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Chapter IIntrodution and Overview
Plasma diagnostis are one of the key supporting tehnologies in every area ofplasma physis. In plasma on�nement researh, immersed probe diagnostis andnon-intrusive optial diagnostis make experimental measurements of the basi prop-erties of the plasma. In plasma aelerator and eletri propulsion researh, the diag-nostis measure plasma properties in order to infer performane and operating har-ateristis. In materials proessing appliations, diagnostis ensure that the desiredplasma onditions are sustained in order to produe the desired surfae treatment.For eah of these examples, plasma diagnostis provide feedbak and measurementsthat help guide the researh or operation to ahieve a desired goal.In general, it is assumed that some quantity measured by the plasma diagnostian be related bak to a desired property in the plasma. For example, the slope ofolleted urrent with respet to bias voltage in the I-V harateristi of a Langmuirprobe an be related to the eletron temperature. Many diagnosti instrumentshave been developed to extrat information about the �ow. The drift urrent anbe measured with Faraday probes, the ion veloity an be visualized with laser-indued �uoresene, the eletron number density an be found with mirowaveinterferometry, the plasma potential and eletri �elds an be measured with emissive1



2probes, the ion energy spetrum an be alulated with retarding potential analyzers,and ion harge states an be identi�ed with E×B probes. Of ourse, many of theseinstruments an be used to measure more than one plasma property, and for manyproperties there is more than one measurement tehnique.The diagnostis are interpreted by relating a diretly measured property, suhas olleted urrent, to the desired plasma property. The relation is often devel-oped from elementary priniples by making ertain assumptions about the plasma.Returning to the Langmuir probe example, the eletrons are assumed to have aMaxwellian veloity distribution so that the logarithmi slope of the I-V harater-isti is inversely proportional to the eletron temperature [1℄. These assumptionsommonly inlude a Maxwellian distribution of eletron veloities, the Boltzmannrelation between eletron density and plasma potential, and a lower temperaturefor ions than for eletrons. The measurements are assumed to aurately obtainthe plasma properties, provided the plasma onditions meet the assumptions of thediagnosti theory.In diagnosti theory it is assumed that the instrument does not signi�antly af-fet the properties of the plasma at the point where measurements are taken. Thisassumption is not valid for probe diagnostis in partiular, and it is aknowledgedthat some disturbane is unavoidable. Theory for the plasma sheath on an immersedsurfae helps to identify and quantify some of the disturbanes aused by the probe.The diagnosti tehniques for some instruments take the plasma sheath into aountin order to relate the measured properties to �undisturbed� plasma properties. How-ever, sheath theory is limited to the e�ets in the eletrostati or eletromagnetisheath within a few Debye lengths of the probe surfae. Diagnosti theory does notaount for the e�ets at longer range, sine those e�ets are not well understood.
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Figure 1.1: Shemati of plasma properties in the ollisionless sheath [1℄.1.1 Sheaths and other probe disturbanesAn immersed diagnosti instrument perturbs the plasma properties in its viinity.Eletri and magneti �elds an penetrate the plasma up to a few Debye lengths fromthe probe, in�uening the harged partile trajetories in the sheath. Farther fromthe probe, the olletive shielding e�et isolates the bulk plasma from the �elds.The transition from bulk plasma through the sheath to a probe surfae is shownshematially in Fig. 1.1. For a positive ion plasma, the eletrons are the sole negativeharge arriers and are more mobile than the ions. This leads to unequal �uxes to asurfae at the same potential as the plasma, with more eletrons than ions reahingthe surfae. If the surfae is �oating, it will aumulate a net negative harge thatrepels eletrons and attrats ions until the net urrent is zero.Sheaths omprise some of the most enduring and widely enountered problems



4in plasma physis. Langmuir and Tonks investigated sheaths in plasma ar and glowdisharges in the late 1920's [2℄, identifying the major features of the ollisionlesseletrostati sheath and obtaining analytial solutions for simple geometries.Bohm investigated the urrent olletion of Langmuir probes in the late 1940's,and established the broadly appliable Bohm riterion for the formation of a steadysheath [3℄. The riterion has sine been generalized for �nite temperature ion distri-butions and arbitrary ion distributions.Developments in the 1980's and 1990's produed a kineti desription of thesheath and presheath for appliation to the strongly �owing plasmas enounteredin spae environments and fusion plasmas [4, 5, 6℄. More reently, muh attentionhas been foused on developing a onsistent method to span the interfaes betweenplasma, presheath, and sheath [7, 8, 9, 10℄. This work is motivated in part by theunphysial result in the Bohm sheath solution that the sheath is in�nitely long, andthat the eletri �elds at the sheath edge are asymptotially large.An immersed probe an also a�et the �ow over longer length sales, sine the �oweither ollides with the probe body or is diverted around the physial obstrution.This an potentially introdue �ow features inluding ompression regions upstreamof the probe and rarefation regions in the wake of the probe. Sine experimentaldiagnosti probes are not perfetly absorbing, ions that ollide with a probe surfaean be neutralized and re�eted bak into the �ow. The neutral gas di�uses awayfrom the probe, extending the region that is perturbed by the probe. Charge ex-hange or momentum exhange ollisions with the neutral gas also have an e�et onthe overall �ow.The photograph of a Faraday probe in the plume of a Hall thruster in Fig. 1.2is evoative of the large sale disturbanes that an be aused by the probe. The
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Figure 1.2: Photograph of a Hall thruster plume interating with a Faraday probe[11℄.visible light is assoiated with reombination and relaxation of exited eletronistates in the plasma. A very bright region is apparent at the front surfae of theprobe, suggesting that there is a region of inreased density that promotes ollisionalrelaxation and reombination events.A quantitative demonstration of the long range e�et of the probe an be seenin experimental ontours of plasma potential around a Faraday probe in Fig. 1.3,as reported by Walker et al. in Ref. [12℄. The probe is ylindrial, with the axis ofthe probe aligned with the Y axis in the �gure. In that work the Debye length isestimated as λD = 0.3 mm. The observed plasma potential variations extend 2 m ormore from the probe, whih is on the order of tens of Debye lengths. The weak �eldsthat extend far from the probe ontribute to sheath expansion, where the e�etiveolleting area of the probe is inreased due to eletrostati fousing of the ions.The di�erene in plasma potential between the left and right sides of the probe isdesribed as a shadowing e�et. The bulk veloity of the ions is not aligned with theprobe axis, and the eletri �elds are too weak to turn high speed ions into the region�behind� the probe. This is a seond long range e�et, and is due to the physial
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Figure 1.3: Experimental ontours of plasma potential around a Faraday probe, our-tesy Allen Vitor [12℄.obstrution of the �ow.The eletrostati sheath on the front surfae of the probe should not alter thetotal urrent olleted at the surfae, exept near the outer radial edge of the probewhere the sheath urves to join the sheath along the side of the probe body. Thestandard design pratie for experimental Faraday probes takes this into aountand inludes an annular guard ring to eliminate edge e�ets on the olleting surfae.Sheath expansion is not as well-understood, so there are no standard design guidelinesor operational methods to ensure that sheath expansion has minimal e�et on themeasured properties.Shadowing is unlikely to a�et properties on the front surfae of the probe, butit would have a signi�ant impat on the properties on the bak fae of the probe.The e�ets beome espeially important in experimental on�gurations with reversedFaraday probes, whih measure the olleted urrent on the wake side of the probe.Shadowing and other long range disturbanes are not well-understood either, and



7there are no design or operational guidelines to aount for the e�ets.1.2 Objetives of this workThe purpose of this dissertation is to investigate how an immersed Faraday probea�ets a plasma �ow, and to quantify how the properties measured at the probe sur-fae are related to the �undisturbed� plasma properties that would exist if the probewere not present. Additionally, the results of the investigations are interpreted togive reommendations for the design and use of Faraday probes. This work is on-duted using omputational tehniques in order to ahieve a very ontrolled settingwhere the undisturbed plasma onditions are known at the outset.Sine plasma properties suh as ion density and eletron temperature an vary byorders of magnitude in di�erent appliations, this dissertation is limited to the on-ditions relevant to eletri propulsion (EP) plasmas. Faraday probes are widely usedin experimental investigation of EP devies, and a wealth of information is availablein the literature. This failitates the seletion of onsistent plasma onditions, andlimits the sope of this dissertation to a manageable set of plasma models.1.2.1 Develop omputational models of the plasma �owThe �rst overarhing objetive of this dissertation is to aurately desribe theplasma �ow �eld around a Faraday probe. Although fully analytial solutions ordiret simulations are not pratial for the full �ow problem, many of the sameonepts and tehniques an be used to develop and apply simpler models. Severalmilestone objetives build up to the omputational simulations of the �ow �eld thatare the �rst goal in this work:1. Develop and use simple one dimensional models that inlude the relevant phys-



8ial mehanisms for plasma-probe interations.2. Identify signi�ant �ow features in the one dimensional model results and es-tablish a baseline for omparison with more sophistiated models.3. Develop more aurate models that better represent the atual �ow geome-try and onditions. This inludes moving to higher dimensional models andeliminating the assumptions made in the one dimensional models.4. Compare results from the improved model with previous models to assess theusefulness and auray of the simpler models.
Two important supporting tasks in this proess are developing �exible modelimplementations, and ensuring the reliability of the models. Eventually a rangeof di�erent plasma onditions and probe geometries are simulated, so the modelsshould be implemented in a �exible and general manner. The models must also beomputationally stable and produe physially meaningful results.1.2.2 Quantify the plasma-probe interationsThe seond overarhing objetive of this dissertation is to evaluate how the plasma�ow features and the probe measurements are a�eted by hanging the in�owingplasma properties and the probe operational methods. In this stage the simpleplasma onditions typially assumed in standard diagnosti theory are modi�ed. Thegoal is to evaluate how the properties measured at the probe hange in response tothe modi�ed plasma onditions. Similarly, the operational parameters of the Faradayprobe are modi�ed for a �xed plasma distribution. The purpose is again to evaluate



9how measured properties at the probe are a�eted as a result of hanging the probeonditions.The ion in�ow distribution is modi�ed inrementally until ultimately it is rep-resentative of the omplex exhaust plasma generated by an EP thruster. The �naldistribution inludes high energy beam ions, low energy harge exhange ions, andmultiple harge speies. Inremental modi�ation of plasma onditions serves toisolate the e�ets of eah of these omponents. Results from these simulations areompared against the simpler one dimensional models to assess the impat and rel-ative importane of hanging the in�ow plasma properties.The investigations of alternative Faraday probe operating onditions are on-duted with a �xed set of realisti plasma onditions. The �rst investigation of theprobe operation ondition varies the probe bias potential. This allows the e�et ofsheath expansion to be observed and assessed in terms of the olleted urrent atthe probe surfae. The seond investigation of probe operation onditions varies theguard ring bias relative to the olleting surfae bias. The intent in this study is toidentify whether the total olleted urrent varies signi�antly if there is a mismathin the bias potential on the guard ring and on the olleting surfae.Additionally, the reversed Faraday probe is simulated to obtain an understandingof the �ow �eld in the wake of the probe. These simulations require a muh largeromputational domain and would take a prohibitively long time to omplete usingthe original models. As a supporting task, a multigrid method is developed andimplemented to enable the reversed Faraday probe simulations to be arried out inan aeptable time.



101.2.3 Make reommendations for Faraday probe design and useThe �nal major objetive of this dissertation is to make reommendations forthe design and use of Faraday probes based on the results of the omputationalsimulations. No on�its are found with the urrent standard praties for Faradayprobe usage. The �ow �eld in the wake of the reversed Faraday probe is moreompliated than might be expeted, and a few preautionary reommendations arejusti�ed.1.3 OrganizationThis dissertation is arranged as a linear sequene that starts with a review ofexperimental and numerial researh related to eletri propulsion (EP). Chapter IIintrodues some of the history and elementary onepts of EP, and desribes thebene�ts that make EP suh an attrative tehnology. A seletion of the numerousexperimental and numerial researh ativities related to EP are also desribed, whihwill inform many deisions about the plasma onditions and numerial models on-sidered in this work. This also provides a perspetive on the need for omputationalstudy of the interation between plasmas and diagnosti probes.In Chapter III, kineti theory and the magnetohydrodynami �uid equations areintrodued as very general desriptions of a plasma. These desriptions are simpli�edto obtain analyti solutions for the sheath. The kineti model leads to a geometrishadowing sheath, where the physial obstrution of the probe is the mehanism thatreates sheath features. The MHD �uid equations lead to the planar Bohm sheath,where the eletrostati �eld drives the properties in the sheath.Both kineti and �uid desriptions of a plasma are used to develop an axisym-metri hybrid �uid partile omputational ode in Chapter IV. The Partile In



11Cell (PIC) and Diret Simulation Monte Carlo (DSMC) kineti models are usedfor the heavy ion and neutral partiles. Three eletron �uid models are developed:the Boltzmann model, the non-neutral detailed model, and the Poisson-onsistentdetailed model. The Boltzmann model is the simplest of the three, and uses theBoltzmann relation to greatly simplify the �uid equations. The non-neutral detailedmodel uses the full set of �uid equations, and is modi�ed from a previous neutraltreatment. The Poisson-onsistent detailed model is also derived from the full set of�uid equations, but is manipulated from the outset as a non-neutral model.The hybrid �uid PIC omputational ode is used extensively in Chapter V toperform simulations of the plasma �ow �eld around an axisymmetri geometry thatrepresents a Faraday probe. The Boltzmann �uid model is used in a series of stud-ies to investigate how varying the plasma properties a�ets �ow strutures in thesheath and the simulated olleted urrent at the probe surfae. These studies makeinremental hanges to the in�ow ion distribution funtion from a old ion beamto a omplex omposite distribution onstruted from multiple drifting Maxwellianomponents. The Boltzmann model is also used to study how the operation of theFaraday probe a�ets the simulated olleted urrent at the probe surfae. Thesestudies involve hanging the bias of the guard ring relative to the olleting surfaeor sweeping the probe bias over a range of ion olleting onditions. In all of thesestudies, the planar Bohm sheath is found to be a reliable preditor for the propertiesin the sheath.The non-neutral detailed model and the Poisson onsistent models are also usedin Chapter V. The non-neutral detailed model is shown to have a serious proedural�aw and is not developed further. The Poisson-onsistent model is used suessfullyto repeat the studies pertaining to ion in�ow distribution. The results from these



12simulations are generally in very good agreement with the Boltzmann model resultand the planar Bohm sheath. The only notable exeption is when the ion in�owdistribution has a signi�ant bak�ow omponent. The present implementation ofthe hybrid �uid PIC model only introdues partiles at the upstream and outer edgesof the domain, so any bak�ow omponent is not well represented.The hybrid �uid PIC model requires onsiderable time to run, making it im-pratial for simulations on larger domains. The omputational ode is pro�led inChapter VI, revealing that the partile models aount for a disproportionately largefration of the total time. A multigrid method is implemented to solve the PIC modelon a oarse grid and solve the eletron �uid model on a �ne grid. This redues theomputational time spent in the partile models and maintains the grid resolutionrequired for aurate �uid model solutions.The multigrid version of the ode is used to perform simulations of a reversedFaraday probe in Chapter VII. The omputed �ow �eld on the wake side of theprobe is signi�antly more ompliated than on the ram side of the probe. Thesimplisti struture predited from the geometri sheath model does not auratelyre�et the atual strutures. The numerial simulations also provide an estimate ofthe exhange frequeny, whih is an unknown parameter in the geometri shadowingmodel. Pro�les of the exhange frequeny show features that are not ompatiblewith the assumptions made in the geometri shadowing model. In these studies, thegeometri shadowing model is shown to be a poor preditor of sheath properties.The dissertation is onluded in Chapter VIII with a review and summary ofthe results and new ontributions of this work. This inludes assessment of theanalyti sheath models and the numerial models, an evaluation of the multigridsheme, and disussion of the probe simulations. In ful�llment of the objetives



13of this dissertation, suggestions are made regarding the design and use of Faradayprobes. Finally, a few reommendations for future work in this area are outlined.



Chapter IIBakground and Motivation
The work desribed in this dissertation is performed in the ontext of eletripropulsion researh. This setting guides many deisions about the relevant physialproesses and representative onditions of interest. It is therefore useful to introdueeletri propulsion and some of the ative researh in that area. This hapter isadditionally intended to identify some of the hallenges and outstanding questionsthat this researh is intended to address.2.1 Eletri propulsionEletri propulsion, or EP as it is often abbreviated, refers to spaeraft propul-sion systems that utilize eletrial proesses rather than hemial reations to ael-erate a propellant. EP systems have been in development sine the 1960s, althoughthe underlying onepts were desribed and investigated as early as 1906 [13, 14℄.The �rst test of an EP devie on a spaeraft was an ion thruster on the NASA SpaeEletri Roket Test 1 (SERT-1) in 1964. EP systems entered limited use beginningin 1972, in the form of Hall thrusters on Soviet Union �Meteor� satellites [15, 16℄.Over the following twenty years, various forms of EP were used for satellite station-keeping by the United States and the Soviet Union. Sine the late 1990s, EP devies14



15have also been used as the primary propulsion systems on several deep spae mis-sions, inluding the NASA Deep Spae 1 tehnology demonstration mission [17℄, theJapanese Aerospae Exploration Ageny (JAXA) Hayabusa asteroid sample returnmission [18℄, and the European Spae Ageny (ESA) SMART-1 lunar mission [19℄.2.1.1 Types of eletri propulsionEletri propulsion inludes a wide variety of tehniques for produing spaeraftthrust. The only ommon harateristi of EP systems is that the primary energysoure is eletrial power. That power soure might inlude solar ells, radioisotopethermoeletri generators, nulear reators, or some ombination of these. The de�n-ing harateristi of an EP system is not the partiular power soure, but rather themehanism whih onverts the eletrial energy into propulsive thrust. Generally anEP devie an be grouped into one of three broad ategories [20℄: eletrothermal,eletrostati, or eletromagneti.The �rst ategory, eletrothermal EP, uses eletrial heaters or an eletrial dis-harge to heat a working gas. That gas is then expanded through a nozzle as ina onventional roket. The most ommon eletrothermal devies inlude resistojetsand arjets. A shemati arjet is shown in Fig. 2.1.The seond ategory, eletrostati EP, �rst ionizes the propellant and then a-elerates the harged partiles via eletri �elds between one or more extration andaeleration grids. A shemati gridded ion thruster is shown in Fig. 2.2. Other ele-trostati devies inlude Hall thrusters, �eld emission thrusters, and olloid thrusters.Devies in this ategory typially aelerate positive harge partiles or ions, so thereis a need for an eletron-emitting neutralizer to prevent a net harge buildup on thespaeraft.
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Figure 2.1: Shemati of an arjet [21℄, demonstrating an eletrothermal propellantaeleration mehanism.The third ategory, eletromagneti EP, uses both eletrial and magneti �eldsto aelerate harged partiles. Magnetoplasmadynami (MPD) thrusters and pulsedplasma thrusters (PPTs) are the most ommon examples of this ategory. In PPTonepts, a strong urrent is driven through surfae material to form an ablationplasma that arries the urrent from anode to athode. Other onepts may usealternative ionization shemes, and require applied eletri �elds to drive the plasma.The plasma is aelerated to generate thrust via the Lorentz fore of the magneti�elds ating on the plasma urrent. Figure 2.3 shows a shemati PPT.2.1.2 Advantages and limitationsEletri propulsion o�ers several bene�ts over onventional hemial rokets, butalso su�ers from a few drawbaks. However, the gains in using an EP system anoutweigh the losses for long-term or high-energy missions.One of the biggest advantages of EP devies is the high exhaust veloity and
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Figure 2.2: Shemati of an ion engine [22℄, demonstrating an eletrostati propellantaeleration mehanism.orresponding high spei� impulse. Spei� impulse, or Isp, is the ratio of thrust
T , to propellant weight �ow rate as in Eq. 2.1. The weight �ow rate is simply theprodut of the mass �ow rate ṁ and standard gravity at the surfae of the earth g.

Isp =
T

ṁg
(2.1)Various types of EP devies span a range of Isp, from 500-2,000 s for arjets, to1,200-6,000 s for Hall thrusters, to 3,000-10,000 s for ion thrusters. For omparison,hemial rokets only range from 250-450 s Isp [24℄.The bene�t of higher Isp an be demonstrated from the ideal roket equation,Eq. 2.2, whih is derived from onservation of momentum for a system that is emittingmass [25℄. For a system with initial total mass m0 that undergoes a maneuver witha total hange in veloity △v, the �nal mass m after the maneuver is a funtion only
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Figure 2.3: Shemati of a pulsed plasma thruster [23℄, demonstrating an eletro-magneti propellant aeleration mehanism.of the spei� impulse Isp and the gravitational onstant g.
m = m0 exp

(

−△v

gIsp

) (2.2)A spaeraft mission has a known, required △v from orbital mehanis and alimited m0 based on the launh vehile, so a higher spei� impulse translates intomore �nal payload mass after maneuvering. This an be put to use in several ways.One option is to inrease the payload mass, sine an EP system requires lesspropellant mass than a hemial system for a given mission. Alternatively, the mis-sion or operational lifetime ould be extended, sine the EP system an ahieve alarger △v for a �xed propellant mass. Another route altogether is to eliminate thepropellant mass saved by using the EP system and redue the total mass, possibly



19allowing a less expensive launh vehile to be used. These options an be ombinedto ahieve a best ompromise for a partiular situation.Another bene�t of EP is the �exible ontrol of the devies. Many EP systems areapable of semi-independent ontrol of propellant �ow and eletrial systems, whihallows for throttling of the �ow rate, operating voltage, and urrent to optimizeperformane at a desired thrust level. This is an improvement over solid rokets,whih have no throttle ontrol, and over liquid or hybrid rokets, whih an onlythrottle the �ow rate. A mission using EP systems has less restritive launh windowsthan a mission using onventional rokets.Still another potential bene�t of EP devies is the robustness of the underly-ing propulsive onept. Sine the aeleration mehanism is not dependent on thepartiular propellant, an EP devie ould theoretially operate on a variety of dif-ferent propellants. This ould open the possibility of in situ propellant resupply forlong-duration missions to omets or asteroids with volatile ompounds. However,multiple-propellant thruster designs are beyond the urrent state of the art.The two main drawbaks to using an EP devie stem from the pratial limit onthe maximum urrent density that an be sustained in an eletrial ar or plasmaurrent. In eletrothermal appliations this ats to limit the rate of energy deposition,while in eletrostati and eletromagneti appliations this ats to limit the �ow rateof aelerated exhaust. In both ases the onsequene is that EP systems produemuh smaller thrust than hemial systems. For example, thrust levels from EPdevies range typially range from a few µN for ion thrusters to less than 10 N forarjets. In ontrast, hemial rokets an ahieve 1 kN-1 MN of thrust [24℄.As a further negative onsequene of low thrust prodution, EP systems requiremuh longer �ring time than hemial systems. While a hemial roket typially



20operates for only a few minutes, an EP devie must operate for months or yearsto ahieve the full △v indiated from the ideal roket equation. This introdueslong-term performane issues as well as failure and lifetime onerns for EP systems.Low levels of thrust are not neessarily prohibitive, and ertain appliations onlyrequire low thrust levels. Stationkeeping and orbit transfers are well within therange of thrust provided by EP devies, although orbit transfers will take signi�-antly longer than with a hemial system. Mirosatellite formation �ight and high-preision stationkeeping maneuvers both bene�t from engines that an produe smallbut highly repeatable thrust bits. One notable example is the planned NASA LaserInterferometer Spae Antenna (LISA) mission [26℄, whih requires µN-levels of thrustto maintain proper positioning of the omponent spaeraft.2.2 Experimental investigation of eletri propulsionResearh on EP devies is ongoing and inludes ativities at every stage of de-velopment: theory and design of novel onepts, testing and validation of designs,long-duration life tests of mature designs, and studies of spaeraft integration issues.2.2.1 Ongoing ResearhMature tehnologies suh as Hall thrusters and ion thrusters are well harater-ized in terms of performane. Researh related to these systems is direted towardextending operational lifetime, haraterizing the spaeraft integration issues, anddeveloping high power on�gurations.Sine an EP devie must operate for months or years, long-duration life testsare arried out in ground-based vauum hambers. These tests often onsider theissue from multiple viewpoints. From an appliation viewpoint, it is neessary to un-derstand how the atual performane deviates from the ideal performane by mea-



21suring hanges in thrust, beam divergene, and e�ieny over the lifetime of thedevie [27, 28℄. From a design viewpoint, haraterization of the wear and damagesustained during prolonged operation is useful for identifying and addressing failuremodes, as well as estimating the time to failure.The exhaust plume from EP devies may inlude plasma, unaelerated propel-lant, and materials eroded from the devie. Di�erent lines of researh help harater-ize the resulting onditions near the spaeraft and onsider how its performane isa�eted. Researh into sputtering and deposition looks at the physial proesses thaterode material inside the thruster [29℄, and the transport and deposition of sputteredmaterial and exhaust partiles onto other spaeraft surfaes [30, 31℄. Eletromag-neti interferene [31℄ is another onern, sine harged partiles in the exhaust plumean interfere with signal transmission to and from the spaeraft.There is strong interest in developing high power EP systems that an produehigher thrust levels while maintaining favorable Isp and e�ieny. Researh in thisarea is typially direted toward developing larger models of a devie (the monolithiapproah) [32℄ or toward developing lusters of existing smaller models of a devie [33,34, 35℄. Challenges in a monolithi approah are related to fabriation and inadequatefailities for full-sale testing, while hallenges for a lustering approah arise fromoperational di�ulties due to the interation between individual devies in a luster.There is also an ative interest in developing novel EP onepts. New designs mayinorporate the better elements of two systems, as in hybrid Hall/ion thrusters [36℄, orextend EP onepts to entirely new designs as in mirothruster and MEMS �thrusteron a hip� onepts [37, 38℄. Hybrid designs are often able to move quikly toa prototype, sine muh of the fabriation and operation is well understood fromexisting designs. The more radial MEMS onepts are urrently at proof of onept



22and early prototype stages. If the fabriation issues an be resolved, suh oneptswould o�er even more �exible salability and ontrol than existing EP systems.2.2.2 Vauum failitiesExperimental testing is onduted in ground-based vauum failities. The largestaademi faility in the United States is the Large Vauum Test Faility (LVTF)at the Plasmadynamis and Eletri Propulsion Lab (PEPL) at the University ofMihigan [39℄. The main hamber of the LVTF is a ylindrial vessel 9 m long, and6 m in diameter. A diagram of the faility and several diagnosti instruments inFig. 2.4 shows the omplexity and sale involved. Smaller failities are signi�antlyless expensive to build, maintain, and operate, so hambers this large are rare.

Figure 2.4: Large Vauum Test Faility at the University of Mihigan [39℄.Although the LVTF has a very high pumping rate of 240,000 liters per seondon xenon, the faility still develops a measurable bak pressure during operation ofEP thrusters [12℄. This residual bakground pressure is due to the �nite pumpingapaity and inevitable leaks and outgassing present in any vauum faility.



23The interpretation of experimental measurements is ompliated by seondarye�ets of the bakground gas. At the thruster itself, bakground gas an be re-ingested and aelerated, arti�ially inreasing the thrust and propellant e�ieny.Collisions between aelerated partiles and bakground partiles in the exhaustplume an inrease beam divergene, broaden the energy distribution, and produelow energy harge exhange ions. This a�ets measurements of urrent density andveloity distribution throughout the plume.2.2.3 Probe diagnostisExperimental measurements of many plasma properties an be made using rela-tively simple plasma probe diagnostis [40℄. Three mainstay probe instruments aredisussed below: the Faraday probe, the Langmuir probe, and the retarding potentialanalyzer (RPA). These probes o�er good spatial resolution and have well-establishedtehniques for interpreting the measurements. Non-intrusive optial diagnostis areavailable, but are not as widely used due to the greater ost and omplexity.The nude Faraday probe is the simplest of probe devies, onsisting of a urrentolleting surfae that is large ompared to the Debye length. One mode of operationis to apply a bias voltage to repel eletrons, so that the probe measures only the ionurrent at a point in the plasma �ow. Alternatively, the probe bias an be allowedto �oat to the plasma potential, so that the net urrent to the probe is zero. Moreompliated variations of the Faraday probe inorporate physial or eletromagneti�ltering [41, 42℄ to sreen out the eletron urrent or undesired, random ion urrents.The Langmuir probe onsists of one or more urrent olleting wires that areimmersed in the plasma. Several on�gurations are ommonly used, inluding single,double, and triple probes [43, 44, 45℄. These variations allow for simpli�ations in the



24ontrol system or in the analysis of measurements. Measurements from the urrentversus voltage harateristi of a Langmuir probe an be used to determine theplasma potential, the �oating potential, the eletron temperature, and the plasmanumber density.The RPA is somewhat more ompliated than the previous probes, sine it usesa series of biased sreens to repel partiles below a threshold energy while allow-ing higher energy partiles to reah a olleting surfae [40, 46℄. By analyzing thederivative of olleted urrent over a range of bias voltage, it is possible to extratthe energy distribution funtion of the ions.Eah of these probe diagnostis is immersed in the plasma �ow and auses somedisturbane relative to the unimpeded �ow if the probe were not present. Reentexperimental measurements of the plasma properties around an immersed Faradayprobe show that the disturbed �ow �eld around the probe an be observed [12℄. Inthe diagnosti tehniques, these disturbanes are assumed to be relatively small andon�ned to a sheath and presheath region around the probe.2.3 Computational modeling of eletri propulsionComputational researh parallels many of the experimental investigations de-sribed previously. Experimental and omputational investigations are often om-plementary, although some disrepanies persist between experimental measurementsand omputational results.2.3.1 Computational tehniquesSeveral types of EP devies inluding Hall thrusters, ion thrusters, PPTs, andMPDs generate strongly �owing, low density plasma exhaust plumes. Models ofplasma behavior must desribe partile motion, along with the self-onsistent eletri



25and magneti �elds that govern the motion. Computational models must therefore beapable of solving the equations of motion for partiles and the di�erential equationsfor eletromagneti �elds.One of the earliest and most widely used omputational tehniques for simulatingplasmas is the Partile In Cell or PIC method [47℄. In this type of model the plasma isrepresented by a redued number of maropartiles that obey the standard equationsof motion and interat with disrete eletri �elds alulated on a omputational grid.In brief, this method separates the partile motion from the alulation of �elds anditerates to ahieve a onsistent solution.A related tehnique is Diret Simulation Monte Carlo or DSMC, whih also usesmaropartiles to simulate gases and inorporates probabilisti models to desribepartile ollisions [48℄. This allows additional physial proesses to be onsidered,inluding hemistry, ionization and reombination, and surfae interations. DSMCmodels an be ombined with PIC models to add ollisions and wall interations to aplasma simulation. In Chapter V both PIC and DSMC tehniques will be desribedin greater detail for the partiular implementation used in this researh.Under onditions where magneti �elds dominate partile motion, an alternativeset of models is available. Magnetohydrodynami (MHD) equations desribe a mag-netized plasma in the ontinuum limit, similar to the Navier-Stokes equations assolved in omputational �uid dynamis (CFD) models. In non-equilibrium limits, agyro-kineti model is neessary to desribe partile motion. This model is roughlyanalogous to the PIC model, but requires an average over the fast gyromotion ofmagnetially on�ned partiles. Magneti �elds are not signi�ant in the far �eld ofa Hall thruster or ion thruster, so MHD and gyrokineti models will not be disussedin this dissertation.



262.3.2 Ongoing researhComputational researh in EP overlaps experimental investigations in almostevery area. Lifetime issues are addressed by investigating sputtering and erosionproesses in the thruster [49, 50℄. Integration issues are onsidered through studies ofdeposition and implantation [51℄, plume bak�ow [52℄, and through plasma ontrol tomitigate signal interferene [53℄. High-power luster on�gurations are simulated toevaluate the performane, with near- and far- �eld studies to haraterize the exhaustplume [54℄. Preliminary modeling is already underway to haraterize prototypeMEMS devies [55℄.A broader goal is to develop and re�ne omputational models until they beomesu�iently aurate to perform reliable assessment and haraterization of EP de-vies. Meeting that goal would help streamline the design proess for new devies andalso enable more e�etive interpretation of experimental results. For example, a suf-�iently robust omputational model ould be used to predit on-orbit performaneof a high-power on�guration from measurements made in small vauum hamberswhere the pumping rate is too low.At this point there are few or no e�orts to omprehensively improve model �-delity. However, narrowly foused e�orts to improve spei� aspets of a model areoften inidental to a omputational study. Variations of existing models are imple-mented to more aurately apture the physis involved in some aspet of a broaderstudy. For a few examples: a wall sputtering model might be added to a thrustersimulation in order to ompare the alulated performane degradation with exper-imental results from a long-duration life test [56℄, or higher �delity magneti �eldsmight be inorporated in a Hall thruster aeleration model to assess the impat onthe near-�eld plume [57℄. Additionally, many lines of researh are direted toward



27speeding up existing models, either by using alternative tehniques to perform simi-lar alulations or by optimization and parallelization of an existing omputationalode.2.4 Need for simulation of plasma probesExperimental and omputational researhers ontinually share results in EP, so itis desirable to have a lear understanding of how experimental measurements relateto undisturbed plasma onditions.Eletri propulsion devies produe highly non-equilibrium plasma �ows. Themost ommonly used eletromagneti and eletrostati devies produe an exhaustplume onsisting of high temperature eletrons, high energy ions of various hargestates formed in the thruster, high energy neutrals and low energy ions formed viaharge exhange ollisions, and low energy neutrals that di�use out of the thrusterwithout being ionized or aelerated. The plasma is low density, strongly �owing,and nearly ollisionless as a whole.This is markedly more ompliated than the simple onditions of isothermal ele-trons and old drifting ions assumed in the theoretial analysis of some plasma probemeasurement tehniques. One important open question is how well the theoretialprobe tehniques perform for a more omplex, realisti EP plasma �ow. A ompu-tational setting is espeially well suited to evaluating this question, sine the plasmaonditions an be spei�ed expliitly and probe measurements an be simulated andanalyzed aording to standard diagnosti tehniques. By moving inrementally fromthe ideal plasma of the diagnosti theory to a realisti plasma, it is also possible toisolate the e�ets of eah deviation from the ideal assumptions.A seond open question is how the insertion of a diagnosti probe disturbs the



28plasma �ow, and whether that disturbane introdues a systemati error in the mea-surements the probe makes. Put another way, it is not lear whether the disturbedonditions measured by the probe an be related bak to the undisturbed plasmaonditions. Again, a omputational setting is ideal for investigating these e�etssine the undisturbed onditions are known expliitly as inputs.The remainder of this dissertation desribes the development and use of ompu-tational models to help address these open questions.



Chapter IIIGoverning Equations and Analytial Sheath Models
The �ow �eld around a Faraday probe is haraterized by plasma interations withphysial surfaes and eletrostati sheaths. Sine this involves numerous physialmehanisms and spans a broad range of sales, it is useful to �rst onsider simpli�edonditions that an be solved analytially. This hapter introdues the lassialdesriptions of a plasma and the derivation and use of two analytial models. Laterhapters will refer to these analytial models as referene ases.The �rst model is desribed as a shadowing model, alluding to physial obstru-tion of the �ow by the probe body. The �ow strutures desribed in this model are ona sale omparable to the probe dimensions. Although the model is developed froma very general kineti desription of the plasma, the analytial solution is limitedby the assumption of negligible eletri and magneti �elds. Due to that limitation,the shadowing model is only a gasdynami model and will not apture the moreompliated plasmadynami e�ets.The seond model is a ollisionless planar sheath model. In this model the �owstrutures are on a sale omparable to the Debye length, whih is generally muhsmaller than the probe dimensions. This model is developed from a �uid desriptionof the ion plasma, and aounts for oupling between the eletri �elds and the plasma29



30by solving the eletrostati Poisson equation. This model is a plasmadynami model,and inludes most of the relevant physial proesses that our in a sheath.3.1 Plasma onepts and theoriesPlasmas behave like gases in many regards, but the addition of free harged par-tiles makes a plasma eletrially ondutive. At mirosopi sales approahing andsmaller than the Debye length, eletrostati fores between partiles are signi�ant.However, these inter-partile fores at to redistribute the harge in suh a way thatloal harge is shielded and the plasma appears uniform over larger sales [58℄. Atthe marosopi sale, the bulk plasma exhibits olletive behavior that is onsistentwith zero internal eletri or magneti �elds.The harge shielding e�et is not uniform near the edges of a plasma, for instaneat a free surfae interfae with vauum or at a onduting wall. External eletri andmagneti �elds in�uene harged partiles near the edge of the plasma and generatea sheath [1, 2℄, whih in turn ats to isolate the bulk plasma from the external �elds.The sheath thikness is determined by the distane that external �elds an penetrateinto the plasma, and depends on the density and mobility of the harged partiles.Like the harge shielding e�et, sheath thikness sales with Debye length.3.1.1 Kineti desriptionA plasma is an ionized gas, so a theory that desribes gas behavior is a reasonablestarting point for desribing a plasma. The kineti theory of gases is a very suessfultheory based on a statistial desription of a gas at the moleular level. Appropriateaverages of mirosopi properties suh as veloity and ollision rate an be relatedto the marosopi temperature and pressure.Kineti theory posits that a gas is omposed of a very large number of partiles



31that interat only through ollisions [59, 60, 61℄. In the simplest form, the partilesare assumed to be idential and devoid of internal struture so that a partile an bedesribed ompletely by its position and veloity. A partile's position and veloityat any later time an be found by integrating the equations of motion. The bulkgas an then be desribed by a time-varying distribution funtion f(x,v, t) of allthe onstituent partiles over a phase spae with three dimensions in both spaeand veloity. Sine the initial positions and veloities of the partiles are essentiallyrandom, the distribution funtion is evaluated statistially.Behavior of the gas then orresponds to evolution of the distribution funtion.The Boltzmann transport equation, Eq. 3.1, desribes how the distribution funtionhanges in spae and time. Partiles are adveted in spae due to their veloity
(

v ∂f
∂x

), and aelerated in veloity spae by any external fores (a∂f
∂v

). The ollisionoperator C (v1,v2) is a funtion that relates the initial and �nal veloities for ollidingpartiles. In a dilute gas the partile size is muh smaller than the average spaingbetween partiles, and binary ollisions dominate the ollision operator.
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∂v
= C (v1,v2) (3.1)Marosopi properties of the gas are then obtained by taking moments of the dis-tribution funtion as in Eq. 3.2. The zeroth and �rst moments respetively produethe density and mean veloity, and the seond entral moment yields temperature.
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32A solution to Eq. 3.1 an be found for an unbounded gas at equilibrium, with noexternal fores. It an be shown that the ollision term must be zero at equilibrium,orresponding to a detailed balane for the distribution. The energy partition fun-tion for the partiles in the gas an be analyzed with statistial mehanis, leading tothe funtional form of the distribution. The remaining parameters of the distributionfuntion an then be determined by omparing the kineti moments of Eq. 3.2 withlassial thermodynami forms for entropy [61℄. The resulting Maxwell-Boltzmannor �Maxwellian� distribution given in Eq. 3.3 desribes a gas that is spatially uniformand does not vary in time. The more ompliated spae and time varying distribu-tions required to desribe pratial �ows are often intratable by analyti methods,and solutions must be obtained numerially.
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dv (3.3)The kineti desription for a plasma is more ompliated than for a gas. Mostplasmas are partially ionized, meaning that the bulk plasma onsists of neutral gaspartiles, ions, and eletrons. Separate but oupled distribution funtions are re-quired for eah speies in order to ompletely desribe the plasma.The Lorentz fore, as given in Eq. 3.4, desribes the eletri and magneti foresthat at on the harged partiles.
aEM =

e

m
(E + v ×B) (3.4)At the mirosopi level, strong eletromagneti �elds an drive olletive drifts oron�ne partile motion to orbits about magneti �eld lines. At the marosopilevel, several kinds of plasma waves arise due to the oupling between eletri andmagneti �elds as desribed in Maxwell's laws [62℄.



33In a plasma, ollisions an also alter the speies of the partiles: harged partilesan be formed in ionization ollisions, lost in reombination ollisions, or transferredin harge exhange ollisions. A separate ollision operator an be de�ned for eahof these proesses, inluding a ollision operator between partiles of a single speies
C (v1,v2), a momentum exhange operator between di�erent speies CM (f1, f2), aharge exhange operator between di�erent speies CC (f1, f2) that an at as soureor sink, an ionization soure SI (f1, f2), and a reombination sink SR (f1, f2). Forbrevity, Eq. 3.5 de�nes a total ollision operator CTot that inludes eah of theseomponents.

CTot = C (v1,v2) + CM (f1, f2) + CC (f1, f2) + SI (f1, f2) − SR (f1, f2) (3.5)The modi�ed Boltzmann transport equation for the distribution funtion fj of oneplasma speies seen in Eq. 3.6 appears very similar to the earlier form for a gas [58℄.All of the ompliations assoiated with a plasma have been grouped into moreompliated aeleration and ollision terms. A full solution for the plasma wouldrequire simultaneous solution of an equivalent expression for eah ion, eletron, andneutral speies, whih is onsiderably more di�ult than for a single neutral gasspeies.
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∂x
+ (a + aEM) · ∂fj

∂v
= CTot (3.6)More advaned versions of kineti theory an be devised to inorporate elasti ol-lisions, hemial reations, and vibrational and rotational modes for moleules [61℄.However, analytial solutions are only possible for very simple onditions, and nu-merial approahes must generally be used instead.



343.1.2 Fluid desriptionA marosopi treatment of the �ow through a ontrol volume leads to onser-vation laws for mass, momentum, and energy. Together with a state equation, theonservation equations aurately desribe the ontinuum behavior of a gas. Thisis not surprising sine the onservation laws an be obtained from kineti theory inthe limits of ontinuum or equilibrium �ow [59℄. The degree of non-equilibrium ina �ow is haraterized by the Knudsen number in Eq. 3.7 as the ratio of mean freepath between ollisions λMFP to the relevant referene length of interest L. The �uidequations are appropriate when the Knudsen number is small, typially Kn < 0.01,and the �ow is near equilibrium.
Kn =

λMFP

L
(3.7)Starting from the kineti model of a gas with an assumed Maxwellian distribution(Eq. 3.3), the zeroth, �rst, and seond moments of the Boltzmann transport equation(Eq. 3.1) orrespond to onservation of mass, momentum, and energy. A pratialdi�ulty in this approah is that any moment of the transport equation involvesontributions from the next higher moment. This losure problem is resolved byenating a moment losure, where higher order moments are expressed in terms oflower order moments. In pratie, a Chapman-Enskog expansion of the equilibriumfuntion is taken to third order terms, and the fourth moment of the expandeddistribution then depends only on the lower moments.Taking the moments of the Maxwellian distribution produes the Euler equationsfor invisid �uid �ow (Eq. 3.8). One signi�ant limiting fator in the use of the Eulerequations is that no gradient transport is possible. Physial phenomena suh as heat



35transfer and momentum transfer at a wall annot be desribed.
∂ρ

∂t
+ ∇ · (ρv) = 0

∂ (ρv)

∂t
+ ∇ · (ρvv) + ρa = −∇P (3.8)

∂ (ρe)

∂t
+ ∇ · (ρev) + ρa · v = −P∇ · vThe well known Navier-Stokes equations in Eq. 3.9 an be obtained in a sim-ilar fashion by starting with a �rst order Chapman-Enskog perturbation of theMaxwellian distribution [59℄. Again, moments of the Boltzmann transport equa-tion produe the onservation laws for mass, momentum, and energy.
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+ ∇ · (ρvv) + ρa = −∇P + ∇ · τ (3.9)

∂ (ρe)

∂t
+ ∇ · (ρev) + ρa · v = −P∇ · v + τ : ǫ −∇ · qThe Navier-Stokes equations inlude gradient transport. Momentum transportours via shear stress and energy transport ours via heat �ux. However, the devi-atori shear stress tensor τ and heat �ux vetor q introdue a losure problem sineneither is expliitly a funtion of the independent thermodynami variables. Typi-ally the equation set is losed by assuming onstitutive relations, suh as Newtonian�uid visosity to replae the stress tensor and Fourier heat ondution to replae theheat �ux vetor. The onstitutive relations may introdue additional transport o-e�ients suh as visosity and thermal ondutivity that must be determined aswell.Higher order perturbations of the Maxwellian distribution have been onsid-ered [59℄, leading to the Burnett equations. Suh models su�er from the same sortof losure problems as the Navier-Stokes equations, and produe signi�antly more



36ompliated forms of the stress tensor and heat �ux. Higher-order models are or-respondingly more di�ult to solve, and the Burnett equations in partiular areunstable without higher-order orretions.Equivalent onservation laws an be developed for a plasma by inluding eletro-magneti fore ontributions to momentum and energy [58℄. Additionally, Maxwell'slaws are used to determine onsistent eletromagneti �elds. Typially the e�etsof visous fores are negligible ompared to eletromagneti fores, so ontributionsfrom the shear stress tensor are omitted here. Collisional resistane to eletrial ur-rent a�ets momentum transport in the �ow, giving rise to the resistive term ∼ j

σand the eletrial ondutivity σ. The equation set in Eq. 3.10 is the basis of themagnetohydrodynami (MHD) equations for a plasma.
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∂tA number of analyti solutions to the MHD equations an be found after tak-ing appropriate limits and substantially rearranging these equations. Suh solutionsdesribe many plasma waves, inluding magnetosoni waves and Alfven waves [63℄.However, many pratial situations are too omplex for analyti solutions, and nu-merial solutions must be found instead.



373.2 Geometri Shadowing ModelThe entral premise of the shadowing model is that ertain partile trajetoriesare bloked or shadowed in the viinity of a physial obstrution. This shadowingauses the distribution funtion to di�er from the distribution at points far from theobstrution. Sine the marosopi plasma properties are alulated as moments ofthe distribution, plasma at a shadowed point has di�erent properties than una�etedplasma far from the surfae.The model desribed here was originally developed in the ontext of strongly�owing, magnetially on�ned, tokamak fusion plasmas [5, 64, 65℄. The derivationgiven here losely follows the approah desribed by Valsaque et al. [66℄. One minorvariation from that approah is to normalize the equations with length and veloitysales that are onsistent with other models onsidered in this dissertation.3.2.1 The Vlasov equation and shadowing solutionIn the shadowing model, the in�owing plasma is fully ionized, neutral, and on-sists of eletrons and an arbitrary distribution of ions. The ions are analyzed with akineti model derived from the Boltzmann transport equation. A steady, ollision-less, planar sheath is assumed by taking the steady state (∂f
∂t

= 0
) and ollisionless

(C = 0) limits in Eq. 3.1 and reduing the �ow to one dimension. The resulting formin Eq. 3.11 is often referred to as the Vlasov equation. Note that the distributionfuntion redues to f (x, vx) under these simpli�ations.
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∂f

∂x
+ ax

∂f

∂vx
= 0 (3.11)The aeleration in this ase simpli�es to the ontributions from the eletri�eld along the diretion of �ow, as in Eq. 3.12. Sine the �ow is one dimensional,



38there is no possible magneti �eld orientation that would generate a magneti foreontribution along the diretion of �ow. The eletri �eld is also rewritten in termsof the eletri potential for onveniene.
ax =

e

mi
Ex = − e

mi

dφ

dx
(3.12)The di�usive soure term in Eq. 3.13 is added to represent a random transfer ofpartiles between the shadowed region in the sheath and the ambient plasma [66℄.The ambient plasma has a freestream distribution funtion f∞ (vx), whih shouldbe reovered from f (x, vx) in the limit as x → −∞. A simple exhange frequenyparameter w is de�ned that assumes a uniform di�usion rate of partiles into andout of the sheath, regardless of loation or partile veloity.

SDiffusion = w (f∞ (vx) − f (x, vx)) (3.13)The shemati diagram in Fig. 3.1 shows the oordinates of the shadowing sheathmodel and representative forms of the distribution funtion at a few points in thesheath. The surfae of the probe is loated at x = 0, and the plasma is on�nedto negative values of x upstream of the probe. The veloity is de�ned suh thatpositive vx orresponds to forward �ow, toward the probe surfae, and negative vxorresponds to bakward �ow, away from the probe surfae. The ambient plasmadistribution is f∞ (vx) and remains unhanged at all points in the sheath. The loaldistribution funtion in the sheath is f (x, vx), and far from the probe the loaldistribution approahes the ambient distribution, f (x −→ −∞, vx) = f∞ (vx). Atthe surfae of the probe, the distribution funtion for bakward �owing veloitiesis identially zero, f (0, vx) = 0 for vx < 0. The exhange frequeny w is onstantthroughout the sheath, and determines the rate that partiles di�use between theambient and loal distributions.
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Figure 3.1: Shemati of the geometri shadowing model, showing the regions of the�ow and the distribution funtion.Combining Eqs. 3.11-3.13 gives a di�erential equation for the distribution funtionthroughout the sheath as in Eq. 3.14. That expression is only a model of the ionplasma. To model the neutral plasma, a similar expression for the eletron plasmawould be required and the eletrostati Poisson equation would lose the set.
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∂vx

= w (f∞ (vx) − f (x, vx)) (3.14)Using the standard plasma parameters of Debye length, λD, and plasma fre-queny, ωP , as given in Eq. 3.15, this equation an be reast in the normalizedvariables of Eq. 3.16. The normalized veloity is represented as a Mah number Mwith respet to Bohm veloity, vB, and the normalized temperature τ is the ratioof ion to eletron temperature. This hoie of normalizations is onsistent with theplanar Bohm sheath model that will follow in Se. 3.3.
λD =

√

ε0kBTe

e2ne

, ωP =

√

e2ne

ε0me

, vB = λDωP =

√

kBTe

me

(3.15)
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z =

x

λD
, W =

w

ωP
, Φ =

eφ

kBTe
, n

′

i =
ni (z)

ni,∞
, M =

vx

vB
, τ =

Ti

Te
(3.16)After normalizing and rearranging, the di�erential equation for f (z, M) is:

M
∂f

∂z
− dΦ

dz

∂f

∂M
= W (f∞ − f) (3.17)In order to obtain an analyti solution it is neessary to assume negligible eletri�elds (dΦ

dz
= 0
), whih produes the form in Eq. 3.18. The boundary onditions inEq. 3.19 require the distribution funtion to approah the ambient distribution farfrom the probe surfae, to have no bakward �ow at the probe surfae.

M
∂f

∂z
= W (f∞ − f) (3.18)

f (z → ∞, M) = f∞ (M) , f (0, M) =























0, M ≤ 0

f∞ (M) , M > 0

(3.19)This an then be solved as a non-homogeneous partial di�erential equation, andthe solution takes the form shown in Eq. 3.20. Moments of the modi�ed veloitydistribution funtion an then be taken as de�ned in Eq. 3.2 to obtain the loaldensity, mean veloity, and temperature.
f (z, M) = f∞ (M)

[

1 − H (−M) exp

(

−W

M
z

)] (3.20)The Heaviside funtion H (−M) ativates an exponential fall o� in density forbakward �owing partiles (M < 0) as the �ow approahes the surfae. This aspetdesribes a shadowing e�et where the bakward �owing partiles are not presentat the surfae, but di�use into the sheath upstream of the surfae. Forward �owingpartiles (M > 0) maintain the ambient density at all points in the sheath.This solution an also be easily modi�ed to onsider the sheath on a bakwardfaing surfae by hanging the boundary onditions. In partiular, the inequality in



41the seond ondition in Eq. 3.19 must be reversed. The solution retains the sameform exept that the sign of the Mah number argument is swithed in the Heavisidefuntion.A few immediate observations an be made about this model. First, sine theanalyti solution neglets any eletri and magneti �elds, this is only a gasdynamimodel and annot apture all of the behavior expeted for harged partiles in aneletrostati sheath. Seond, the funtional form of the ambient distribution funtionis not important in this solution, so it is appliable to any in�ow ondition. However,the nature of the ambient distribution is arried throughout the sheath. Third, thismodel annot be translated to physial dimensions unless the normalized exhangefrequeny W is found.3.2.2 Results and DisussionThe geometri shadowing model solves for the loal ion distribution funtionin the sheath based on an arbitrary freestream distribution funtion. In order tofailitate omparison with the planar Bohm sheath model, the in�ow distribution isassumed to be a Maxwellian. It is trivial to normalize one veloity omponent ofthe Maxwellian distribution funtion from Eq. 3.3 to the form seen in Eq. 3.21, withthe two parameters of drift Mah number MD = vD

vB
and freestream ion to eletrontemperature ratio τ∞ = Ti∞

Te
.

f∞ (M) dM =
1√

2πτ∞
exp

(

−(M − MD)2

2τ∞

)

dM (3.21)The diret result of the analyti solution is a modi�ed distribution funtion al-ulated from Eq. 3.20. Examples of the distribution funtion at several positionsin the sheath are shown in Fig. 3.2. The freestream plasma onditions and param-eter values for this example are: equal ion and eletron temperatures, τ = 1; ion



42

M

f(
z,

M
)

-2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

f∞(M)
f(0.5,M)
f(0,M)

Figure 3.2: Pro�les of the loal distribution funtion in the shadowing sheath solu-tion.drift veloity equal to the Bohm veloity, MD = 1; and exhange frequeny equal tothe plasma frequeny, W = 1. Changing the parameters of the ambient distributionfuntion has the usual e�et, with larger MD shifting the entire distribution to higherveloities and larger τ∞ ating to broaden the distribution.The e�et of hanging the exhange parameter W is to sale the rate of expo-nential fallo� for the shadowed veloity range. A more meaningful alternative in-terpretation is that hanging W sales the physial length of the shadowing sheath.As a pratial note, the plasma frequeny is the fastest time sale for the eletrons.The rate of ion transfer presumably ours on a slower time sale, so the normalizedexhange frequeny is expeted to be small (W ≪ 1) for a physially realisti plasma.Far from the probe surfae (z → −∞) the distribution approahes the Maxwellianof Eq. 3.21. For intermediate values of z, the distribution has an exponentiallysaled probability for veloities less than zero, and retains the ambient distribution
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Figure 3.3: Pro�le of ion number density in the shadowing sheath solution.for veloities greater than zero. At the surfae (z = 0) the modi�ed distribution isa trunated Maxwellian, with identially zero probability for all bakward �owingveloities. The loal distribution funtion is ontinuous at all z < 0, but has adisontinuity at z = 0.The thermodynami properties of the loal plasma are omputed by taking themoments of the modi�ed distribution at eah position in the sheath. Sine the mod-i�ed distribution funtion is not an elementary funtion, the moments are obtainedthrough numerial integration. The �rst moment of the distribution yields the loalion density pro�le in Fig. 3.3 and the seond moment yields the mean veloity pro�lein Fig. 3.4. Eah point on these pro�les orresponds to an integral over the modi�eddistribution funtion at that position in the sheath.Number density drops as the �ow approahes the surfae, sine the bakward�owing part of the distribution is shadowed out. Sine only partiles with negative
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Figure 3.4: Pro�le of ion mean veloity in the shadowing sheath solution.veloities are shadowed out, the mean veloity inreases near the probe surfae.This re�ets the derease in number of partiles with negative veloity, but does notindiate any aeleration of the �ow. Ion �ux is not onserved through the sheath,sine the di�usion proess represented by the exhange frequeny ats to transfer�ux between the sheath and the ambient plasma.The loal ion temperature pro�le an be omputed from the seond entral mo-ment of the loal distribution, as in Fig. 3.5. The temperature shows a gradualderease as the �ow approahes the surfae, sine the distribution tends toward asmaller spread about a higher mean veloity. The low veloity tail beomes less sig-ni�ant in the temperature alulation as the probability of the shadowed veloitiesdereases near the probe surfae.The eletron properties and plasma potential are not solved in this model. Infat, the potential must be onstant in order to omply with the assumption of
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Figure 3.5: Pro�le of ion temperature in the shadowing sheath solution.zero eletri �elds. However, it is illustrative to relax that assumption and derive aplasma potential from the ion density pro�le. This an be aomplished by assumingplasma neutrality, so that the loal eletron density is equal to the ion density, andthen further assuming the Boltzmann relation for the eletrons, so that the eletrondensity is a funtion of the plasma potential.The resulting expression for the potential is a funtion of the ion density as inEq. 3.22, and the resulting potential pro�le is shown in Fig. 3.6. In this form itis assumed that the potential far from the surfae is zero, and the potential at thesurfae annot be assigned.
Φ (z) = ln

(

n
′

i

) (3.22)Valsaque et al. have ompared this derived potential pro�le with the potentialpro�le obtained from numerial kineti simulations that inlude eletri �elds [66℄.The analytial shadowing pro�le shows surprisingly good agreement with the kineti
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Figure 3.6: Pro�le of plasma potential in the shadowing sheath solution.model results in that paper, prompting the onlusion that eletri �eld e�ets arenot predominant and that geometri shadowing is the primary mehanism that drivesion properties in the sheath. The primary e�et of the eletri �eld seems to be asmoothing of the distribution funtion that avoids the abrupt hange in derivativeat M = 0 that appears in the analytial distribution funtion.While there is some support for the auray of the derived potential, the geo-metri shadowing model remains fundamentally a gasdynami model. The trendsobserved in the loal ion density, veloity, and temperature pro�les are all onsistentwith a neutral, expanding �ow. Essentially, the bakward �owing partiles behaveas a ounter�owing wake region superimposed on the uniform forward �ow. A moremeaningful alternative interpretation is that bakward �owing partiles expand intothe sheath from the ambient plasma in order to replae the partiles that are shad-owed out by the surfae.



473.3 Collisionless Planar Bohm SheathOne of the earliest solutions to the plasma sheath is the ollisionless planar Bohmsheath model. In this solution, a neutral plasma is modeled with a ollisionless �uiddesription of the ions and the Boltzmann relation for the eletrons. Self-onsistenteletrostati �elds are determined through the eletrostati Poisson equation. Theonept of a presheath and an important stability riterion are introdued in theanalysis of this sheath model.The derivation presented here is unique in that it onsiders multiple ion speieswith arbitrary harge states. This form is useful for appliation to the ompliatedion distributions expeted in an EP exhaust plume. The original single speies forman be easily reovered at any point, and is better suited to demonstrate the Bohmriterion.3.3.1 Fluid equations and a solutionThe in�owing plasma in this model is fully ionized, neutral, and onsists ofisothermal eletrons and one or more old ion speies (i.e., Ti = 0) �owing towarda perfetly absorbing surfae [1, 3℄. In the sheath, eletrons and ions only interatwith the self-onsistent potential �eld. For simpliity, the potential is assumed to bezero and have zero gradient at the sheath edge, φ (x = 0) = 0 and ∇φ|0 = 0. At thesurfae, the potential is a �xed negative value φ (x = L) = −φw. This geometry isshown shematially in Fig. 3.7. The thikness of the sheath L is not known initially.Under the assumptions that the sheath is steady, ollisionless, and planar, onser-vation of mass for eah ion speies redues to onservation of mass �ux as in Eq. 3.23,whih an be further simpli�ed to onservation of number �ux by dividing throughby the ion mass. The subsript j refers to the jth ion speies, and the subsript s
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Figure 3.7: Shemati of the planar Bohm sheath geometry.denotes properties at the edge of the sheath.
mjnjsvjs = mjnjvj (3.23)Conservation of energy in a steady, ollisionless, planar sheath redues to theLagrangian form in Eq. 3.24, onsisting of a kineti energy term (

1
2
mv2

) and aneletrostati potential energy term (eφ). The ion harge state is an integer multiple
Zj of the eletron harge, whih fators into the potential energy term.

1

2
mjv

2
js =

1

2
mjv

2
j (x) + Zjeφ (x) (3.24)The veloity at any point in the sheath an then be related to initial veloityand loal plasma potential by rearranging the onservation of energy to the form inEq. 3.25. This intermediate result an be ombined with the onservation of number�ux to yield Eq. 3.26, whih expresses the loal ion density only in terms of the



49sheath edge properties and the loal plasma potential.
vj (x) = vjs

(

1 − 2
Zjeφ (x)

mjv
2
js

)1/2 (3.25)
nj (x) = njs

vjs

vj (x)
= njs

(

1 − 2
Zjeφ (x)

mjv
2
js

)−1/2 (3.26)The isothermal eletron �uid is assumed to follow the Boltzmann relation through-out the sheath. Sine the in�owing plasma is neutral, the eletron density at thesheath edge must be equal to the total positive harge density due to the ions. Thatdensity is found by taking a sum over all ion densities, weighted by the harge stateof eah speies. The resulting nes in Eq. 3.27 gives the eletron density at the sheathedge.
nes =

∑

Zjnjs (3.27)The sheath edge beomes the preferred referene point for the Boltzmann relation,Eq. 3.28, sine both the potential and eletron density are known there.
ne (x) = nes exp

(

eφ (x)

kBTe

) (3.28)In Eq. 3.29 the eletrostati Poisson equation relates the potential to the loalharge densities. A weighted sum over the various ion speies is neessary to obtainthe positive harge density.
d2φ

dx2
= − e

ε0

(

∑

Zjnj (x) − ne (x)
) (3.29)Inserting Eqs. 3.26 and 3.28 into this form produes the non-linear di�erentialequation for potential shown in Eq. 3.30. To simplify the notation, φ (x) is writtenas φ from this point on.
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−
∑

j

Zjnjs
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50This equation an be reast using the normalized variables of Eq. 3.31. TheDebye length λD and Bohm veloity vB are appropriate length and veloity sales,and the Mah number with respet to Bohm veloity appears. A new parameter rjsis the freestream harge fration for the jth ion speies.
z =

x

λD
, Mj =

vj

vB
, Φ =

eφ

kBTe
, rjs =

njs

nes
(3.31)The di�erential equation takes the form in Eq. 3.32 after normalizing and rear-ranging.

d2Φ

dz2
= exp (Φ) −

∑

j

Zjrjs

(

1 − 2
ZjΦ

M2
j

)−1/2 (3.32)This form an be integrated one analytially by multiplying the entire expressionby dΦ
dz

dz as shown in Eq. 3.33. The limits of integration are from the sheath edge at
z = 0 to any arbitrary position in the sheath, 0 < z < L. The boundary onditionson potential at the sheath edge are Φ (0) = 0 and dΦ

dz
|0 = 0. Note that eah term inthe summation an be integrated separately.

∫ z

0

d2Φ

dz2

dΦ

dz
dz =

∫ z

0

exp (Φ)
dΦ

dz
dz −

∫ z

0

∑

j

Zjrjs

(

1 − 2
ZjΦ

M2
j

)−1/2
dΦ

dz
dz (3.33)The slightly more ompliated form in Eq. 3.34 is found after integration. Atthis point a numerial method is required to integrate a seond time to obtain thepotential. The modi�ed form in Eq. 3.35 is better suited to numerial integration,although some are must be taken to hoose the proper root of the radial.
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= exp (Φ) − 1 +
∑

j

rjsM
2
j

[

(

1 − 2
ZjΦ

M2
j

)1/2

− 1

] (3.34)
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=
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]







(3.35)Sine the length of the sheath is not known, it is useful to perform a oordinatetransform suh that the probe surfae is at z = 0 and then integrate this equation
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Figure 3.8: Pro�le of plasma potential in the Bohm sheath solution.by marhing from the surfae out to the sheath edge at z = −L. Sine the potentialat the surfae is known, dΦ
dz

an be alulated and Eq. 3.35 an then be solvedas an initial value problem. This approah reveals that the solution for potentialapproahes Φ = 0 asymptotially, leading to an in�nitely long sheath. In pratie,the solution an be terminated at an arbitrary distane or potential.An example solution is obtained for the ase M = 1. The pro�le of plasmapotential is shown in Fig. 3.8. One the potential has been obtained, the loal plasmaproperties an be alulated from previous expressions. The ion veloity and densityan be alulated from Eqs. 3.25-3.26, and the eletron density an be alulatedfrom Eq. 3.28. The pro�les of ion and eletron density are shown in Fig. 3.9.3.3.2 The Bohm riterionSine the onditions for a steady solution are not readily apparent from Eq. 3.35,onsider the simpli�ation to a plasma with one speies of single harge ions. The



52

z, λD

N
um

be
rd

en
si

ty
,n

es

-20 -15 -10 -5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ni

ne

Figure 3.9: Pro�les of ion and eletron number density in the Bohm sheath solution.summation over speies simpli�es to a single term, the freestream harge frationbeomes rjs = 1, and the harge state beomes Zj = 1 as in Eq. 3.36. The boundaryonditions on potential at the sheath edge remain Φ (0) = 0 and dΦ
dz
|0 = 0.
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=

√

√

√

√2

{

exp (Φ) − 1 + M2

[

(

1 − 2
Φ

M2

)1/2

− 1

]} (3.36)The quantity in the radial must be positive for a non-osillatory sheath solution,and this imposes a onstraint on the Mah number when the potential Φ is small. Inorder to evaluate that onstraint, both terms ontaining the potential are expressedas Taylor expansions about Φ = 0 in Eqs. 3.37 and 3.38, following the analysis byBohm [3℄. The expansions are arried out to seond order, sine the lower orderterms will anel out.
exp (Φ) = 1 + Φ +

Φ2
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+ . . . (3.37)
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53The expansions are then inserted into the argument of the radial in Eq. 3.39 andsimpli�ed to the result in Eq. 3.40. The inequality indiates the ondition to ensurea stable sheath solution.
1 + Φ +

Φ2

2
− 1 + M2

[

1 − 1

2

(

2

M2
Φ

)

− 1

8

(

2

M2
Φ

)2

− 1

]

≥ 0 (3.39)
Φ2

2

(

1 − 1

M2

)

≥ 0 (3.40)Drawing a onlusion from the inequality, a steady solution for the sheath onlyexists if M > 1. This is the Bohm riterion, whih has the physial interpretationthat the ion speed must be greater than the Bohm veloity at the edge of the sheath.However, in many appliations a stationary bulk plasma is in ontat with a surfae.In suh ases a presheath region is required, where small eletri �elds at to ael-erate ions up to the Bohm veloity at the edge of the sheath. A presheath requiresthe original assumption of zero eletri �eld at the sheath edge to be relaxed.3.3.3 Results and DisussionExat similarity with the geometri shadowing sheath model onditions annotbe ahieved. However, the potential at the surfae and the in�ow Mah number anbe mathed in order to failitate a omparison between the results from both models.The shadowing model example was solved for a single ion population with a Mahnumber MD = 1, and the alulated potential at the probe surfae in Fig. 3.6 is
Φw = −0.1728 at z = 0. These onditions satisfy the Bohm riterion, so the samewall potential and Mah number are assumed in this example solution of the Bohmsheath model.The di�erential equation in Eq. 3.36 is solved for the potential pro�le in thesheath as shown in Fig. 3.10. Sine the Bohm riterion is satis�ed, the solution has
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Figure 3.10: Pro�le of potential from the Bohm sheath.no osillatory aspet and dereases monotonially from the freestream to the surfaeat z = 0. The potential asymptotially approahes zero far from the surfae asmentioned previously.The ion and eletron densities an then be alulated from this potential usingnormalized forms of the Boltzmann relation from Eq. 3.28, and loal ion densityfrom Eq. 3.26. The Bohm sheath solution indiates a non-neutral region near theprobe, as evidened by separation of the density pro�les in Fig. 3.11. The non-neutral region is a physially meaningful feature, sine the large disparity betweenion and eletron mass makes the eletrons more mobile than the ions. Eletronsrespond to the negative probe potential more strongly than ions, leading to a regionof non-neutral plasma near the surfae.Although both ion and eletron density derease as the �ow approahes the sur-fae, two di�erent proesses are responsible. The negative potential ats to aelerate
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Figure 3.11: Pro�les of ion and eletron density from the Bohm sheath.the ions toward the probe, as seen from the pro�le of ion veloity in the sheath inFig. 3.12. The �ux is the produt of loal density and loal veloity, and it is learfrom Eqs. 3.25-3.26 that the �ux must be onstant for the ions. Sine the ion �owmaintains a onstant �ux, the ion density dereases as the ion veloity inreases.In ontrast, the negative potential ats to repel the eletrons, so only those ele-trons with su�ient initial kineti energy are able to reah the loal potential. In thismodel the eletrons follow the Boltzmann relation, so the eletron density shows anexponential fall o� as the potential dereases. Sine the wall potential is relativelysmall ompared to the eletron temperature in this example, there is not a signi�antderease in eletron density.One of the attrative features of the Bohm sheath model is that the solution an bereadily returned to dimensional variables if the eletron temperature and freestreamdensity are known. This proess is equally straightforward for the situation with
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Figure 3.12: Pro�le of ion veloity from the Bohm sheath.multiple ion omponents. This makes the Bohm sheath a useful tool for pratialdesign purposes in both experimental and omputational settings.3.4 Comparison of model resultsThe geometri shadowing sheath model and the planar Bohm sheath model an-not reprodue exatly the same in�ow onditions. This limitation stems from thedi�erent assumptions about the in�owing ions made in the models. The Bohmsheath model assumes one or more old ion speies, with zero ion temperature, whilethe shadowing sheath model assumes a Maxwellian ion distribution with a non-zerotemperature.The shadowing sheath model ould ahieve a old ion ondition by taking thelimit of τ∞ = 0, orresponding to an ion temperature that is negligible ompared tothe eletron temperature. However, that auses the normalized Maxwellian distri-bution (Eq. 3.21) to approah a delta funtion at the drift Mah number. All of the



57interesting behavior in the shadowing model derives from partial shadowing of thedistribution funtion, so that limit would produe onstant properties throughoutthe sheath.Instead, it is more useful to ahieve partial similarity by mathing the in�owingion Mah number and some property at the surfae. The obvious hoie is to set thepotential at the surfae, sine that is usually ontrolled in experimental appliations.In the shadowing sheath model however, the surfae potential is not oupled into thesolution and is only found afterward. As suh, the shadowing sheath model mustbe solved �rst, and the alulated surfae potential an then be used in the Bohmsheath model.This proess was arried out in Ses. 3.2.2 and 3.3.3. The ion density pro�leso�er the most meaningful omparison, sine both sheath models atually alulateion density. Then a visual inspetion of Fig. 3.3 for the shadowing sheath and the iondensity pro�le of Fig. 3.11 for the Bohm sheath gives some insight into how well themodels agree. At �rst glane, there seems to be no agreement at all. The pro�le inthe shadowing model shows a thin sheath, with all of the density variation ourringwithin 5 Debye lengths of the surfae. The pro�le from the Bohm sheath modelshows a muh thiker sheath, with nearly 7% deviation from the freestream densityat more than 15 Debye lengths from the surfae.However, the shadowing sheath model has one undetermined parameter, the ex-hange frequeny W . The exhange frequeny is equal to the plasma frequeny inthe previous solution, whih implies that ion partile exhange ours on an eletrontimesale. In fat the ion exhange frequeny should our on an ion timesale, whihwould orrespond to a muh smaller value of W . The exhange frequeny modi�esthe length sale of the shadowing sheath, and a smaller value produes a thiker



58sheath.An estimate of the exhange frequeny that brings the shadowing sheath modelinto better agreement with Bohm sheath model is obtained by a least-square errortehnique. An ion number density pro�le is omputed from the shadowing sheathmodel for varying W . Sine the distribution at the surfae is not a�eted, thepotential at the surfae is unhanged and the previous Bohm sheath solution an beused as a �xed referene. A value of W is found that minimizes the sum of squareerror between the ion density pro�les from both models, omputed at 1500 �xedpoints along the pro�les.For the in�ow onditions of MD = 1 and τ∞ = 1, the least-square �t for theexhange frequeny is found to be W = 0.088. The resulting pro�les of ion densityare shown in Fig. 3.13, and pro�les of potential are shown in Fig. 3.14. For the iondensity the agreement between the shadowing sheath model and the Bohm sheathmodel is generally very good. The potential shows larger disrepanies, but reallthat in the shadowing sheath model the potential is assumed to be related to the iondensity via neutrality and the Boltzmann relation.It should be noted that the value of the exhange frequeny reported above isonly e�etive at the given �ow onditions. There is no single value that an ahieveonsistent agreement between the two sheath models over a broad range of plasmaonditions. It may be possible to develop a funtional form of the exhange frequenyas W (MD, τ∞), but that lies beyond the sope of this work.From a philosophial viewpoint, the two models are intended to desribe di�erentaspets of the sheath. The Bohm sheath model isolates the e�ets of self-onsistenteletrostati �elds, while the shadowing model isolates the e�ets of non-equilibriumin the loal distribution funtion. Together these models provide some understand-



59

z

n
i’

-15 -10 -5 0
0.7

0.8

0.9

1

1.1

Shadow
Bohm

Figure 3.13: Pro�les of ion density from the Bohm sheath and the best-�t shadowingsheath.
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60ing of the physial proesses at work, and form the foundation for more advanedmodeling tehniques. In the next hapter, a omputational ode is disussed thatinorporates elements from the kineti desription and the �uid desription in orderto ahieve a high-�delity simulation of a plasma.



Chapter IVHybrid Fluid PIC-DSMC Numerial Model
A reurring theme is that the governing equations for a plasma annot be solvedanalytially for most pratial appliations. As a result, a variety of tehniques havebeen developed to obtain numerial solutions to the kineti models, Euler equations,Navier-Stokes equations, and MHD equations. This hapter desribes a hybrid modelthat inorporates both a partile method and a �uid method to desribe a plasma.When hoosing a numerial model it is important to identify the degree of non-equilibrium in the �ow. For strongly ollisional �ows that remain near equilibrium,a �uid method is muh less omputationally intensive than a partile method andshould produe equally aurate results. At the other extreme, nearly ollisionless�ows or �ows that inorporate a strongly non-equilibrium proess may require apartile method to obtain aurate results at all. In some ases one region of a�ow might be adequately treated with a �uid method, while another region of the�ow requires the inreased �delity of a partile method. Flows with loalized non-equilibrium an bene�t from hybrid tehniques desribed by Shwartzentruber etal. [67℄ that use either �uid or partile methods for distint regions of a �ow.Plasmas are omposed of both ions and eletrons, and the large mass ratio be-tween those partiles introdues additional forms of non-equilibrium. Ionization en-61



62ergy from generating the plasma is arried primarily by the eletrons, resulting in ahigher temperature for eletrons than for ions. The ombination of higher tempera-ture and lower mass leads to a higher ollision rate for eletrons, so that the eletronrelaxation time is muh shorter than the ion relaxation time. Although ollisions be-tween ions and eletrons generally at to bring the entire plasma toward equilibrium,the mass ratio makes these ollisions muh less e�etive than ollisions between twoeletrons or ollisions between two ions.Sine there is a signi�ant di�erene between the eletron and ion time sales,it is useful to onsider an intermediate time sale where the ion motions are au-rately resolved and the eletron motions an be averaged. This leads to a hybridapproah that uses a partile method to model the ions and a �uid method to modelthe eletrons. Hybrid tehniques of this sort have been used suessfully for EPmodeling [68, 69, 70℄, and are also well-suited to plasma diagnosti modeling.4.1 Ion and neutral partile modelsIt is not feasible to solve the full kineti desription of an ion plasma, but prob-abilisti partile simulations inorporate muh of the same underlying physial rea-soning. Two omplementary methods are used to model the ion and neutral partilesin this work. The Partile In Cell (PIC) method is used to move the ion and neutralpartiles and to alulate self-onsistent eletri �elds that at on harged parti-les. The Diret Simulation Monte Carlo (DSMC) method is used to model partileollisions.4.1.1 Partile In CellThe motion of a harged partile is determined by the olletive eletri and mag-neti �elds generated by all other harged partiles in the plasma. In order to obtain



63a physially meaningful solution, the di�erential equations for eletri and magneti�elds in Maxwell's laws must be solved in tandem with the partile equations ofmotion.The PIC method [47℄ aomplishes this by traking maropartile motion andeletri �eld alulations on a omputational grid. Eah maropartile representsmany ions or neutrals, and is assigned average properties from the presribed distri-bution funtion. Partile movement an be deoupled from the �eld alulations byhoosing a time step suh that the displaement is small and the loal �elds do notvary signi�antly. This method onsists of the following four main steps.First, the harge density is weighted from partile position to the nodes of theomputational grid. In this work, the weighting sheme is a simple bilinear inter-polation for an axisymmetri, strutured, retangular grid. Alternative weightingshemes an be devised for this and other omputational grid geometries.Seond, eletri �elds are alulated by solving the appropriate eletrostati oreletrodynami equation over all the nodes of the omputational grid. Often theeletri potential is solved instead by using the eletrostati Poisson equation, andeletri �elds are then alulated from the gradient of the potential. Maxwell'sequations must be solved if magneti �elds are signi�ant or if aurate time evolutionis required.Third, the partile aeleration is alulated by weighting the eletri �elds fromthe nodes to the partiles. The partile veloity an then be updated as well. Again,a simple bilinear interpolation is used in this work.Fourth, partiles are moved for a time step with the new veloity. Any boundaryinterations are handled at this point, inluding partile injetion at the inlet andpartile removal at edges. The veloity of new partiles is assigned probabilistially



64from the assigned distribution funtion at the inlet.These four steps are then repeated over a desired number of iterations. Dependingon how the partiles are initialized in the omputational domain, some initial tran-sients may our. Sampling of the instantaneous density and eletri �elds allowsthe statistial satter to be redued over a number of iterations.The PIC method is essentially a ollisionless formulation of kineti theory for aplasma. However, ollisions provide the mehanism for ionization and reombinationand ontribute to the eletrial resistane in a plasma. Sine these proesses maya�et the urrent, it is important for a plasma diagnosti simulation to have theapability to model ollisions.4.1.2 Diret Simulation Monte CarloCollisions are inorporated through the DSMC method, whih was developedextensively by Bird [48℄. Sine the atual number of partiles and ollisions is far toolarge for diret simulation, DSMC traks maropartile motion on a omputationalgrid. At eah ollision time step, partiles are paired up by omputational ell andollisions are evaluated statistially. This method an be readily integrated withthe PIC method to inlude both ollisions and harged partile motion with self-onsistent eletri �elds.In a PIC-DSMC formulation, the main role of the DSMC method is to handleollisions. This involves a series of alulations to determine the number of ollisionsin eah ell, the ollision probability for eah pair of partiles, and the new partileproperties after a ollision ours.The number of simulated ollisions in a ell an be alulated by taking theprodut of ollision frequeny and the ollision time step, with an additional fator



65aounting for the maropartile weights in the ell. The result from kineti theoryin Eq. 4.1 gives the ollision frequeny νab of speies a with speies b as a funtion ofthe density of the target speies nb, the mean relative speed vab, and a ollision rosssetion σab [59℄. In this work only xenon-xenon ollisions are modeled. A variablehard sphere (VHS) model with ω = 0.12 is used to alulate the atom-atom ollisionross setion as in 4.2. The ross setion for atom-ion harge exhange ollisions isgiven by the empirial �t in Eq. 4.3 [71℄. In these expressions the relative speed isin units of m
s
. No ion-ion ollisions are modeled.

νab = nbvabσab (4.1)
σXe−Xe =

2.12 × 10−18 m2

v2ω
ab

(4.2)
σXe−Xe+ = 2 [142.21 − 23.30 log |vab|]

(

12.13

13.6

)− 3

2

× 10−20 m2 (4.3)A random pair of partiles is seleted from the ell for eah simulated ollision.Whether or not the ollision ours is determined statistially by an aeptane-rejetion method, where a random number is ompared to the ollision probability.If the random number is larger than the probability, the ollision ours and thepartiles veloities are proessed.The post-ollision partile veloities are alulated as a result of random sat-tering, subjet to onservation of momentum and energy for the partiles. A newrelative veloity is alulated, and a new angle is seleted. The new veloities forboth partiles are then alulated from the new relative veloities and the enter ofmass veloity.These steps are repeated at every ollision time step. As was assumed in the PICmethod, the ollision time step is small enough that partile displaement is smalland the partile movement an be deoupled from the ollision alulations. Again,



66sampling an be used to redue the statistial satter introdued by this treatmentof the ollisions.4.2 Eletron �uid modelsThe eletron �uid models used in this work are derived from the MHD equationspresented in Chapter III. Three distint models are used: the Boltzmann model,the non-neutral detailed model, and the Poisson-onsistent detailed model. Thesemodels progressively inrease the �delity of the eletron �uid from a simple Boltz-mann relation to a oupled eletrostati �uid model. Eah of the models has uniquerequirements and limitations as desribed in the following setions.4.2.1 Derivation from eletrostati MHD equationsEah of the three eletron �uid models an be derived from the eletrostati MHDequations. The eletrostati MHD equations are obtained by taking the limit of zeromagneti �elds (B = 0) in the �uid onservation laws and Maxwell's laws. The re-sulting equation set inludes onservation of mass or ontinuity, Eq. 4.4, onservationof momentum, Eq. 4.5, onservation of energy, Eq. 4.6, and the eletrostati Poissonequation, Eq. 4.7. These equations are written spei�ally for an eletron �uid, andthe negative eletron harge has been taken into aount by adjusting the signs ofthe relevant terms.
∂ρe

∂t
+ ∇ · (ρeve) = 0 (4.4)

∂ (ρeve)

∂t
+ ∇ · (ρeveve) = −∇Pe − ρe

e

me
E + ρe

e

me

je

σ
(4.5)

∂ (ρee)

∂t
+ ∇ · (ρeeve) = −Pe∇ · ve − ρe

e

me

E · ve −∇ · q (4.6)
∇ · E =

e

ε0
(ni − ne) (4.7)



67A number of assumptions and simpli�ations are ommon to all three eletron�uid models. The �rst simpli�ation is to take the steady state limit, so that ∂
∂t

= 0in eah of the onservation laws.The density ρe in the onservation laws is rewritten in terms of number density
ne aording to Eq. 4.8. This provides a single onsistent variable for the onser-vation laws and the eletrostati Poisson equation, and also avoids any numerialompliations from working with the small value of the eletron mass.

ρe = mene (4.8)The ideal gas law is assumed as the equation of state for the eletron �uid.The pressure and internal energy an then be replaed by the forms in Eq. 4.9 andEq. 4.10, whih use the density and temperature.
Pe = nekBTe (4.9)
e =

3

2

kBTe

me
(4.10)The eletri �eld is expressed in terms of the plasma potential φ as given inEq. 4.11. With this substitution, the eletrostati Poisson equation beomes a math-ematial Poisson equation for the potential.

E = −∇φ (4.11)The heat �ux vetor is assumed to follow the Fourier heat ondution law givenin Eq. 4.12, with the eletron thermal ondutivity κ as a parameter.
q = −κ∇Te (4.12)The eletron transport oe�ients are evaluated using the basi de�nitions frommoleular transport [60℄. The eletrial ondutivity σ in Eq. 4.13, and the thermal



68ondutivity κ in Eq. 4.14, both depend on the total eletron ollision frequeny νe.
σ =

nee
2

meνe

(4.13)
κ =

2.4nek
2
BTe

meνe

(

1

1 + νei

νe

√
2

) (4.14)The total eletron ollision frequeny is the sum of the eletron-ion ollision fre-queny νei and the eletron-neutral ollision frequeny νen as de�ned in Eq. 4.15.The eletron-ion ollision frequeny in Eq. 4.16 is alulated from lassial elastisattering [60℄, while the eletron neutral ollision frequeny in Eq. 4.17 is alulatedusing an empirial �t [72℄ of the eletron-neutral ross setion Qen (Te) in the generalform of Eq. 4.1.
νe = νei + νen (4.15)
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νen = nn

4

3

(

8kBTe

πµen

)
1

2

Qen (Te) (4.17)After making these assumptions and substitutions, the equation set an be writtenas in Eqs. 4.18-4.21. The remaining terms on the left hand side of the momentum andenergy equations have been expanded and simpli�ed using the ontinuity equation.In this form it appears that there are four oupled equations for �ve independentvariables: ne, ve, Te, φ, and je. However, the urrent an be expressed in terms ofthe density and veloity as je = eneve. For now the urrent is left in plae as areferene marker for further manipulation.
∇ · (neve) = 0 (4.18)

meneve∇ · ve = −∇ (nekBTe) + nee∇φ + nee
je

σ
(4.19)

neve · ∇
(

3

2
kBTe

)

= −nekBTe∇ · ve + nee∇φ · ve + ∇ · (κ∇Te) (4.20)
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∇2φ = − e

ε0

(ni − ne) (4.21)Following the example of Boyd and Yim [73℄, there are a few additional manip-ulations that will simplify the numerial solution.By introduing a stream funtion Ψ as de�ned in Eq. 4.22, the ontinuity equa-tion beomes a Laplae equation as given in Eq. 4.23. With this modi�ation, allof the di�erential equations from the onservation laws and the eletrostati Pois-son equation are ultimately expressed in terms of the Laplaian operator. A singlesolution tehnique an then be used to solve eah of the di�erential equations.
∇Ψ = nev (4.22)
∇2Ψ = 0 (4.23)The momentum equation an be simpli�ed by negleting the inertial term (∼ menev),sine it is muh smaller than the other terms. The remaining terms an then be re-arranged as Eq. 4.24 to isolate the eletron urrent.

je = σ

[

kB

e

(

∇Te + Te
∇ne

ne

)

−∇φ

] (4.24)The energy equation an be rearranged as shown in Eq. 4.25, whih failitates asolution for the temperature.
∇2Te +

(∇κ

κ
− 3
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κ
nev

)

· ∇Te −
(

kB

κ
ne∇ · v

)

Te −
e

κ
ne∇φ · v = 0 (4.25)All three eletron �uid models work with this modi�ed set of equations: theeletrostati Poisson equation, Eq. 4.21, the ontinuity equation, Eq. 4.23, the urrentequation, 4.24, and the temperature equation, Eq. 4.25. Further development of thethree models diverges at this point, so eah model is desribed separately in thefollowing setions.



704.2.2 Boltzmann modelThe Boltzmann model is obtained by making the assumptions that lead to theBoltzmann relation. Brie�y, the eletron �uid must be unmagnetized, ollisionless,isothermal, and urrentless. The �rst assumption, that the �uid is unmagnetized,has already been made early in the preeding development as B = 0.The ollisionless assumption is equivalent to the limit νe → 0. Referring to thetransport oe�ients in Eqs. 4.13 and 4.14, this limit orresponds to in�nite eletrialand thermal ondutivities. This is atually onsistent with the other assumptionsof isothermal and urrentless �uid. A gradient in temperature drives heat �ux,whih ats to redue the gradient. In the limit of in�nite thermal ondutivity, theheat �ux redistributes the thermal energy instantaneously and produes a uniformtemperature. A uniform harge distribution results from the limit of in�nite eletrialondutivity, so no gradient in harge exists to a drive urrent.The isothermal assumption makes Te onstant throughout the �ow, whih replaesthe temperature equation of Eq. 4.25 entirely. It also eliminates a term from theurrent equation, sine ∇Te = 0.The urrentless assumption is applied by setting je = 0 in the urrent equation.Fatoring out the ondutivity leaves only two terms from the right hand side ofEq. 4.24, whih must sum to zero as in Eq. 4.26.
0 =

kBTe

e

∇ne

ne
−∇φ (4.26)This an be rearranged and solved by separation of variables, using the refereneondition ne = ne0 where φ = φ0.
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=
e

kBTe

(φ − φ0)Finally, the solution an be rearranged to the Boltzmann relation form in Eq. 4.27,whih gives the eletron density in terms of the plasma potential.
ne = ne0 exp

[

e

kBTe
(φ − φ0)

] (4.27)This �uid model is exatly onsistent with the Boltzmann relation assumed inthe analyti sheath models. The hybrid �uid PIC results from this model orrespondlosely to the analysis in the planar Bohm sheath model, so results from this modelare expeted to be in exellent agreement with the planar Bohm sheath. Compar-ison of results with the analyti sheath solution an be used to validate the overalloperation of the hybrid model.The Boltzmann model is also useful for identifying and quantifying any two di-mensional e�ets, sine the only substantive di�erene from the planar Bohm sheathis the axisymmetri geometry. This is a useful baseline omparison to have beforeonsidering the more ompliated detailed �uid models.4.2.3 Non-neutral detailed modelThe non-neutral detailed model is obtained by applying the harge ontinuityondition of Eq. 4.28.
∇ · je = 0 (4.28)Inserting the expression for urrent from Eq. 4.24 into this form produes Eq. 4.29,whih is a signi�antly more ompliated expression of the harge ontinuity ondi-tion.
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72Sine the energy equation is solved for temperature, this equation an either besolved for plasma potential or for eletron number density. In the work by Boyd andYim, this was solved for the plasma potential [73℄, and the assumption of plasmaneutrality was used in plae of the eletrostati Poisson equation.Expanding Eq. 4.29 and rearranging to the form in Eq. 4.30 shows the haraterof the di�erential equation when solved for plasma potential. The oe�ients on thepotential terms are simple, but there is a ompliated soure term.
∇2φ +

(∇σ
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· ∇φ − kB

e
∇ ·
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σ
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∇Te + Te
∇ne

ne

)]

= 0 (4.30)The assumption of neutrality is not valid in a plasma sheath, so the eletrostatiPoisson equation is solved for eletron density in Eq. 4.31 to omplete the non-neutraldetailed model. This alulation is not omputationally reliable: the oe�ient ε0

e
isvery large, ∼ 5.5 × 107, but the alulated value of the Laplaian of the potential isvery small. Put another way, there is very poor resolution of eletron density fromthis alulation.

ne = ni −
ε0

e
∇2φ (4.31)This formulation is sensitive to statistial satter in the ion density reported fromthe PIC model. Averaging tehniques an be used to redue the satter, but it is moree�etive to maintain a large number of omputational partiles per ell. Additionally,any averaging introdues some lag into the oupling between eletron density andpotential. This raises the possibility of arti�ial osillation in the plasma potentialand eletron density that ould overwhelm the expeted physial behavior.Sine the Laplaian of eletron density appears in Eq. 4.30 and the density itselfis alulated from the Laplaian of plasma potential, the di�erential equation forpotential begins to resemble a biharmoni equation. That is, taking the gradient or



73Laplaian of number density introdues higher order derivatives into the di�erentialequation for potential. The boundary onditions on potential must then be handledarefully to avoid introduing singularities in higher order derivatives. One approahis to alulate fourth order aurate boundary values, but this is di�ult to enforeat points near the orners of the probe. An alternative approah is to use a stenilto alulate average values of ∇2φ along boundaries.The original neutral detailed model has been used suessfully, and there is rea-son to believe that relaxing the assumption of neutrality would result in a funtionalnon-neutral model. However, as will be seen in the next hapter, the spei� imple-mentation of the non-neutral model in this work does not funtion as intended. Theinitialized onditions and order of alulations during iteration an only lead to aneutral solution with ∇2φ = 0 throughout the �ow �eld.4.2.4 Poisson-onsistent detailed modelThe Poisson-onsistent detailed model is also obtained by applying the hargeontinuity ondition, and derives from the same intermediate result in Eq. 4.29.However, that equation is solved for eletron number density in this model, ratherthan for plasma potential.The alternative arrangement in Eq. 4.32 shows the harater of the di�erentialequation when solved for number density. The identity ne∇ 1
ne

= −∇ne

ne
has beenused to obtain a similar form in the ∇ne oe�ient.
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ne = 0 (4.32)This form is more ompliated than the di�erential equation for potential. Onepartiular issue is that the ∇ne oe�ient is non-linear. There are no soure termsin this arrangement, but that is not a signi�ant advantage.



74The pereived bene�t of the Poisson-onsistent model is that the eletrostatiPoisson equation an be solved for plasma potential. This avoids the poor resolutionissue in the non-neutral model, sine the ion and eletron densities are of the sameorder and ontribute to a soure term in the di�erential equation for plasma potential.This formulation also preludes the problems with statistial satter and bound-ary onditions that hampered the non-neutral model. Di�erential equations are muhmore forgiving of loalized statistial satter than algebrai equations, sine the in-tegration proedure that leads to the solution ats to dissipate random variations.The PIC model ion density an be used diretly in the eletrostati Poisson equationwithout any averaging, even with a relatively small number of partiles per ell.Unlike the non-neutral model, the di�erential equation for number density doesnot indiretly inlude higher order derivatives. The eletrostati Poisson equationrelates the Laplaian of plasma potential to the eletron number density, so at worstthe di�erential equation for number density has additional non-linearity in its oef-�ients. Standard seond order aurate boundary onditions are su�ient for thismodel.The Poisson-onsistent model is used for the �rst time in this work. Although thenon-linearity in this model initially presented a signi�ant obstale, the problem wasoverome by assuming onstant oe�ients during eah solution of the di�erentialequation. In the next hapter it will be shown that the Poisson-onsistent detailedmodel aurately aptures the features of the eletrostati sheath.4.2.5 Summary of the eletron �uid model equationsIt is onvenient to have the various equations for eah �uid model organized inthe side-by-side omparison of Table 4.1. The iteration proedure is also more readily



75apparent in this form.Table 4.1: Summary of eletron �uid model equationsBoltzmann Non-neutral Poisson-onsistentContinuity Eq. 4.23−→ Ψ, ve Eq. 4.23−→ Ψ, ve Eq. 4.23−→ Ψ, veCurrent Eq. 4.27−→ ne Eq. 4.30−→ φ Eq. 4.32−→ nePoisson Eq. 4.21−→ φ Eq. 4.31−→ ne Eq. 4.21−→ φTemperature Isothermal Eq. 4.25−→ Te Eq. 4.25−→ Te4.3 Hybrid �uid PIC model iteration yleSine the PIC, DSMC, and �uid models have been deoupled over di�erent timesales, the models an be solved iteratively. The yle for an iteration weights partiledensity to the grid �rst, so that the eletron �uid equations an be solved for thepresent ion partile distribution. All of the eletron �uid equations are solved next,whih involves a subyle iteration for the oupled momentum and energy equations.The new potential �eld is used to update the eletri �elds. The ions are thenaelerated aording to the new eletri �elds, moved, ollided, and sampled. Thewhole yle is given here:1. Weight partile density to the nodes of the grid2. Solve eletron ontinuity equation on grid nodes3. Solve eletron momentum equation on grid nodes4. Solve eletron energy equation on grid nodes5. Repeat steps 3-4 to onverge oupled equations6. Weight eletri �elds from grid nodes to partiles



767. Move partiles in the grid ells8. Collide PIC partiles in grid ells9. Sample partile properties on the grid
These steps do not neessarily have to be performed every time step, sine themodels are deoupled over di�erent time sales. The ell spaing and the time step aredetermined in the next hapter based on the stability requirements for the eletron�uid model. The ion partiles do not move very far during a single time step, andrequire several iterations to ross a omputational ell. In order to aelerate theoverall onvergene, the ions are moved several times between eah solution of theeletron �uid model equations.4.4 Disretization and ADI solverThe �uid equations in the preeding setions are developed as ontinuous fun-tions. In order to solve these equations on the nodes of a omputational grid, theequations must be expressed using disrete operators. A �nite di�erene form of-fers omputational advantages and simpli�ations for the axisymmetri, strutured,retangular grid used in this work.4.4.1 Finite di�erene operatorsConsider the typial node in an axisymmetri omputational grid. The entralnode has indies (i, j), and the adjaent nodes have indies of (i ± 1, j) and (i, j ± 1)as in Fig. 4.1. Values of the variables, inluding any spatial derivatives, are omputedand stored at the nodes.
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Figure 4.1: A typial omputational node and its surroundings.In order to disretize the �uid equations, the gradient operator ∇ and the Lapla-ian operator∇2 are needed. The gradient operator an be obtained in a seond orderaurate form by taking the Taylor expansion of an arbitrary quantity Q about theentral node at (i, j). This results in the �nite di�erene form in Eq. 4.33. Notethat under the axisymmetri assumption there is no azimuthal variation, so the θ̂ontributions to the operator are identially zero. The onstant subsript has beenomitted for larity, so Qi+1, j is denoted as Qi+1.
∇Q =

Qi+1 − Qi−1

xi+1 − xi−1
ẑ +

Qj+1 − Qj−1

rj+1 − rj−1
r̂ (4.33)As given in Eq. 4.34, the Laplaian operator an be related to the gradient op-erator by Green's �rst identity. This identity states that the integral of ∇2Q over avolume V is equal to the surfae integral of ∇Q normal to the surfae S that enlosesthe volume.

∫∫∫

V

∇2QdV =

∮

S

∇Q · n̂dS (4.34)



78For the axisymmetri geometry, the volume assoiated with a node is an annularylinder. The bounding surfae onsists of four surfaes: two annular surfaes in the
r̂− θ̂ plane to the left and right of the node, and two ylindrial surfaes at onstantradius above and below the node. As depited in Fig. 4.1, these surfaes lie halfwaybetween adjaent nodes.The desired �nite di�erene form of ∇2Q is a onstant value stored at the node,so the volume integral redues to the produt on the left hand side of Eq. 4.35.Assuming that the �nite di�erene form of ∇Q is also onstant over eah boundingsurfae, the surfae integral an likewise be redued to a summation over the fourbounding surfaes.

V ∇2Q =
∑

A

∇Q · A (4.35)The right hand side an be expanded and simpli�ed for the simple boundingsurfaes, resulting in the ompat form of Eq. 4.36. The areas and the partial �nitedi�erene di�erentials are de�ned in Table 4.2. Note that the surfae oordinatesrequire slight modi�ation for nodes along boundaries. The relevant oordinate ofthe enter node should be used when an adjaent node does not exist (along edgesof the domain) or lies on a solid surfae (along edges of the probe).
∇2Q =

dQ

dx i+ 1

2

AR

V
− dQ

dx i− 1

2

AL

V
+

dQ

dr j+ 1

2

Ao

V
− dQ

dr j− 1

2

Ai

V
(4.36)



79Table 4.2: Areas and di�erentials in the �nite di�erene Laplaian operatorLeft annulus AL = π
(

r2
j+ 1

2

− r2
j− 1

2

)

dQ
dx i− 1

2

= Qi−Qi−1

xi−xi−1Right annulus AR = π
(

r2
j+ 1

2

− r2
j− 1

2

)

dQ
dx i+ 1

2

= Qi+1−Qi

xi+1−xiInner ylinder AI = 2πrj− 1

2

(

xi+ 1

2

− xi− 1

2

)

dQ
dr j− 1

2

=
Qj−Qj−1

rj−rj−1Outer ylinder AO = 2πrj+ 1

2

(

xi+ 1

2

− xi− 1

2

)

dQ
dr j+ 1

2

=
Qj+1−Qj

rj+1−rjVolume V = π
(

r2
j+ 1

2

− r2
j− 1

2

)(

xi+ 1

2

− xi− 1

2

)Coordinates xi− 1

2

= 1
2
(xi−1 + xi) xi+ 1

2

= 1
2
(xi + xi+1)

rj− 1

2

= 1
2
(rj−1 + rj) rj+ 1

2

= 1
2
(rj + rj+1)After inserting the forms from Table 4.2 into Eq. 4.36 and simplifying, the �nitedi�erene form of the Laplaian operator an be written in the unwieldy form ofEq. 4.37.

∇2Q =
Qi+1 − Qi

(xi+1 − xi)
(

xi+ 1

2

− xi− 1

2

) − Qi − Qi−1

(xi − xi−1)
(

xi+ 1

2

− xi− 1

2

) (4.37)
+

2rj+ 1

2

(Qj+1 − Qj)

(rj+1 − rj)
(

r2
j+ 1

2

− r2
j− 1

2

) −
2rj− 1

2

(Qj − Qj−1)

(rj − rj−1)
(

r2
j+ 1

2

− r2
j− 1

2

)This an be written in the ompat form of Eq. 4.38 by using the oe�ientsde�ned in Table 4.3.
∇2Q = CRQi+1 + CLQi−1 + COQj+1 + CIQj−1 + CCQ (4.38)Table 4.3: Finite di�erene Laplaian oe�ientsLeft node CL = 1

(xi−xi−1)

(

x
i+ 1

2

−x
i− 1

2

)Right node CR = 1

(xi+1−xi)

(

x
i+1

2

−x
i−1

2

)Inner radial node CI =
2r

j− 1
2

(rj−rj−1)

(

r2

j+ 1
2

−r2

j− 1
2

)Outer radial node CO =
2r

j+ 1
2

(rj+1−rj)

(

r2

j+ 1
2

−r2

j− 1
2

)Center node Cc = − (CR + CL + CI + CO)



80The �nite di�erene operators for the gradient, Eq. 4.33, and the Laplaian,Eq. 4.38, an be used to formulate the disrete eletron �uid equations on the axisym-metri omputational grid. The next task is to obtain a solution to the di�erentialequations.4.4.2 Solution tehnique for di�erential equationsEah of the di�erential equations that appear in the eletron �uid models an berearranged to the form F (Q) = 0, where Q is the independent variable that is beingsolved, and F (Q) is the rearranged �nite di�erene form of the di�erential equation.By analogy, the solution is the �ow �eld value of Q that orresponds to a �root� of
F (Q).This type of di�erential equation an be solved using a Newton-Raphson iterationsheme. The Newton-Raphson method treats the problem essentially as a root �nd-ing exerise in an arbitrary number of dimensions. The iterative equation in Eq. 4.39resembles a Taylor expansion for the urrent value of the �ow �eld variable Qt nearthe desired solution. The desired outome from this alulation is an updated valueof the �ow �eld variable Qt+1 that satis�es F (Qt+1) = 0.

Qt+1 = Qt − F (Qt)

(

dF

dQ t

)−1 (4.39)Rearranging this to be more ompatible with the linear form Ax = b yieldsthe iteration rule in Eq. 4.40. The solution of this equation gives the quantity
δQ = (Qt+1 − Qt), whih is a orretion to the urrent �ow �eld Qt. Many numerialtehniques are available to solve linear equations in this form.

dF

dQ t

(δQ) = −F (Qt) (4.40)The greatest hallenge in using Newton-Raphson iteration stems from determin-ing the iterative di�erential dF
dQt

. Provided that the operators in the di�erential



81equation are linear, the di�erential and operator order an be interhanged and theiterative di�erential an be found easily.As a simple example, onsider Eq. 4.23, the ontinuity equation that is solved inall three �uid models. The stream funtion is the independent variable, so Q = Ψand F (Ψ) is simply the ontinuity equation, as in Eq. 4.41. Sine the Laplaianoperator is a linear operator, the order of the operations an be interhanged as inthe intermediate relations of Eq. 4.42. This result an be then inserted into Eq. 4.40as an operator on δΨ to obtain the iteration rule for the ontinuity equation inEq. 4.43. Note that the subsript t is omitted exept where required for larity.
F (Ψ) = ∇2Ψ = 0 (4.41)

dF

dΨ
=

d

dΨ

(

∇2Ψ
)

= ∇2

(

d

dΨ
Ψ

)

= ∇2 (4.42)
∇2 (δΨ) = −∇2Ψt (4.43)The temperature equation of Eq. 4.25 provides a seond example. The numberdensity, potential, and veloity are held onstant during the iteration for temperature,so the soure term and oe�ients an be replaed by onstants as in Eq. 4.44.Interhanging the order of operations leads to Eq. 4.45 for the iterative di�erentialfor temperature. The soure term had no temperature dependene, and does notappear in the iterative di�erential.

F (Te) = ∇2Te + c1 · ∇Te − c2Te − c3 = 0 (4.44)
dF

dTe
= ∇2 + c1 · ∇ − c2 (4.45)The di�erential equation for plasma potential in the non-neutral detailed model,Eq. 4.30, an be handled in the same fashion. Number density, veloity, and temper-ature are onstant during iteration for potential, leading to the onstant oe�ient



82form in Eq. 4.46. That form readily produes the iterative di�erential in Eq. 4.47.
F (φ) = ∇2φ + c1 · ∇φ − c2 = 0 (4.46)

dF

dφ
= ∇2 + c1 · ∇ (4.47)If the form of the di�erential equation is non-linear, it is more di�ult to �nd theiterative di�erential. Consider the eletrostati Poisson equation for the Boltzmannmodel in Eq. 4.48, where the eletron density has been expressed aording to theBoltzmann relation with φ0 = 0 for simpliity. The �rst two terms an be handledas in the previous examples.The derivative must be taken of the exponential of the potential in the thirdterm. This produes a di�erential iterator that has some dependene on the urrentvalue of φt. The di�erential iterator and the orresponding iteration rule are shownrespetively in Eqs. 4.49 and 4.50.

F (φ) = ∇2φ +
e

ε0
ni −

e

ε0
ne0 exp

(

eφ

kBTe

)

= 0 (4.48)
dF

dφ
= ∇2 − e2ne0

ε0kBTe
exp

(

eφ

kBTe

) (4.49)
∇2δφ − δφ

λ2
D

exp

(

eφt

kBTe

)

= ∇2φt +
e

ε0

[

ni − ne0 exp

(

eφt

kBTe

)] (4.50)The �nal equation is also the most di�ult to evaluate. The di�erential equationfor eletron number density in the eletrostati Poisson equation has a non-linearoe�ient on the ∇ne term. The other oe�ients an be replaed with onstants asin Eq. 4.51, sine the veloity, temperature, and potential are held onstant duringthe solution for number density.
F (ne) = ∇2ne +

(

c1 −
∇ne

ne

)

· ∇ne + c2ne = 0 (4.51)



83The iterative di�erential is straightforward exept for the non-linear term:
d

dne

(

−∇ne

ne
· ∇ne

)This expression an be evaluated in a number of di�erent ways, but not everyevaluation leads to a stable iteration rule. In fat the best omputational performaneis obtained by alulating the oe�ient one, and then leaving it as a onstant for therest of the iteration. Under that assumption, the funtion and iterative di�erentialare simple linear operators as seen in Eqs. 4.52 and 4.53.
F (ne) = ∇2ne + c1 · ∇ne + c2ne = 0 (4.52)

dF

dne
= ∇2 + c1 · ∇ + c2 (4.53)It should be noted that all of the results in this setion are valid for both on-tinuous and disrete operators. The �nite di�erene operators from Se. 4.4.1 ansubstituted into these expressions without any modi�ation.4.4.3 ADI solverThe iteration rules from the preeding disussion (suh as Eq. 4.43 or Eq. 4.50)take the form of banded diagonal matries when expressed using the �nite di�ereneoperators of Se. 4.4.1. Numerial tehniques inluding the Alternating DiretionImpliit (ADI) method [50, 74℄ have been developed to solve these types of linearequations.Banded diagonal matries are signi�antly more di�ult to solve than tridiagonalmatries. However, an approximate solution an be obtained by negleting the termsin the bands and solving just the tridiagonal system. For the di�erential equations inthe �uid models, this proess is equivalent to solving the di�erential equations along



84just one diretion. A onsistent solution an be obtained by solving the equationsalternately for rows and olumns.This work uses a standard implementation of the ADI method to solve the dif-ferential equations that appear in the eletron �uid models. The solution tehniqueis well known, and details an be found in most numerial and programming hand-books [75℄.4.5 ADI auray and stability for the detailed modelsThe ompliated di�erential equations that appear in the detailed models arenot well understood, and have not been evaluated in terms of well-posedness oruniqueness. At the outset it is not ertain that the ADI solver will be able to solvethe equations and obtain a stable, physially meaningful solution.Inspetion of the equations, partiularly the forms in Eq. 4.46 and Eq. 4.52,reveals a strong similarity to one dimensional di�erential equations with analyti so-lutions. Therefore the di�ult equations from the non-neutral and Poisson-onsistentdetailed models are solved analytially in one dimensional limits with onstant oef-�ients.As a test of the ADI solver, the di�erential equations are also solved on a domainonsisting of a single row. The ADI solver performane will be evaluated by ompar-ing the auray of those solutions against the exat analyti solutions. Challengingonditions are tested to verify that the ADI solver an handle di�ult solutions thatinlude osillations or unbounded behavior.4.5.1 One dimensional non-neutral detailed modelThe di�erential equation for potential from the non-neutral model, Eq. 4.46, anbe rewritten in the form of Eq. 4.54. In this form the soure term is represented by a



85foring funtion f , and the oe�ient is denoted as α to distinguish it from onstantsof integration later. The analyti solution is more readily apparent if the equation isast in terms of the eletri �eld as in Eq. 4.55, using the usual eletrostati relation.
∇2φ + α · ∇φ = f (4.54)
∇E + α · E = −f (4.55)In the limit of one dimensional �ow, this simpli�es to the non-homogeneous on-stant oe�ient di�erential equation of Eq. 4.56. Note that this equation is essentiallyan initial value problem with the x oordinate ating as the time variable.
dEx

dx
+ αEx = −f (4.56)The solution has the general form of Eq. 4.57, where the non-homogeneous so-lution is a onstant value c2. Assuming an �initial� ondition Ex(0) = Ew and a�steady state� ondition Ex(x −→ ∞) = E∞ allows the onstants of integration tobe determined.

Ex = c1 exp (−αx) + c2 (4.57)
c1 = (Ew − E∞) , c2 = E∞The potential an then be found by integrating the eletri �eld as in Eq. 4.58,sine Ex = −dφ

dx
in one dimension.

φ (x) = −
∫

Exdx = −
∫

(Ew − E∞) exp (−αx) + E∞dx (4.58)The integration is straightforward and produes the form in Eq. 4.59. An initialondition on the potential is φ (0) = φw,whih allows the last onstant of integrationto be determined.
φ (x) =

1

α
(Ew − E∞) exp (−αx) − E∞x + c3 (4.59)
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Figure 4.2: ADI solutions of the 1D non-neutral model potential equation
c3 = φw − 1

α
(Ew − E∞)Inserting the onstant and rearranging produes the �nal form of the solution inEq. 4.60.

φ (x) =
1

α
(Ew − E∞) [exp (−αx) − 1] − E∞x + φw (4.60)The magnitude of the oe�ient α determines the overall nature of the solution.The two limiting ases are a predominantly linear solution when α ≫ (Ew − E∞), ora predominantly exponential solution when α ≪ 1. For intermediate values of α, thesolution will appear exponential at small values of x but level o� and appear linearat large values of x.The ADI results are ompared with exat solutions in Fig. 4.2 for the onditions

Ew = −2, E∞ = −0.02, and φw = 0 over a range of α values. The e�et of the
α oe�ient on the solution is learly visible. The ADI solver reprodues the exatsolutions to within mahine preision in every ase.



874.5.2 One dimensional Poisson-onsistent modelThe di�erential equation for number density from the Poisson-onsistent model,Eq. 4.32, an be rewritten with onstant oe�ients α and β as Eq. 4.61.
∇2ne + α · ∇ne + βne = 0 (4.61)In the limit of one dimensional �ow, this simpli�es to the homogeneous onstantoe�ient di�erential equation of Eq. 4.62. Note that this equation has exatly thesame form as a damped harmoni osillator problem with the x oordinate ating asthe time variable.
d2ne

dx2
+ α

dne

dx
+ βne = 0 (4.62)This has an analyti solution [76℄ that an be underdamped (ζ < 1), ritiallydamped (ζ = 1), or overdamped (ζ > 1), depending on the relative magnitudesof the oe�ients α and β.

ne (x) = exp (−ζωx)
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ω =

√

β, ζ =
α

2ω
, θud =

dne0 + ζωne0

ω
√

1 − ζ2
, θod =

dne0 + ζωne0

ω
√

ζ2 − 1The ADI results are ompared with exat solutions in Fig. 4.3 for the onditions
ne0 = 5, dne0 = 3, and ω = 1 over a range of ζ values. The ADI solver performsexellently, and reprodues the exat solutions to within mahine preision.
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Figure 4.3: ADI solutions of the 1D Poisson-onsistent model number density equa-tionIn the Poisson-onsistent model, the oe�ient α is non-linear. This is beyondthe apabilities of the simple analyti solution that is available, so the ADI solveris not tested against that ase. The ases shown are ertainly not exhaustive. It ispossible that the ADI solver may beome unstable or inaurate for other untestedonditions. However, the preeding results are very promising and indiate that theADI solver is apable of solving the ompliated di�erential equations of the detailedmodels.



Chapter VFaraday Probe Simulations
The hybrid �uid PIC model is used to simulate the �ow around an axisymmetriFaraday probe geometry for a variety of in�ow plasma onditions and probe oper-ating onditions. An initial study validates the operation of the hybrid �uid PICmodel by omparing its results against the planar Bohm sheath solution. Furtherstudies hange the in�owing ion distribution, add neutral gas partiles, or vary theoperational settings of the Faraday probe.The Boltzmann model is used extensively to develop an understanding of the �owover a broad range of onditions. The e�ets of in�ow plasma properties are exploredby making inremental hanges to the in�ow ion distribution. Over several steps thedistribution is modi�ed from a old ion beam to a ompliated multiple Maxwellianion and neutral distribution that approximates an EP exhaust plume.Probe performane is also investigated, using the Boltzmann model in two studiesthat vary the operating onditions of the probe. Performane is evaluated by om-paring the simulated olleted urrent to the freestream urrent, and by observingstreamlines of urrent upstream of the olleting surfae.The non-neutral detailed model is only used in a validation test, where the im-plementation is shown to be �awed. This model is not used for any additional89



90simulations in this dissertation and is not developed any further, sine an alternativedetailed model is available.The Poisson-onsistent detailed model is used to repeat the studies of the in�owion distribution. Sine this model uses a detailed eletron momentum equation andinludes an eletron energy equation, these studies an also be used to assess thevalidity of the Boltzmann relation for the eletrons. Results from these studies areshown to be in exellent agreement with the Boltzmann �uid model results, providedthe in�ow distribution has a su�iently small fration of bakward �owing partiles.A review of the results from all the studies leads to a few omments and reom-mendations for probe design and operation. The Faraday probe is predited to bereliable and aurate over all the onditions onsidered. Standard praties for thedesign and use of Faraday probes are deemed to be e�etive at obtaining an auratemeasurement of the ion urrent.5.1 Basis for simulationThese simulations are intended to be representative of a Faraday probe at a pointfar o�-axis in the plume of a Hall thruster. Plasma onditions are determined fromomplementary numerial simulations and experimental measurements of a thrusterplume, made available by other researhers. The Faraday probe is desribed in detailin an experimental referene, and that geometry is adapted for use here.5.1.1 Hall thruster plume propertiesBusek Co. manufatures the BHT-200, a small, low power Hall thruster. Theplume of this devie has been investigated via experiments and numerial simulations,providing several soures [33, 35, 73, 77℄ to help determine the plasma onditions.The two primary soures are the numerial simulations by Boyd and Yim [73℄, and



91the experimental measurements by Ma [77℄.The �ow onditions at a point 50 m downstream and 75° o�-axis are determinedfrom a previous numerial simulation by Boyd and Yim [73℄, and are summarized inTable 5.1. The plasma is neutral at that point, so it is assumed that ni = ne and
vi = ve for simpliity. The exat values are not ritial, and it will be onvenient tomodify these onditions in order to maintain a onstant ion urrent density.Table 5.1: Plasma properties 50 m downstream and 75° o�-axis in the BHT-200plume.[73℄

ni 1.1 × 1014 m−3

vi 2, 381 m
s

Te 1 eV

φ ∼ 1 VFor the reported onditions, the Debye length is λD = 0.0709 cm and the Bohmveloity is vB = 855 m
s
, giving a Mah number with respet to Bohm veloity of

M = 2.78. This orresponds to a stable Bohm sheath solution. Additionally, allof the freestream ion urrent should reah the front surfae of the probe, sine theprobe will be biased to negative potential for all the simulations in this dissertation.5.1.2 Faraday probeThe Faraday probe in Ref. [77℄ is a nude planar probe depited in Fig. 5.1. Theirular olleting surfae has a radius of 0.952cm, and the annular guard ring has anouter radius of 1.272cm. There is a 0.066cm radial gap between the olleting surfaeand the guard ring. The gap is smaller than the Debye length for these onditions,so the sheath should remain essentially uniform over the entire olleting surfae.
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Figure 5.1: Faraday probe used in experimental BHT-200 measurements [77℄.The olleting surfae and guard ring are held at a �xed bias potential of −5 Vto repel eletrons. Again, the exat value of the bias potential is not important andit an be hanged for onveniene. Sine the length of the sheath inreases withthe wall potential, most of the simulations use a small bias potential to redue thedomain length and omputational time.5.2 Simulation geometry and numerial parametersThe ylindrial geometry of the Faraday probe lends itself to an axisymmetriomputational domain. Using the planar Bohm sheath solution as a guide, thedomain an be sized and boundary onditions for the �uid and PIC models an beformulated. Computational mesh dimensions must be small enough to resolve theDebye length, and the time step must be seleted suh that partiles do not rossmultiple ells per iteration.5.2.1 Computational domainFor the onditions in Table 5.1 and a maximum wall potential of −15 V, theBohm sheath solution suggests 15λD(1.06 cm) as an estimate of the required domain



93length. The appropriate radial extension beyond the side of the probe body is noteasily determined, and is set at one quarter-radius beyond the outer probe edge.Sine the �ow is supersoni and nearly ollisionless, the plaement of the outer edgeof the domain should not greatly a�et the properties on the upstream fae of theprobe.Experiene with the detailed models suggests that the maximum ell spaingshould be at least a fator of 12 smaller than the Debye length. Rounding in favor ofonservative values, the retangular ells are uniformly sized at 4×10−5 m on a side.The �nal geometry extends 390 ells (1.560 cm) along the probe axis and 390 ells
(1.560 cm) radially, with 238 elements (0.952 cm) along the olleting surfae and 80elements (0.320 cm) along the guard ring surfae. This geometry is shown in Fig. 5.2for referene. Altogether there are 112,350 ells outside of the probe body. At steadystate, there are approximately 1.5-2 million partiles in the domain, depending onthe in�ow ion distribution.
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Figure 5.2: Computational domain for Faraday probe simulations.



945.2.2 Time step and global iterationThe simulation time step is seleted so that the fastest ions travel less than oneell length per iteration. Ions that enter at twie the thermal speed beyond the driftveloity arrive at the probe with a veloity of 6, 945 m
s
. Dividing the ell length bythis speed and rounding down sets the time step at 5 × 10−9 s.The simulation is allowed to iterate for 10,000 time steps to reah a onvergedstate, followed by 20,000 sampled time steps. The total simulation time is 30-35 hours, depending on the spei� ion in�ow distribution.5.2.3 Boundary onditionsThe PIC model and the eletron �uid models require boundary onditions alongall the edges of the domain and at the surfaes of the probe. Referring to the labelsin Fig. 5.2, there are six regions of boundary onditions.Region 1 is the axisymmetri enterline. Partiles are automatially rotated atthe enterline as part of the axisymmetri move routine. A zero gradient onditionis enfored on the radial omponent of all variables in the �uid models, inluding thestream funtion Ψ, plasma potential, eletron number density, and eletron temper-ature.Region 2 is the upstream inlet for the �ow. Partiles are introdued at thisboundary with a random position and statistially sampled veloity in eah ell.The number of partiles introdued per time step is determined from the assignedinlet density and mean veloity, adjusted by the partile weight in the ell. Partilesthat ross this boundary are removed from the simulation.The eletron temperature and gradient of stream funtion (equivalent to theeletron number density �ux) are assigned along the inlet. The plasma potential and



95eletron number density are set using Robin or third kind boundary onditions. Asan example, Eq. 5.1 sets the plasma potential φ1 at the boundary node based onthe potential at the seond node φ2 that simultaneously satis�es both the assignedpotential φ0 and assigned axial gradient dφ
dz

∣

∣

0
at an imaginary node one ell length

△z outside of the domain.
φ1 =

3

4
φ0 +

1

4
φ2 +

1

2

dφ

dz

∣

∣

∣

∣

0

△z (5.1)Region 3 is the outer radial inlet. Partiles are injeted along this edge using thesame proedure as in Region 2, and partiles that ross this boundary are removedfrom the simulation. A onstant gradient ondition is enfored on the radial ompo-nent of the stream funtion, and zero gradient onditions are enfored on the radialomponent of plasma potential, eletron number density, and eletron temperature.Region 4 is the downstream �ow exit. Partiles are only removed along this edge.A onstant gradient ondition is enfored on the stream funtion, and zero gradientonditions are enfored on the axial omponent of plasma potential, eletron numberdensity, and eletron temperature.Region 5 is the body of the probe. Partiles undergo di�use re�etion from thissurfae with full thermal aommodation, and ion partiles are neutralized. Thegradient of stream funtion is assigned, whih is equivalent to setting the eletronurrent �ux to the surfae. The plasma potential, eletron number density, andeletron temperature are assigned at the surfae.Region 6 is the olleting surfae of the probe. The same boundary onditions asin Region 5 are enfored on partiles and eletron �uid variables. When ion partilesare neutralized at this surfae, the olleted urrent is inremented by the harge ofthe ion partile. This gives the simulated olleted urrent, whih is averaged over



96the sampling time steps.The boundary onditions on eletron number density are only required for thePoisson-onsistent detailed model. Sine it is not pratial to solve the di�erentialequation for ne at the surfae, a kineti approximation to the number density is usedinstead. Eletrons are assumed to follow a Maxwellian distribution at the inlet of thedomain. Using a Lagrangian formulation for onservation of energy, the distributionfuntion at the wall fw (v) an be related to the inlet distribution funtion f (v) bythe veloity shift in Eq. 5.2. Sine the wall potential φw is negative, a given veloityat the wall orresponds to a larger veloity at the inlet.
fw (v) dv = f

(
√

v2 − 2
e

m
φw

)

dv (5.2)It is assumed that all eletron partiles that reah the wall are absorbed, so thedistribution funtion is zero for v < 0. Integrating over the distribution funtion asin Eq. 5.3 gives the boundary value of eletron number density at the probe surfae.
ne,w =

∫ ∞

0

fw (v) dv (5.3)This is not an exat solution to the di�erential equation for eletron numberdensity, but it serves as an aeptable approximation for the boundary ondition.5.3 Hybrid PIC Boltzmann model studiesThe Boltzmann model is used to obtain the results in �ve main studies here.Three studies are designed to explore the �ow �eld by varying the geometry andin�ow ion onditions. Two additional studies investigate the performane of theFaraday probe for various operating onditions.The �rst study is a quasi one dimensional simulation that is used to validate theoperation of the hybrid �uid PIC omputational ode. The seond study simulates



97the same onditions on the two dimensional axisymmetri probe geometry to identifyany higher dimensional e�ets. The third study is an investigation of in�ow iondistribution e�ets, onduted by inrementally adding omponent distributions tothe in�ow plasma.In the fourth study, the guard ring bias potential is varied relative to the olletingsurfae bias to determine the e�etive olleting area of the probe. The �fth studyis a sweep over a broad range of bias voltage, to haraterize the probe performaneover a range of bias potentials.5.3.1 Quasi one dimensional studyThe �rst aspet of the quasi one dimensional study is to perform a validationof the hybrid PIC �uid ode by reproduing the onditions of the planar Bohmsheath model. To that end, the omputational domain is limited to a ylinder thatlies immediately upstream of the olleting surfae, with a new outer radial edge at
r = 0.0952 cm.The boundary onditions on the outer radial edge are modi�ed to simulate asymmetry plane as follows. No partiles are injeted, and partiles that ross theboundary are speularly re�eted bak into the domain. Zero gradient onditionsare enfored on the stream funtion, plasma potential, eletron number density, andeletron temperature.Sine the planar Bohm sheath model assumes a old ion beam, the ion tempera-ture at the inlet is set to 300 K. This is muh lower than the eletron temperature,but still high enough to avoid the omputational di�ulties assoiated with zero tem-perature. All other plasma properties remain as given in Table 5.1. This onditionis referred to as the old ion ase.



98A radial average is taken of the hybrid �uid PIC model results in order to makeuseful omparisons with the Bohm sheath solution. This is aomplished by averagingthe �rst 100 ells (0.004 m) from the enterline at a �xed axial position. The resultingpro�le is representative of the plasma properties near the enterline of the simulatedprobe.The Boltzmann model hybrid �uid PIC results are exellent for the old ion ase.Contours and pro�les of plasma potential, Figs. 5.3-5.4, eletron number density,Figs. 5.5-5.6, and ion number density, Figs. 5.7-5.8, show exellent agreement withthe Bohm sheath solution. The ontours of eah variable are normal to the axis,indiating that quasi one dimensional �ow has been ahieved. The pro�les of sim-ulated properties are indistinguishable from the Bohm sheath solution pro�les forevery property.This level of agreement indiates that the Boltzmann model an very auratelysimulate the physis underlying the formation of an eletrostati sheath. It shouldbe noted that the eletron number density is a funtion of the plasma potential bythe Boltzmann relation. As suh, the simulated eletron number density is not trulyan independent variable, and will show the same trends as the plasma potential.
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Figure 5.3: Contours of plasma potential for the one dimensional old ion ase.
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Figure 5.4: Pro�les of plasma potential for the one dimensional old ion ase.
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Figure 5.5: Contours of eletron number density for the one dimensional old ionase.
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Figure 5.6: Pro�les of eletron number density for the one dimensional old ion ase.
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Figure 5.7: Contours of ion number density for the one dimensional old ion ase.
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Figure 5.8: Pro�les of ion number density for the one dimensional old ion ase.The seond aspet of the quasi one dimensional study is to isolate the e�et ofion temperature on the properties in the sheath. The hot ion ase uses an inlet ion



102temperature of 1 eV, along with the other onditions in Table 5.1. In this ase theion temperature is large enough that there is a signi�ant spread in veloities aboutthe mean veloity.The simulations of the hot ion ase maintain quasi one dimensional �ow in thisgeometry, so the ontours are omitted. The pro�les of plasma potential, Fig. 5.9, andeletron number density, Fig. 5.10, still show very good agreement with the Bohmsheath solution pro�les. However, the ion number density, Fig. 5.11, is about 5%lower than expeted through most of the sheath.
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Figure 5.9: Pro�les of plasma potential for the one dimensional hot ion ase.
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Figure 5.10: Pro�les of eletron number density for the one dimensional hot ion ase.
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Figure 5.11: Pro�les of ion number density for the one dimensional hot ion ase.This di�erene an be explained by the presene of low speed ions in the distribu-tion for the hot ion ase. A given di�erene in eletrostati potential leads to a larger



104inrease of veloity for slow partiles than for fast partiles. Sine the ion numberdensity �ux is onstant, the density dereases as the mean veloity inreases. Themean veloity will inrease faster for a distribution with low speed ions than for adistribution of uniform speed ions, whih results in a lower density at a orrespondingplasma potential.5.3.2 Two dimensional studyThe next study using the Boltzmann model is onduted on the axisymmetriprobe geometry. For the sake of easy omparison with the quasi one dimensionalresults, the guard ring is eliminated so that the outer diameter of the probe is at theradius of the olleting surfae. The onditions of the old ion ase are simulated toreprodue the planar Bohm sheath onditions.Contours and pro�les of plasma potential, Figs. 5.12-5.13, eletron number den-sity, Figs. 5.14-5.15, and ion number density, Figs. 5.16-5.17, show exellent agree-ment with the Bohm sheath solution near the enterline. Edge e�ets are visible asstrong urvature in the ontours near the front orner of the probe. However, thee�ets are only signi�ant for ∼ 0.0015 m or 2 λD from the outer edge of the probe.
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Figure 5.12: Contours of plasma potential for the old ion ase.
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Figure 5.13: Pro�les of plasma potential near the enterline for the old ion ase.
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Figure 5.14: Contours of eletron number density for the two dimensional old ionase.
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Figure 5.15: Pro�les of eletron number density near the enterline for the old ionase.
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Figure 5.16: Contours of ion number density for the two dimensional old ion ase.
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Figure 5.17: Pro�les of ion number density near the enterline for the old ion ase.The hot ion ase shows very similar features on the axisymmetri probe geometry.The ontours are visually indistinguishable from those of the old ion ase, so they



108are not shown here. The pro�les of plasma potential, Fig. 5.18, eletron numberdensity, Fig. 5.19, and ion number density, Fig. 5.20, are marginally loser to theBohm sheath solution than the hot ion ase in the quasi one dimensional model.The slight improvement is likely due to the weak fousing e�et of the urvedpotential �eld. The low speed ions are still aelerated, but part of the aelerationis radial and does not a�et the �ux. As a onsequene the ion number density staysslightly higher and attains better agreement with the Bohm sheath pro�le.
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Figure 5.18: Pro�les of plasma potential near the enterline for the hot ion ase.
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Figure 5.19: Pro�les of eletron number density near the enterline for the hot ionase.
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Figure 5.20: Pro�les of ion number density near the enterline for the hot ion ase.



1105.3.3 Multiple omponent studiesThe third study using the Boltzmann model builds a ompliated in�ow iondistribution by adding together several Maxwellian omponents. The interationof the di�erent omponent populations is evaluated by omparing the ion numberdensity pro�le for one omponent simulated separately against the pro�le for thesame omponent simulated with one or more additional omponents.This is aomplished in two stages, �rst a ombination of high speed, high tem-perature beam ions and low speed, low temperature harge exhange (CEX) ions issimulated. Seond, a ombination of beam, CEX, and double harge ions is simu-lated. The plasma onditions are reported in Table 5.2 for the beam-CEX ase, andTable 5.3 for the beam-CEX-double omposite ase. In both of these ases the totalfreestream urrent density is held onstant by adjusting the density of the omponentpopulations.The number density, drift veloity, and temperature for the omponent distri-butions are seleted in keeping with the assumption that the probe is plaed faro�-axis in a Hall thruster plume. For the sake of omparison with other results,the ion urrent density is held onstant at the same value as in the single ompo-nent ases. Experiments that ompare ollimated and unollimated Faraday probemeasurements suggest that CEX ions aount for the majority of the urrent at highangles from the enterline [41℄. Using a similar ratio, the CEX omponent is assumedto arry 75% of the ion urrent density, and the beam omponent arries the remain-der. The beam veloity is kept at the same value as in the previous single omponentases. The CEX veloity is determined by assuming a slightly supersoni ondition,
MCEX = 1.20. The number density of the omponents an then be alulated fromthe omponent urrent density and veloity.



111Table 5.2: Plasma properties for the beam-CEX omponent ase.
ni, 1014 m−3 vi,

m
s

Ti, KBeam 0.480 2,381 11,600CEX 1.439 1,026 300Eletrons 1.919 1,365 11,600For the beam-CEX-double omposite ase, the double harge ions are assumedto arry 10% of the total urrent. Experimental measurements report a omparablefration in the far �eld, for low power thrusters [78℄ and high power thrusters [79,80℄. In this ase the double harge omponent is assumed to have a drift veloityequal to the average speed of the beam and CEX populations. Assuming the sametotal ion urrent density as before, these assumptions an be used to determine aunique veloity and number density for the double harge ions. The double hargetemperature is not well de�ned, sine the partiles are assumed to be drawn fromboth the beam and CEX populations. The double harge temperature is thereforeset at 11,600 K to represent the broad range in veloity.Table 5.3: Plasma properties for the beam-CEX-double omposite ase.
ni, 1014 m−3 vi,

m
s

Ti, KBeam 0.432 2,381 11,600CEX 1.295 1,026 300Double 0.096 1,365 11,600Eletrons 1.919 1,365 11,600Note that the assumptions for the CEX and double omponents are not entirelyrepresentative of an EP plume. Sine harge exhange ions are formed throughoutthe plume, there is likely to be a broad veloity distribution that would be betterrepresented by a high temperature. Double harge ions are formed in the thruster



112or by ollisions in the near �eld, and aeleration by the eletrostati �elds wouldprodue a �nal drift veloity that is higher than the single harge ions ahieve. Avariation of the omposite distribution that takes these e�ets into onsideration isdesribed and used in Se. 5.5.2. However, these details are not ruial for evaluatingthe interation between two or more omponents.For these simulations, the most useful omparisons an be made from the pro�lesof ion number density. The plasma potential and eletron number density maintainthe same level of agreement with the Bohm sheath solution that has been demon-strated previously.For the beam-CEX ase, Figs. 5.21 and 5.22 are respetively the pro�les of beamand CEX ion number density when simulated as separate plasmas. Notie that theseparate omponents demonstrate the behavior disussed previously: the old CEXions are in very good agreement with the Bohm sheath solution, and the hot beamions are at about 5% lower density throughout the sheath.
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Figure 5.21: Pro�les of ion number density near the enterline for the beam ompo-nent ase.
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Figure 5.22: Pro�les of ion number density near the enterline for the CEX ompo-nent ase.Figure 5.23 shows the pro�les of beam and CEX ion number densities when sim-



114ulated as two omponents of the same plasma. A third pro�le labeled �All ions� givesthe pro�le of harge density in the sheath, and is ompared against the Bohm sheathsolution alulated from the eletron properties. Both of the omponent speiesmaintain essentially independent sheaths, while the total harge density appears tofollow the Bohm sheath solution alulated from the total harge density.
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Figure 5.23: Pro�les of total and omponent ion number density near the enterlinefor the beam-CEX ase.Contours of perent di�erene in density between the separate simulations andthe ombined beam-CEX simulation in Figs. 5.24-5.25 show that the individual om-ponent densities only interat in a region just upstream of the probe surfae. This isonsistent with the olletive behavior of the plasma. Sine the �ow is ollisionless,individual partiles only interat with the olletive eletrostati �eld. The preseneof a seond omponent population inreases the harge density of the plasma anddereases the Debye length, whih shields the bulk plasma more e�etively.
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Figure 5.24: Contours of perent di�erene in beam ion number density for the beam-CEX ase.

Figure 5.25: Contours of perent di�erene in CEX ion number density for the beam-CEX ase.Individual partiles do not feel the eletrostati fores until loser to the probe.



116However, sine the boundary onditions enfore a �xed potential on the probe walls,the partiles must fall through the same total potential drop. As a result, the partilesahieve the same veloity at the surfae of the probe as if there were no other ionomponents shielding them from the potential. Therefore the omponent ion numberdensities approah the expeted values from their respetive Bohm sheath solutionsat the surfae of the probe.The same trends are observed when adding a double omponent. The separatesimulation of the double omponent produes the pro�le in Fig. 5.26, and the ompos-ite simulation produes the pro�les in Fig. 5.27. The simulated total harge densityvery aurately reprodues the Bohm sheath solution alulated from the eletronproperties.
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Figure 5.26: Pro�les of ion number density near the enterline for the double om-ponent ase.
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Figure 5.27: Pro�les of total and omponent ion number density near the enterlinefor the beam-CEX-double omposite ase.As ould be expeted from the beam-CEX results, adding a double harge ompo-nent does not signi�antly a�et the properties of the other omponent distributionsat the surfae of the probe.5.3.4 Guard ring bias studyIn most experimental setups, the guard ring is biased to the same potential asthe olleting surfae. This is intended to produe a uniform sheath over the probesurfae, so that there is little or no fousing of urrent density onto the olletingsurfae. Then the area of the olleting surfae is equal to the area of the urrent�ux tube in the plasma, and the urrent density an be alulated by dividing theolleted urrent by the olleting area.This study uses the Boltzmann model to investigate how the olleted urrent andstreamlines of urrent are a�eted if the guard ring were intentionally or aidentally



118biased to a di�erent potential than the olleting surfae. The olleting surfae isbiased to −5 V in this study, and two ases are presented: a �rst ase where theguard ring bias is set to −10 V, and a seond ase where the guard ring bias is setset to 0 V. Additional ases are not presented here, sine they do not demonstrateany new features.The beam-CEX distribution is used in this study so that any e�ets ould beanalyzed for relative trends on omponents with di�erent average speeds and tem-peratures. For example, the CEX ions generally have a lower axial speed than thebeam ions, and might be de�eted near the edge of the olleting area while the beamions are una�eted. However, no signi�ant di�erenes between the two populationswere identi�ed.Contours of plasma potential and harge density are shown in Figs. 5.28 and 5.29for the −10 V guard ring bias, and in Figs. 5.30 and 5.31 for the 0 V ring bias. Inthis ase it is more useful to observe the streamlines of urrent in the �ow.

Figure 5.28: Contours of plasma potential for the guard ring bias of -10 V.
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Figure 5.29: Contours of harge density for the guard ring bias of -10 V.

Figure 5.30: Contours of plasma potential for the guard ring bias of 0 V.
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Figure 5.31: Contours of harge density for the guard ring bias of 0 V.Streamlines are shown for the −10 V guard ring bias ase in Fig. 5.32, for theuniform−5V bias ase in Fig. 5.33, and for the 0V guard ring bias ase in Fig. 5.34. Ineah �gure there is a streamline originating at a radius of 0.00952m that orrespondsto the radius of the olleting surfae. Ideally, that streamline should onnet to thenoth in the probe that separates the olleting surfae from the guard ring. Thebest alignment ours for the uniform −5 V bias ase. However, the e�et of a ±5 Vdi�erene between the guard ring and the olleting area does not drastially alterthe streamlines.
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Figure 5.32: Streamlines of urrent for the guard ring bias of -10 V.
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Figure 5.33: Streamlines of urrent for the uniform bias of -5 V.
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Figure 5.34: Streamlines of urrent for the guard ring bias of 0 V.The simulated olleted ion urrent for eah of these guard ring ases is shown inFig. 5.35 and reported in Table 5.4. The simulated olleted ion urrent is omparedwith the theoretial ion urrent based on the urrent density in the freestream.Although there is a small error in the uniform bias ase, it is not large enoughto justify hanging the guard ring bias.
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Figure 5.35: Simulated olleted urrent as a funtion of guard ring bias.Table 5.4: Simulated olleted urrent for the guard ring relative bias.
φw, V Ji,Sim, µA Ji,Theory, µA Error, µA Error, %0 13.383 11.948 1.435 12.01-3 12.421 11.948 0.473 3.96-5 12.004 11.948 0.056 0.47-7 11.638 11.948 -0.310 -2.60-10 11.121 11.948 -0.827 -6.925.3.5 Bias voltage sweep studyThe �nal study with the Boltzmann �uid model is a sweep of the probe biasvoltage from 0 V to −10 V, with the entire probe biased to a uniform potential.This study is intended to assess the auray of the Faraday probe over the range ofurrent olleting onditions. At a large negative potential, the probe only olletsan ion urrent sine nearly all eletrons are repelled. At zero potential, the probeollets approximately equal ion and eletron urrents.



124The beam-CEX distribution is used in this study for onsisteny with the guardring bias study. Sine the entire probe body is biased uniformly, the di�erent om-ponents are not expeted to show di�erent behaviors.Properties in the �ow �elds are not important in this study, exept to note theonsistent level of agreement with the appliable Bohm sheath solution. The simu-lated olleted urrents are shown graphially in Fig. 5.36, and reported in Table 5.5.The theoretial total olleted urrent is alulated at eah probe bias setting fromthe freestream ion urrent and the fration of eletron urrent with su�ient veloityto reah the probe.
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Figure 5.36: Simulated olleted urrent over a range of probe bias.



125Table 5.5: Simulated olleted urrent for the probe bias sweep.
φw, V JTot,Sim, µA JTot,Theory, µA Error, µA Error, %0 -0.007 0.020 -0.027 135.-1 8.961 8.957 0.003 0.04-2 10.940 10.930 0.011 0.10-3 11.614 11.590 0.024 0.21-4 11.857 11.820 0.037 0.32-5 11.958 11.902 0.056 0.47-6 12.011 11.931 0.080 0.67-7 12.043 11.942 0.101 0.85-8 12.072 11.946 0.126 1.05-9 12.102 11.947 0.155 1.30-10 12.128 11.948 0.180 1.51From these results it is expeted that the Faraday probe aurately measures theundisturbed freestream urrent. The apparently large error at 0 V is due to takingthe di�erene between two small values of total urrent. At all other bias potentialsthe error in olleted urrent is less than 2%.There is a orrelation between probe bias voltage and error in the olleted ur-rent, whih orresponds to sheath expansion. Reall that the plasma potential on-tours are urved near the outer edge of the probe, indiating a radial omponent ofthe eletri �eld that tends to fous ions toward the enterline of the probe. Thesheath extends farther from the probe for a larger potential drop, so the eletri �eldfouses a larger volume toward the enterline. In this ase the ions have a large axialveloity, so the fousing e�et is small.



1265.3.6 Comparison with experimentThe experiment in Ref. [77℄ provides one experimental datum for omparison. Inthat experiment the Faraday probe was biased uniformly to -5 V. The experimentallymeasured urrent at the point 50 m downstream and 75° o�-axis in the BHT-200Hall thruster plume is reported as 12.3µA. The simulated measurement for the -5 Vase in Table 5.5 is slightly lower, at 11.958µA. This is deemed very good agreement,with less than 3% di�erene between the values.The numerial parameters of the simulations in the preeding setions were on-struted to simulate the plasma �ow at the same point in the plume for the sameprobe operating ondition as in the experiment. However, reall from Se. 5.1.1 thatthe initial estimate of the plasma onditions was taken from a previous numerialsimulation of the BHT-200 plume. The good agreement between the simulated ol-leted urrent and the experimental olleted urrent is a further on�rmation thatthe partiular details of the ion distribution do not have a signi�ant e�et on theprobe measurement.5.4 Hybrid PIC Non-neutral detailed model studyThe non-neutral detailed model is only used to simulate the old ion ase, whih isintended to serve as a validation ase by approximating the onditions of the planarBohm sheath model. This ase reveals a serious problem with the implementation,so no additional studies are onduted using this model.Reall that the �ow onditions for the old ion ase are intended to reprodue theassumptions of the planar Bohm sheath model. The ion temperature is Ti = 300 K,with the number density, veloity, and eletron properties desribed in Se. 5.1.1 andsummarized in Table 5.1.



127The ontours and pro�le of plasma potential in Figs. 5.37 and 5.38 reveal asigni�ant problem with the non-neutral model: the new results are not remotelysimilar to the Bohm sheath solution. The plasma potential pro�le in the sheathappears paraboli, with a large gradient at the inlet edge of the domain.

Figure 5.37: Contours of plasma potential for the old ion ase.
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Figure 5.38: Pro�les of plasma potential near the enterline for the old ion ase.Contours of eletron number density in Fig. 5.39 and ion number density inFig. 5.40 appear almost idential. The eletron number density ontours show sta-tistial satter that is an artifat of the alulation that uses the instantaneous ionnumber density from the PIC module. However, no sampling is performed on theeletron number density.



129

Figure 5.39: Contours of eletron number density for the old ion ase.

Figure 5.40: Contours of ion number density for the old ion ase.Exept for the statistial satter, the pro�les of eletron number density inFig. 5.41 and ion number density in Fig. 5.42 also appear idential. This indiates



130a neutral plasma up to the probe surfae, whih is not onsistent with the expetedphysial proesses in the sheath.
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Figure 5.41: Pro�les of eletron number density near the enterline for the old ionase.
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Figure 5.42: Pro�les of ion number density near the enterline for the old ion ase.Neither the plasma potential nor the number density results from the simulationare onsistent with the expeted features of an eletrostati sheath. The eletri�eld is expeted to vanish in the bulk plasma. That would orrespond to approxi-mately zero gradient in plasma potential at the inlet, rather than the large value seenin the results. The plasma is expeted to beome non-neutral where the negativeprobe potential repels eletrons and aelerates ions, rather than remaining neutralthroughout the sheath as in the results.The neutral plasma result leads to an understanding of how this model fails. Thesimulation is initialized with uniform ion and eletron number densities and uniformplasma potential equal to the inlet values. The initial value of ∇2φ is thereforezero throughout the domain. Eletri �elds are alulated and the ion partilesare aelerated and moved, giving new values of ion number density. The eletronnumber density is then alulated from the existing plasma potential and new ion



132number density aording to the Poisson equation form in Eq. 4.31 of Chapter IV.Sine the value of ∇2φ is zero, this alulation is equivalent to assuming neutrality.The di�erential equation for plasma potential is solved next, but the soure term iszero sine the ion and eletron densities are equal. Over many iterations the plasmapotential evolves to aommodate the boundary onditions, but the plasma remainsneutral throughout the domain. This set of initial onditions together with thisiteration proedure an only lead to a neutral plasma result.Although it may be possible to rearrange the iteration steps to obtain a non-neutral result, this model is not developed any further in this dissertation. ThePoisson-onsistent model is available as an alternative, and suessful, detailed model.Additionally, the non-neutral detailed model is signi�antly more time intensive thanthe Poisson-onsistent model due to the larger number of ion partiles required tolimit statistial satter and maintain stable eletron number density alulations.5.5 Hybrid PIC Poisson-onsistent detailed model studiesThe Poisson-onsistent detailed model is used in two main studies that parallelthe Boltzmann model studies of the plasma �ow �eld. The �rst study uses thePoisson-onsistent model to simulate the old ion ase for omparison with the Bohmsheath solution. The seond study uses the Poisson-onsistent model to simulate theomposite multiple ion omponent ase, and identi�es a possible limitation of themodel.5.5.1 Bohm sheath validation aseOne again, the �ow onditions for the old ion ase approximate the assumptionsmade in the planar Bohm sheath model. The ion temperature is Ti = 300 K. Theeletron properties and the ion number density and veloity are desribed in Se. 5.1.1



133and summarized in Table 5.1.The ontours of plasma potential in Fig. 5.43 show a nearly uniform sheath overthe entire olleting surfae, with edge e�ets limited to the outermost 0.002m (3 λD)of the probe surfae. The pro�le of plasma potential in Fig. 5.44 is in exellentagreement with the Bohm sheath solution.

Figure 5.43: Contours of plasma potential for the old ion ase.
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Figure 5.44: Pro�les of plasma potential near the enterline for the old ion ase.The ontours of eletron number density in Fig. 5.45 are solved from the di�er-ential equation in Eq. 4.32 of Chapter IV. Some statistial satter is evident in theontours, and is expeted sine the eletron number density is oupled to the ionnumber density by way of the eletrostati Poisson equation.Although the di�erential equation is signi�antly more ompliated than theBoltzmann relation, the eletron number density pro�le in Fig. 5.46 still shows exel-lent agreement with the Bohm sheath solution. This indiates that the Boltzmannrelation is an appropriate assumption for these onditions.
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Figure 5.45: Contours of eletron number density for the old ion ase.
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Figure 5.46: Pro�les of eletron number density near the enterline for the old ionase.The ontours and pro�le of ion number density in Figs. 5.47 and 5.48 are likewise



136in exellent agreement with the Bohm sheath solution.

Figure 5.47: Contours of ion number density for the old ion ase.
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Figure 5.48: Pro�les of ion number density near the enterline for the old ion ase.The Poisson-onsistent model very aurately reprodues the Bohm sheath solu-



137tion for the old ion ase, whih veri�es the basi formulation and implementationof the model. The boundary onditions for eletron number density also appear towork well. The ADI solver shows no di�ulties with the di�erential equation foreletron number density, despite onerns about its omplexity and non-linearity.5.5.2 Multiple omponent plasma studiesIntermediate studies of the hot ion ase and the beam-CEX ase are omitted forbrevity, sine the Poisson-onsistent model yields onsistently good agreement withthe Bohm sheath solutions for those ases. A modi�ed omposite beam-CEX-doubledistribution ase is more interesting, sine it an be used to show a limitation in thepreditive apabilities of the Bohm sheath model.The in�ow ion distribution here is a variation of the original omposite ase de-sribed in Se. 5.3.3, referred to as the hot omposite ase. The beam omponentis unhanged. The density and drift veloity of the CEX omponent remains un-hanged, but the temperature is raised to 11,600 K. Charge exhange ions are bornin ollisions with old neutral gas that di�used out of the thruster. The harge ex-hange ollisions an take plae anywhere from the exit plane of the thruster to thesurfae of the probe, so a broad distribution in partile veloity develops dependingon the relative potential drop from the point of formation to the probe. The highCEX temperature is intended to better represent the spread in veloities.The properties of the double harge omponent are alulated by assuming that10% of the freestream urrent density is arried by the double harge partiles. Thepartiles are assumed to be formed in the same loations and the same ratio asthe beam and CEX omponents, and the eletrostati aeleration produes veloitythat is larger by a fator of √2 due to the double harge. The veloity for the



138double harge omponent is then √
2 times the mean veloity of the beam and CEXomponents. The double omponent number density is then alulated from theknown urrent density and veloity.The onditions for the hot omposite ase are summarized in Table 5.3. Sinethe hot omposite ase demonstrates unexpeted behavior, a old omposite asewill also be simulated for omparison. The only di�erene between the ases is thatthe CEX omponent temperature is 300 K for the old omposite ase. All otherproperties for the in�ow distributions remain unhanged from the values in the table.Table 5.6: Plasma properties for the hot omposite ase.

ni, 1014 m−3 vi,
m
s

Ti, KBeam 0.432 2,381 11,600CEX 1.295 1,026 11,600Double 0.068 1,930 11,600Eletrons 1.863 1,406 11,600Simulations using the Poisson-onsistent model produe ontours of the hot om-posite and old omposite ases that appear very similar to one another and toprevious results. It is therefore most e�etive to ompare the pro�les of plasmaproperties in the sheath.The pro�le of plasma potential for the hot omposite ase in Fig. 5.49 is seento be onsistently about 0.1 V lower than the Bohm sheath solution through muhof the sheath. This is a muh larger departure than expeted from the Poisson-onsistent model. In ontrast, the plasma potential pro�le for the old ompositease in Fig. 5.50 is in exellent agreement with the Bohm sheath pro�le.
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Figure 5.49: Pro�les of plasma potential near the enterline for the hot ompositease.
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Figure 5.50: Pro�les of plasma potential near the enterline for the old ompositease.The eletron number density pro�le for the hot omposite ase also shows a



140signi�ant di�erene from the Bohm sheath solution in Fig. 5.51. However, thesame pro�le for the old omposite ase is in good agreement with the Bohm sheathsolution in Fig. 5.52.

z, m

n
e,

1
0

1
4

m
-3

0.005 0.01
0

0.5

1

1.5

2

Simulated
Bohm sheath

Figure 5.51: Pro�les of eletron number density near the enterline for the hot om-posite ase.
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Figure 5.52: Pro�les of eletron number density near the enterline for the old om-posite ase.Comparing the pro�les of ion number density from the hot omposite ase,Fig. 5.53, with the old omposite ase, Fig. 5.54, begins to explain the di�erenebetween the two ases. The CEX omponent of the hot omposite shows a signi�antdeviation from the Bohm sheath solution at the inlet and throughout the sheath. Inontrast, the old omposite CEX omponent is in very good agreement with theBohm sheath solution at all points. The beam and double omponents appear es-sentially the same for both ases, indiating that the di�ulty in the hot ompositease lies with the CEX omponent.



142

z, m

n
i,

1
0

1
4

m
-3

0.005 0.01
0

0.5

1

1.5

2

Sim: All
Sim: Beam
Sim: CEX
Sim: Double
Bohm: All
Bohm: Beam
Bohm: CEX
Bohm: Double

Figure 5.53: Pro�les of total and omponent ion number density near the enterlinefor the hot omposite ase.
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Figure 5.54: Pro�les of total and omponent ion number density near the enterlinefor the old omposite ase.



143The normalized distribution funtions for the hot omposite and old ompositeases are shown in Fig. 5.55. A feature that stands out is that nearly 11.5% of thehot omposite CEX distribution is bak�ow, i.e., vi < 0. For omparison, just 0.27%of the beam omponent distribution is bak�ow, and 1.2% of the double ompo-nent distribution is bak�ow. The old CEX omponent distribution has negligiblebak�ow.
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Figure 5.55: Normalized distribution funtions for the hot omposite and old om-posite ases.The Bohm sheath solution assumes old ions with a uniform positive veloity.However, a signi�ant portion of the hot omposite CEX distribution is bak�ow,whih explains why the simulated density does not math the predited numberdensity far from the probe. An estimate of the density for just the forward �owingions in the hot omposite CEX omponent is 88.5% of the freestream density, or
1.15 × 1014, m−3. This is muh loser to the simulated value of hot omposite CEXdensity far from the probe in Fig. 5.53. The Bohm sheath solution alulated from



144freestream onditions is not a reliable preditor for the sheath struture or olletedurrent when a signi�ant bak�ow omponent is inluded. This limitation is looselyrelated to the Bohm riterion.The PIC model used in the Poisson-onsistent simulations injets partiles intothe domain with veloities hosen statistially from the freestream distribution.Therefore some of the CEX omponent partiles introdued along the outer radialedge of the domain are likely to be bak�owing partiles. There are not enoughof those partiles to ompletely replenish the bak�owing distribution everywhereupstream of the probe, so the simulation partly resembles a geometri shadowingsheath that reahes upstream from the probe. At present the PIC model only in-jets partiles into the domain with positive veloity from the two inlet edges at theupstream and outer radial edges of the domain. This ould be improved by alsoinjeting bak�ow partiles from the downstream edge of the omputational domain,along region 4 in Fig. 5.2.The Poisson-onsistent model simulations are in very good agreement with theBohm sheath solution, provided there is not a signi�ant fration of bak�ow. Byinluding bak�owing partiles, the Poisson-onsistent model o�ers the possibilityto simulate plasma sheaths for onditions where the Bohm sheath annot obtain astable solution, suh as in low Mah number �ows or in stationary plasmas.5.6 Conlusions and impliations for probe designThe results in this hapter lead to several onlusions about plasma behavior ina probe sheath, and a few design and operational guidelines for Faraday probes.The planar Bohm sheath solution is found to be an exellent preditor for plasmaproperties near the enterline in the sheath. A high temperature Maxwellian ion



145distribution alters the ion number density in the sheath, lowering it by a few perentfrom the Bohm sheath pro�le. A plasma omposed of one or more Maxwellian ionomponents forms a sheath that is more ompat than any individual omponent,sine eah omponent ontributes to shielding the plasma from the probe potential.The Bohm sheath solution alulated from total harge density and mean veloityat the inlet is an exellent preditor for plasma potential and total harge density inthe sheath of a omposite distribution. Additionally, the Bohm sheath solutions fornumber density alulated using the overall plasma potential remain good preditorsfor eah omponent in the sheath of a omposite distribution.If the plasma onditions inlude a signi�ant reverse �ow omponent, the Bohmsheath solution is not a reliable preditor. This limitation is essentially a restatementof the Bohm riterion. A signi�ant reverse �ow omponent sets up a geometrishadowing situation, whih annot be handled with the planar Bohm sheath model.The hybrid �uid PIC models may still be apable of aurate predition of the sheath,provided that ion partiles are injeted with forward and bakward veloities fromappropriate inlets.The two dimensional edge e�ets of the probe are limited to an annular regionnear the outer edge of the probe. In the studies reported here, the e�ets werelimited to about 3 λD from the edge of the probe. A Faraday probe should thereforebe designed with a guard ring that is at least 3λD wide, as alulated for the largestantiipated Debye length. The separation between the olleting area and the guardring should be minimized to maintain a uniform sheath over the entire probe surfae.The guard ring should be biased to the same potential as the olleting surfae.This on�guration an reliably measure the freestream urrent with less than 2% er-ror from 0V to −10V bias potential for the plasma onditions onsidered. However,



146sheath growth ours as the potential bias is made more negative, and two dimen-sional fousing e�ets inrease the olleted ion urrent. The error in the urrentdensity measurement due to sheath growth is about 0.25% per Volt for the probeand plasma onditions desribed.



Chapter VIMultigrid Methods
Simulations using the hybrid �uid PIC model take onsiderable time to omplete,from 25 hours for the quasi one dimensional ases to 35 hours for the multiple om-ponent ases desribed in Chapter V. The omputational domain needed to resolvean eletrostati sheath is two to three times larger for a wake surfae than for a ramsurfae. The assoiated omputational time requirement sales aordingly, mak-ing it impratial to attempt simulations of a reversed Faraday probe without �rstimproving the speed of the omputational ode.The omputational time of the hybrid �uid PIC ode is evaluated in this hapter.As part of that evaluation, routines that operate on the partiles are identi�ed asmajor ontributors to the overall time. A multigrid method is introdued that allowsa oarser grid to be used for the PIC model in order to redue the total partile ountand speed up the ode. The multigrid version of the hybrid �uid PIC ode is found tobe substantially faster than the single grid version while obtaining the same preisionand auray.

147



1486.1 Time pro�lingA time pro�le of the hybrid �uid PIC omputational ode is performed usingbuilt-in ompiler options and running the ode for 15,000 iterations. The resultsare reported in Table 6.1. Routines aelerate, move, ollide, weight_to_grid, andsample arry out the steps of the PIC model for the simulated partiles. Routinese_ontinuity, e_momentum, e_energy, and e_poisson set up the oe�ient matriesand ondut the ADI iteration of the disrete di�erential equations in the eletron�uid model. Routine thomas_adi is the solver that is alled from eah of the �uidmodel routines to atually solve the di�erential equations for eah line or olumn.There are also other routines that are alled infrequently, inluding initialization anddata output routines, that ontribute a small amount to the overall simulation time.Table 6.1: Time pro�le results of the hybrid �uid PIC omputational ode.Routine Time, s Time, % Typeaelerate 10,645.00 18.96 partileweight_to_grid 8,590.00 15.30 partilesample 8,475.00 15.09 partilemove 6,570.46 11.70 partilee_energy 6,302.90 11.22 �uidthomas_adi 4,855.80 8.65 �uide_poisson 4,362.23 7.77 �uide_momentum 3,866.20 6.89 �uide_ontinuity 1,395.50 2.49 �uidollide 687.87 1.23 partileothers 399.90 0.70 -Total 56,151.06 100.00The �nal olumn of the table indiates whether the time spent in eah routinesales with the number of partiles or the number of nodes in the �uid grid. The



149four most time intensive routines all operate on partiles, and together those routinesaount for 61% of the total simulation time. The next �ve routines all operate onthe �uid grid, and aount for 37% of the total simulation time. A redution in eitherpartile ount or grid node ount ould lead to a signi�ant speedup.6.2 Multigrid tehniqueIn Chapter V the grid spaing is driven by the requirements of the �uid model,and annot be inreased signi�antly without a�eting the auray of the simulationresults. However, the spaing is muh smaller than required to obtain aurate resultsfrom the PIC or DSMC partile models. Sine the partile ount per ell is held near20 to maintain good statistial properties, the total number of simulated partiles isvery high in the hybrid �uid PIC simulations.The disparity in grid spaing requirements suggests that an approah related tothe multigrid methods developed in omputational �uid dynamis might be usefulhere. In a CFD appliation, a multigrid method is used to aelerate the solutionof a system of di�erential equations. The equations are �rst solved on a oarse gridto obtain an approximate solution. That solution is �prolonged� or interpolated toprovide the initial estimate of the solution on a �ne grid. The equations are solvedon the �ne grid, and the �ne solution an then be restrited bak to the originaloarse grid, or prolonged to a �ner grid and solved again [81, 82℄.In the hybrid �uid PIC setting, a multigrid method an solve di�erent models onseparate grids. The partile model is used on the oarse �PIC grid� to obtain the ionand neutral number densities. Those densities are prolonged to a �ne ��uid grid.�The eletron �uid model equations are then solved on the �uid grid. By introduing amultigrid system, the number of PIC ells and partiles an be redued on the oarse



150grid, while still maintaining the �ne spaing required for the �uid model solutionson the �uid grid.The modi�ations and additions to the omputational ode are not extensive.Support for separate PIC and �uid grids must be added. A new interpolation stepmust be added to prolong the partile densities to the �uid grid, and the eletri �eldaeleration alulation must be modi�ed to weight eletri �elds from the nodes ofthe �uid grid to the partiles. The multigrid iteration yle is essentially the sameas the original iteration yle in Se. 4.4, exept that the interpolation step is added:1. Weight partile density to the nodes of the PIC grid2. New: Interpolate partile density to nodes of the �uid grid3. Solve eletron ontinuity equation on �uid grid4. Solve eletron momentum equation on �uid grid5. Solve eletron energy equation on �uid grid6. Repeat steps 4-5 to onverge oupled equations7. Modi�ed: Weight eletri �elds from �uid grid nodes to partiles8. Move partiles on the PIC grid9. Collide PIC partiles in PIC grid ells10. Sample partile properties on PIC gridFor simpliity, the PIC grid and the �uid grid are onstruted with oinidentnodes. The PIC grid has twie the ell spaing of the �uid grid, so that eah retan-gular PIC ell ontains exatly four retangular �uid ells. The interpolation routine



151transfers values from the PIC grid to the �uid grid at shared nodes, and uses linearinterpolation to alulate values at the additional �uid grid nodes.6.3 Validation and speedup assessment of multigrid versionThe new multigrid version of the hybrid �uid PIC omputational ode is validatedby repeating several of the ases from Chapter V. The omposite ase using thePoisson-onsistent detailed model is onsidered the most di�ult simulation, andthose results are ompared here. Contours of the potential, Fig. 6.1, eletron density,Fig. 6.2, and harge density, Fig. 6.3, are very onsistent between the original andmultigrid simulations.
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Figure 6.1: Contours of potential for the original and multigrid omposite simula-tions.
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Figure 6.2: Contours of eletron number density for the original and multigrid om-posite simulations.
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Figure 6.3: Contours of harge density for the original and multigrid omposite sim-ulations.There are no apparent systemati di�erenes or large loal di�erenes betweenthe original and multigrid simulation results. The di�erenes an be quanti�ed atthe oinident nodes on the PIC grid, giving a maximum error of ±2% from the



155original solution. From these omparisons it is onluded that the multigrid versionaurately obtains the same solution as the original ode.The expeted speedup fator for the multigrid version is based on the assumptionthat the time spent in partile routines sales linearly with the total partile ount,while the time spent in �uid routines sales linearly with the number of �uid gridnodes. The multigrid PIC grid has a fator of 4 fewer ells than the original grid,so the partile ount drops by the same fator and the expeted speedup fator is 4for all of the partile routines. The multigrid �uid grid is idential to the originalgrid, so the �uid routines should take the same amount of time, giving an expetedspeedup fator of 1 for all of the �uid routines.The speedup of the multigrid version of the ode is evaluated by performing atime pro�le using the same built-in ompiler options as before. The pro�le resultsare shown in Table 6.2 for the new multigrid version time, MG Time, together withthe original single grid version time, SG Time, for omparison.The atual speedup fator is omputed as the ratio of the original time to thenew time. Eah of the �uid routines show a small speedup whih is probably dueto unontrolled seondary e�ets, suh as better use of ahe memory. The partileroutines show a speedup fator that meets or exeeds the antiipated fator of 4.The routines move, weight_to_grid, and sample ahieve a speedup that is nearly afator of 2 higher than expeted. The new interpolation routine is added into routineweight_to_grid, making the speedup fator even more impressive.The multigrid version ahieves an overall speedup of 2.22, meaning that the samedomain and plasma onditions an be simulated in less than half the total time of theoriginal version. This is enough of a speedup so that the omputational time for asimulation of a reversed Faraday probe should be omparable to the time previously



156Table 6.2: Time pro�le results of the multigrid hybrid �uid PIC omputational ode.Expeted AtualRoutine SG Time, s MG Time, s MG Time, % Speedup Speedupaelerate 10,645.00 2,634.00 10.42 4 4.04weight_to_grid 8,590.00 1,218.20 4.82 4 7.05sample 8,475.00 1,048.90 4.15 4 8.08move 6,570.46 941.15 3.72 4 6.98e_energy 6,302.90 5,729.00 22.66 1 1.10thomas_adi 4,855.80 4,461.80 17.65 1 1.09e_poisson 4,362.23 4,037.85 15.97 1 1.08e_momentum 3,866.20 3,555.90 14.07 1 1.09e_ontinuity 1,395.50 1,277.90 5.06 1 1.09ollide 687.87 141.40 0.56 4 4.86others 399.90 232.04 0.92 1 1.72Total 56,151.06 25,278.14 100.00 1.88 2.22required for a Faraday probe simulation.



Chapter VIIReversed Faraday Probe Simulations
The multigrid version of the hybrid �uid PIC simulation ode is used to simulatethe axisymmetri �ow around a reversed Faraday probe, with emphasis on resolving�ow features on the wake side of the probe. For these ases the planar Bohm sheathsolution will not be useful, sine it annot provide a stable sheath solution for ions�owing away from the probe surfae. The geometri shadowing model solution ouldbe useful for omparison with the simulation results, provided an estimate of theexhange frequeny an be found to determine a physial saling.A geometri shadowing DSMC model will be developed by modifying the hybrid�uid PIC model to reprodue the assumptions of the geometri shadowing model.The resulting model is then used to perform a gasdynami simulation of the ionpartiles. The shadowing DSMC model does produe a �ow �eld that is onsistentwith the expetations of the shadowing model. However, no satisfatory geometrishadowing sheath solution an be found to �t the ion number density pro�le fromthe simulation.The Boltzmann �uid model is used in the hybrid �uid PIC model to performa plasmadynami simulation of the same �ow that inludes eletri �elds. This�ow �eld solution is signi�antly more omplex than predited by the shadowing157



158model. Two dimensional e�ets introdue important �ow features on the wake sideof the probe that annot be desribed by a one dimensional theory. The geometrishadowing sheath model is of little or no use in this situation.The Poisson-onsistent detailed �uid model is also used to simulate the �ow. Mi-nor di�erenes from the Boltzmann model are noted, but generally the models are ingood agreement. The Poisson-onsistent model predits more gradual plasma poten-tial variation over a larger area than the Boltzmann model, and the �ow struturesin the wake are a�eted aordingly. Again, the geometri shadowing sheath doesnot provide useful preditions of the �ow.The numerial simulations are used to alulate estimates of the exhange fre-queny by reording the rate that simulated partiles ross into a region in the wake.The shadowing DSMC model demonstrates an approximately onstant exhange fre-queny for partiles moving into the wake, but a muh lower, variable frequeny forpartiles moving out of the wake. The Boltzmann and Poisson-onsistent modelsprodue more ompliated pro�les of exhange frequeny, with strong variations dueto the �ow features. The assumption of a onstant exhange frequeny at all pointsin the sheath is very poor for these models.7.1 Flow onditionsThe �ow onditions are seleted to obtain an interesting physial situation thatremains representative of the onditions in an EP plume, while maintaining a prati-al simulation time. The geometri shadowing model provides some guidane aboutthe properties of the sheath on the wake side of the probe. In Eq. 7.1 the solutionfor the distribution funtion in the wake region is repeated. Sine the sheath lengthis de�ned where the exponential term is arbitrarily small, the sheath will extend far



159downstream if the Mah number is large.
f (z, M) = f∞ (M)

[

1 − H (M) exp

(

−W

M
z

)] (7.1)In the interest of keeping a smaller omputational domain and limiting the timerequirement, the �ow should be kept near a Mah number of one. The eletrontemperature is assumed to be 11,600 K as in the previous onditions, whih gives aBohm veloity vB = 857.2 m
s
. This suggests a drift veloity vD = 1000 m

s
giving aMah number with respet to Bohm veloity of MD = 1.167.To math the old ion ase that was used repeatedly as a validation ase, thenumber density is set at ni = 1.1 × 1014 m−3, although the ion number density doesnot appear as a parameter in the shadowing model. The ion temperature is set at

Ti = 300 K, whih determines the temperature ratio for the shadowing model as
τ∞ = 0.0259. The low ion temperature avoids a signi�ant bak�ow omponent,whih an be demonstrated from the gaskineti Mah number. The aousti speedis alulated as va =

√

γkBTi/mi, giving va = 178.0 m
s
for xenon at 300 K. Thisprodues a strongly supersoni Mah number MD,a = 5.619.The �ow onditions and model parameters for the ions are summarized in Ta-ble 7.1. For the hybrid �uid PIC models, it will be neessary to have onditionsfor the eletrons at the inlet as well. The plasma is assumed to be o-�owing andneutral, so that ni = ne and vi = ve in the freestream.Table 7.1: Ion plasma properties for reversed Faraday probe simulations.

vD = 1, 000. m
s

ni = 1.1 × 1014 m−3

vB = 855.7 m
s

MD = 1.167

Ti = 300 K τ∞ = 0.0259

va = 178.0 m
s

MD,a = 5.619



1607.2 Simulation domain and numerial parametersThe omputational domain for the reversed Faraday probe is similar to that usedfor the probe simulations. In this ase, the extent of the domain on the wake sideof the probe is estimated using a kineti argument. The boundary onditions areessentially unhanged. Sine the reversed Faraday probe simulations are ondutedwith a multigrid method, numerial parameters for the omputational grid mustsatisfy the more demanding requirements.7.2.1 Computational domainThe geometri shadowing model does not provide a physially saled solution, sono sheath length is available to give the required domain length. Instead, a kinetiargument is used to size the domain on the wake side of the probe.Ion partiles at a su�iently large initial radius will �ow past the side of theprobe body and di�use into the wake region. Eletrostati �elds tend to aeleratepartiles toward the enterline on the wake side of the probe, so the eletri �eld isnegleted to arrive at a onservative estimate of the domain length. Without eletri�elds, radial di�usion is due to random thermal veloity of the partiles.To fully resolve the wake, the domain should be long enough for partiles of everyradial speed to di�use aross the diameter of the probe. Sine there are partileswith very low radial speed, this still results in a domain that is impratially long.Instead, onsider the fastest partiles to be at three times the mean speed. For xenonat 300 K, these partiles have a radial speed of vr,max = 660 m
s
.The streamline for a partile that just passes the edge of the probe with themaximum radial speed gives the geometry in Fig. 7.1. From this geometry, it an bedetermined that the domain must extend at least 1.52 probe diameters downstream
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Figure 7.1: Shemati of the wake behind a reversed Faraday probe, with the leadingexpansion ray and the streamline for partiles with the fastest radialspeed.for these partiles to di�use aross the diameter of the probe. No partiles di�usefrom the vauum region of the wake into the ambient plasma, so an expansion regionextends into the plasma as indiated by the dashed streamline for the imaginarypartile �owing outward at the maximum radial speed. By symmetry, this streamlinereahes a radius of 1.5 diameters at the minimum domain length, giving the radialextent of the domain.The simulation domain will be extended 20% farther downstream to allow somepartiles with lower radial speed to di�use ompletely aross the probe. The �nalsimulation geometry is shown in Fig. 7.2, dimensioned in terms of the probe diameterand the physial dimensions of the JPL Faraday probe. A region of �ow upstreamand alongside of the probe is simulated to obtain onsistent ambient onditions onthe wake side of the probe.
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Figure 7.2: Computational domain for reversed Faraday probe simulations.7.2.2 Computational gridSine this �ow will be simulated with the multigrid version of the hybrid �uidPIC ode, two omputational grids are required. The �uid grid is developed �rstand the PIC grid is then onstruted using every seond node of the �uid grid. Thisensures that eah PIC ell ontains exatly four �uid ells, and that eah PIC gridnode is oinident with a �uid grid node.The retangular ells of the �uid grid are uniformly sized at 8×10−5 m on a side.The �nal geometry extends 7.168 cm (896 ells) along the probe axis and 3.840 cm(480 ells) radially. The probe body is 1.280 cm (160 ells) long with 0.96 cm (120elements) along the olleting surfae and 0.320 cm (40 elements) along the guardring surfae. The front surfae of the probe is 1.28 cm (160 ells) from the upstreaminlet of the domain, and the bak surfae of the probe is 4.608 cm (576 ells) from



163the downstream exit of the domain. Altogether there are 404,480 �uid ells outsideof the probe body.The PIC ells are then 1.6 × 10−4 m on a side, and the domain has 448 ellsalong the probe axis and 240 ells radially. The probe body is 80 ells long, with60 ells along the olleting surfae of the probe and 20 elements along the guardring. Altogether there are 101,120 PIC ells outside of the probe body. Note that thenumber of PIC ells is atually slightly smaller than in the original Faraday probesimulations. At steady state, there are approximately 1.7 million partiles in thedomain.The simulation time step is seleted so that the fastest ions travel less than oneell length per iteration. Assuming a probe potential of −5 V, ions that enter attwie the thermal speed beyond the drift veloity arrive at the probe with a veloityof 3, 070 m
s
. Dividing the ell length by this speed and rounding down sets the timestep at 5 × 10−8 s.The simulation is allowed to iterate for 10,000 time steps to reah a onvergedstate, followed by 20,000 sampled time steps. The total simulation time is approx-imately 45 hours. The performane gain of using multigrid is in full evidene: thisdomain has 3.6 times the number of �uid ells in the Faraday probe domain, butrequires just 30% more omputational time.7.2.3 Boundary onditionsThe boundary onditions on this domain are idential to the onditions on theFaraday probe simulations. Referring to the labels in Fig. 7.2, there are six regionsof boundary onditions that are repeated here.Region 1 is the axisymmetri enterline. Partiles are automatially rotated at



164the enterline as part of the axisymmetri move routine. A zero gradient onditionis enfored on the radial omponent of all variables in the �uid models, inluding thestream funtion Ψ, plasma potential, eletron number density, and eletron temper-ature.Region 2 is the upstream inlet for the �ow. Partiles are introdued at thisboundary with a random position and statistially sampled veloity in eah ell.Partiles that ross this boundary are removed from the simulation. The eletrontemperature and gradient of stream funtion are assigned along this edge. Theplasma potential and eletron number density are set using third kind boundaryonditions.Region 3 is the outer radial inlet. Partiles are injeted along this edge using thesame proedure as in Region 2, and partiles that ross this boundary are removedfrom the simulation. A onstant gradient ondition is enfored on the radial ompo-nent of the stream funtion, and zero gradient onditions are enfored on the radialomponent of plasma potential, eletron number density, and eletron temperature.Region 4 is the downstream �ow exit. Partiles are only removed along thisedge, sine the Maxwellian distribution for the ions has negligible bak�ow. Thegaskineti Mah number is strongly supersoni, further reinforing this point. Aonstant gradient ondition is enfored on the stream funtion, and zero gradientonditions are enfored on the axial omponent of plasma potential, eletron numberdensity, and eletron temperature.Region 5 inludes the guard ring and side body of the probe. Partiles undergodi�use re�etion from this surfae with full thermal aommodation, and ion partilesare neutralized. The gradient of stream funtion is assigned, whih is equivalent tospeifying the eletron urrent �ux to the surfae. The plasma potential, eletron



165number density, and eletron temperature are assigned at the surfae. In keepingwith experimental pratie, the entire side of the probe body is biased to the samepotential as the olleting surfae.Region 6 is the olleting surfae of the probe. The same boundary onditions asin Region 5 are enfored on partiles and eletron �uid variables. When ion partilesare neutralized at this surfae, the olleted urrent is inremented by the harge ofthe ion partile. This gives the simulated olleted urrent, whih is averaged overthe sampling time steps.7.3 Geometri shadowing DSMC modelThe geometri shadowing model assumes zero eletri �elds and plasma neu-trality, so several of the hybrid �uid PIC model apabilities must be deativatedto obtain an equivalent omputational model. The neutrality ondition allows theeletron �uid equations for ontinuity, momentum, and energy to be disabled. Theassumption of zero eletri �elds allows the eletrostati Poisson equation to be dis-abled, and removes the need to alulate eletrostati aeleration on the partiles.The remaining omputational ode is just a DSMC model for the ion partiles,sine all of the �uid model equations and PIC eletri �eld routines are disabled. Thismodel performs purely gaskineti simulations. However, these simulations shouldmost losely reprodue the sheath solution from the geometri shadowing model.Contours of simulated ion number density are shown in Fig. 7.3. The �ow stru-ture re�ets the assumptions used to size the domain. A vauum region is formedimmediately behind the probe. Partiles at the outer edge of the probe di�use to-ward the enterline, and the expansion spreads into the freestream �ow beyond theprobe radius. The �ow rejoins smoothly at the enterline, inreasing from vauum to
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Figure 7.3: Contours of ion density for the reversed Faraday probe ase.the freestream density. No overompression region develops, sine there is no foreto aelerate partiles toward the enterline.A radial average of properties near the enterline does not provide a useful om-parison with the geometri shadowing sheath model in the wake region of the �ow,sine the shadowing sheath model annot predit the vauum region. Instead, theylindrial surfae at the outer diameter of the probe is a fair representation of thesituation in one dimension. Pro�les of ion density at a radius equal to the outer edgeof the probe ylinder are shown in Fig. 7.4. Sine there has been no radial averaging,the statistial satter in the pro�le is readily evident.The exhange frequeny is not known a priori to alulate the shadowing sheathin physial dimensions, so a least-squares method is used to seek an exhange fre-queny that provides the best �t. However, there is not a satisfatory �t using a singlevalue of exhange frequeny. This result is not unreasonable, sine the Maxwellian
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Figure 7.4: Pro�les of ion number density at the outer edge of the probe.distribution of radial speeds in the simulation leads to di�erent transport rates at dif-ferent radial speeds. Essentially the exhange frequeny has a funtional dependeneon radial speed in the simulation, while the shadowing sheath assumes a onstantexhange frequeny.Streamlines of urrent are shown in Fig. 7.5. The vauum region behind the probeis learly delineated, and extends approximately 2 m (28 λD) along the enterline.Traing the streamlines that expand into the wake region bakward, it is seen thatmuh of the wake �ow originates in a thin annulus immediately surrounding theprobe ylinder.Although the shadowing DSMC numerial model reprodues the assumptions ofthe shadowing sheath model, there are signi�ant di�erenes in the alulated sheathproperties. The one dimensional formulation does not predit a vauum region, sothe shadowing sheath model is not diretly appliable exept at the outer edge of the
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Figure 7.5: Streamlines of urrent for the reversed Faraday probe ase.probe. Even there, the sheath model annot be brought into good agreement withthe simulation. In the DSMC simulation the partile veloity distribution leads to avariable exhange frequeny, whih is oversimpli�ed to a onstant in the shadowingsheath model.The shadowing sheath model does a poor job of prediting the sheath propertieson the wake side of the probe for the shadowing DSMC simulation, so it is unlikelyto be a useful preditor for the hybrid �uid PIC simulations.7.4 Hybrid PIC Boltzmann modelIn terms of simulating a plasma, the hybrid �uid PIC models represent a largestep up from the shadowing DSMC model. The single most important di�erene isthe inlusion of eletrostati �elds. Plasmas are distinguished from gases primarilyby the eletrial harge of the partiles, and the assoiated interations with eletriand magneti �elds. It should ome as no surprise then, that results from the hybrid
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Figure 7.6: Contours of ion density for the reversed Faraday probe ase.models show distintly di�erent �ow features from the DSMC simulation results.Contours of ion number density alulated with the hybrid PIC Boltzmann �uidmodel are shown in Fig. 7.6. The wake struture is ompliated, and di�ers fromthe DSMC simulation results in three main features. First, the eletrostati sheathauses a region of dereased density upstream of the probe and alongside the probebody. Seond, the �ow expands to a low density in the immediate wake of the probe,but does not develop a vauum region. Third, a onial overompression region formsslightly downstream of the probe surfae.The ontours of eletron number density in Fig. 7.7 an be ompared with the ionnumber density ontours to give a rough impression that the �ow throughout most ofthe domain is nearly neutral. The eletron number density only varies signi�antlyfrom the ion number density near the probe surfaes. These ontours appear noisysine the Boltzmann relation is used to alulate the eletron number density from
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Figure 7.7: Contours of eletron density for the reversed Faraday probe ase.the plasma potential. The exponential relation magni�es small variations in plasmapotential to muh larger variations in eletron number density.The ompliated features in the ion �ow �eld an be explained by the eletrostatisheaths along the probe surfaes, whih alter the ion trajetories signi�antly. Theontours of plasma potential in Fig. 7.8 and the urrent streamlines in Fig. 7.9 areuseful for illustrating the explanations.The �rst di�erene is in the regions of dereased density upstream of the probeand extending outward radially from the side of the probe. The behavior upstreamof the probe is familiar from the Faraday probe simulations in Chapter V. As theplasma potential drops near the front fae of the probe, ions are aelerated towardthe probe and the density falls. The same proess ats along the side of the probe,exept that the freestream �ow is initially parallel to the surfae and the eletrostatiaeleration turns ions toward the probe. The �ow farther from the probe surfae is
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Figure 7.8: Contours of plasma potential for the reversed Faraday probe ase.
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Figure 7.9: Streamlines of urrent for the reversed Faraday probe ase.



172shielded from the potential drop, but expands toward the enterline in response tothe density gradient loser to the probe.The seond di�erene is in the wake region immediately behind the probe. Asseen in the streamlines, the �ow that arrives in this region has been turned by passingthrough the sheath on the side of the probe. This �ow has a larger average radialspeed than in the DSMC simulation, and the eletri �elds in the wake-side sheathat to turn the ions toward the rear fae of the probe. Together these e�ets aresu�ient to turn the �ow ompletely around the orner of the probe without forminga vauum region.The third di�erene is the onial overompression region downstream of theprobe. The �ow that reahes the area immediately behind the probe has been turnedby passing through the sheath alongside the probe body, and then expanded towardthe enterline when the adjaent �ow was turned toward the rear fae of the probe.This results in a radially onverging �ow that omes to a stagnation point approx-imately 0.6 m (8.5 λD) downstream of the probe. Moving downstream, the �owthat was expanded from alongside the probe onverges toward the enterline andompresses the �ow there. Meanwhile, the �ow near the enterline expands alongthe axis.The ion number density pro�le at the outer edge of the probe in Fig. 7.10 re�etsthe ompliated struture of the wake. Ion number density near the probe surfae,from 2.56 m to 2.76 m, is approximately onstant at 2.4 × 1013 m−3. In thatregion the �ow is uniformly expanded and is essentially parallel to the rear fae ofthe probe. From 2.76 m to about 5.4 m, the ion number density shows a gradualinrease that orresponds to moving aross the expansion to a higher density region.The number density then inreases more quikly, whih orresponds to moving aross
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Figure 7.10: Pro�les of ion number density at the outer edge of the probe.the ompression region. The peak density of 1.0×1014 m−3 is reahed at 6.2 m, andbeyond that point the expansion along the axis auses the number density to begindereasing again.It should be noted that the partiulars of the ion density pro�le are not unique.The radius of the probe, the bias potential on the probe, and the ratio of ion driftveloity to thermal veloity all ontribute to the shape of this pro�le. The down-stream loation and magnitude of the maximum ion density depend strongly on theradius of the probe and how e�etively the eletrostati sheath fouses the �ow to-ward the enterline. However, the qualitative properties of the pro�le are expetedto be onsistent for similar �ow geometries.The ion number density pro�le is not onsistent with the exponential form ex-peted in the geometri shadowing sheath model, so no attempt is made to �t thispro�le with a shadowing sheath solution. This upholds the expetation that the



174shadowing sheath model would not be a useful preditor for the sheath propertieson the wake side of the probe.7.5 Hybrid PIC Poisson-onsistent detailed modelThe main di�erene between the Poisson-onsistent detailed model and the Boltz-mann model is that the Poisson-onsistent model solves the all three eletron �uidonservation laws. Reall from Chapter V that the di�erenes between the modelresults are small for the Faraday probe simulations. Not surprisingly, simulation ofthe reversed Faraday probe using the hybrid PIC Poisson-onsistent model yieldsresults that are very similar to the Boltzmann model results.The main strutures of the wake are shown in the ontours of ion number densityin Fig. 7.11. As seen previously, there is a region of dereased density alongside andupstream of the probe body. Immediately behind the probe is a low density region,and an overompression region farther downstream. Comparing the ion numberdensity with the ontours of eletron number density in Fig. 7.12, it appears that the�ow is still nearly neutral exept within a few Debye lengths of the probe surfaes.There are two related minor di�erenes from the ontours alulated in the Boltz-mann model simulations. The �rst is that the low density region along the side of theprobe body extends almost radially from the front of the probe, where it was sweptbak from the front surfae in the Boltzmann simulation results. The seond di�er-ene is that the overompression region in these results forms a one with a smallerhalf-angle and a lower peak number density than in the Boltzmann simulation.The �rst di�erene an be explained by the urvature of the plasma potentialontours in Fig. 7.13, whih is less pronouned than in the Boltzmann model results.The gradients in plasma potential extend farther into the plasma in the Poisson-
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Figure 7.11: Contours of ion density for the reversed Faraday probe ase.

Figure 7.12: Contours of eletron density for the reversed Faraday probe ase.



176onsistent simulation, so weak eletri �elds a�et more of the �ow. In this asethe eletrostati aeleration produes a omponent of aeleration along the �owdiretion as well as a omponent of expansion toward the enterline. This is visiblein Fig. 7.14 as a less pronouned fousing of the urrent streamlines near the frontsurfae of the probe.The gradients in plasma potential are smaller than in the Boltzmann simulation,so the eletri �elds are weaker in the Poisson-onsistent simulation. Sine thisgenerates a smaller fore and the �ow also develops a higher axial veloity, the �owdoes not turn around the edge of the probe as quikly. This leads to a region oflower density immediately behind the probe, and a generally lower potential in thewake region behind the probe. When the �ow onverges on the enterline in thePoisson-onsistent simulation, the higher axial speed arries partiles downstreamfaster. This redues the partile residene time, whih dereases the peak numberdensity and narrows the one of the overompression region. This proess explainsthe seond di�erene in the simulation results.The pro�le of ion number density at the outer edge of the probe in Fig. 7.15shows the same trends as desribed for the Boltzmann model simulation. The ionnumber density is onstant at approximately 2.0×1013m−3 near the fae of the probe,from 2.56 m to 2.8 m. The ion number density then inreases gradually aross theexpansion until the edge of the ompression region, whih has moved downstream to6.0 m. Aross the ompression region the ion number density rises to a maximumof 8.6 × 1013 m−3 at 6.9 m, before beginning to derease as the �ow aeleratesdownstream.This pro�le is also inompatible with the geometri shadowing sheath model, sono attempt to �t a shadowing sheath is made. There is qualitative agreement between
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Figure 7.13: Contours of potential for the reversed Faraday probe ase.
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Figure 7.14: Streamlines of urrent for the reversed Faraday probe ase.
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Figure 7.15: Pro�les of ion number density at the outer edge of the probe.the results from the Boltzmann model simulation and the Poisson-onsistent model,but the values of number density or plasma potential at a point in the �ow vary by10-15% between the simulations. The minor di�erenes between the eletron �uidmodels beome more signi�ant over the extended sheath on the wake side of theprobe.7.6 Exhange frequeny resultsThe hybrid �uid PIC models an also be used to obtain an estimate of the ex-hange frequeny for use in the geometri shadowing sheath model. Sine the modelssimulate partiles rather than the partile distribution funtions, it is useful to relatethe exhange frequeny to a more easily alulated property.The soure term in the shadowing sheath model resembles a rate of hange of theloal distribution funtion, as in Eq. 7.2. There is no di�ulty in integrating overall veloities to obtain the soure term for ion number density in Eq. 7.3, sine the



179exhange frequeny is assumed to be onstant.
df

dt
= w (f∞ − f) (7.2)

∫

v

n∞
df

dt
dv =

∫

v

n∞w (f∞ − f) dv −→ dn

dt
= w (n∞ − n) (7.3)The numerial models operate on a disrete omputational grid, so it is usefulto integrate over the volume of the ell as in Eq. 7.4 to obtain the rate of hange ofpartile ount in the ell.

∫

V

dn

dt
dV =

∫

V

w (n∞ − n) dV −→ dN

dt
= w (N∞ − N) (7.4)The soure term an be readily divided into separate terms for the addition andremoval of partiles from the ell, giving the form in Eq. 7.5. The forms in Eq. 7.6an be used to alulate the exhange frequenies win for partile addition and woutfor partile removal, based on the partile ount and the transfer rate.
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(7.6)In the numerial simulations, every time an ion maropartile rosses in to orout of the ylinder downstream of the outer edge of the probe, an event ounteris inremented. Multiplying the number of events by the maropartile weight anddividing by the total simulation time gives the average transfer rates dN
dt
. Pro�les ofthe normalized exhange frequenies are shown in Figs. 7.16-7.18 for all three of thenumerial models. Partile exhange is relatively rare in the shadowing DSMCmodel,so the pro�les for that model show larger statistial satter than the Boltzmann orPoisson-onsistent model pro�les.
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Figure 7.16: Pro�les of simulated exhange frequeny alulated using the shadowingDSMC model.The pro�les from the shadowing DSMC model are losest to the assumptionsmade in the geometri shadowing sheath model. The exhange frequeny for partilesmoving into the ylinder is essentially onstant, averaging near win = 0.29. Thisorresponds very well with the w = 0.3 value alulated in Se. 7.3 to �t the ionnumber density pro�le near the surfae. The exhange frequeny for partiles movingout of the ylinder is muh lower and shows a distint trend. This is a departure fromthe geometri shadowing sheath assumption, and helps to explain why no satisfatory�t value ould be found previously.The exhange frequeny pro�les for the Boltzmannmodel and the Poisson-onsistentmodel are very similar. The exhange frequeny into the ylinder immediately down-stream of the probe is very high, sine the �ow has turned around the edge of theprobe and is direted into the ylinder. Moving farther downstream, the exhangefrequeny drops to a plateau where the �ow is expanding toward the enterline. Sine
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Figure 7.17: Pro�les of simulated exhange frequeny alulated using the Boltz-mann model.the radial speed is lower, the exhange frequenies into and out of the ylinder areloser together. The onset of the overompression region appears as a seond dropin the exhange frequeny into the ylinder. Eventually the exhange frequeny outof the ylinder beomes larger than the exhange frequeny in to the ylinder, indi-ating the expansion along the axis. The exhange frequeny into the ylinder levelso� to a seond plateau in the expansion.Again, the assumptions that the exhange frequeny is onstant and equal fortransfer in to and out of the ylinder are not appropriate for these pro�les. Theexhange frequeny shows so muh variation that no estimate is likely to produe ageometri shadowing sheath solution that resembles the observed ion number densitypro�les.These results an still be used to make order of magnitude estimates of theexhange frequeny for the gasdynami and plasmadynami ases. The gasdynami
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Figure 7.18: Pro�les of simulated exhange frequeny alulated using the Poisson-onsistent model.ase in the DSMC model simulation shows a nearly onstant, relatively low exhangefrequeny into the ylinder, on the order of w = 0.3. The exhange frequeny out ofthe ylinder is zero near the surfae of the probe and slowly rises as the wake is �lledin. The plasmadynami ases in the Boltzmann and Poisson-onsistent simulationsshow a relationship between the �ow orientation and the exhange frequeny. Theexhange frequeny an beome very large if the diretion of �ow is normal to thesurfae. If the �ow is primarily parallel to the sheath, the exhange frequeny showsa range of w = 1.4 − 1.8 for expansion into the sheath and a range of w = 0.5 − 0.6for expansion out of the sheath in the overompression region.7.7 Conlusions for model usage and probe designSimulations of the reversed Faraday probe with the shadowing DSMC model, thehybrid Boltzmann model, and the hybrid Poisson-onsistent model are not in good



183agreement with the geometri shadowing sheath solution. The alulated exhangefrequenies show signi�ant variation and annot be represented well by a onstantvalue. Additionally, the number density in the wake is very low, so the exhangefrequeny out of the probe is muh smaller than the exhange frequeny into theprobe. These di�erenes annot be addressed without redeveloping the shadowingsheath model altogether.The two dimensional e�ets are also a signi�ant fator, introduing vauumregions that the one dimensional shadowing sheath model annot predit. Eletro-stati aeleration helps develop a more uniform �ow immediately downstream ofthe probe, sine harged partiles an turn around the edge of the probe to reah therear fae of the probe without forming a vauum region. However, this aeleratesthe �ow toward the axis and reates an overompression region that is also beyondthe preditive apabilities of the geometri shadowing sheath.Eletrostati aeleration produes an extended expansion region alongside theprobe, and leads to a ompression region downstream of the probe. These e�etsare not predited in the shadowing DSMC model, whih illustrates the importaneof the eletri �elds for aurate simulation of a plasma. The eletri �elds an alsosigni�antly alter the diretion of the �ow, and an ompletely reverse the diretionof �ow.This may be an important onsideration for a reversed Faraday probe use. Theurrent streamlines from the Boltzmann and Poisson-onsistent model simulationsindiate that all of the urrent that reahes the rear fae of the probe originates froman annular region at slightly larger radius than the probe. Obstrutions o� axis andupstream from the probe might not a�et measurements on the upstream fae, butould interfere with measurements on the reversed fae of the probe. Features on



184the side of the probe body suh as a mounting spar will ertainly a�et the �ow tothe rear fae of the probe.



Chapter VIIIConlusion
In this hapter the important results and onlusions desribed in the ourse ofthis dissertation are reviewed. In ful�llment of one of the major objetives of thiswork, a few reommendations are made regarding Faraday probe use.8.1 Summary and ReviewStandard diagnosti tehniques assume that properties measured at the surfaeof a probe an be related diretly to undisturbed plasma properties. However, animmersed Faraday probe a�ets the ambient plasma by introduing physial ob-strutions and eletrostati sheaths. Perturbations aused by the probe may lead tosystemati di�erenes between the probe measurements and the undisturbed plasmaproperties.The work in this dissertation was intended to develop and use omputationalmodels to identify and quantify any di�erenes aused by the presene of an immersedFaraday probe in a plasma. Both of these objetives have been aomplished, as issummarized in the following setions.
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1868.1.1 One dimensional analyti modelsIn order to obtain an initial understanding of the �ow features in a plasma sheath,two analytial models were developed as referene ases in Chapter III. Both modelswere derived from very general kineti or �uid desriptions of the plasma by assumingsteady, ollisionless, one dimensional �ow.The geometri shadowing sheath model was derived from kineti theory and theBoltzmann transport equation in Se. 3.2, with physial obstrution of partile tra-jetories ausing variation of the plasma properties in the sheath. A di�usion-likesoure term was used to model the transfer of partiles between the distribution fun-tion in the ambient plasma and the distribution funtion in the sheath. The rateof partile transfer was saled by introduing an exhange frequeny. An analytisolution was then obtained by negleting the eletri �elds.The shadowing sheath solution desribed an exponential depletion of the bak-�owing distribution as the �ow approahes the probe. Moments of the loal distri-bution ould be alulated to obtain pro�les of the ion number density and veloityin the sheath. However, this solution ould not be saled into physial dimensionsunless a value of the exhange frequeny ould be estimated by some other means.The planar Bohm sheath model was derived from �uid theory in Se. 3.3, using theonservation equations for mass and energy of the ions and assuming the Boltzmannrelation for the eletrons. The eletrostati Poisson equation was then written asa di�erential equation for the plasma potential and integrated using a numerialmethod. It was noted that a steady solution was only possible if the ion drift veloitywas greater than or equal to the Bohm veloity at the edge of the sheath. Thisondition is the Bohm riterion.The Bohm sheath solution gave pro�les of the plasma potential and the ion and



187eletron number densities in the sheath. Sine the sheath oordinate saled with theDebye length, the Bohm sheath solution ould be saled into physial dimensions.The one dimensional models were ompared in Se. 3.4 using onditions thatahieved partial similarity. A shadowing sheath solution was alulated for a givenfreestream Mah number. The plasma potential in the shadowing sheath modelwas alulated by assuming neutrality and then assuming the Boltzmann relation,so that the plasma potential ould be expressed as a funtion of the ion numberdensity. A planar Bohm sheath solution was then alulated for the same freestreamMah number and plasma potential at the probe surfae. A least-squares �t wasperformed on the ion number density pro�les to estimate the value of the exhangefrequeny. The best �t was found with an exhange frequeny W = 0.088, that is,the exhange frequeny was 0.088 times the plasma frequeny. However, it was notedthat this value is spei� to the onditions MD = 1 and τ∞ = 1.8.1.2 Two dimensional omputational modelsThe axisymmetri hybrid �uid PIC models were desribed in Chapter IV. Thelarge di�erene between the eletron and ion time sales in a plasma was noted, anda hybrid model was employed that used kineti models for the ions and neutrals and�uid models for the eletrons.The ions and neutrals were modeled using the well-known Partile In Cell (PIC)and Diret Simulation Monte Carlo (DSMC) methods as desribed in Se. 4.1.Maropartiles were moved aording to the eletri �elds alulated at nodes ofthe omputational grid. Collisions were evaluated statistially in ells of the ompu-tational grid.The eletrons were modeled with one of three �uid models desribed in Se. 4.2.



188The �rst �uid model used the Boltzmann relation and solved the eletrostati Poissonequation for plasma potential. The Boltzmann �uid model losely approximated theassumptions of the planar Bohm sheath model.The seond �uid model was the non-neutral detailed model. This model solvedall three of the �uid onservation equations and the eletrostati Poisson equation.The eletron momentum equation was solved for plasma potential in this model,leaving only the eletrostati Poisson equation to solve for eletron number density.The alulation for eletron density was found to have poor resolution and highsensitivity to statistial satter in the ion number density. This model was usedpreviously as a neutral model, so that the Poisson equation ould be replaed byneutrality.The third �uid model was the Poisson-onsistent detailed model. This model alsosolved the three �uid onservation equations and the eletrostati Poisson equation.This model solved the eletron momentum equation for eletron number density, andthe Poisson equation for plasma potential. This model required additional boundaryonditions for the eletron number density, but was otherwise more robust than thenon-neutral detailed model.The eletron �uid equations were disretized using the �nite di�erene operatorsdesribed in Se. 4.4.The di�erential equations for the plasma potential in the non-neutral detailedmodel and the eletron number density in the Poisson-onsistent model were ompli-ated and not well haraterized in terms of stability. In setion 4.5, one dimensionalformulations of the di�erential equations were solved using a one dimensional alter-nating diretion impliit (ADI) solver. The solutions obtained with the ADI solverwere in exellent agreement with the exat analyti solutions. This provided on�-



189dene that the ADI solver would also be able to obtain stable, aurate solutions onthe axisymmetri omputational domain.8.1.3 Faraday probe simulationsThe hybrid �uid PIC models were used to simulate the plasma �ow around an ax-isymmetri Faraday probe geometry in Chapter V. Plasma onditions were seletedto be representative of the onditions downstream and far o�-axis in the plume ofa low power Hall thruster. The omputational domain was sized from the upstreamlength of the Bohm sheath solution and the radial dimensions of a JPL Faradayprobe. The omputational grid spaing was determined from the stability require-ments of the �uid model di�erential equations, and the simulation time step wasalulated suh that the fastest simulated partiles do not travel more than a elllength per iteration.The hybrid PIC Boltzmann model was used extensively to investigate the e�etsof the in�ow ion distribution on the properties in the sheath and at the surfae of theprobe. In Se. 5.3.1 the model was used on a quasi one dimensional omputationalgrid for a diret omparison with the planar Bohm sheath solution. The hybrid �uidPIC model very losely approximated the assumptions of the Bohm sheath solution,and the pro�les of the quasi one dimensional results were in exellent agreement withthe Bohm sheath pro�les for the old ion ase. The hot ion ase showed the e�et ofa higher ion temperature, whih leads to a small derease in loal ion number densityin the sheath. The olleted urrent at the probe was una�eted.The hybrid PIC Boltzmann model was next used on the probe geometry ompu-tational domain to investigate two dimensional e�ets. In Se. 5.3.2 the edge e�etsare shown to be limited to within 0.0015 m or 2 λD of the outer radial edge of the



190probe for both the old ion ase and the hot ion ase.Next the hybrid PIC Boltzmann model was used to simulate the plasma in�owonditions that inrementally approahed the ompliated omposite distributionthat onsisted of beam, CEX, and double harge ions. The �rst ombination inludedjust beam and CEX ions, as the beam-CEX ase. As was desribed in detail inSe. 5.3.3, the presene of a seond ion omponent ated to shield the partiles fromthe potential drop until loser to the probe surfae. The Bohm sheath solutionalulated from the total ion density and bulk Mah number with respet to Bohmveloity was shown to be a good preditor for the number densities and plasmapotential in the sheath. The omponent distributions formed essentially independentsheath strutures that were aurately predited by using the plasma potential andthe omponent freestream Mah number with respet to Bohm veloity.The beam-CEX-double omposite distribution was simulated in the same way,and the same high level of agreement with the Bohm sheath was maintained. Addinga double harge omponent did not signi�antly a�et the properties of the otheromponents.The hybrid PIC Boltzmann model was also used to investigate what e�ets hang-ing the Faraday probe operating onditions had on the olleted urrent. The �rstof these studies, in Se. 5.3.4, hanged the guard ring bias relative to the olletingsurfae bias. This reated potential gradients and eletri �elds that would fous ionsonto the olleting surfae if the guard ring was at a smaller negative bias than theolleting surfae. The olleted urrent varied by 12% from the expeted freestreamurrent for a di�erene of 5 V between the olleting surfae and the guard ring.The seond study of the e�ets of hanging the Faraday probe operating onditionwas desribed in Se. 5.3.5. The probe bias was varied over a range from 0 V to



191
−10 V, and the total olleted urrent at eah bias was ompared to the theoretialtotal urrent. The error in the olleted urrent showed a positive orrelation withinreasing negative bias, whih was attributed to sheath expansion. However, theaxial veloity was large in this ase, and the probe showed less than 2% error overthe range of bias potentials.A omparison of simulated olleted urrent with experimental measurement wasmade in Se. 5.3.6. The simulated measurement was in lose agreement with theexperimental measurement, with less than 3% di�erene between the two. This levelof agreement is somewhat surprising, onsidering that the simulation parameterswere devised from a previous simulation of the BHT-200 plume, and that the detailsof the beam-CEX ion distribution were not determined rigorously. This reinforedthe onlusion that the ion distribution does not have a signi�ant impat on theolleted urrent measurement.The hybrid PIC non-neutral detailed model was used to simulate the old ionase in Se. 5.4. This simulation revealed a problem in the iteration sheme suhthat the Laplaian of plasma potential remained onstant and approximately zero,and the eletron density was equal to the ion density as a result. This model wasretired sine an alternative detailed model was available.The hybrid PIC Poisson-onsistent model was used in Se. 5.5 to simulate the oldion ase, and produed results that were in exellent agreement with the Bohm sheathsolution. The intermediate ombinations leading up to the omposite distributionwere not shown, but two modi�ed beam-CEX-double omposite ases were. The oldomposite ase had a CEX temperature of 300 K, so that there was essentially nobak�ow in the plasma distribution. The hot omposite ase had a CEX temperatureof 11,600 K, whih gave a signi�ant bak�ow of about 11.5% of the total distribution.



192The Poisson-onsistent model simulation of the old omposite ase produed resultsthat showed the usual good agreement with the Bohm sheath solution. However, thesimulation of the hot omposite ase produed a CEX pro�le that was well belowthe Bohm sheath pro�le throughout the sheath. This disrepany was disussed andattributed to the assumption made in the Bohm sheath solution that ions have auniform positive veloity.In assessment of the model performane, the Bohm sheath solution was shownto be a reliable preditor for plasma properties in the sheath, provided that the iondistribution did not have a signi�ant bak�ow omponent. This limitation is looselyrelated to the Bohm riterion. It was noted that the Poisson-onsistent model mightbe apable of simulating the sheath for plasma onditions where the Bohm riterionwas not met and no Bohm sheath solution was available.8.1.4 Multigrid methodsThe simulation time required for the Faraday probe simulations was already 30-35 hours, so the three to four times larger domain required for reversed Faraday probesimulations ould not be simulated in a reasonable amount of time. Chapter VIdesribed the analysis of the ode performane and the inlusion of a multigridsheme to speed up the ode.A time pro�le of the omputational ode was performed in Se. 6.1 that identi�edthe partile models as the largest time expense. It was noted that �uid model stabilityonsiderations determined the omputational ell size, whih was muh smaller thanrequired for the PIC or DSMC models. A �xed number of partiles per ell wasenfored to maintain the statistis in the PIC model, leading to an exessive numberof partiles. A multigrid method was proposed and implemented that allowed the



193PIC and DSMC models to be performed on a oarse PIC grid while the �uid modelswere performed on a �ne �uid grid. This was expeted to derease the overall partileount by a fator four, whih would speed up the partile routines by a similar fator.In Se. 6.3 a time pro�le of the multigrid version of the ode was performed, andthe overall speed up fator was shown to be 2.22. This value was slightly better thanthe expeted speed up fator. The simulated properties in the �ow �eld were shownto be essentially unhanged from the previous single grid version of the ode, with amaximum error of ±2% relative to the single grid solution. This enabled the reversedFaraday probe simulations to be performed, sine the multigrid version obtained thesame results as the original version of the ode and did so in less than half the totaltime.8.1.5 Reversed Faraday probe simulationsIn Chapter VII the plasma �ow around a reversed Faraday probe was simulated.The Bohm sheath solution ould not be used, sine the ions did not satisfy the Bohmriterion on the bak fae of the probe. However, the shadowing sheath model ouldobtain a solution for the sheath on the bak fae of the probe. A modi�ed versionof the hybrid �uid PIC ode was developed in Se. 7.3 to better approximate theassumptions of the geometri shadowing sheath model and provide a diret om-parison. The modi�ations inluded deativating the eletron �uid models and theeletrostati aeleration of the PIC model, so the remaining ode was just a DSMCmodel for the ions. This model was alled the geometri DSMC model.The plasma onditions were seleted to maintain a small omputational domainin order to limit the required omputational time. This suggested a Mah numberwith respet to Bohm veloity of slightly more than one. The ion number density



194and temperature were otherwise the same as the old ion ase. The omputationaldomain was sized using the kineti reasoning that the radial di�usion of the fastestpartiles would be several times faster than the mean radial speed. The domain wasmade long enough so that partiles ould di�use aross the diameter of the probe.The results of the reversed Faraday probe using the shadowing DSMC modelwere desribed in Se. 7.3. The observed �ow strutures generally reprodued theassumptions used to size the domain. A vauum region was formed immediatelybehind the probe. No fores aelerated the partiles toward the enterline, so the�ow rejoined smoothly at the enterline with no overompression. The ylindrialsurfae at the outer edge of the probe was the losest approximation to the one di-mensional sheath in the geometri shadowing model. The pro�le of ion density alongthat surfae was shown to have the same qualitative trends as the geometri sheathmodel pro�les. However, no single value of exhange frequeny gave a satisfatory�t of the simulated ion pro�le. The e�etive exhange frequeny in the shadow-ing DSMC model appeared to have a funtional dependene on the radial veloity,whih was not ompatible with the assumption of a onstant exhange frequeny inthe geometri shadowing sheath model.The hybrid PIC Boltzmann model was used to simulated the reversed Faradayprobe in Se. 7.4. The simulated �ow �eld was shown to be muh more ompliatedthan predited by the shadowing DSMC model. The eletrostati sheath reatedexpansion regions upstream and along the side of the probe body. Partiles thatpassed through the sheath on the side of the body were turned toward the enterline,whih allowed partiles to turn around the edge of the probe without forming avauum region. The aeleration toward the enterline also aused the formation ofa onial overompression region about the enterline in the wake downstream of the



195probe.The hybrid PIC Poisson-onsistent model results in Se. 7.5 were similar to theBoltzmann model results, exept that the ontours of plasma potential showed lesspronouned urvature throughout the domain. This produed a smaller potentialgradient over a larger area that tended to aelerate the partiles along the axisof the probe as well as toward the enterline. Combined with the weaker eletri�elds, the �ow was not turned around the edge of the probe as quikly, resulting ina lower density region immediately behind the probe than in the Boltzmann modelsimulation. Sine the axial veloity was higher where the �ow onverged on theenterline, partiles were arried downstream faster. This narrowed the one anddereased the peak density in the overompression region.The simulated exhange frequenies for the shadowing DSMC model and thehybrid PIC models were disussed in Se. 7.6. The shadowing DSMC showed anapproximately onstant frequeny for partiles moving into the wake sheath, but amuh lower frequeny for partiles moving out of the wake sheath. Both of the hybridmodels showed a ompliated pattern for the exhange frequeny that was explainedby the orientation of the �ow veloity. The geometri shadowing sheath model ouldnot make use of these results, sine the exhange frequenies were not onstant andwere not equal for transfer into and out of the sheath.8.2 Impliations for probe design and tehniqueThe results reported in Chapter V for the standard Faraday probe and in Chap-ter VII for the reversed Faraday probe an be interpreted to make several reommen-dations for the design and use of Faraday probes, ful�lling the third major objetiveof this dissertation.



196In Chapter V, hybrid PIC models produe simulated properties near the enter-line that are onsistently in good agreement with the planar Bohm sheath solutions.This holds true over the full range of in�ow plasma onditions, from the old ionbeam ase to the beam-CEX-double omposite ase. Edge e�ets are observed, butthe e�ets are limited to a few Debye lengths from the outer edge of the probe sur-fae. Additionally, the total olleted urrent at the surfae of the probe is alwaysin very good agreement with the theoretial urrent in the freestream.The results from the guard ring bias study in Se. 5.3.4 show that the olletedurrent most aurately mathes the theoretial urrent when the guard ring andolleting surfae are biased to the same potential. This is reinfored by observingthat the urrent streamlines to the olleting surfae are normal to the surfae whenthe guard ring and olleting surfae are biased to the same potential.The results from the probe bias sweep study in Se. 5.3.5 show that the olletedurrent mathes the theoretial urrent within about 2% over a broad range of biaspotential. There is a gradual inrease in the error as the bias voltage is made morenegative, whih orresponds to sheath expansion. Provided that the plasma has ahigh axial veloity, the error introdued by sheath expansion will be small.The reommendations for operation of a Faraday probe are in agreement withthe established standard praties:1. Use a guard ring that is a few Debye lengths wide to prevent edge e�ets fromreahing the olleting surfae.2. Keep the spae between the olleting surfae and the guard ring smaller thana few Debye lengths to maintain a uniform sheath over the entire olletingsurfae.



1973. Bias the olleting surfae and the guard ring to the same potential.4. Use the smallest bias potential that repels all of the eletron urrent to avoidsheath expansion.
When these reommendations are followed, the olleted urrent at the surfaeof a Faraday probe aurately re�ets the ion urrent in the freestream.Reommendations for the reversed Faraday probe are more di�ult. Resultsfrom the hybrid PIC models in Chapter VII show a ompliated wake struture withbak�ow to the probe and a stagnation point near the bak surfae of the probe.For a strongly �owing plasma, the urrent that reahes the bak surfae of the probeoriginates upstream of the probe and is turned around the edge of the probe bypassing through the eletrostati sheath along the side of the probe body. To avoidinterfering with the �ow that arrives at the rear fae of the probe, features along theside body of the probe should be minimized.If instead the intention is to measure a bak�ow urrent that originates down-stream of the probe, it is reommended that the body of the probe be allowed to�oat to the plasma potential. Then the forward �owing urrent along the side ofthe probe body would not be aelerated toward the enterline, and would not turnaround the edge of the probe as easily. The bias potential on the rear olletingsurfae and guard ring should also use the smallest bias potential that still repelsthe eletron urrent to avoid sheath expansion that might draw in forward �owingurrent.



1988.3 ContributionsIn the ourse of this dissertation a number of unique and original ontributionshave been made.� Se. 3.4: A least-squares �t of exhange frequeny is performed to math ageometri shadowing sheath solution to a Bohm sheath solution. This is the�rst known quantitative assessment of the exhange frequeny.� Se. 4.5: The di�erential equations of eletron momentum onservation for thenon-neutral detailed model and the Poisson-onsistent detailed model are har-aterized as one dimensional onstant oe�ient di�erential equations. The useof a one dimensional ADI solver to investigate the stability and auray of themodel equations had not been performed previously.� Chapter V: Hybrid �uid PIC models are used for the �rst time to simulate the�ow around a Faraday probe, inluding a simulated olleted urrent at theprobe surfae.� Se. 5.3.3: Combinations of ion omponent distributions are simulated, andshown to form independent sheath strutures that interat only with the ol-letive plasma potential. The Bohm sheath solution using the average Mahnumber is shown to be a good preditor of the olletive plasma potential andthe total ion number density in the sheath.� Chapter VI: This is the �rst known instane of a multigrid method beinginorporated into a hybrid �uid PIC model.� Chapter VII: Hybrid �uid PIC models are used for the �rst time to simulatethe �ow around a reversed Faraday probe.



199� Se. 7.6: The exhange frequenies into and out of the probe ylinder aresimulated for axisymmetri DSMC and hybrid �uid PIC models for the �rsttime.8.4 Future workThere are several areas in this dissertation where interesting questions remain orwhere further e�orts are needed.The reversed Faraday probe simulations require a substantial time to run, soonly a few basi ases have been simulated at this point. It would be interesting tosimulate some of the omposite ion distributions to identify whether or not there issigni�ant separation of the di�erent omponents on the wake side of the probe. Itwould also be interesting to investigate alternative boundary onditions for the biaspotential on the body of the probe, whih ould help improve the reommendationsfor use of the reversed Faraday probe.There is a ready opportunity to use the models in this work to produe simulationsfor omparison with experiments. Reent experimental investigations of the sheathformed in a plasma with multiple atomi speies show that the di�erent speies attainsigni�antly di�erent veloities in the sheath [83, 84℄. The models in this work arewell-suited to onsider a similar situation numerially, and would bene�t from thegeneralization involved with simulating other atomi speies. The highly suessfulperformane of the Bohm sheath model for omposite ion distributions suggests thatit might also be useful for the sheaths in multiple ion speies plasmas.One physial e�et that ould a�et probe performane that is not onsideredin the present work is seondary eletron emission (SEE) at the olleting surfaeof the probe. An emitted eletron urrent is indistinguishable from a olleted ion



200urrent at the probe surfae, and would result in an overestimate of the ion urrentin the ambient plasma [1℄. The omputational models desribed in this work ouldbe modi�ed to inlude a model for SEE as part of the boundary onditions at theprobe surfaes. It is expeted that the primary e�et of SEE would be to modifythe eletron properties near the probe surfae, but that the ion plasma would not bea�eted signi�antly.With a few minor modi�ations to the existing omputational ode, partilesould be injeted at the downstream edge of the domain, allowing the simulation ofweakly �owing plasmas. This would enable the investigation of the reversed Faradayprobe for use in a quiesent plasma, and would allow better representation of iondistributions like the hot omposite ase that have a signi�ant bak�ow omponent.E�orts to extend the multigrid method to an additional level of omputationalgrids ould e�et another signi�ant speed up in the overall ode performane byreduing the partile ount by another fator of four. As the multigrid sheme ispresently implemented, the �uid equations are only solved on the �nest grid. Usinga more traditional multigrid approah, the �uid equations ould be solved on theoarse grid �rst, then prolonged and solved on the �ner grid. For best results ina multigrid setting, the �uid equation solver should operate quikly rather thanaurately. The ADI solver is therefore not well-suited for use in a multigrid sheme.A faster iterative method would be more appropriate.The Poisson-onsistent model is not pratial for simulation of an extendedplasma, sine the �uid model requires �ne ell spaing to maintain stability. Ina region where the plasma potential is small and gradients in plasma potential aresmall, signi�ant omputational e�ort is expended to simulate pratially neutral�ow. This suggests a di�erent sort of hybrid sheme where the Poisson-onsistent



201model is only solved in the non-neutral sheath regions while faster neutral modelsare solved in the rest of the plasma.One area for new development is the extension of the hybrid PIC Poisson-onsistentmodel to a three dimensional implementation. The axisymmetri implementationused in this work annot investigate situations where the plasma veloity is inlinedrelative to the enterline of the probe.
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ABSTRACTComputational Simulation of Faraday Probe MeasurementsbyJeremiah J. Boerner
Chair: Iain D. Boyd

Eletri propulsion devies, inluding ion thrusters and Hall thrusters, are be-oming inreasingly popular for long duration spae missions. Ground-based exper-imental testing of suh devies is performed in vauum hambers, whih develop anunavoidable bakground gas due to pumping limitations and faility leakage. Besidesdiretly altering the operating environment, the bakground gas may indiretly a�etthe performane of immersed plasma probe diagnostis.This work fouses on omputational modeling researh onduted to evaluate theperformane of a urrent-olleting Faraday probe. Initial �ndings from one dimen-sional analytial models of plasma sheaths are used as referene ases for subsequentmodeling. A two dimensional, axisymmetri, hybrid eletron �uid and Partile InCell omputational ode is used for extensive simulation of the plasma �ow arounda representative Faraday probe geometry.



1The hybrid �uid PIC ode is used to simulate a range of in�owing plasma ondi-tions, from a simple ion beam onsistent with one dimensional models to a multipleomponent plasma representative of a low-power Hall thruster plume. These sim-ulations produe pro�les of plasma properties and simulated urrent measurementsat the probe surfae. Interpretation of the simulation results leads to reommenda-tions for probe design and experimental tehniques. Signi�ant ontributions of thiswork inlude the development and use of two new non-neutral detailed eletron �uidmodels and the reent inorporation of multi grid apabilities.


