, Ψpart is the conductance probability

approximated by the particle simulations, c is the power law constant, and γ is

the power law exponent. The power law approximation in (6.1) is found using the

standard linear least squares method after performing a logarithmic transformation

to the error convergence data, please refer to [147] for a more detailed description.

The power law exponent γ is an estimate of the rate, or speed, at which the particle

simulation converges; as γ becomes more negative, the simulation is said to converge

9Note that the “exact” value of the conductance probability Ψ in (6.1) is obtained from the
Nyström method, as described in Section 5.4. The Nyström method is more accurate than the
particle methods, and has a stable relative error of at most 10−12 for the duct geometries under
consideration, as illustrated in Figure 5.7.
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faster. The power law constant c is an estimate of the single sample error; when c

becomes smaller, each sample trajectory is considered more accurate. In addition, the

power law constant also indicates the expected performance during the initial stages

of the simulation. That is, after a relatively small number of sample trajectories have

been generated, but before the effect of the power law exponent begins to dominate

the error convergence.

The error convergence rate of the QMC particle simulations is faster than the

Monte Carlo methods, for all the duct geometries tested in this section. This per-

formance gain comes at a price; specifically, the computational cost of generating

each sample trajectory of the QMC particle simulation is greater than that of the

test particle Monte Carlo method. The increased cost is primarily attributed to the

increase in the number of interior particle moves required by the QMC and AWMC

simulations. However, as discussed in Section 4.3, there can be an additional cost

for generating the actual low-discrepancy sequences in some cases. By virtue of the

lower computational cost associated with generating the trajectories, the test particle

Monte Carlo method is the fastest particle method when a relatively crude approx-

imation is needed. As the desired accuracy increases, the QMC particle simulation

eventually becomes faster than the test particle Monte Carlo method because of the

greater error convergence rate, even though there is a higher computational cost per

sample. An example of this behavior is found in Figure 6.2 for the QMC simulation

of the L = 2 duct geometry using the Halton sequence. It is possible to estimate the

critical error Ecrit for each QMC simulation, by combining the power law models of

the error convergence with the computation time of the particle simulations. The

critical error Ecrit is the simulation error expected to be reached by both the QMC

simulation and the test particle Monte Carlo method in the same amount of com-
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putational time. Thus, it serves as the natural transition point between the levels

of error at which the QMC simulation is the faster particle method, and vice-versa.

For a particular duct geometry, if one needs to calculate the conductance probability

with greater accuracy than Ecrit, then the QMC particle simulation will reach the

desired accuracy faster than the test particle Monte Carlo method. Conversely, if

one requires only a rough approximation, then the traditional test particle Monte

Carlo method is the faster choice. As such, a larger value of Ecrit implies that the

QMC particle simulation is the faster method for a wider range of desired simulation

accuracies.

Before proceeding to the performance results of this section, it is necessary to

first review the specific simulation details of the geometry study presented here.

While averaging additional ensembles of the QMC particle simulation shares the

same purpose with the Monte Carlo methods, it is important to note that it does

not share the same theoretical underpinnings. The concept of ensemble averaging

for Monte Carlo simulations is solidly rooted in the statistical theory of the method.

As such, the physical meaning of the ensemble average is well defined in terms of the

formal expectation of the error of the method. Unlike the pseudo-random sequences

required for the Monte Carlo methods, consecutive elements of the low-discrepancy

sequences used by the QMC methods are not designed to appear independent of

each other. The elements of a low-discrepancy sequence are distributed as uniformly

as possible because, in essence, each new element added to the sequence “knows”

the location of all the previous elements, by special construction, avoids placing the

new elements too close to any of the previous elements. However, the fact that this

“knowledge”exists between the elements means that distinct subsequences are not

independent. Consequently, it is not technically correct to interpret the ensemble
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average in terms of the formal statistical expectation of the simulation error, when

each ensemble of a QMC simulation is produced from a different subsequence of

the same low-discrepancy sequence. Instead, one should adopt a more heuristic

viewpoint and interpret the results from the ensemble averages of a QMC simulation

as an “engineering anticipation” of the performance. Thus, whenever the “expected,”

or “average” error of the QMC particle simulation is discussed in this investigation,

it refers to this heuristic interpretation.

In this section, 16 ensembles of the QMC particle simulation with 223 samples10

are collected and averaged for each low-discrepancy sequence presented in Section

4.3. A total sequence length N = 227 must be generated for each low-discrepancy

sequence in order to produce all 16 ensembles of the QMC particle simulation. The

QMC simulation for each ensemble is then performed using distinct subsequences of

the low-discrepancy sequence each containing 223 elements. To illustrate the effect

of the ensemble averaging, the resulting error convergence is given in Figure 6.5 for

the QMC particle simulation of the L = 10 duct geometry using the Niederreiter

sequence in base 2. The fluctuations in the error convergence for a single QMC

simulation appearing in the results in Sections 6.1 and 6.2 are noticeably reduced as

the number of simulation ensembles increases. Furthermore, when more simulation

ensembles are collected, the power law constant and exponent are less sensitive to

the number and location of the data points used to fit the power law model to the

error convergence results.

In addition to the 16 ensembles collected for each of the QMC particle sim-

ulations, there are 512 simulation ensembles collected for the test particle Monte

Carlo method and 32 simulation ensembles collected for the AWMC method. Sim-

10Except for the QMC simulations using the Faure sequence in base q which use slightly more
samples N = 223 + r, where r is the smallest positive integer such that N ≡ 0 (mod q).
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Figure 6.5: Convergence of the relative error after collecting 1, 4, and 16 ensembles
for the QMC particle simulation using the Niederreiter sequence in base
2 (for L = 10).

ilar to the results in Sections 6.1 and 6.2, the relative error of all the particle sim-

ulations (except for the QMC simulation using the Faure sequence) is found for

sample sizes N = (2, 22, . . . , N 23). In the two preceding sections, the relative er-

ror for the QMC simulation using the Faure sequence in base q is found for sample

sizes N = (q, 2q, 22q, . . .) in an effort to exploit an additional uniformity condition of

(0, s)− sequences. However, adopting the same sample sizes for the detailed geome-

try study allows the length of the Faure sequences to vary by a factor of nearly two

for the different duct geometries tested. This is undesirable because it may make the

QMC simulations for duct geometries using the longer sequences appear artificially

better than others. To avoid this potential problem and preserve the uniformity con-

dition, the QMC simulation using the Faure sequence in base q is found for sample

sizes N = 2α + r; where α = blog2 qc, . . . , 23, and r is the smallest positive integer

such that N = 2α + r ≡ 0 (mod q).

Briefly recall from Section 5.4 the integral form of the free molecular conductance
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Figure 6.6: The number of interior particle moves (and low-discrepancy sequence
dimension s) used for the AWMC and QMC simulations.

problem. The L2 norm of the integration kernel ‖K‖2 in (5.26) can be viewed as

the probability a particle inside the duct will not escape through the outlet or inlet

during its next move, after undergoing many interior moves.11 Thus, the probability

ρ(L) in (5.15) of a particle directly escaping from the inlet can be multiplied by ‖K‖s
2

to obtain a suitable approximation of the expected particle fraction remaining in the

AWMC and QMC simulations after s interior particle moves. In this section, the

number of interior particle moves (or dimension s of the sequence) needed for the

AWMC and QMC particle simulations is selected to satisfy ‖K‖s
2 = 2 · 10−9. After

s moves, the average fraction of the particle that remains in the duct is at least an

order of magnitude smaller than the lowest error observed in the detailed geometry

study presented in this investigation. It follows that the truncation error of these

methods has a negligible impact on the simulation results. In Figure 6.6, this value

of the sequence dimension s used in the AWMC and QMC particle simulations of

this section is plotted for each of the duct geometries tested.

11That is, ignoring the effects of the initial distribution of particles at start-up.
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Figure 6.7: The expected relative error of the particle simulations found after gen-
erating N = 223 sample trajectories.

In Figure 6.7, the expected relative error of the particle simulations is given for

N = 223 sample trajectories. All particle simulations clearly demonstrate an increase

in relative error as the duct narrows, i.e. L increases, which supports the previous ob-

servation made in Section 6.2. The increase in the duct to length ratio L corresponds

with an increase in the effective dimension of the problem because, on average, more

interior moves are needed before a particle can escape the narrower duct geometry.

In general practice, when the dimension of an integral problem increases, the perfor-

mance, or accuracy, of any numerical method designed to approximate the integral

suffers. The accuracy of the traditional test particle Monte Carlo method varies by

less than a factor of 5 over the range of duct geometries tested, which makes it the

particle simulation most resilient to the negative effects that accompany an increase

in the problem dimension. This beneficial feature is common to many different ap-

plications of the Monte Carlo method beyond just particle simulations, and explains,

in part, the popularity of the method for simulating physical problems with many



300

dimensions. The accuracy of the AWMC varies over a larger range than the test

particle Monte Carlo method. In particular, for the L = 0.5 duct geometry, the

AWMC is 14 times more accurate than the test particle Monte Carlo method for the

same number of sample trajectories; and for the L = 10 duct geometry, the AWMC

is only 2 times more accurate. It is interesting to note that for the widest ducts, i.e.

the smallest values of L, the savings due to the variance reduction in the AWMC

method is actually large enough for it to be faster than the traditional test particle

Monte Carlo method.

Unlike the relatively modest changes in accuracy observed for the Monte Carlo

methods, the accuracy of the QMC particle simulations vary by over 4 orders of

magnitude depending on the duct geometry. This pronounced impact on the ac-

curacy is attributed to the difficulties encountered when the dimension of low-

discrepancy sequences used in the QMC particle simulations is large. The problem of

dimensionality appears throughout literature for a wide range of QMC applications

[23, 74, 110, 114, 116, 117, 118, 120, 153, 167], and is addressed in greater detail

in Section 6.4 for the particle simulations developed here. The most rapid loss of

accuracy of the QMC particle simulations occurs within the range 0.5 ≤ L ≤ 5.

The performance loss is not as significant as the duct becomes narrower (L > 5).

The QMC simulation using the Niederreiter sequence in base 2 is the most accurate

particle method after generating N = 223 samples, for all the duct geometries tested.

The QMC simulation using the Halton sequence is a close second, providing nearly

the same accuracy as the Niederreiter sequence in base 2 for several of the duct ge-

ometries tested. By comparison, the QMC simulation using the BCF-3 sequence is

about 2 to 3 times less accurate than the Niederreiter sequence in base 2 for most of

the duct geometries considered. As noted, the QMC simulations using the Faure se-
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quence are the least accurate of the QMC methods and, in fact, is less accurate than

the AWMC method after N = 223 samples and when L ≥ 7.5. Despite its lackluster

performance simulating narrower ducts, the results of the Faure sequence are still at

least an order of magnitude more accurate than the AWMC method when L ≤ 2.5.

Ignoring the Faure sequence for a moment, the other QMC particle simulations are

all at least 3 orders of magnitude more accurate than the AWMC method for the

L = 0.5 duct geometry. Despite the rapid loss of accuracy from the L = 0.5 case,

for the L = 5 duct geometry, the QMC simulations are still 37, 35, and 11 times

more accurate than the AWMC method using the Niederreiter, Halton, and BCF-3

sequences respectively. It should be noted that the dimension of the low-discrepancy

sequence needed for the QMC simulation is 124, for the L = 5 case. While there is

no strict bound on the number of dimensions that can be simulated with the QMC

method, s = 124 is within the range generally given for a practical upper limit. The

expected error of the QMC simulations using the Niederreiter and BCF-3 sequences

is approximately 5 times smaller than the AWMC method, for the L = 10 duct

geometry when the sequence dimension s = 310. This is, perhaps, the largest di-

mension of the low-discrepancy sequences ever used in practice for an application of

the QMC method.12

In Figure 6.8, the power law exponent γ, from the linear least squares fit of the

error convergence to the power law model in (6.1) is found for each particle simulation

and duct geometry tested in this section. As to be anticipated for the Monte Carlo

simulations, the power law exponent γ is approximately equal to − 1
2
, regardless of

the duct geometry. Note that fluctuations present around the expected convergence

rate O
(
N−1/2

)
are due to the statistical scatter inherent in the method. In contrast

12Morokoff [114] uses the low-discrepancy Sobol’ sequence in 360 dimensions in a QMC financial
simulation; specifically, the valuation of a 30-year bond with monthly coupon payments.
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Figure 6.8: The expected error convergence rate of the particle simulations.

with the Monte Carlo methods, the power law exponent for the QMC simulation

becomes less negative, i.e. the error convergence rate of the methods becomes slower

as the duct length to height ratio L increases. The slower error convergence rate of the

QMC simulation is the primary cause of the loss of accuracy observed for the method

in Figure 6.7. Moreover, the error convergence rate of the QMC simulations slows by

the greatest amount within the range 0.5 ≤ L ≤ 5, corresponding well to the range

of duct geometries where the QMC simulations experience the most rapid loss of

accuracy. The error convergence rate is the fastest for the QMC particle simulations

using the Niederreiter (b = 2) and Halton sequences, as illustrated in Figure 6.8. In

particular, the QMC particle simulations using the Halton sequence typically have

the fastest error convergence for the narrower duct geometries; specifically, where the

duct length to height ratio is L ≥ 2.5. An important result of this investigation is that

the QMC particle simulations using these two low-discrepancy sequences are able to

achieve near linear error convergence rates greater than O (N−0.85) for the wider duct

geometries when L ≤ 3. The QMC simulation using the Faure sequence tends to
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Figure 6.9: The expected single sample error of the particle simulations.

converge at a rate slower than that of the Niederreiter (b = 2) and Halton sequences;

however, it is still faster than QMC simulation using the BCF-3 sequence.13 Despite

the fact that the error convergence rate of QMC particle simulations slows as L

increases, the error convergence rate is still faster than the Monte Carlo methods for

even the narrowest duct geometry tested; that is, L = 10. More specifically, the error

convergence rates using the different low-discrepancy sequences for the L = 10 duct

geometry are as follows: O (N−0.61) using the Halton sequence; O (N−0.59) using the

Niederreiter sequence in base 2; O (N−0.57) using the Faure sequence; and O (N−0.55)

using the BCF-3 sequence.

In Figure 6.9, the power law constant c (from the linear least squares fit of

the error convergence to the power law model in (6.1)) is found for each particle

simulation and duct geometry tested in this section. The power law constant is an

13While the BCF-3 sequence possesses the slowest convergence of all QMC methods, recall from
Figure 4.5 that it is possible to improve the convergence rate using a Weyl-Richtmyer sequence by
selecting a different set of irrational numbers. For example, the BCF-5 and Richtmyer sequence
converge faster than the BCF-3 sequence in most cases. However, this performance gain comes at
the price of having a higher single sample error.
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estimate of the expected error present in one sample trajectory. By virtue of the

variance reduction technique adopted for the AWMC method, it is not surprising

that the AWMC method has a smaller single sample error than the traditional test

particle Monte Carlo method. In fact, the difference in the expected single sample

error between the two Monte Carlo methods is nearly the same as the difference

observed between the relative error of the methods after N = 223 samples (see

Figure 6.7). The general trend of the single sample error of the QMC simulations

tends to increase as the duct length to height ratio L increases. This contributes to

the performance loss observed for the QMC particle simulations. However, except for

the Faure sequence implementation, the single sample error only varies by a factor

between 5 and 10 for all the QMC simulations, with most of the variation occurring

when L ≤ 2. Thus, the impact on the QMC performance of this increase in the single

sample error is not as significant as the decrease in the error convergence rate observed

previously in Figure 6.8. In Figure 6.9, for all but the L = 0.5 duct geometry, the

QMC simulations using the BCF-3 sequence have the smallest single sample error

of all the particle simulations. Recall from Section 4.3 that the BCF-3 sequence is

selected as the representative Weyl-Richtmyer sequence in this investigation because

it consistently has the smallest single sample error of the Weyl-Richtmyer sequences

tested in Figure 4.5. Thus, the BCF-3 sequence not only offers the lowest single

sample error of the Weyl-Richtmyer sequences tested, but of all the low-discrepancy

sequences tested here as well. The single sample error of the QMC simulations using

the Niederreiter (b = 2) and Halton sequences is approximately the same order as the

Monte Carlo methods, with the Niederreiter (b = 2) sequence achieving a lower value

when L ≥ 2.5. In particular, the QMC simulation using the BCF-3 sequence has

a single sample error that is 1.7 to 2.2 times smaller than the Niederreiter (b = 2)
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Figure 6.10: The critical error Ecrit of the QMC particle simulations. If the desired
simulation error is less than Ecrit, the QMC simulation is faster than the
test particle Monte Carlo method for achieving this level of accuracy.

sequence and 2.2 to 5.4 times smaller than the Halton sequence when L ≥ 2.5.

The QMC simulations using the Faure sequence tend to have the highest single

sample error; nearly an order of magnitude greater than the Halton sequence. As

mentioned in Section 6.2, the poor performance of the method may be attributed to

the start-up error present in the Faure sequence, but more study is needed beyond

this investigation for certainty.

In Figure 6.10, the critical error Ecrit of the particle simulations is plotted for

all the duct geometries tested in this section. As noted, the critical error Ecrit is

simply the error level at which the QMC simulation becomes a faster technique than

the test particle Monte Carlo method. Since the QMC simulations have a higher

error convergence rate and the cost of generating each sample trajectory varies little

throughout the simulation, it is expected to reach all error levels smaller than Ecrit

in less time than the test particle Monte Carlo method. Hence, larger values of Ecrit

for a given QMC simulation indicate that it is the faster particle method for a wider
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range of desired simulation accuracies. Overall, the value of Ecrit generally decreases

as L increases, which implies that the QMC simulations lose some of their effective

range as the duct narrows. That is not to say that the QMC simulations are unable

to outperform the test particle Monte Carlo method Monte Carlo method when L is

larger. Rather, it means their performance gains are limited to simulations requiring

a greater amount of accuracy.

Figure 6.10 demonstrates that the largest values of the critical error Ecrit are

found for the QMC particle simulations using the BCF-3 sequence (L ≤ 7.5), and

using the Niederreiter (b = 2) sequence (L > 7.5). For L ≤ 6, the QMC simulations

using the BCF-3 sequence outperform the test particle Monte Carlo method when the

desired simulation accuracy is as high as 18%. In these cases, the QMC simulations

using the BCF-3 sequence obtain large values of Ecrit because their single sample

error is small. In fact, the single sample error is so small for the QMC simulations

using the BCF-3 sequence that they outperform the test particle Monte Carlo method

after generating just one sample. For narrower duct geometries (i.e. L > 7.5), the

QMC particle simulations using the Niederreiter (b = 2) sequence is the fastest

particle method to achieve a simulation error less than 0.1%. In these cases, the

superlative performance using the Niederreiter (b = 2) sequence is a result of the

high error convergence rate of the method and the low computational cost needed to

generate the sequence. Consequently, the critical error Ecrit of the QMC simulations

using the Halton sequence is smaller than the Niederreiter (b = 2) sequence but still

remains within an order of magnitude of the Niederreiter (b = 2) sequence. As noted,

the error of the QMC simulations using the Halton sequence converge at nearly the

same rate as the Niederreiter (b = 2) sequence; however, they suffer from a longer

computation time because of the greater costs of generating the Halton sequence.
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In rather stark contrast, the QMC simulations using the Faure sequence have the

smallest values of Ecrit in Figure 6.10. Furthermore, the rate at which Ecrit declines is

much faster than the other QMC simulations because of the larger single sample error

and greater computational cost associated with the Faure sequence. The important

point to remember for all duct geometries tested in Figure 6.10 is that at least one

of the QMC particle simulations using the Halton, BCF-3, and Niederreiter (b = 2)

sequences is able to achieve a simulation accuracy of 0.1% in less time than the test

particle Monte Carlo method.

While the critical error Ecrit indicates the accuracy range where the QMC sim-

ulations are faster than the test particle Monte Carlo method, it does not give the

magnitude of the actual performance gain of the QMC methods. In order to measure

the performance gain, a reference error must be selected to compare the number of

samples and computation time required by both the QMC simulations and the test

particle Monte Carlo method. In this section, the reference error is chosen to be

the expected relative error of the test particle Monte Carlo method after generating

N = 223 samples. Specifically, this reference error varies between 10−4 and 5·10−4, as

shown in Figure 6.7. Using the power law models found for the error convergence, the

number of samples and the computation time required by the QMC simulations to

achieve the reference error are found and then normalized by the corresponding val-

ues for the test particle Monte Carlo method. From the normalized results, the factor

by which the QMC simulations reduce the number of sample trajectories required

to achieve the reference error is given in Figure 6.11(a), and the factor by which the

QMC simulations speedup the computation time is given in Figure 6.11(b).

Consistent with the other performance metrics discussed in this section, the sam-

ple size reduction factor and the computation time speedup of the QMC particle
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Figure 6.11: Performance gains of the QMC particle simulations when compared to
the expected error of the traditional test particle Monte Carlo method
after N = 223 samples: (a) the reduction factor in the number of sample
trajectories needed by the QMC simulation; and (b) the speedup factor
in the computation time of the QMC simulation.

simulations decline as the duct length to height ratio L increases. For the moment,

exclude the results using the Faure sequence and only consider the performance

gains for the other three QMC simulations using the Halton, BCF-3, and Niederre-

iter (b = 2) sequences. These QMC simulations are able to achieve the same reference

error as the test particle Monte Carlo method by using over 104 times fewer sample

trajectories when L = 0.5. While the the sample size reduction factor decreases as

the duct narrows, these QMC simulations are still able to achieve the same refer-

ence error using 40 to 70 times fewer sample trajectories when L = 10. Since the

computational cost of each sample trajectory is approximately constant during each

QMC simulation, it is not surprising that the behavior of computation time speedup

is similar to the sample size reduction factor in Figure 6.11. In particular, for the

L = 0.5 duct geometry, the time required for these QMC simulations to reach the

same reference error is nearly 103 times faster than the test particle Monte Carlo

method. For the L = 10 duct geometry, the QMC particle simulation using the
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Niederreiter sequence in base 2 is only 32% times faster than the test particle Monte

Carlo method for reaching the reference error. As noted, the QMC particle simula-

tions using the Halton and BCF-3 sequences are slightly slower than the Niederreiter

(b = 2) sequence because of the higher construction costs. As a consequence, the

QMC particle simulations using the Halton and BCF-3 sequences are also slightly

slower than the test particle Monte Carlo method by a factor of 22% and 9% re-

spectively when L = 10. However, the QMC particle simulations using the Halton

and BCF-3 sequences are still able to achieve the reference error faster than the test

particle Monte Carlo method for all duct geometries with L ≤ 9. It is possible, by

adopting the hybrid QMC/MC technique presented in Section 6.5, to further im-

prove on the computation speedup attained by these QMC simulations (which can

reduce the overall computation time by an additional factor of 2 to 4.5). Returning

to the QMC simulation using Faure sequence, the performance gains are the lowest

of all the QMC particle simulations. In fact, the QMC simulation using the Faure

sequence requires fewer samples than the test particle Monte Carlo method when

L ≤ 8.5. Even worse, the QMC simulation using the Faure sequence is only able

to reach the same reference error faster than the test particle Monte Carlo method

when L ≤ 3.

In summary, there are two main points demonstrated by the detailed geometry

study presented in this section. First, for many of the duct geometries tested here,

the QMC particle simulations using the Halton, BCF-3, and Niederreiter (b = 2) se-

quences achieve significant performance gains over the traditional test particle Monte

Carlo method. In particular, the error convergence rate of all the QMC particle sim-

ulations tested remains superior to the O
(
N−1/2

)
convergence rate of the Monte

Carlo methods. More specifically, the QMC particle simulations using the Halton
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and Niederreiter (b = 2) sequences achieve a near linear error convergence rate that

is greater than O (N−0.85) when L ≤ 3. As a direct consequence of the higher conver-

gence rate, the QMC simulations using the BCF-3 and Niederreiter (b = 2) sequences

are faster than the test particle Monte Carlo method when the desired simulation

error is less than or equal to 1% for the L ≤ 7.5 duct geometries. For a given simula-

tion error, the computation time of the QMC simulations can be orders of magnitude

faster than the test particle Monte Carlo method. Furthermore, the computational

speedup of the QMC simulations increases as the desired accuracy increases, which,

as mentioned before, is a desirable feature when simulating low speed micro-scale

flows.

The second main point of this section is that the performance gains of the QMC

particle simulations tend to decline as the duct narrows; i.e. when the duct to length

ratio L increases. The cause of this performance loss is attributed to the increase

in the problem dimension that accompanies an increase in L, and the accompanying

increase in the dimension of the low-discrepancy sequences needed for the QMC

simulations as well. This problem of dimensionality of the low-discrepancy sequences

is well-noted throughout literature for a wide range of QMC applications (see [23,

74, 114, 116, 117, 118, 120, 153, 167]). In particular, as the dimension of the low-

discrepancy sequences increases, the presence of non-physical particle behavior in

the QMC simulations developed here increases as well. The dimension problem

is discussed in greater detail in Section 6.4. Despite the decline in performance,

the QMC particle simulations using the Halton, BCF-3, and Niederreiter (b = 2)

sequences still achieve non-trivial gains over the test particle Monte Carlo method

when L ≤ 5, which corresponds to a maximum problem dimension of s = 124.

Even for the narrowest duct, when L = 10 and the problem dimension s = 310, the
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QMC simulation using the Niederreiter sequence in base 2 is still faster than the test

particle Monte Carlo method for reaching a simulation error less than 0.1%. Based

on the overall performance demonstrated in the duct geometry study of this section,

however, it seems reasonable to recommend a maximum low-discrepancy sequence

dimension s ≈ 100 as a design limit when developing new QMC particle simulations.

6.4 Correlation between dimensions of the low-discrepancy
sequences

It is evident from the results in Sections 6.1, 6.2, and especially 6.3, that the per-

formance of the QMC particle simulations suffers as the duct length to height ratio in-

creases. As mentioned briefly in these previous sections, the decline in performance is

attributed to an increase in the dimension of the low-discrepancy sequence needed by

the QMC particle simulation. The dimensionality problem with the low-discrepancy

sequences is well-noted throughout the literature for many different QMC applica-

tions, please see [23, 74, 114, 116, 117, 118, 120, 146, 153, 167]. In most cases, the

dimensionality problem is only discussed in terms of the impact on the theoretical

convergence rate of the discrepancy of the sequences; instead of the impact on the

actual QMC simulation. Specifically, the growth and large magnitude of the implied

constant in the asymptotic bound O (N−1(log N)s) on the discrepancy are most often

cited as a consequence of increasing the dimension of a low-discrepancy sequence.

Also, Morokoff and Caflisch in [116] note that the minimum sequence length required

before the asymptotic term N−1(log N)s begins to monotonically decrease also grows

with the number of dimensions s of the low-discrepancy sequence.

These effects negatively impact the theoretical convergence rate for the star dis-

crepancy of a low-discrepancy sequence; and, by application of the Koksma-Hlawka
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inequality in (3.5), they also increase the upper error bound on the QMC method.

However, as mentioned throughout this investigation, the Koksma-Hlawka inequality

does not provide a very tight bound on the error of the QMC method for most ap-

plications. An unfortunate consequence of this fact is that there does not seem to be

any clear connection between the dimension problems associated with the theoretical

error convergence, and the actual loss of physical accuracy of the QMC simulation

observed in practice. Thus, it is the goal of this section to discuss the loss of the

physical accuracy in terms of the non-physical correlation that persists between the

dimensions of the low-discrepancy sequences used for the QMC particle simulations.

This is not an entirely new concept; Morokoff and Caflisch [116], and Press and

Teukolsky [146] graphically illustrate some of the correlation patterns present be-

tween the pairs of dimensions taken from the Sobol’, Halton, and Faure sequences.

However, this section takes the concept much farther by providing an actual estimate

of the magnitude and extent of the correlation that exists between the dimensions

of the four main low-discrepancy sequences used in this investigation.

For the moment, consider what happens in the actual QMC particle simulation

when two consecutive dimensions of the low-discrepancy sequence, x1 and x2, are

highly correlated; that is, x1 ≈ x2. In such a case, the two particle moves, or wall

collisions, generated by x1 and x2 will behave very similarly. Both particle moves

will almost always be in the same direction with nearly the same trajectory, which is

essentially the same behavior that occurs when the second wall collision is a specular

reflection. However, as stated in the initial assumptions given in Section 5.1 for

the free molecular flow simulation, the interior duct walls are fully diffuse. Thus,

the nearly specular wall collisions, which occur in the QMC simulation when two

consecutive dimensions of the low-discrepancy sequence are highly correlated, are
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not physically consistent with the actual problem being simulated.

Furthermore, this loss of physical accuracy of the QMC simulation is not lim-

ited to just the correlation between consecutive dimensions of the low-discrepancy

sequence, correlation between any two dimensions is physically inconsistent as well.

Recall from the development of the QMC particle simulation in Section 5.5 that

each dimension of the low-discrepancy sequence is used to generate the trajectory

path after a particle undergoes a collision with the diffuse duct wall. One of the

characteristics of a collision with a diffuse wall is that the trajectory of the particle

leaving the wall is completely independent of any prior wall collisions. Basically,

a simulated particle undergoing a diffuse wall collision must behave as if it lost all

“memory” of any previous collisions along its trajectory path in order to be physi-

cally consistent. Now if any two dimensions of the low-discrepancy sequence, xi and

xj (with i < j), are highly correlated such that xi ≈ xj, then the jth collision depends

on the ith collision; which implies that the simulated particle retains some memory

of its earlier trajectory. Therefore, correlation between any two dimensions of the

low-discrepancy sequence used in the QMC method is not physically consistent with

the problem being simulated.

Before proceeding with the discussion on correlation, some clarification is needed

to distinguish between the two types of correlation mentioned in this investigation for

low-discrepancy sequences. The first type of correlation is the kind that naturally oc-

curs between the elements of a one dimensional low-discrepancy sequence. If one fails

to recognize that the elements of a one dimensional sequence are highly correlated,

and treats each element as an independent sample from a uniform distribution, the

results can be grossly inaccurate. An example of this mistake is presented in Section

5.5, where a physically inconsistent particle simulation is obtained when the pseudo-
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random number generator is replaced with the van der Corput sequence. While this

type of correlation may cause problems when not taken into account, there are ac-

tually some advantages to the correlation. As noted by Press and Teukolsky [146],

each new point added to the low-discrepancy sequence effectively “knows” where all

the previous sequence points are located; and as such, the new point is placed in a

position that “maximally avoids” these other points. It is by virtue of this natural

correlation that the low-discrepancy sequence is able to efficiently achieve an even

distribution of points throughout the unit interval.

In order to avoid this first type of correlation, multi-dimensional low-discrepancy

sequences are used, when independent samples from a uniform distribution are

needed. Each dimension of a multi-dimensional low-discrepancy sequences is actu-

ally a one dimensional low-discrepancy sequence generated from a unique construc-

tive element.14 In order for the dimensions of a multi-dimensional low-discrepancy

sequence to be independent, these constructive elements must also be independent in

some sense. More specifically, the constructive elements are independent under the

following conditions: when the bases of the Halton sequence are pair-wise relatively

prime, when the irrational numbers of the BCF-3 sequence are linearly independent

over Q, and when the polynomials used to generate the Niederreiter sequence in

base 2 are irreducible over F2[x]. If the constructive elements of a multi-dimensional

low-discrepancy sequence are independent, then it is physically accurate to treat

each dimension as an independent sample from a uniform distribution. This physi-

cal accuracy is made certain by the convergence of the Koksma-Hlawka inequality;

unfortunately, it is only guaranteed in the limit as the sequence length tends to-

14Here “constructive element” refers to the mathematical object that governs the construction of a
low-discrepancy sequence. For the Halton sequence, it is a positive integer. For the Weyl-Richtmyer
sequence, it is an irrational number. For the Faure sequence, it is a degree one polynomial over a
prime field. And for the Niederreiter sequence in base 2, it is a polynomial in F2[x].
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ward infinity. Thus, it is entirely possible for two independent dimensions of a

low-discrepancy sequence to behave as if dependent over a finite sequence length.

The second type of correlation, and the focus of this section, is the kind that oc-

curs when two dimensions of a low-discrepancy sequence appear dependent through-

out the sequence lengths used in practice for the QMC particle simulation. When

this occurs, the resulting QMC particle simulation is not producing a physically con-

sistent representation of the diffuse wall collision process. As with the first type of

correlation, the second type can not be eliminated from a multi-dimensional low-

discrepancy sequence because it is what actually enables the sequence to efficiently

achieve a even distribution of points throughout the domain. The sequence lengths

over which the dimensions of the low-discrepancy sequence appear dependent on each

other is then the critical feature of this type of correlation. The Koksma-Hlawka in-

equality guarantees that any correlation between the dimensions of a low-discrepancy

sequence is eventually broken up. The question then becomes how long does it take

before the sequence appears uncorrelated. Intuitively, if the correlation only persists

over sequence lengths that are much smaller than those used by the QMC simulation,

then the effect of the second type of correlation is expected to be negligible. Un-

fortunately, as the dimension of the low-discrepancy sequence increases, so too does

the sequence length over which the dimensions appear correlated. Even though each

dimension of a low-discrepancy sequence is generated from a unique constructive ele-

ment, these constructive elements become more similar as the number of dimensions

increases. As the differences between the constructive elements become smaller, their

behavior generating the dimensions of the low-discrepancy sequence becomes more

similar. A greater sequence length is therefore required before the small differences

between the dimensions grow large enough to break up the apparent correlation.
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The purpose of this section is to identify which dimensions of the four main

low-discrepancy sequences used for the QMC particle simulation are likely to have

significant correlation, and to illustrate the construction patterns caused by the cor-

related dimensions. In order to evaluate the impact of the correlation caused by the

construction pattern, a measure of the correlation magnitude is introduced here. In

addition, the extent, or persistence, of the correlation caused by these construction

patterns is measured by the sequence length necessary to reach a correlation level

equivalent to a random sequence of the same length. The first half of this section uses

the Halton sequence as an example to develop and calculate these measures for the

magnitude and extent of the correlation present in the low-discrepancy sequences.

The second half of this section calculates and compares the magnitude and extent of

the correlation found in the BCF-3, Faure, and Niederreiter (b = 2) sequences.

6.4.1 Correlation between two dimensions of the Halton sequence

To begin the discussion of correlation between dimensions of a low-discrepancy

sequence, consider the case of a two dimensional Halton sequence SH = x0,x1, . . .

where xn =
(
χp1

(n), χp2
(n)
)

for all n. Specifically, let the prime bases p1 and p2 be

large twin primes such that p2 = p1+2. With these prime bases, the first p2 elements

of the Halton sequence are given by

(x0, . . . ,xp2−1) =
(
(0, 0), ( 1

p1
, 1

p2
), ( 2

p1
, 2

p2
), . . . , ( 1

p2
1

, p2−2
p2

), (p1+1
p2
1

, p2−1
p2

)
)
. (6.2)

Note that the first p1 elements of this Halton sequence fall nearly on the line y = x

in the Cartesian plane, which indicates a high degree of correlation between the

dimensions of the subsequence in (6.2). In fact, if one recalls the algorithmic imple-

mentation of the Halton sequence from Section 4.3, most of the sequence elements

can be determined explicitly by adding a constant to each dimension of the previous
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Figure 6.12: Plot of the two dimensional Halton sequence in prime bases p1 = 29
and p2 = 31: (a) for 0 ≤ n < 3p2; and (b) for 0 ≤ n < p2b p1

p2−p1
+ 1c.

element. That is, xn = xn−1 + ( 1
p1

, 1
p2

) for all n > 0 except when n ≡ 0 modulo p1

or p2. Thus, consecutive elements of this Halton sequence appear on the same line

in the Cartesian plane with a slope of p1

p2
. An example of this distribution pattern is

given in Figure 6.12 for a Halton sequence in prime bases p1 = 29 and p2 = 31.

Now consider consecutive blocks of p2 elements from this Halton sequence. In

the first block, n = 0, . . . , p2 − 1, the first p1 points of the Halton sequence appear

on the line through the origin y = p1

p2
x, with the last two points of (6.2) appearing

near the (0, 1) corner of the unit square, as shown in Figure 6.12(a). In the second

block, n = p2, . . . , 2p2 − 1, the first p1 − 2 elements of this block appear on a parallel

line y = p1

p2
(x − η) shifted to the left of the origin along the x − axis by the amount

η =
2

p1

(

1 +
1

p1p2

)

. (6.3)

Similar to the first block, the last four elements of the second block wrap around the

unit square and appear near the (0, 1) corner along a parallel line shifted by the same

amount η. The pattern continues for each successive block of p2 elements from the
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Halton sequence, shifting the parallel lines by the same distance along the x − axis.

Each new line added for y < p1

p2
x has two fewer points than the previous line, while

the continuation of the same line for y > p1

p2
x has two more points than the previous

line. In general, the change in the number of points along each successive line is

equal to p2 − p1 when p2 − p1 � p1, p2. At the start of the (bη−1c + 1)th block of p2

elements, the parallel line is so close to the corner (1, 0) that there is only room for a

single point of the sequence. The remaining elements of the block wrap around the

unit square to continue along a parallel line that is close to the first block of elements.

In fact, at this point in the construction of the Halton sequence, the points in the

(bη−1c+1)th block have the closest spacing to any of the previous sequence elements,

as illustrated in Figure 6.12(b).

As a consequence of constructing points in this manner, the Halton sequence

is evenly distributed for the first p2bη−1c elements. Given two sets of points, the

more evenly distributed point set yields a smaller overall correlation between the

dimensions. Hence, the first p2bη−1c elements are expected to possess, when viewed

as complete set, a very small amount of correlation between the dimensions. However,

for subsequences that are smaller than p2bη−1c elements, the points generated by this

Halton sequence are highly correlated. In more general terms, there are two scales of

behavior for this type of Halton sequence. If one inspects a relatively small number

of consecutive elements of a low-discrepancy sequence, one should expect to find a

high degree of correlation between the dimensions. In contrast, for a sufficiently

large number of consecutive elements of a low-discrepancy sequence, one should find

a negligible degree of correlation. It is important to note that these two scales of

correlation behavior are present in the construction of all low-discrepancy sequences.

For the example of the two dimensional Halton sequence using the large twin
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prime bases, the subsequence length of p2bη−1c serves as a natural transition point

between these two scales. Each subsequent block of elements from the Halton se-

quence, with length p2bη−1c, covers the unit square with the same pattern shown

in Figure 6.12(b) for the first p2bη−1c elements. Similar to the smaller blocks of p2

elements considered earlier, the larger blocks of length p2bη−1c are shifted from the

first block by an even amount smaller than η in (6.3). Since each block of p2bη−1c

elements is uniformly distributed throughout the unit square, the Halton sequence

achieves a minimal amount of correlation when the sequence length is a multiple of

p2bη−1c. While the construction of the Halton sequence appears to yield a cyclic cor-

relation between the dimensions with a period of p2bη−1c, it is important to note that

all low-discrepancy sequences are actually infinite, non-repeating sequences. Hence,

the correlation behavior and construction patterns are not truly cyclic; and as such,

will be referred to as near-cyclic in this investigation. It is important to note that

the near-cyclic behavior of this Halton sequence is not limited to just the case of

large twin primes. Similar correlation behavior and construction patterns are found

in a more general case; that is, when two prime bases of the Halton sequence satisfy

|p1 − p2| � p1, p2. Following the same reasoning used to derive (6.3), and ignoring

terms that are relatively small; the expected period of the near-cyclic correlation of

this more general Halton sequence is approximately p1p2

|p1−p2| .

The period of the near-cyclic correlation present in a low-discrepancy sequence

is useful for assessing the physical accuracy of the QMC simulation that uses the

sequence. In an ideal setting, one could achieve great simulation accuracy by simply

stopping the simulation at a low-discrepancy sequence length that corresponds to a

point of minimum magnitude in the correlation near-cycle. However, it is not possible

to accomplish this in practice because each pair of dimensions in a multi-dimensional
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low-discrepancy sequence has a different period for the near-cyclic correlation. These

differences can span many orders of magnitude, which makes finding an ideal se-

quence length at the minimum point of every correlation near-cycle impractical.

Instead, if one wants to ensure that the correlation between dimensions is physically

negligible, one must select a sequence length of the low-discrepancy sequence that

is sufficiently longer than the maximum period of the correlation near-cycle for all

dimension pairs. As the length of the low-discrepancy sequence extends beyond the

period of the maximum near-cycle, the effect of the local subsequence correlation

on the overall correlation becomes smaller. In order to assess if the correlation be-

tween dimensions of a low-discrepancy sequence is sufficiently small, it is useful to

formally introduce the statistical correlation in two dimensions as a measure. For a

sequence with length N , the statistical correlation between two dimensions (x1, x2)

of the sequence is denoted by ρ̃12 which is defined by

ρ̃12(N) =
x′

1x
′
2

(

x′ 2
1 · x′ 2

2

)1/2
(6.4)

where the over bar denotes an average quantity, and the prime denotes the difference

in the quantity from the sample mean.

Rather than use the sample mean and sample variance in the statistical cor-

relation in (6.4), it is more convenient to use the expected mean of the sequence

x1 = x2 = 1
2
, and the expected variance x′ 2

1 = x′ 2
2 = 1

12
. The modification serves to

simplify the resulting analysis without changing the utility of the correlation mea-

sure. This modified statistical correlation is denoted by ρ12, and is defined by

ρ12(N) = 12
N∑

n=1

(
x1,n − 1

2

) (
x2,n − 1

2

)
. (6.5)

For the remainder of the investigation, the modified statistical correlation ρ12 in (6.5)

is simply referred to as the two dimensional correlation. When ρ12 = 0, the dimen-
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sions of the low-discrepancy sequence are said to be uncorrelated, which indicates the

QMC method using the sequence yields a good approximation of the physical process

being simulated. Alternatively, when ρ12 > 0, the dimensions of the low-discrepancy

sequence are said to be positively correlated; and when ρ12 < 0, the dimensions of

the low-discrepancy sequence are said to be negatively correlated. The traditional

definition of the correlation ρ̃12 in (6.4), based on the sample means and variance, is

strictly within the interval [−1, 1]. Here ρ̃12 = ±1 indicates perfect correlation (pos-

itive or negative) between the two dimensions. However, for the simplified definition

of ρ12 in (6.5), it is possible that the two dimensional correlation may be slightly

outside the interval [−1, 1].

After establishing ρ12 in (6.5) as a measure of the correlation present between

dimensions of a low-discrepancy sequence, it is natural to ask, “what values of ρ12

would indicate an uncorrelated sequence?” While there is no definite answer, it is

useful to compare the correlation of a low-discrepancy sequence to that of a random

sequence. The dimensions of a random sequence, by definition, should be uncorre-

lated; that is to say, the expected value of ρ12 is zero. However, the expected value

of the correlation is almost never the actual value measured given a finite sequence

generated at random. From the central limit theorem, the correlation ρ12 of a finite

sequence generated at random is bound with a fixed probability; and the bound de-

creases as O
(
N−1/2

)
with the sequence length N . Specifically for the 95% confidence

interval, the bound on the correlation of a random sequence of N elements in [0, 1)

is given by

Prob

[

|ρ12(N)| ≤ 1.39√
N

]

≈ 0.95. (6.6)

For convenience, let ρmc denote this bound on the correlation of the random sequence,

i.e. ρmc = 1.39/
√

N .
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Figure 6.13: Comparison of the running and local two dimensional correlation ρ12

for the Halton sequence xn = (χ29(n), χ31(n)).

In order to illustrate the near-cyclic behavior of the correlation between dimen-

sions of the Halton sequence, the local two dimensional correlation is found for the

previous example xn =
(
χ29(n), χ31(n)

)
, see Figure 6.12. In particular, the two

dimensional correlation ρ12 is plotted in Figure 6.13 for consecutive blocks of 30 el-

ements of the Halton sequence. The correlation between these 30 elements blocks

is often much stronger than expected for a random sequence of 30 elements, that

is, ρmc ≈ 0.25. The behavior of the local correlation clearly appears cyclic, with a

period that corresponds very well to the estimate, p1p2

|p1−p2| ≈ 450, provided earlier in

this section. Consequently, the running correlation of ρ12 for the overall sequence

length is approximately zero when the sequence length is a multiple of the period of

local correlation. Moreover, as the sequence length increases, the impact of the local

correlation on the overall correlation is shown to steadily decline as expected. In

fact, after the completion of the second near-cycle, it appears that the correlation ρld

between the dimensions of the Halton sequence remains within the 95% confidence
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interval for the correlation ρmc of a random sequence. Thus, for sequence lengths

greater than N ≈ 1000, one can state that the two dimensions of this specific Halton

sequence are at least as uncorrelated as a random sequence.

If one is able to state that the dimensions of a specific low-discrepancy sequence

are at least as uncorrelated as a random sequence of equal length, then there is much

greater confidence that the QMC method using the low-discrepancy sequence is ac-

curately simulating the physical behavior. The calculation of the running correlation

ρld for a low-discrepancy sequence is equivalent to the QMC integral approximation

of the function f(x1, x2) = 12(x1 − 1
2
)(x2 − 1

2
). Given that

∫

I
2
f(x1, x2)dx1dx2 = 0,

and the integrand is of bounded variation in the sense of Hardy and Krause, with

VHK(f) = 24; the Koksma-Hlawka inequality (3.5) provides a bound on the running

correlation ρld. Specifically,

|ρld(N)| ≤ 24D∗
N (x1, . . . ,xN),

where the star discrepancy of the low-discrepancy sequence converges to zero as

O (N−1(log N)2). In contrast, the upper bound on the confidence interval for the

random sequence correlation ρmc converges more slowly as O
(
N−1/2

)
. As a result of

the faster convergence of the low-discrepancy sequence, there must exist a sequence

length Nmin for which the running correlation of the low-discrepancy sequence re-

mains within the 95% confidence interval (6.6) for the correlation of a random se-

quence. Stated more formally,

Nmin = min{N : ρld(n) < ρmc(n) for all n > N}. (6.7)

Thus, for low-discrepancy sequences with a length greater than Nmin, one is able

to state that the dimensions of a specific low-discrepancy sequence are at least as
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Figure 6.14: The minimum sequence length Nmin required for the Halton sequence
constructed with prime bases p1 and p2 to be considered as uncorrelated
as a random sequence.

uncorrelated as a random sequence of equal length. It is interesting to point out that

this correlation check of the low-discrepancy sequence is very similar to the serial

test for pseudo-random number generators [78].

In practice, the Halton sequence in s dimensions is constructed using the small-

est distinct primes p1, . . . , ps as the bases of the van der Corput sequences used to

construct each dimension. Naturally, it follows that the maximum period of the cor-

relation near-cycle due to the twin prime bases also increases with dimension of the

Halton sequence.15 In Figure 6.14, Nmin is found for the largest twin prime bases

that are used to construct a Halton sequence in s dimensions. It is not surprising

then to see an increase in the minimum sequence length Nmin needed for the di-

mensions generated by the twin prime bases to appear as uncorrelated as a random

15For the dimension sizes of the low-discrepancy sequences needed throughout this investigation,
a significant fraction of the prime bases happen to belong to a twin prime pair. Specifically, there
are 16 twin prime pairs among the first 50 primes (64% of all bases); there are 25 twin prime pairs
among the first 100 primes (50% of all bases); and, there are 60 twin prime pairs among the first
300 primes (40% of all bases). In fact, as asserted by the Twin Prime Conjecture, there is most
likely an infinitude of twin prime pairs [185].



325

sequence. It is interesting to note that the increase in Nmin is not solely the result of

an increase in the period of the correlation near-cycle. There is also an increase in

the number of near-cycles needed for the correlation of the low-discrepancy sequence

to reach the level of a random sequence. For the previous example of the Halton

sequence using prime bases p1 = 29 and p2 = 31, given in Figure 6.12, less than

2.3 near-cycles (N ≈ 103) are needed before the correlation between these two di-

mensions remains with the bound ρmc(N) for the random sequence. In contrast, for

the Halton sequence using prime bases p1 = 521 and p2 = 523, which is the largest

twin prime pair used to construct a 100 dimensional sequence, over 650 near-cycles

(N ≈ 108) are necessary to reduce the correlation to the level of ρmc(N).

It is rather unsettling to observe in Figure 6.14, that for a Halton sequence with

more than 64 dimensions, the correlation between some dimension pairs persists for

sequence lengths greater than the N = 223 samples used for the length study in

Section 6.3. However, as noted by Morokoff and Caflisch in [116], the mere presence

of correlation in the low-discrepancy sequence does not necessarily condemn the

QMC method to poor performance; much depends on the actual function being

integrated. If a function is extremely sensitive to correlation (i.e. there exists a large

inter-dependence between the dimensions), then sampling the function with a highly

correlated low-discrepancy sequence is likely to yield poor convergence of the QMC

approximation. For the QMC particle simulation using the Halton sequence, the

largest prime bases are used to generate the last moves of the sample trajectory,

when the simulated particle weight is the smallest. Consequently, the impact of the

correlation between the higher dimensions on the sample trajectory’s contribution

to the conductance probability is much less.

For a free molecular duct geometry L ≤ 4, which corresponds to a low-discrepancy
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sequence dimension s < 100, the most persistent correlation in the Halton sequence

occurs for trajectory moves when the particle weight is less than 10−6. Thus, it is

fair to assume that the effect of the two dimensional Halton sequence is negligible

for the QMC particle simulation when L ≤ 4. However, for the narrowest duct

geometry in this investigation (i.e. L = 10), the most persistent two dimensional

correlation from the first 100 dimensions occurs for trajectory moves where the par-

ticle weight is typically greater than 10−2. Also, consider when the trend in Figure

6.14 is extrapolated to the 300 dimensional Halton sequences required for the QMC

particle simulation of the L = 10 duct geometry. In this case, the maximum length

of the correlation near-cycle between the largest twin prime bases is nearly 2 million

sequence elements. Assuming that the number of near-cycles needed to reach Nmin

continues to increase as well, this correlation will persist over sequence lengths that

are orders of magnitude longer than can be simulated in practice. As the duct ge-

ometry narrows (i.e. L increases), low-discrepancy sequences with larger dimensions

are needed for the QMC particle simulations. Unfortunately, the magnitude and

extent of non-physical correlation between the dimensions also increases. Therefore,

as a consequence of the increase in the correlation between the dimensions of the

low-discrepancy sequence, the QMC particle simulation of the free molecular duct

yields a less accurate representation of the true diffuse wall collision processes that

govern the flow.

Since correlation between the dimensions of the low-discrepancy sequence can

negatively impact the physical accuracy of the QMC particle simulation, it is nat-

ural to consider if it is possible to reduce the correlation by choosing an alternate

sequence construction. An obvious first attempt for the Halton sequence would be

to simply remove one-half of each pair of bases that are twin primes; thus, elim-



327

inating the correlation problem caused by these dimensions. Unfortunately, there

are two problems to such a strategy. First, removing any of the s smallest primes

p1, . . . , ps requires that the replacement prime bases are larger than the originals. As

a consequence, the bound on the star-discrepancy increases for the Halton sequence.

Moreover, the one dimensional projection of the sequence in the dimensions gener-

ated from the larger replacement prime bases is not as evenly distributed as before.

Second, even if there are no twin prime pairs used to generate the dimensions of the

Halton sequence, there are many other combinations for the prime bases that yield

significant correlation between the dimensions.

Recall that the construction pattern in Figure 6.12 is not limited to just twin

primes; in fact, it occurs whenever p1 ≈ p2 and |p1 − p2| � p1, p2. Thus, the cousin

primes (i.e. those of the form p2 − p1 = 4), and the sexy primes16 (i.e. those of the

form p2 − p1 = 6), are also able to produce persistent correlation when used as the

prime bases of the Halton sequence. The minimum sequence length Nmin, used to

measure the extent of the correlation between the dimensions of the low-discrepancy

sequence, appears to increase at the same rate for the twin, cousin, and sexy prime

pairs shown in Figure 6.14. The period of the near-cyclic correlation produced from

these construction patterns is approximately equal to p1p2

|p1−p2| . Hence, the length of

the correlation near-cycle for the cousin and sexy prime pairs is 2 and 3 times shorter,

respectively, than for the twin prime pairs of the same magnitude. Consequently,

for the first 100 dimensions of the Halton sequence, the value of Nmin for the twin

prime pairs is no more than 4 times larger than the value found for the cousin prime

pairs of similar magnitude. Similarly, the value of Nmin for the twin prime pairs is

16The terminology “cousin primes” and “sexy primes” appears in general discussions of prime
numbers found in literature, e.g. [185], and are not due to the author. In particular, the salacious
nomenclature for prime pairs of the form p2−p1 = 6 is attributed to the Latin origins of the number
six.



328

no more than 10 times larger than the value found for the sexy prime pairs of similar

magnitude. While the extent of the two dimensional correlation is not as great as for

the twin prime pairs, it is still quite significant between the cousin and sexy prime

pairs. More specifically, for the largest cousin and sexy prime pairs used to construct

the 100 dimensional Halton sequence, the correlation between these dimensions does

not approach the same level as a random sequence until at least N = 107 elements

have been generated.

Up until now, the only construction pattern considered for the Halton sequence

is the case when the two prime bases are nearly the same magnitude, i.e. p1 ≈ p2.

For this specific case, the sequence points are generated along lines that are parallel

with the line x2 = p1

p2
x1, as illustrated earlier in Figure 6.12. However, this is not

the only construction pattern in the Halton sequence that yields significant two

dimensional correlation. In fact, significant two dimensional correlation can occur

whenever prime bases of the form p2 = a
b
p1 ± c are used in the Halton sequence;

where p1 and p2 are relatively large prime numbers, and a, b, and c are relatively

small integers with gcd(a, b) = 1. One example of this type of construction pattern

occurs when the dimensions of the Halton sequence are generated by a pair of Sophie

Germain primes; that is, two primes p1 and p2 that share the property p2 = 2p1 + 1.

When a pair of Sophie Germain primes are used as the bases of a two dimensional

Halton sequence, the elements are generated along lines that are nearly parallel to

the line x2 = 1
2
x1 (mod 1). More generally, if two prime bases of the Halton sequence

have the form p2 = a
b
p1 ± c, then the elements are generated along lines that are

nearly parallel to the line x2 = b
a
x1 (mod 1). It is interesting to note, that the

construction pattern for the Sophie Germain primes yields a correlation near-cycle

which is approximately twice that of the cousin primes, when the largest prime of
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each pair is the same magnitude. However, the magnitude of the local correlation

is only half as large for the Sophie Germain primes. Consequently, for dimensions

of the Halton sequence constructed from either a pair of cousin primes, or a pair of

Sophie Germain primes, the extent of the correlation Nmin between these dimension

pairs is the nearly same, as indicated in Figure 6.14.

It is possible to select the prime bases used in the construction of the Halton

sequence such that no two bases satisfy any of the conditions plotted in Figure 6.14.

However, eliminating these prime pairs, which are all shown to produce significant

correlation between the dimensions of the Halton sequence, forces the use of exceed-

ingly large prime bases instead. While the extent of two dimensional correlation is

reduced in this case, it comes at the high price of creating a poor distribution of

elements in each one dimensional projection of the Halton sequence. Thus, for the

Halton sequence, it does not seem practical to avoid the two dimensional correlation

problems by simply removing some of the prime bases. In terms of the accuracy of

the QMC particle simulation, the surest way to control the negative effects of a cor-

related low-discrepancy sequence is to collect enough samples such that the overall

correlation of the sequence is on the same order as a random sequence. If a sufficient

number of samples is collected, i.e. N > Nmin, then the QMC particle simulation

is expected to be a physically accurate approximation to the problem, at least with

regards to capturing the correct behavior of the diffuse wall collisions.

6.4.2 Correlation between two dimensions of the BCF-3 sequence

It is important to note that the correlation problem is not just limited to the

Halton sequence. In fact, as will be shown next, it is possible to find similarly

persistent two dimensional correlation from the construction patterns of the other
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three low-discrepancy sequences used in this investigation. For example, the BCF-

3 sequence in Figure 6.15(a) shows a construction pattern that exists when the

fractional parts of the irrational numbers used to generate the dimensions are very

close together. This construction pattern is similar to that of the Halton sequence

with twin prime bases; and as such, it is capable of producing significant correlation

in the BCF-3 sequence as well. Before proceeding, it should be noted that the

following analysis of the correlation present in the BCF-3 sequence applies to all

Weyl-Richtmyer low-discrepancy sequences.

To discuss the correlation in the BCF-3 sequence more formally, consider two

dimensions (x1, x2) of the sequence generated by the irrational numbers z1 and z2.

Next, let δ denote the difference between the fractional part of the irrational numbers;

hence,

δ =
∣
∣[z1] − [z2]

∣
∣, (6.8)

where the square brackets denote the fractional part of the argument, i.e. [x] =

x − bxc. The first N elements of the BCF-3 sequence are then found to be evenly

distributed in a narrow band along the line x1 = x2 when N � δ−1, as illustrated

in Figure 6.15(a). The width of this band grows with the length N of the BCF-3

sequence; and if measured in either the x1 or x2 direction, the width of the band

is equal to δ · N . In addition, the band of sequence points appears below the line

x1 = x2 when [z1] > [z2]; and conversely, the band appears above the line when

[z1] < [z2].

As the length N of the BCF-3 sequence increases, the width of the band contin-

ues to increase until N = bδ−1c; at which point the band covers the entire domain.

Furthermore, as the band widens, the points of the BCF-3 sequence still remain

evenly distributed within the band. Thus, when N = bδ−1c, the BCF-3 sequence
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Figure 6.15: Specific examples of the two dimensional construction patterns that
can produce significant correlation between the dimensions of the low-
discrepancy sequences: (a) the BCF-3 sequence; (b) the Faure sequence
in base 31; (c) the Niederreiter sequence in base 2 with the most signifi-
cant bit of each dimension correlated; and (d) the Niederreiter sequence
in base 2 with the 2nd most significant bit correlated with the 3rd most
significant bit.
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is evenly distributed throughout the unit square [0, 1)2, and the running correlation

ρ12(N) between the two dimensions, as defined in (6.5), is nearly zero. The general

construction pattern described in the first half of this section for the Halton sequence

(see Figure 6.12) is essentially the same as the BCF-3 sequence when δ << 1. Specif-

ically, each successive block of bδ−1c elements of the BCF-3 sequence repeats nearly

the same construction pattern as the first block. The only difference is that each new

block of bδ−1c elements is translated by a small amount in order to prevent any du-

plicate sample points, and to continue the even distribution of the sequence elements

throughout the domain. Therefore, based on the same reasoning previously used for

the Halton sequence, the period of the correlation near-cycle of the two dimensional

BCF-3 sequence is approximately bδ−1c, when δ � 1.

For the construction pattern illustrated in Figure 6.15(a), the maximum length

of the correlation near-cycle is the inverse of the closest distance between any two

fractional parts used to construct a multi-dimensional BCF-3 sequence. Recall from

Chapter IV that each dimension of the BCF-3 sequence is generated from the frac-

tional part of a distinct irrational number, which is restricted to the unit inter-

val [0, 1). Thus, as the dimension of the BCF-3 sequence increases, these distinct

fractional parts naturally have less distance between them. As a consequence, the

maximum period of the correlation near-cycle must also increase. In Table 6.1,

the maximum period of the correlation near-cycle is given for the BCF-3 sequence.

Specifically, it is found by considering the two dimensional correlation between every

pair of coordinates that satisfy the condition δ << 1 in the 100 and 300 dimensional

sequences. Using Figure 6.6 as a point of reference, the 100 and 300 dimensional

low-discrepancy sequences are the necessary sizes to perform the QMC particle sim-

ulation for a free molecular duct with a height to length ratio L approximately equal
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Correlation Max Near-period
Sequence Pattern Near-period s = 100 s = 300

Halton |p1 − p2| � p1, p2
p1p2

|p1−p2| 1.4·105 1.9·106

BCF-3
∣
∣[z1] − [z2]

∣
∣� 1

∣
∣[z1] − [z2]

∣
∣
−1

1.1·105 4.1·106

Faure base q – q2 1.0·104 9.4·104

Niederreitera base 2 w1,1 ∼ w2,1 2α+1 1.3·105 2.1·106

aHere α is the number of leading order bits that are identical between the two 32-
bit computer words, w1,1 and w2,1, used to generate the most significant bit of the two
dimensions of the Niederreiter sequence in base 2. If w1,1 and w2,1 are represented as
unsigned integers, i.e. 0 ≤ w1,1, w2,1 < 232, then α = 31 − blog2(w1,1 ⊕ w2,1)c, where ⊕
denotes the bit-wise XOR operation.

Table 6.1: The period of the near-cyclic construction patterns illustrated in Figure
6.17. The longest near-period is found for each example assuming the
low-discrepancy sequence has 100 and 300 dimensions.

to 4 and 10, respectively. As expected, when the dimension of the sequence increases

from 100 to 300, the period of the correlation near-cycle in the BCF-3 sequence

increases nearly 40-fold from 1.1 · 105 to 4.1 · 106.

The length of the correlation near-cycle found for the BCF-3 sequence may be

somewhat surprising, especially if one expects the fractional parts of the irrational

numbers used to construct the sequence to be more or less uniformly distributed

in the unit interval. If the fractional parts were in fact uniformly distributed, the

resulting period of the correlation near-cycle would be orders of magnitude smaller

than in Table 6.1. This is not the case because the BCF-3 sequence is specially

constructed from irrational numbers represented by periodic continued fractions that

only contain the coefficients 1, 2, and 3. Recall from Section 4.1 (see also [75, 131])

that the real numbers in the interval [0, 1) have continued fraction representations,

both finite and infinite, which may contain any positive integer as a coefficient.

Thus, the possible values for the fractional parts of the irrational numbers used

to construct the BCF-3 sequence are restricted to a very small subset of the unit
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interval. Consequently, the fractional parts tend to be much more closely spaced

when compared to a more uniform distribution among all the real numbers in the

interval [0, 1). This is most noticeable when the continued fraction representations of

the irrational numbers are very similar. To illustrate this particular case, consider the

following irrational numbers that appear in the construction of the 300 dimensional

BCF-3 sequence:

〈3〉 = 3.302775637 . . . (6.9)

〈2, 3, 3, 3〉 = 2.302677894 . . .

〈2, 3, 3, 3, 3〉 = 2.302784597 . . .

〈2, 3, 3, 3, 3, 3〉 = 2.302774816 . . .

〈1, 3, 3, 3, 3, 3, 3〉 = 1.302775882 . . . . (6.10)

Note that the difference δ between the fractional parts in (6.9) and (6.10) is approx-

imately equal to 2.4 ·10−7, which yields the maximum near-period given in Table 6.1

for the BCF-3 sequence.

The construction pattern illustrated in Figure 6.15(a) is not the only potential

source of significant two dimensional correlation in the BCF-3 sequence. Similar to

the Halton sequence using a pair of Sophie Germain prime bases, it is possible for

the initial elements of the BCF-3 sequence to be restricted to a band parallel to the

line x2 = 1
2
x1 (mod 1) instead of x2 = x1. This type of construction pattern occurs

between two dimensions of the BCF-3 sequence that are generated from irrational

numbers z1 and z2 with the property [z2] ≈ 1
2
[z1]. In order to expand this idea to

other construction patterns, define the generalized difference function δ(a, b) for the

irrational numbers z1 and z2 such that

δ(a, b) = |az1 − bz2 − n|, (6.11)
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where a and b are non-zero integers, and n is the nearest integer to az1−bz2. Note that

δ(1, 1) is equivalent to the difference in the fractional parts defined earlier in (6.8). If

the generalized difference δ(a, b) is very small, it implies that the irrational number z1

is closely approximated by a rational multiple of z2; and vice-versa. Even though, z1

and z2 are linearly independent over the rationals, when δ(a, b) � 1, their behavior

constructing the BCF-3 sequence is effectively the same, which results in significant

and persistent correlation between the dimensions. In the general case, when a and

b are relatively small, and δ(a, b) � 1, the construction pattern restricts the initial

placement of the BCF-3 sequence elements to a narrow band parallel to x2 = a
b
x1

(mod 1). It is interesting to note that Richtmyer in [148] proves, that the error in the

QMC integral approximation using any Weyl-Richtmyer sequence depends, at least

in part, on the generalized difference δ(a, b) in (6.11). More specifically, if a, b, and

δ(a, b) are all relatively small, then the error on the QMC integral approximation

is relatively large. However, these are the same conditions that produce significant

correlation between the dimensions of the BCF-3 sequence. While not rigorous, it

is reassuring that the observed connection between the low-discrepancy sequence

correlation and the performance loss of the QMC particle simulation is consistent

with the theoretical results of Richtmyer [148].

6.4.3 Correlation between two dimensions of the Faure sequence

Unlike the other three low-discrepancy sequences, it is difficult to determine which

dimension pairs of the Faure sequence are likely to have significant correlation by

only considering the constructive elements of each dimension. It is possible to gain

some insight into the construction patterns using the definition of a (t, s)-sequence

(see [126, 127]) since the Faure sequence is classified as a (0, s)-sequence. From the
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definition of the (0, s)-sequence in base q, it is known that each block of q2 consecutive

sequence elements has exactly one point in each of the elementary intervals of the

form [m
q
, m+1

q
)× [n

q
, n+1

q
), for 0 ≤ n,m < q. Hence, each block of q2 elements is evenly

distributed throughout [0, 1)2. Based on the same reasoning as the Halton sequence,

the correlation near-cycle for the Faure sequence in base q is not greater than q2. It

should be noted that this period for the correlation near-cycle is determined without

specifying the sequence dimensions; and as such, the result should apply to any pair

of dimensions from the Faure sequence. Although not a rigorous verification, the

near-period for the two dimensional correlation of the Faure sequence is observed

to be less than or equal to q2 for all the computational experiments performed in

this investigation. In comparison to the other three low-discrepancy sequence, the

period of the correlation near-cycle is typically smallest for the Faure sequence. More

specifically, the maximum period of the correlation near-cycle present in the 100 and

300 dimensional Faure sequences is 10 to 20 times smaller than any of the other

sequences shown in Table 6.1.

Taken as a whole, each successive block of q2 elements has approximately the same

pattern as the original block; however, the order in which the individual points are

added to the sequence is a permutation of the original block. As with the other low-

discrepancy sequences, each successive block of the Faure sequence is also translated

by a small amount to avoid any duplicate sample points, and to continue evenly

distributing the sequence elements throughout the domain. While many dimension

pairs of a Faure sequence in base q have a maximum correlation near-period of q2,

it is this translation amount of each block of q2 elements that ultimately determines

the magnitude and extent of the two dimensional correlation. It is difficult, however,

to determine the translation amount of each successive block of q2 elements directly
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from the constructive elements of each dimension. Because the ordering of each

successive block of q2 elements is permuted, it is perhaps easiest to assess the impact

of the translation amount on the correlation by simply plotting the blocks of the

Faure sequence. Unfortunately, given the need for human oversight, the graphical

approach is only practical when evaluating a few specific dimensions of a given Faure

sequence.

In order to determine which dimensions of a Faure sequence produce the most

significant correlation, a brute force approach must be adopted. Specifically, the

minimum sequence length Nmin (6.7), necessary for the low-discrepancy sequence

to reach the same level of correlation as a random sequence, is calculated for every

possible dimension pair of the Faure sequence in a given base. The most persistent

two dimensional correlation in the Faure sequence is then simply found by searching

for the dimension pair with the largest value of Nmin. While an exhaustive search

is almost never the first choice for a numerical method, the computational cost is

reasonable17 when the base of the Faure sequence q ≤ 167. As an example, consider

the correlation between all the dimensions of the Faure sequence in base 31, the

largest value of Nmin then occurs between the 5th and 6th dimensions. The initial

construction pattern of this example is illustrated in Figure 6.15(b).18 However, it

should be noted that this pattern is not unique, and appears in a similar form for all

pairs of consecutive dimensions. In order to understand why the correlation between

the 5th and 6th dimensions is the most significant, the first 4 blocks of 312 elements

are plotted in Figure 6.16(a). The amount of translation between successive blocks

17In this context, given the patience of the author and the relative importance of the data to the
overall investigation, “reasonable” means one hour of computation time on a 3.06 GHz Intel Xeon
processor.

18Additional graphical examples are presented by Morokoff and Caflisch in [116] for the construc-
tion patterns that yield significant correlation between the dimensions of the Faure sequence.
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Figure 6.16: Two dimensional construction patterns that appear after the first N =
3844 elements of the Faure sequence in base 31: (a) dimensions 5 and
6 (largest value of Nmin); and (b) dimensions 4 and 15 (smallest value
of Nmin).

is barely discernible with the naked eye; the slightly oval marks in Figure 6.16(a) are

actually four very closely spaced circles. It is a direct consequence of this very small

translation of the blocks that the correlation between the 5th and 6th dimensions of

the Faure sequence in base 31 is the most significant. For comparison, the 4th and 15th

dimensions of the Faure sequence in base 31 (which yield the smallest value of Nmin),

are plotted as well in Figure 6.16(b). In contrast to the 5th and 6th dimensions, the

amount of translation between consecutive blocks of 312 elements is much greater,

which produces a more even distribution after the same number of elements.

Given the fact that the generation of the Faure sequence is entirely deterministic,

there is a direct connection between the constructive elements used to generate each

dimension and the construction patterns that yield significant correlation. Although,

unlike the Halton, BCF-3 and Niederreiter sequences, it is not readily apparent

which dimension pairs of the Faure sequence are most likely to produce significant
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correlation. The original goal of the exhaustive search for the largest Nmin was

to provide enough insight to determine this connection; however, it never became

obvious to the author during the course of this investigation. The exhaustive search

does provide the following observation about the correlation between the dimensions

of the Faure sequence, but it does not provide any reasons as to why. For all prime

bases 11 ≤ q ≤ 191, the most persistent correlation (i.e. the largest value of Nmin),

occurs between consecutive dimensions of the Faure sequence. Unfortunately, there

is not an apparent pattern between which consecutive dimensions lead to significant

correlation and the base q of the Faure sequence. When the Faure base q is relatively

small, there does appear to be some initial bias as to which dimension pairs produce

the most significant correlation. Specifically, the largest value of Nmin tends to occur

between consecutive dimensions from either the first several or last several dimensions

generated for a q-dimensional Faure sequence in base q, when q ≤ 109. However,

this initial bias is much less noticeable if all the prime bases q are considered from

the range 11 ≤ q ≤ 191.

6.4.4 Correlation between two dimensions of the Niederreiter sequence
in base 2

For the Niederreiter sequence in base 2, it is easier to discuss the construction

patterns in terms of the intervals in which the sequence elements are found rather

than their actual location. In particular, significant correlation occurs between di-

mensions of the sequence when a large number of the initial elements are exclusively

found in the shaded intervals illustrated in Figure 6.15(c). Note that any point within

this union of intervals, defined by

I11 = [0, 1
2
) × [0, 1

2
) ∪ [1

2
, 1) × [1

2
, 1),
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makes a positive contribution to the sum in (6.5) for the running correlation ρ12(N).

Hence, if all the initial elements of the Niederreiter sequence in base 2 are restricted

to I11, then ρ12 > 0. Since all the elements in I11 are positively correlated, the

magnitude of ρ12 in this case is typically quite large. In fact, if the sequence elements

are assumed to be uniformly distributed throughout I11, then the expected value for

the running correlation is ρ12 = 3
4
.

The specific pattern for this type of construction of the Niederreiter sequence

in base 2 is as follows. The first 2α elements, where α is a positive integer to be

defined later, of the sequence are more or less evenly distributed in the region I11.

At this point in the construction, the Niederreiter sequence is strongly correlated

with ρ12(N) ≈ 3
4

at N = 2α (based on the assumption of a uniform distribution of

points). The next block of 2α elements are similarly distributed in I11\[0, 1)2; that

is, the unshaded intervals shown in Figure 6.15. As a consequence of this type of

construction pattern, the first 2α+1 elements of the Niederreiter sequence are evenly

distributed throughout the unit square; and the running correlation ρ12(N) is ap-

proximately zero at N = 2α+1. This pattern then continues for each successive block

of 2α+1 elements. Similar to the construction patterns considered for the other low-

discrepancy sequences, each subsequent block of 2α+1 elements is translated slightly

from all the previous elements in order to continue the even distribution elements

for the sequence. The only difference for the Niederreiter sequence in base 2 is that

the ordering within the blocks may reverse occasionally. In particular, the first 2α

elements of each of these blocks may be restricted to either the positively correlated

region I11, or the negatively correlated region I11\[0, 1)2 depending on the block

number. Whichever region the first 2α elements of each block occupy, the remaining

2α elements always occupy the opposite region. Therefore, for this type of construc-
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tion pattern of the Niederreiter sequence in base 2, the period of the correlation

near-cycle is 2α+1.

In order to understand exactly how the Niederreiter sequence in base 2 is able to

produce the construction patterns illustrated in Figure 6.15, one must return to the

actual mathematical process used to generate the general sequence. Each dimension

of the Niederreiter sequence in base q can be generated by the following matrix-vector

multiplication

yn = A~ξq(n), (6.12)

where all the addition and multiplication operations are defined over the finite field

Fq. The elements aij ∈ Fq of the matrix A = [aij] are determined by a formal Laurent

series of certain rational functions that depend on the irreducible polynomial in Fq[x]

used to generate each dimension. The exact definition of aij can be found in Appendix

F and [19, 127]. The vector ~ξq(n) is the base q representation of the integer n defined

in Appendix A. Note that the least significant digits of the base q representation of

n corresponds to the first elements of the vector ~ξq(n). That is, if n = . . . d3d2d1d0|q

is the base q representation of n with digits 0 ≤ d0, d1, . . . ≤ q − 1, then ξ1,q(n) = d0,

ξ2,q(n) = d1, . . . and so forth. The vector yn = (y1,n, y2,n, . . .) that results from the

matrix-vector multiplication in (6.12) is then used to generate the nth element of this

dimension of Niederreiter sequence in base q, which is denoted by xn. Specifically,

xn =
∞∑

i=1

yi,n

qi
. (6.13)

The process outlined here is then repeated for each dimension of the Niederreiter

sequence using the same vector ~ξq(n); however, a different irreducible polynomial in

Fq[x] is used to produce a unique A matrix for each dimension.

Although this investigation is only concerned with the correlation between the
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dimensions of the Niederreiter sequence in base 2, the following analysis may be

extended to any valid base of the Niederreiter sequence. For the special base 2 case,

the components of the matrix and vectors in (6.12) are in the finite field F2; that

is, the components are either 0 or 1. Consequently, it is possible to treat these

components of yn and ~ξ2(n) in (6.12) as individual bits and concatenate them into

a single computer word for each vector. Similarly, the components of the rows (or

columns) of the matrix A in (6.12) can be combined to form a single computer word

for each row (or column). In addition to the reduction in the required memory,

there is also a tremendous computational savings that occurs when the bits are

concatenated in this manner. Details of this savings are discussed in Section 4.3

and by Bratley et. al. in [19]. Typically, the columns of the matrix A are treated as

single computer words to improve the actual algorithm used to generate the sequence.

However, for the correlation discussion here, the rows of the matrix are treated

as single computer words instead. In particular, define wi,j as the computer word

representing the components of the jth row in the matrix A used to generate the ith

dimensions of the Niederreiter sequence in base 2. Also, define un as the computer

word representing the components of ~ξ2(n). Note that ~ξ2(n) is essentially a bitwise

representation of the integer n. Hence, the bits in the computer word un are simply

reversed from the bits in the base 2 representation of the integer n; that is, the least

significant bit of n is the now most significant bit of un.

While the process for generating the Niederreiter sequence is defined over an in-

finite dimensional vector space, it is necessary in practice to limit matrix and vector

operations in (6.12) and 6.13) to a finite dimensional space. For the Niederreiter

sequence in base 2 used in this investigation, the vector space is limited to 32 dimen-

sions, which is the common practice. This allows for the linear system in (6.12) to be
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represented with standard 32-bit computer words common to all modern program-

ming languages. Note that this also limits the maximum sequence length that may

be generated to N < 232. Using this representation, each component of the vector

yn in (6.12) can be calculated by a single bit-wise AND operation.19 Specifically,

for the ith dimension of the nth element of the Niederreiter sequence in base 2, the

vector yn = (y1,n, . . . , y32,n) is calculated by

yj,n = P (wi,j ⊗ un), (6.14)

where ⊗ denotes the bit-wise AND operation, and P is the parity of the argument.

Let the function N1(x) denote the number of bits equal to one in the base 2 rep-

resentation of the integer x. The parity of a binary computer word x is then given

by

P (x) = mod(N1(x), 2).

That is, P (x) = 0 if there is an even number of 1-bits in x, and P (x) = 1 if there is

an odd number of 1-bits in x.

Returning to the problem of correlation, consider any two dimensions of a multi-

dimensional Niederreiter sequence in base 2. For simplicity, refer to these dimensions

as 1 and 2, and allow the corresponding matrix and vector operations given in (6.12)

and (6.14) to contain the dimension number as a superscript in parentheses. Now

assume that the first rows of the matrices A(1) and A(2) used to generate their respec-

tive dimensions are identical; that is, w1,1 = w2,1. In this case, the first components

of the vectors y
(1)
n and y

(2)
n are the same after the matrix-vector multiplication in

(6.12). Note from (6.13) that the first component of yn makes the most significant

contribution to the actual location of the sequence coordinate xn; specifically, it de-

19Note that addition over the finite field F2 is equivalent to the XOR operation (exclusive-or),
and multiplication over F2 is equivalent to the AND operation.
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termines if the xn < 1
2

or xn ≥ 1
2
. Hence, if y

(1)
1,n = y

(2)
1,n = 0, then the location

of the sequence element is restricted to the interval [0, 1
2
) × [0, 1

2
). Conversely, if

y
(1)
1,n = y

(2)
1,n = 1, then the location of the sequence element is restricted to the interval

[1
2
, 1)× [1

2
, 1). Therefore, all the sequence elements are restricted to the set I11, which

corresponds to the shaded region in the the construction pattern example given in

Figure 6.15(c).

For most implementations of the Niederreiter sequence in base 2, the first rows

w1,1 and w2,1 of the A matrices are never exactly the same. It is only possible for all

32 components to be the same if the irreducible polynomials used to construct the A

matrices are of degree greater than 15; and polynomials this large are never used in

practice. However, for any multi-dimensional Niederreiter sequence in base 2, there

always exists a pair of dimensions where one or more of the most significant bits in

w1,1 and w2,1 are the same. As a notational convenience, the relationship a ∼ b is

used to denote that the most significant bits of the two computer words a and b are

the same. Let α denote the number of the most significant bits of w1,1 and w2,1 that

are identical. Assuming the computer words are stored as standard IEEE unsigned

32-bit integers, α can be defined mathematically by

α = 31 − blog2(w1,1 ⊕ w2,1)c,

where ⊕ denotes the bit-wise XOR operation. If the most significant α bits of w1,1

and w2,1 are the same, then y
(1)
1,n = y

(2)
1,n for all n < 2α; which implies that these

sequence elements are restricted to I11. Note that when n < 2α, after excluding the

most significant α bits, the remaining bits of un in (6.14) are all zero. Thus, any

differences between w1,1 and w2,1 that may occur after the most significant α bits

have no effect on the calculation of y
(1)
1,n and y

(2)
1,n when n < 2α.
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By definition, the (α+1)th most significant bit must be different between w1,1 and

w2,1. Hence, w1,1 ⊗ un and w2,1 ⊗ un must have opposite parity when 2α ≤ n < 2α+1.

If the parity is opposite, then by (6.14), y
(1)
1,n 6= y

(2)
1,n. This implies, that either x

(1)
n < 1

2

and x
(2)
n ≥ 1

2
, or vice-versa, when 2α ≤ n < 2α+1. Consequently, all the sequence

elements in the range 2α ≤ n < 2α+1 are restricted to the set I11\[0, 1)2, which

corresponds to the unshaded region in the the construction pattern example given

in Figure 6.15(c). The first block of 2α elements are distributed throughout the

negatively-correlated region I11, and the second block of 2α elements are distributed

throughout the negatively-correlated region I11\[0, 1)2. Therefore, the period of the

correlation near-cycle for this construction pattern is 2α+1 as described earlier.

As the dimension of the Niederreiter sequence in base 2 increases, the maximum

number of leading order bits α that are identical between any two dimensions also

increases. This is true for all the computer words representing the rows of the the A

matrix in (6.12), not just the first row. Without considering the actual construction

of the A matrix, a lower bound on the growth of α can be established. Based on

the limit of the number of unique bit combinations possible for the computer words,

α ≥ dlog2 se − 1 for an s-dimensional Niederreiter sequence in base 2. However, the

true growth of α for the computer words representing the first row of the A matrices

(i.e. w1,1 ∼ w2,1) is much larger than this lower bound. In fact, for a 100 dimensional

Niederreiter sequence, α = 16 is the largest value found after checking every possible

pair of dimensions for this construction pattern. Similarly, for a 300 dimensional

Niederreiter sequence, α = 20 is the largest value found. The maximum period of

the correlation near-cycle associated with this construction pattern (w1,1 ∼ w2,1)

is 1.3 · 105 and 2.1 · 106, for the 100 and 300 dimensional sequences, respectively.

These period lengths for the Niederreiter sequence are of similar magnitude to the
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correlation near-periods of the Halton and BCF-3 sequences, as indicated in Table

6.1.

It is interesting to note that the leading zeros correction for the Niederreiter

sequence in base 2, suggested by Bratley et. al. in [19] and adopted here in this

investigation, helps to reduce the value of α. The leading zeros correction modifies

some of the components in the A matrix (6.12) used to generate each dimension

without affecting the asymptotic convergence of the star-discrepancy of the sequence.

The goal of the leading zeros correction in [19] is to help eliminate any correlation

problems at the beginning of the sequence; equivalently, this reduces the value of

α. If not for this correction, the number of significant bits α that are identical

between the rows of the A matrices would be much higher. Consequently, there

would also be a much longer period in this case for the correlation near-cycle of the

Niederreiter sequence in base 2. As noted in [19], there is actually some flexibility

in the implementation of the leading zeros correction. In fact, it may be possible

to devise a modified leading zeros correction that is capable of further reducing the

value of α. Such a strategy is very similar to the additional uniformity condition

proposed by Sobol’ in [162] for the direction numbers used to generate the Sobol’

sequence.

Up until now, the only construction pattern considered for the Niederreiter se-

quence in base 2 is when w1,1 ∼ w2,1 (see Figure 6.15(c)). While the construction

pattern for w1,1 ∼ w2,1 produces significant correlation between the two dimensions

of the sequence, it is by no means the only known construction pattern to do so.

Whenever there is a large number of significant bits that are the same between any

of the first few rows of the A matrices, persistent correlation can exist between the

corresponding dimensions. In order to visualize the construction pattern in this more
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general case, Figure 6.15(d) shows the construction pattern that results when the 2nd

and 3rd rows of the A matrices have the same significant bits (i.e. w1,2 ∼ w2,3). For

convenience, let αij denote the number of significant bits that are identical between

w1,i - the ith row of one A matrix, and w2,j - the jth row of the other A matrix.

Similar to the w1,1 ∼ w2,1 case, when w1,2 ∼ w2,3, the first 2α23 sequence elements are

restricted to the shaded region, and the next 2α23 sequence elements are restricted to

the unshaded region in Figure 6.15(d). It is possible that the value of αij for the con-

struction pattern w1,i ∼ w2,j (1 < i, j ≤ 32) is actually greater than the value of α11,

especially when the row numbers i and j are large. Hence, the resulting construction

pattern for these cases will yield a longer period for the correlation near-cycle than

the w1,1 ∼ w2,1 example given in Table 6.1.

It is important to note that as the row numbers i and j increase, the checkerboard

construction pattern becomes finer, which produces a more even distribution of points

as illustrated in Figure 6.15. In order to estimate the impact of this finer construction

pattern on the correlation, one may assume that the sequence elements are uniformly

distributed throughout the shaded regions in Figure 6.15. Under this assumption,

the running correlation defined in (6.5) has an expected value of ρ12 = 3
4

for the

w1,1 ∼ w2,1 construction pattern; and ρ12 = 3
32

for the w1,2 ∼ w2,3 construction

pattern. In general, the running correlation ρ12 decreases when the row numbers i

and j increase for the w1,i ∼ w2,j construction pattern. While the correlation near-

cycle may be longer for the w1,i ∼ w2,j case when 1 < i, j ≤ 32; its overall impact

may not be as significant as the w1,1 ∼ w2,1 construction pattern.

There is a key difference between the construction pattern of the Niederreiter

sequence in base 2 when w1,1 ∼ w2,1, and the construction patterns of the other

low-discrepancy sequences illustrated in Figures 6.12 and 6.15. The first half of
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each correlation near-cycle in this construction of the Niederreiter sequence makes

an exclusively positive (or negative) contribution to the sum in (6.5) for the run-

ning correlation ρ12(N). In contrast, the first half of the correlation near-cycles for

any of the other sequences makes both positive and negative contributions to the

running correlation. Thus, the w1,1 ∼ w2,1 construction pattern of the Niederreiter

sequence in base 2 initially produces a much larger running correlation than the other

sequences. As a direct consequence, many more near-cycles must be completed in or-

der to break up this stronger form of correlation present in the Niederreiter sequence

in base 2.

6.4.5 The extent of the correlation present in the low-discrepancy se-
quences

In order to better evaluate the impact of correlation on the QMC particle sim-

ulations, the minimum sequence length Nmin (6.7), at which a given sequence is

considered as uncorrelated as a random sequence, is calculated for each of the low-

discrepancy sequences tested in this investigation. More specifically, the largest

value of Nmin is found among the first s ≤ 100 dimensions of the low-discrepancy

sequences, as shown in Figure 6.17. It is important to note that the largest value of

Nmin in Figure 6.17 is found by considering only one specific construction pattern

for the Halton, BCF-3 and Niederreiter sequences. In particular, the largest value

of Nmin for the Halton sequence is found by considering dimension pairs generated

from twin prime bases, an illustration of the construction pattern is found in Figure

6.12. Moreover, it is this construction pattern that consistently produces the greatest

correlation between all Halton dimension pairs previously illustrated in Figure 6.14.

For the BCF-3 sequence, only the construction pattern illustrated in Figure 6.15(a)

is considered; that is, when the fractional parts of the irrational numbers used to
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Figure 6.17: The extent of the two dimensional correlation present among the first
100 dimensions of the low-discrepancy sequences.

generate each dimension are nearly the same. Similarly, for the Niederreiter sequence

in base 2, only the construction pattern illustrated in Figure 6.15(c) is considered;

that is, when the words w1,1 and w2,1 used to generate the most significant bit of each

dimension are nearly the same. As discussed earlier, it is difficult to determine which

dimension pairs and construction patterns of the Faure sequence are likely to yield

significant correlation. Thus, the largest value of Nmin is found by an exhaustive

search of all dimension pairs of a q-dimensional Faure sequence in base q, where the

prime q ≤ 101.

It appears from Figure 6.17 that the extent of the correlation is consistently the

least between the dimensions of the Faure sequence when compared to the other low-

discrepancy sequences. In particular, for all prime bases q ≤ 97, the largest value of

Nmin found between any two dimensions of a q-dimensional Faure sequence is less

than 2 ·106. By contrast, the extent of the correlation is typically the greatest for the

Niederreiter sequence in base 2. More specifically, the largest value of Nmin ≈ 109

is found for the correlation between the first 75 dimensions of the sequence. The
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fact that the Niederreiter sequence in base 2 yields the largest values of Nmin is

consistent with the earlier observations for the construction pattern. In particular,

this Niederreiter sequence yields the strongest initial correlation, and many more

correlation near-cycles must be completed before it is broken up. The minimum

sequence lengths Nmin of the Halton and BCF-3 sequences tend to be bounded by

the other two sequences; and both show a similar increase in Nmin with the sequence

dimension s. In fact, the Halton and BCF-3 sequences both attain a maximum value

of Nmin ≈ 108 within the first 100 dimensions of the respective sequence, although

this maximum occurs much earlier for the BCF-3 sequence (s = 60) as compared to

the Halton sequence (s = 99).

The extent of the correlation present between the dimension pairs of the low-

discrepancy sequences in Figure 6.17 does introduce some doubt into the physical

accuracy of the QMC particle simulations. However, in spite of this correlation,

the actual results in Section 6.3 for the QMC particle simulation clearly show sig-

nificant gains in both speed and accuracy when the sequence dimension s < 100.

As Morokoff and Caflisch note in [116], the mere presence of correlation in a low-

discrepancy sequence does not prevent a QMC method using the sequence from

producing an accurate approximation. The amount of accuracy lost by the presence

of correlation in a low-discrepancy sequence used by a QMC method ultimately de-

pends on the physical problem being simulated. As an extreme example, consider

the QMC integration of a function f(x), with x ∈ I
s
, defined as a simple sum of the

coordinates; that is, f(x) = x1 + · · · + xs. Since the integral of f(x) is equivalent to

the sum of s one dimensional integrals, any correlation between the dimensions of

the low-discrepancy sequence used in the QMC method has no effect on the accu-

racy if each dimension is well-distributed in [0, 1). Conversely, if there is substantial
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inter-dependence among the dimensions of the function being integrated, then any

correlation in the low-discrepancy sequence is likely to produce a physically inaccu-

rate QMC approximation. It is important to remember that the Koksma-Hlawka

inequality ensures that correlation between the dimensions of the low-discrepancy

sequences, and the corresponding problems with physical accuracy, do not last for-

ever. Once the sequence length is sufficiently long, all the dimension pairs of a

low-discrepancy sequence become as uncorrelated as a random sequence. However,

this sequence length may be too long to simulate in practice.

For the QMC simulation of the free molecular conductance probability, signifi-

cant correlation in the low-discrepancy sequence typically occurs between the higher

dimensions. The higher dimensions of the physical problem correspond to the wall

collisions that occur when the particle weight is lower; and hence, the impact on

the sample trajectory score is smaller. For a free molecular duct geometry L ≤ 4

(i.e. problem dimension s < 100), there are only a few dimension pairs among the

low-discrepancy sequences in Figure 6.17 that have a value Nmin greater than the

number of samples collected for the QMC simulation. Moreover, these few correlated

dimension pairs correspond to particle collisions when the particle weight is near the

truncation weight. It is not surprising then to see that the QMC particle simulations

are quite accurate when L ≤ 4. Unfortunately, for a free molecular duct geometry

L = 10 (with a problem dimension s ≈ 300), there are many dimension pairs that

remain significantly correlated well beyond the number of samples collected for the

QMC simulation. Worse yet, the weight of the simulated particle at these correlated

dimensions is typically greater than 1% of the initial weight. Hence, the QMC sim-

ulation of the duct geometry L = 10 contains a non-physical representation of the

diffuse wall collision process, which explains, in part, the poor performance of the
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method in this case.

It is important to remember that the presence of correlation alone is not enough to

condemn a QMC simulation. The correlation analysis introduced here is best used as

a tool to check if there is any physically inconsistent behavior in the simulation, and

to locate where within a simulation it may occur. In this context, the following are

the two key points of the correlation results presented in this investigation. In order

to be certain that a QMC method is physically consistent with the problem being

simulated, one should collect a sufficient number of samples to ensure the correlation

present between any dimensions of the low-discrepancy sequence is negligible. If this

is not feasible because the necessary number of samples is intractably large, then

it is still possible to obtain an accurate approximation if the simulation is designed

in such a manner as to ensure the correlated dimensions have little impact on the

physical problem.

6.5 Hybrid Quasi-Monte Carlo Simulation

Hybrid quasi-Monte Carlo and Monte Carlo (QMC/MC) integration refers to any

method that uses both techniques to approximate an integral, the aim of which is

to produce a composite method that retains the positive features of both approxi-

mations while avoiding their negative aspects as much as possible. As illustrated in

Sections 6.3 and 6.4, the QMC-only particle simulation suffers a decrease in the error

convergence rate as the duct length to height ratio L increases. This performance

loss is attributed to an increase in the non-physical correlation between the molecular

moves that occurs when the dimension of the low-discrepancy sequence used in the

QMC simulation increases. Ultimately, there is a practical upper limit on the dimen-

sion of the low-discrepancy sequence that can be used to obtain a computationally
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efficient QMC approximation, which depends on the physical problem being simu-

lated. The low-discrepancy sequence length limitation present in the QMC method

is one of the problems the hybrid QMC/MC method is intended to ameliorate by

reducing the dimension of the low-discrepancy sequence needed for the QMC portion

of the simulation.

Borrowing the terminology from Spanier in [167], there are two common strate-

gies for implementing this type of hybrid QMC/MC simulation: the mixed strat-

egy, and the scrambled quasirandom strategy. The mixed strategy simply replaces

certain dimensions of the low-discrepancy sequence used in the original QMC-only

simulation with pseudo-random numbers, thus reducing the dimension of the low-

discrepancy sequence needed. As an example, consider the mixed strategy for a

problem with d physical dimensions using a s dimension low-discrepancy sequence

where s < d. Each sample for the integral approximation in this case requires a

vector x = (x1, . . . , xd) ∈ I
d
, which is generated by the two methods: the s ele-

ments {xi1 , . . . , xis} are generated by the low-discrepancy sequence, and the remain-

ing (d − s) elements {xis+1
, . . . , xid} are generated by a pseudo-random sequence.

Note that i1, . . . , id represent the distinct indices 1, . . . , d, and the low-discrepancy

and pseudo-random sequences can be applied to any ordering of the sample dimen-

sions. This type of strategy is especially effective for simulations where the relative

impact on the final solution is known for each sample dimension in the physical prob-

lem. In such a case, one restricts the application of the low-discrepancy sequence

to the dimensions of the problem that most dominate the final solution. Physical

problems that can be represented as integral equation with an absolutely convergent

Neumann series solution, such as the conductance probability (5.27), are one class

of problems where the relative impact of each dimension is known a priori. The
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mixed strategy for the hybrid QMC/MC method is investigated by Spanier [167]

and Spanier and Li [168], wherein they apply the method to several model transport

problems.

The scrambled quasirandom strategy for implementing a hybrid QMC/MC sim-

ulation is not as closely linked to the physical problem as the mixed strategy. The

mixed strategy reduces the dimension of the low-discrepancy sequence needed for the

simulation by generating pseudo-random numbers for some of the sample dimensions.

In contrast, the scrambled quasirandom strategy employs a low-discrepancy sequence

with fewer dimensions than the physical problem and reuses each low-discrepancy

sequence dimension multiple times to generate all the dimensions of the problem. A

word of caution is in order because repeated use of the same dimension of a low-

discrepancy sequence to generate independent events within the same sample can

have disastrous effects on the accuracy of the simulation. In the case of the van der

Corput simulation of the conductance probability given in Section 5.5 (see Figures

5.9 and 5.10), the correlation inherent in the low-discrepancy sequence construction

leads to particle behavior that is not physically consistent with the actual problem.

Thus, great care must be exercised when selecting the order to reuse the dimensions

of the low-discrepancy sequence. Problems with non-physical correlation are avoided

in the scrambled quasirandom strategy by randomly permuting a subsequence of each

dimension reused in the low-discrepancy sequence.

To demonstrate, suppose one wanted to generate N samples for a problem with

d = ks physical dimensions using a s dimension low-discrepancy sequence. The

scrambled quasirandom strategy requires a low-discrepancy sequence with a length

kN to accomplish this. The first N members of this low-discrepancy sequence (recall

that each member is a s−tuple) are used to generate the first s dimensions of each of
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the N samples. The second N members of the low-discrepancy sequence are then used

to generate the second s dimensions of each sample. The second N members of the

low-discrepancy sequence, however, cannot be applied to the same order of samples as

the first N members without introducing non-physical correlation into the simulation.

To avoid this problem, the scrambled quasirandom strategy randomly permutes the

order in which the second N members are applied to the second s dimensions of the

samples. Each remaining low-discrepancy subsequence of N members is randomly

permuted in the same manner to generate the remaining dimensions of the N samples.

A more thorough description of the scrambled quasirandom strategy for the hybrid

QMC/MC methods is given by Spanier in [167], where the method is applied to

model transport problems. The scrambled quasirandom strategy has been developed

for several other applications, including the Krook and Wu solution to the Boltzmann

equation (Lécot in [88]); the heat equation (Morokoff and Caflisch in [115]); and the

diffusion of quantum mechanical systems (Moskowitz in [119]).

There are, unfortunately, two drawbacks to the scrambled quasirandom strat-

egy that are not present in either the Monte Carlo, quasi-Monte Carlo, or mixed

QMC/MC methods. First, the number of samples N must be selected a priori.

As noted in Chapter III, one of the appealing aspects of Monte Carlo and QMC is

the ability to continually add new samples to improve the integral approximation

without wasting previous calculations or needing to add a significant number of new

samples to reach the next level of refinement. It is possible to refine the scrambled

quasirandom strategy without wasting the first N samples; however, it must be done

by adding blocks of N new samples. Second, there is an increase in the memory

storage requirements. One must either store the information about the N samples

being generated, or one must pre-compute and store the N members of the low-
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discrepancy subsequence being randomly permuted. It is possible to avoid the extra

storage by using a linear congruential pseudo-random generator [78] to determine

the permutations in advance, which allows an individual sample to be constructed

in its entirety, rather than in blocks of d dimensions. However, the non-sequential

construction of the low-discrepancy sequence is far more costly than generating the

low-discrepancy sequence in its natural order.

The mixed strategy and the scrambled quasirandom strategy represent hybrid

QMC/MC simulations that seek to improve on the performance of a QMC-only sim-

ulation by reducing the dimension of the low-discrepancy sequence. It is precisely

this type of performance gain that is of interest to this investigation. There is, how-

ever, another application of the hybrid QMC/MC found in the literature that has

an alternative goal. Rather than reduce the number of dimensions needed for the

low-discrepancy sequence, the hybrid QMC/MC integration is used to improve the

error estimation of the QMC method. One of the nice aspects of the QMC method

is that the Koksma-Hlawka inequality (3.5) provides a deterministic upper bound

to the integration error. Unfortunately, as discussed by Morokoff [116] and noted in

Chapter III, the Koksma-Hlawka is not generally a tight bound on the error when

the number of samples is small or the problem dimension is large. This alternate

approach to hybrid QMC/MC integration randomizes the actual construction of the

low-discrepancy sequence rather than its implementation or application to a phys-

ical problem. The resulting hybrid QMC/MC method then allows for probabilistic

estimates of the integration error in a manner similar to the traditional Monte Carlo

method. As a specific example of this approach, Cranley and Patterson [35] ran-

domly shift the origin of the integration lattice (modulo 1) to produce a hybrid

QMC/MC integration technique using Korobov’s method of good lattice points (see
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Section 3.4). More recently, Owen [135] constructs a (t, s) sequence in base b where

the digits (0, 1, . . . , b − 1) used in the representation of each sequence element are

randomized through a specially defined permutation.

In this investigation, the mixed strategy is selected for the hybrid QMC/MC

method because it offers the easiest implementation and a direct connection to the

physical problem being simulated. As an added benefit, the sample dimensions with

the greatest impact on the final solution are already known. The QMC-only simula-

tion developed in Section 5.5 is based on the absorption weighted technique for vari-

ance reduction, which prevents the simulated test particles from completely escaping

the interior of the duct. Instead of the particles directly escaping, the probability

of a particle escaping the duct is calculated at each location the particle intersects

with the wall. The weight of the simulated test particle is reduced after each move

by a factor equal to this escape probability, and the probability the test particle

escapes through the outlet on its next move is then tallied for the conductance prob-

ability. For each sample trajectory generated by the absorption weighted technique,

the weight of the simulated test particle monotonically decreases after each particle

move. As the weight of the test particle decreases, so does its impact on the tally

collected for the conductance probability. It is best to use the low-discrepancy se-

quence to generate the first moves of the test particle trajectory, when adopting the

mixed strategy for the hybrid QMC/MC simulation.

Applying the low-discrepancy sequence to the first particle moves essentially di-

vides the simulation into two different physical problems. Henceforth, let s denote

the length of the low-discrepancy sequence used in the hybrid QMC/MC simulation

proposed here. The hybrid QMC/MC method calculates the probability a particle

escapes the outlet Ψqmc within the first s moves as a QMC simulation, and the prob-
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ability a particle escapes the outlet Ψmc in more than s moves as a Monte Carlo

simulation. The combination of these two simulations provides an approximation to

the conductance probability Ψ ≈ Ψqmc + Ψmc, with Ψqmc � Ψmc. The only inter-

action, or communication, between these two simulations is that the QMC method

provides the position of the particle after s moves as the initial position for the Monte

Carlo simulation.

In the mixed strategy described by Spanier in [167], the pseudo-random se-

quence is applied to the same formulation of the integral approximation as the low-

discrepancy sequence. An equivalent mixed strategy for the hybrid QMC/MC simu-

lation of the conductance probability would thus generate Ψmc using the absorption

weighted Monte Carlo technique. The work ratio indicates the traditional DSMC

method is faster at reaching a given error than the absorption weighted Monte Carlo

technique, for most duct geometries under consideration (see Figure 5.13(b)). Fur-

ther support of the computational advantage held by the traditional DSMC method

method over the absorption weighted Monte Carlo technique is found in Figure 6.2.

While the calculations of Ψ and Ψmc are based on the same stochastic movement of

the particles within the duct, there are slight differences found in the initial particle

weight and distribution. These differences, however, affect both the DSMC method

and the absorption weighted Monte Carlo technique in the same manner, and are

effectively canceled out in their variance ratio. To obtain the most computationally

efficient approach to the calculation of Ψmc, and thus the calculation of the conduc-

tance probability Ψ, the traditional DSMC test particle method is used instead of the

absorption weighted Monte Carlo technique. With this modification to the mixed

strategy described by Spanier, the hybrid QMC/MC simulation proposed here uses

the QMC method for the first s particle moves (Ψqmc), and the DSMC test particle
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method for the remaining particle moves (Ψmc).

The hybrid QMC/MC method is used in this investigation to simulate the con-

ductance probability Ψ in two different duct geometries (L = 2 and L = 10) using

the three fastest low-discrepancy sequences for the QMC portion of the method: the

Halton sequence; the BCF-3 sequence; and the Niederreiter sequence in base b = 2.

The QMC-only simulation of the L = 2 case requires a low-discrepancy sequence with

dimension s = 44. In comparison, the hybrid QMC/MC simulation for the L = 2

case is tested for low-discrepancy sequences with dimensions s = 4, 8, and 16. The

QMC-only simulation of the L = 10 case requires a low-discrepancy sequence with di-

mension s = 306, and the hybrid QMC/MC simulation is tested for low-discrepancy

sequences with dimensions s = 32, 64, and 128. In Figure 6.18, the convergence of

the relative error is found for these hybrid QMC/MC simulations and compared to

the QMC-only, DSMC, and absorption weighted Monte Carlo methods. The hybrid

QMC/MC simulation does not improve the error convergence of the QMC-only sim-

ulation, in any of the cases tested in this section. However, the error convergence

of the hybrid QMC/MC simulation using a low-discrepancy sequence with s = 16

for the L = 2 case is nearly the same as the QMC-only simulation. Similarly, the

error convergence of the hybrid QMC/MC simulation using a low-discrepancy se-

quence with s = 64 and 128 for the L = 10 case is also the same as the QMC-only

simulation. Therefore, with little or no sacrifice to the accuracy of the simulation,

the hybrid QMC/MC method is able to achieve the same results as the QMC-only

simulation with 3 to 10 times fewer low-discrepancy sequence dimensions.

The reduction of the low-discrepancy sequence dimension used in the QMC por-

tion of the hybrid method yields a lower overall computation time for the method.

A comparison of the computation time of the hybrid QMC/MC simulation and the
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Figure 6.18: Convergence of the relative error for the hybrid QMC/MC simulation
using different low-discrepancy sequences: duct length to height ratio
L = 2 (left column); and duct length to height ratio L = 10 (right
column).
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Computation Timea

L s Halton BCF-3 Niederreiterb

2 4 5.73 2.66 2.49
2 8 7.95 4.84 4.43
2 16 12.0 9.22 8.27
2 44c 25.1 24.3 21.3
10 32 8.04 7.46 6.69
10 64 13.5 13.7 12.2
10 128 24.4 26.3 23.1
10 306c 53.6 60.1 52.2

aThe computation time for each simulation is normalized by the
time required to generate an equivalent number of sample trajec-
tories using the Monte Carlo method.

bNiederreiter base 2 sequence.
cQMC-only simulation.

Table 6.2: Comparison of the computation times of the hybrid QMC/MC simulation
for different low-discrepancy sequences(for L = 2 and 10).

QMC-only simulation is given in Table 6.2. Note that the computation time pre-

sented in Table 6.2 is for the same number of samples generated, not for reaching the

same error level. The timing results for the hybrid QMC/MC simulation indicate

that the same error level can be reached 2-2.5 times faster for the L = 2 case, and

4-4.5 times faster for the L = 10 case than the QMC-only simulation. Furthermore,

the results in Table 6.2 for the hybrid QMC/MC simulation effectively increase the

error levels (at which τqmc < τmc) that appear in Figure 6.10. The hybrid QMC/MC

simulation proposed here is shown to be computationally faster than the traditional

test particle Monte Carlo simulation over a wider range of duct geometries and error

levels than the QMC-only simulation.

The hybrid QMC/MC simulations tested here demonstrate the potential perfor-

mance improvement available and are not necessarily the best combination of the

QMC and Monte Carlo methods. The cases presented in Figure 6.18 and Table 6.2

represent the general trade-off between computation time and accuracy of the hybrid
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method with no attempt made to optimize the performance gains. It is possible to

tune the performance of the hybrid QMC/MC simulation by simply changing the di-

mension of the low-discrepancy sequence used in the QMC portion of the simulation.

It may also be possible to achieve some performance gains by adjusting the accuracy

of the Monte Carlo portion of the simulation through oversampling. In essence, the

particle that remains in the duct after the QMC simulation can be split a small

number of times, and the Monte Carlo simulation is then applied separately to each

fraction of the particle. While it is of interest to understand the best combination of

the QMC and Monte Carlo methods for developing faster particle simulations, such

a study does not appear in this investigation and is reserved for future research.



CHAPTER VII

CONCLUSIONS

Accurate and efficient simulation of low-speed non-equilibrium gas flows has re-

mained a much sought, yet elusive, goal in fluidic Micro-Electro-Mechanical-Systems

(MEMS) research. The two most popular simulation techniques for MEMS applica-

tions involving gas flows are the Navier-Stokes solution with slip boundary conditions

and the direct simulation Monte Carlo (DSMC) method of Bird. In almost every ap-

plication, the Navier-Stokes solution has a much lower computational cost than the

DSMC method. Unfortunately, it is only physically accurate for near-equilibrium

gas flows; that is, when the Knudsen number Kn / 0.1. The DSMC method, in

contrast, is physically valid for the entire range of Knudsen numbers 0 < Kn < ∞.

However, the DSMC method has a substantially larger computation cost due to its

relatively slow convergence rate O
(
N−1/2

)
, where N is the number of samples. If the

average bulk velocity is significantly slower than the average speed of the simulated

particles, which is common in many fluidic MEMS, then the problems associated

with the slow convergence are exacerbated. In fact, when the average velocity in

the fluidic MEMS is on the order of [mm/sec], the computation time of the DSMC

method is often intractably long on all but the world’s largest supercomputers.

In light of these challenges facing the current state of the art, two approaches

363
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were explored in this investigation to improve the simulation methods for low-speed

non-equilibrium gas flows. The first approach (see Chapter II) was to design and test

empirical corrections to the computationally efficient Navier-Stokes solution in an ef-

fort to obtain greater accuracy when Kn > 0.1. The second, and more ambitious,

approach (see Chapters III-VI) was to develop a quasi-Monte Carlo (QMC) particle

simulation that retains the physical accuracy of the DSMC method, while achieving

a nearly linear error convergence rate of O (N−1+ε) (for all ε > 0), which is superior

to traditional Monte Carlo methods. At the conclusion of this investigation, neither

approach was considered as a general replacement to the current simulation tech-

niques for low-speed non-equilibrium gas flows. There was, however, specific cases of

practical interest in which the two new approaches yielded noticeable improvement

over the current state of the art. Furthermore, the insight gained from development

of these new approaches will serve to guide future designs of an accurate and efficient

simulation of low-speed non-equilibrium gas flows. In this concluding chapter, the

main results of this investigation are highlighted in Section 7.1; and a few notable

implications of these results for further research are presented in Section 7.2.

7.1 Summary

Empirical corrections to the Navier-Stokes equations were evaluated in Chapter

IV for Couette and Poiseuille flows in the transition regime (0.01 ≤ Kn ≤ 10)

concerning the first approach toward an accurate and efficient simulation. These

empirical corrections included: (i) a velocity slip coefficient Cs for the boundary

conditions; and (ii) a viscosity correction Cµ for the shear stress closure. Empirical, or

unified, models that correct both the boundary conditions and the transport closures

have previously appeared in the literature for the transition regime (e.g. the KB
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model of Karniadakis and Beskok [15], and the BPB model of Bahukudumbi, Park

and Beskok [12]). However, these empirical models do not address two important

questions, which should be answered if this technique is to be applied to general

low-speed non-equilibrium gas flows. First, the actual construction details of these

models are somewhat vague, thus prompting the question, “what, if any, physical

validity exists in the empirical corrections to the Navier-Stokes equations in the

transition regime?” Second, these models were only tested on a narrow range of flow

conditions for which they were specifically designed, leaving one to wonder, “what are

the actual predictive capabilities of such a scheme?” To address these questions, new

empirical models for Cs and Cµ were constructed in Chapter II of this investigation.

The corrections Cs and Cµ for the new empirical models were determined from

the Navier-Stokes solution that best fits, in a linear least squares sense, a set of

known non-equilibrium solutions calculated by the DSMC method of Bird. Similar

to the KB and BPB models, the new empirical models were designed to capture the

Knudsen number dependence of the corrections Cs(Kn) and Cµ(Kn) through the

use of non-linear model laws. Further, a new feature was introduced to the model

design of this investigation; specifically, the sensitivity of the corrected Navier-Stokes

solution to Cs(Kn) and Cµ(Kn) was included in the Levenberg-Marquardt non-linear

curve-fitting method. By ensuring that the empirical models best fit the known

non-equilibrium results when the solution sensitivity was the greatest, the corrected

Navier-Stokes solution was shown to yield a more uniform accuracy throughout the

transition regime. The drawback to the new empirical models developed in this

investigation (as well as the KB and BPB models) is that they are constructed from

a database of known non-equilibrium solutions, which must be provided somehow
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by a more accurate method.1 It is therefore difficult to separate the extent to which

the empirical models are actually predicting a non-equilibrium solution versus simply

interpolating (or extrapolating) from the database of known solutions. To address the

physical validity and predictive power of the new empirical models, several test cases

outside the non-equilibrium database were simulated in Chapter II, which included:

(i) interpolation and extrapolation of the database of non-equilibrium solutions for

Couette and Poiseuille flow; (ii) combined Couette and Poiseuille flow; (iii) variations

in the tangential momentum accommodation coefficient (TMAC); (iv) different gas

species; and (v) Poiseuille flow with uniform suction and injection.

Based on the results of these test cases, the following conclusions were made

regarding the empirical corrections to the Navier-Stokes solution in the transition

regime. The choice of empirical model was largely irrelevant in the near-equilibrium

regime (i.e. Kn / 0.1) because slip model correction is mathematically consistent

with the Boltzmann equation in the continuum limit Kn → 0. As the Knudsen

number increased, the physical validity and predictive power of the corrected Navier-

Stokes solution diminished. The method was able to capture small deviations from

the non-equilibrium database; for example, the interpolation of the database flow

conditions and combined Couette and Poiseuille flows. Any changes in the physical

processes that occurred at the molecular level, however, were not accurately repre-

sented by the corrected Navier-Stokes solution. These changes included: the wall

accommodation, and the molecular weight of the gas species. The accuracy of the

empirical corrections was also extremely sensitive to the flow geometry in the tran-

sition regime, yielding grossly inaccurate predictions when the Poiseuille model was

1The new empirical models proposed in this investigation are based on a database of DSMC
solutions for Couette and Poiseuille flow while the KB and BPB models are based on a database
of solutions to the one dimensional linearized Boltzmann equation (see Sone et. al. [165]).
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applied to Couette flow (or vice-versa) when Kn ' 0.1. This investigation therefore

recommends that one should limit the use of the empirical correction to the Navier-

Stokes solution in the transition regime to cases when many different scales of the

same geometry must be evaluated, and/or a crude estimate of the flow properties is

needed.

For the second approach to an efficient and accurate simulation of low-speed

non-equilibrium flow, a QMC particle simulation was developed based on the ideas of

Chapter III and Chapter IV. The basic theory regarding the convergence of the QMC

method was reviewed in Chapter III; in particular, the Koksma-Hlawka inequality

was discussed with a focus on the concepts of variation and discrepancy. The QMC

method developed in this investigation was implemented with the following low-

discrepancy sequences: (i) the Weyl-Richtmyer sequence; (ii) the Halton sequence;

(iii) the Faure sequence; and (iv) the Niederreiter sequence in base 2. The actual

design of the algorithms used to generate these sequences is given in Chapter IV.

In addition to this algorithm review, a new construction of the Weyl-Richtmyer

sequence was proposed in Section 4.1 based on heuristic arguments which suggested

that the sequence would be well-suited for certain types of QMC particle simulations.

This low-discrepancy sequence, termed the BCF-3 sequence, was then found to have

the lowest empirical bounding constant on the discrepancy of each dimension when

compared to other Weyl-Richtmyer sequences that appear in the literature, which

was the intended design. More importantly, the QMC particle simulations using

the BCF-3 sequence possessed the smallest power law constant in the empirical

models of the error convergence data. A smaller power law constant for the error

convergence data indicated that the initial accuracy of the simulation was greater

after a relatively small number of samples. The QMC particle simulations using
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the BCF-3 sequence was thus faster than the traditional test particle Monte Carlo

method for the largest range of simulation accuracies when compared to the other

Weyl-Richtmyer sequences.

A QMC particle simulation was developed in Chapter V to calculate the conduc-

tance probability for free molecular flow in a two dimensional duct. Other solution

techniques for this flow were also reviewed in an effort to better understand the phys-

ical processes being simulated and to validate the performance gains achieved by the

new QMC particle simulation. These included: (i) a Markov chain simulation; (ii) a

finite-state linear system solution; (iii) the Nyström method using Gauss-Legendre

quadrature; and (iv) the traditional test particle Monte Carlo method. In order to

guide future development of particle simulations, two well-meaning, but unsuccessful,

attempts at the QMC method were presented in Section 5.5, along with the reasons

for their failure. As a consequence of these failed schemes, two important lessons

were demonstrated in this investigation. First, a physically accurate QMC parti-

cle simulation was not obtained simply by the replacement of the pseudo-random

number generator in the DSMC method with a one dimensional low-discrepancy

sequence. The elements of each dimension of any low-discrepancy sequence in gen-

eral are highly dependent on one another, and thus they are not a physically valid

representation of a sequence of random variates. Second, it is important that all

the discontinuous YES/NO decisions were eliminated in the QMC particle simu-

lation. The presence of such discontinuities indicated the integrand for the QMC

method was not of bounded variation in sense of Hardy and Krause, which prevents

the Koksma-Hlawka inequality from establishing a theoretical error bound on the

method. Furthermore, the observed error convergence rate was only slightly faster

than the Monte Carlo method O
(
N−1/2

)
, which was still substantially slower than
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the theoretical near-linear limit. By incorporating these two lessons, the final ver-

sion of the QMC particle simulation developed in Section 5.5 was shown to achieve

a near-linear error convergence rate.

The new QMC particle simulation for free molecular flow was then tested in

Chapter VI for 20 different duct geometries with a length to height ratio 0.5 ≤ L ≤

10. The QMC particle simulation clearly demonstrated near-linear error convergence

for the wider duct geometries (i.e. smaller values of L), which led to significant

performance gains over the test particle Monte Carlo method. For duct geometries

with L ≤ 5, the accuracy of the QMC particle simulation was between 90 (L = 5) and

33,000 (L = 0.5) times greater than the Monte Carlo method after N = 223 sample

trajectories. In fact, the accuracy of the QMC particle simulation was between 40

and 2,400 times greater than even the absorption weighted Monte Carlo (AWMC)

method, which had a lower variance than the traditional test particle method. The

QMC particle simulation, however, had a greater computational cost per trajectory

than the test particle Monte Carlo method. The reduction in simulation time for

the QMC particle simulation, while still impressive, was not as substantial as the

increase in accuracy. As an example, the QMC particle simulation reached a reference

accuracy (ε ≈ 10−4) between 6.2 (L = 5) and 1,800 (L = 0.5) times faster than the

test particle Monte Carlo method.

In general, the increase in accuracy and speed achieved by the QMC particle

simulation diminished as the duct became narrower (i.e. as L increases). To better

quantify this performance loss, a power law model was fitted to the error convergence

data of the QMC particle simulations with the model exponent serving as an empiri-

cal measure of convergence rate. The QMC particle simulation using the Halton and

Niederreiter sequences consistently had the fastest convergence rate for all the duct
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geometries tested, while the BCF-3 sequence was the slowest of the low-discrepancy

sequences. The QMC particle simulation using the BCF-3 sequence, however, had

the smallest power law constant, implying that it had the best initial accuracy of

all the particle methods after a relatively small number of samples. For wider duct

geometries with L ≤ 2.5, the error convergence rate of the QMC particle simulations

using the Halton and Niederreiter sequences was found to be O (N−0.92), where N

was the number of samples. As the duct length to height ratio L increased, the

convergence rate of all the QMC particle simulations steadily declined until reaching

a level between O (N−0.55) and O (N−0.60) at L = 10. The QMC particle simula-

tion therefore converged at a faster rate than the Monte Carlo methods for all the

geometries tested in this investigation.

The QMC particle simulation demonstrated a faster convergence rate than the

Monte Carlo methods, albeit with a higher computational cost per sample. Conse-

quently, there existed a critical error level Ecrit at which the QMC particle simulation

method became faster than the test particle Monte Carlo method. The QMC par-

ticle simulation method was then found to be a more efficient particle method for

reaching any error level less than Ecrit because of its superior error convergence rate.

In general, as the desired simulation error decreases below Ecrit, the time savings

associated with QMC particle methods become even greater. The simulation of low-

speed non-equilibrium gas flows, which are common in fluidic MEMS, often requires

the bulk velocity field to be resolved to extremely small error levels relative to the

random speed of the particles. It was thus important to measure Ecrit in this inves-

tigation in order to understand the potential savings that the QMC method offers

to the future design of a fluidic MEMS particle simulation.

The QMC particle simulation using the BCF-3 sequence was found to have the
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largest critical error, for L ≤ 7.5; and thus, was faster than the traditional test

particle Monte Carlo method for the largest range of simulation accuracies. In fact,

the critical error Ecrit was greater than 18% for the QMC particle simulation using

the BCF-3 sequence when L ≤ 6. For 7.5 < L ≤ 10, the QMC particle simulation

using the Niederreiter sequence in base 2 possessed the largest critical error Ecrit,

which remained between 0.1% and 1%. The QMC simulation, using either the BCF-

3 or Niederreiter sequences, was therefore the preferable particle method for most

simulation accuracies of practical interest.

The loss in performance observed in the QMC simulation when the duct be-

came narrower was due to the increase in the number of particle moves required for

each sample trajectory. Each particle move represented an independent dimension of

the problem and, therefore, was generated by an independent dimension of the low-

discrepancy sequence. It is well-documented throughout the QMC literature that the

QMC method tends to converge slower in practice when the required dimension of the

low-discrepancy sequence increases. To better understand this loss in performance

due to the dimension of the low-discrepancy sequence, a measure of the non-physical

correlation present in the QMC particle simulation was proposed in Section 6.4. This

measure, denoted by Nmin, indicated the length of the low-discrepancy sequence nec-

essary for the two dimensions of the sequence to be considered as uncorrelated as

a random sequence of equivalent length. Regardless of the type of low-discrepancy

sequence, the value of Nmin was shown to steadily increase with the sequence dimen-

sion. Ideally, one should try to collect more samples for the QMC method than Nmin

in order to maintain a physically consistent approximation. This was not shown to

be always feasible for the QMC particle simulations of free molecular flow in the

narrower duct geometries. In particular, Nmin was found to be 10 times greater
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than the N = 223 samples collected here for the QMC particle simulation of the

L = 2.5 duct geometry, when a 55 dimensional Niederreiter sequence in base 2 was

used. Because the QMC particle simulation demonstrated faster convergence for

all duct geometries tested, including L > 2.5, the mere presence of correlation was

not enough to condemn the method. With respect to its future use, the correlation

analysis introduced in Section 6.4 is therefore best used to identify which simulation

steps are most likely to produce physically inconsistent behavior.

To mitigate the performance loss observed in the QMC particle simulation of

narrower duct geometries, a hybrid quasi-Monte Carlo/Monte Carlo (QMC/MC)

method was developed in Section 6.5. The hybrid QMC/MC method reduced the

necessary dimension of the low-discrepancy sequence by generating only a fraction

of the particle moves with the sequence. The remaining particle moves were then

generated using the traditional test particle Monte Carlo method. Since the initial

particle moves had the greatest impact on the sample trajectory score, these were

generated by the low-discrepancy sequence in the hybrid QMC/MC method. The

hybrid QMC/MC method achieved nearly the same error convergence as the original

QMC particle simulation while generating less than a third of the particle moves

with the low-discrepancy sequence. As a consequence, the hybrid QMC/MC method

was found to be two to five times faster. These results are only preliminary; however,

they do suggest that the range of applicability for the QMC particle simulations can

be further extended by considering additional dimension reduction techniques.

Several new2 contributions to the improved simulation of microscale gas flow were

developed by the author, during the course of this investigation. These contributions

are highlighted in the following list:

2At least to the knowledge of the author.
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• Approach 1: Empirical corrections to the Navier-Stokes solution

– Two new empirical models were designed to correct the Navier-Stokes

solution for Couette and Poiseuille flows in the transition regime (0.01 ≤

Kn ≤ 10). The new empirical models are similar to models developed

by Karniadakis and Beskok [15, 69] and Bahukudumbi et. al. [11, 12],

except that the database of known non-equilibrium solutions used in their

construction was generated by the DSMC method instead of the linearized

Boltzmann equation.

– A new technique was implemented in the construction of these empiri-

cal models to achieve a more uniform accuracy throughout the transition

regime. In particular, the sensitivity of the macroscopic flow quantities to

changes in the empirical models was included in the Levenberg-Marquardt

non-linear data-fitting of the known non-equilibrium solutions. The use

of this sensitivity analysis represents an improvement in the model con-

struction over earlier efforts by McNenly, Gallis and Boyd in [111, 112].

– The testing and evaluation of these new empirical models was also unique

to this investigation. Previous studies of such models [11, 12, 15, 69]

have focused on the ability of the corrected Navier-Stokes solution to

reproduce the known non-equilibrium solutions used in their construction.

In contrast, the actual predictive capabilities of the empirical models to

capture non-equilibrium flows outside the database of known solutions

was evaluated in this investigation.

• Approach 2: Quasi-Monte Carlo (QMC) particle simulation

– A new implementation of the low-discrepancy Weyl-Richtmyer sequence
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(referred to as the BCF-3 sequence) was proposed in this investigation for

use in the QMC particle simulation. For the simulation of free molecular

duct flow, the BCF-3 sequence was shown to offer marked improvement (in

terms of the single sample error and the critical error Ecrit) when compared

to other types of Weyl-Richtmyer sequences found in the literature.

– A QMC particle simulation was developed to approximate the conduc-

tance probability of free molecular flow in a two dimensional duct. While

it does not appear as if this specific application has been studied previ-

ously,3 the new QMC particle simulation is based on the method of Sarkar

and Prasad [153] for a model transport problem. The QMC simulation

developed in this investigation is also similar (in a mathematical sense) to

QMC applications found in light ray-tracing [71, 72] and radiation trans-

port [74]. Unlike these other applications from the literature, the QMC

simulation of free molecular flow is more challenging because the lack of

natural particle absorption increases the problem dimension.

– This new QMC particle simulation was also extensively tested on a large

number of free molecular duct geometries, and was found to achieve a

near-linear error convergence rate when the duct to length ratio was less

than three. In contrast with many of the applications found in the QMC

literature, which often only present a single case, the error convergence

data was combined for all the test cases to illustrate the impact of the

duct length on the performance of the QMC simulation. Further, this

investigation was focused more on the practical advantages of the QMC

3There is no discussion of a QMC particle simulation for free molecular flow in the references
cited in this thesis, nor is there mention in any of the proceedings of the International Conference
on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (1994-2006).
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particle simulation over traditional Monte Carlo methods, in terms of the

computational speedup available and the range of applicability.

– A new correlation measure was introduced in this investigation to quantify

the extent of the non-physical correlation present between the dimensions

of the low-discrepancy sequences used in the QMC particle simulations.

While the correlation problems of the low-discrepancy sequences are well

known [116, 146], there has not been any previous discussion about the

sequence length required for the effects of non-physical correlation to be

considered negligible. The new correlation measure serves to fill this void

by calculating the minimum sequence length necessary for two dimen-

sions of a low-discrepancy sequence to be considered as uncorrelated as a

pseudo-random sequence of equivalent length.

– A new hybrid quasi-Monte Carlo/Monte Carlo (QMC/MC) particle sim-

ulation, based on the “mixed strategy” of Spanier [167], was proposed in

this investigation to avoid the problems associated with the low-discrep-

ancy sequences in a large number of dimensions. The hybrid QMC/MC

particle simulation was then shown to achieve the same accuracy as the

QMC particle simulation with a computational cost that was 2 to 4.5

times lower.

7.2 Future Work

The QMC particle simulation developed in Chapter V of this investigation is more

computationally efficient than the traditional Monte Carlo methods under certain

conditions of free molecular flow. Unfortunately, the QMC method was not yet

shown to be a viable alternative to the DSMC method of Bird for general non-
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equilibrium flows, in its current form described herein. The conclusions drawn from

this investigation, however, do suggest several topics for future research that will

extend the QMC particle simulation to a greater number of applications. These

topics are briefly outlined in this section, and include: (i) improvements to the

construction of the BCF-k sequence; (ii) the development of the QMC simulation for

applications with natural particle absorption; and (iii) reductions in the dimension

of the low-discrepancy sequences used in the QMC particle simulation.

7.2.1 Further improvements to the BCF-k sequences

Considering each low-discrepancy sequence tested in Section 6.3, the BCF-3 se-

quence had the largest value for the critical error Ecrit for the QMC particle sim-

ulations when L ≤ 7.5, as previously noted. The critical error, however, decreased

rapidly when the duct became narrower (i.e. L > 6), which effectively limited the

range of applications for the BCF-3 sequence. This reduction in the critical error

Ecrit was primarily due to the relatively slow convergence rate of O (N−0.55) observed

for the BCF-3 sequence when L > 6. By comparison, the QMC particle simulations

using the Halton and Niederreiter (b = 2) sequences achieved faster error conver-

gence rates between O (N−0.60) to O (N−0.67) for the same duct geometries. Because

the Niederreiter sequence in base 2 had the lowest computational cost associated

with its generation, the QMC particle simulation using the sequence had the largest

value for the critical error Ecrit when L > 7.5. The slower error convergence rate

of the BCF-3 sequence is suspected to be caused by correlation problems between

the sequence dimensions. While the Niederreiter sequence in base 2 was shown in

Section 6.4 to have the most persistent correlation among the patterns considered,

a general search of all possible dimension pairs revealed that the correlation in the
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Number of dimension pairs satisfying

s Nmin > 221 Nmin > 222 Nmin > 223

50 3 3 2
100 34 22 16
150 115 80 63
200 219 162 124
250 317 231 172
300 586 448 351

Table 7.1: The number of dimension pairs of the BCF-3 sequence which have sig-
nificant two dimensional correlation which persists over sequence lengths
comparable to the maximum used by the QMC particle simulations.

BCF-3 sequence was actually much worse. In fact, existing within the first 50 di-

mensions of the BCF-3 sequence is a dimension pair that did not reach the same

level of correlation as a random sequence until the sequence length (i.e. Nmin (6.7))

became 25 billion. Further, the correlation persisted over 200 times longer than any

of the other 50 dimensional low-discrepancy sequences tested in this investigation

(see Figure 6.17).4

To demonstrate the extent of the correlation in an s-dimensional BCF-3 sequence,

the dimension pairs that have a two dimensional correlation which persists beyond

certain threshold lengths T (i.e. Nmin > T ) is shown in Table 7.1. Suppose a pair of

irrational numbers in the set z = (z1, . . . , zs) used to construct the BCF-3 sequence

is known to yield significant two dimensional correlation. In such a case, one of

the problematic irrational numbers in the correlated pair could simply be replaced

without affecting the discrepancy of each one dimensional projection of the sequence.

4In Section 6.4, the largest values of Nmin were presented for an exhaustive search of all dimen-
sion pairs of the Faure sequence. While not initially performed for the results in Figure 6.17, a
subsequent search of all dimension pairs of the Halton sequence revealed that the largest values of
Nmin corresponded to all the twin prime bases presented in the figure. Similarly, the search of all
dimension pairs of the Niederreiter sequence (b = 2) demonstrated that the largest values of Nmin

corresponded to the specific construction pattern tested in Figure 6.17, in most instances. For the
few dimension pairs not appearing in the figure, the values of Nmin remained bounded by the initial
results; thus, they did not change the rate of growth of Nmin as sequence dimension s increased.
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This feature is unique only to the BCF-3 sequence. If this replacement strategy were

adopted for the Halton or Niederreiter (b = 2) sequences, then the distribution of

points in each one dimensional projection of the sequence would become increasingly

less uniform as more construction elements were replaced. Therefore, there is prac-

tical motivation to further refine the heuristic process proposed in this investigation

for determining the set of irrational numbers used to construct the BCF-3 sequence;

that is, by allowing the removal of dimension pairs with persistent correlation.

A simple improvement would be to generate a large set z of irrational numbers

for the BCF-3 sequence using Algorithm 4.1 and then calculate the extent of the two

dimensional Nmin for each pair of irrational numbers. The values of Nmin greater

than a prescribed threshold length T could then be easily searched, and an irrational

number could be removed from the set z for each dimension pair exceeding the

limit. The BCF-3 sequence constructed from the remaining irrational numbers in

z would, as a result, have a better distribution of points in both the one and two

dimensional projections of the sequence when the sequence length is greater than T .

There is, however, no reason to limit future refinement of the BCF-k sequence to

the bounding constant k = 3. Other small values of the bounding constant, such as

k = 4, 5, 6, should also be considered as these BCF-k sequences may possess a much

lower two dimensional correlation while only producing a modest increase in the one

dimensional discrepancy bound. Furthermore, the elimination of dimensions which

possess significant correlation between more than two dimensions may also yield a

higher error convergence rate and should be explored as well.

As an initial foray into a more comprehensive search for an improved BCF-k

sequence, a 300 dimensional BCF-5 sequence was constructed such that the absolute

difference between any two distinct irrational numbers in the set z used to generate
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the sequence was less than 7.8 ·10−4. By preventing any two irrational numbers from

becoming arbitrarily close, the correlation problems associated with the construction

pattern for the BCF-k sequence in Figure 6.15(a) were avoided. Despite the removal

of this single construction pattern being less thorough than the systematic removal

of all dimension pairs with Nmin greater than some threshold length T , the initial

performance gains for the QMC particle simulation were nonetheless still promising.

Specifically, this BCF-5 sequence achieved a faster error convergence rate than the

BCF-3 sequence (e.g. between O (N−0.61) to O (N−0.67) when L > 6), which was

comparable to the performance of the Halton and Niederreiter (b = 2) sequences.

The critical error Ecrit of this BCF-5 sequence also decreased much more slowly as

the duct became narrower; however, it did not actually surpass the critical error

of the BCF-3 sequence until L ≥ 10. In light of these preliminary results, it seems

likely that further improvements could be made for the BCF-k sequence by removing

highly correlated sequence dimensions.

7.2.2 Free molecular flows with greater natural particle absorption

The performance of the QMC particle simulation suffered as the problem di-

mension increased, as previously noted. The probability that a particle reached an

absorbing state during one move of the simulation directly affected the problem di-

mension. Stated more specifically, the higher the probability was of being absorbed

during one move the smaller the problem dimension. In the simulation of free molec-

ular duct flow, the absorbing states for particles inside the duct were simply the

inlet and outlet. As the duct became narrower, the probability of a particle reaching

the absorbing states (i.e. escaping through the inlet or outlet) decreased, which re-

sulted in an increase in the problem dimension. The QMC particle simulation thus
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converged at a slower rate as the duct length to height ratio L increases. If there

was somehow a natural increase in the absorption probability which was indepen-

dent of the duct geometry, then the performance losses associated with the QMC

particle simulation would have diminished. There are, in fact, several applications of

free molecular flow that possess a natural increase in particle absorption, and thus

deserve further study.

One such application is the simulation of free molecular flow in a duct with partial

wall accommodation. The QMC particle simulation developed in Chapter V assumed

a fully diffuse wall; however, as the number of specular wall reflections increases, so

too does the probability of a particle reaching the inlet or outlet. Note that if the

all particle-wall collisions are specular, then the conductance probability of the duct

is 100%. Another application, which has a similar increase in the escape probability

of the particles, is the simulation of free molecular duct flow when the particles are

accelerated by a body force in the direction of either the inlet or outlet. This type of

flow condition occurs in low-density gas centrifuges and plasma propulsion systems.

Given the natural increase in the escape probability, the QMC particle simulations

of these two applications are then expected to yield a higher error convergence rate

for a wider range of duct geometries.

In addition to the applications with an increase in the escape probability, there

are some cases of free molecular flow in which the simulated particles are actually

absorbed within the duct. An important engineering example occurs in the Low Pres-

sure Chemical Vapor Deposition (LPCVD) process that is used in the manufacturing

of computer chips and MEMS. For example, in the deposition of silicon dioxide (SiO2)

using silane (SiH4) gas and oxygen, the probability that a silane molecule “sticks” to

the silicon wafer after a collision is approximately 24% (at 400◦C [184]). The presence
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of this natural absorption of the simulated particles at the boundary walls reduces

the effective dimension of the problem. In fact, the amount of natural absorption is

sufficient to limit the effective dimension of the problem to less than 80 for the QMC

particle simulation of the conductance probability of silane gas through a micro-scale

silicon channel, regardless of length. The absorption of simulated particles need not

be limited to just the wall boundaries. Any chemical reaction or ionization process

in which the simulated particles interact with a background source (i.e. not other

simulated particles) also increases the absorption probability. Therefore, the pres-

ence of these types of absorption processes in free molecular flow will also reduce the

effective dimension of the problem.

7.2.3 Reducing the dimension of the low-discrepancy sequences

The hybrid QMC/MC method in Section 6.5 demonstrated some of the benefits

of reducing the dimension of the low-discrepancy sequence required by the QMC

portion of the simulation. Specifically, using the hybrid QMC/MC method, the

same accuracy of the original QMC particle simulation was achieved in a fraction

of the computation time. This reduction in computation time was entirely due to a

lower cost associated with generating each sample trajectory, since the convergence

rate of both the hybrid and original QMC methods was the same. While a lower cost

per sample was of some benefit, an increase in the error convergence rate would be

much more desirable because the performance gains would have a greater range of

applicability. Given the substantial interest in dimension reduction techniques that

actually achieve a higher error convergence rate, a few possible methods are briefly

outlined here for future work.

A common way to reduce the necessary dimension of the low-discrepancy sequence
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is simply to reuse each sequence dimension in a manner such that the independence of

the simulation dimensions is properly maintained. Suppose one limited the dimension

of the low-discrepancy sequence to sqmc for a free molecular duct geometry requir-

ing s particle moves (or independent dimensions of the problem), where s = ksqmc

with the integer k ≥ 2. There are three methods for reusing the sqmc dimensions

of the low-discrepancy sequence to generate the s particle moves in the simulation:

(i) re-order the particles by position within the duct (based on the concept of Lécot

[87], and Morkoff and Caflisch [115]); (ii) re-order the particles by a pseudo-random

permutation (based on the concept of the “scrambled” hybrid QMC/MC method

in [167]); and (iii) re-sample the distribution of particles within the duct. In each

method, the sample trajectories are simultaneously calculated in sets of sqmc particle

moves. To avoid non-physical correlation between the sets of particle moves, the

order in which each new particle move is generated from the low-discrepancy se-

quence is modified. There are, however, two drawbacks to these dimension reduction

techniques that are not present in the original QMC formulation; namely, the total

number of sample trajectories must be decided upon in advance, and the location of

each trajectory must be stored in memory throughout the simulation.

Another dimension reduction technique involves the discretization of the free

molecular duct geometry. For example, divide the computation domain of a narrow

duct (i.e. the duct length to height ratio L � 1) into square cells with a side length

equal to the duct height. The probability of a particle escaping a cell (Lcell = 1) dur-

ing one move is nearly 40%, implying that a relatively small number of indepnendent

particle moves are needed per cell. As noted in Chapter VI, the error convergence

rate was between O (N−0.86) and O (N−1.09) for the QMC particle simulation of the

L = 1 duct geometry. It is important that the transport of particles between cells
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is simulated in such a manner as to ensure that no discontinuities are introduced

into the sampling procedure. The presence of discontinuities in the QMC simulation

typically implies the following (see Section 5.5): (i) the Koksma-Hlawka inequality

cannot be used to establish the convergence and consistency of the method; and

(ii) the convergence rate observed in practice is only slightly better than the Monte

Carlo method. The normal particle transport through the computational cells of a

DSMC simulation is discontinuous, unfortunately. The most critical design goal of

a QMC particle simulation for a discretized computation domain is thus the elim-

ination of these discontinuities. It may be possible to achieve this by adopting an

alternative formulation of free molecular flow in which the distribution of particles

fluxing across the cell boundaries is re-sampled after a fixed number of moves or time

steps. The ability to discretize the computation domain is essential to any simula-

tion of a complex geometry. If such a dimension reduction technique is shown to

maintain a near-linear error convergence rate over a wide range of duct geometries,

it would therefore represent a major milestone in development of a general QMC

particle simulation to supplant the DSMC method.
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APPENDIX A

The van der Corput sequence (1935)

For the construction of the van der Corput sequence [178], along with the multi-

dimensional low-discrepancy sequences presented in Appendices B-F, it is convenient

to introduce the following two function definitions for ~ξb(n) and χb(n) and the accom-

panying notation. The first function ~ξb(n) represents the natural number n in base b

as an infinite vector; that is ~ξb : N 7→ Z∞
b , where Zb = {0, 1, . . . , b− 1} represents the

set of possible digits in base b, and is referred to as the least residue system modulo

b. Let ~ξb(n) = (ξ1,b(n), ξ2,b(n), ξ3,b(n), . . .) denote the vector components of the base

b representation function, then ~ξb(n) is defined explicitly by

ξm,b(n) = mod
(⌊ n

bm−1

⌋

, b
)

for m ≥ 1 and b ≥ 2, (A.1)

where b·c is the floor function, and is equal to the largest integer not greater than

its argument. Note that the modulo function, as it is used in (A.1), is equivalent to

the common computer programming definition. Specifically, for x, b ∈ Z, with b ≥ 2,

the function is defined by

mod(x, b) = y,

where y ∈ Zb satisfies the congruence relationship x ≡ y (mod b). As an example of

its usage, the base b representation function number ~ξb(n) is found for the number
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n = 13 in bases b = 2, 3, 5:

~ξ2(13) = (1, 0, 1, 1, 0, 0, . . .)

~ξ3(13) = (1, 1, 1, 0, 0, . . .)

~ξ5(13) = (3, 2, 0, 0, . . .),

where the ellipses denote an infinite sequence of zeros.1

The second function χb(n) is the radical inverse function in base b, which maps

its argument from the natural numbers to the half-closed unit interval, stated more

compactly χb : N 7→ [0, 1). For b ≥ 2, the radical inverse function in base b is defined

as

χb(n) =
∞∑

m=1

ξm,b(n)b−m. (A.2)

Note that ξm,b(n) = 0 for all m > 1 + logb n, thus the summation in (A.2) can be

taken over a finite number of terms in practice. For the van der Corput sequence

SC = (x0, x1, x2, . . .) in base b, the nth term of the sequence is simply given by the

inverse radical function such that xn = χb(n). The first 16 points of the van der

Corput sequence are calculated in Table A.1 in the bases b = 2, 3, 5.

Recall in Figure 3.8 that the star discrepancy of the van der Corput sequence

SC in base 2 appears to have a near linear convergence rate. In fact, for any base

b ≥ 2, the asymptotic convergence rate for the star discrepancy of the van der Corput

sequences D∗
N(SC) = O (N−1 log N), as the number of points N tends toward infinity.

While the specific base of the van der Corput sequence does not affect the asymptotic

convergence rate, it does impact the implied constant in the Landau, or the big-O,

notation. The general behavior is such that the implied constant tends to increase,

1From the viewpoint of a programmer, it is impractical to treat the vector ~ξb(n) as infinite, espe-
cially when almost all the terms are zero. However, it is easier to develop general sequence formulas
with the infinite vector representation because it avoids the need for conditional specifications on
the size of ~ξb(n) as n and b change.
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n χ2(n) χ3(n) χ5(n)
0 0.0000 0.0000 0.0000
1 0.5000 0.3333 0.2000
2 0.2500 0.6667 0.4000
3 0.7500 0.1111 0.6000
4 0.1250 0.4444 0.8000
5 0.6250 0.7778 0.0400
6 0.3750 0.2222 0.2400
7 0.8750 0.5556 0.4400
8 0.0625 0.8889 0.6400
9 0.5625 0.0370 0.8400

10 0.3125 0.3704 0.0800
11 0.8125 0.7037 0.2800
12 0.1875 0.1481 0.4800
13 0.6875 0.4815 0.6800
14 0.4375 0.8148 0.8800
15 0.9375 0.2593 0.1200

Table A.1: The first 16 points constructed for the van der Corput sequences in bases
b = 2, 3 and 5.

as the base of the van der Corput sequence increases. Stated more precisely, Faure

[45] establishes the following relationship between the base b and the asymptotic

behavior of the van der Corput sequence:

lim
N→∞

ND∗
N (SC)

log N
=







b2

4(b + 1) log b
for even b,

b − 1

4 log b
for odd b.

(A.3)

Note that limN→∞S(n) represents the upper limit (or limit superior) of a sequence

S(n), where n denotes the element number of the sequence. The mathematical

definition of the upper limit is stated as follows. For some real constant k, the upper

limit of the sequence S(n)

lim
N→∞

S(N) = k

exists if, for every ε > 0, |S(n) − k| < ε for infinitely many values of n and if no

number larger than k has this property.

When using quasi-Monte Carlo integration, it is desirable to choose a low-discrep-

ancy sequence with the smallest asymptotic constant for the star discrepancy. This
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ensures that the error bound given by the Koksma-Hlawka inequality (3.5) is as small

as possible. From the result (A.3) of Faure, the van der Corput sequence in base 3

achieves the smallest possible bounding constant. It is interesting to note that one

can construct a one dimensional low-discrepancy sequence with an asymptotic bound

that is even smaller than the result in (A.3) with a slight modification of the van der

Corput sequence. Let σ denote a specific permutation of the possible digits in base

b; that is, σ : Zb 7→ Zb is a one-to-one mapping of the digits {0, 1, . . . , b − 1} onto

themselves. The generalized van der Corput sequence in base b using the permutation

σ is then defined by

xn =
∞∑

m=1

σ
(
ξm,b(n)

)
b−m,

where xn is the nth element of the sequence. The lowest proven star discrepancy

bound on a generalized van der Corput sequence (at least at the time of publication

of [127]) belongs to a special permutation of the base 12 sequence constructed by

Faure in [45], which yields an upper limit of

lim
N→∞

ND∗
N

log N

1919

3454 log 12
. (A.4)

The upper limit (A.4) is over three times smaller than the minimum for the base

b = 3 sequence in (A.3).
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APPENDIX B

The Weyl-Richtmyer Sequence (1916/1951)

First proposed in [186], Weyl established that this sequence yields a mathemati-

cally consistent integral approximation when used in the QMC method. Richtmyer

further developed the sequence as part of the first published QMC simulation1 in

[148]. Even more importantly, Richtmyer also established that the QMC approxima-

tion using this sequence converges to the true solution almost linearly. In recognition

of both contributions, this sequence is referred to as the “Weyl-Richtmyer sequence”

throughout this investigation.

The Weyl-Richtmyer sequence is remarkably simple in its construction (see [127]).

In one dimension, the nth term of the sequence is defined as

xn = [nz], (B.1)

where z is an irrational number. The notation [nz] is sometimes read as “nz modulo

1,” and represents the fractional part of its argument. An alternative description is

[nz] = nz − bnzc, where b·c is the floor function, which yields the greatest integer

not larger than the argument. Thus, the operation [·] : R 7→ [0, 1)[x]mod 1.

The extension of the Weyl-Richtmyer sequence to more dimensions naturally

1In fact, it was Richtmyer [148] who first coined the term “quasi-Monte Carlo integration.”
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follows from the one dimensional sequence, and now the nth vector is defined as

xn = [nz], (B.2)

where the application of [·] to an s-dimensional vector, maps Rs 7→ [0, 1)s in a normal

way,

[nz = ([nz1], [nz2], . . . , [nzs]) .

The vector z consists of irrational numbers that are linearly independent over the

rationals. This constraint implies that z must be chosen such that it is impossible

to find a solution in the integers to the following linear equation

c1z1 + c2z2 + · · · + cszs = cs+1, ci ∈ Z.

Further discussion of the necessary conditions for certain sets of irrational numbers

to be considered linearly independent over the rationals is given in Section 4.2 and

in Besicovitch’s Theorem [14].

Weyl [186] established that the infinite sequence generated by (B.2) is both uni-

formly distributed modulo 1 (u.d. mod 1) and well-distributed modulo 1 (w.d. mod

1). A review of Weyl’s results2 is provided by Kuipers and Niederreiter in Chapter

1 of [85]. Informally, an infinite sequence is u.d. mod 1 if the fraction of points in

every subinterval in [0, 1)s equals the volume of the subinterval. This is equivalent

to saying the extreme discrepancy (3.22) of the infinite sequence tends to zero. An

infinite sequence is w.d. mod 1 if after removing the first k elements of the sequence;

the resulting subsequence is u.d. mod 1, for k = 0, 1, 2, . . .. Therefore, an infinite se-

quence that is w.d. mod 1 is also u.d. mod 1 with an additional uniformity constraint

on the order of the sequence elements.

2Kuipers and Niederreiter [85] provide a very thorough description (and useful translation) of
Weyl’s original work [186] which is in German.
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In addition to creating the definitions of u.d. mod 1 and w.d. mod 1, which were

critical to the development of the concept of discrepancy, Weyl proved two theorems

that are of the utmost importance to quasi-Monte Carlo integration. These theo-

rems establish that the QMC method of integration is a mathematically consistent

approximation, and are stated as follows in [85].

Theorem B.1 The sequence {xn}, n = 1, 2, . . . is u.d. mod 1 if and only if for

every real-valued continuous function f defined on the closed interval [0, 1]s we have

lim
N→∞

1

N

N∑

n=1

f (xn) =

∫

[0,1]s
f (u) du. (B.3)

Theorem B.2 The sequence {xn}, n = 1, 2, . . . is u.d. mod 1 if and only if for

every real-valued continuous function f defined on the closed interval [0, 1]s we have

lim
N→∞

1

N

k+N∑

n=k+1

f (xn) =

∫

[0,1]s
f (u) du uniformly in k = 0, 1, 2, . . .. (B.4)

Theorems B.1 and B.2 prove that sampling a continuous function f with the Weyl-

Richtmyer sequence (B.2) produces a consistent approximation of the integral of f .3

Moreover, the theorems of Weyl establish the necessary and sufficient conditions for

any low-discrepancy sequence used in QMC method to yield a consistent numerical

approximation. The ideas of Weyl served as the foundation on which the discrep-

ancy measure of a sequence is developed and ultimately led to the Koksma-Hlawka

inequality, which is the cornerstone of the QMC method.

The Koksma-Hlawka inequality (3.5) establishes the upper error bound on error

of QMC integration. For a function with bounded variation, the rate at which the

star discrepancy of a sequence tends to zero determines the rate of error convergence

of the integration method. The convergence rate of the extreme discrepancy of a one

3The concept of consistency is an essential property of any accurate numerical method. For a
more detailed discussion of consistency as it relates to the simulation of fluid flows refer to [63].
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dimensional Weyl-Richtmyer sequence S(z) is given by (see Corollary 3.5 in [127])

DN (S (z)) < G(k)N−1 log(N + 1) for all N ≥ 1, (B.5)

where z is the irrational constant in (B.1), G(k) = 2/ log 2 for k = 1, 2, 3 and

G(k) = (k + 1)/ log(k + 1) for k ≥ 4. In (B.5), the constant k is the smallest integer

greater than or equal to the coefficients in the continued fraction expansion of z. The

basic properties of continued fractions are covered in [78, 131], and a more thorough

review of the mathematical theory is available in [75].

For an s-dimensional Weyl-Richtmyer sequence S(z), where z is the vector gen-

erating the sequence in (B.2), there is a probabilistic bound on the extreme discrep-

ancy. The probabilistic bound due to Schmidt [155] states that for every ε > 0,

DN(S(z)) = O (N−1(1 + log N)s+1+ε) for almost all z ∈ Rs, where the exceptions are

contained in a set with Lebesgue measure zero. If the vector z consists of algebraic

numbers that are linearly independent over the rationals, then a deterministic bound

DN(S(z)) = O (N−1+ε) for every ε > 0 is given by Niederreiter [123]. Note that the

extreme discrepancy is an upper bound to the star discrepancy. Thus, the results

for the extreme discrepancy also apply to the Koksma-Hlawka inequality (3.5) and

demonstrate that the error convergence of QMC integration with the Weyl-Richtmyer

sequence is nearly linear.

There is no restriction on the choice of irrational numbers for the vector z in

(B.2) other than their linear independence over the rationals. The low-discrepancy

sequence need not be constructed solely from quadratic numbers (as in Chapter IV

and [68, 148]); other families of irrational numbers can be considered. For m,n ∈ Z

and r ∈ Q, these families of irrational numbers include the following: (i) n1/m where

n is not the mth power of an integer; (ii) logn m where gcd(m,n) 6= m or n; (iii) er for
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n x1(n) x2(n) x3(n)
0 0.0000 0.0000 0.0000
1 0.4142 0.7321 0.2361
2 0.8284 0.4641 0.4721
3 0.6569 0.9282 0.9443
4 0.3137 0.8564 0.8885
5 0.6274 0.7128 0.7771
6 0.2548 0.4256 0.5542
7 0.5097 0.8513 0.1084
8 0.0193 0.7025 0.2167
9 0.0387 0.4050 0.4334

10 0.0773 0.8100 0.8668
11 0.1547 0.6200 0.7336
12 0.3094 0.2401 0.4672
13 0.6188 0.4801 0.9344
14 0.2375 0.9602 0.8689
15 0.4750 0.9204 0.7377

Table B.1: The first 16 points constructed for a three dimensional Weyl sequence
using the fractional parts of the irrational numbers

√
2,

√
3 and

√
5.

distinct r 6= 0; (iv) cos r for distinct r 6= 0; and (v) tan r for distinct r 6= 0. However,

the use of algebraic irrational numbers (i.e. those that are roots of a polynomial

with integer coefficients), allows for the deterministic error bound on the extreme

discrepancy of Niederreiter to be applied. For further reference, the first 16 points

of a three dimensional Weyl-Richtmyer sequence generated from z =
(√

2,
√

3,
√

5
)

are given in Table B.1.
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APPENDIX C

The Halton Sequence (1960)

This multi-dimensional low-discrepancy sequence was first investigated by Halton

in [56]. The s-dimensional Halton sequence is actually constructed from s distinct

one dimensional van der Corput sequences (see Appendix A) that satisfy a certain

independence condition. Specifically, the nth element of the Halton sequence SH =

x0,x1, . . . ∈ I
s

is defined by

xn = (χp1
(n), χp2

(n), . . . , χps
(n)) ,

where p1, . . . , ps are pair-wise relatively prime integers,1 and χb(n) is the inverse

radical function defined in (A.2) for the van der Corput sequence in base b. Each

dimension of the Halton sequence is therefore an independently generated van der

Corput sequence.

There exists an explicit upper bound on the star-discrepancy of the s-dimensional

Halton sequence SH generated using the pair-wise relatively prime set of integers

p1, . . . , ps for the bases of the van der Corput sequence. From Theorem 3.6 in [127],

D∗
N(SH) <

s

N
+

1

N

s∏

i=1

(
pi − 1

2 log pi

log N +
pi + 1

2

)

for all N ≥ 1. (C.1)

1A set of integers p1, . . . , ps is said to be pair-wise relatively prime if gcd(pi, pj) = 1 for all
1 ≤ i, j ≤ s except i = j.
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Adopting the same form used for the other low-discrepancy sequences, the result in

(C.1) is re-written to yield

D∗
N ≤ CH

s

(log N)s

N
+ O

(
N−1(log N)s−1

)
, (C.2)

where the bounding constant CH
s is given by

CH
s =

s∏

i=1

pi − 1

2 log pi

. (C.3)

It is clear that the bounding constant CH
s (C.3) achieves the smallest value when

the pair-wise relatively prime bases are chosen to be as small as possible. With

respect to the theoretical bound on the discrepancy of the Halton sequence, it is

therefore optimum to select the bases p1, . . . , ps to be the smallest s prime numbers,

which is the standard construction for this sequence. As an example, the standard

construction2 of the three dimensional Halton sequence is given in Table C.1.

2A word of caution is in order for the actual calculation of the Halton sequence because the
algorithms outlined in [56, 57] may produce numerically unstable results. Techniques to avoid these
stability problems are presented in Section 4.3 and by Fox in [48].
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n x1,n x2,n x3,n

0 0.0000 0.0000 0.0000
1 0.5000 0.3333 0.2000
2 0.2500 0.6667 0.4000
3 0.7500 0.1111 0.6000
4 0.1250 0.4444 0.8000
5 0.6250 0.7778 0.0400
6 0.3750 0.2222 0.2400
7 0.8750 0.5556 0.4400
8 0.0625 0.8889 0.6400
9 0.5625 0.0370 0.8400

10 0.3125 0.3704 0.0800
11 0.8125 0.7037 0.2800
12 0.1875 0.1481 0.4800
13 0.6875 0.4815 0.6800
14 0.4375 0.8148 0.8800
15 0.9375 0.2593 0.1200

Table C.1: The first 16 points constructed for a three dimensional Halton sequence
with prime bases p1 = 2, p2 = 3, and p3 = 5.
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APPENDIX D

The Sobol’ Sequence (1967)

The low-discrepancy sequence of Sobol’ [161] uses primitive polynomials in F2[x]

to construct binary bit-masks, which uniquely permute the van der Corput sequence

in base 2 for each dimension of the Sobol’ sequence. Refer to [96] for a thorough dis-

cussion of primitive polynomials over finite fields and how they are calculated. Each

dimension of the sequence requires a unique primitive polynomial in F2[x]. Using

the primitive polynomial with the lowest possible degree, Sobol’ [161] establishes the

following bound on the star discrepancy

D∗
N ≤ CS

s

(log N)s

N
+ O(

(log N)s−1

N
), (D.1)

where

CS
s =

2α

s!(log 2)s
. (D.2)

Here, the exponent α is a function of s and is bounded by

K
s log s

log log s
≤ α ≤ s log s

log 2
+ O(s log log s),

where K > 0. The implied coefficient CS
s in the Sobol’ sequence bound (D.2) does

grow super-exponentially as s → ∞; however, the growth is still not as fast as

the bounding constant CH
s (C.3) for the Halton sequence. Another advantage of the
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Sobol’ sequence stems from the fact that the entire process of generating the sequence

elements consists of logical binary operations which can be performed very efficiently

on a modern computer. In fact, by ordering the necessary operations appropriately,

great computational savings can be achieved when 32 logical binary operations are

concatenated into a single bit-wise operation on a 32-bit computer word.

Each dimension of the sequence is generated from a unique primitive polynomial

in F2[x], which, in turn, defines a set of bit-masks used to build the sequence. The

nth member of the van der Corput sequence in base 2 is a reflection of the binary

representation of n around the decimal point (i.e. ~ξ2(n) using the definition in (A.1)).

These bit-masks are set by the binary representation of n and serve to shuffle the

original van der Corput sequence in base 2. The bit-masks are generated from the lin-

ear recurring sequence associated with each primitive polynomial [96]. Because these

polynomials are primitive in F2[x], the period length of linear recurring sequences

used to generate the bit-masks is the maximum possible. The construction of the

Sobol’ sequence remains rather opaque compared to the more traditional mathemat-

ics found in other low-discrepancy sequences. Because the Sobol’ sequence is nearly

the same as the special construction of Niederreiter for a (t, s)-sequence in base 2

(see [125, 126, 127] and Appendix F), it is perhaps easier to consider its construction

using the theory provided for the (t, s)-sequences. However, the sample construction

of the Sobol’ sequence presented here follows the original approach of Sobol’ [161]

and the more recent algorithms developed in [18, 147], rather than adopting the

framework of the (t, s)-sequences.

The construction of a multi-dimensional Sobol’ sequence is independent in each

dimension; for convenience, only one dimension is initially considered here to prevent

the need for an additional subscript or superscript in the notation. Furthermore, the
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construction is limited to the first 2k sequence members to avoid the need for infinite

sums, where k is any positive integer. The first step is to select a primitive polynomial

p(x) ∈ F2[x] of degree d defined by

p(x) = xd + a1x
d−1 + · · · + ad−1x + 1, (D.3)

where the coefficients ai ∈ {0, 1} = F2 for 1 ≤ i ≤ d − 1. A table of primitive

polynomials in F2[x] is given in [96] (see pp. 384–398). Similar to the selection of

the smallest possible primes for the Halton sequence, the best bounding constant

CS
s (D.2) for the Sobol’ sequence occurs when the primitive polynomials have the

smallest degree possible. The number of primitive polynomials in F2 of degree d is

equal to φ
(
2d − 1

)
/d, where φ is Euler’s totient function [131].

The second step is to generate the necessary bit-masks to produce the sequence.

In the English translation of Sobol’ [161], these bit-masks used to construct the

sequence are referred to as “direction numbers.” The direction numbers are rational

fractions between zero and one that are represented exactly by a finite number of

bits. That is to say, when the fraction a/b is represented in its reduced form (i.e.

gcd(a, b) = 1), the denominator must be a power of two. The coefficients (a1, . . . , ad)

from the primitive root p(x) in (D.3) form a d-term linear recurrence for calculating

the direction numbers vi given by

vi = a1vi−1 ⊕ a2vi−2 ⊕ · · · ⊕ ad−1vi−d+1 ⊕ vi−d ⊕
(
vi−d/2

d
)

for i > d, (D.4)

where ⊕ denotes the bit-wise XOR operation performed relative to a fixed decimal

point. In order to use the linear recurrence (D.4), one needs the initial direction

numbers vi for 1 ≤ i ≤ d. These are defined by vi = mi/2
i for 1 ≤ i ≤ d, with

the necessary conditions that mi is odd and 0 < mi < 2i. Ideally, one should select

distinct mi for each primitive root used to generate a dimension of the sequence.
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This precaution diminishes the amount of correlation between the dimensions for the

initial elements of the Sobol’ sequence. Sobol’ [162] also proposes further restrictions

on the selection of mi that ensure additional uniformity properties which are beyond

the scope of this investigation.

Finally, the third step in the construction of the Sobol’ sequence is to generate

the actual sequence members from the direction numbers vi, for 1 ≤ i ≤ k. Using a

finite analogue of the base b representation vector defined in (A.1) for the van der

Corput sequence, let ~ξ2(n) = (ξ1,2(n), . . . , ξs,2(n)) denote the base 2 representation

of an integer n. Let n = bk . . . b2b1 denote the binary representation of the integer n.

Then the nth element of the Sobol’ sequence xn is given by

xn = ξ1,2(n) · v1 ⊕ ξ2,2(n) · v2 ⊕ · · · ⊕ ξk,2(n) · vk. (D.5)

Recall that this construction only applies to the first 2k elements of the Sobol’ se-

quence because the binary representation ~ξ2(n) contains only the k least significant

bits of n. The direction numbers vi do not change throughout the sequence construc-

tion, and therefore need only be generated once. Antonov and Saleev [2] propose

using the binary Gray code representation of the integer n to reduce the calcula-

tion in (D.5) to a single XOR operation. The significant computational savings and

implementation of the Gray code modification is discussed in Section 4.3 for the algo-

rithmic implementation of the Niederreiter sequence in base 2. In order to produce a

multi-dimensional Sobol’ sequence, the aforementioned procedure is simply repeated

for each dimension using a distinct primitive polynomial in F2.

As an example, the direction numbers and a sequence member are calculated for

the primitive polynomial p(x) = x2 + x + 1 for the first 24 elements of the sequence

(i.e. k = 4 i (D.4)). The linear recurrence for this specific polynomial is then given
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by

vi = vi−1 ⊕ vi−2 ⊕ vi−2/4 for i > 2. (D.6)

To start the recurrence, initial values for v1 = m1/2 and v2 = m2/4 must be selected

under the conditions that mi is odd and 0 < mi < 2i. With these conditions, the

only valid selection for m1 is the value 1, while m2 is restricted to the values 1 and

3. For the remainder of this example, let m2 = 1, thus v1 = 0.1000 and v2 = 0.0100

in binary representation of the direction numbers. Applying the linear recurrence

in (D.6) yields the following direction numbers v3 and v4 (represented as binary

fractions):

v3 = 0.0100 ⊕ 0.1000 ⊕ 0.0010 = 0.1110

v4 = 0.1110 ⊕ 0.0100 ⊕ 0.0001 = 0.1011.

To complete the illustration of the construction process, the 13th element of the

sequence x13 is calculated from the direction numbers v1, . . . , v4 and the binary rep-

resentation ~ξ2(13) = (1, 0, 1, 1, 0, 0, . . .) using (D.5). That is,

x13 = 1 · 0.1000 ⊕ 0 · 0.0100 ⊕ 1 · 0.1110 ⊕ 1 · 0.1011 = 0.1101 = 13
16

.

The example is continued in Table D.1 for a three dimensional Sobol’ sequence using

the following primitive polynomials pi(x) ∈ F2[x] to generate the ith dimension of

the sequence:

p1(x) = x + 1

p2(x) = x2 + x + 1

p3(x) = x3 + x + 1

The initial direction numbers used for each primitive root are defined by: m1 = 1

for dimension 1; (ii) m1 = 1 and m2 = 1 for dimension 2; and (iii) m1 = 1, m2 = 3

and m3 = 3 for dimension 3.
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n x1(n) x2(n) x3(n)
0 0.0000 0.0000 0.0000
1 0.5000 0.5000 0.5000
2 0.7500 0.2500 0.7500
3 0.2500 0.7500 0.2500
4 0.6250 0.8750 0.3750
5 0.1250 0.3750 0.8750
6 0.3750 0.6250 0.6250
7 0.8750 0.1250 0.1250
8 0.9375 0.6875 0.3125
9 0.4375 0.1875 0.8125

10 0.1875 0.9375 0.5625
11 0.6875 0.4375 0.0625
12 0.3125 0.3125 0.1875
13 0.8125 0.8125 0.6875
14 0.5625 0.0625 0.9375
15 0.0625 0.5625 0.4375

Table D.1: The first 16 points constructed for a three dimensional Sobol’ sequence
using primitive polynomials over F2: p1(x) = x + 1, p2(x) = x2 + x + 1
and p3(x) = x3 + x + 1.
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APPENDIX E

The Faure Sequence (1982)

The Faure sequence [46] is constructed from a single, one dimensional van der

Corput sequence that is uniquely permuted for each sequence dimension to yield a

multi-dimensional low-discrepancy sequence. Faure demonstrates this sequence, de-

noted by SF = (x0,x1, . . .) ∈ I
s
, achieves the following bound on its star discrepancy:

D∗
N(SF ) ≤ CF

s

(log N)s

N
+ O

(
N−1(log N)s−1

)
with CF

s = O (1). (E.1)

The discrepancy bound (E.1) is an improvement, in an asymptotic sense, over the

sequences of Halton (see Appendix C) and Sobol’ (see Appendices C and D respec-

tively). Unlike the Halton (C.3) and Sobol’ (D.2) sequences, the bounding constant

CF
s is O (1) and therefore remains bounded in the limit as the sequence dimension s

tends to infinity.

The construction of the s-dimensional Faure sequence requires a choice of a prime

base q that is greater than or equal to s. To simplify the construction, the maximum

sequence length is taken to be less than qk elements, for some positive integer k. The

assumption of a finite sequence length has no real impact on the final implementation,

since it is impossible for a computer simulation to produce an infinite number of

sequence elements. In addition, a matrix-vector notation is also adopted for the

following discussion of the Faure sequence construction process. Let the vector xn =
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(x1,n, . . . , xs,n) ∈ I
s

denote the nth element of the Faure sequence in base q. Using

a finite analogue of the base b representation vector defined in (A.1) for the van der

Corput sequence, let ~ξq(n) = (ξ1,q(n), . . . , ξs,q(n)) denote the base q representation

of an integer n, for 0 ≤ n ≤ qk − 1. Next define the matrix C = [cij] ∈ Fk×k
q as an

upper-triangle matrix where the jth column corresponds to the jth row of Pascal’s

triangle modulo q; that is

cij =







mod
(

(j−1)!
(j−i)!(i−1)!

, q
)

for 1 ≤ i ≤ j ≤ k

0 for 1 ≤ j < i ≤ k.

(E.2)

Note that the non-zero elements in (E.2) can be determined equivalently by the

binomial coefficient modulo q (e.g. cij = mod
((

j−1
i−1

)
, q
)

for j ≥ i); as a consequence,

the matrix C is sometimes referred to as the binomial matrix. Finally, let the set

of vectors y
(m)
n = (y

(m)
1,n , . . . , y

(m)
k,n ) ∈ Fk

q for 1 ≤ m ≤ s denote the result from the

matrix-vector multiplication given by

y(m)
n = Cm−1~ξq(n), (E.3)

where C0 = I is the k × k identity matrix. It is important to note that the addition

and multiplication operation in (E.3) are performed over the prime field Fq. Since q

is prime, the operations are equivalent to their standard definitions, except with the

final result taken modulo q.

With the preceding matrix and vector definitions, each coordinate of the vector

xn representing the nth element of the Faure sequence in base q is then determined

by

xm,n =
k∑

i=1

y
(m)
i,n q−i for 1 ≤ m ≤ s. (E.4)

Note that the calculation in (E.4) is performed over the real numbers (i.e. standard

arithmetic). With regards to the actual generation of the Faure sequence, it is
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possible to calculate and store all s − 1 powers of the binomial matrix C needed in

(E.3). However, it is much more efficient in practice to store the single C matrix

(E.2) and generate the set of vectors y
(m)
n for each sequence element xn using the

following iterative formulae [48]:

y(1)
n = ~ξq(n)

y(m)
n = Cy(m−1)

n for 2 ≤ m ≤ s. (E.5)

Based on the first step in the iterative formulae in (E.5), the first coordinate x1,n of

the Faure sequence in base q is the same as the van der Corput sequence in base q.

As an example, consider a Faure sequence in three dimensions, with a prime base

q = 3 and a maximum number of digits k = 4. The aforementioned construction

process can then be used to generate the first 34 members of the sequence. If a longer

sequence is needed, a larger value for k must be selected. In this example, the matrix

C (E.2) becomes

C =













1 1 1 1

0 1 2 0

0 0 1 0

0 0 0 1













.

To generate the 13th element x13 of the Faure sequence in base 3, one must first

determine the base 3 representation of 13; that is,

~ξ3(13) = (1, 1, 1, 0)T .

Then one repeatedly applies the iterative matrix-vector multiplication in (E.5) to
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n x1(n) x2(n) x3(n)
0 0.0000 0.0000 0.0000
1 0.3333 0.3333 0.3333
2 0.6667 0.6667 0.6667
3 0.1111 0.4444 0.7778
4 0.4444 0.7778 0.1111
5 0.7778 0.1111 0.4444
6 0.2222 0.8889 0.5556
7 0.5556 0.2222 0.8889
8 0.8889 0.5556 0.2222
9 0.0370 0.5926 0.4815

10 0.3704 0.9259 0.8148
11 0.7037 0.2593 0.1481
12 0.1481 0.7037 0.2593
13 0.4815 0.0370 0.5926
14 0.8148 0.3704 0.9259
15 0.2593 0.1481 0.7037

Table E.1: The first 16 points constructed for a three dimensional Faure sequence
with a prime base q = 3.

calculate the set of vectors (y
(1)
13 ,y

(2)
13 ,y

(3)
13 ), which yields

y
(1)
13 = (1, 1, 1, 0)T

y
(2)
13 = (0, 0, 1, 0)T

y
(3)
13 = (1, 2, 1, 0)T .

Finally, this set of vectors is used in (E.4) to generate each coordinate of the 13th

element of the Faure sequence; specifically,

x13 = (13
27

, 1
27

, 16
27

).

For further reference, the calculation of the first 16 points of the Faure sequence in

base 3 is provided in Table E.1.
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APPENDIX F

The Niederreiter (t, s)-Sequence (1987)

Niederreiter, in [125], introduced the concept of a (t, s)-sequence in base q in order

to establish a systematic theory connecting the construction of a low-discrepancy

sequence with its discrepancy bound. The integer t ≥ 0 can be viewed informally

as a measure of the strength of the uniformity condition of the sequence, where a

smaller value of t indicates that the (t, s)-sequence satisfies a stronger uniformity

condition; and the integer s is the dimension of the sequence. Strictly speaking, a

(t, s)-sequence does not define a specific sequence; rather, it is a classification system

based on the general construction properties of a sequence. For example, the van

der Corput, Sobol’, and Faure sequences are all different types of (t, s)-sequences.

Niederreiter proposes a special construction [126] of a (t, s)-sequence using irreducible

polynomials which yields a smaller discrepancy bound than either the Sobol’ or Faure

sequences. This special construction of the (t, s)-sequence is simply referred to as

the Niederreiter sequence in base q, throughout this investigation.

Before one can define a (t, s)-sequence in base q, one must first define an elemen-

tary interval and a (t,m, s)-net. An elementary interval in base q is a subinterval E

of [0, 1)s with the form

E =
s∏

i=1

[
aiq

−di , (ai + 1)q−di
)
, (F.1)
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0

1

0 0

1 1

1 1 1

Figure F.1: Example of a (t,m, s)-net in base 2, where t = 1, m = 3, and s = 2.

where ai and di are non-negative integers and 0 ≤ ai ≤ bdi for 1 ≤ i ≤ s. Observe

from the definition in (F.1) that the volume or content of the subinterval λs(E) =

q−D, where D =
∑s

i=1 di. Next, let 0 ≤ t ≤ m be integers. A (t,m, s)-net in base

q is then a point set P of qm points in [0, 1)s such that every elementary interval

with a volume qt−m contains exactly qt points from P . For example, the (1, 3, 2)-net

in base 2 is a point set in two dimensions with 8 points distributed such that every

elementary subinterval E with an area λ2(E) = 1
4

contains exactly two points, as

illustrated in Figure F.1. The integer t characterizes the strength of the uniformity

condition of the (t,m, s)-net in base q. The smaller the value of t, the greater the

number of elementary intervals E, each with volume λs(E) = qt−m, that satisfy the

uniformity condition for the distribution of points in the (t,m, s)-net in base q.

A sequence of points x0,x1, . . . ∈ I
s
is a (t, s)-sequence in base q if, for all integers

k ≥ 0 and m > t, the point set consisting of xn with kqm ≤ n ≤ (k + 1)qm is a

(t,m, s)-net in base q. In other words, for all m > t, every successive block of qm

elements from a (t, s)-sequence in base q is also a (t,m, s)-net in base q. Remarkably,

without actually defining the precise location of the sequence elements, Niederreiter

[125, 127] proves the asymptotic bound on the star discrepancy of a (t, s)-sequence

in base q is given by

D∗
N ≤ CN

s

(log N)s

N
+ O

(
qtN−1(log N)s−1

)
, (F.2)
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where

CN
s =







1
s

(
q−1

2 log q

)s

qt if s = 2 or q = 2, s = 3, 4

1
s!
· q−1

2bq/2c

(
bq/2c
log q

)s

qt otherwise.

(F.3)

Note that the operator b·c in (F.3) is the floor function. Therefore, the bound in

(F.2) implies that every (t, s)-sequence is a low-discrepancy sequence as well.

The special construction of Niederreiter sequence in base q [126] uses irreducible

polynomials in Fq[x]. Refer to [96] for a thorough review of finite fields and irreducible

polynomials. The uniformity measure t for the (t, s) classification of the Niederreiter

sequences in base q is related to the degree of the irreducible polynomials used to

generate each dimension; specifically,

t =
s∑

i=1

(
deg(pi(x)) − 1

)
,

where pi(x) ∈ Fq[x] is the irreducible polynomial used to generate the ith dimension

of the sequence, and p1(x), . . . , ps(x) are distinct.. Thus, the most uniform-(t, s)

sequence is constructed using the irreducible polynomials with the lowest possible

degree, which is similar to the Sobol’ sequence.

The most prominent difference between the Niederreiter and Sobol’ sequences

is the choice of generating polynomials. The Sobol’ sequence is constructed from

primitive polynomials in F2[x], while the Niederreiter sequence in base q uses irre-

ducible polynomials in Fq[x], where q is a prime power. Every primitive polynomial

is irreducible, but not every irreducible polynomial is necessarily primitive; as a

consequence, given an integer d ≥ 1, there are more irreducible polynomials than

primitive polynomials in F2[x] with a degree less than or equal to d. Therefore, the

Niederreiter sequence in base 2 has a smaller parameter t than the Sobol’ sequence

of the same dimension.1

1Because the non-primitive polynomial p(x) = x can still be used to construct the Sobol’ se-
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The Niederreiter sequence relies on the formal Laurent series to obtain some-

thing equivalent to the inverse of the irreducible polynomials used to generate each

sequence dimension. For a specific generating polynomial p(x), this inverse is used

in a manner analogous to the van der Corput sequence to generate a reflection of

the sequence number n around the decimal point to calculate the nth element of the

sequence. However, the sequence element number n is not represented with inte-

ger digits, but with polynomials from the residue class Fq[x]/p(x) to create a base

p(x) representation of n. Irreducible polynomials are similar to primes in that they

have no proper divisors in their respective rings other than one and themselves (or

scalar multiples of these two possibilities). Since each dimension of the Niederre-

iter sequence is generated from a distinct irreducible polynomial, the construction is

basically an extension of the Halton, except with a set of distinct irreducible polyno-

mial bases instead of primes. While on the surface the construction details may not

appear to be similar, the Niederreiter sequence in base 2 is, in fact, closely related to

the Sobol’ sequence. In particular, the calculation of the formal Laurent series over

the irreducible polynomials in F2[x] for the Niederreiter sequence is essentially the

same as the linear recurrence equations used to produce the direction numbers for

the Sobol’ sequence.

The general construction of the Niederreiter sequence in base q is initially pre-

sented here for only one dimension in order to simplify the required notation. The

dimensions of the Niederreiter sequence are generated independently; thus, the con-

struction process that follows for the one dimensional sequence is repeated as needed

for a multi-dimensional sequence. Since each dimension is generated by a distinct

irreducible polynomial over a finite field, let p(x) ∈ Fq[x] represent the irreducible

quence, the value t for the Niederreiter sequence in base 2 is not strictly less than the Sobol’
sequence unless t ≥ 8, see Table F.2.



411

polynomial under consideration for this one dimensional example of a Niederreiter

sequence in base q. Tables of irreducible polynomials over finite fields are found in

[96], or they may be produced by a simple extension of the Sieve of Eratosthenes

algorithm [78] from the integers to Fq[x]. The construction in this example is lim-

ited to the first qk sequence elements, where k is some positive integer, in order to

eliminate the need for infinite summations. Furthermore, a matrix-vector notation

similar to that used in the construction of the Faure sequence (see Appendix E) is

adopted for the Niederreiter sequence as well.

For 0 ≤ n ≤ qk − 1, let xn ∈ [0, 1) denote the nth element of a one dimensional

Niederreiter sequence in base q generated by the irreducible polynomial p(x) ∈ Fq[x],

where q is a prime power. Using a finite analogue of the base b representation vector

defined in (A.1) for the van der Corput sequence, let ~ξq(n) = (ξ1,q(n), . . . , ξk,q(n))

denote the base q representation of an integer n. Next define the matrix A = [aij] ∈

Fk×k
q such that the ith row of coefficients (ai1, . . . , aik) is defined in terms of the formal

Laurent series Fq((x
−1)) of the following polynomial quotient:

xmod(i−1,d)

p(x)di/de = ai1x
−1+ai2x

−2+· · ·+aikx
−k+· · · ∈ Fq((x

−1)) for 1 ≤ i, j ≤ k, (F.4)

where d·e denotes the ceiling function. The calculation of the formal Laurent series

of a polynomial coefficient is reviewed in [127]. Let the vector yn = (y1,n, . . . , yk,n)

denote the result from the matrix-vector multiplication given by

yn = A~ξq(n). (F.5)

It is important to note that the addition and multiplication operation in (F.5) are

performed over the finite field Fq. Finally, the vector yn in (F.5) is used to calculate

the nth element of the Niederreiter sequence in base q in the same manner as the
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Faure sequence; that is,

xn =
k∑

i=1

yi,nq−i, (F.6)

where the calculations are performed over the real numbers (i.e. standard arithmetic).

As an example, consider a three dimensional Niederreiter sequence in base 3,

with a maximum number of digits k = 4. Suppose that the ith dimension of this

Niederreiter sequence is generated by the irreducible polynomials pi(x) ∈ F3[x], where

p1(x) = x+1, p2(x) = x2 +1, and p3(x) = x2 +x+2. In order to generate the matrix

A(m) in each dimension m = 1, 2, 3, the four leading order terms of the following

formal Laurent series F3((x
−1)) are needed. Note that a superscript representing the

sequence dimension is added to the A matrix (F.4) and the vector yn (F.5). For

p1(x) = x + 1,

row 1: 1
p1(x)

= x−1 + 2x−2 + x−3 + 2x−4 + · · ·

row 2: 1
p1(x)2

= x−2 + x−3 + x−5 + · · ·

row 3: 1
p1(x)3

= x−3 + 2x−6 + · · ·

row 4: 1
p1(x)4

= x−4 + · · ·

which yields the following matrix for the first dimension:

A(1) =













1 2 1 2

0 1 1 0

0 0 1 0

0 0 0 1













. (F.7)

For p2(x) = x2 + 1,

row 1: 1
p2(x)

= x−2 + 2x−4 + · · ·

row 2: x
p2(x)

= x−1 + 2x−3 + x−5 + · · ·

row 3: 1
p2(x)2

= x−4 + · · ·

row 4: x
p2(x)2

= x−3 + x−5 · · ·
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which yields the following matrix for the second dimension:

A(2) =













0 1 0 2

1 0 2 0

0 0 0 1

0 0 1 0













. (F.8)

For p3(x) = x2 + x + 2,

row 1: 1
p3(x)

= x−2 + 2x−3 + 2x−4 + · · ·

row 2: x
p3(x)

= x−1 + 2x−2 + 2x−3 + 2x−5 · · ·

row 3: 1
p3(x)2

= x−4 + · · ·

row 4: x
p3(x)2

= x−3 + x−4 · · ·

which yields the following matrix for the third dimension:

A(3) =













0 1 2 2

1 2 2 0

0 0 0 1

0 0 1 1













. (F.9)

Consider again, for the moment, the general case of a Niederreiter sequence in base

q, where the maximum number of digits k ≥ 1 and the degree of the irreducible

polynomial p(x) ∈ Fq[x] is d ≥ 1. In this general case, the calculation of the A

matrix in (F.4) only requires the first d + k coefficients of the formal Laurent series

for 1
p(x)r , for 1 ≤ r ≤ dk

d
e. Once the coefficients from the formal Laurent series of

1
p(x)r are known, it is possible to obtain the coefficients for the formal Laurent series

of any polynomial quotient of the form xj

p(x)r by simply shifting the coefficients to the

right j places.

Now that the A matrices (F.4) have been established for this example of the

Niederreiter sequence in base 3, the actual elements x(n) = (x1(n), x2(n), x3(n)) of
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the sequence can be calculated for 0 ≤ n ≤ 34 −1. To illustrate the actual process of

generating this sequence, consider the calculation for the 13th element of the sequence

x13. First one must determine the base 3 representation of 13; that is,

~ξ3(13) = (1, 1, 1, 0)T .

Using the previously defined A(m) matrices in (F.7-F.9), the matrix-vector multipli-

cation in (F.5) is then applied for m = 1, 2, 3 in order to calculate the vectors y
(m)
13 ,

which yields

y
(1)
13 = (1, 1, 1, 0)T

y
(2)
13 = (0, 0, 1, 0)T

y
(3)
13 = (1, 2, 1, 0)T .

Finally, this set of vectors is used in (F.6) to generate each coordinate of the 13th

element of the Faure sequence; specifically,

x13 = (16
27

, 28
81

, 19
81

).

For further reference, the calculation of the first 16 points of this Niederreiter se-

quence in base 3 is provided in Table E.1.

The Niederreiter sequence offers greater control over the bounding constant for

its discrepancy bound (F.3) than the Sobol’ and Faure sequences. In particular, if an

s-dimensional Niederreiter sequence is constructed in base 2, then the discrepancy

bound is less than that of the Sobol’ sequence (when s ≥ 8). Further, if the Niederre-

iter sequence is constructed in a prime power base q ≥ s, then the discrepancy bound

is less than or equal to that of the Faure sequence. When the base of the Niederreiter

sequence is greater than or equal to the dimension of the sequence, all the polynomi-

als used in its construction are of degree one. Thus, this Niederreiter sequence has
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n x1(n) x2(n) x3(n)
0 0.0000 0.0000 0.0000
1 0.3333 0.1111 0.1111
2 0.6667 0.2222 0.2222
3 0.7778 0.3333 0.5556
4 0.1111 0.4444 0.3333
5 0.4444 0.5556 0.4444
6 0.5556 0.6667 0.7778
7 0.8889 0.7778 0.8889
8 0.2222 0.8889 0.6667
9 0.4814 0.2346 0.9012

10 0.8148 0.0123 0.6790
11 0.1481 0.1235 0.7901
12 0.2593 0.5679 0.1235
13 0.5926 0.3457 0.2346
14 0.9259 0.4568 0.0123
15 0.7037 0.9012 0.3457

Table F.1: The first 16 points constructed for a three dimensional Niederreiter se-
quence in base 3. The following irreducible polynomials are used to gen-
erate each dimension: p1(x) = x+1, p2(x) = x2+1 and p3(x) = x2+x+2
in F3[x].

a value t = 0, using the (t, s) classification. As mentioned earlier, (0, s)-sequences

are considered the most uniform; in fact, it can be shown that the implied constant

CN
s in (F.3) tends to zero as s → ∞ in this case. It is interesting to note that the

s-dimensional Niederreiter sequence in base q when q ≥ s is prime is the same as the

Faure sequence in base q, except for a re-ordering of the sequence dimensions. Based

on the asymptotic performance in (F.2), it is natural to assume that (0, s)-type of

Niederreiter sequence would be the best option for QMC integration. In practice,

however, the Niederreiter sequence in base 2 offers the best performance because the

computational cost of generating the sequence is orders of magnitude smaller than

that of the (0, s)-sequence in base q > 2.

For the Niederreiter sequence in base 2, the matrix-vector multiplication is re-

duced to a vector product by concatenating the ones and zeros in each column of

the matrix transform A into a single integer. The base 2 calculation can be further
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simplified to a single operation by adopting the Gray code modification that Antonov

and Saleev [2] propose for the Sobol’ sequence. In contrast, the Niederreiter sequence

in a general base q > 2 requires the full matrix-vector multiplication to construct

each dimension. When the sequence base p is a prime number greater than 2, all the

additions and multiplications needed for the matrix-vector multiplication must be

performed modulo p which adds an additional division operation for each row of the

matrix. Furthermore, when the sequence base is a prime power pr (r > 1), there is no

simple means to perform the addition and multiplication operations over the finite

field Fpr . In this case, the full operator tables for addition and multiplication on Fpr

must be stored in memory and accessed for each operation in the matrix-vector mul-

tiplication. More details on the computational cost associated with the Niederreiter

sequence in base 2 and the (0, s)-type sequences (e.g. the Faure sequence) are given

in Section 4.3.

The performance advantages of the Niederreiter sequence in base 2 leads to a

natural question: “if the (t, s)-sequence in base 2 is preferable in practice and lower

values of t result in a more uniform sequence, what is the lowest value of t that can

be achieved for a given s?” For the Sobol’ sequence, the value of t = t(s) grows

as the degree increases of the first s primitive polynomials in F2[x] (when ordered

by lowest degree). Similarly, for the Niederreiter sequence in base 2, the value of

t = t(s) grows as the degree increases of the first s irreducible polynomials F2[x].

However, since not every irreducible polynomial is a primitive polynomial, there is

generally more irreducible polynomials in F2[x] of a specific degree. Thus, the value

of t(s) for the Niederreiter sequence grows slower than the Sobol’ sequence, yielding

a smaller bounding constant (F.3) in the discrepancy bound.

Niederreiter and Xing [130] extend this concept further by constructing (t, s)-
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Sobol’ Nied NX
s (1967) (1988) (1996)
1 0 0 0
2 0 0 0
3 1 1 1
4 3 3 1
5 5 5 2
6 8 8 3
7 11 11 4
8 15 14 5
9 19 18 6

10 23 22 8
11 27 26 9
12 31 30 10
13 35 34 11
14 40 38 13
15 45 43 15
16 50 48 15
17 55 53 18
18 60 58 19
19 65 63 19
20 71 68 21

Table F.2: The value t = t(s), for 1 ≤ s ≤ 20, of different (t, s) sequences in base 2.
Originally from [129].

sequences using global function fields with many rational places. The same construc-

tion ideas behind low-discrepancy sequences have evolved from using prime numbers

(Halton) to using finite field polynomials (Sobol’ and Niederreiter) and then to using

global function fields (Niederreiter and Xing). Each step in this evolution relies on

more abstract algebraic and number theoretic concepts, thereby allowing for greater

control over the asymptotic convergence of the star discrepancy of the sequence. The

(t, s)-sequence in base 2 proposed by Niederreiter and Xing has the slowest growth of

t(s) currently known. A comparison of t(s) for the base 2 sequences of Sobol’, Nieder-

reiter (Nied), and Niederreiter and Xing (NX) is given in [129], which is reproduced

here in Table F.2.

While Niederreiter and Xing proved in [130] the existence of a (t, s)-sequence in

base 2 with the values of t(s) in Table F.2, there was no explicit construction provided
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for the sequence. Over four years elapsed before the first actual implementations

[144] of the Niederreiter and Xing sequence were performed. Many of the necessary

procedures in this new construction are still very active areas in algebra research.

Thus, the algorithms for the Niederreiter and Xing sequence will continue to evolve

for quite some time.
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[33] I. Coulibaly and C. Lécot. Monte Carlo and quasi-Monte Carlo algorithms
for a linear integro-differential equation. In H. Niederreiter, P. Hellekalek,
G. Larcher, and P. Zinterhof, editors, 2nd International Conference on Monte
Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages 176–188,
Salzburg, Austria, 1996.

[34] R. Courant and D. Hilbert. Methods of Mathematical Physics, volume 1. In-
terscience Publishers, New York, 1953.

[35] R. Cranley and T. N. L. Patterson. Randomization of number theoretic meth-
ods for multiple integration. SIAM Journal on Numerical Analysis, 13(6):904–
914, 1976.

[36] D. H. Davis. Monte Carlo calculation of molecular flow rates through a cylin-
drical elbow and pipes of other shapes. Journal of Applied Physics, 31(7):1169–
1176, 1960.

[37] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, New York, 1998.

[38] J. H. de Boer. The Dynamical Character of Adsorption. Clarendon Press,
Oxford, 1953.

[39] R. G. Deissler. An analysis of second-order slip flow and temperature-jump
boundary conditions for rarefied gases. International Journal of Heat and Mass
Transfer, 7:681–694, 1964.



423

[40] L. M. Delves and J. L. Mohamed. Computational Methods for Integral Equa-
tions. Cambridge University Press, New York, 1985.

[41] L. Devroye. Binary search trees based on Weyl and Lehmer sequences. In
H. Niederreiter, P. Hellekalek, G. Larcher, and P. Zinterhof, editors, 2nd In-
ternational Conference on Monte Carlo and Quasi-Monte Carlo Methods in
Scientific Computing, pages 40–65, Salzburg, Austria, 1996.

[42] J. Dick and F. Y. Kuo. Constructing good lattice rules with millions of points.
In H. Niederreiter, editor, 5th International Conference on Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing, pages 181–198, Singa-
pore, 2002.

[43] S. Dushman. Recent advances in the production and measurement of high
vacua. Journal of the Franklin Institute, 211(6):689–750, 1931.

[44] J. Fan and C. Shen. Statistical simulation of low-speed rarefied gas flows.
Journal of Computational Physics, 167:393–412, 2001.
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