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CHAPTER I

INTRODUCTION

1.1 Motivation

The aging of the Space Shuttle prompted significant research on possible designs

for its replacement through the years. For a long time it was believed that the

replacement for this reusable vehicle would be a spacecraft more advanced, more

efficient and of course, more reusable. One of the paradigms that received a lot of

attention in the past years was air-breathing reusable vehicles. Such vehicles would

take off from a runway and accelerate to orbital velocities using a series of different

engines. The technology necessary for these spacecraft is still being developed and

an operational vehicle is still many years away.

The tragic accident of the Space Shuttle Columbia in 2003 made it very clear that

the US Space Program could not wait for the development of air-breathing vehicles

to substitute the Space Shuttle. Due to a decision to retire the Space Shuttle in

a short time, a space capsule design was selected as an immediate replacement to

transport astronauts between the Earth and the International Space Station and

maybe beyond. The selection of space capsules is based on their historic safety

as demonstrated by the US, Russia and China, their low cost of maintenance and

production and also because the technology is immediately available.
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The US Space Program used manned space capsules for the Mercury, Gemini and

Apollo programs and smaller scale unmanned space capsules for several missions to

other planets. Russia still uses the Soyuz capsule for manned missions and China

uses a capsule for its manned flights that is very similar to the Soyuz. Some typical

capsules are shown in Fig. 1.1. In the US, the focus on the Space Shuttle program did

not allow resources to be used in the design of new space capsules for manned flight.

Therefore, there is room for improvement of existing designs and for the development

of shapes that would be optimal in some design sense such as minimizing heating,

minimizing communication blackout or increasing aerodynamic stability.

Numerical simulation of fluid flows is an integral part in the design of any vehicle,

including entry space capsules. The extreme conditions experienced by the spacecraft

during reentry are difficult to reproduce in an experimental facility and flight tests on

other planets are not possible. The cost of experimental studies of hypersonic flows is

higher than low speed flows because of the immense amount of energy that has to be

used to reproduce flight conditions and because the number of facilities equipped to

perform such experiments is very limited. A flight test in Earth’s atmosphere is even

more expensive. The application of numerical tools such as Computational Fluid

Dynamics (CFD) can reduce the number of costly experiments by helping engineers

achieve preliminary designs that are much closer to the final vehicle. Indeed, CFD has

been used extensively in the past two decades as a design tool of entry capsules such

as Galileo[64], Mars Pathfinder[19, 27], Stardust[68, 69, 70] and others. The increase

in computing power allowed the simulation of more physical processes involved. In

the ideal case, experimental and flight tests in the Earth’s atmosphere can become

a certification phase of the design developed using numerical tools. Currently, CFD

is being used in the design of the next US manned capsule, Orion.
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(a) Mercuy (b) Gemini

(c) Apollo (d) Soyuz

(e) FIRE (f) Galileo

Figure 1.1: Some successful designs of space capsules.
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Due to extreme flow velocities, the numerical simulation of entry flows involves

the modeling of various physical phenomena not routinely included in most numer-

ical tools for flow analysis. It is common for entry flows to be in thermo-chemical

non-equilibrium, ionized, and electronically excited. Some of the physical model-

ing is approximate and much of it has not changed since the 1980’s. In addition,

the numerical modeling of hypersonic flows presents distinct problems that have not

been solved to date. Old models can be improved or replaced to allow more accurate

simulation of entry flows used in the design of new space capsules and other hyper-

sonic spacecraft including air breathing vehicles. The influence of the physical and

numerical models can be tested against available experimental and flight data in a

simulation that includes all the physical modeling required for meaningful compar-

isons. The Apollo program in the 1960’s generated a large amount of experimental

and flight test data that can be used for such studies. Because Orion will likely be

similar to the Apollo capsule, there is a lot of interest in knowing how the current

physical and numerical modeling perform in relation to these data.

1.2 Challenges of Numerical Simulations of Entry Flows

Typical values for the entry velocity of a spacecraft in a planetary atmosphere

range between 7 and 12 km/s and the associated Mach numbers range between 20

and 50. Figure 1.2 shows the reentry trajectory of the Apollo 6 capsule in the

Earth’s atmosphere. As the spacecraft crosses the atmosphere, different flow regimes

ensue. For altitudes larger than 120 km, the Knudsen number, which measures

the ratio of the distance between gas particles or mean free path to the spacecraft

characteristic length (around 4 meters for the Apollo capsule), can reach values above

10. In this flow regime, called free-molecular, collisions between gas particles that
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are reflected at the spacecraft wall with the incoming particles are so rare that they

can be neglected and no shock wave is observed. Between 120 and 90 kilometers of

altitude, the Knudsen number is between 1 and 0.01, as can be seen in Fig. 1.2(a), and

the flow regime is called transitional. The collisions between the reflected particles at

the wall and the incoming particles are frequent leading to the formation of a diffuse

bow shock wave in front of the body. During the free molecular and the transitional

regime, the well known Navier-Stokes equations for fluid flow are not valid and the

flow has to be modeled using different sets of equations such as the Burnett equations

or the Boltzmann equation. The Boltzmann equation can be simulated numerically

using the Direct Simulation Monte Carlo (DSMC) method[20]. The atmosphere is

so rarefied during these regimes that almost no reduction in speed is observed and

the heating rates are small as shown in Fig. 1.2(b). In this figure, the convective

heating rates are estimated using the Fay and Riddell expression[11] in which the

stagnation point heating rate is proportional to ρ
1/2
∞ u3

∞, where ρ∞ is the freestream

density and u∞ is the freestream speed. The plotted results are normalized by the

maximum heating rate calculated.

For altitudes below 90 km, the Knudsen number is smaller than 0.01 and the

flow regime is called continuum. Collisions between the reflected particles and the

incoming flow are so frequent that the bow shock wave becomes thin. The number

density of particles in the gas is large enough so that the gas can be modeled as

a continuum, except in localized regions such as inside the shock wave or in some

regions of the rarefied wake. These regions are shown in Fig. 1.3 which presents a

schematic view of continuum flow around the capsule. The local characteristic length

of those regions can be of the same order of the mean free path thus invalidating

the continuum approximation. These regions can be successfully simulated using the
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(a) Knudsen Number (b) Heat Transfer

Figure 1.2: Re-entry trajectory of the Apollo-6 mission.

DSMC method. At an altitude around 80 km, the spacecraft is already experiencing

significant reduction in speed. The immense amount of kinetic energy is transformed

into thermal energy through the shock wave generating temperatures as high as

50, 000 K immediately after the shock. Most of this thermal energy stays with the

flow and is convected away but part of it is transferred to the spacecraft by convective

and radiative heating. The maximum convective heating rate at the stagnation point

usually occurs between 70 and 60 km altitude, well within the limits of continuum

modeling, as can be seen in Fig. 1.2(b).

Due to the very high speeds and relatively low density of the flow, the shock

stand-off distance at the end of the transitional regime and at the beginning of the

continuum regime is small. During this period, the shock standoff distance and the

boundary layer thickness can be approximately the same giving rise to what is called

the shock layer. It is common in hypersonic flow to reference the region between the

wall and the shock wave as the shock layer even when the shock wave is not at the

boundary layer edge. The shock layer is indicated in Fig. 1.3. The high temperature
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Figure 1.3: Schematic of the fluid flow over a reentry capsule.

in the shock layer due to the shock causes intense chemical reactions, vibrational

and electronic energy excitation and gas ionization. The chemical reactions and the

energy transfer processes between the different energy modes of the gas occur at

finite rates that depend on intermolecular collisions which in turn depend on the

gas density. Because of the associated high speeds and relatively low density, the

flow characteristic time may be of the same order of the chemical and energy trans-

fer processes characteristic times, leading to thermal and chemical non-equilibrium

inside the shock layer. As the spacecraft descends in the atmosphere the rate of

intermolecular collisions increases and the flow will eventually achieve thermal and

chemical equilibrium at low altitudes.

The presence of an ionized and electronically excited gas causes the shock layer

to emit radiation which is partly absorbed by the spacecraft as radiative heating. In

addition, the spacecraft wall can be a catalyst to chemical reactions which leads to

exothermic reactions close to the wall and additional heating. The large heating load

in entry vehicles can be handled by ablation of material from the heat shield, which
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will inject different chemical species in the flow. All these physical processes and the

fluid flow are coupled together. The chemical non-equilibrium affects flow temper-

ature, flow composition and flow properties such as viscosity and heat conduction.

The thermal non-equilibrium affects the reaction rates. The emitted radiation affects

the flow field by lowering the flow temperature. The amount of radiation depends on

the thermal non-equilibrium of the flow field. The ablation of the heat shield leads

to different chemical reactions close to the wall and can change the shape of the

spacecraft. The injection of material due to ablation can make the boundary layer

turbulent. The efficient simulation of hypersonic flows should take into account the

interdependence of the physical phenomena.

Although the physical modeling difficulties are formidable, the numerical prob-

lems incurred by the numerical modeling can not be disregarded. The extremely

high Mach numbers cause problems for most numerical flux functions and numerical

tools. These problems are even more pronounced when using unstructured grids

made of triangles or tetrahedra where the grid can not be aligned to the shock wave.

One example of such a computation is shown in Fig. 1.4, which shows contours of

x-velocity for a M = 20 flow over a cylinder obtained using a very fine mesh made of

triangles. The staircase pattern emanating from the shock is generated by almost all

flux functions currently used for compressible flow simulations. These problems at

the shock wave can be minimized by using carefully generated grids of quadrilaterals

and hexahedra that are aligned to the shock wave at the expense of grid generation

time.

Moreover, the presence of chemical reactions requires very fine grids at the wall

resulting in more expensive simulations. The potentially large number of chemical

species also increases the computational cost. Most space capsules are flown at some
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(a) Contours of x-velocity. (b) Grid.

Figure 1.4: Typical failure of numerical flux functions in the simulation of hypersonic
flow using unstructured grids.

angle-of-attack to create lift so that the maximum heating occurs at high altitudes

which is beneficial because the maximum heating is proportional to the gas density.

The simulation of such capsules requires expensive three-dimensional computations

because of the angle-of-attack. In addition, most capsules have attachments such

as antennas, windows and ports that may present localized heat load. Such small

structures in the geometry result in difficult grid generation for detailed simulations.

1.3 Review of Related Work

The numerical simulation of fluid flows for aerospace applications has been per-

formed for decades. It started with the numerical simulation of simplified forms

of the Navier-Stokes equations, such as the linearized potential flow, the transonic

small disturbance equations and the full potential equations[40]. The first simula-

tions of hypersonic flows solved a simplification of the Navier-Stokes equations called

the viscous shock-layer equations. Such simulations included analysis of the Galileo

probe[64], of the Space Shuttle[47] and of aerobrake configurations[55]. Most of the
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ideas that define modern Computational Fluid Dynamics (CFD) and that are cur-

rently used, such as flux vector splitting[86, 50], approximate Riemann solvers[79, 78]

and methods for robust higher order approximations[51, 52] were developed around

this time as well. These methods allow the simulation of the full Navier-Stokes equa-

tions for general geometries and more general flow conditions and are significantly

more expensive than previous methods.

As the numerical modeling improved and computer power increased, more com-

plex models for the physical phenomena were gradually included in the simulations

of the Navier-Stokes equations. First attempts in the simulation of hypersonic flows

using modern CFD loosely coupled chemistry source terms[25] or coupled a simplified

chemistry model[22]. The first computation of a multi-dimensional flowfield includ-

ing thermo chemical nonequilibrium and ionization was performed by Candler[18]. In

his work, Candler solved using modern Computational Fluid Dynamics techniques a

set of equations that coupled thermal and chemical non-equilibrium equations to the

fluid dynamics equations. The set of equations solved is similar to the set developed

by Lee[49] but considered a different vibrational temperature for each polyatomic

species.

Around the same time, another CFD code for entry flows called LAURA (Langley

Aerothermodynamic Upwind Relaxation Algorithm) was developed by Gnoffo[24] at

NASA Langley Research Center. That code solves the set of equations developed by

Lee[49] because the energy transfer between vibrational modes is usually fast. This

numerical tool was used extensively in the design of several entry capsules[28] and for

analysis of the Space Shuttle thermal protection system[26]. Both numerical codes

used implicit methods, structured grids and took advantage of vector machines at

the time.
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The increased availability of parallel machines in the 1990’s made the develop-

ment of implicit algorithms amenable to parallelization necessary. Wright[95] showed

that the linear system of equations originating from the implicit integration of fluid

dynamics problems using structured grids can be efficiently solved by resolving the

system of equations exactly in the direction normal to the body and relaxing it in

the other directions. This approach is amenable to parallelization as long as the

structured grid is partitioned along directions normal to the body. The code called

DPLR (Data-Parallel Line Relaxation) is currently used at NASA Ames Research

Center to design heat shields of reentry capsules[28].

On a different front, other researchers[88] developed implicit algorithms for CFD

codes using unstructured grids. Unstructured grids are not limited to quadrilater-

als or hexahedrons and offer more flexibility for grid generation. The algorithms

developed at the time were mainly based on the solution of a sparse system of equa-

tions and did not use physical properties of the problem. The algorithms developed

showed stability and convergence problems for ideal gas calculations. Nompelis[67]

showed that the algorithm developed by Wright[95] is also very efficient for the sim-

ulation of hypersonic flows using unstructured grids requiring only that normal lines

be assembled in the unstructured mesh, an approach that has been used extensively

in the finite-element community[39, 61]. The algorithm developed was restricted

to the unstructured treatment of three-dimensional meshes made of hexahedra but

the extension to unstructured grids made of tetrahedra or two-dimensional grids is

trivial.

Furthermore, the constant increase in computer power has allowed in recent years

the use of more complex models for chemical kinetics and wall catalysis[74, 76, 75],

transport properties[34, 72, 96] and diffusion models[87, 75, 29]. Coupled solutions
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involving radiation[71] and ablation[38] have been performed but are still not com-

mon.

1.4 Scope of Present Work

The goal of this work is to develop and validate a multi-dimensional CFD code for

the simulation of weakly ionized hypersonic flows in thermo-chemical non-equilibrium

around entry configurations using unstructured grids. The code is to be used in the

future by other researchers to analyze and improve the physical and numerical mod-

eling of hypersonic flows to ultimately improve the design of space capsules. Current

physical and numerical modeling are used in the code. While the physical and nu-

merical modeling used is not new, the code itself is completely developed outside

established research groups that perform entry flow simulations using CFD. The

code is called “Le” Michigan Aerothermodynamic Navier-Stokes Solver (LeMANS).

LeMANS is currently used as the CFD module in a hybrid DSMC-CFD code that is

being developed[82, 84, 83] to simulate flows that include localized regions where the

continuum approximation is not valid. The code uses unstructured grids to facilitate

the coupling with the DSMC solver and to allow future investigation of the numerical

problems caused by unstructured grids. In this work, only results with grids made of

quadrilaterals and hexahedra are presented as part of the validation process of the

code. LeMANS is also currently being used to perform evaluation of physical models

employed in entry flow simulations[59, 58, 82, 84, 83], in the modeling of the flowfield

typical of plasma guns[77] and in benchmark studies against other codes for entry

flows[81] that aim at reducing uncertainties in aerothermodynamic calculations.

This dissertation is organized as follows: Chapter 2 presents the set of partial

differential equations and associated physical models used to describe a weakly ion-
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ized entry flow in thermo-chemical non-equilibrium. Chapter 3 details the numerical

method used in the discretization of the set of partial differential equations using un-

structured grids and the implicit algorithms used to solve the resulting sparse linear

system. Chapter 4 shows unstructured grid partitioning strategies that are conve-

nient for the implicit algorithm and for the higher order extension of inviscid fluxes.

Chapter 5 presents code validation efforts using available experimental, numerical

and flight data for space capsules. Conclusions and suggestions for further research

are summarized in Chapter 6.



CHAPTER II

MATHEMATICAL FORMULATION

2.1 Introduction

The high speed of hypersonic flows causes many physical phenomena in the flow-

field that are not normally modeled by the perfect gas form of the Navier-Stokes

equations. Such physical phenomena include chemical non-equilibrium, vibrational

and electronic excitation, thermal non-equilibrium and ionization. These phenom-

ena require the use of a real gas model. This chapter presents the extended form of

the Navier-Stokes equations used to describe the flow and the thermodynamic and

transport property models used to describe the real gas. The finite-rate chemistry

model and the energy relaxation model used to describe the chemical and thermal

non-equilibrium of the flowfield are also presented.

2.2 Conservation Equations

The flow is modeled assuming that the continuum approximation is valid. It is

assumed that the rotational and translational energy modes of all species can be de-

scribed by a single temperature Ttr because the rotational energy equilibrates with

the translational energy in just a few collisions. Furthermore, it is assumed that the

vibrational and electronic energy modes of all species and the electron translational

14
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energy mode can be described by a single temperature Tve. That assumption is based

on the fact that the energy transfer between the translational mode of electrons and

the vibrational mode of molecules is very fast in air[24], that the vibrational temper-

ature of different molecules are very similar[18] due to highly efficient vibrational-

vibrational energy transfer[49] and that the electronic energy and the electron trans-

lational energy can be modeled by a single Maxwell-Boltzmann distribution because

the electronic mode is excited by the translational mode of electrons[49]. These as-

sumptions regarding energy transfer simplify the system of equations considerably

by eliminating translational and vibrational energy equations for each polyatomic

species and an energy equation for the electrons. This is considered a large simpli-

fication of the problem but the energy transfer models are not accurate enough to

warrant extra complexity in the equations. While these simplifications may not be

adequate for some problems, they provide accurate results for aerodynamic coeffi-

cients and convective heat transfer rates of reentry configurations[24]. With those

approximations, the conservation equations for the three-dimensional system can be

written as [49, 24, 74, 18]

∂Q

∂t
+
∂(E − Ev)

∂x
+
∂(F − Fv)

∂y
+
∂(G−Gv)

∂z
= Scv , (2.1)
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where

Q =



ρ1

...

ρns

ρu

ρv

ρw

E

Eve



and Scv =



ẇ1

...

ẇns

0

0

0

0

ẇv



(2.2)

are the vector of conserved variables and the vector of source terms, respectively. In

these expressions, ρ1 · · · ρns are the species densities, u v and w are the bulk velocity

components, E and Eve are the total and the vibrational-electron-electronic energy

per unit volume of mixture, respectively.

The inviscid and diffusive flux vector components in the x direction are given by

F =



ρ1u

...

ρnsu

ρu2 + p

ρuv

ρuw

(E + p)u

Eveu



(2.3)
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and

Fv =



−Jx,1

...

−Jx,ns

τxx

τxy

τxz

τxxu+ τxyv + τxzw − (qtr,x + qve,x)−
∑

(Jx,shs)

−qve,x −
∑

(Jx,seve,s)



, (2.4)

where p is the pressure, τij are the viscous stress components and qtr,i and qve,i are

the translational-rotational and vibrational-electron-electronic heat fluxes in the i-th

direction. Moreover, hs is the species enthalpy and Jx,s is the species diffusion flux

in the x-direction. The flux vectors in the other directions are similar. The following

sections provide more details on the modeling of the terms.

2.3 Viscous Terms

The viscous stresses are modeled assuming a Newtonian fluid for which, using

Stokes’ hypothesis,

τij = µ

(
∂uj

∂xi

+
∂ui

∂xj

)
+ λ∇~uδij , λ = −2

3
µ , (2.5)

where µ is the mixture coefficient of viscosity.

The heat fluxes are modeled according to Fourier’s law as

~qtr,ve = −κtr,ve∇Ttr,ve , (2.6)

where κtr,ve are the mixture thermal conductivity for each energy mode. The species

mass diffusion fluxes are modeled using Fick’s law modified to enforce that the sum
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of the diffusion fluxes is zero[87]

~Js 6=e = ~Is − Ys

∑
r 6=e

~Ir , (2.7)

where

~Is = −ρDs∇Ys , (2.8)

Ds is the species diffusion coefficients and Ys is the species mass fraction. This

approach is computationally economical and a good approximation for the exact so-

lution of the diffusion fluxes[87] given by the Stefan-Maxwell equations. The electron

diffusion flux is not included in the summation in Eq. 2.7 because its value is as-

sumed small due to the small molecular weight of electrons in relation to atoms and

molecules. The diffusion flux of electrons is calculated assuming ambipolar diffusion

to guarantee the charge neutrality of the flowfield by

~Je = Me

∑
s 6=e

~JsCs

Ms

, (2.9)

where Me is the electron molecular weight and Cs is the species charge. The species

molecular weight and charge for the 11-species air model used in this work are listed

in Appendix A.

2.4 Thermodynamic Properties

The mixture pressure p is obtained using Dalton’s law of partial pressures and

the perfect gas law for each species. Thus

p =
∑
s 6=e

ρs
Ru

Ms

Ttr + ρe
Ru

Me

Tve , (2.10)

where Ru is the universal gas constant. One should observe that the electron tem-

perature is equilibrated with Tve. The total energy per unit volume of mixture is
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given by

E =
∑
s 6=e

ρsCvtr,sTtr +
1

2
ρ(u2 + v2 + w2) +

∑
s 6=e

ρsh
o
s + Eve , (2.11)

where ho
s is the species enthalpy of formation listed in Appendix A for the species

used in this work. The translational-rotational specific heat at constant volume,

Cvtr,s, is given by

Cvtr,s = Cvt,s + Cvr,s . (2.12)

This work assumes that the translational and the rotational specific heats at constant

volume are constant and given by

Cvt,s =
3

2

Ru

Ms

(2.13)

and

Cvr,s =


Ru

Ms
for molecules,

0 for atoms and electrons.

(2.14)

This is a good approximation because the translational and the rotational energy

modes are fully excited even at low temperatures. The species vibrational energy

per unit mass is modeled using a harmonic oscillator as

ev,s =


Ru

Ms

θv,s

exp(θv,s/Tve)−1
for molecules,

0 for atoms and electrons,

(2.15)

where θv,s is the species characteristic vibrational temperature. This harmonic oscil-

lator model is adequate because it is accurate for the low vibrational energy levels

and because the energy contribution of the higher levels, where the model loses ac-

curacy, is negligible[49]. Values for θv,s are listed in Appendix A. The vibrational

specific heat at constant volume is calculated by

Cvv,s =


Ru

Ms

(θv,s/Tve)2 exp(θv,s/Tve)

[exp(θv,s/Tve)−1]2
for molecules,

0 for atoms and electrons,

(2.16)
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The species electronic energy, eel,s is modeled by

eel,s =


Ru

Ms

P∞
i=1 gi,sθel,i,s exp(−θel,i,s/Tve)P∞

i=0 gi,s exp(−θel,i,s/Tve)
for molecules and atoms

0 for electrons,

(2.17)

where θel,i,s and gi,s are the characteristic electronic temperature and the degeneracy

of the i-th energy level, respectively. This model is adequate because it is accurate

for the low electronic energy levels and because the energy contribution of the higher

levels, where the model loses accuracy, is negligible[49]. Numerical values for the

model parameters are listed in Appendix A for the 11-species air model. The species

electronic specific heat at constant volume is given by

Cvel,s =


∂eel,s

∂Tve
for molecules and atoms

0 for electrons,

(2.18)

where

∂eel,s

∂Tve
= Ru

Ms

{
[
P∞

i=1 gi,s(θel,i,s/Tve)2 exp(−θel,i,s/Tve)]P∞
i=0 gi,s exp(−θel,i,s/Tve)

− [
P∞

i=1 gi,sθel,i,s exp(−θel,i,s/Tve)][
P∞

i=0 gi,s(θel,i,s/T 2
ve) exp(−θel,i,s/Tve)]

[
P∞

i=0 gi,s exp(−θel,i,s/Tve)]2

}
.

(2.19)

The vibrational-electron-electronic energy per unit mass of the species is given by

eve,s =

 ev,s + eel,s for molecules and atoms,

Cvt,eTve for electrons

(2.20)

and the species vibrational-electron-electronic specific heat at constant volume, Cvve,s,

is given by

Cvve,s =

 Cvv,s + Cvel,s for molecules and atoms,

Cvt,e for electrons.

. (2.21)

The mixture vibrational-electron-electronic energy per unit volume is given by

Eve =
∑

s

ρseve,s (2.22)
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and the internal energy per unit mass of the species is given by

es =

 Cvtr,sTtr + ho
s + eve,s for molecules and atoms,

eve,e for electrons

(2.23)

and the species enthalpies are given by

hs =

 RsTtr + es for molecules and atoms,

ReTve + ee for electrons.

(2.24)

2.5 Transport Properties

In this work, the transport properties of the mixture can be calculated using two

different models. The first model uses Wilke’s mixing rule[94], Blottner’s curve fits

for viscosity[14] and Eucken’s[91] relation for thermal conductivities. This model is

adequate for relatively small speeds for which the flowfield maximum temperature is

around 10, 000 K. This simple model is not designed for ionized flows even though it

can be modified to handle a weakly ionized gas, an approach not used in this work

because it lacks generality[72]. For larger speeds, on the order of 10 km/s, Gupta’s

mixing rule[34] with species viscosities and thermal conductivities calculated using

non-coulombic/coulombic collision cross section data[96] is employed, as suggested

in Ref. [72].

2.5.1 Wilke/Blottner/Eucken

In this model, the mixture transport properties are modeled using Wilke’s semi-

empirical mixing rule[94], for which

µ =
∑

s

Xsµs

φs

and κ =
∑

s

Xsκs

φs

, (2.25)

where Xs is the species molar fraction, µs is the species coefficient of viscosity and

κs is the species thermal conductivity for each energy mode. The term φs is given
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by

φs =
∑

r

Xr

[
1 +

√
µs

µr

(
Mr

Ms

)1/4
]2 [√

8

(
1 +

Ms

Mr

)]−1

. (2.26)

The species viscosities are calculated using Blottner’s curve fits[14] as

µs = 0.1 exp[(As lnT +Bs) lnT + Cs] , (2.27)

where As, Bs and Cs are constants determined for each species. Their values, for an

11-species air model, are listed in Appendix A. The species thermal conductivities

are determined using Eucken’s relation[91] as

κtr,s =
5

2
µsCvt,s + µsCvr,s and κve,s = µsCvve,s . (2.28)

The mass diffusion coefficient for each species, Ds, is replaced by a single binary

coefficient D as a simple way to ensure that the sum of diffusion fluxes is zero. This

approach is not accurate for velocities above 10 km/s [29]. Its value can be obtained

assuming a constant Lewis number, Le, by

D =
Leκ

ρCp

, (2.29)

where κ is the mixture rotational-translational thermal conductivity and Cp is the

mixture translational-rotational specific heat at constant pressure.

2.5.2 Gupta/Collision cross section data

In this formulation, the viscosity and the thermal conductivities for each en-

ergy mode are calculated using Gupta’s mixing rule[34] which is a simplification of

the first-order Chapman-Enskog approximation adequate for weakly ionized gases.

The mixing rule is extended to a multi-temperature gas mixture by evaluating col-

lision cross sections at the controlling temperature. For heavy-heavy collisions, the

controlling temperature is the translational-rotational temperature. For collisions
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involving electrons, the controlling temperature is the vibrational-electron-electronic

temperature. Hence, the viscosity of the mixture is calculated by

µ =
∑
s 6=e

msγs∑
r 6=e γr∆

(2)
sr (Ttr) + γe∆

(2)
se (Tve)

+
meγe∑

r γr∆
(2)
er (Tve)

, (2.30)

where the collision terms, ∆sr, are evaluated at the different controlling temperatures

Ttr or Tve. In the previous expression,

γs =
ρs

ρMs

(2.31)

is the molar concentration of each species and

ms =
Ms

NAvo

(2.32)

is the mass of each species molecule or atom.

The translational thermal conductivity is given by

κt =
15

4
kB,SI

∑
s 6=e

γs∑
r 6=e asrγr∆

(2)
sr (Ttr) + 3.54γe∆

(2)
se (Tve)

, (2.33)

where kB,SI is the Boltzmann constant in SI units and

asr = 1 +
[1− (ms/mr)][0.45− 2.54(ms/mr)]

[1 + (ms/mr)]2
. (2.34)

The expression for the rotational thermal conductivity is

κr = kB,SI

∑
s=mol

γs∑
r 6=e γr∆

(1)
sr (Ttr) + γe∆

(1)
se (Tte)

(2.35)

and the vibrational-electronic thermal conductivity is given by

κvel = kB,SI
Cvve

R

∑
s=mol

γs∑
r 6=e γr∆

(1)
sr (Ttr) + γe∆

(1)
se (Tte)

. (2.36)

It should be observed that because the previous expression uses Cvve it includes

both the vibrational and the electronic modes. The electron thermal conductivity is

calculated by

κe =
15

4
kB,SI

γe∑
r 1.45γr∆

(2)
er (Tve)

. (2.37)
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The thermal conductivity for the translational-rotational mode is then given by the

sum of each energy mode as

κtr = κt + κr . (2.38)

The collision terms are given by

∆(1)
sr (T ) =

8

3

[
2MsMr

πRuT (Ms +Mr)

]1/2

10−20πΩ(1,1)
sr (T ) , (2.39)

and

∆(2)
sr (T ) =

16

5

[
2MsMr

πRuT (Ms +Mr)

]1/2

10−20πΩ(2,2)
sr (T ) , (2.40)

where the collision integrals πΩ
(l,j)
sr must be calculated according to the type of

collision. The constant 10−20 converts to square meters from Angstroms which is

the standard unit for collision integrals. For neutral-neutral, electron-neutral and

neutral-ion collisions, the collision integrals are obtained by a variety of methods[96].

Such methods usually rely on modeling the interaction potential for a pair of species

and integrating the differential cross section obtained from that potential over the

entire solid angle space[34]. The approach for modeling of the potentials is diverse

and based on theoretical or experimental data available for each interaction. The

result of the integration still depends on the relative speed of the particles which is

a function of the temperature of the species and the collision integral data is then

tabulated as a function of temperature. Fortunately, the collision integrals for the

interactions involving neutrals can be curve fit according to

πΩ(l,j)
sr (T ) = DT [A(ln T )2+B ln T+C] , (2.41)

reducing the complexity of the calculations. The values for the coefficients A, B, C

and D for all the collisions relevant to an 11-species air simulation are included in

Appendix A.
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For electron-ion, ion-ion and electron-electron collisions the interaction poten-

tial can be modeled using shielded Coulomb potentials[96]. The resulting collision

integrals can be curve fit to

πΩ(n,n)(T ) = 5.0× 1015π(λD/T )2 ln {DnT
∗ [1− Cn exp (−cnT ∗)] + 1} , (2.42)

where

T ∗ =
λD

e2CGS/(kB,CGST )
, (2.43)

and

λD =

√
kB,CGST

4πne,CGS e2CGS

(2.44)

is the Debye length. In the last expressions, kB,CGS is the Boltzmann constant in

CGS units, eCGS is the fundamental charge in CGS units and ne,CGS is the electron

number density also in CGS units. The values for the coefficients Dn, Cn, cn are

included in Appendix A.

The binary diffusion coefficients between heavy particles can be calculated by

Dsr =
kB,SITtr

p∆
(1)
sr (Ttr)

, (2.45)

and for electrons as

Der =
kB,SITve

p∆
(1)
er (Tve)

. (2.46)

The species diffusion coefficient to be used in the conservation equations is given by

Ds =
γ2

tMs(1−Msγs)∑
r 6=s(γr/Dsr)

, (2.47)

where

γt =
∑

s

γs . (2.48)
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2.6 Source terms

The source term, Sc,v, is given by

Sc,v =

{
ẇ1 · · · ẇns 0 0 0 0 ẇv

}T

(2.49)

where ẇ1 · · · ẇns are the species mass production rates by chemical reactions and ẇv

is the vibrational energy source term.

2.6.1 Chemical Model

This work assumes a standard finite-rate chemistry model for reacting air. In

this work, an 11-species and a 5-species model for air and an 8-species model for

the Martian atmosphere are used. The discussion in this section is based on the

11-species air model but it is immediately applicable to the other models. The

species considered in the 11-species model are N2, O2, NO, N, O, N2
+, O2

+, NO+,

N+, O+ and e. The reactions considered for the 11-species model are listed in the

Appendix A. The reactions can be classified as dissociative, exchange, recombination

ionization, charge exchange and impact ionization reactions. All reactions for the

three models can be represented generically as

∑
αs[S] 


∑
βs[S] , (2.50)

where [S] represents one of the 11-species and α and β are the stoichiometric coeffi-

cients. The reactions are written such that the right arrow represents an exothermic

reaction. The chemical production rate of species s in reaction k is given by[24]

ẇsk = (βsk − αsk)

[
103kfk

∏
j

(
10−3 ρj

Mj

)αjk

− 103kbk

∏
j

(
10−3 ρj

Mj

)βjk

]
(2.51)

where the factor 10−3 converts the concentration from kmol/m3 to mol/cm3 and

the factor 103 converts from mol/(cm3s) to kmol/(m3s) because most of available
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data for reactions are in CGS units. The source terms in the species conservation

equations are given by

ẇs = Ms

∑
k

ẇsk . (2.52)

The forward and backward reaction rates are affected by the level of non-equilibrium

in the flow. To account for that effect, Park’s two-temperature model[74] is used.

In that model the dissociation reactions are controlled by a combination of the

translational-rotational and the vibrational-electron-electronic temperature

TP = T a
trT

b
ve (2.53)

to account for the fact that vibrationally excited molecules are more likely to dis-

sociate. Two different set of values are typically used for a and b: a = b = 0.5

or a = 0.7 and b = 0.3. Exchange, charge exchange and recombination ionization

reactions are controlled by the translational-rotational temperature and the impact

ionization reactions are controlled by the electron temperature which in the current

model is equilibrated with the vibrational-electron-electronic temperature.

The forward reaction rates are calculated using Arrhenius curve fits on the con-

trolling temperature, Tc, as

kfk = CfkT
ηk
c exp(−θk/Tc) , (2.54)

where Tc can be the translational-rotational (Ttr), the vibrational-electron-electronic

(Tve) or Park’s temperature (TP ) and Cfk, ηk and θk are constants[74] which are

listed in Appendix A. The backward reaction rate is obtained from

kbk(Tbc) =
kfbk(Tbc)

Keq(Tbc)
, (2.55)

where the backward controlling temperature, Tbc, is not necessarily the same as for

the forward reaction. The backward controlling temperature for all reactions is Ttr
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except for recombination ionization, impact ionization and impact dissociation of N2

for which the controlling temperature is Tve. The equilibrium constants can be given

by curve fits[74] of the form

Ke(T ) = e

h
A1( T

10000)+A2+A3 ln( 10000
T )+A4( 10000

T )+A5( 10000
T )

2
i

, (2.56)

where the coefficients Ai are a function of the local number density. The coefficients

are listed in Appendix A. The values for Ai are interpolated for number densities

within the range of the data. For number densities outside the range available,

the tabulated values for the maximum and minimum number densities are used

accordingly.

Another option to calculate the equilibrium constants is to use Gibb’s free energy

as

Kr =

(
po

RTtr

)νr

exp

{
−
∑

s

(βs,r − αs,r)

[(
ĥs

RTtr

− ŝs

R

)]}
, (2.57)

where po is a reference pressure set to 1 bar and

νr =
∑

s

(βs,r − αs,r) . (2.58)

The normalized enthalpy and entropy are obtained from curve fits of the form

ĥs

RTtr
= −a1s

T 2 + a2s
ln(T )

T
+ a3s + a4s

T
2

+ a5s
T 2

3
+

a6s
T 3

4
+ a7s

T 4

5
+ a8s + a9s

T

, (2.59)

ŝs

R
= − a1s

2T 2 − a2s

T
+ a3s ln(T ) + a4sT + a5s

T 2

2
+

a6s
T 3

3
+ a7s

T 4

4
+ a8s ln(T ) + a10s

, (2.60)

where the values for the coefficients a1s to a10s for an 11-species air model are included

in Appendix A.
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2.6.2 Relaxation Model

The vibrational energy source term is given by

ẇv = Sepg + Sc−v + St−v + Sh−e + Se−i , (2.61)

where Sepg = −pe∇ · ~u is an approximation to the work done on electrons by the

electric field induced by the electron pressure gradient[18, 24], Sc−v is the vibrational-

electron-electronic energy added or removed by chemical reactions, St−v is the en-

ergy transfered between the translational-rotational and the vibrational-electron-

electronic modes, Sh−e is the energy transfer between heavy particles and electrons,

and Se−i is the energy removed from free electrons during impact ionization reactions.

The vibrational energy added or removed by reactions can be modeled using a

preferential or non-preferential model by

Sc−v =
∑

ẇs

(
D
′

s + eel,s

)
. (2.62)

In the non-preferential model it is assumed that molecules are created or destroyed

at the average vibrational energy, hence

D
′

s = ev,s (2.63)

while in the preferential model it is assumed that the molecules are created or de-

stroyed at higher vibrational energy levels. The value of energy added or removed is

typically set as a fraction of the dissociation energy of the molecules or

D
′

s = αDs , (2.64)

where α is typically set to 0.3 and Ds is the dissociation potential of the molecule

listed in Appendix A for the 11-species air model. Both preferential and non-

preferential models are phenomenological simplifications to a complicated physical

process for which there are no definitive models.
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The energy transfer rate between heavy particles and electrons, Sh−e, is given by

Sh−e = 3Ruρe(T − Tv)

√
8RuTv

πMe

∑
r 6=e

ρrNa

M2
r

σer , (2.65)

where σer are the collision cross sections between electrons and heavy particles[49, 18]

given by

σer = 10−20 m2 (2.66)

for electron-neutral collisions and

σer =
8π

27

e4

k2T 2
e

ln

[
1 +

9k3T 3
e

4πNee6

]
(2.67)

for electron-ion collisions.

The term Se−i models the energy removed from free electrons during impact

ionization reactions. That energy is used to ionize a neutral atom. For the 11-

species air model, there are only two impact ionization reactions involving N and O.

The source term in this case is calculated by

Se−i = MN+ẇN+,iirÎN +MO+ẇO+,iirÎO , (2.68)

where Îs is the energy used to ionize the species and the subscript iir stands for the

impaction ionization reactions. The parameter Îs can be set to the first ionization

energy of the species, which overestimates the amount of electronic energy removed

by the impact ionization reactions because it assumes that all energy necessary to

ionize the neutrals is coming from the electrons. The energy removed in this case can

lead to negative vibrational-electron-electronic energy in calculations. In this work,

the terms Îs are set to be around 1/3 of the first energy of ionization. The values

employed are listed in Appendix A.

The term St−v is the energy exchange rate between the vibrational-electronic and

the translational-rotational energy modes. It is assumed that these multi energy
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mode exchange rates can be modeled by a single exchange rate due to the fast

energy transfer between translational-rotational modes and between the vibrational-

electronic modes. The single energy exchange rate is modeled using the Landau-

Teller model[91] as

St−v =
∑

s

ρs
e∗vs − evs

τs
, (2.69)

where

τs =< τs > +τps (2.70)

and where the molar averaged Landau-Teller relaxation time[49] is written as

< τs >=

∑
r Xr∑

r Xr/τsr
, (2.71)

where Xr is the molar fraction of species r. The Landau-Teller inter-species relax-

ation time, τsr, is modeled using curve fits developed by Millikan and White[62] for

vibrational relaxation as

τsr =
101325

p
exp[Asr(T

−1/3 −Bsr)− 18.42] , (2.72)

where

Asr = 1.16 · 10−3µ
1/2
sr θ

4/3
vs ,

Bsr = 0.015µ
1/4
sr ,

µsr = MsMr

Ms+Mr
.

(2.73)

The values for Asr and Bsr can be calculated using the previous generic expressions

or using tabulated data from Ref. [37]. It is known that Millikan and White curve

fits under predict the relaxation time at high temperatures. Park[74] corrected this

problem by limiting the collision cross section and adding the corresponding limiting

relaxation time to Eq. 2.70 given by

τps =
1

σscsN
, (2.74)
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where N is the number density of the mixture, cs is the average molecular speed of

the species given by

cs =

√
8RuT

πMs

(2.75)

and σs is the limiting cross section given by

σs = 10−20

(
50, 000

T

)2

m2 . (2.76)

Equation 2.69 is simplified according to Ref. [24] as

St−v =
∑

s

ρs
e∗vs − evs

τs
=
ρCvve

τ
(T − Tv) , (2.77)

where

τ =

∑
mol ρs/Ms∑

mol ρs/(Msτs)
. (2.78)



CHAPTER III

NUMERICAL METHOD

3.1 Introduction

In this chapter, the set of differential equations is integrated over a computational

grid and over time to yield a linear system of equations to be solved. The spatial inte-

gration uses the finite-volume method and it requires the calculation of fluxes across

cell faces. In this work, a Flux Vector Splitting (FVS) scheme is used to calculate

the inviscid component of such fluxes and a centered scheme to calculate the viscous

component. The time integration is performed using an implicit method to avoid the

numerical stiffness caused by the chemistry source terms and because only steady

state solutions are sought. The time integration requires the linearization of terms.

The resulting linear system of equations obtained has to be solved iteratively due to

the linearization performed and due to its size. The system is further simplified to

facilitate its solution in a parallel machine by using either a point or a line solver[95].

This chapter also details the boundary conditions and their implementation in an

implicit method and how the properties at cells are reconstructed to obtain 2nd order

accuracy of the inviscid fluxes.

33
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3.2 Spatial Integration and Flux Calculations

The finite-volume method[40] is obtained by integrating the set of equations in a

generic mesh cell. It follows that

Vcl
∂Qcl

∂t
= −

∑
j∈cl

(~Fj − ~Fdj) · ~njsj + VclScv,cl = Rcl . (3.1)

where ~F = E~i+F~j+G~k is the inviscid flux at the face, ~Fd = Ed
~i+Fd

~j+Gd
~k is the

diffusive flux at the face, Scv,cl is the chemistry and non-equilibrium source term, Vcl

is the area of the cl-th cell, ~n is the normal vector to the j-th face pointing outwards

of the cl-th cell and sj is the area of the j-th face. The summation is taken only over

the faces that define the cl-th cell.

The inviscid flux vector at the j-th face is discretized using the Steger-Warming

FVS scheme[86]. It uses the homogeneous property of the inviscid flux vector,

~F · ~n = Fn =
dFn

dQ
Q = AQ , (3.2)

where Fn is the normal flux at the j-th face. The matrix A is called the Jacobian of

the inviscid flux. It can be diagonalized by the matrices of its eigenvectors L and R

as

A = LΛR (3.3)

and then separated into positive and negative parts

A+ = LΛ+R and A− = LΛ−R , (3.4)

where the matrices Λ are the diagonal matrices of the eigenvalues of the Jacobian.

The Steger-Warming scheme uses this split of the Jacobian to separate the flux on a

downstream and on an upstream flux in relation to the face orientation as

~Fj · ~nj = F+
j + F−

j = (A+
clQcl + A−crQcr) , (3.5)
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where cl and cr indicate the cells on the left and right sides of the face, respectively.

The expressions for the matrices of the particular set of equations solved in this work

can be found in Appendix B.1. The eigenvalues of the Jacobian are calculated by[16]

λ± =
1

2

(
λ±
√
λ2 + ε2

)
, (3.6)

where ε is supposed to be a small number used only to correct the sonic glitch

problem[16]. However, it is very common practice to use it to add numerical dissi-

pation to the scheme.

The Steger-Warming FVS is too dissipative and it cannot calculate boundary

layer profiles accurately[60]. Therefore, a modified Steger-Warming FVS scheme[60]

is used at boundary layers. The modification simply involves calculating the matrices

A+ and A− using an average of the states on the left and right sides of the face,

~Fj · ~nj = F+
j + F−

j = (A+
j+Qcl + A−j−Qcr) , (3.7)

where the subscripts j+ and j− indicate that the Jacobians are no longer evaluated

at cl or cr, but at average states

Qj+ =
Qcl +Qcr

2
and Qj− =

Qcl +Qcr

2
. (3.8)

This approach is very efficient and gives good results for boundary layers. However,

it is not suitable in the vicinity of strong shock waves. Close to shock waves, the

method needs to be switched back to the original Steger-Warming scheme which is

more dissipative. A popular approach is to use a pressure switch of the form[21]

Qj+ = (1− w)Qcl + wQcr and Qj− = (1− w)Qcr + wQcl , (3.9)

where

w =
1

2

1

(α∇p)2 + 1
and ∇p =

|pcl − pcr|
min(pcl, pcr)

. (3.10)
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The value of α is usually set to 6 but some problems may require larger values.

The modified Steger-Warming FVS scheme corresponds to w = (1 − w) = 0.5,

which happens for small values of ∇p. The original Steger-Warming FVS scheme is

recovered for w = 0 and (1 − w) = 1 which happens for large values of ∇p. In this

work, extra dissipation is added using ε. The extra dissipation deteriorates results

inside the boundary layer and, therefore, it has to be reduced there. The expression

for ε is then

εj =

 0.3(aj + |~uj|) dj > d0 ,

0.3(1− |~nj · ~wj|)(aj + |~uj|) dj < d0 ,

(3.11)

where dj is the face distance to the nearest wall boundary, d0 is a constant set by the

user that should be larger than the boundary layer thickness but smaller than the

shock stand-off distance, ~wj is the normal vector of the nearest wall boundary and

~nj is the normal vector to the face. The term (1 − |~nj · ~wj|) reduces the value of ε

at faces that are parallel to the wall inside the boundary layer. For the calculations

performed in this work d0 is set to 5× 10−6 meters.

The viscous terms are calculated using the values of properties at the cell centers

and at the nodes [44]. The property values at the nodes are calculated using a simple

average of the values of the cells that share that node. Use of this method increases

the stencil used in the derivative calculations which avoids loss of accuracy when

using unstructured meshes[44].

The source terms are evaluated as

Scv,cl = Scv(Qcl) . (3.12)

Caution must be used when including chemistry in a numerical code. The forward

and backward rate of reactions can be very large numbers depending on the tem-

perature in the cell. In this work, for the conditions simulated, the backward rate
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of reaction for small temperatures sometimes became too large due to very small

values for the equilibrium constant Kc. The forward and backward reaction rates

are computed using a modified temperature

T ′f =
1

2

(
(Tf + Tmin) +

√
(Tf − Tmin)2 + ε2

)
, (3.13)

where Tmin is set to 800 K and ε = 80 K in this work. Another important modification

that needs to be addressed in a numerical code is that species densities need to be

positive at all times, even for very small numbers. A negative value for species

density, even a very small negative number, changes the sign of the chemical source

terms causing the code to diverge.

3.3 Time Integration

The system of equations used to numerically simulate hypersonic, chemically

reacting viscous flows is very stiff[40]. One of the options to overcome the time-

step limitations in such a case is using implicit time integration. Starting from the

backward Euler method one obtains

Vcl

∆t
∆Qn

cl =

[
−
∑
j∈cl

(Fn,j − Fdn,j)sj + VclScv,cl

]n+1

= Rn+1
cl , (3.14)

where Rn+1
cl is called the residue at the cl-th cell. Linearizing the residue at time

n+ 1 as a function of the residue at time n it follows that

Vcl

∆t
∆Qn

cl = Rn
cl +

[
−
∑

j∈cl

((
∂Fn

∂Q

)
j
∆Q−

(
∂Fdn

∂Q

)
j
∆Q

)
sj+

Vcl

(
∂Scv

∂Q

)
cl

∆Qcl

]n . (3.15)

Now, from the spatial discretization of the inviscid terms,(
∂Fn

∂Q

)
j

∆Q =

(
∂F+

n

∂Q

)
j

∆Q+

(
∂F−

n

∂Q

)
j

∆Q . (3.16)
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It is common practice to use(
∂F+

n

∂Q

)
j
∆Q = A+

j+∆Qcl(
∂F−n
∂Q

)
j
∆Q = A−j−∆Qcr

, (3.17)

which assumes that

∂F±
n

∂Q
= A± (3.18)

which is not true and can deteriorate the stability of the numerical method. In

this work, the true Jacobians of the split fluxes are used in the place of A± when

calculating the implicit operator. Those matrices are provided in Appendix B.2. The

diffusive terms can be approximated by[66](
∂Fdn

∂Q

)
j

∆Q = B−
j−∆Qcr −B+

j+∆Qcl . (3.19)

The matrices B are presented in Appendix B.3. The Jacobian for the source term

Scv is given by (
∂Scv

∂Q

)
cl

= Ccl +Dcl (3.20)

where Ccl is the chemistry part and Dcl is the thermal non-equilibrium part of the

Jacobian. These matrices are presented in Appendices B.4 and B.5 respectively.

Hence, a line in the system of equations to be solved can be written as[
Vcl

∆t
+
∑

j∈cl

(
A+

j+ +B+
j+

)
sj − Vcl (Ccl +Dcl)

]
∆Qcl+∑

j∈cl

(
A−j− −B−

j−
)
sj∆Qcr,j = Rn

cl

, (3.21)

or, in a simpler form, as

Mcl∆Q
n
cl +

∑
j∈cl

N−
j ∆Qn

cr,j = Rn
cl , (3.22)

where

N−
j =

(
A−j− −B−

j−
)
sj , (3.23)
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N+
j =

(
A+

j+ +B+
j+

)
sj (3.24)

and

Mcl =
Vcl

∆t
+
∑
j∈cl

N+
j − Vcl (Ccl +Dcl) . (3.25)

The term Qn
cr,j stands for the values at the cell to the right of the j-th face. When

using unstructured grids, Eq. 3.22 is a sparse matrix without any structure. Consid-

ering the mesh shown in Fig. 3.1, the corresponding matrix form of Eq. 3.22 for the

entire mesh is shown in Fig. 3.2. In that figure, each square corresponds to a block

matrix. The size of each block matrix is given by the sum of the number of species

conservation equations plus three momentum equations plus two energy equations.

The solution of this system of algebraic equations using a direct matrix inversion is

not feasible. In this work, a point or a line implicit[95, 23, 89] approach modified for

unstructured grids is used to simplify and solve this system.

Figure 3.1: Unstructured grid example.



40

Figure 3.2: Typical sparse linear system for unstructured grids.

3.3.1 Point Solver

The point method is obtained by moving all the off-diagonal block matrices to

the right hand side and then solving the resulting system of equations iteratively by

Mcl∆Q
n+1,k+1
cl = −

∑
j∈cl

N−
j ∆Qn+1,k

cr,j +Rn
cl . (3.26)

The corresponding matrix form of equation 3.26 for the entire mesh is shown in Fig.

3.3. The system of equations is clearly block diagonal. Assuming that ∆Q(n+1,0) = 0,

Figure 3.3: Iterative solution of linear system using point implicit method.

∆Q(n+1,1) is obtained by solving a simple block diagonal system of equations. That

system is solved simply by

∆Qn+1,1
cl = M−1

cl R
n
cl . (3.27)
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The next step requires a multiplication of the sparse matrix on the right hand side

by the newly calculated ∆Q(n+1,1) or

R̃n+1,k
cl = −

∑
j∈cl

N−
j ∆Qn+1,k

cr,j . (3.28)

That multiplication is straightforward when using the face-based data structure of

the mesh. In the face-based data structure, faces are stored with a defined orientation

such that a face has a cell on its left side and a cell on its right side and the normal

vector to the face points from left to right, as depicted in Fig. 3.4. In this work, only

Figure 3.4: Face orientation.

the matrices N+
j and N−

j , calculated using the defined face orientation, are stored

at each face. It should be noted that the finite-volume integration assumes that

the vector ~n points outwards of the cell. For clarity, a subscript cl is added in the

notation to N+
j,cl and N−

j,cl to indicate that those matrices have the correct normal

vector for the cl-th cell only. Due to its properties, it can be shown that the matrices

N+
j,cr = −N−

j,cl (3.29)

and

N−
j,cr = −N+

j,cl , (3.30)

where the subscript cr indicates that those matrices have the correct normal vector

for the cr-th cell. Hence, for the j-th face and its two adjacent cells cl and cr, the

contributions to the sparse matrix multiplication, R̃n+1,k
cl,j and R̃n+1,k

cr,j , are given by

R̃n+1,k
cl,j = −N−

j,cl∆Q
n+1,k
cr,j (3.31)
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for the cl-th cell and

R̃n+1,k
cr,j = −(−N+

j,cl)∆Q
n+1,k
cl,j (3.32)

for the cr-th cell. Thus, instead of performing a loop over cells and then a loop over

the faces that define that cell, the present work performs only one loop over all the

faces according to the simple algorithm

Sparse Matrix Multiplication

1 for j ← 1 to NFM

2 do

3 cl ← cl[j] � Find face’s left cell.

4 cr ← cr[j] � Find face’s right cell.

5 R̃[cl]← −N [j][−] ·Q[cr]

6 R̃[cr]← +N [j][+] ·Q[cl]

7 end

and the contributions are distributed to the cells to left and right of each face.

Following Ref. [95], four iterations are taken in the iterative process.

The time step used in the simulations is set by

∆t = CFL
h

||~v||+ a
, (3.33)

where h is a measure of the cell size, ||~v|| + a is an estimate of the largest wave

speed in the cell and CFL is a parameter set to ensure stability of the time integra-

tion method. The maximum CFL number of this method varies according to the

freestream conditions[95]. The code starts running with CFL set to one and increases

it exponentially with the number of iterations.
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3.3.2 Line Solver

The line method has better convergence performance but it comes at the ex-

penses of a more complicated algorithm. There are many algorithms available for

efficient solution of sparse linear systems. Such algorithms rely heavily on general

mathematical properties of matrices to solve the system. These algorithms, however,

do not take into account some flow characteristics that can lead to a faster solution

of the system. For instance, flow gradients will be stronger in the direction normal

to the body according to boundary layer theory. It was shown[95] that solving the

system of equations exactly in the normal direction for structured grids and relax-

ing the system in the other directions was efficient in terms of convergence and also

facilitated the parallelization of an implicit code. The same approach is used in this

work for an unstructured grid code.

The idea of solving the linear system originated by an implicit method using

special directions in unstructured grids is not new[39, 61, 89, 67]. The first step in

such a method is to define the special directions that will be used. In this work, such

directions are called lines that are grown from the body surface by a simple algorithm

that chooses the next cell such that the line stays nearly normal to the body. Cells

that are “leftover” are grouped together and handled by a point implicit algorithm.

The lines formed from the mesh in Fig. 3.1 are indicated in Fig. 3.5. That figure also

shows a renumbering of the cells that will be shown to facilitate the solution of the

linear system. The renumbering of the cells is never carried out in the code. Instead,

an array keeps track of the relation between the two cell numbering systems.

Using the numbering for the cells provided in Fig. 3.5, the sparse system is greatly

simplified as can be observed in Fig. 3.6. The matrix is still sparse, but one can

see a tridiagonal structure embedded in the matrix. In order to take advantage of
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Figure 3.5: Unstructured grid renumbering.

the tridiagonal structure, an iterative process is assembled. All the terms off the

tridiagonal part of the matrix are moved to the right hand side of the equation.

By doing that, the iterative process is now of the form depicted in Fig. 3.7. The

last three lines of the system represent the three cells “leftover” from the line finding

procedure. Those cells corrections are calculated using a point implicit method which

is naturally integrated in the tridiagonal solver.

Figure 3.6: Full linear system.

The implicit equation corresponding to Fig. 3.7 is given by

Oi∆Q
n+1,k+1
i−1 +Mi∆Q

n+1,k+1
i + Pi∆Q

n+1,k+1
i+1 = R̃n+1,k

i +Rn
i . (3.34)
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where the subscript i reflect the new numbering used in the lines. The block matrices

Oi and Pi form the off-diagonals and the block matrices Mi compose the diagonal.

The sparse matrix contribution, R̃n+1,k
i , is actually calculated using the original mesh

numbering and then mapped to the new numbering as

R̃n+1,k
i(cl) = −

∑
j∈cl,j3line

N−
j ∆Qn+1,k

cr,j , (3.35)

where the function i(cl) represents the mapping from the original numbering to the

line solver numbering. The summation in the previous equation does not include the

faces that are between cells i−1 and i and between i and i+1. Those contributions are

actually accounted for by the matrices Oi and Pi respectively. Due to its diagonal

characteristic, the system is very simple to solve. Assuming that ∆Q(n+1,0) = 0,

∆Q(n+1,1) is obtained by solving a simple tridiagonal system of equations. The next

step requires a multiplication of the sparse matrix on the right hand side by the

newly calculated ∆Q(n+1,1). That multiplication is straightforward when using the

face-based data structure of the mesh and the original mesh numbering. The result of

that multiplication is mapped to the linear system numbering and a new right hand

side is fed to the tridiagonal solver. Following Ref. [95], four iterations are taken in

the iterative process. As for the point implicit method, the code starts running with

CFL set to one and increases it exponentially.

3.4 Boundary Conditions

The implementation of boundary conditions in this work is performed using

“ghost” cells. Ghost cells are not created by the grid generator. Instead, they

are logically created by the numerical code and are associated with a boundary face.

The values of its properties are set so that the flux calculation on the boundary face

yields the correct flux. For instance, for a wall boundary face, the correct inviscid
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Figure 3.7: Iterative solution of linear system using line implicit method.

flux calculations should yield zero mass and energy fluxes and a momentum flux

equal to the pressure. The viscous flux for the wall boundary face should yield a

prescribed diffusion flux, viscous forces and heat fluxes. Only one set of properties is

not enough to satisfy all the constraints. In this work, the properties of the ghost cell

change according to the flux calculation being performed. When the inviscid fluxes

are being calculated, the ghost cells hold properties such that the inviscid fluxes are

correct at the boundaries. The same happens at the viscous flux calculation.

3.4.1 Inviscid Flux Boundary Condition

This section details the values used as inviscid boundary conditions necessary for

the problems modeled in this work.

Wall, Symmetry

The inviscid flux for a symmetry face and a wall are the same. No mass and

energy fluxes and momentum flux given by the pressure only. That is accomplished

by setting the normal velocity to the wall to zero. This is easier to achieve by working

in the face coordinate frame. The properties at the face reference frame are given by

Q′
cl = RQcl (3.36)
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where R is the rotation matrix, given in Appendix B.3. Species densities and energies

are unchanged by the rotation matrix. The properties at the ghost cell are set to

ρcr,s = ρcl,s

ρcru
′
cr,n = −ρclu

′
cl,n

ρcru
′
cr,t = ρclu

′
cl,t

ρcru
′
cr,r = ρclu

′
cl,r

Ecl = Ecr

Ev,cl = Ev,cr

. (3.37)

It can be observed that taking the face value as the average between the values at

the cr-th and cl-th face yields that uw,n = 0 which satisfies the condition for no mass

or energy flux through the wall.

The boundary condition can be written in matrix form as

Q′
cr = WQ′

cl (3.38)

where

W =



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.39)

and then

Qcr = R−1WRQcl , (3.40)

where the rotation matrix R−1 is used to return the velocities back to the Cartesian

coordinate frame.
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Exit

In this case, zeroth order extrapolation is used because this work focuses on

hypersonic external flows, for which the exit plane is always at supersonic speeds.

The properties at the ghost cell are given by

Qcr = Qcl . (3.41)

Freestream

This work assumes that the free stream boundaries are not influenced by any

signal coming from the computational domain such as sound or shock waves. That

is accomplished by guaranteeing that no shock waves reach the boundary by careful

grid generation. The properties at the ghost cell are given by

Qcr = Q∞ . (3.42)

where Q∞ is constant and known.

3.4.2 Viscous Boundary Condition

This section details the values used as viscous boundary conditions necessary for

the problems modeled in this work.
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Wall

The values of properties at the wall for a non-catalytic wall are set as

pw = pcl

Yw,s = Ycl

uw = 0

vw = 0

ww = 0

Tw = T ∗w

Tv,w = T ∗v,w

, (3.43)

where the values for T ∗w and T ∗v,w are known. For a catalytic wall the properties are

set to

pw = pcl

Yw,s = Y ∗
w,s

uw = 0

vw = 0

ww = 0

Tw = T ∗w

Tv,w = T ∗v,w

, (3.44)

where the values for Y ∗
w,s, T

∗
w and T ∗v,w are known. The values at the ghost cell should

be set so that the gradients of properties calculated using data at cr-th and cl-th

cells are the same as if using data at cl-th cell and at the wall. Thus, the properties

at the ghost cell are set to

xcr = 2xw − xcl , (3.45)

where x can be the pressure, mass fractions, velocities and temperatures. The density

at the ghost must be set to calculate the values of conserved variables. This is
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obtained using

ρcr =
pcr∑

s 6=e Ycr,sRsTtr,cr + Ycr,eReTve,cr

(3.46)

and

ρcr,s = ρcrYcr,s . (3.47)

This work also can use a non-catalytic wall in radiative equilibrium. That is

accomplished by setting the radiative flux given by qr
w = σT 4

w, where σ is the Stefan-

Boltzmann constant, equal to the convective heating crossing the wall, qc
w,n. The

convective heating entering the wall can be approximated by

qc
w,n = (κtr + κve)

Ttr,cl − Tw

∆n
, (3.48)

where ∆n is the normal distance between the centroid of the cl-th cell and the cen-

troid of the boundary face. The previous expression assumes that Tve is equilibrated

with Ttr immediately over the wall. Using that approximation, the wall temperature

is set by solving the equation

σT 4
w − (κtr + κve)

Ttr,cl − Tw

∆n
= 0 (3.49)

iteratively at each wall boundry face. Both translational-rotational and vibrational-

electron-electronic temperatures are set at the solution of the equation.

Symmetry, Exit, Freestream

For these boundary conditions, it is assumed that there are no property gradients

at the boundary. This is easily enforced by setting

Qcr = Qcl . (3.50)
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3.5 Implicit Boundary Conditions

The implementation of implicit boundary conditions in this work uses “folding”

matrices. The implicit equation[
Vcl

∆t
+
(
A+

j+ +B+
j+

)
sj − Vcl (Ccl +Dcl)

]
∆Qcl+(
A−j− −B−

j−
)
sj∆Qcr,j = Rn

cl

, (3.51)

is repeated here without the summation to focus only on the relation between an

internal cell, cl, and a boundary cell (cr, j). The full equation for the cl-th cell

certainly has contributions from other faces, that may or may not be boundary

faces, that need to be considered. They are not included in the above equation just

for clarity. As stated before, the ghost cell holds different values for inviscid and

viscous flux calculations. Hence, the above equation needs to be expanded to[
Vcl

∆t
+
(
A+

j+ +B+
j+

)
sj − Vcl (Ccl +Dcl)

]
∆Qcl+

A−j−sj∆Qcr,j,inv −B−
j−sj∆Qcr,j,vis = Rn

cl

(3.52)

to describe the contribution of a boundary face to the system. The folding matrices

relate the property values at the ghost cell, cr, with the property values at the

internal cell, cl as

∆Qcr,j,inv = Ej,inv∆Qcl (3.53)

∆Qcr,j,vis = Ej,vis∆Qcl . (3.54)

Using those expressions, the contribution to the system of equations of the boundary

face is given by[
Vcl

∆t
+
(
A+

j+ + Ej,invA
−
j− −B−

j−Ej,vis +B+
j+

)
sj−

Vcl (Ccl +Dcl)] ∆Qcl = Rn
cl

. (3.55)

It should be observed that the cl-th cell has contributions from other faces that

should be included when writing its full implicit equation. Because the viscous
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Jacobians are easier to calculate using primitive variables as shown in Appendix B.3,

the viscous folding matrices are set for the primitive variables and applied directly at

the calculation of the Jacobians so that B+
j+ already includes the contribution from

the boundary. To reflect that fact, the previous equation is modified to

[
Vcl

∆t
+
(
A+

j+ + Ej,invA
−
j− +B+,∗

j+

)
sj−

Vcl (Ccl +Dcl)] ∆Qcl = Rn
cl

. (3.56)

where the matrix B+,∗
j+ accounts for the contribution from the boundary. The calcu-

lation of that matrix is shown in Appendix B.3.

3.5.1 Inviscid Matrices

The folding matrix E for an inviscid wall is given simply by differentiating Eq.

3.40 to

∆Qcr = R−1WR∆Qcl , (3.57)

and the folding matrix is then given by

E = R−1WR . (3.58)

Similarly, the folding matrix for an exit is given by

E = I , (3.59)

where I is the identity matrix. For the free stream boundary condition, there is

no relation between the internal value and the free stream value that is a constant.

Therefore, it is set that

E = 0 , (3.60)

where 0 represents a matrix of zeroes.
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3.5.2 Viscous Matrices

Because the viscous Jacobians are easier to calculate using primitive variables,

the viscous folding matrices are set for the primitive variables and applied directly at

the calculation of the Jacobians as shown in Appendix B.3. The primitive variables

are

V =

{
Ys u v w Ttr Tve

}T

. (3.61)

The folding matrix for a viscous wall is obtained by differentiating Eq. 3.45 for each

property. Therefore, for a non-catalytic wall where Yw = Ycl and the other wall

properties are constant, the folding matrix becomes

F =



0 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


(3.62)

and for a catalytic wall, where Yw is a prescribed constant, the folding matrix becomes

F =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


. (3.63)

For the radiative equilibrium wall, Eq. 3.49 can be differentiated yielding

σT 3
w∆Tw − (κtr + κve)

∆Ttr,cl −∆Tw

∆n
= 0 . (3.64)
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Now, assuming that typical SI values for the wall temperature are around 103 K, that

the Stefan-Boltzmann contant is around 10−8 J/(K4m2s), κ is around 10−2 J/(K m

s) and ∆n is around 10−7 m, the previous equation is simplified to

∆Tw = ∆Ttr,cl . (3.65)

Using the differentiated form of Eq. 3.45 gives that

∆Ttr,cr = ∆Ttr,cl , (3.66)

and

∆Tve,cr = 2∆Ttr,cl −∆Tve,cl . (3.67)

Hence, the folding matrix for a non-catalytic wall in radiative equilibrium is given

by

F =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 2 −1


. (3.68)

Finally, for exit, symmetry and free stream boundary conditions, the folding matrix

is simply given by the identity matrix

F = I . (3.69)

3.6 Higher order extension of inviscid fluxes

Higher-order of accuracy extensions of finite volume codes using Flux Vector Split-

ting (FVS) or Riemann solvers to discretize the inviscid fluxes are straightforward
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in structured grids because of the implicit connectivity information. The MUSCL

variable extrapolation[40] originally developed for 1-D calculations is readily extrap-

olated for 2 dimensions when using a structured grid. For the faces aligned to the

vertical direction in the structured grid shown in Fig. 3.8, the values to the left (uL)

and to the right (uR) are obtained according to

Figure 3.8: 2nd order stencil for a structured grid.

 uL = u(i,j) + 1
2
Ψ(rL)(u(i,j) − u(i−1,j))

uR = u(i+1,j) − 1
2
Ψ(rR)(u(i+2,j) − u(i+1,j))

, (3.70)

where

rL =
u(i+1,j) − u(i,j)

u(i,j) − u(i−1,j)

, rR =
u(i+1,j) − u(i,j)

u(i+2,j) − u(i+1,j)

(3.71)

and ψ(r) is a limiter function[40]. Even though all the meshes used in this work

are “structured like” grids, the code handles them internally as unstructured grids.

Hence, the implicit connectivity information - the information of each cell neighbors

- characteristic of structured codes is not available making the above extension to

higher order of accuracy more complicated.

Many approaches are available in the literature to achieve high order of accuracy

using unstructured grids. The most well known and widely used is the one developed
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by Barth and Jespersen[9]. Many authors modified the ideas of Barth and Jespersen

to create their own extension to high order of accuracy[48, 88]. Those approaches

are highly effective at transonic and low supersonic flows but they seem to fail at

hypersonic flows due to the presence of stronger shocks.

A different approach to higher order extension using unstructured grids was de-

veloped by Batina[10] in which a structured stencil is assembled locally so Eq. 3.70

can be used. One example of such a stencil is shown in Fig. 3.9(a). In that figure,

the points i−1 and i+2 are the opposite vertices of the triangles that share the face

for which the fluxes are being computed. The values at the vertices are obtained by

averaging the cell center values of the cells that share the vertices. A similar idea is

also used by Bibb et al[12] in the FELISA cell-vertex code. Though FELISA is a 3D

code, the idea is exemplified for a 2D case in Fig. 3.9(b). The coordinates of point

i− 1 in that figure are obtained by a reflection of the vector i, i+1 in relation to the

point i. The property values at the point i−1 are obtained from interpolation of the

values at vertices that define the cell in which the point lies. A problem with these

two approaches is that the values of variables in some points of the localized stencil

are obtained by interpolation or averaging. Close to shock waves, the interpolated

or averaged quantities can be too large hindering the limiting process.

The approach proposed here follows the idea of Batina[10] and Bibb et al[12]

closely. However, the interpolation step is eliminated. Instead, the stencil is con-

structed such that only cell centered values are used. The search for the stencil is

depicted in Fig. 3.10 for “structured like” and unstructured grids. This figure shows

the search for the cell i+2. The search for the cell i+2 is limited to cells that share

at least one node with cell i + 1. The cells that meet such a restriction are shaded

in Fig. 3.10. The selected cell will be the one such that the dot product between the
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(a) Batina’s (b) Bibb et al

Figure 3.9: Stencil search approach for 2nd order calculations.

face normal and the normalized vector joining the face centroid to the cell centroid

has the maximum positive value. Figure 3.10 shows some of the face centroid-cell

centroid vectors and the selected cells. For the search of the cell i−1, the dot product

must be the maximum negative value.

It should be noted that the distance between the cells i + 1 and i + 2 centroids

is different from the distance between i and i + 1. That is clearly the case in Fig.

3.10(b). Therefore, the undivided differences used to calculate the limiter must be

corrected according to

r =
ui+1 − ui

ui+2 − ui+1

b

a
(3.72)

where ||a|| = ||~ri+1 − ~ri|| and ||b|| = ||~ri+2 − ~ri+1||. It is important to note that

the search for the stencil is performed only once at the start of the code run. This

is in contrast to ENO[35, 85]/WENO[57] schemes that search for stencils at every

iteration. The cost for the stencil search is negligible in relation to the total run.
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(a) Quadrilaterals (b) Triangles

Figure 3.10: Second-order stencil search.



CHAPTER IV

IMPLEMENTATION ASPECTS

4.1 Introduction

This chapter addresses some aspects of the implementation of the numerical code

LeMANS. While it is not feasible to detail all the routines in a parallel, implicit,

unstructured, multi-dimensional CFD code, it is worthwhile to detail the general

structure of the code and some of the more complex operations that are performed

during its execution. In particular, the line-finding algorithm and the parallelization

strategy are described in this chapter. It should be noted that some of the other

important operations, such as the 2nd order stencil finding algorithm and the implicit

integration in an unstructured code are described in Chapter III because they aid

the comprehension of the numerical formulation.

4.2 Code Overview

LeMANS is coded using the C language to have access to dynamic memory al-

location and to facilitate the creation of a hybrid code[82, 84, 83] using the DSMC

code MONACO[20] also available at the University of Michigan. An overview of the

execution of LeMANS is shown below followed by a brief explanation of how the al-

gorithm connects to the numerical and mathematical models presented in Chapters

59
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II and III.

“Le” Michigan Aerothermodynamics Navier-Stokes Solver

1 Read problem setup file
2 Read chemistry and thermodynamic data files
3 Read mesh
4 Process mesh
5 Create face based data structure
6 Create ghost cells
7 Assemble 2nd order stencils for each face
8 Assemble lines normal to the wall
9 Calculate distance of each face and cell to the wall

10 Partition mesh
11 Assign initial condition to each cell
12 Calculate thermodynamic and transport properties at each cell
13 While residue norm < tolerance do
14 Calculate time step in each cell
15 Assign inviscid boundary conditions to ghost cells
16 Calculate inviscid fluxes at each face
17 Calculate inviscid residue at each cell
18 Calculate inviscid Jacobians at each face
19 Assign implicit inviscid boundary conditions (“Folding”) at boundary faces
20 Assign viscous boundary conditions to ghost cells
21 Calculate primitive variable derivatives at each face
22 Calculate viscous fluxes at each face
23 Calculate viscous residue at each cell
24 Calculate viscous Jacobians at each face
25 Assign implicit viscous boundary conditions (“Folding”) at boundary faces
26 Calculate chemistry source terms at each cell
27 Calculate non-equilibrium source terms at each cell
28 Integrate
29 Calculate chemistry Jacobians at each cell
30 Calculate non-equilibrium Jacobians at each cell
31 Assemble tri-diagonal linear system with Jacobians and residue
32 Loop
33 Solve linear system for conserved property corrections at each cell
34 Communicate corrections at inter-processor boundary
35 Perform sparse matrix multiplication and update linear system
36 End Loop
37 Update conserved properties at each cell
38 Calculate thermodynamic and transport properties at each cell
39 End While
40 Output results.
41 End

LeMANS starts by reading a problem setup file which has several options regard-

ing the physical models to be employed in the simulation. Next, LeMANS reads all
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the species database files necessary to calculate thermodynamic and transport prop-

erties. The database data is included in Appendix A. LeMANS then reads the mesh,

which should be written using FLUENT format[5] because most of the commercial

grid generators can create FLUENT files. The mesh is processed to create the face

based data structure in which each face structure stores the cells on its left and right

sides. For the 2nd order scheme, the face based data structure also stores the cells

to the far left and far right, as described in Section 3.6. The mesh processing also

creates the ghost cells to be used to assign the boundary conditions, calculates the

distance of the face to the nearest wall and creates the lines used in the line solver.

Before starting the time march loop, LeMANS assigns the initial condition to the

domain.

In the time march loop, LeMANS calculates the time step by using Eq. 3.33 in

all the cells and apply the minimum time step value to all the cells. The inviscid

boundary conditions are applied according to the type of boundary, as presented in

Section 3.4. The inviscid fluxes are calculated using a Flux Vector Splitting scheme

and taking advantage of the face based data structure in which the fluxes are calcu-

lated on a per-face basis. The inviscid residue is calculated by adding/subtracting

the face fluxes to the cells sharing the face, as shown in Eq. 3.1. The inviscid residue

is added to what is called the cell residue, as in Eq. 3.14, which is a measure of how

far the cell is from steady state. The inviscid Jacobians, shown in Appendix B, are

then calculated. The inviscid Jacobians are two matrices that are stored at the face:

one for the left cell and one for the right cell. The inviscid implicit boundary condi-

tions are then applied, as described in Section 3.5. It basically consists of adding the

boundary face inviscid Jacobian associated with the ghost cell to the face inviscid

Jacobian associated with the internal cell. The viscous boundary conditions are then
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assigned as detailed in Section 3.4. The viscous fluxes are calculated at each face fol-

lowing Eq. 3.1 and the viscous residue is calculated by adding/subtracting the fluxes

to the residue of the cells sharing the face, Eq. 3.14, similarly for the inviscid residue

calculation. The viscous Jacobians, shown in Appendix B, are also calculated on a

per-face basis and added to the already stored inviscid Jacobians at the faces. The

viscous implicit boundary conditions, described in Section 3.5, are assigned similarly

as for the inviscid Jacobians.

The chemistry and non-equilibrium source terms are calculated by evaluating

the expressions in Section 2.6 at the cells and adding the result to the cell residue,

Eq. 3.14. The chemistry and non-equilibrium Jacobians are calculated according to

Appendix B and stored on a per-cell basis. The linear system of equations is then

assembled using the per-cell chemistry and non-equilibrium Jacobians and the per-

face inviscid and viscous Jacobians as in Eqs. 3.26 or 3.34 according to the type of

solver selected by the user. The linear system of equations is then solved and the

corrections to be added to the cell properties are calculated. The properties at the

cell are updated and thermodynamic and transport properties are calculated using

the models described in Section 2.5. The time march continues until convergence to

steady state is reached.

4.3 Line Finding Algorithm

The simplification of the linear system created by the implicit integration of

the differential equations uses lines of cells as close to perpendicular to the wall as

possible as mentioned in Chapter III. In a structured code, this is trivial. The implicit

connectivity information in the structured grid already provides the line structure.

Assuming that the cells in a two-dimensional structured grid are numbered as (i, j),
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the lines are defined as the cells for which the “i” index is the same. For unstructured

grids that information is not available. The cells are not numbered as a matrix but

instead as a vector. Hence, the list of cells that compose each line must be searched

and the information stored somehow.

The line-finding algorithm in an unstructured code must be general enough to

use grids made of any mix of elements such as triangles and quadrilaterals in two-

dimensions and hexahedra, tetrahedra, pyramids and prisms in three-dimensions.

The algorithm developed in this work has three objectives: generality for two-

dimensional and three-dimensional unstructured grids, maximization of the length

of the lines and maintaining the line as normal to the wall as possible. Figures 4.1

to 4.5 illustrate the line-finding algorithm.

First, the lines are created starting at the walls only, as depicted in Fig. 4.1 which

shows three lines, (A, B and C), the normal vector that defines the line direction

and the first cell that compose each line. It should be noted in that figure that cell

number 6 is shared by two-boundaries: the wall at the bottom and another boundary

at the right that is not a wall, such as a symmetry or exit boundary. For the sake of

clarity, only part of a two-dimensional mesh made of triangles is shown and each line

has a distinct shading pattern for its cells. The choice of the first cell that composes

each line is trivial for convex walls because cells at the wall boundary have just one

wall boundary face associated with it. For concave walls, one internal cell may be

shared by two or more wall faces.

Next, a list of possible options of cells to be added to each line is assembled, as

shown in tabular form in Fig. 4.2. The list is limited to cells that are not already

assigned to any lines and to cells that have at least one face in common with the

last cell added to the line. The options are ranked according to the dot product of
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Figure 4.1: Lines creation process.

the normal vector that defines the line and the vector connecting the possible cell to

the last cell in the line. Those vectors are also indicated in Fig. 4.2. This ranking

intends to keep the line as normal to the wall as possible. Finally, the list of lines

is ranked according to the number of options for growth that each line has. Lines

that have fewer options will have preference in selecting its next cell. This ranking

intends to maximize the length of the lines by avoiding that a line with more than

one option for growing selects a cell that is the only option for another line.

Figure 4.2: Lines creation process - cont.

Figure 4.3 shows what happens next. Cell number 5 is assigned to line C and

then it is removed from the growth options of line B which now has less options

than line A. Hence, the line ranking is modified and line B will have the priority in

the next growth round, which is shown in Fig. 4.4. In this round, cell number 3 is

assigned to line B and removed from the growth options of line A. Finally, with just

one option left, cell number 1 is assigned to line A, as shown in Fig. 4.5. The process

would then repeat itself for a third row addition to the lines and so on. The growth
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Figure 4.3: Lines creation process - cont.

Figure 4.4: Lines creation process - cont.

options of each line are populated by looping over the faces that define the last cell in

the line and, therefore, is general for any type of cell used in the unstructured code.

In order to illustrate the generality, this algorithm is employed to create lines in a

Figure 4.5: Lines creation process - concluded.

two-dimensional grid composed of triangles and layers of quadrilaterals close to the

wall, a common practice in viscous simulations using unstructured grids. A general

overview of the lines created is presented in Fig. 4.6 where the lines are represented by

using different colors to fill their cells. The algorithm works remarkably well: most of

the lines are able to reach the freestream boundary and the lines are approximately

normal to the wall. A detailed view of the mesh close to wall in Fig. 4.7 shows that
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Figure 4.6: Lines created in a hybrid two-dimensional grid composed of triangles and
quadrilaterals.

the change in cell type from quadrilaterals to triangles does not impact the line-

finding algorithm. Figure 4.8 shows that the algorithm is able to recover the lines

in a grid made of quadrilaterals treated as an unstructured grid. All the lines reach

the freestream boundary and are as normal to the body as possible.

The justification for the added complexity of using the line solver is shown in Fig.

4.9, which shows the convergence history for a numerical simulation of a M = 20

viscous flow over a blunt-cone. The fluid is N2 and the freestream conditions for this

flow are u∞ = 2680.47 m/s, T∞ = 43.210 K, ρ∞ = 7.817× 10−4 kg/m3, Tw = 300 K.

The nose radius for the blunt cone is 0.1524 meters and the cone angle is 9 degrees.

The simulation is run with a constant CFL number equal to 100 and the initial

condition is of freestream flow in all the computational domain. It can be observed

that both methods present similar behavior for the beginning of the simulation in

which the blunt shock moves from the wall to its final stand-off distance due to the
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Figure 4.7: Detail of the lines created in a hybrid two-dimensional grid composed of
triangles and quadrilaterals.

Figure 4.8: Lines created in a two-dimensional mesh composed of quadrilaterals and
treated as an unstructured grid.
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initial condition chosen. After the shock reaches its final position the line implicit

solver leads to a much faster convergence to machine zero.

Figure 4.9: Convergence to steady state for a M = 20 flow over a blunt cone.

4.4 Mesh Partitioning

The code developed in this work takes full advantage of today’s parallel ma-

chines by dividing the computational work among many processors. This task is

accomplished using METIS[46] to partition the mesh between the processors and

the Message Passage Interface protocol (MPI) to communicate necessary information

from one processor to another. METIS uses graph theory to partition unstructured

grids minimizing the amount of inter-processor communication. The numerical code

assembles a graph that logically represents the mesh which is then partitioned by

METIS. The result provided by METIS is a partition number for each node where

each partition in fact corresponds to a processor. The numerical code uses that infor-

mation to distribute the work among the processors. Two different ways to assemble
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the graph are implemented in LeMANS, one for the point implicit solver and another

for the line implicit solver.

In the most simple case, each node in the graph corresponds to a cell in the mesh

and each edge in the graph connecting two nodes corresponds to the face shared by

the cells represented by the two nodes. Figure 4.10 shows a pictorial model of a grid

made of triangles over a cylinder and its graph. The node numbering in the graph

is the same numbering used in the mesh. The numbers in parenthesis are node or

edge weights. The node weight represents the amount of computational work to be

executed in the corresponding cell. The edge weight represents the amount of com-

munication to be performed at that edge if that edge is split in the partitioning. For

a CFD application, the amount of computational work per cell is approximately con-

stant. The amount of communication per edge is related to the amount of data sent

to the ghost cell. It is also approximately constant in a CFD application. Hence, the

code uses a weight of 1 per cell and a weight of 1 per edge. One possible partitioning

for this mesh is presented in Fig. 4.11. A partition generated this way usually is not

optimal for a line implicit solver because most of the lines are significantly shortened.

The partitioning provides load balance but the wall boundary is entirely contained in

one processor and the maximum length of the lines is reduced to just one cell instead

of a possible maximum of three cells. In order to avoid such problems, the graph is

modified so that each node in fact corresponds to a line. The node weight is given

by the number of cells that make the line. Each edge corresponds to the face con-

necting one line to a neighboring cell. In that case, the edge weight is set to one. For

two adjacent lines, an edge in the graph corresponds to all the faces connecting the

adjacent lines and its weight is set to the number of faces shared by the lines. Such

modification is pictured in Fig. 4.12 which shows the logical grid in which the lines
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(a) Grid (b) Graph

Figure 4.10: Unstructured grid and corresponding graph used in METIS.

Figure 4.11: Mesh partitions.
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are seen as extended cells. In this case, the two lines are not adjacent and the edge

weights are all one. The weights for the two nodes that represent the lines are set to

three because both lines are composed of three cells in this case. The partitioning for

(a) Grid (b) Graph

Figure 4.12: Modified logical grid and corresponding graph.

this grid is presented in Fig. 4.13. This partitioning allows the creation of the same

lines as in the serial problem. The implemented algorithm is highly effective as can

Figure 4.13: Mesh partitions.

be observed in Fig. 4.14 which shows the partitions for a hybrid unstructured grid
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and for a “structured like” grid. It is clear in these figures that lines growing nor-

mal to the body can reach their maximum length before reaching an inter-processor

boundary.

4.4.1 Inter-processor Boundary Conditions

The mesh partitioning creates logical boundaries inside the grid. Information

must be shared between the processors so that the final result is exactly the same

as if the problem was simulated in a single processor. The data is communicated

between processors using MPI. The numerical code uses ghost cells to store the data

that is received from each processor. Figure 4.15 shows part of an actual partitioned

grid. It depicts the cell data that needs to be sent from processors 1, 2 and 3 to

processor 0 for the inviscid flux calculations, viscous flux and node averaging and

implicit integration. The calculation of the inviscid fluxes requires two layers of

cells because of the 2nd order scheme. The node averaging requires corner cells to

calculate node values. The viscous fluxes also need those corner cells because the

node values are used in gradient calculations. The implicit integration requires one

layer of cells to perform the sparse matrix multiplication in the iterative procedure.

During pre-processing of the mesh, each processor stores the cells for which data has

to be send to other processors. It also creates ghost cells with information regarding

which processor will send data for that ghost cell. At each communication event,

each processor will send the necessary data to other processors and also receive data

for its inter-processor ghost cells. For simplicity, the code communicates all the cell

data shown in Fig. 4.15(d) regardless of the task being performed, increasing the

communication cost.

The conserved variables are communicated before the inviscid flux calculations
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(a) Unstructured

(b) Structured

Figure 4.14: Mesh partitioning.
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(a) Inviscid fluxes (b) Viscous fluxes and node Averaging

(c) Implicit integration (d) All

Figure 4.15: Cells used in inter-processor boundary conditions in different parts of
the code.
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and the primitive variables are communicated before the viscous flow calculation. At

each iteration of the implicit integration, the corrections ∆Q(k,n) are communicated as

well. The primitive variable are communicated between processors before the results

are output in order to perform the node averaging. The correct implementation of

the inter-processor boundary conditions is illustrated by the smoothness of property

lines across inter-processor boundaries in Fig. 4.16.

Figure 4.16: Property contours unaffected by mesh partitioning.

4.4.2 Speed-Up Measurements

The parallelized code speed-up is assessed by running the same problem using

1, 2, 4, 8 and 16 processors on two different parallel supercomputers. The problem

used in this study is a 3D viscous simulation of an Apollo experimental model using a

computational grid made of 93, 600 cells. The simulation includes chemical reactions

and thermal non-equilibrium effects. The first parallel supercomputer is the cluster

NYX at the University of Michigan. This cluster is equipped with 762 AMD Opteron
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processors connected through a non-blocking gigabit network. The other parallel

supercomputer used is NASA’s COLUMBIA cluster which is composed of 20 nodes

with 512 Itanium processors each. Within each node of Columbia, processors are

connected by the SGIRMk NumaLink fabric for fast inter-processor communication.

The results for this speedup study are presented in Fig. 4.17. It can be observed

Figure 4.17: Computational speed-up of the numerical code in different parallel ma-
chines.

that in both clusters the speedup curves slowly distance themselves from the ideal

curve as the number of processors increases. That happens because the amount of

communication work in relation to the actual computational work increases. This

behavior is similar to the increase in the surface area to volume ratio of a sphere

as the size of the sphere decreases. As the size of each partition, or volume of

computational work, decreases, the amount of communication, or inter-processor

surface area, increases. Because the processors in COLUMBIA are connected with a

much faster network, the loss in speedup is a little smaller than in NYX. Nevertheless,
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the loss in efficiency in both clusters is small even for this relatively small problem.



CHAPTER V

RESULTS

5.1 Introduction

In this chapter, several physical and numerical aspects of the code are explored by

simulating different geometries and conditions for which there are available data for

comparisons. The first data set, an Apollo experimental model, is used to evaluate

the fluid dynamics model used in the code by comparing calculated aerodynamic

coefficients with available experimental data. The second set, a Mars entry spacecraft

model, is used to evaluate the chemical and non-equilibrium models by comparing

calculated and experimental values for heat transfer. The third set, the RAM-C II

spacecraft, is used to evaluate the modeling of weakly ionized gases. The data used

in comparisons are the electron number density profiles. The fourth set, the FIRE-II

spacecraft, is used to evaluate the physical modeling of higher energy flows where

ionization is more significant. In this case, the calculated results are compared against

other established NASA codes currently used in the design of thermal protection

systems. A sensitivity analysis of radiative heating to chemistry and non-equilibrium

models is also performed.

78
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5.2 Apollo Experimental Model

Several experimental studies of hypersonic flows were performed during the 1960’s

to validate engineering models used in the design of the Apollo spacecraft. One of

these studies was performed in the Arnold Engineering Development Center (AEDC)

tunnel F during 1966-1967 [32, 15] for a scaled model of the Apollo Command Mod-

ule. One of the main objectives of this study was to obtain the aerodynamic coef-

ficients of the spacecraft which are important for reentry trajectory analysis. The

geometry of the spacecraft experimental model is presented in Fig. 5.1. The nose

radius, Rn, is 168.86 mm, the base radius, Rb, is 70.36 mm, the cap radius, Rc, is

8.37 mm, the shoulder radius, Rs, is 7.04 mm, the length of the capsule, L, is 123.28

mm and the cone angle, αc, is equal to 33 degrees.

The freestream conditions and wall temperature for the numerical simulations

are presented in Table 5.1. These values were chosen to match the conditions of

the experimental study. The wall temperature is assumed constant and equal to the

ambient temperature because each test run lasted for only a few milliseconds. The

freestream conditions are such that neither chemical reactions nor strong thermal

non-equilibrium effects are observed in the flow field. This is a very good test case

for the inviscid and viscous fluxes calculations in the code because it is a very high

Mach number flow but it does not present other complicated physical phenomena.

Table 5.1: Freestream Conditions.
Gas M∞ T∞(K) ρ∞(kg/m3) u∞(m/s)
N2 20.00 43.21 7.817× 10−4 2680

This set of conditions is simulated using only hexahedra cells because numerical

results are very sensitive to the alignment of the shock wave with the grid. The two
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Figure 5.1: Apollo experimental model geometry.

hexahedra meshes used in this work are generated using the commercial software

GAMBIT[6]. The first one, for angles-of-attack in the range from 180 to 165 degrees,

has 93, 600 cells and can be observed in Fig. 5.2. The second one, used for simulations

with angles-of-attack in the range from 160 to 150 degrees, has 92, 850 cells and

is shown in Fig. 5.3. A special modification is performed close to the geometry

symmetry point to avoid numerical oscillations that are common there [31, 90]. The

modification employed in this work is to use an unstructured grid made of hexahedra

in that region which is extremely easy to generate using GAMBIT. The quadrilateral

surface grid in that region can be observed in Fig. 5.4. Another grid, with 180, 000

grids is generated for a grid refinement study.

Figure 5.5 shows x-velocity contours in the pitch plane around the Apollo exper-

imental model at an angle-of-attack of 150 degrees. One can observe the expected

features for this type of flow, which are the strong detached shock wave in front of the
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Figure 5.2: Mesh used for angle-of-attacks from 180 to 165 degrees.

Figure 5.3: Mesh used for angle-of-attacks from 160 to 150 degrees.
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Figure 5.4: Detail of the surface mesh close to the symmetry point.

body, the expansion around the shoulder and the recirculation on the lee side. The

bottom half of the detached shock wave presents a small discontinuity in slope. That

is due to a difference in grid spacing between blocks, which highlights the difficulties

encountered in structured grid generation for a 3D geometry.

The contours of temperature in the pitch plane around the spacecraft model at an

angle-of-attack of 180 degrees are shown in Fig. 5.6. This figure shows that the max-

imum temperature which occurs in front of the spacecraft is around 3000 K which is

not enough to cause dissociation of N2. The figure also shows the streamlines around

the spacecraft, which indicates a small recirculation region on the model apex. The

numerical results obtained for pressure and shear stress at the wall are integrated

in order to obtain the axial and normal force coefficients, which are compared to

experimental results[32, 15] in Figs. 5.7 and 5.8 respectively. The axial force coef-

ficient decreases in modulus and the normal force coefficient increases in modulus



83

Figure 5.5: X-velocity component contours for α = 150 degrees.

Figure 5.6: Temperature contours for α = 180 degrees.
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as the angle-of-attack increases. The agreement of the numerical solution with the

experimental results is remarkably good. Results for the grid refinement study are

also included in those figures. The grid refinement study is performed only for the

180 degrees angle-of-attack case. For the axial and normal force coefficients there is

virtually no difference in results when using the finer grid. It is concluded that the

coarser grid is adequate for the aerodynamic coefficient computations and therefore

is used for all the angles-of-attack in this study.

Figure 5.7: Axial force coefficient.

The agreement is also good for the pitch moment, which is compared to ex-

perimental results in Fig. 5.9. The result using the finer grid for the 180 degrees

angle-of-attack is also in close agreement to the result obtained using the coarser

grid.
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Figure 5.8: Normal force coefficient.

Figure 5.9: Pitching moment coefficient.
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5.3 Mars Entry Spacecraft Model

This section studies the flow over a Mars entry spacecraft experimental model

used in the HYPULSE expansion hypersonic wind tunnel[42, 43]. The experimental

study focused on heat transfer measurements along the experimental model for air

and carbon dioxide flows. The main objective of the study was to increase the

aerothermodynamics database for validation of numerical tools used in the design of

Mars entry spacecrafts. Most experimental results for hypersonic flows are obtained

using shock tube wind tunnels. The shock tube tunnel flow that reaches the test

section is usually in thermo-chemical non-equilibrium because of the extreme high

pressures and temperatures at the reservoir and the series of shocks used to accelerate

the flow. It is complicated to determine the actual composition and temperature

of the flow that reaches the model, making comparisons between numerical and

experimental results difficult[65]. The HYPULSE wind tunnel provides a cleaner

flow in the test section than a shock tube tunnel by keeping the test section at very

low pressures[42]. It still uses a shock to increase the pressure and temperature of

the test gas but part of the acceleration is due to an expansion caused by the low

test section pressure. Hence, for the same acceleration, the compression of the test

gas does not need to be as high as in a shock tube yielding a flow at the test section

closer to equilibrium.

The experimental model used in the study was a standard 70 degrees blunted

cone. This shape has been used extensively for Mars entry including the pioneering

Viking spacecraft. The geometry of the experimental model is presented in Fig. 5.10,

where the nose radius, Rn, is 12.7 mm, the base radius, Rb, is 25.4 mm, the corner

radius, Rc, is 1.27 mm, the frustum radius, Rf , is 15.24 mm, the sting radius, Rs, is
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10.32 mm, the sting length, Ls, is 116.84 mm, the nose cone angle, αn, is 70 degrees

and the frustum cone angle is 40 degrees.

Figure 5.10: Mars entry spacecraft model geometry.

5.3.1 Air Flow

The freestream conditions for the air flow case are presented in Table 5.2. Any

dissociation of the freestream flow is neglected. The base diameter Reynolds and

Knudsen numbers indicate that the flow is laminar and in the continuum regime. In

this work, only the zero angle-of-attack case is studied even though the experimental

data set has results for several angles-of-attack. The main purpose of this simulation

is to check the chemistry and non-equilibrium modeling which can be accomplished

with an axisymmetric simulation.

The meshes used in this computation are generated using GAMBIT[6]. The

meshes are made of quadrilaterals only, even though the code has the capability to

use triangles in a 2D simulation. Generating a good mesh using only quadrilaterals
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Table 5.2: Conditions for the Mars entry spacecraft experimental model air-flow case.
Freestream Condition Value
YN2 7.670× 10−1

YO2 2.330× 10−1

YNO 0.0
YN 0.0
YO 0.0
T∞(K) 1113.0
ρ∞(kg/m3) 5.710× 10−3

u∞(m/s) 5162.0
Tw(K) 300.0
M∞ 7.9
Red 3.39× 104

Kn 2.8× 10−4

for this configuration is somewhat difficult. It is necessary to divide the domain into

many blocks in order to ensure smooth mesh growth and to avoid abrupt changes in

mesh orientation. The block division used in this work has 9 blocks and is shown in

Fig. 5.11. One of the generated meshes is in Fig. 5.12. It has 200 cells in the direction

normal to the body and 340 cells in the streamwise direction, totaling 68, 000 cells.

Figure 5.13 presents the grid refinement study performed using the convective

heating rate along the experimental model forebody. The convective heating rate is

chosen as the quantity for this study because its value is very sensitive to the compu-

tational grid. The grid refinement study focus on the normal direction because the

results are much more sensitive to the refinement in that direction. Three different

grids with 100, 150 and 200 points in the normal direction are used. The grid with

100 points in the normal direction clearly under-predicts the convective heating rate.

The results for the grids with 150 and 200 points in the normal direction are very

close to each other and the solution on both grids could be used as grid independent

solutions. The results presented in this section use the grid with 200 points in the

normal direction. The level of refinement used in this simulations is close to what



89

Figure 5.11: Block structure used for generating the grid over the Mars entry space-
craft model.

Figure 5.12: Mesh used in the simulations of a Mars entry spacecraft model.
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other researchers have used[43].

Figure 5.13: Convective heat transfer rate along a Mars entry spacecraft model.

Figure 5.14 shows the flow pattern around the model. The main features in the

flow are the detached bow shock in front of the model, the expansion wave formed

on the shoulder of the model and a strong recirculation zone with 3 vortices that

covers most of the leeside of the model and part of the sting. The detachment point

is located just after the shoulder of the model. The flow pattern is in good agreement

with the numerical results in Ref. [43] for the same configuration.

The level of non-equilibrium in the flow can be evaluated from Fig. 5.15, which

plots the ratio of the translational-rotational to the vibrational temperature, Tt/Tv.

From the figure, this ratio can reach values as high as 3.6 in the shock wave and

as low as 0.3 inside the expansion fan and close to the body on the leeside. This

behavior is further highlighted in Fig. 5.16, which shows the temperatures along the
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Figure 5.14: X-velocity contours and streamlines over the model.

Figure 5.15: Ratio of translational-rotational to vibrational temperatures.
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stagnation streamline. The maximum translational temperature is around 11, 000

K due to the high freestream Mach number and high freestream temperature. The

vibrational temperature lags the translational temperature because the energy trans-

fer between the translational and the vibrational modes occurs at a finite rate. The

vibrational temperature does not achieve values as high as the translational tem-

peratures because of the relatively slow energy transfer process and because the air

dissociates after the shock wave lowering the translational temperature of the flow.

Figure 5.16: Translational and vibrational temperatures along the stagnation
streamline of the Mars entry experimental model.

A closer look at the air dissociation is provided in Fig. 5.17, which shows the

species mass fractions along the stagnation streamline. It is possible to observe the

sudden rise of the dissociation products after the shock due to the high temperature.

This figure also shows a decrease in N and O mass fractions close to the body, a sign

that there is strong recombination inside the boundary layer. The recombination in

the boundary layer releases energy and, therefore, increases the heat transfer to the
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wall. It should be noted that the wall is considered non-catalytic. The recombination

occurs inside the boundary layer and is due to the decrease in temperature caused

by the low wall temperature. It is also possible to see that O2 starts to dissociate

slightly earlier than N2 and that it is almost totally dissociated after the shock. On

the other hand, N2 does not fully dissociate due to the temperature after the shock

not being high enough. The mass fractions of N and O rapidly decrease inside the

boundary layer due to the decrease in the temperature, forming N2, O2 and NO.

Figure 5.17: Mass fractions along the stagnation streamline of the Mars entry exper-
imental model.

Results for heat transfer are compared to the experimental results of Refs. [41]

and [42] and numerical results of Ref. [43]. The comparison for the forebody is

in Fig. 5.18. The experimental and numerical results are in very good agreement

when using a 2nd order numerical scheme. The first order scheme clearly fails close

to the symmetry axis. The numerical results of Ref. [43] are a little lower than

the experimental results at the stagnation point and consistently lower than the
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present numerical simulations. Nevertheless, both numerical solutions are within the

experimental uncertainty for most of the forebody. The comparison for the afterbody

Figure 5.18: Heat transfer on the model forebody.

is shown in Fig. 5.19. The figure shows that the code is able to capture the overall

shape of the heat distribution, but the agreement in detail is not as good. The

main difference is that the numerical computation underestimates the value for the

maximum heat transfer over the sting, which starts around S/Rb = 2.0. Some small

differences are also present between S/Rb = 1.7 and S/Rb = 2.0, which corresponds

to the back wall of the model. That is a complicated part of the flow where the

3 vortices strongly influence the heat transfer calculations. For instance, the peak

in heat transfer at S/Rb = 1.7 corresponds to where the large vortex impinges on

the corner of the back wall, as can be seen in Fig. 5.20 which shows contours of

temperature in that region. This causes an increase in the temperature gradient

and, therefore, in the heat transfer. The numerical results obtained on the afterbody
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region are in very good agreement with the numerical results obtained in Ref. [43]

which are also shown in Fig. 5.19.

Figure 5.19: Heat transfer on the model afterbody.

5.3.2 Carbon Dioxide Flow

The conditions for this test case are presented in Table 5.3. The flow entering the

test section is assumed to be pure CO2. This numerical simulation uses a 8 species

model for Martian atmosphere[63]. The species in that model are CO2, CO, N2,

O2, NO, N, O, and C. Because the stream is pure carbon dioxide, species involving

nitrogen can be left out of the simulation. Carbon dioxide is not diatomic and it has

additional degrees of freedom. The numerical code was specially modified to handle

the additional degrees of freedom of vibration. For CO2, the vibrational energy is

given by[17]

ev =
∑

r

gr
R

M

θv,r

eθv,r/T − 1
, (5.1)
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Figure 5.20: Temperature countours and streamlines over the model afterbody.

Table 5.3: Conditions for the Mars entry spacecraft experimental model carbon
dioxide-flow case.

Freestream Condition Value
YCO2 1.0
YCO 0.0
YN2 0.0
YO2 0.0
YNO 0.0
YN 0.0
YO 0.0
YC 0.0
T∞(K) 1088.0
ρ∞(kg/m3) 5.79× 10−3

u∞(m/s) 4772.0
Tw(K) 300.0
M∞ 9.7
Red 3.35× 104

Kn 3.7× 10−4
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where the subscript r stands for the vibrational modes of CO2 and gr is the degen-

eracy of each mode. The values of the characteristic temperature of vibration and

the degeneracies for each vibrational mode are in Table 5.4.

Table 5.4: Vibrational energy data for CO2.

r θv,r (K) gr

1 945 2
2 1903 1
3 3329 1

The translational-vibrational energy relaxation should take into account that

there are three different vibrational modes. The Millikan and White correlation

can be used for each vibrational mode to model the energy exchange between that

mode and the translational mode. In addition, the vibrational-vibrational energy

transfer process for CO2 should be modeled to account for the energy transfer be-

tween the three modes. However, it is observed[17] that the energy transfer between

the vibrational modes in CO2 is very fast. Assuming that they are in equilibrium

with each other, the overall energy transfer between the translational mode and all

the vibrational modes will be set by the fastest translational-vibrational exchange,

which happens for the θv = 945 K mode. Thus, the entire translational-vibrational

and vibrational-vibrational exchanges are modeled by using only the translational-

vibrational relaxation time calculated using θv = 945 K.

In this test case, only the experimental model forebody is simulated. The grid

employed in the simulation has a total of 20, 400 cells. The mesh has 200 cells in the

normal direction and 102 along the body. The grid can be observed in Fig. 5.21. It

is a subset of the grid used for the full body simulations in air. A general overview

of the flow field is in Fig. 5.22 where the detached shock wave characteristic of blunt
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Figure 5.21: Computational grid used for CO2 flow over the Mars entry experimental
model forebody.

bodies and the expansion around the model shoulder can be observed. The shock

stand-off distance for CO2 flow is much smaller than for air flow. This fact can also

be observed by comparing the temperature profiles along the stagnation line for air in

Fig. 5.15 and for CO2 in Fig. 5.23. The reason for the smaller shock standoff distance

is the higher density in the shock layer, which is caused by a smaller temperature.

In air, the shock layer temperature is around 6, 000 K while in CO2 the shock layer

temperature is around 4, 000 K. The smaller temperature occurs because CO2 is

easier to dissociate than N2. This fact can be observed in Fig. 5.24 which shows the

species mass fractions along the stagnation line. Inside the shock layer, around 60%

of CO2 has dissociated versus only 14% of N2 in air as shown in Fig. 5.17. The mass

fractions along the stagnation streamline show that CO2 dissociates into CO and O

and that some of the oxygen atoms recombine into O2. Finally, Fig. 5.25 shows the

heat transfer rates along the experimental model. The numerical results are in good
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Figure 5.22: X-velocity contours over the Mars entry experimental model forebody
for CO2 flow.

Figure 5.23: Temperature profiles along the stagnation streamline for CO2 flow.
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Figure 5.24: Species mass fractions profiles along the stagnation streamline for CO2
flow.

agreement with the experimental data and numerical results from Ref. [43].

5.4 RAM-C Spacecraft

The Radio Attenuation Measurement (RAM) experiment was a series of hyper-

sonic flights performed in the 1960’s to study communications blackout. The commu-

nication blackout is caused by the presence of a plasma sheath around a spacecraft

that attenuates the radio signals arriving at and leaving the spacecraft. It is a

common phenomenon in reentry vehicles due to the ionization caused by the high

temperature in the shock layer. From all the flights performed, the RAM-C II is the

most useful for numerical comparisons. This flight performed measurements of the

maximum electron number density normal to the surface at 4 different stations along

the body using reflectometers. A rake of electrostatic probes measured the variation

of electron number density close to the rear of the spacecraft.
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Figure 5.25: Heat transfer along the Mars entry experimental model forebody for
CO2 flow.

The presence of electrons and ions in the flow requires a differentiated treatment

of charged and non-charged particles when calculating transport properties and non-

equilibrium models. The RAM-C II flight test conditions are simulated in order

to demonstrate the capabilities of the physical modeling of weakly ionized flows

implemented in the code. The RAM-C II flight data is a good source of measurements

for code comparisons and has been used extensivelly for code comparisons[18, 30, 45].

In this work, the flow condition corresponding to the 71km altitude trajectory point

is simulated. The freestream conditions are tabulated in Table 5.5. The condition

satisfies the limit for a continuum approximation and it is in the laminar regime

as can be concluded from the nose radius Reynolds and Knudsen numbers. The

geometry of the RAM-C II spacecraft, a blunt cone, is shown in Fig. 5.26. The nose

radius is Rn = 0.1524 m, the cone angle is αc = 9 deg. and the vehicle length is

L = 1.3 m.
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Figure 5.26: RAM-C geometry.

Table 5.5: Freestream Conditions.
Freestream Condition Value
YN2 7.670× 10−1

YO2 2.330× 10−1

YNO 0.0
YN 0.0
YO 0.0
YNO+ 0.0
Ye− 0.0
T∞(K) 254.0
ρ∞(kg/m3) 2.70236× 10−4

u∞(m/s) 7650.0
Tw(K) 1200.0
M∞ 23.9
Red 1.95× 104

Kn 1.2× 10−3
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Figure 5.27 presents one of the meshes used in this work. It has 128 points in

the normal direction and 75 points along the geometry. Two different 7-species air

models are used in this simulation[74, 73]. Both air models include N2, O2, NO, N,

O, NO+ and electrons. The transport properties are calculated using Wilke’s mixing

rule and Blottner model and the diffusion coefficient is calculated using a constant

Lewis number. Those approximations are still adequate for a 7 km/s hypersonic

flow[29].

Figure 5.27: Computational grid used for the RAM-C II spacecraft at 71 km altitude
simulations.

Figure 5.28 presents the grid refinement study performed using the convective

heating rate along the vehicle. As before, the convective heating rate is chosen as

the quantity for this study because its value is very sensitive to the computational

grid. Three different grids with 64, 96 and 128 points in the normal direction are

used. The difference in convective heating between the 3 meshes is very small, as is
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expected because other researches reported solutions using much coarser grids[18].

The results presented in this section all use the grid with 128 points in the normal

direction.

Figure 5.28: Convective heat transfer rate along the RAM-C II spacecraft.

Maximum electron number densities along the direction normal to the vehicle

surface are compared to flight data and other numerical simulations in Fig. 5.29.

The electron number density is very high at the stagnation region and falls rapidly

as the flow temperature reduces due to the expansion along the spheric nose cap as

shown in Fig. 5.30. The present numerical results are in good agreement with the

numerical results of Grasso and Capano[30] which used a 2 temperature model as

well. That work used forward reaction rates from Ref. [74] and equilibrium constants

from Ref. [73]. The present results using the two different chemistry models bound

the distribution from Grasso and Capano. The numerical results of Candler[18] and
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Figure 5.29: Electron number density comparisons along the body for RAM-C II
flight test at 71 km altitude.



106

Josyula and Bailey[45] use a 6 temperature model and, not surprisingly, yield dif-

ferent results from the present simulation. The results by Josyula and Bailey are

particularly in excellent agreement with the experimental data but all numerical re-

sults lie within the uncertainty of the flight test data evaluated using the electrostatic

probe data.

Figure 5.30: Translational-rotational temperature over the RAM-C II spacecraft at
71 km altitude using Park’s 1990 chemistry set.

Figure 5.31 highlights the influence of the high temperature correction of Millikan

and White’s relaxation time suggested by Park[74]. One can observe that without the

use of the correction, the energy transfer between the translational-rotational and the

vibrational modes is so fast that the vibrational temperature reaches temperatures

almost as high as the translational temperature. The high vibrational temperature

leads to stronger dissociation in relation to the case using the high temperature

correction which causes a smaller shock standoff distance, also observed in Fig. 5.31.
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Figure 5.31: Influence of Park’s high temperature correction on temperature profiles
along the stagnation streamline for the RAM-C II flight test at 71 km
altitude.

5.5 FIRE-II Spacecraft

The Flight Investigation of Reentry Environment (FIRE) flight experiment was

performed in 1965 in order to address uncertainties of the aerothermodynamic models

used to design the Apollo thermal protection system. This flight experiment mea-

sured the total heating rate to the spacecraft using calorimeters and the radiative

heating rate using radiometers during reentry at lunar-return velocity. Even though

flight data is available, the objective of this test case is to compare the numerical

results for convective heating calculated using the code developed in this work, Le-

MANS, with the results obtained using two different NASA codes. These codes are
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the Data-Parallel Line Relaxation code, DPLR, developed at NASA Ames and the

Langley Aerothermodynamic Upwind Relaxation Algorithm, LAURA, developed at

NASA Langley. Both codes have been used extensively in the simulation and design

of entry vehicles. In addition, LeMANS is used to perform a sensitivity analysis of

the radiative heating to several thermo-chemical non-equilibrium models.

The FIRE-II thermal protection system used three non-ablating heat shields made

of beryllium metal and asbestos impregnated phenolic resin heat shields in between

them. The heat shields were ejected at prescribed times so that a new beryllium heat

shield was exposed during each measurement period. Each measurement period

ended when the corresponding beryllium heat shield started to ablate. The three

freestream conditions in this work are the same as in Ref. [37]. They are chosen such

that each one corresponds to a different beryllium heat shield. Figure 5.32 shows

the geometry of the spacecraft forebody simulated in this work. The conditions and

geometry information necessary to define the forebody are tabulated in Table 5.6

where t is the flight time, H is the altitude, Rn is the nose radius, Rs is the shoulder

radius and Rb is the base radius. All conditions satisfy the limit for a continuum

approximation - Kn < 0.01 and all of them are in the laminar regime.

Table 5.6: Freestream Conditions for the FIRE-II cases.

Freestream Condition
Trajectory time (s)

1636 1643 1651
H (km) 71.04 53.04 37.19
u∞ (m/s) 1.131× 104 1.048× 104 6.19× 103

ρ (kg/m3) 8.57× 10−5 7.80× 10−4 6.05× 10−3

T∞ (K) 210 276 253
Tw (K) 810 640 1060
Rn (m) 9.347× 10−1 8.052× 10−1 7.021× 10−1

Rs (m) 1.02× 10−2 3.56× 10−2 0.61× 10−2

Rb (m) 3.3575× 10−1 3.1495× 10−1 2.9395× 10−1
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Figure 5.32: FIRE-II geometry.

5.5.1 Convective Heating

A total of 12 simulations are performed using LeMANS and compared to DPLR

and LAURA. The simulations used 5 and 11-species air models and catalytic and

supercatalytic wall boundary conditions for the 3 different trajectory times listed in

Table 5.6. The meshes used in this work were provided by NASA Ames and are

the same meshes used by DPLR in Ref. [37]. The results for convective heating

are presented in Table 5.7, where the data for DPLR and LAURA are obtained

from Ref. [37]. The results for LeMANS lie in between DPLR and LAURA for all

conditions. One of the most interesting cases is the 1636, 11-species case which given

the high speed and low density, can best highlight the differences between the physical

modeling in the codes. For that particular case, the heat transfer calculated using

LeMANS is very close to the one calculated by DPLR. That is not too surprising

since much of the modeling inside LeMANS and DPLR is the same, including inviscid
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fluxes, collision integrals and chemistry rates. Overall, the table shows that the

difference between the 3 codes for the 11-species cases is at most 7%, a very good

comparison given all the physical and numerical modeling involved. The results are

consistent with the total heating rates measured in flight for the three conditions

that are 290, 1025, and 390 W/cm2 for the 1636, 1643 and 1651 seconds flight times

respectively. For the 1636 and 1643 cases, the flight data is above the numerical

results which is consistent because the measured data includes radiative heating.

For the low altitude case, at 1651 seconds, all numerical codes overpredict the flight

data. No investigation on the causes of this inconsistency is performed in this work

because the objective of this test is a code to code comparison.

Table 5.7: FIRE-II Convective Heating.

Time
Air Model a Wall b Heating rate (W/cm2) Difference

(s) DPLR LAURA LeMANS (%)

1636
11

NC 183 191 185 4
C 301 307 307 2

5
NC 226 204 210 -10
C 365 340 346 -7

1643
11

NC 769 753 753 -2
C 805 802 810 -1

5
NC 823 773 799 -6
C 904 839 860 -7

1651
11

NC 478 449 473 -6
C 511 477 503 -7

5
NC 477 451 473 -5
C 511 479 505 -6

aThe air model classification corresponds to the number of species in the model.

bC and NC represent catalytic and non-catalytic wall respectively.

In order to illustrate the results, the 1636 seconds , 11-species non-catalytic wall

case is discussed in more detail. The mesh used in this calculation is presented in

Fig. 5.33. It has 18, 432 cells with 144 in the normal direction and 128 along the
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body. The spacing at the wall is around 2× 10−6 meters.

Figure 5.33: Mesh used by DPLR and LeMANS for the 1636 seconds, 11-species
cases.

A general overview of the flowfield is presented in Figs. 5.34 and 5.35, which show

contours of translational temperature and pressure in the flowfield. The maximum

temperature in the flowfield is around 30, 000 K occurring immediately after the

shock wave. Due to dissociation and ionization reactions, the temperature decreases

to around 10, 000 K in the shock layer. The pressure contours show the expected

blunt body behavior with high pressure at the stagnation region reaching values close

to 10, 000 Pa and an expansion around the shoulder of the spacecraft. The 2nd order

scheme employed in the numerical calculation makes the contour lines very sharp.

The high energy of the flow causes high rates of chemical reactions after the

shock wave leading to a drop in temperature after the shock. Figure 5.36 shows the

species mass fractions along the stagnation streamline. Closer to the shock wave, the

ions with larger mass fractions are N2
+, O2

+ and NO+ which are formed through
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Figure 5.34: Temperature contours around the FIRE-II spacecraft for the 1636 sec-
onds, 11-species, non-catalytic wall case.

Figure 5.35: Pressure contours around the FIRE-II spacecraft for the 1636 seconds,
11-species, non-catalytic wall case.
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associative ionization reactions. The atomic species N, O and their ions N+ and O+

are the species with larger mass fractions in the shock layer followed by N2. Inside

the boundary layer, the decrease in temperature increases the rate of recombination

reactions.

Figure 5.36: Species mass fractions along the stagnation line for the 1636 seconds,
11-species, non-catalytic wall case.

Figure 5.37 shows a comparison of heat transfer profiles calculated by LeMANS,

DPLR and LAURA. The agreement between LeMANS and DPLR is remarkable.

Both codes show a small dip in the profile close to the stagnation point, which could

be attributed to a “carbuncle” like behavior. It is well known in the CFD community

that grid alignment to the shock wave and the inviscid fluxes play important roles in

the appearance of “carbuncles”. Both LeMANS and DPLR use the same grid and

same inviscid numerical fluxes for these calculations which may explain why both

codes present a similar behavior close to the stagnation point.

A comparison between the translational temperature profiles along the stagnation
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Figure 5.37: Convective heat transfer along the wall for the 1636 seconds, 11-species,
non-catalytic wall case.

streamline calculated by the three codes is presented in Fig. 5.38. It can be observed

that the three codes present good agreement in the equilibrium temperature after

the shock and inside the boundary layer. The codes show distinct behavior at the

shock wave. LAURA predicts a broader shock and the largest peak translational

temperature while DPLR presents a thinner shock and the smallest peak in transla-

tional temperature. LeMANS stands somewhere in between both codes. LAURA’s

broader shock comes from a coarser grid that has 6, 400 cells with 80 in the normal

direction and 80 along the body. This grid, shown in Fig. 5.39, is clearly coarser

close to the freestream boundary. While LeMANS and DPLR used the same mesh,

LeMANS predicts a larger shock standoff distance. That is caused by the modeling

of electron impact ionization reactions as discussed in the next section.

Figure 5.40 presents comparisons of the vibrational temperature profiles along

the stagnation line calculated by the three codes. While the codes agree on the
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Figure 5.38: Translational temperature profiles along the stagnation line for the 1636
seconds, 11-species, non-catalytic wall case.

equilibrium value after the shock, the profiles are different at the shock wave and

inside the boundary layer. LAURA and LeMANS predict a somewhat higher value

of vibrational temperature inside the boundary layer when compared to DPLR. In

addition, LAURA and LeMANS profiles present a peak in vibrational temperature

at the shock while the DPLR profile does not. LAURA and LeMANS couple the

electron and electronic energy with the vibrational energy while DPLR couples the

electron and electronic energy with the translational mode. The peak in vibrational

temperature for LAURA and LeMANS is caused by the increase of electron and

electronic energy close to the shock wave.

5.5.2 Radiative Heating Sensitivity Analysis

The radiative heating calculations in this study are performed using NEQAIR[93].

NEQAIR is run using the Quasi-Steady State (QSS) assumption in which electronic
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Figure 5.39: Mesh used by LAURA for the 1636 seconds, 11-species cases.

Figure 5.40: Vibrational temperature profiles along the stagnation line for the 1636
seconds, 11-species, non-catalytic wall case.
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excitation rates are computed using the electron temperature. NEQAIR requires the

translational, rotational, vibrational and electron temperatures and species number

densities along a line of sight in the flow field to calculate the radiation that reaches

the spacecraft wall. In this work, only the stagnation line is used. The 1636 seconds,

11-species case is used for comparing results obtained using the three different CFD

codes. Results for DPLR and LAURA are from Ref. [37]. Table 5.8 shows the results

from all codes for catalytic and non-catalytic wall conditions including the percentage

difference in relation to LAURA results. LeMANS results are again in between

those calculated by DPLR and LAURA for the vacuum ultraviolet (VUV) radiation

range but about 10% lower for the long wavelength region of the spectrum, which

is composed of ultraviolet, visible and infrared (UV+Vis+IR) radiation, for which

flight data is available. For 200 nm < λ < 4 µm the flight data radiative heating rate

is 28.5 W/cm2. The agreement for the radiative heating between the three codes is

not as good as for the convective heating. Most of the radiation to the spacecraft

during a reentry in the Earth’s atmosphere is related to the electron temperature

and the number densities of electrons, atomic nitrogen and atomic oxygen. The

electron temperature for LAURA and LeMANS is assumed to be in equilibrium with

the vibrational temperature while in DPLR the electron temperature is assumed in

equilibrium with the translational temperature. All codes assume that the rotational

temperature is equilibrated with the translational temperature.

Figure 5.41 compares the electron number density profiles calculated by the three

codes. It is clear from this figure that DPLR and LeMANS profiles present a peak

close to the shock while the LAURA profile does not. The maximum electron num-

ber density calculated by DPLR is much larger than that calculated by LAURA

while LeMANS lies somewhere in between. DPLR and LAURA profiles agree very
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well inside the boundary layer while the LeMANS profile differs from both in that

region. The disagreement comes from extra numerical dissipation in the inviscid

fluxes which is switched off closer to the wall in LeMANS than it is in LAURA and

DPLR. The extra numerical dissipation is obtained by modifying the inviscid fluxes

eigenvalues[16, 21].

The profiles for atomic nitrogen are presented in Fig. 5.42. The difference between

the three codes is much smaller in this case. The difference between LeMANS and

the other codes in the boundary layer is due to the extra numerical dissipation as

mentioned earlier. At the shock wave, the LeMANS and DPLR profiles seem to

be in better agreement. The LAURA profile close to the shock is somewhat more

diffused. The behavior for atomic oxygen is similar. The number density profiles for

this species are presented in Fig. 5.43. The LeMANS profile disagrees with DPLR

and LAURA in the boundary layer due to extra numerical dissipation. The LAURA

profile is also more diffused at the shock wave.

Table 5.8: Stagnation point radiative heating calculations using different codes.

Code

Heating rate (W/cm2)
Non-Catalytic Catalytic

λ < 200 nm λ ≥ 200 nm λ < 200 nm λ ≥ 200 nm
(VUV) (UV+Vis+IR) (VUV) (UV+Vis+IR)

LAURA 42.06 28.03 39.24 28.00
Diff. - - - -

DPLR 49.33 26.02 49.21 25.38
Diff. 17% -7% 25% -9%

LeMANS 44.26 24.79 44.48 23.98
Diff. 5% -12% 13% -14%

Given the differences in the physical modeling employed by the codes, a sensitivity

analysis is performed to understand the reasons for the differences in the stagnation

line property profiles. The sensitivity analysis focuses on the thermal non-equilibrium



119

Figure 5.41: Electron number density along the stagnation line for the 1636 seconds,
11-species, non-catalytic wall case calculated using different codes.

Figure 5.42: Atomic nitrogen number density along the stagnation line for the 1636
seconds, 11-species, non-catalytic wall case calculated using different
codes.
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Figure 5.43: Atomic oxygen number density along the stagnation line for the 1636
seconds, 11-species, non-catalytic wall case calculated using different
codes.

model because the flow is in thermo-chemical equilibrium in the shock layer. The

thermal non-equilibrium model impacts the profiles close to the shock wave which

is the region where the profiles show larger differences as seen in Figs. 5.38 to

5.43. Table 5.9 shows the impact of changes in some aspects of the thermochemistry

modeling on the calculated radiation, including the percentage difference in relation

to LeMANS baseline result.

The first change is to simulate a thermal-equilibrium flow. This is achieved by

using a constant vibrational-electron-electronic relaxation time of the order 1×10−13

seconds. The equilibrium assumption drastically reduced the maximum translational

temperature in the flowfield and the shock standoff distance, as can be observed in

Fig. 5.44. The reduction in temperature is due to the immediate energy transfer

to the other energy modes. The smaller temperature makes the fluid denser, thus
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Table 5.9: Stagnation point radiative heating sensitivity analysis for Non-Catalytic
wall.

Parameter
Heating rate (W/cm2)

λ < 200 nm λ ≥ 200 nm
(VUV) (UV+Vis+IR)

Baseline 44.26 24.79
Diff. - -

Thermal-Equilibrium 43.48 24.34
Diff. -1.8% -1.8%

Impact Ionization 44.55 24.41
Diff. 0.7% -1.5%

Constant τv = 1× 10−5 42.43 24.41
Diff. -4.1% -1.5%

Pref. Diss. Model 44.15 24.78
Diff. -0.2% 0.0%

T 0.7T 0.3
v 44.41 24.82

Diff. 0.3% 0.1%
Laura’s Chemistry Set 43.46 25.38

Diff. -1.8% 2.4%
Laura’s Grid 42.67 24.01

Diff. -3.6% -3.1%
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reducing the shock standoff distance. The vibrational temperature is a little larger

in the thermal equilibrium simulation, as can be observed in Fig. 5.45, but it is in

good agreement with the baseline solution. The thermal equilibrium calculation does

not cause significant differences in the number densities of electrons, nitrogen and

oxygen along the stagnation line as shown in Figs. 5.46, 5.47 and 5.48. Because

of such small differences in vibrational temperature and the number densities, the

difference in the calculated radiation is small.

Figure 5.44: Translational temperature profiles along the stagnation line for the 1636
seconds, 11-species, non-catalytic wall case.

The second modification changes the model for impact ionization reactions. In

LAURA those reaction rates are functions of the vibrational-electron-electronic tem-

perature only while in DPLR they are function of the translational temperature only.

This change reduces the translational temperature significantly as seen in Fig. 5.44,

because it causes those endothermic reactions to occur close to the shock wave. As

shown in Fig. 5.38, the smaller temperature also reduces the shock standoff distance,
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Figure 5.45: Vibrational temperature profiles along the stagnation line for the 1636
seconds, 11-species, non-catalytic wall case.

Figure 5.46: Electron number density along the stagnation line for the 1636 seconds,
11-species, non-catalytic wall case calculated using different thermal
non-equilibrium models.
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Figure 5.47: Atomic nitrogen number density along the stagnation line for the 1636
seconds, 11-species, non-catalytic wall case calculated using different
thermal non-equilibrium models.

Figure 5.48: Atomic oxygen number density along the stagnation line for the 1636
seconds, 11-species, non-catalytic wall case calculated using different
thermal non-equilibrium models.
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yielding good agreement to the one calculated by DPLR. This modification also re-

duces the maximum vibrational temperature as observed in Fig. 5.45. Figures 5.46

to 5.48 show that the impact on number densities of electrons, nitrogen and oxygen

is negligible. The change in radiation is negligible because the change in vibrational

temperature occurs before the number densities of electrons, nitrogen and oxygen

are significant enough to affect the radiation calculation.

The third modification increases the translational-vibrational energy transfer re-

laxation time. This study aims to contrast the thermal-equilibrium case by choosing

a value that is larger than the one calculated using the standard Millikan and White

correlation. The value chosen is τv = 1× 10−5 seconds. Figure 5.44 shows that this

modification significantly increases the translational temperature which gets as high

as 48, 000 K. This occurs because the energy transfer rate between the translational

and the other energy modes is slowed down. Due to the higher temperature, the den-

sity close to the shock is smaller, thus increasing the shock standoff distance. Figure

5.45 shows that the maximum vibrational temperature is smaller than the one in the

baseline solution. Also, the maximum vibrational temperature occurs closer to the

body. The steep increases at the shock in the number density profiles, shown in Figs.

5.46 to 5.48, are also closer to the body. The combined effect is a slight decrease in

the calculated radiation.

The fourth modification uses a preferential dissociation model that accounts for

the fact that molecules at higher energy vibrational states are more likely to disso-

ciate. Figures 5.44 and 5.45 show that this modification does not cause significant

changes in the translational or vibrational temperature profiles. Figures 5.46 to 5.48

show that there are no noticeable changes in the number density profiles either. Not

surprisingly, the calculated radiation is very close to the baseline.
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The fifth modification uses different parameters for calculating the temperature

that is used in the forward dissociation reaction rates (Park’s temperature). DPLR

and LeMANS use Tp = T 0.5 × T 0.5
V while LAURA uses that Tp = T 0.7 × T 0.3

V . This

modification causes almost no difference in the translational and vibrational temper-

ature profiles as can be seen in Figs. 5.44 and 5.45, respectivelly. Figures 5.46 to

5.48 show that there are no changes in the number density profiles. This explains the

agreement between the radiation calculated in this case and in the baseline solution.

The sixth modification uses the LAURA chemistry set as reported in Ref. [37]

and also in Appendix A. This modification does not cause significant changes in

the translational nor in the vibrational temperature profiles, as can be observed in

Figs. 5.44 and 5.45. However, the different chemistry set does cause a change in the

electron number density profile. Figure 5.46 shows that this modification eliminates

the peak in the electron number density that occurs close to the shock wave in the

LeMANS baseline solution. The number density profiles for nitrogen and oxygen are

mostly the same as in the baseline, as shown in Figs. 5.47 and 5.48. The reduction

in electron number density causes a reduction in the radiation heat transfer when

compared to the baseline.

The seventh and last modification uses the same grid as LAURA. This allows

investigation of the diffusive character of LAURA’s solution close to the shock wave.

The coarser grid increases the amount of dissipation added at the shock wave, which

broadens the translational temperature jump seen in Fig. 5.44. The broadening of

the shock gives extra time for the energy transfer between the translational and

the vibrational energy modes, thus causing a decrease in the maximum translational

temperature. Figure 5.45 shows that the maximum vibrational temperature is a little

smaller and that the steep increase in vibrational temperature occurs sooner because
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of the thicker shock. Figures 5.46 to 5.48 show that the number density profiles are

more diffused, in qualitative agreement with the LAURA profiles in Figs. 5.41 to

5.43. As a result, the calculated radiation shows better agreement with the LAURA

calculation.

Overall, the tested modifications did not cause significant changes in radiative

heating rates. The largest change happened due to grid refinement at the shock,

which is independent of the thermo-chemical non-equilibrium models. It should be

noted that the present sensitivity analysis is performed for only one flow condition

and the observations are therefore limited.



CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary

This work presents the mathematical and numerical formulation employed in the

development of a multi-dimensional Computational Fluid Dynamics (CFD) code for

the simulation of weakly ionized hypersonic flows in thermo-chemical non-equilibrium

over entry configurations. The flow is modeled using the Navier-Stokes equations

for continuum flow modified to include thermo-chemical non-equilibrium and weak

ionization. The chemical non-equilibrium is modeled by including species conser-

vation equations in the formulation and by using finite-rate chemistry to model

the chemistry source terms. The thermal non-equilibrium is modeled by includ-

ing a separate energy equation that tracks the vibrational-electron-electronic energy

pool and by using relaxation rates to model the energy transfer rate between the

translational-rotational mode and the vibrational-electron-electronic mode. For a

three-dimensional simulation using a 11-species air model the partial differential

equation system has 16 equations. The diffusion of species is modeled by an approx-

imation to the solution of the Stefan-Maxwell equations and the transport properties

of the gas mixture are modeled using collision cross section data and mixture rules

based on gas kinetic theory.
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This set of equations is solved numerically using modern CFD techniques. The

flowfield is discretized using unstructured grids made of any mixture of quadrilater-

als and triangles in two-dimensions or hexahedra, tetrahedra, prisms and pyramids

in three-dimensions. The partial differential equations are integrated on such grids

using the finite volume approach. The fluxes across grid faces are calculated us-

ing a modified form of the Steger-Warming Flux Vector Splitting scheme that has

low numerical dissipation inside boundary layers but enough numerical dissipation

in shock waves to ensure stability. Higher order extension of the inviscid fluxes is

achieved by using standard ideas developed for structured grids applied on a local

stencil constructed from the unstructured data structure. While this approach has

been used before for unstructured grids made of hexahedra, this work extends its

application to general unstructured grids. An important characteristic of the pro-

cedure proposed is that no interpolated values are used making the procedure very

robust for hypersonic flows. Moreover, the stencil used in the reconstruction is fixed

so that its cost is negligible in relation to the total cost of the calculation.

Steady state solutions are obtained by integrating the solution over time using the

Euler implicit method and linearization of the inviscid and viscous fluxes and source

terms. The resulting sparse linear system can be solved by using a point implicit

method in which only the diagonal is retained in the implicit operator or by a line

implicit method in which a tridiagonal matrix is assembled by using lines of cells

that are formed starting at the wall. The use of two different numbering systems

simplifies the originally sparse system of equations to the tridiagonal system. In both

methods, the off-diagonal terms not included in the implicit operator are relaxed. An

algorithm that assembles the lines used in the line implicit method using completely

general unstructured grids is developed in this work.
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The numerical code, called LeMANS (“Le” Michigan Aerothermodynamics Navier-

Stokes Solver) is written using the C language to facilitate the development of a hy-

brid DSMC-CFD code at the University of Michigan. LeMANS is also parallelized

by using METIS for grid partitioning and MPI for data transfer between processors.

The code is designed to read FLUENT files so that most commercial grid generators

can be used. LeMANS also parses chemistry file databases so that the inclusion of

different species and reactions can be easily performed.

The code is a significant contribution to the aerothermodynamics field. While

most of the physical and numerical modeling used is not new, the code itself is totaly

developed outside other established CFD groups that perform numerical simulations

of hypersonic flows for entry applications. The code is going to be used by other

researchers to test the limitations of current physical and numerical modeling and

possibly in the development of new models. In fact, the code is already being used

as part of the already mentioned hybrid DSMC-CFD code for the simulation of

flows where the continuum approximation breaks down in localized regions, in the

comparison of numerical results between DSMC and CFD, in the modeling of the

flowfield typical of plasma guns and in benchmark studies against other CFD codes.

In this work LeMANS is employed in the simulation of several entry flows over

space capsules as part of its validation process. Important quantities for the aerother-

modynamics design of capsules such as aerodynamic coefficients and heat transfer

rates are compared to available experimental and flight test data and other numer-

ical results. A sensitivity analysis of radiative heating to several thermo-chemical

non-equilibrium models is also performed.
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6.2 Conclusions

LeMANS successfully calculated aerodynamic coefficients of an Apollo entry cap-

sule model tested in a wind-tunnel at hypersonic speeds. The freestream conditions

are at such low temperature that no chemical reactions are observed and vibrational

energy excitation can be neglected. Meshes made of hexahedras are employed in

these simulations with a special treatment of the stagnation region to avoid numer-

ical problems. Most of the forces acting on the capsule are due to the pressure

difference between the forebody and the after-body and accurate prediction of flow

separation on the afterbody is necessary. The numerical solutions obtained are in

very good agreement with experimental results obtained for the axial and normal

force coefficients and also for the pitching moment coefficient.

The code is successfully used to simulate the heat transfer over a Mars entry

capsule model tested in the HYPULSE wind tunnel for air and carbon dioxide hy-

personic flows. It is demonstrated that second order discretization is necessary to

obtain accurate values of heat transfer close to the symmetry axis in axisymmetric

simulations. The numerical solutions are within experimental uncertainty for both

fluids along the model forebody. The results for the afterbody air flow capture the

general shape of the experimental distribution but underpredict the heat transfer

rate along the sting in relation to the experimental data. Nevertheless, the results

for the afterbody are in very good agreement to other numerical solutions. Numerical

simulation of the RAM-C II flight data has also shown that electron number den-

sities computed with LeMANS agree very well with other researchers’ calculations

that used similar physical models, and to flight data.

The numerical results obtained in these two test cases indicate that the flow-
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fields around hypersonic vehicles are highly reactive and in thermo-chemical non-

equilibrium under the conditions considered. The chemical reactions lower the tem-

perature of the flow inside the shock layer by endothermic reactions. Vibrational

excitation also lowers the temperature of the shock layer. Both processes occur at fi-

nite rates leading to thermo-chemical non-equilibrium in the flow field. The chemical

non-equilibrium is observed in plots of chemical composition in which the equilibrium

plateau is reached only some distance after the shock wave. The thermal equilib-

rium is observed in plots of temperature along the stagnation line characterized by

significant differences between the translational and vibrational temperatures after

the shock. These two processes are fundamental to the correct determination of the

shock standoff distance and properties inside the shock layer which ultimately define

the heat transfer to the wall and electron number density in the flow. The chemical

reaction rates are dependent on the level of non-equilibrium of the flow and this is

modeled using an approximate two-temperature model that seems to be a reason-

able approximation given the good results obtained for heat transfer and electron

number density. These two simulations also show that simplified models for diffusion

and transport properties developed for relatively low speed are indeed adequate for

application to hypersonic flow.

LeMANS is successfully used to simulate the convective heat transfer to the FIRE-

II spacecraft at different trajectory points. The results are in remarkable agreement

with two other established CFD codes routinely used in reentry calculations: DPLR

(developed at NASA Ames Research Center) and LAURA (developed at NASA Lan-

gley Research Center). For the 1636 seconds case, LeMANS is very close to DPLR

due to many similarities in the physical and numerical modeling. While DPLR

couples the electron and electronic temperature to the translational and rotational
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temperature, LeMANS couples them to the vibrational temperature. The remark-

able agreement between the two codes indicates that the coupling choice does not

have much effect on convective heating rates for these flow conditions. Overall, the

differences in convective heating between LeMANS, DPLR and LAURA stay under

7% for 11-species air model calculations. The numerical results also indicate that

the high speed flow (11 km/s) causes a much higher degree of ionization which must

be accounted for in the physical modeling by using adequate models for air, diffusion

and transport properties.

LeMANS flow field results are also employed to perform stagnation point ra-

diative heating calculations using NASA’s NEQAIR code. The results are in good

agreement with the NEQAIR results obtained using DPLR and LAURA flow field

solutions. A sensitivity study restricted to modifications in the thermochemical non-

equilibrium model is also performed. It is found that reasonable changes in some of

the parameters of this model do not lead to very significant changes in the radiation

heat transfer. For radiative heating, the choice of electron-electronic coupling is vis-

ible in the modeling of electron impact ionization reactions. The modeling of this

reaction rate depends on the electron temperature and it is shown that the coupling

choice affects the shock standoff distance. Nevertheless, the impact on radiative

heating is still small. One of the largest source of discrepancies in the radiative heat-

ing calculations is the computational grid. The results obtained indicate that CFD

grids used in radiation analysis need to be refined at the shock wave in addition to

at the boundary layer.
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6.3 Future Research

The development of a parallel, unstructured, multi-dimensional CFD code with

many physical models is a very time consuming task. During the development of

this code, many improvements and not essential models were left behind so that the

most fundamental physical modeling would be implemented. In this section, ideas

for the implementation of improved algorithms and additional physics modeling are

discussed.

The inviscid, viscous, chemistry and non-equilibrium Jacobians used in LeMANS

are calculated by several matrix multiplications as shown in Appendix B. This ap-

proach yields a code that is simple to understand by just looking at the matrices and

comparing them with the generated code. Running time can be saved by performing

these multiplications analytically using a symbolic mathematical program and im-

plementing the results. This approach can potentially save time when the matrices

are large as in the simulation of flows in thermo-chemical non-equilibrium.

The multi-dimensionality in LeMANS is handled by using loops over the number

of dimensions of the problem which is determined from the grid. These loops are

small (at most a length of three for three-dimensional flows) but they can make

difficult the vectorization of long loops that contain them. The use of compiler

directives that force the compiler to unroll those loops can be tested to evaluate

possible improvements in performance. The same approach can be employed for

the species in the chemistry model. LeMANS loops over the number of species in

many operations. These loops are also small (a length of eleven for a 11-species air

simulation) and the unrolling of these loops may improve performance as well.

The linear algebra routines in LeMANS can be improved by using pre-compiled
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libraries available in most scientific computing clusters. Several levels of optimization

are available and could be tested. The block matrix-vector and matrix-matrix mul-

tiplications used in the solution of the linear system of equations can be performed

using routines from the BLAS[13, 2] library which has routines optimized accord-

ing to processor memory hierarchy. Another option is ATLAS[92, 1] which provides

routines from BLAS that are empirically optimized during its compilation in the

system. A higher level of optimization can be attained by using the LAPACK[7, 3]

library which has several methods for solving the entire linear system of equations.

It should be noted that LAPACK uses BLAS for fast block matrices operations.

Some of the methods implemented in LAPACK require pre-conditioning of the lin-

ear system which could be done using a line solver similar to the one used in this

work. An even higher level of optimization could be tested by using the PETSc[8, 4]

libraries which offer an entire framework for the solution of partial differential equa-

tions on parallel computers using implicit methods. BLAS and LAPACK could be

implemented in a fairly straightforward way in LeMANS. Using PETSc seems to re-

quire more extensive recoding but possible gains, as reported by the PETSc-FUN3D

project which attained record number of float point operations for an unstructured

CFD code[33], may be worth the extra work.

All the results presented in this dissertation use the modified Steger-Warming

flux vector splitting for modeling the inviscid fluxes. There are several other options

for their modeling such as Van Leer’s flux vector splitting[50], Roe’s flux difference

splitting[79, 78], the AUSM family[56], the HLL family[36], the Rusanov scheme[80]

and rotated schemes[54]. The implementation of these flux functions for flows in

thermo-chemical non-equilibrium is a valuable addition to the numerical code. It

should be noted that each inviscid model would require a different Jacobian to be
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used in solving the linear system. The influence of using the same Jacobian derived

for the modified Steger-Warming flux vector splitting for all the methods in relation

to the exact Jacobian of each method would be also an interesting investigation that

has been done before for transonic and supersonic flows[53]. Another possibility is

to perform the calculation of the Jacobians by using numerical differentiation inside

the code.

The addition of artificial dissipation is standard practice in the simulation of

hypersonic flows but its influence on calculated properties, such as an increase in

computed heat transfer rates, is not explicitly shown in the literature. Compar-

ing the impact of adding artificial dissipation with the impact of changing physical

models could bring more attention to the development of new inviscid fluxes. A

fundamental problem to be solved in the numerical simulation of hypersonic flows is

how to improve results using truly unstructured grids of triangles and quadrilaterals.

It is well know in the aerothermodynamics community that meshes of triangles and

tetrahedra do not yield accurate heat transfer rates in hypersonic flow simulations.

Most flux functions are not able to obtain reasonable solutions when using these grids

and a new flux function with an automatic way of adding artificial dissipation may

be required. An assessment of available inviscid flux functions for the simulation of

hypersonic flow using unstructured grids could be the first step in such a project.

While a definitive flux function for unstructured grids is not developed, users will

probably have to employ grids made of hexahedra and quadrilaterals for simulations.

Those grids can minimize oscillations at the shock when aligned to the strong shock

wave. The creation of a grid aligned to the shock wave requires a lot of experience

and at least one preliminary solution to determine the shock location. A mesh

adaptation routine can be extremely useful to reduce the time spent generating
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grids. The solution could be started on a quickly constructed grid and the mesh

adaptation would improve the mesh in terms of shock alignment and mesh quality.

In LeMANS, the output of files and the creation of restart files are also paral-

lelized. This means that for a simulation running on N processors LeMANS creates

N output files and N restart files. It would be interesting to modify the output

phase of LeMANS such that just one output and one restart files are created. That

would allow the restart of simulations using a different number of processors than

before. Currently LeMANS has to restart using the same number of processors that

was used to create the restart files.

One of the physical processes left out of LeMANS that is important is wall cataly-

sis. LeMANS has the option to run non-catalytic and super-catalytic wall boundary

conditions. In the super-catalytic case it is assumed that the flow recombines to the

composition of the freestream which is not physically possible. In reality, the recom-

bination at the wall is limited by the diffusion of species towards the wall. In that

case, a fraction of the diffused species recombines according to specific wall reactions.

If that fraction is set to 100%, the wall is called fully-catalytic. This model is not

implemented and it is a necessary addition to the code. Turbulence modeling is left

out of the current implementation as well. Entry flows are in the laminar regime

only for the low density encountered at high altitudes. Turbulence modeling will be

important at lower altitudes. In addition, the injection of material from an ablating

surface may cause transition to a turbulent boundary layer.

The present code is developed to simulate flows in thermo-chemical non-equilibrium.

The code can be used to simulate flows in thermo-chemical equilibrium by setting the

relaxation time to be very small (on the order to 10−13 seconds) and by multiplying

the reactions rates by a large factor (such as 103) to emulate equilibrium chemistry.
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While this approach gives accurate results, it is not computationally efficient. Some

specific techniques used in the numerical simulation of flows in equilibrium, such as

reduced order kinetics, could be employed in the code for more efficient simulation

of these flows.

Finally, the code should be placed in a version control system so that the con-

tributions of all researchers are available. By using this approach, each incremental

improvement in the code would be immediately available to all the users. Such a

system would require someone responsible for the code that would perform tests on

the new versions to make sure that some benchmark problems are always computed

correctly.
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APPENDIX A

Chemistry Sets

A.1 Species data

Table A.1 has the basic data for each species in the 11-species air model, includ-

ing molecular weight, enthalpy of formation assuming 0K as the base temperature,

constants A, B and C for the Blottner viscosity model, the characteristic temperature

of vibration and the dissociation energy of molecules.

Table A.1: Species Chemistry Data
Species M (kg/m3) ho

f (J/kg) A B C θv (K) D (J/kg) Î (J/kg)

N2 28 0 2.68E-02 3.18E-01 -1.13E+01 3395 3.36E+07 2.89E+07
O2 32 0 4.49E-02 -8.26E-02 -9.20E+00 2239 1.54E+07 2.69E+07
NO 30 3.00E+06 4.36E-02 -3.36E-02 -9.58E+00 2817 2.09E+07 0
N 14 3.36E+07 1.16E-02 6.03E-01 -1.24E+01 0 0 0
O 16 1.54E+07 2.03E-02 4.29E-01 -1.16E+01 0 0 0

NO+ 29.9994514 3.28E+07 3.02E-01 -3.5039791 -3.74E+00 2817 3.49E+07 0

N2
+ 27.9994514 5.43E+07 2.68E-02 3.18E-01 -1.13E+01 3395 3.00E+07 0

O2
+ 31.9994514 3.66E+07 4.49E-02 -8.26E-02 -9.20E+00 2239 2.01E+07 0

N+ 13.9994514 1.34E+08 1.16E-02 6.03E-01 -1.24E+01 0 0 0

O+ 15.9994514 9.77E+07 2.03E-02 4.29E-01 -1.16E+01 0 0 0
e 0.0005486 0 0 0 -1.20E+01 0 0 0

A.2 Electronic energy data

Tables A.2 to A.4 present the electronic characteristic temperature and degen-

eracies of the electronic energy levels of the 11-species air model.
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Table A.2: Electronic Energy Levels.
Species Level θel (K) g

O 0 0.000000000000000E+00 5
O 1 2.277077570280000E+02 3
O 2 3.265688785704000E+02 1
O 3 2.283028632262240E+04 5
O 4 4.861993036434160E+04 1

O+ 0 0.000000000000000E+00 4

O+ 1 3.858334678336000E+04 10

O+ 2 5.822349152848000E+04 6
O2 0 0.000000000000000E+00 3
O2 1 1.139156019700800E+04 2
O2 2 1.898473947826400E+04 1
O2 3 4.755973576639200E+04 1
O2 4 4.991242097343200E+04 6
O2 5 5.092268575561600E+04 3
O2 6 7.189863255967200E+04 3

O2
+ 0 0.000000000000000E+00 4

O2
+ 1 4.735440815760000E+04 8

O2
+ 2 5.837398741440000E+04 4

O2
+ 3 5.841427312000000E+04 6

O2
+ 4 6.229896616000000E+04 4

O2
+ 5 6.733467936000000E+04 2

O2
+ 6 7.121937240000000E+04 4

O2
+ 7 7.654284064000000E+04 4

O2
+ 8 8.819691976000000E+04 4

O2
+ 9 8.891630736000000E+04 4

O2
+ 10 9.423977560000000E+04 8

O2
+ 11 9.495916320000000E+04 4

O2
+ 12 9.592026503360000E+04 2

O2
+ 13 9.985099888000000E+04 2

O2
+ 14 1.035918144000000E+05 4
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Table A.3: Electronic Energy Levels - continued.
Species Level θel (K) g

N2
+ 0 0.000000000000000E+00 2

N2
+ 1 1.318997164600000E+04 4

N2
+ 2 3.663323087728000E+04 2

N2
+ 3 3.668876760000000E+04 4

N2
+ 4 5.985304832000000E+04 8

N2
+ 5 6.618365920000000E+04 8

N2
+ 6 7.598991933064000E+04 4

N2
+ 7 7.625508560000000E+04 4

N2
+ 8 8.201018640000000E+04 4

N2
+ 9 8.416834920000000E+04 4

N2
+ 10 8.632651200000000E+04 8

N2
+ 11 8.920406240000000E+04 8

N2
+ 12 9.208161280000000E+04 4

N2
+ 13 9.222549032000000E+04 4

N2
+ 14 9.293768404400000E+04 2

N2
+ 15 9.639793840000000E+04 2

N2
+ 16 1.035918144000000E+05 4

NO 0 0.000000000000000E+00 4
NO 1 5.467345760000000E+04 8
NO 2 6.317139627802400E+04 2
NO 3 6.599450342445600E+04 4
NO 4 6.906120960000000E+04 4
NO 5 7.049998480000000E+04 4
NO 6 7.491055017560000E+04 4
NO 7 7.628875293968000E+04 2
NO 8 8.676188537552000E+04 4
NO 9 8.714431182368000E+04 2
NO 10 8.886077063728000E+04 4
NO 11 8.981755614528000E+04 4
NO 12 8.988445919208000E+04 2
NO 13 9.042702132000000E+04 2
NO 14 9.064283760000000E+04 2
NO 15 9.111763341600000E+04 4

NO+ 0 0.000000000000000E+00 1

NO+ 1 7.508967768800000E+04 3

NO+ 2 8.525462447600000E+04 6

NO+ 3 8.903572570160000E+04 6

NO+ 4 9.746982592400000E+04 3

NO+ 5 1.000553049584000E+05 1

NO+ 6 1.028033655904000E+05 2

NO+ 7 1.057138639424800E+05 2
e 0 0.000000000000000E+00 1
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Table A.4: Electronic energy levels - continued.
Species Level θel (K) g

N 0 0.000000000000000E+00 4
N 1 2.766469645581980E+04 10
N 2 4.149309313560210E+04 6

N+ 0 0.000000000000000E+00 1

N+ 1 7.006835224000000E+01 3

N+ 2 1.881917961600000E+02 5

N+ 3 2.203656871824000E+04 5

N+ 4 4.703183475776000E+04 1

N+ 5 6.731252222192000E+04 5

N+ 6 1.327190797527310E+05 15
N2 1 0.000000000000000E+00 1
N2 2 7.223156514095200E+04 3
N2 3 8.577862640384000E+04 6
N2 4 8.605026716160000E+04 6
N2 5 9.535118627874400E+04 3
N2 6 9.805635702203200E+04 1
N2 7 9.968267656935200E+04 2
N2 8 1.048976467715200E+05 2
N2 9 1.116489555200000E+05 5
N2 10 1.225836470400000E+05 1
N2 11 1.248856873600000E+05 6
N2 12 1.282476158188320E+05 6
N2 13 1.338060936000000E+05 10
N2 14 1.404296391107200E+05 6
N2 15 1.504958859200000E+05 6

A.3 Species thermodynamic curve fits

Table A.5 presents the thermodynamic curve fit parameters for the 11-species air

model. It includes the formation enthalpy assuming 298.15 K as base temperature,

the valid temperature range for each set of coefficients and the coefficients.
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A.4 Collision cross section data

Tables A.6 to A.9 present the curve fit parameters of the neutral-neutral, neutral-

ion and neutral-electrons collision integrals Ω0,0 and Ω1,1. Table A.10 presents the

curve fit parameters for the ion-ion, electron-ion and electron-electron collision inte-

grals. The collision integrals are used to calculate the viscosity, heat conduction and

binary diffusion coefficients.

Table A.6: Ω0,0 integrals for collisions involving neutrals only.
Collision pair A0 A1 A2 A3

N2 - N2 -6.0614558E-03 1.2689102E-01 -1.0616948E+00 8.0955466E+02
N2 - O2 -3.7959091E-03 9.5708295E-02 -1.0070611E+00 8.9392313E+02
O2 - O2 -8.0682650E-04 1.6602480E-02 -3.1472774E-01 1.4116458E+02
N2 - N -1.0796249E-02 2.2656509E-01 -1.7910602E+00 4.0455218E+03
O2 - N -1.1453028E-03 1.2654140E-02 -2.2435218E-01 7.7201588E+01
N - N -9.6083779E-03 2.0938971E-01 -1.7386904E+00 3.3587983E+03
N2 - O -2.7244269E-03 6.9587171E-02 -7.9538667E-01 4.0673730E+02
O2 - O -4.8405803E-03 1.0297688E-01 -9.6876576E-01 6.1629812E+02
N - O -7.8147689E-03 1.6792705E-01 -1.4308628E+00 1.6628859E+03
O - O -6.4040535E-03 1.4629949E-01 -1.3892121E+00 2.0903441E+03

N2 - NO -1.9295666E-03 2.7995735E-02 -3.1588514E-01 1.2880734E+02
O2 - NO -6.4433840E-04 8.5378580E-03 -2.3225102E-01 1.1371608E+02
NO - N -1.5770918E-03 1.9578381E-02 -2.7873624E-01 9.9547944E+01
NO - O -1.0885815E-03 1.1883688E-02 -2.1844909E-01 7.5512560E+01

NO - NO 0.0000000E+00 -1.1056066E-02 -5.9216250E-02 7.2542367E+01

N2 - NO+ 0.0000000E+00 9.1205839E-02 -1.8728231E+00 2.4432020E+05

O2 - NO+ -3.7822765E-03 1.7967016E-01 -2.5409098E+00 1.1840435E+06

N - NO+ -1.9605234E-02 5.5570872E-01 -5.4285702E+00 1.3574446E+09

O - NO+ -1.6409054E-02 4.6352852E-01 -4.5479735E+00 7.4250671E+07

NO - NO+ -8.1158474E-03 2.1474280E-01 -2.0148450E+00 6.2986385E+04
e - N2 -1.0525124E-02 1.3498950E-01 1.2524805E-01 1.5066506E-01
e - O2 2.3527001E-02 -6.9632323E-01 6.8035475E+00 1.8335509E-09
e - N 0.0000000E+00 1.6554247E-01 -3.4986344E+00 5.9268038E+08
e - O 9.9865506E-03 -2.7407431E-01 2.6561032E+00 4.3080676E-04

e - NO 1.0414818E-01 -2.8369126E+00 2.5323135E+01 7.7138358E-32
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Table A.7: Ω0,0 integrals for collisions involving neutrals only - continued.
Collision pair A0 A1 A2 A3

N2 - N+ -1.0687805E-02 2.4479697E-01 -2.3192863E+00 1.0689229E+05

O2 - N+ 0.0000000E+00 8.7745537E-02 -1.8347158E+00 1.9830120E+05

N - N+ -4.0078980E-03 1.0327487E-01 -9.9473323E-01 2.8178290E+03

O - N+ -1.5767256E-02 3.5405830E-01 -3.0686783E+00 4.6336779E+05

NO - N+ 0.0000000E+00 8.6531037E-02 -1.8117931E+00 1.8621272E+05

N2 - O+ 1.0352091E-02 -1.5733723E-01 2.9326150E-02 2.1003616E+03

O2 - O+ 0.0000000E+00 9.3559978E-02 -1.9842999E+00 4.3097490E+05

N - O+ -2.4288224E-02 5.6305072E-01 -4.6849679E+00 2.7303024E+07

O - O+ -3.8347988E-03 9.9930498E-02 -9.6288891E-01 1.9669897E+03

NO - O+ 8.3856973E-03 -1.0972656E-01 -3.3896281E-01 5.2004690E+03

N2 - N2
+ -2.9123716E-03 9.6850678E-02 -1.1416540E+00 7.9252169E+03

O2 - N2
+ -4.0893007E-03 1.7795266E-01 -2.3800543E+00 5.1949298E+05

N - N2
+ -1.4501284E-02 4.1085338E-01 -4.0115094E+00 1.5735451E+07

O - N2
+ -1.6923472E-02 4.6067692E-01 -4.3294966E+00 2.5538927E+07

NO - N2
+ -9.2292933E-03 2.9813226E-01 -3.2899475E+00 4.9147046E+06

N2 - O2
+ 1.2405624E-02 -2.0452111E-01 3.5478475E-01 1.0778357E+03

O2 - O2
+ -8.9520932E-03 2.2749642E-01 -2.0758341E+00 6.7674419E+04

N - O2
+ 0.0000000E+00 8.3065769E-02 -1.7501512E+00 1.0846799E+05

O - O2
+ -2.9417970E-03 1.5129273E-01 -2.2497964E+00 2.9325215E+05

NO - O2
+ 1.3731123E-02 -2.3920299E-01 6.7093226E-01 4.0068731E+02

Table A.8: Ω1,1 integrals for collisions involving neutrals only.
Collision pair A0 A1 A2 A3

N2 - N2 -7.6303990E-03 1.6878089E-01 -1.4004234E+00 2.1427708E+03
N2 - O2 -8.0457321E-03 1.9228905E-01 -1.7102854E+00 5.2213857E+03
O2 - O2 -6.2931612E-03 1.4624645E-01 -1.3006927E+00 1.8066892E+03
N2 - N -8.3493693E-03 1.7808911E-01 -1.4466155E+00 1.9324210E+03
O2 - N -1.0608832E-03 1.1782595E-02 -2.1246301E-01 8.4561598E+01
N - N -7.7439615E-03 1.7129007E-01 -1.4809088E+00 2.1284951E+03
N2 - O -8.3110691E-03 1.9617877E-01 -1.7205427E+00 4.0812829E+03
O2 - O -3.7969686E-03 7.6789981E-02 -7.3056809E-01 3.3958171E+02
N - O -5.0478143E-03 1.0236186E-01 -9.0058935E-01 4.4472565E+02
O - O -4.2451096E-03 9.6820337E-02 -9.9770795E-01 8.3320644E+02

N2 - NO -6.8237776E-03 1.4360616E-01 -1.1922240E+00 1.2433086E+03
O2 - NO -6.8508672E-03 1.5524564E-01 -1.3479583E+00 2.0037890E+03
NO - N -1.4719259E-03 1.8446968E-02 -2.6460411E-01 1.0911124E+02
NO - O -1.0066279E-03 1.1029264E-02 -2.0671266E-01 8.2644384E+01

NO - NO -7.4942466E-03 1.6626193E-01 -1.4107027E+00 2.3097604E+03

N2 - NO+ 0.0000000E+00 8.5112236E-02 -1.7460044E+00 1.4498969E+05

O2 - NO+ 0.0000000E+00 8.4737359E-02 -1.7290488E+00 1.2485194E+05

N - NO+ -2.1009546E-02 5.8910426E-01 -5.6681361E+00 2.4486594E+09

O - NO+ -1.5315132E-02 4.3541627E-01 -4.2864279E+00 3.5125207E+07

NO - NO+ 1.1055777E-02 -1.6621846E-01 1.4372166E-01 1.3182061E+03
e - N2 -4.2254948E-03 -5.2965163E-02 1.9157708E+00 6.3263309E-04
e - O2 9.6744867E-03 -3.3759583E-01 3.7952121E+00 6.8468036E-06
e - N -1.0903638E-01 2.8678381E+00 -2.5297550E+01 3.4838798E+33
e - O -1.7924100E-02 4.0402656E-01 -2.6712374E+00 4.1447669E+02

e - NO 0.0000000E+00 5.4444485E-02 -1.2854128E+00 1.3857556E+04
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Table A.9: Ω1,1 integrals for collisions involving neutrals only - continued.
Collision pair A0 A1 A2 A3

N2 - N+ -7.0776069E-03 1.7917938E-01 -1.9102410E+00 4.6736263E+04

O2 - N+ 9.8019578E-03 -1.4699425E-01 3.9382460E-02 1.5112165E+03

N - N+ -1.4271306E-02 3.0401993E-01 -2.4573879E+00 5.3694705E+04

O - N+ -1.7907392E-02 4.1207892E-01 -3.5343610E+00 1.4987678E+06

NO - N+ 1.1716366E-02 -1.9289789E-01 4.0269474E-01 6.0891590E+02

N2 - O+ 1.8733000E-02 -3.6163781E-01 1.6947101E+00 2.5244859E+01

O2 - O+ 1.4207970E-02 -2.4736726E-01 7.4561859E-01 3.2519188E+02

N - O+ -2.1681211E-02 5.2300453E-01 -4.5118623E+00 2.3467766E+07

O - O+ -1.6032919E-02 3.7114396E-01 -3.2050078E+00 5.8099314E+05

NO - O+ 1.8015337E-02 -3.4415293E-01 1.5658151E+00 3.3303758E+01

N2 - N2
+ -1.6447237E-02 4.7759522E-01 -4.7641986E+00 2.9127542E+08

O2 - N2
+ -4.9176811E-03 1.9694738E-01 -2.5025540E+00 6.8213629E+05

N - N2
+ -1.2882395E-02 3.7306469E-01 -3.7106760E+00 7.5444981E+06

O - N2
+ -1.7420606E-02 4.7126950E-01 -4.3841087E+00 2.8275095E+07

NO - N2
+ -4.0133981E-03 1.7290664E-01 -2.2855449E+00 3.6429320E+05

N2 - O2
+ 2.2455421E-02 -4.5106797E-01 2.3763420E+00 4.7754696E+00

O2 - O2
+ 2.8664463E-02 -5.8087240E-01 3.2564558E+00 6.6890428E-01

N - O2
+ 1.1205000E-02 -1.8182149E-01 3.2624972E-01 5.5186183E+02

O - O2
+ 0.0000000E+00 8.3446262E-02 -1.7191179E+00 8.0539928E+04

NO - O2
+ 2.2679271E-02 -4.5710920E-01 2.4427275E+00 3.6733514E+00

Table A.10: Curve fits for shielded coulomb potential.
Attractive potential Repulsive potential

Collision integral Cn cn Dn Cn cn Dn

Ω1,1 -0.476 0.0313 0.784 0.138 0.0106 0.765
Ω2,2 -0.146 0.0377 1.262 0.157 0.0274 1.235
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A.5 Reactions data

Tables A.11 and A.12 present the reactions and respective forward reaction rate

coefficients used in the numerical codes DPLR and LAURA.

Table A.11: Reaction data used in the DPLR code.
Reaction A (cm3/(mols)) α E (K)
Electron Impact Dissociation
N2 + e � N + N + e 3.0E+24 -1.60 113200
Dissociation
N2 + M � N + N + M (M=N2,O2,NO) 7.0E+21 -1.60 113200
N2 + M � N + N + M (M=N,O) 3.0E+22 -1.60 113200

N2 + M � N + N + M (M=N2
+,O2

+,NO+) 7.0E+21 -1.60 113200

N2 + M � N + N + M (M=N+,O+) 3.0E+22 -1.60 113200
O2 + M � O + O + M (M= N2,O2,NO) 2.0E+21 -1.50 59500
O2 + M � O + O + M (M=N,O) 1.0E+22 -1.50 59500

O2 + M � O + O + M (M=N2
+,O2

+,NO+) 2.0E+21 -1.50 59500

O2 + M � O + O + M (M= N+,O+) 1.0E+22 -1.50 59500
NO + M � N + O + M (M= N2,O2,NO) 5.0E+15 0.00 75500
NO + M � N + O + M (M=N,O) 1.1E+17 0.00 75500

NO + M � N + O + M (M=N2
+,O2

+,NO+) 5.0E+15 0.00 75500

NO + M � N + O + M (M= N+,O+) 1.1E+17 0.00 75500
Electron Impact Ionization

N + e � N+ + e + e 2.5E+34 -3.82 168600

O + e � O+ + e + e 3.9E+33 -3.78 158500
Exchange
N2 + O � NO + N 6.4E+17 -1.00 38400
NO + O � O2 + N 8.4E+12 0.00 19450
Dissociative Recombination

N + O � NO+ + e 5.3E+12 0.00 31900

N + N � N2
+ + e 2.0E+13 0.00 67500

O + O � O2
+ + e 1.1E+13 0.00 80600

Charge Exchange

O+ + N2 � N2
+ + O 9.1E+11 0.36 22800

O+ + NO � N+ + O2 1.4E+05 1.90 15300

NO+ + O2 � O2
+ + NO 2.4E+13 0.41 32600

NO+ + N � N2
+ + O 7.2E+13 0.00 35500

NO+ + O � N+ + O2 1.0E+12 0.50 77200

O2
+ + N � N+ +O2 8.7E+13 0.14 28600

O2
+ + N2 � N2

+ +O2 9.9E+12 0.00 40700

NO+ + N � O+ + N2 3.4E+13 -1.08 12800

NO+ + O � O2
+ + N 7.2E+12 0.29 48600

O2
+ + O � O+ + O2 - - -

N+ + N2 � N2
+ + N - - -
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Table A.12: Reaction data used in the LAURA code.
Reaction A (cm3/(mols)) α E (K)
Electron Impact Dissociation
N2 + e � N + N + e 3.0E+24 -1.60 113200
Dissociation
N2 + M � N + N + M (M=N2,O2,NO) 7.0E+21 -1.60 113200
N2 + M � N + N + M (M=N,O) 3.0E+22 -1.60 113200

N2 + M � N + N + M (M=N2
+,O2

+,NO+) - - -

N2 + M � N + N + M (M=N+,O+) - - -
O2 + M � O + O + M (M= N2,O2,NO) 2.0E+21 -1.50 59500
O2 + M � O + O + M (M=N,O) 1.0E+22 -1.50 59360

O2 + M � O + O + M (M=N2
+,O2

+,NO+) 2.0E+21 -1.50 59360

O2 + M � O + O + M (M= N+,O+) - - -
NO + M � N + O + M (M= N2,O2,NO) 5.0E+15 0.00 75500
NO + M � N + O + M (M=N,O) 1.1E+17 0.00 75500

NO + M � N + O + M (M=N2
+,O2

+,NO+) - - -

NO + M � N + O + M (M= N+,O+) - - -
Electron Impact Ionization

N + e � N+ + e + e 2.5E+34 -3.82 168600

O + e � O+ + e + e 3.9E+33 -3.78 158500
Exchange
N2 + O � NO + N 5.7E+12 0.42 42938
NO + O � O2 + N 8.4E+12 0.00 19400
Dissociative Recombination

N + O � NO+ + e 5.3E+12 0.00 31900

N + N � N2
+ + e 4.4E+07 1.50 67500

O + O � O2
+ + e 7.1E+02 2.70 80600

Charge Exchange

O+ + N2 � N2
+ + O 9.1E+11 0.36 22800

O+ + NO � N+ + O2 1.4E+05 1.90 26600

NO+ + O2 � O2
+ + NO 2.4E+13 0.41 32600

NO+ + N � N2
+ + O 7.2E+13 0.00 35500

NO+ + O � N+ + O2 1.0E+12 0.50 77200

O2
+ + N � N+ +O2 8.7E+13 0.14 28600

O2
+ + N2 � N2

+ +O2 9.9E+12 0.00 40700

NO+ + N � O+ + N2 3.4E+13 -1.08 12800

NO+ + O � O2
+ + N 7.2E+12 0.29 48600

O2
+ + O � O+ + O2 4.0E+12 -0.09 18000

N+ + N2 � N2
+ + N 1.0E+12 0.50 12200
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A.6 Equilibrium constant data

Tables A.13 to A.15 present the equilibrium constant curve fit coefficients for

the reactions considered in Park’s 1990 11-species air model. The coefficients are a

function of mixture number density.

Table A.13: Equilibrium Constants Curve Fits for Park’s 90 model.
Reaction n (1/cm3) A0 A1 A2 A3 A4

N2+M�2N+M

1.00E+14 3.4907 0.83133 4.0978 -12.728 0.07487
1.00E+15 2.0723 1.3897 2.0617 -11.828 0.015105
1.00E+16 1.606 1.5732 1.3923 -11.533 -0.004543
1.00E+17 1.5351 1.6061 1.2993 -11.494 -0.00698
1.00E+18 1.4766 1.6291 1.2153 -11.457 -0.009444
1.00E+19 1.4766 1.6291 1.2153 -11.457 -0.009444

O2+M�2O+M

1.00E+14 1.8103 1.9607 3.5716 -7.3623 0.083861
1.00E+15 0.91354 2.316 2.2885 -6.7969 0.046338
1.00E+16 0.64183 2.4253 1.9026 -6.6277 0.035151
1.00E+17 0.55388 2.46 1.7763 -6.572 0.031445
1.00E+18 0.52455 2.4715 1.7342 -6.5534 0.030209
1.00E+19 0.50989 2.4773 1.7132 -6.5441 0.029591

NO+M�N+O+M

1.00E+14 2.1649 0.078577 2.8508 -8.5422 0.053043
1.00E+15 1.0072 0.53545 1.1911 -7.8098 0.004394
1.00E+16 0.63817 0.68189 0.66336 -7.5773 -0.011025
1.00E+17 0.55889 0.71558 0.55396 -7.5304 -0.014089
1.00E+18 0.515 0.73286 0.49096 -7.5025 -0.015938
1.00E+19 0.50765 0.73575 0.48042 -7.4979 -0.016247

N2+O�NO+N

1.00E+14 1.3261 0.75268 1.2474 -4.1857 0.02184
1.00E+15 1.0653 0.85417 0.87093 -4.0188 0.010721
1.00E+16 0.96794 0.89131 0.7291 -3.9555 0.006488
1.00E+17 0.97646 0.89043 0.74572 -3.9642 0.007123
1.00E+18 0.96188 0.89617 0.72479 -3.955 0.006509
1.00E+19 0.96921 0.89329 0.73531 -3.9596 0.006818

NO+O�O2+N

1.00E+14 0.35438 -1.8821 -0.72111 -1.1797 -0.030831
1.00E+15 0.093613 -1.7806 -1.0975 -1.0128 -0.041949
1.00E+16 -0.003732 -1.7434 -1.2394 -0.94952 -0.046182
1.00E+17 0.004815 -1.7443 -1.2227 -0.95824 -0.045545
1.00E+18 -0.009758 -1.7386 -1.2436 -0.949 -0.046159
1.00E+19 -0.002428 -1.7415 -1.2331 -0.95365 -0.04585

N+O�NO++e

1.00E+14 -2.1852 -6.6709 -4.2968 -2.2175 -0.050748
1.00E+15 -1.0276 -7.1278 -2.637 -2.95 -0.0021
1.00E+16 -0.65871 -7.2742 -2.1096 -3.1823 0.01331
1.00E+17 -0.57924 -7.3079 -1.9999 -3.2294 0.016382
1.00E+18 -0.53538 -7.3252 -1.937 -3.2572 0.01823
1.00E+19 -0.52801 -7.3281 -1.9264 -3.2618 0.01854

N+N�N2
++e

1.00E+14 -4.3785 -4.2726 -7.8709 -4.4628 -0.12402
1.00E+15 -2.9601 -4.831 -5.8348 -5.3621 -0.064252
1.00E+16 -2.4938 -5.0145 -5.1654 -5.6577 -0.044602
1.00E+17 -2.4229 -5.0474 -5.0724 -5.6961 -0.042167
1.00E+18 -2.3644 -5.0704 -4.9885 -5.7332 -0.039703
1.00E+19 -2.3644 -5.0704 -4.9885 -5.7332 -0.039703
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Table A.14: Equilibrium Constants Curve Fits for Park’s 90 model - continued.
Reaction n (1/cm3) A0 A1 A2 A3 A4

O+O�O2
++e

1.00E+14 -0.11682 -7.6883 -2.2498 -7.7905 -0.011079
1.00E+15 0.77986 -8.0436 -0.96678 -8.3559 0.02644
1.00E+16 1.0516 -8.153 -0.58082 -8.5251 0.037629
1.00E+17 1.1395 -8.1876 -0.45461 -8.5808 0.041333
1.00E+18 1.1689 -8.1991 -0.41245 -8.5995 0.042571
1.00E+19 1.1835 -8.2049 -0.39146 -8.6087 0.043187

N2+O2
+�N2

++O2

1.00E+14 -2.5811 2.2863 -5.0946 -2.0378 -0.12192
1.00E+15 -2.5811 2.2863 -5.0946 -2.0378 -0.12192
1.00E+16 -2.5811 2.2863 -5.0946 -2.0378 -0.12192
1.00E+17 -2.5811 2.2863 -5.0946 -2.0378 -0.12192
1.00E+18 -2.5811 2.2863 -5.0946 -2.0378 -0.12192
1.00E+19 -2.5811 2.2863 -5.0946 -2.0378 -0.12192

NO++N�O++N2

1.00E+14 -1.2255 0.10039 -1.2212 -0.89883 -0.025232
1.00E+15 -0.51629 -0.17877 -0.20321 -1.3485 0.004649
1.00E+16 -0.28311 -0.27056 0.13152 -1.4963 0.014474
1.00E+17 -0.24765 -0.28699 0.17802 -1.5155 0.015692
1.00E+18 -0.21842 -0.29849 0.21998 -1.534 0.016923
1.00E+19 -0.21842 -0.29849 0.21998 -1.534 0.016923

NO++O�N++O2

1.00E+14 -1.5349 1.6836 -2.969 -6.464 -0.083316
1.00E+15 -1.0864 1.5059 -2.3273 -6.7468 -0.064551
1.00E+16 -0.95072 1.4513 -2.1346 -6.8313 -0.058964
1.00E+17 -0.90672 1.434 -2.0714 -6.8592 -0.05711
1.00E+18 -0.89206 1.4282 -2.0504 -6.8685 -0.056493
1.00E+19 -0.88472 1.4254 -2.0398 -6.8731 -0.056184

NO++O2�O2
++NO

1.00E+14 1.7139 0.86469 2.7679 -4.3932 0.070493
1.00E+15 1.7139 0.86469 2.7679 -4.3932 0.070493
1.00E+16 1.7139 0.86469 2.7679 -4.3932 0.070493
1.00E+17 1.7139 0.86469 2.7679 -4.3932 0.070493
1.00E+18 1.7139 0.86469 2.7679 -4.3932 0.070493
1.00E+19 1.7139 0.86469 2.7679 -4.3932 0.070493

NO++N�N2
++O

1.00E+14 -2.1934 2.3983 -3.5743 -2.2452 -0.073271
1.00E+15 -1.9325 2.2968 -3.1978 ”-2,412,100” -0.062149
1.00E+16 -1.8352 2.2597 -3.056 -2.4754 -0.057919
1.00E+17 -1.8438 2.2606 -3.0726 -2.4667 -0.058554
1.00E+18 -1.8292 2.2548 -3.0517 -2.4759 -0.05794
1.00E+19 -1.8365 2.2577 -3.0622 -2.4713 -0.058248

O2
++N�N++O2

1.00E+14 -3.603 2.701 -5.0155 -0.89125 -0.12297
1.00E+15 -2.8938 2.4218 -3.9975 -1.3409 -0.093088
1.00E+16 -2.6607 2.33 -3.6628 -1.4887 -0.083264
1.00E+17 -2.6252 2.3136 -3.6163 -1.5079 -0.082048
1.00E+18 -2.596 2.3021 -3.5744 -1.5264 -0.080816
1.00E+19 -2.596 2.3021 -3.5744 -1.5264 -0.080816
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Table A.15: Equilibrium Constants Curve Fits for Park’s 90 model - continued.
Reaction n (1/cm3) A0 A1 A2 A3 A4

O++NO�N++O2

1.00E+14 -1.6355 0.83058 -2.9952 -1.3794 -0.079927
1.00E+15 -1.6355 0.83058 -2.9952 -1.3794 -0.079927
1.00E+16 -1.6355 0.83058 -2.9952 -1.3794 -0.079927
1.00E+17 -1.6355 0.83058 -2.9952 -1.3794 -0.079927
1.00E+18 -1.6355 0.83058 -2.9952 -1.3794 -0.079927
1.00E+19 -1.6355 0.83058 -2.9952 -1.3794 -0.079927

NO++O�O2
++N

1.00E+14 2.0681 -1.0173 2.0466 -5.5728 0.039655
1.00E+15 1.8073 -0.91584 1.6701 -5.4058 0.028533
1.00E+16 1.71 -0.87869 1.5282 -5.3426 0.024301
1.00E+17 1.7185 -0.87958 1.5449 -5.3513 0.024936
1.00E+18 1.7039 -0.87383 1.5239 -5.342 0.024321
1.00E+19 1.7112 -0.87672 1.5345 -5.3467 0.024631

O++N2�N2
++O

1.00E+14 -0.96795 2.2979 -2.3531 -1.3463 -0.048042
1.00E+15 -1.4164 2.4756 -2.9947 -1.0636 -0.066805
1.00E+16 -1.5522 2.5303 -3.1876 -0.97903 -0.072396
1.00E+17 -1.5962 2.5476 -3.2507 -0.95116 -0.074249
1.00E+18 -1.6108 2.5533 -3.2718 -0.94186 -0.074867
1.00E+19 -1.6181 2.5562 -3.2823 -0.93721 -0.075176

N2+e�2N+e

1.00E+14 3.4907 0.83133 4.0978 -12.728 0.07487
1.00E+15 2.0723 1.3897 2.0617 -11.828 0.015105
1.00E+16 1.606 1.5732 1.3923 -11.533 -0.004543
1.00E+17 1.5351 1.6061 1.2993 -11.494 -0.00698
1.00E+18 1.4766 1.6291 1.2153 -11.457 -0.009444
1.00E+19 1.4766 1.6291 1.2153 -11.457 -0.009444

N+e�N++e+e

1.00E+14 -1.9094 -3.0267 -3.6935 -16.044 -0.050183
1.00E+15 -1.2002 -3.3059 -2.6755 -16.494 -0.020301
1.00E+16 -0.96709 -3.3976 -2.3408 -16.642 -0.010477
1.00E+17 -0.93184 -3.414 -2.2946 -16.661 -0.009269
1.00E+18 -0.9026 -3.4255 -2.2526 -16.679 -0.008037
1.00E+19 -0.9026 -3.4255 -2.2526 -16.679 -0.008037

O+e�O++e+e

1.00E+14 0.08045 -5.7393 -1.4195 -15.844 -0.001087
1.00E+15 0.52883 -5.917 -0.77795 -16.127 0.017675
1.00E+16 0.66478 -5.9716 -0.58486 -16.212 0.023273
1.00E+17 0.70879 -5.989 -0.52169 -16.24 0.025127
1.00E+18 0.72341 -5.9947 -0.5007 -16.249 0.025743
1.00E+19 0.73078 -5.9976 -0.49012 -16.254 0.026054
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A.7 Modified Millikan and White coefficients

Tables A.16 and A.17 present the modified coefficients a and b used in the Millikan

and White’s curve fits used to determine vibrational relaxation times.

Table A.16: Modified Millikan and White’s Parameters.
Vibrator Partner a b

N2 N2 221.53 0.029
N2 O2 228.76 0.0295
N2 N 180.88 0.0262
N2 O 72.4 0.015
N2 NO 225.3 0.0293

N2 N2
+ 221.53 0.029

N2 O2
+ 228.76 0.0295

N2 N+ 180.88 0.0262

N2 O+ 188.89 0.0268

N2 NO+ 225.3 0.0293
N2 e 1.39 0.0023
O2 N2 131.32 0.0295
O2 O2 135.91 0.03
O2 N 72.4 0.015
O2 O 47.7 0.059
O2 NO 133.71 0.0298

O2 N2
+ 131.32 0.0295

O2 O2
+ 135.91 0.03

O2 N+ 106.06 0.0265

O2 O+ 110.97 0.0271

O2 NO+ 133.71 0.0298
O2 e 0.8 0.0023
NO N2 49.5 0.042
NO O2 49.5 0.042
NO N 49.5 0.042
NO O 49.5 0.042
NO NO 49.5 0.042

NO N2
+ 175.67 0.0293

NO O2
+ 181.6 0.0298

NO N+ 142.62 0.0264

NO O+ 149.08 0.027

NO NO+ 178.76 0.0295
NO e 1.08 0.0023
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Table A.17: Modified Millikan and White’s Parameters - continued.
Vibrator Partner a b

N2
+ N2 221.53 0.029

N2
+ O2 228.76 0.0295

N2
+ N 180.88 0.0262

N2
+ O 188.89 0.0268

N2
+ NO 225.3 0.0293

N2
+ N2

+ 221.53 0.029

N2
+ O2

+ 228.75 0.0295

N2
+ N+ 180.88 0.0262

N2
+ O+ 188.88 0.0268

N2
+ NO+ 225.3 0.0293

N2
+ e 1.39 0.0023

O2
+ N2 131.32 0.0295

O2
+ O2 135.91 0.03

O2
+ N 106.06 0.0265

O2
+ O 110.97 0.0271

O2
+ NO 133.71 0.0298

O2
+ N2

+ 131.32 0.0295

O2
+ O2

+ 135.9 0.03

O2
+ N+ 106.05 0.0265

O2
+ O+ 110.97 0.0271

O2
+ NO+ 133.7 0.0298

O2
+ e 0.8 0.0023

NO+ N2 175.67 0.0293

NO+ O2 181.61 0.0298

NO+ N 142.62 0.0264

NO+ O 149.09 0.027

NO+ NO 178.76 0.0295

NO+ N2
+ 175.67 0.0293

NO+ O2
+ 181.6 0.0298

NO+ N+ 142.62 0.0264

NO+ O+ 149.08 0.027

NO+ NO+ 178.76 0.0295

NO+ e 1.08 0.0023
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APPENDIX B

Jacobian Matrices

B.1 Inviscid Jacobians

The homogeneous property of the inviscid flux vector yields that

~F · ~n = Fn =
dFn

dQ
Q = AQ . (B.1)

The matrix A is called the Jacobian of the inviscid flux. It can be diagonalized by

the matrices of its eigenvectors L and R as[24]

A = LΛR (B.2)

where

R =


a2δsr − csγ̃sr βucs βvcs βwcs −βcs −φcs

−v′ lx ly lz 0 0
−w′ mx my mz 0 0

γ̃r − u′a anx − βu any − βv anz − βw β φ
γ̃r + u′a −anx − βu −any − βv −anz − βw β φ
−eV γ̃r βueV βveV βweV −βeV a2 − φeV

 (B.3)

and

L =


δsr/a2 0 0 cs/(2a2) cs/(2a2) 0
u/a2 lx mx (u + anx)/(2a2) (u− anx)/(2a2) 0
v/a2 ly my (v + any)/(2a2) (v − any)/(2a2) 0
w/a2 lz mz (w + anz)/(2a2) (w − anz)/(2a2) 0

η v′ w′ (H + aU)/(2a2) (H − aU)/(2a2) −φ/(βa2)
0 0 0 ev/(2a2) ev/(2a2) 1/a2

 . (B.4)
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In the previous matrices,

η = (β(u2 + v2 + w2)− γ̃r)/(βa
2) , (B.5)

β =
∂p

∂E
=

Ru

ρCvt

∑
s 6=e

ρs

Ms

, (B.6)

φ =
∂p

∂Ev
=

Ru

ρCvv,el

ρe

Me

− β , (B.7)

γs =
∂p

∂ρs

=
RuTs

Ms

+ β
u2 + v2 + w2

2
− βes − φeV,s , (B.8)

and

a2 = (1 + β)
p

ρ
. (B.9)

It should be observed that when the flow is not ionized and Ye = 0 then β = γ − 1.

The matrix of eigenvalues is given by

Λ =



u′ 0 0 0 0 0

0 u′ 0 0 0 0

0 0 u′ 0 0 0

0 0 0 u′ + a 0 0

0 0 0 0 u′ − a 0

0 0 0 0 0 u′


(B.10)

B.2 True Inviscid Jacobians

While the original Euler flux is a homogeneous function for which

∂F

∂Q
= A and F = AQ , (B.11)

the split fluxes are not. The split fluxes are such that

∂F±

∂Q
6= A± but F± = A±Q . (B.12)
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For increased stability of the numerical method, it is desired to use the actual ma-

trices ∂F±

∂Q
in the implicit operator. The split fluxes, originally given by

F± = A±Q (B.13)

can also be written in a way that eliminates the matrix multiplication as[40]

F± =
ρ

2γ



2(γ − 1)λ±1 Ys + λ±2 Ys + λ±3 Ys

2(γ − 1)λ±1 u+ λ±2 (u+ anx) + λ±3 (u− anx)

2(γ − 1)λ±1 v + λ±2 (v + any) + λ±3 (v − any)

2(γ − 1)λ±1 w + λ±2 (w + anz) + λ±3 (w − anz)

2(γ − 1)λ±1 ε1 + λ±2 ε2 + λ±3 ε3

2(γ − 1)λ±1 (eve) + λ±2 (eve) + λ±3 (eve)



, (B.14)

where

ε0 = 1
2
(u2 + v2 + w2) + eve + ho

ε1 = (3−γ)a2

2(γ−1)
+ 1

2
((u+ anx)

2 + (v + any)
2 + (w + anz)

2) + eve + ho

ε2 = (3−γ)a2

2(γ−1)
+ 1

2
((u− anx)

2 + (v − any)
2 + (w − anz)

2) + eve + ho

eve =
∑
Yseve,s

ho =
∑
Ysh

o
s

(B.15)

To obtain the Jacobian, it is easier to work using the set of variables

W =



ρs

u

v

w

a

eve



. (B.16)
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The relation between W and Q is given by

∂W

∂Q
=



1 0 0 0 0 0

−u
ρ

1
ρ

0 0 0 0

−v
ρ

0 1
ρ

0 0 0

−w
ρ

0 0 1
ρ

0 0

∂a
∂ρs

∂a
∂ρu

∂a
∂ρv

∂a
∂ρw

∂a
∂E

∂a
∂Ev

− eve

ρ
0 0 0 0 1

ρ


, (B.17)

where
∂a
∂ρs

= γ(γ−1)
2ρa

[
1
2
(u2 + v2 + w2)− a2

γ(γ−1)
− ho

s

]
∂a
∂ρu

= −γ(γ−1)
2ρa

u

∂a
∂ρv

= −γ(γ−1)
2ρa

v

∂a
∂ρw

= −γ(γ−1)
2ρa

w

∂a
∂E

= γ(γ−1)
2ρa

∂a
∂Ev

= −γ(γ−1)
2ρa

. (B.18)

The Jacobian is given by

∂F±

∂W
=



∂F±ρ
∂ρs

∂F±ρ
∂u

∂F±ρ
∂v

∂F±ρ
∂w

∂F±ρ
∂a

∂F±ρ
∂eve

∂F±ρu

∂ρs

∂F±ρu

∂u

∂F±ρu

∂v

∂F±ρu

∂w

∂F±ρu

∂a

∂F±ρu

∂eve

∂F±ρv

∂ρs

∂F±ρv

∂u

∂F±ρv

∂v

∂F±ρv

∂w

∂F±ρv

∂a

∂F±ρv

∂eve

∂F±ρw

∂ρs

∂F±ρw

∂u

∂F±ρw

∂v

∂F±ρw

∂w

∂F±ρw

∂a

∂F±ρw

∂eve

∂F±E
∂ρs

∂F±E
∂u

∂F±E
∂v

∂F±E
∂w

∂F±E
∂a

∂F±E
∂eve

∂F±Ev

∂ρs

∂F±Ev

∂u

∂F±Ev

∂v

∂F±Ev

∂w

∂F±Ev

∂a

∂F±Ev

∂eve


, (B.19)
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where
∂F±ρs

∂ρr
= 1

2γ

(
2(γ − 1)λ±1 + λ±2 + λ±3

)
∂F±ρs

∂u
= ρs

2γ

(
2(γ − 1)

∂λ±1
∂u

+
∂λ±2
∂u

+
∂λ±3
∂u

)
∂F±ρs

∂v
= ρs

2γ

(
2(γ − 1)

∂λ±1
∂v

+
∂λ±2
∂v

+
∂λ±3
∂v

)
∂F±ρs

∂w
= ρs

2γ

(
2(γ − 1)

∂λ±1
∂w

+
∂λ±2
∂w

+
∂λ±3
∂w

)
∂F±ρs

∂a
= ρs

2γ

(
2(γ − 1)

∂λ±1
∂a

+
∂λ±2
∂a

+
∂λ±3
∂a

)
∂F±ρs

∂eve
= ρs

2γ

(
2(γ − 1)

∂λ±1
∂eve

+
∂λ±2
∂eve

+
∂λ±3
∂eve

)
, (B.20)

∂F±ρu

∂ρr
= 1

2γ

(
2(γ − 1)uλ±1 + (u+ anx)λ

±
2 + (u− anx)λ

±
3

)
∂F±ρu

∂u
= ρs

2γ

(
2(γ − 1)u

∂λ±1
∂u

+ (u+ anx)
∂λ±2
∂u

+ (u− anx)
∂λ±3
∂u

)
+

ρ
2γ

(
2(γ − 1)λ±1 + λ±2 + λ±3

)
∂F±ρu

∂v
= ρs

2γ

(
2(γ − 1)u

∂λ±1
∂v

+ (u+ anx)
∂λ±2
∂v

+ (u− anx)
∂λ±3
∂v

)
∂F±ρu

∂w
= ρs

2γ

(
2(γ − 1)u

∂λ±1
∂w

+ (u+ anx)
∂λ±2
∂w

+ (u− anx)
∂λ±3
∂w

)
∂F±ρu

∂a
= ρs

2γ

(
2(γ − 1)u

∂λ±1
∂a

+ (u+ anx)
∂λ±2
∂a

+ (u− anx)
∂λ±3
∂a

)
+

ρ
2γ

[
λ±2 nx − λ±3 nx

]
∂F±ρu

∂eve
= ρs

2γ

(
2(γ − 1)u

∂λ±1
∂eve

+ (u+ anx)
∂λ±2
∂eve

+ (u− anx)
∂λ±3
∂eve

)

, (B.21)

∂F±ρv

∂ρr
= 1

2γ

(
2(γ − 1)vλ±1 + (v + any)λ

±
2 + (v − any)λ

±
3

)
∂F±ρv

∂u
= ρs

2γ

(
2(γ − 1)v

∂λ±1
∂u

+ (v + any)
∂λ±2
∂u

+ (v − any)
∂λ±3
∂u

)
∂F±ρv

∂v
= ρs

2γ

(
2(γ − 1)v

∂λ±1
∂v

+ (v + any)
∂λ±2
∂v

+ (v − any)
∂λ±3
∂v

)
+

ρ
2γ

(
2(γ − 1)λ±1 + λ±2 + λ±3

)
∂F±ρv

∂w
= ρs

2γ

(
2(γ − 1)v

∂λ±1
∂w

+ (v + any)
∂λ±2
∂w

+ (v − any)
∂λ±3
∂w

)
∂F±ρv

∂a
= ρs

2γ

(
2(γ − 1)v

∂λ±1
∂a

+ (v + any)
∂λ±2
∂a

+ (v − any)
∂λ±3
∂a

)
+

ρ
2γ

[
λ±2 ny − λ±3 ny

]
∂F±ρv

∂eve
= ρs

2γ

(
2(γ − 1)v

∂λ±1
∂eve

+ (v + any)
∂λ±2
∂eve

+ (v − any)
∂λ±3
∂eve

)

, (B.22)



160

∂F±ρw

∂ρr
= 1

2γ

(
2(γ − 1)wλ±1 + (w + anz)λ

±
2 + (w − anz)λ

±
3

)
∂F±ρw

∂u
= ρs

2γ

(
2(γ − 1)w

∂λ±1
∂u

+ (w + anz)
∂λ±2
∂u

+ (w − anz)
∂λ±3
∂u

)
∂F±ρw

∂v
= ρs

2γ

(
2(γ − 1)w

∂λ±1
∂v

+ (w + anz)
∂λ±2
∂v

+ (w − anz)
∂λ±3
∂v

)
∂F±ρw

∂w
= ρs

2γ

(
2(γ − 1)w

∂λ±1
∂w

+ (w + anz)
∂λ±2
∂w

+ (w − anz)
∂λ±3
∂w

)
+

ρ
2γ

(
2(γ − 1)λ±1 + λ±2 + λ±3

)
∂F±ρw

∂a
= ρs

2γ

(
2(γ − 1)w

∂λ±1
∂a

+ (w + anz)
∂λ±2
∂a

+ (w − anz)
∂λ±3
∂a

)
+

ρ
2γ

[
λ±2 nz − λ±3 nz

]
∂F±ρw

∂eve
= ρs

2γ

(
2(γ − 1)w

∂λ±1
∂eve

+ (w + anz)
∂λ±2
∂eve

+ (w − anz)
∂λ±3
∂eve

)

, (B.23)

∂F±E
∂ρr

= 1
2γ

(
2(γ − 1)ε1λ

±
1 + ε2λ

±
2 + ε3λ

±
3

)
∂F±E
∂u

= ρs

2γ

(
2(γ − 1)ε1

∂λ±1
∂u

+ ε2
∂λ±2
∂u

+ ε3
∂λ±3
∂u

)
+

ρ
2γ

(
2(γ − 1)uλ±1 + (u+ anx)λ

±
2 + (u− anx)λ

±
3

)
∂F±E
∂v

= ρs

2γ

(
2(γ − 1)ε1

∂λ±1
∂v

+ ε2
∂λ±2
∂v

+ ε3
∂λ±3
∂v

)
+

ρ
2γ

(
2(γ − 1)vλ±1 + (v + any)λ

±
2 + (v − any)λ

±
3

)
∂F±E
∂w

= ρs

2γ

(
2(γ − 1)ε1

∂λ±1
∂w

+ ε2
∂λ±2
∂w

+ ε3
∂λ±3
∂w

)
+

ρ
2γ

(
2(γ − 1)wλ±1 + (w + anz)λ

±
2 + (w − anz)λ

±
3

)
∂F±E
∂a

= ρs

2γ

(
2(γ − 1)ε1

∂λ±1
∂a

+ ε2
∂λ±2
∂a

+ ε3
∂λ±3
∂a

)
+

ρ
2γ
λ±2 ( (3−γ)a

2(γ−1)
+ nx(u+ anx) + ny(v + any) + nz(w + anz))+

ρ
2γ
λ±3 ( (3−γ)a

2(γ−1)
− nx(u− anx)− ny(v − any)− nz(w − anz)))

∂F±E
∂eve

= ρs

2γ

(
2(γ − 1)ε1

∂λ±1
∂eve

+ ε2
∂λ±2
∂eve

+ ε3
∂λ±3
∂eve

)
+

ρ
2γ

(
2(γ − 1)λ±1 + λ±2 + λ±3

)

, (B.24)
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and

∂F±Ev

∂ρr
= eve

2γ

(
2(γ − 1)λ±1 + λ±2 + λ±3

)
∂F±Ev

∂u
= ρeve

2γ

(
2(γ − 1)

∂λ±1
∂u

+
∂λ±2
∂u

+
∂λ±3
∂u

)
∂F±Ev

∂v
= ρeve

2γ

(
2(γ − 1)

∂λ±1
∂v

+
∂λ±2
∂v

+
∂λ±3
∂v

)
∂F±Ev

∂w
= ρeve

2γ

(
2(γ − 1)

∂λ±1
∂w

+
∂λ±2
∂w

+
∂λ±3
∂w

)
∂F±Ev

∂a
= ρeve

2γ

(
2(γ − 1)

∂λ±1
∂a

+
∂λ±2
∂a

+
∂λ±3
∂a

)
∂F±Ev

∂eve
= ρeve

2γ

(
2(γ − 1)

∂λ±1
∂eve

+
∂λ±2
∂eve

+
∂λ±3
∂eve

)
+ ρ

2γ

(
2(γ − 1)λ±1 + λ±2 + λ±3

)

. (B.25)

The eigenvalues in those equations are given by

λ±1 = 1
2

(
u′ ±

√
(u′)2 + ε2

)
λ±2 = 1

2

(
u′ + a±

√
(u′ + a)2 + ε2

)
λ±3 = 1

2

(
u′ − a±

√
(u′ − a)2 + ε2

) , (B.26)

where u′ = unx + vny + wnz and ε is given in Chapter III, and their derivatives are

given by

∂λ±1
∂ρs

= 0

∂λ±1
∂u

= nx

2
(1± u′√

(u′)2+ε2
)

∂λ±1
∂v

= ny

2
(1± u′√

(u′)2+ε2
)

∂λ±1
∂w

= nz

2
(1± u′√

(u′)2+ε2
)

∂λ±1
∂a

= 0

∂λ±1
∂eve

= 0

, (B.27)
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∂λ±2
∂ρs

= 0

∂λ±2
∂u

= nx

2
(1± (u′+a)√

(u′+a)2+ε2
)

∂λ±2
∂v

= ny

2
(1± (u′+a)√

(u′+a)2+ε2
)

∂λ±2
∂w

= nz

2
(1± (u′+a)√

(u′+a)2+ε2
)

∂λ±2
∂a

= 1
2
(1± (u′+a)√

(u′+a)2+ε2
)

∂λ±2
∂eve

= 0

, (B.28)

and
∂λ±3
∂ρs

= 0

∂λ±3
∂u

= nx

2
(1± (u′−a)√

(u′−a)2+ε2
)

∂λ±3
∂v

= ny

2
(1± (u′−a)√

(u′−a)2+ε2
)

∂λ±3
∂w

= nz

2
(1± (u′−a)√

(u′−a)2+ε2
)

∂λ±3
∂a

= −1
2
(1± (u′−a)√

(u′−a)2+ε2
)

∂λ±3
∂eve

= 0

. (B.29)

B.3 Viscous Jacobians

The derivation of the viscous Jacobians is easier using a face based reference

frame define by the vectors ~n, ~t and ~r. Based on that reference frame, the viscous
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fluxes are given by

Fvn =



−Jn,1

...

−Jn,ns

τnn

τnt

τnr

τnnun + τntut + τnrur − (qtr,n + qve,n)−
∑

(Jn,shs)

−qve,n −
∑

(Jn,seve,s)



, (B.30)

and the fluxes in the t and r directions are similar but not used because the normal

vector to the face in this reference frame is (1, 0, 0) so that

F ′
v = Fvn × 1 + Fvt × 0 + Fvr × 0 . (B.31)

To map the fluxes from the face based reference frame to the cartesian frame, the

rotation matrices

R =



1 0 0 0 0 0

0 nx ny nz 0 0

0 tx ty tz 0 0

0 rx ry rz 0 0

0 0 0 0 1 0

0 0 0 0 0 1


and R−1 =



1 0 0 0 0 0

0 nx tx rx 0 0

0 ny ty ry 0 0

0 nz tz rz 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(B.32)

are used so that

Fv = R−1F ′
v . (B.33)

Using the thin-layer approximation, the derivatives ∂/∂t and ∂/∂r are neglected
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leaving only ∂/∂n. With that approximation, the viscous flux Fvn becomes

Fvn =



−ρD1
∂Y1

∂n

...

−ρDns
∂Yns

∂n

(2µ+ λ)∂un

∂n

µ∂ut

∂n

µ∂ur

∂n

(2µ+ λ)∂un

∂n
un + µ∂ut

∂n
ut + µ∂ur

∂n
ur−

(−κtr,n
∂Ttr,n

∂n
− κve,n

∂Tve,n

∂n
)−

∑
(−ρDs

∂Ys

∂n
hs)

−κve,n
∂Tve,n

∂n
−
∑

(−ρDs
∂Ys

∂n
eve,s)



. (B.34)

To obtain the Jacobian, Fvn is linearized assuming that terms that do not involve

derivatives are constant such that

Fvn = M
∂Vn

∂n
(B.35)

where

Vn =



Ys

un

vn

w

T

Tve



. (B.36)

The derivative in the normal direction is approximated by

Fvn = M
∆Vn

∆n
= Mn(VnR − VnL) (B.37)

where Mn = M/∆n and the VnR and VnL are the property vectors on either side

of the face. The Jacobian in the cartesian coordinate frame is obtained using the
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rotation matrices as

Fv = R−1MnR(VR − VL) = R−1MnRN(QR −QL) (B.38)

and the viscous jacobian is finally given by

∂Fv

∂QR

= R−1MnRN and
∂Fv

∂QL

= −R−1MnRN . (B.39)

The matrix Mn is given by

M =



ρDs

∆n
0 0 0 0 0

0 (2µ+λ)
∆n

0 0 0 0

0 0 µ
∆n

0 0 0

0 0 0 µ
∆n

0 0

ρDshs

∆n

(2µ+λ)un

∆n

µut

∆n

µur

∆n

κtv

∆n

κve

∆n

ρDseve,s

∆n
0 0 0 κve

∆n
0


. (B.40)

B.3.1 Implicit Boundary Conditions

For faces at boundaries, the viscous Jacobians are modified so that

∂Fv

∂QR

= 0 and
∂Fv

∂QL

= R−1MnR(F − I)N (B.41)

where the folding matrices F are given in Chapter III and I is the identity matrix.
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B.4 Chemistry Jacobians

The chemistry Jacobians in its matrix form are given by

∂Sc

∂Q
=



∂ẇs

∂ρr

∂ẇs

∂u
∂ẇs

∂v
∂ẇs

∂w
∂ẇs

∂E
∂ẇs

∂Ev

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(B.42)

where

∂ẇs

∂Q
= Ms

∑
k (βk,s − αk,s)

[
∂kf,k

∂Q

Rf,k

kf,k
+ kf,k

∂
∂Q

(
Rf,k

kf,k

)
−

∂kb,k

∂Q

Rb,k

kb,k
− kb,k

∂
∂Q

(
Rb,k

kb,k

)]
.

(B.43)

The derivatives of the forward reaction rate coefficients,
∂kf

∂Q
, are given by

∂kf

∂Q
= kf

(
nf

T ′f
+
Ef

T ′2f

)
dT ′f
dTf

(
af
Tf

Ttr

∂Ttr

∂Q
+ bf

Tf

Tve

∂Tve

∂Q

)
(B.44)

where

dT ′f
dTf

=
1

2
+

1

2

Tf − Tmin√
(Tf − Tmin)2 + ε2

. (B.45)

The derivatives of the backward reaction rate coefficients, ∂kb

∂Q
, are given by

∂kb

∂Q
= −kb

(
1

Kc

dKc

dT ′b

)(
ab
Tb

Ttr

∂Ttr

∂Q
+ bb

Tb

Tve

∂Tve

∂Q

)
+

1

Kc

∂kfb

∂Q
. (B.46)

The last expression use the derivatives of the “forward-backward” reaction rate co-

efficient divided by the equilibrium constant 1
Kc

∂kfb

∂Q
as

1

Kc

∂kfb

∂Q
= kb

(
nf

T ′b
+
Ef

T ′2b

)
dT ′b
dTb

(
ab
Tb

Ttr

∂Ttr

∂Q
+ bb

Tb

Tve

∂Tve

∂Q

)
(B.47)

and the derivative of the equilibrium constants, for Park’s 1990 air model, given by

1

Kc

dKc

dTb

= −
(
−B0

Z
+B2 +B3Z + 2B4Z

2

)
1

T ′b

dT ′b
dTb

. (B.48)
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The expression for dT ′b/dTb is similar to dT ′f/dTf .

The derivatives of the forward reaction rate divided by the forward reaction rate

coefficient, ∂
∂Q

(
Rf,k

kf,k

)
, are given by

∂
∂ρl

(
Rf,k

kf,k

)
= 1000

[
0.001

αk,l

Ml

(
0.001ρl

Ml

)max(0,αk,l−1)

Πj 6=l

(
0.001ρl

Ml

)αk,j

]
∂

∂ρu

(
Rf,k

kf,k

)
= 0

∂
∂ρv

(
Rf,k

kf,k

)
= 0

∂
∂ρw

(
Rf,k

kf,k

)
= 0

∂
∂E

(
Rf,k

kf,k

)
= 0

∂
∂Ev

(
Rf,k

kf,k

)
= 0

. (B.49)

The derivatives of the translational-rotational temperature are given by

∂Ttr

∂ρs
= 1

ρCvtr,mix

[
−Cvtr,sTtr + 1

2
(u2 + v2 + w2)− ho

s

]
∂Ttr

∂ρu
= − u

ρCvtr,mix

∂Ttr

∂ρv
= − v

ρCvtr,mix

∂Ttr

∂ρw
= − w

ρCvtr,mix

∂Ttr

∂E
= 1

ρCvtr,mix

∂Ttr

∂Ev
= − 1

ρCvtr,mix

(B.50)

and the derivatives for the vibrational-electron-electronic temperature are given by

∂Tve

∂ρs
= eve,s

ρCvve,mix

∂Tve

∂ρu
= 0

∂Tve

∂ρv
= 0

∂Tve

∂ρw
= 0

∂Tve

∂E
= 0

∂Tve

∂Ev
= 1

ρCvve,mix

. (B.51)

The derivatives of the backward reaction rate divided by the backward reaction rate

coefficient are similar.
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B.5 Non-Equilibrium Jacobians

The non-equilibrium Jacobians in matrix form are given by

∂Sc

∂Q
=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

∂ẇv

∂ρr

∂ẇv

∂u
∂ẇv

∂v
∂ẇv

∂w
∂ẇv

∂E
∂ẇv

∂Ev


(B.52)

where ∂ẇv

∂Q
is composed of many different terms

∂Ṡv

∂Q
=
∂Sepg

∂Q
+
∂Sc−v

∂Q
+
∂St−v

∂Q
+
∂Sh−e

∂Q
+
∂Se−i

∂Q
(B.53)

which will be detailed below. The derivatives of Sepg and Sh−e are neglected in this

work, or

∂Sepg

∂Q
= 0 (B.54)

and

∂Sh−e

∂Q
= 0 . (B.55)

This is an approximation that does not seem to have an impact on the stability of

the problems simulated.

The derivatives of the translational-vibrational energy transfer term are given by

∂St−v

∂ρs
=

ρCvve,mix

τ

(
∂Ttr

∂ρs
− ∂Tve

∂ρs

)
+ Cvve,s

τ
(Ttr − Tve)

∂St−v

∂ρu
=

ρCvve,mix

τ

(
∂Ttr

∂ρu
− ∂Tve

∂ρu

)
∂St−v

∂ρv
=

ρCvve,mix

τ

(
∂Ttr

∂ρv
− ∂Tve

∂ρv

)
∂St−v

∂ρw
=

ρCvve,mix

τ

(
∂Ttr

∂ρw
− ∂Tve

∂ρw

)
∂St−v

∂E
=

ρCvve,mix

τ

(
∂Ttr

∂E
− ∂Tve

∂E

)
∂St−v

∂Ev
=

ρCvve,mix

τ

(
∂Ttr

∂Ev
− ∂Tve

∂Ev

)
. (B.56)
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It should be observed that in the previous derivatives the relaxation time τ is as-

sumed constant. This is another approximation that is used in the derivation of

non-equilibrium Jacobians[24] that does not impact the stability of the numerical

code.

The derivatives of the chemistry term are given by

∂Sc−v

∂Q
=
∑

s

[
∂ẇs

∂Q
(Ds + eel,s) + ẇ

(
∂Ds

∂Q
+ Cvel,s

∂Tve

∂Q

)]
(B.57)

where

∂Ds

∂Q
=

 0 for the preferential model,

Cvv,s
∂Tve

∂Q
for the non-preferential model.

(B.58)

Finally, the derivatives for the electron impact ionization term are given by

∂Se−i

∂Q
= MN+ ÎN

∂ẇN+,eii

∂Q
+MO+ ÎO

∂ẇO+,eii

∂Q
. (B.59)
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APPENDIX C

Axisymmetric Formulation and Axisymmetric

Jacobian

The implemented numerical code is able to solve the set of equations assuming ax-

isymmetry. In that case, the spatially integrated equations using the finite-volume

approach are given by[65]

yiAi
∂Qi

∂t
= −

∑
j

(~Fj − ~Fdj) · ~njyjsj + yiAiScvi + AiSai = Ri . (C.1)

where ~F = E~i+F~j is the inviscid flux at the face, ~Fd = Ed
~i+Fd

~j is the diffusive flux

at the face, Scv,i is the chemistry and non-equilibrium source term, Sa,i is the source

term that arises from the integration being performed assuming axisymmetry, Ai is

the area of the i-th cell, ~n is the normal vector to the j-th face and sj is the length of

the j-th face. The radial coordinate of the i-th cell, yi, is measured from its centroid.

The radial coordinate of the j-th face, yj, is measured from its mid-point. The term
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Sai can be written as

Sai =



0

...

0

0

p− 2µ v
yi
− λ~∇ · ~u

0

0



. (C.2)

In the axisymmetric formulation, ~∇ · ~u in the previous expression and in the stress

tensor is given by

~∇ · ~u =
∂u

∂x
+
∂v

∂y
+
v

y
. (C.3)

The inviscid, viscous, chemistry and non-equilibrium Jacobians are the same as

in the three-dimensional case excluding the momentum equation in the z direction.

It is indicated to divide the only non zero term of axisymmetric source term in two

parts for the calculation of the jacobian as Sai,v = A+B

A =



0

0

p− (2µ+ λ)v
y

0

0


(C.4)
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and

B =



0

0

−λ
(

∂u
∂x

+ ∂v
∂y

)
0

0


. (C.5)

The Jacobian of A is straightforwad to calculate and is given by

∂A

∂Q
=



0 0 0 0 0

0 0 0 0 0

∂A
∂ρs

∂A
∂ρu

∂A
∂ρv

∂A
∂E

∂A
∂Ev

0 0 0 0 0

0 0 0 0 0


(C.6)

where
∂A
∂ρs

= ∂p
∂ρs

+ (2µ+ λ) v
yρ

∂A
∂ρu

= ∂p
∂ρu

∂A
∂ρv

= ∂p
∂ρv
− (2µ+ λ) 1

yρ

∂A
∂E

= ∂p
∂E

∂A
∂Ev

= ∂p
∂Ev

. (C.7)

The Jacobian for B requires some approximation. This Jacobian is not a function

of the properties at the i-th cell only because it involves derivatives. Using Gauss’

theorem, the derivatives in the cell can be substituted by

Bv = −λ 1

Vi

∑
f

~u · ~nS . (C.8)
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Then, B can be written as B =
∑

f Ma,fVf where

Ma =



0 0 0 0 0

0 0 0 0 0

0 −λnxS
Vi

−λnyS

Vi
0 0

0 0 0 0 0

0 0 0 0 0


(C.9)

and Vf = 0.5(VL + VR). Now, using conserved variables,

B =
∑

f

Ma,fNf
Qi +Qnb

2
(C.10)

and then

∂B

∂Qi

=
1

2

∑
f

Ma,fNf . (C.11)

The terms ∂B
∂Qnb

are neglected in this work. Those terms could be stored at the faces,

similarly to what is done with the inviscid and viscous Jacobians, and used in the

iterative procedure. That approach is not used in this work so that all source term

Jacobians are treated locally.
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ABSTRACT

NUMERICAL SIMULATION OF WEAKLY IONIZED HYPERSONIC FLOW

OVER REENTRY CAPSULES

by

Leonardo C. Scalabrin

Chairperson: Prof. Iain D. Boyd

The mathematical and numerical formulation employed in the development of

a new multi-dimensional Computational Fluid Dynamics (CFD) code for the sim-

ulation of weakly ionized hypersonic flows in thermo-chemical non-equilibrium over

reentry configurations is presented. The flow is modeled using the Navier-Stokes

equations modified to include finite-rate chemistry and relaxation rates to compute

the energy transfer between different energy modes. The set of equations is solved nu-

merically by discretizing the flowfield using unstructured grids made of any mixture

of quadrilaterals and triangles in two-dimensions or hexahedra, tetrahedra, prisms

and pyramids in three-dimensions. The partial differential equations are integrated

on such grids using the finite volume approach. The fluxes across grid faces are calcu-

lated using a modified form of the Steger-Warming Flux Vector Splitting scheme that

has low numerical dissipation inside boundary layers. The higher order extension of



inviscid fluxes in structured grids is generalized in this work to be used in unstruc-

tured grids. Steady state solutions are obtained by integrating the solution over time

implicitly. The resulting sparse linear system is solved by using a point implicit or

by a line implicit method in which a tridiagonal matrix is assembled by using lines

of cells that are formed starting at the wall. An algorithm that assembles these lines

using completely general unstructured grids is developed. The code is parallelized

to allow simulation of computationally demanding problems. The numerical code is

successfully employed in the simulation of several hypersonic entry flows over space

capsules as part of its validation process. Important quantities for the aerothermo-

dynamics design of capsules such as aerodynamic coefficients and heat transfer rates

are compared to available experimental and flight test data and other numerical

results yielding very good agreement. A sensitivity analysis of predicted radiative

heating of a space capsule to several thermo-chemical non-equilibrium models is also

performed.


