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ṁ mass �ow rate [kg
s

]

λMFP Mean free path [m] xvii



ωP plasma frequen
y [1
s

]

φ plasma potential [V]

Φ plasma potential, normalized by the ele
tron temperature [−]

P pressure [ N
m2

]

x position ve
tor [m]

z sheath position; often normalized by the Debye length [m]

Isp spe
i�
 impulse [s]

σ thermal 
ondu
tivity [ J
m·s·K

]

T thrust [N]

t time [s]

v velo
ity ve
tor [m
s

]

V voltage [V]

xviii



Chapter IIntrodu
tion and Overview
Plasma diagnosti
s are one of the key supporting te
hnologies in every area ofplasma physi
s. In plasma 
on�nement resear
h, immersed probe diagnosti
s andnon-intrusive opti
al diagnosti
s make experimental measurements of the basi
 prop-erties of the plasma. In plasma a

elerator and ele
tri
 propulsion resear
h, the diag-nosti
s measure plasma properties in order to infer performan
e and operating 
har-a
teristi
s. In materials pro
essing appli
ations, diagnosti
s ensure that the desiredplasma 
onditions are sustained in order to produ
e the desired surfa
e treatment.For ea
h of these examples, plasma diagnosti
s provide feedba
k and measurementsthat help guide the resear
h or operation to a
hieve a desired goal.In general, it is assumed that some quantity measured by the plasma diagnosti

an be related ba
k to a desired property in the plasma. For example, the slope of
olle
ted 
urrent with respe
t to bias voltage in the I-V 
hara
teristi
 of a Langmuirprobe 
an be related to the ele
tron temperature. Many diagnosti
 instrumentshave been developed to extra
t information about the �ow. The drift 
urrent 
anbe measured with Faraday probes, the ion velo
ity 
an be visualized with laser-indu
ed �uores
en
e, the ele
tron number density 
an be found with mi
rowaveinterferometry, the plasma potential and ele
tri
 �elds 
an be measured with emissive1



2probes, the ion energy spe
trum 
an be 
al
ulated with retarding potential analyzers,and ion 
harge states 
an be identi�ed with E×B probes. Of 
ourse, many of theseinstruments 
an be used to measure more than one plasma property, and for manyproperties there is more than one measurement te
hnique.The diagnosti
s are interpreted by relating a dire
tly measured property, su
has 
olle
ted 
urrent, to the desired plasma property. The relation is often devel-oped from elementary prin
iples by making 
ertain assumptions about the plasma.Returning to the Langmuir probe example, the ele
trons are assumed to have aMaxwellian velo
ity distribution so that the logarithmi
 slope of the I-V 
hara
ter-isti
 is inversely proportional to the ele
tron temperature [1℄. These assumptions
ommonly in
lude a Maxwellian distribution of ele
tron velo
ities, the Boltzmannrelation between ele
tron density and plasma potential, and a lower temperaturefor ions than for ele
trons. The measurements are assumed to a

urately obtainthe plasma properties, provided the plasma 
onditions meet the assumptions of thediagnosti
 theory.In diagnosti
 theory it is assumed that the instrument does not signi�
antly af-fe
t the properties of the plasma at the point where measurements are taken. Thisassumption is not valid for probe diagnosti
s in parti
ular, and it is a
knowledgedthat some disturban
e is unavoidable. Theory for the plasma sheath on an immersedsurfa
e helps to identify and quantify some of the disturban
es 
aused by the probe.The diagnosti
 te
hniques for some instruments take the plasma sheath into a

ountin order to relate the measured properties to �undisturbed� plasma properties. How-ever, sheath theory is limited to the e�e
ts in the ele
trostati
 or ele
tromagneti
sheath within a few Debye lengths of the probe surfa
e. Diagnosti
 theory does nota

ount for the e�e
ts at longer range, sin
e those e�e
ts are not well understood.
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Figure 1.1: S
hemati
 of plasma properties in the 
ollisionless sheath [1℄.1.1 Sheaths and other probe disturban
esAn immersed diagnosti
 instrument perturbs the plasma properties in its vi
inity.Ele
tri
 and magneti
 �elds 
an penetrate the plasma up to a few Debye lengths fromthe probe, in�uen
ing the 
harged parti
le traje
tories in the sheath. Farther fromthe probe, the 
olle
tive shielding e�e
t isolates the bulk plasma from the �elds.The transition from bulk plasma through the sheath to a probe surfa
e is showns
hemati
ally in Fig. 1.1. For a positive ion plasma, the ele
trons are the sole negative
harge 
arriers and are more mobile than the ions. This leads to unequal �uxes to asurfa
e at the same potential as the plasma, with more ele
trons than ions rea
hingthe surfa
e. If the surfa
e is �oating, it will a

umulate a net negative 
harge thatrepels ele
trons and attra
ts ions until the net 
urrent is zero.Sheaths 
omprise some of the most enduring and widely en
ountered problems



4in plasma physi
s. Langmuir and Tonks investigated sheaths in plasma ar
 and glowdis
harges in the late 1920's [2℄, identifying the major features of the 
ollisionlessele
trostati
 sheath and obtaining analyti
al solutions for simple geometries.Bohm investigated the 
urrent 
olle
tion of Langmuir probes in the late 1940's,and established the broadly appli
able Bohm 
riterion for the formation of a steadysheath [3℄. The 
riterion has sin
e been generalized for �nite temperature ion distri-butions and arbitrary ion distributions.Developments in the 1980's and 1990's produ
ed a kineti
 des
ription of thesheath and presheath for appli
ation to the strongly �owing plasmas en
ounteredin spa
e environments and fusion plasmas [4, 5, 6℄. More re
ently, mu
h attentionhas been fo
used on developing a 
onsistent method to span the interfa
es betweenplasma, presheath, and sheath [7, 8, 9, 10℄. This work is motivated in part by theunphysi
al result in the Bohm sheath solution that the sheath is in�nitely long, andthat the ele
tri
 �elds at the sheath edge are asymptoti
ally large.An immersed probe 
an also a�e
t the �ow over longer length s
ales, sin
e the �oweither 
ollides with the probe body or is diverted around the physi
al obstru
tion.This 
an potentially introdu
e �ow features in
luding 
ompression regions upstreamof the probe and rarefa
tion regions in the wake of the probe. Sin
e experimentaldiagnosti
 probes are not perfe
tly absorbing, ions that 
ollide with a probe surfa
e
an be neutralized and re�e
ted ba
k into the �ow. The neutral gas di�uses awayfrom the probe, extending the region that is perturbed by the probe. Charge ex-
hange or momentum ex
hange 
ollisions with the neutral gas also have an e�e
t onthe overall �ow.The photograph of a Faraday probe in the plume of a Hall thruster in Fig. 1.2is evo
ative of the large s
ale disturban
es that 
an be 
aused by the probe. The
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Figure 1.2: Photograph of a Hall thruster plume intera
ting with a Faraday probe[11℄.visible light is asso
iated with re
ombination and relaxation of ex
ited ele
troni
states in the plasma. A very bright region is apparent at the front surfa
e of theprobe, suggesting that there is a region of in
reased density that promotes 
ollisionalrelaxation and re
ombination events.A quantitative demonstration of the long range e�e
t of the probe 
an be seenin experimental 
ontours of plasma potential around a Faraday probe in Fig. 1.3,as reported by Walker et al. in Ref. [12℄. The probe is 
ylindri
al, with the axis ofthe probe aligned with the Y axis in the �gure. In that work the Debye length isestimated as λD = 0.3 mm. The observed plasma potential variations extend 2 
m ormore from the probe, whi
h is on the order of tens of Debye lengths. The weak �eldsthat extend far from the probe 
ontribute to sheath expansion, where the e�e
tive
olle
ting area of the probe is in
reased due to ele
trostati
 fo
using of the ions.The di�eren
e in plasma potential between the left and right sides of the probe isdes
ribed as a shadowing e�e
t. The bulk velo
ity of the ions is not aligned with theprobe axis, and the ele
tri
 �elds are too weak to turn high speed ions into the region�behind� the probe. This is a se
ond long range e�e
t, and is due to the physi
al
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Figure 1.3: Experimental 
ontours of plasma potential around a Faraday probe, 
our-tesy Allen Vi
tor [12℄.obstru
tion of the �ow.The ele
trostati
 sheath on the front surfa
e of the probe should not alter thetotal 
urrent 
olle
ted at the surfa
e, ex
ept near the outer radial edge of the probewhere the sheath 
urves to join the sheath along the side of the probe body. Thestandard design pra
ti
e for experimental Faraday probes takes this into a

ountand in
ludes an annular guard ring to eliminate edge e�e
ts on the 
olle
ting surfa
e.Sheath expansion is not as well-understood, so there are no standard design guidelinesor operational methods to ensure that sheath expansion has minimal e�e
t on themeasured properties.Shadowing is unlikely to a�e
t properties on the front surfa
e of the probe, butit would have a signi�
ant impa
t on the properties on the ba
k fa
e of the probe.The e�e
ts be
ome espe
ially important in experimental 
on�gurations with reversedFaraday probes, whi
h measure the 
olle
ted 
urrent on the wake side of the probe.Shadowing and other long range disturban
es are not well-understood either, and



7there are no design or operational guidelines to a

ount for the e�e
ts.1.2 Obje
tives of this workThe purpose of this dissertation is to investigate how an immersed Faraday probea�e
ts a plasma �ow, and to quantify how the properties measured at the probe sur-fa
e are related to the �undisturbed� plasma properties that would exist if the probewere not present. Additionally, the results of the investigations are interpreted togive re
ommendations for the design and use of Faraday probes. This work is 
on-du
ted using 
omputational te
hniques in order to a
hieve a very 
ontrolled settingwhere the undisturbed plasma 
onditions are known at the outset.Sin
e plasma properties su
h as ion density and ele
tron temperature 
an vary byorders of magnitude in di�erent appli
ations, this dissertation is limited to the 
on-ditions relevant to ele
tri
 propulsion (EP) plasmas. Faraday probes are widely usedin experimental investigation of EP devi
es, and a wealth of information is availablein the literature. This fa
ilitates the sele
tion of 
onsistent plasma 
onditions, andlimits the s
ope of this dissertation to a manageable set of plasma models.1.2.1 Develop 
omputational models of the plasma �owThe �rst overar
hing obje
tive of this dissertation is to a

urately des
ribe theplasma �ow �eld around a Faraday probe. Although fully analyti
al solutions ordire
t simulations are not pra
ti
al for the full �ow problem, many of the same
on
epts and te
hniques 
an be used to develop and apply simpler models. Severalmilestone obje
tives build up to the 
omputational simulations of the �ow �eld thatare the �rst goal in this work:1. Develop and use simple one dimensional models that in
lude the relevant phys-



8i
al me
hanisms for plasma-probe intera
tions.2. Identify signi�
ant �ow features in the one dimensional model results and es-tablish a baseline for 
omparison with more sophisti
ated models.3. Develop more a

urate models that better represent the a
tual �ow geome-try and 
onditions. This in
ludes moving to higher dimensional models andeliminating the assumptions made in the one dimensional models.4. Compare results from the improved model with previous models to assess theusefulness and a

ura
y of the simpler models.
Two important supporting tasks in this pro
ess are developing �exible modelimplementations, and ensuring the reliability of the models. Eventually a rangeof di�erent plasma 
onditions and probe geometries are simulated, so the modelsshould be implemented in a �exible and general manner. The models must also be
omputationally stable and produ
e physi
ally meaningful results.1.2.2 Quantify the plasma-probe intera
tionsThe se
ond overar
hing obje
tive of this dissertation is to evaluate how the plasma�ow features and the probe measurements are a�e
ted by 
hanging the in�owingplasma properties and the probe operational methods. In this stage the simpleplasma 
onditions typi
ally assumed in standard diagnosti
 theory are modi�ed. Thegoal is to evaluate how the properties measured at the probe 
hange in response tothe modi�ed plasma 
onditions. Similarly, the operational parameters of the Faradayprobe are modi�ed for a �xed plasma distribution. The purpose is again to evaluate



9how measured properties at the probe are a�e
ted as a result of 
hanging the probe
onditions.The ion in�ow distribution is modi�ed in
rementally until ultimately it is rep-resentative of the 
omplex exhaust plasma generated by an EP thruster. The �naldistribution in
ludes high energy beam ions, low energy 
harge ex
hange ions, andmultiple 
harge spe
ies. In
remental modi�
ation of plasma 
onditions serves toisolate the e�e
ts of ea
h of these 
omponents. Results from these simulations are
ompared against the simpler one dimensional models to assess the impa
t and rel-ative importan
e of 
hanging the in�ow plasma properties.The investigations of alternative Faraday probe operating 
onditions are 
on-du
ted with a �xed set of realisti
 plasma 
onditions. The �rst investigation of theprobe operation 
ondition varies the probe bias potential. This allows the e�e
t ofsheath expansion to be observed and assessed in terms of the 
olle
ted 
urrent atthe probe surfa
e. The se
ond investigation of probe operation 
onditions varies theguard ring bias relative to the 
olle
ting surfa
e bias. The intent in this study is toidentify whether the total 
olle
ted 
urrent varies signi�
antly if there is a mismat
hin the bias potential on the guard ring and on the 
olle
ting surfa
e.Additionally, the reversed Faraday probe is simulated to obtain an understandingof the �ow �eld in the wake of the probe. These simulations require a mu
h larger
omputational domain and would take a prohibitively long time to 
omplete usingthe original models. As a supporting task, a multigrid method is developed andimplemented to enable the reversed Faraday probe simulations to be 
arried out inan a

eptable time.



101.2.3 Make re
ommendations for Faraday probe design and useThe �nal major obje
tive of this dissertation is to make re
ommendations forthe design and use of Faraday probes based on the results of the 
omputationalsimulations. No 
on�i
ts are found with the 
urrent standard pra
ti
es for Faradayprobe usage. The �ow �eld in the wake of the reversed Faraday probe is more
ompli
ated than might be expe
ted, and a few pre
autionary re
ommendations arejusti�ed.1.3 OrganizationThis dissertation is arranged as a linear sequen
e that starts with a review ofexperimental and numeri
al resear
h related to ele
tri
 propulsion (EP). Chapter IIintrodu
es some of the history and elementary 
on
epts of EP, and des
ribes thebene�ts that make EP su
h an attra
tive te
hnology. A sele
tion of the numerousexperimental and numeri
al resear
h a
tivities related to EP are also des
ribed, whi
hwill inform many de
isions about the plasma 
onditions and numeri
al models 
on-sidered in this work. This also provides a perspe
tive on the need for 
omputationalstudy of the intera
tion between plasmas and diagnosti
 probes.In Chapter III, kineti
 theory and the magnetohydrodynami
 �uid equations areintrodu
ed as very general des
riptions of a plasma. These des
riptions are simpli�edto obtain analyti
 solutions for the sheath. The kineti
 model leads to a geometri
shadowing sheath, where the physi
al obstru
tion of the probe is the me
hanism that
reates sheath features. The MHD �uid equations lead to the planar Bohm sheath,where the ele
trostati
 �eld drives the properties in the sheath.Both kineti
 and �uid des
riptions of a plasma are used to develop an axisym-metri
 hybrid �uid parti
le 
omputational 
ode in Chapter IV. The Parti
le In



11Cell (PIC) and Dire
t Simulation Monte Carlo (DSMC) kineti
 models are usedfor the heavy ion and neutral parti
les. Three ele
tron �uid models are developed:the Boltzmann model, the non-neutral detailed model, and the Poisson-
onsistentdetailed model. The Boltzmann model is the simplest of the three, and uses theBoltzmann relation to greatly simplify the �uid equations. The non-neutral detailedmodel uses the full set of �uid equations, and is modi�ed from a previous neutraltreatment. The Poisson-
onsistent detailed model is also derived from the full set of�uid equations, but is manipulated from the outset as a non-neutral model.The hybrid �uid PIC 
omputational 
ode is used extensively in Chapter V toperform simulations of the plasma �ow �eld around an axisymmetri
 geometry thatrepresents a Faraday probe. The Boltzmann �uid model is used in a series of stud-ies to investigate how varying the plasma properties a�e
ts �ow stru
tures in thesheath and the simulated 
olle
ted 
urrent at the probe surfa
e. These studies makein
remental 
hanges to the in�ow ion distribution fun
tion from a 
old ion beamto a 
omplex 
omposite distribution 
onstru
ted from multiple drifting Maxwellian
omponents. The Boltzmann model is also used to study how the operation of theFaraday probe a�e
ts the simulated 
olle
ted 
urrent at the probe surfa
e. Thesestudies involve 
hanging the bias of the guard ring relative to the 
olle
ting surfa
eor sweeping the probe bias over a range of ion 
olle
ting 
onditions. In all of thesestudies, the planar Bohm sheath is found to be a reliable predi
tor for the propertiesin the sheath.The non-neutral detailed model and the Poisson 
onsistent models are also usedin Chapter V. The non-neutral detailed model is shown to have a serious pro
edural�aw and is not developed further. The Poisson-
onsistent model is used su

essfullyto repeat the studies pertaining to ion in�ow distribution. The results from these



12simulations are generally in very good agreement with the Boltzmann model resultand the planar Bohm sheath. The only notable ex
eption is when the ion in�owdistribution has a signi�
ant ba
k�ow 
omponent. The present implementation ofthe hybrid �uid PIC model only introdu
es parti
les at the upstream and outer edgesof the domain, so any ba
k�ow 
omponent is not well represented.The hybrid �uid PIC model requires 
onsiderable time to run, making it im-pra
ti
al for simulations on larger domains. The 
omputational 
ode is pro�led inChapter VI, revealing that the parti
le models a

ount for a disproportionately largefra
tion of the total time. A multigrid method is implemented to solve the PIC modelon a 
oarse grid and solve the ele
tron �uid model on a �ne grid. This redu
es the
omputational time spent in the parti
le models and maintains the grid resolutionrequired for a

urate �uid model solutions.The multigrid version of the 
ode is used to perform simulations of a reversedFaraday probe in Chapter VII. The 
omputed �ow �eld on the wake side of theprobe is signi�
antly more 
ompli
ated than on the ram side of the probe. Thesimplisti
 stru
ture predi
ted from the geometri
 sheath model does not a

uratelyre�e
t the a
tual stru
tures. The numeri
al simulations also provide an estimate ofthe ex
hange frequen
y, whi
h is an unknown parameter in the geometri
 shadowingmodel. Pro�les of the ex
hange frequen
y show features that are not 
ompatiblewith the assumptions made in the geometri
 shadowing model. In these studies, thegeometri
 shadowing model is shown to be a poor predi
tor of sheath properties.The dissertation is 
on
luded in Chapter VIII with a review and summary ofthe results and new 
ontributions of this work. This in
ludes assessment of theanalyti
 sheath models and the numeri
al models, an evaluation of the multigrids
heme, and dis
ussion of the probe simulations. In ful�llment of the obje
tives



13of this dissertation, suggestions are made regarding the design and use of Faradayprobes. Finally, a few re
ommendations for future work in this area are outlined.



Chapter IIBa
kground and Motivation
The work des
ribed in this dissertation is performed in the 
ontext of ele
tri
propulsion resear
h. This setting guides many de
isions about the relevant physi
alpro
esses and representative 
onditions of interest. It is therefore useful to introdu
eele
tri
 propulsion and some of the a
tive resear
h in that area. This 
hapter isadditionally intended to identify some of the 
hallenges and outstanding questionsthat this resear
h is intended to address.2.1 Ele
tri
 propulsionEle
tri
 propulsion, or EP as it is often abbreviated, refers to spa
e
raft propul-sion systems that utilize ele
tri
al pro
esses rather than 
hemi
al rea
tions to a

el-erate a propellant. EP systems have been in development sin
e the 1960s, althoughthe underlying 
on
epts were des
ribed and investigated as early as 1906 [13, 14℄.The �rst test of an EP devi
e on a spa
e
raft was an ion thruster on the NASA Spa
eEle
tri
 Ro
ket Test 1 (SERT-1) in 1964. EP systems entered limited use beginningin 1972, in the form of Hall thrusters on Soviet Union �Meteor� satellites [15, 16℄.Over the following twenty years, various forms of EP were used for satellite station-keeping by the United States and the Soviet Union. Sin
e the late 1990s, EP devi
es14



15have also been used as the primary propulsion systems on several deep spa
e mis-sions, in
luding the NASA Deep Spa
e 1 te
hnology demonstration mission [17℄, theJapanese Aerospa
e Exploration Agen
y (JAXA) Hayabusa asteroid sample returnmission [18℄, and the European Spa
e Agen
y (ESA) SMART-1 lunar mission [19℄.2.1.1 Types of ele
tri
 propulsionEle
tri
 propulsion in
ludes a wide variety of te
hniques for produ
ing spa
e
raftthrust. The only 
ommon 
hara
teristi
 of EP systems is that the primary energysour
e is ele
tri
al power. That power sour
e might in
lude solar 
ells, radioisotopethermoele
tri
 generators, nu
lear rea
tors, or some 
ombination of these. The de�n-ing 
hara
teristi
 of an EP system is not the parti
ular power sour
e, but rather theme
hanism whi
h 
onverts the ele
tri
al energy into propulsive thrust. Generally anEP devi
e 
an be grouped into one of three broad 
ategories [20℄: ele
trothermal,ele
trostati
, or ele
tromagneti
.The �rst 
ategory, ele
trothermal EP, uses ele
tri
al heaters or an ele
tri
al dis-
harge to heat a working gas. That gas is then expanded through a nozzle as ina 
onventional ro
ket. The most 
ommon ele
trothermal devi
es in
lude resistojetsand ar
jets. A s
hemati
 ar
jet is shown in Fig. 2.1.The se
ond 
ategory, ele
trostati
 EP, �rst ionizes the propellant and then a
-
elerates the 
harged parti
les via ele
tri
 �elds between one or more extra
tion anda

eleration grids. A s
hemati
 gridded ion thruster is shown in Fig. 2.2. Other ele
-trostati
 devi
es in
lude Hall thrusters, �eld emission thrusters, and 
olloid thrusters.Devi
es in this 
ategory typi
ally a

elerate positive 
harge parti
les or ions, so thereis a need for an ele
tron-emitting neutralizer to prevent a net 
harge buildup on thespa
e
raft.
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Figure 2.1: S
hemati
 of an ar
jet [21℄, demonstrating an ele
trothermal propellanta

eleration me
hanism.The third 
ategory, ele
tromagneti
 EP, uses both ele
tri
al and magneti
 �eldsto a

elerate 
harged parti
les. Magnetoplasmadynami
 (MPD) thrusters and pulsedplasma thrusters (PPTs) are the most 
ommon examples of this 
ategory. In PPT
on
epts, a strong 
urrent is driven through surfa
e material to form an ablationplasma that 
arries the 
urrent from anode to 
athode. Other 
on
epts may usealternative ionization s
hemes, and require applied ele
tri
 �elds to drive the plasma.The plasma is a

elerated to generate thrust via the Lorentz for
e of the magneti
�elds a
ting on the plasma 
urrent. Figure 2.3 shows a s
hemati
 PPT.2.1.2 Advantages and limitationsEle
tri
 propulsion o�ers several bene�ts over 
onventional 
hemi
al ro
kets, butalso su�ers from a few drawba
ks. However, the gains in using an EP system 
anoutweigh the losses for long-term or high-energy missions.One of the biggest advantages of EP devi
es is the high exhaust velo
ity and
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Figure 2.2: S
hemati
 of an ion engine [22℄, demonstrating an ele
trostati
 propellanta

eleration me
hanism.
orresponding high spe
i�
 impulse. Spe
i�
 impulse, or Isp, is the ratio of thrust
T , to propellant weight �ow rate as in Eq. 2.1. The weight �ow rate is simply theprodu
t of the mass �ow rate ṁ and standard gravity at the surfa
e of the earth g.

Isp =
T

ṁg
(2.1)Various types of EP devi
es span a range of Isp, from 500-2,000 s for ar
jets, to1,200-6,000 s for Hall thrusters, to 3,000-10,000 s for ion thrusters. For 
omparison,
hemi
al ro
kets only range from 250-450 s Isp [24℄.The bene�t of higher Isp 
an be demonstrated from the ideal ro
ket equation,Eq. 2.2, whi
h is derived from 
onservation of momentum for a system that is emittingmass [25℄. For a system with initial total mass m0 that undergoes a maneuver witha total 
hange in velo
ity △v, the �nal mass m after the maneuver is a fun
tion only
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Figure 2.3: S
hemati
 of a pulsed plasma thruster [23℄, demonstrating an ele
tro-magneti
 propellant a

eleration me
hanism.of the spe
i�
 impulse Isp and the gravitational 
onstant g.
m = m0 exp

(

−△v

gIsp

) (2.2)A spa
e
raft mission has a known, required △v from orbital me
hani
s and alimited m0 based on the laun
h vehi
le, so a higher spe
i�
 impulse translates intomore �nal payload mass after maneuvering. This 
an be put to use in several ways.One option is to in
rease the payload mass, sin
e an EP system requires lesspropellant mass than a 
hemi
al system for a given mission. Alternatively, the mis-sion or operational lifetime 
ould be extended, sin
e the EP system 
an a
hieve alarger △v for a �xed propellant mass. Another route altogether is to eliminate thepropellant mass saved by using the EP system and redu
e the total mass, possibly



19allowing a less expensive laun
h vehi
le to be used. These options 
an be 
ombinedto a
hieve a best 
ompromise for a parti
ular situation.Another bene�t of EP is the �exible 
ontrol of the devi
es. Many EP systems are
apable of semi-independent 
ontrol of propellant �ow and ele
tri
al systems, whi
hallows for throttling of the �ow rate, operating voltage, and 
urrent to optimizeperforman
e at a desired thrust level. This is an improvement over solid ro
kets,whi
h have no throttle 
ontrol, and over liquid or hybrid ro
kets, whi
h 
an onlythrottle the �ow rate. A mission using EP systems has less restri
tive laun
h windowsthan a mission using 
onventional ro
kets.Still another potential bene�t of EP devi
es is the robustness of the underly-ing propulsive 
on
ept. Sin
e the a

eleration me
hanism is not dependent on theparti
ular propellant, an EP devi
e 
ould theoreti
ally operate on a variety of dif-ferent propellants. This 
ould open the possibility of in situ propellant resupply forlong-duration missions to 
omets or asteroids with volatile 
ompounds. However,multiple-propellant thruster designs are beyond the 
urrent state of the art.The two main drawba
ks to using an EP devi
e stem from the pra
ti
al limit onthe maximum 
urrent density that 
an be sustained in an ele
tri
al ar
 or plasma
urrent. In ele
trothermal appli
ations this a
ts to limit the rate of energy deposition,while in ele
trostati
 and ele
tromagneti
 appli
ations this a
ts to limit the �ow rateof a

elerated exhaust. In both 
ases the 
onsequen
e is that EP systems produ
emu
h smaller thrust than 
hemi
al systems. For example, thrust levels from EPdevi
es range typi
ally range from a few µN for ion thrusters to less than 10 N forar
jets. In 
ontrast, 
hemi
al ro
kets 
an a
hieve 1 kN-1 MN of thrust [24℄.As a further negative 
onsequen
e of low thrust produ
tion, EP systems requiremu
h longer �ring time than 
hemi
al systems. While a 
hemi
al ro
ket typi
ally



20operates for only a few minutes, an EP devi
e must operate for months or yearsto a
hieve the full △v indi
ated from the ideal ro
ket equation. This introdu
eslong-term performan
e issues as well as failure and lifetime 
on
erns for EP systems.Low levels of thrust are not ne
essarily prohibitive, and 
ertain appli
ations onlyrequire low thrust levels. Stationkeeping and orbit transfers are well within therange of thrust provided by EP devi
es, although orbit transfers will take signi�-
antly longer than with a 
hemi
al system. Mi
rosatellite formation �ight and high-pre
ision stationkeeping maneuvers both bene�t from engines that 
an produ
e smallbut highly repeatable thrust bits. One notable example is the planned NASA LaserInterferometer Spa
e Antenna (LISA) mission [26℄, whi
h requires µN-levels of thrustto maintain proper positioning of the 
omponent spa
e
raft.2.2 Experimental investigation of ele
tri
 propulsionResear
h on EP devi
es is ongoing and in
ludes a
tivities at every stage of de-velopment: theory and design of novel 
on
epts, testing and validation of designs,long-duration life tests of mature designs, and studies of spa
e
raft integration issues.2.2.1 Ongoing Resear
hMature te
hnologies su
h as Hall thrusters and ion thrusters are well 
hara
ter-ized in terms of performan
e. Resear
h related to these systems is dire
ted towardextending operational lifetime, 
hara
terizing the spa
e
raft integration issues, anddeveloping high power 
on�gurations.Sin
e an EP devi
e must operate for months or years, long-duration life testsare 
arried out in ground-based va
uum 
hambers. These tests often 
onsider theissue from multiple viewpoints. From an appli
ation viewpoint, it is ne
essary to un-derstand how the a
tual performan
e deviates from the ideal performan
e by mea-



21suring 
hanges in thrust, beam divergen
e, and e�
ien
y over the lifetime of thedevi
e [27, 28℄. From a design viewpoint, 
hara
terization of the wear and damagesustained during prolonged operation is useful for identifying and addressing failuremodes, as well as estimating the time to failure.The exhaust plume from EP devi
es may in
lude plasma, una

elerated propel-lant, and materials eroded from the devi
e. Di�erent lines of resear
h help 
hara
ter-ize the resulting 
onditions near the spa
e
raft and 
onsider how its performan
e isa�e
ted. Resear
h into sputtering and deposition looks at the physi
al pro
esses thaterode material inside the thruster [29℄, and the transport and deposition of sputteredmaterial and exhaust parti
les onto other spa
e
raft surfa
es [30, 31℄. Ele
tromag-neti
 interferen
e [31℄ is another 
on
ern, sin
e 
harged parti
les in the exhaust plume
an interfere with signal transmission to and from the spa
e
raft.There is strong interest in developing high power EP systems that 
an produ
ehigher thrust levels while maintaining favorable Isp and e�
ien
y. Resear
h in thisarea is typi
ally dire
ted toward developing larger models of a devi
e (the monolithi
approa
h) [32℄ or toward developing 
lusters of existing smaller models of a devi
e [33,34, 35℄. Challenges in a monolithi
 approa
h are related to fabri
ation and inadequatefa
ilities for full-s
ale testing, while 
hallenges for a 
lustering approa
h arise fromoperational di�
ulties due to the intera
tion between individual devi
es in a 
luster.There is also an a
tive interest in developing novel EP 
on
epts. New designs mayin
orporate the better elements of two systems, as in hybrid Hall/ion thrusters [36℄, orextend EP 
on
epts to entirely new designs as in mi
rothruster and MEMS �thrusteron a 
hip� 
on
epts [37, 38℄. Hybrid designs are often able to move qui
kly toa prototype, sin
e mu
h of the fabri
ation and operation is well understood fromexisting designs. The more radi
al MEMS 
on
epts are 
urrently at proof of 
on
ept



22and early prototype stages. If the fabri
ation issues 
an be resolved, su
h 
on
eptswould o�er even more �exible s
alability and 
ontrol than existing EP systems.2.2.2 Va
uum fa
ilitiesExperimental testing is 
ondu
ted in ground-based va
uum fa
ilities. The largesta
ademi
 fa
ility in the United States is the Large Va
uum Test Fa
ility (LVTF)at the Plasmadynami
s and Ele
tri
 Propulsion Lab (PEPL) at the University ofMi
higan [39℄. The main 
hamber of the LVTF is a 
ylindri
al vessel 9 m long, and6 m in diameter. A diagram of the fa
ility and several diagnosti
 instruments inFig. 2.4 shows the 
omplexity and s
ale involved. Smaller fa
ilities are signi�
antlyless expensive to build, maintain, and operate, so 
hambers this large are rare.

Figure 2.4: Large Va
uum Test Fa
ility at the University of Mi
higan [39℄.Although the LVTF has a very high pumping rate of 240,000 liters per se
ondon xenon, the fa
ility still develops a measurable ba
k pressure during operation ofEP thrusters [12℄. This residual ba
kground pressure is due to the �nite pumping
apa
ity and inevitable leaks and outgassing present in any va
uum fa
ility.



23The interpretation of experimental measurements is 
ompli
ated by se
ondarye�e
ts of the ba
kground gas. At the thruster itself, ba
kground gas 
an be re-ingested and a

elerated, arti�
ially in
reasing the thrust and propellant e�
ien
y.Collisions between a

elerated parti
les and ba
kground parti
les in the exhaustplume 
an in
rease beam divergen
e, broaden the energy distribution, and produ
elow energy 
harge ex
hange ions. This a�e
ts measurements of 
urrent density andvelo
ity distribution throughout the plume.2.2.3 Probe diagnosti
sExperimental measurements of many plasma properties 
an be made using rela-tively simple plasma probe diagnosti
s [40℄. Three mainstay probe instruments aredis
ussed below: the Faraday probe, the Langmuir probe, and the retarding potentialanalyzer (RPA). These probes o�er good spatial resolution and have well-establishedte
hniques for interpreting the measurements. Non-intrusive opti
al diagnosti
s areavailable, but are not as widely used due to the greater 
ost and 
omplexity.The nude Faraday probe is the simplest of probe devi
es, 
onsisting of a 
urrent
olle
ting surfa
e that is large 
ompared to the Debye length. One mode of operationis to apply a bias voltage to repel ele
trons, so that the probe measures only the ion
urrent at a point in the plasma �ow. Alternatively, the probe bias 
an be allowedto �oat to the plasma potential, so that the net 
urrent to the probe is zero. More
ompli
ated variations of the Faraday probe in
orporate physi
al or ele
tromagneti
�ltering [41, 42℄ to s
reen out the ele
tron 
urrent or undesired, random ion 
urrents.The Langmuir probe 
onsists of one or more 
urrent 
olle
ting wires that areimmersed in the plasma. Several 
on�gurations are 
ommonly used, in
luding single,double, and triple probes [43, 44, 45℄. These variations allow for simpli�
ations in the
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ontrol system or in the analysis of measurements. Measurements from the 
urrentversus voltage 
hara
teristi
 of a Langmuir probe 
an be used to determine theplasma potential, the �oating potential, the ele
tron temperature, and the plasmanumber density.The RPA is somewhat more 
ompli
ated than the previous probes, sin
e it usesa series of biased s
reens to repel parti
les below a threshold energy while allow-ing higher energy parti
les to rea
h a 
olle
ting surfa
e [40, 46℄. By analyzing thederivative of 
olle
ted 
urrent over a range of bias voltage, it is possible to extra
tthe energy distribution fun
tion of the ions.Ea
h of these probe diagnosti
s is immersed in the plasma �ow and 
auses somedisturban
e relative to the unimpeded �ow if the probe were not present. Re
entexperimental measurements of the plasma properties around an immersed Faradayprobe show that the disturbed �ow �eld around the probe 
an be observed [12℄. Inthe diagnosti
 te
hniques, these disturban
es are assumed to be relatively small and
on�ned to a sheath and presheath region around the probe.2.3 Computational modeling of ele
tri
 propulsionComputational resear
h parallels many of the experimental investigations de-s
ribed previously. Experimental and 
omputational investigations are often 
om-plementary, although some dis
repan
ies persist between experimental measurementsand 
omputational results.2.3.1 Computational te
hniquesSeveral types of EP devi
es in
luding Hall thrusters, ion thrusters, PPTs, andMPDs generate strongly �owing, low density plasma exhaust plumes. Models ofplasma behavior must des
ribe parti
le motion, along with the self-
onsistent ele
tri




25and magneti
 �elds that govern the motion. Computational models must therefore be
apable of solving the equations of motion for parti
les and the di�erential equationsfor ele
tromagneti
 �elds.One of the earliest and most widely used 
omputational te
hniques for simulatingplasmas is the Parti
le In Cell or PIC method [47℄. In this type of model the plasma isrepresented by a redu
ed number of ma
roparti
les that obey the standard equationsof motion and intera
t with dis
rete ele
tri
 �elds 
al
ulated on a 
omputational grid.In brief, this method separates the parti
le motion from the 
al
ulation of �elds anditerates to a
hieve a 
onsistent solution.A related te
hnique is Dire
t Simulation Monte Carlo or DSMC, whi
h also usesma
roparti
les to simulate gases and in
orporates probabilisti
 models to des
ribeparti
le 
ollisions [48℄. This allows additional physi
al pro
esses to be 
onsidered,in
luding 
hemistry, ionization and re
ombination, and surfa
e intera
tions. DSMCmodels 
an be 
ombined with PIC models to add 
ollisions and wall intera
tions to aplasma simulation. In Chapter V both PIC and DSMC te
hniques will be des
ribedin greater detail for the parti
ular implementation used in this resear
h.Under 
onditions where magneti
 �elds dominate parti
le motion, an alternativeset of models is available. Magnetohydrodynami
 (MHD) equations des
ribe a mag-netized plasma in the 
ontinuum limit, similar to the Navier-Stokes equations assolved in 
omputational �uid dynami
s (CFD) models. In non-equilibrium limits, agyro-kineti
 model is ne
essary to des
ribe parti
le motion. This model is roughlyanalogous to the PIC model, but requires an average over the fast gyromotion ofmagneti
ally 
on�ned parti
les. Magneti
 �elds are not signi�
ant in the far �eld ofa Hall thruster or ion thruster, so MHD and gyrokineti
 models will not be dis
ussedin this dissertation.



262.3.2 Ongoing resear
hComputational resear
h in EP overlaps experimental investigations in almostevery area. Lifetime issues are addressed by investigating sputtering and erosionpro
esses in the thruster [49, 50℄. Integration issues are 
onsidered through studies ofdeposition and implantation [51℄, plume ba
k�ow [52℄, and through plasma 
ontrol tomitigate signal interferen
e [53℄. High-power 
luster 
on�gurations are simulated toevaluate the performan
e, with near- and far- �eld studies to 
hara
terize the exhaustplume [54℄. Preliminary modeling is already underway to 
hara
terize prototypeMEMS devi
es [55℄.A broader goal is to develop and re�ne 
omputational models until they be
omesu�
iently a

urate to perform reliable assessment and 
hara
terization of EP de-vi
es. Meeting that goal would help streamline the design pro
ess for new devi
es andalso enable more e�e
tive interpretation of experimental results. For example, a suf-�
iently robust 
omputational model 
ould be used to predi
t on-orbit performan
eof a high-power 
on�guration from measurements made in small va
uum 
hamberswhere the pumping rate is too low.At this point there are few or no e�orts to 
omprehensively improve model �-delity. However, narrowly fo
used e�orts to improve spe
i�
 aspe
ts of a model areoften in
idental to a 
omputational study. Variations of existing models are imple-mented to more a

urately 
apture the physi
s involved in some aspe
t of a broaderstudy. For a few examples: a wall sputtering model might be added to a thrustersimulation in order to 
ompare the 
al
ulated performan
e degradation with exper-imental results from a long-duration life test [56℄, or higher �delity magneti
 �eldsmight be in
orporated in a Hall thruster a

eleration model to assess the impa
t onthe near-�eld plume [57℄. Additionally, many lines of resear
h are dire
ted toward



27speeding up existing models, either by using alternative te
hniques to perform simi-lar 
al
ulations or by optimization and parallelization of an existing 
omputational
ode.2.4 Need for simulation of plasma probesExperimental and 
omputational resear
hers 
ontinually share results in EP, so itis desirable to have a 
lear understanding of how experimental measurements relateto undisturbed plasma 
onditions.Ele
tri
 propulsion devi
es produ
e highly non-equilibrium plasma �ows. Themost 
ommonly used ele
tromagneti
 and ele
trostati
 devi
es produ
e an exhaustplume 
onsisting of high temperature ele
trons, high energy ions of various 
hargestates formed in the thruster, high energy neutrals and low energy ions formed via
harge ex
hange 
ollisions, and low energy neutrals that di�use out of the thrusterwithout being ionized or a

elerated. The plasma is low density, strongly �owing,and nearly 
ollisionless as a whole.This is markedly more 
ompli
ated than the simple 
onditions of isothermal ele
-trons and 
old drifting ions assumed in the theoreti
al analysis of some plasma probemeasurement te
hniques. One important open question is how well the theoreti
alprobe te
hniques perform for a more 
omplex, realisti
 EP plasma �ow. A 
ompu-tational setting is espe
ially well suited to evaluating this question, sin
e the plasma
onditions 
an be spe
i�ed expli
itly and probe measurements 
an be simulated andanalyzed a

ording to standard diagnosti
 te
hniques. By moving in
rementally fromthe ideal plasma of the diagnosti
 theory to a realisti
 plasma, it is also possible toisolate the e�e
ts of ea
h deviation from the ideal assumptions.A se
ond open question is how the insertion of a diagnosti
 probe disturbs the



28plasma �ow, and whether that disturban
e introdu
es a systemati
 error in the mea-surements the probe makes. Put another way, it is not 
lear whether the disturbed
onditions measured by the probe 
an be related ba
k to the undisturbed plasma
onditions. Again, a 
omputational setting is ideal for investigating these e�e
tssin
e the undisturbed 
onditions are known expli
itly as inputs.The remainder of this dissertation des
ribes the development and use of 
ompu-tational models to help address these open questions.



Chapter IIIGoverning Equations and Analyti
al Sheath Models
The �ow �eld around a Faraday probe is 
hara
terized by plasma intera
tions withphysi
al surfa
es and ele
trostati
 sheaths. Sin
e this involves numerous physi
alme
hanisms and spans a broad range of s
ales, it is useful to �rst 
onsider simpli�ed
onditions that 
an be solved analyti
ally. This 
hapter introdu
es the 
lassi
aldes
riptions of a plasma and the derivation and use of two analyti
al models. Later
hapters will refer to these analyti
al models as referen
e 
ases.The �rst model is des
ribed as a shadowing model, alluding to physi
al obstru
-tion of the �ow by the probe body. The �ow stru
tures des
ribed in this model are ona s
ale 
omparable to the probe dimensions. Although the model is developed froma very general kineti
 des
ription of the plasma, the analyti
al solution is limitedby the assumption of negligible ele
tri
 and magneti
 �elds. Due to that limitation,the shadowing model is only a gasdynami
 model and will not 
apture the more
ompli
ated plasmadynami
 e�e
ts.The se
ond model is a 
ollisionless planar sheath model. In this model the �owstru
tures are on a s
ale 
omparable to the Debye length, whi
h is generally mu
hsmaller than the probe dimensions. This model is developed from a �uid des
riptionof the ion plasma, and a

ounts for 
oupling between the ele
tri
 �elds and the plasma29



30by solving the ele
trostati
 Poisson equation. This model is a plasmadynami
 model,and in
ludes most of the relevant physi
al pro
esses that o

ur in a sheath.3.1 Plasma 
on
epts and theoriesPlasmas behave like gases in many regards, but the addition of free 
harged par-ti
les makes a plasma ele
tri
ally 
ondu
tive. At mi
ros
opi
 s
ales approa
hing andsmaller than the Debye length, ele
trostati
 for
es between parti
les are signi�
ant.However, these inter-parti
le for
es a
t to redistribute the 
harge in su
h a way thatlo
al 
harge is shielded and the plasma appears uniform over larger s
ales [58℄. Atthe ma
ros
opi
 s
ale, the bulk plasma exhibits 
olle
tive behavior that is 
onsistentwith zero internal ele
tri
 or magneti
 �elds.The 
harge shielding e�e
t is not uniform near the edges of a plasma, for instan
eat a free surfa
e interfa
e with va
uum or at a 
ondu
ting wall. External ele
tri
 andmagneti
 �elds in�uen
e 
harged parti
les near the edge of the plasma and generatea sheath [1, 2℄, whi
h in turn a
ts to isolate the bulk plasma from the external �elds.The sheath thi
kness is determined by the distan
e that external �elds 
an penetrateinto the plasma, and depends on the density and mobility of the 
harged parti
les.Like the 
harge shielding e�e
t, sheath thi
kness s
ales with Debye length.3.1.1 Kineti
 des
riptionA plasma is an ionized gas, so a theory that des
ribes gas behavior is a reasonablestarting point for des
ribing a plasma. The kineti
 theory of gases is a very su

essfultheory based on a statisti
al des
ription of a gas at the mole
ular level. Appropriateaverages of mi
ros
opi
 properties su
h as velo
ity and 
ollision rate 
an be relatedto the ma
ros
opi
 temperature and pressure.Kineti
 theory posits that a gas is 
omposed of a very large number of parti
les



31that intera
t only through 
ollisions [59, 60, 61℄. In the simplest form, the parti
lesare assumed to be identi
al and devoid of internal stru
ture so that a parti
le 
an bedes
ribed 
ompletely by its position and velo
ity. A parti
le's position and velo
ityat any later time 
an be found by integrating the equations of motion. The bulkgas 
an then be des
ribed by a time-varying distribution fun
tion f(x,v, t) of allthe 
onstituent parti
les over a phase spa
e with three dimensions in both spa
eand velo
ity. Sin
e the initial positions and velo
ities of the parti
les are essentiallyrandom, the distribution fun
tion is evaluated statisti
ally.Behavior of the gas then 
orresponds to evolution of the distribution fun
tion.The Boltzmann transport equation, Eq. 3.1, des
ribes how the distribution fun
tion
hanges in spa
e and time. Parti
les are adve
ted in spa
e due to their velo
ity
(

v ∂f
∂x

), and a

elerated in velo
ity spa
e by any external for
es (a∂f
∂v

). The 
ollisionoperator C (v1,v2) is a fun
tion that relates the initial and �nal velo
ities for 
ollidingparti
les. In a dilute gas the parti
le size is mu
h smaller than the average spa
ingbetween parti
les, and binary 
ollisions dominate the 
ollision operator.
∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= C (v1,v2) (3.1)Ma
ros
opi
 properties of the gas are then obtained by taking moments of the dis-tribution fun
tion as in Eq. 3.2. The zeroth and �rst moments respe
tively produ
ethe density and mean velo
ity, and the se
ond 
entral moment yields temperature.

n (x) =

∫ ∞

−∞
n∞f(x,v)dv

〈v (x)〉 =
1

n (x)

∫ ∞

−∞
n∞vf(x,v)dv (3.2)

T (x) =
1

n (x)

∫ ∞

−∞
n∞(v − 〈v (x)〉)2f(x,v)dv



32A solution to Eq. 3.1 
an be found for an unbounded gas at equilibrium, with noexternal for
es. It 
an be shown that the 
ollision term must be zero at equilibrium,
orresponding to a detailed balan
e for the distribution. The energy partition fun
-tion for the parti
les in the gas 
an be analyzed with statisti
al me
hani
s, leading tothe fun
tional form of the distribution. The remaining parameters of the distributionfun
tion 
an then be determined by 
omparing the kineti
 moments of Eq. 3.2 with
lassi
al thermodynami
 forms for entropy [61℄. The resulting Maxwell-Boltzmannor �Maxwellian� distribution given in Eq. 3.3 des
ribes a gas that is spatially uniformand does not vary in time. The more 
ompli
ated spa
e and time varying distribu-tions required to des
ribe pra
ti
al �ows are often intra
table by analyti
 methods,and solutions must be obtained numeri
ally.
f (v) dv =

(

m

2πkBT

)
3

2

exp

[

− m

2kBT

(

v2
x + v2

y + v2
z

)

]

dv (3.3)The kineti
 des
ription for a plasma is more 
ompli
ated than for a gas. Mostplasmas are partially ionized, meaning that the bulk plasma 
onsists of neutral gasparti
les, ions, and ele
trons. Separate but 
oupled distribution fun
tions are re-quired for ea
h spe
ies in order to 
ompletely des
ribe the plasma.The Lorentz for
e, as given in Eq. 3.4, des
ribes the ele
tri
 and magneti
 for
esthat a
t on the 
harged parti
les.
aEM =

e

m
(E + v ×B) (3.4)At the mi
ros
opi
 level, strong ele
tromagneti
 �elds 
an drive 
olle
tive drifts or
on�ne parti
le motion to orbits about magneti
 �eld lines. At the ma
ros
opi
level, several kinds of plasma waves arise due to the 
oupling between ele
tri
 andmagneti
 �elds as des
ribed in Maxwell's laws [62℄.



33In a plasma, 
ollisions 
an also alter the spe
ies of the parti
les: 
harged parti
les
an be formed in ionization 
ollisions, lost in re
ombination 
ollisions, or transferredin 
harge ex
hange 
ollisions. A separate 
ollision operator 
an be de�ned for ea
hof these pro
esses, in
luding a 
ollision operator between parti
les of a single spe
ies
C (v1,v2), a momentum ex
hange operator between di�erent spe
ies CM (f1, f2), a
harge ex
hange operator between di�erent spe
ies CC (f1, f2) that 
an a
t as sour
eor sink, an ionization sour
e SI (f1, f2), and a re
ombination sink SR (f1, f2). Forbrevity, Eq. 3.5 de�nes a total 
ollision operator CTot that in
ludes ea
h of these
omponents.

CTot = C (v1,v2) + CM (f1, f2) + CC (f1, f2) + SI (f1, f2) − SR (f1, f2) (3.5)The modi�ed Boltzmann transport equation for the distribution fun
tion fj of oneplasma spe
ies seen in Eq. 3.6 appears very similar to the earlier form for a gas [58℄.All of the 
ompli
ations asso
iated with a plasma have been grouped into more
ompli
ated a

eleration and 
ollision terms. A full solution for the plasma wouldrequire simultaneous solution of an equivalent expression for ea
h ion, ele
tron, andneutral spe
ies, whi
h is 
onsiderably more di�
ult than for a single neutral gasspe
ies.
∂fj

∂t
+ v · ∂fj

∂x
+ (a + aEM) · ∂fj

∂v
= CTot (3.6)More advan
ed versions of kineti
 theory 
an be devised to in
orporate elasti
 
ol-lisions, 
hemi
al rea
tions, and vibrational and rotational modes for mole
ules [61℄.However, analyti
al solutions are only possible for very simple 
onditions, and nu-meri
al approa
hes must generally be used instead.



343.1.2 Fluid des
riptionA ma
ros
opi
 treatment of the �ow through a 
ontrol volume leads to 
onser-vation laws for mass, momentum, and energy. Together with a state equation, the
onservation equations a

urately des
ribe the 
ontinuum behavior of a gas. Thisis not surprising sin
e the 
onservation laws 
an be obtained from kineti
 theory inthe limits of 
ontinuum or equilibrium �ow [59℄. The degree of non-equilibrium ina �ow is 
hara
terized by the Knudsen number in Eq. 3.7 as the ratio of mean freepath between 
ollisions λMFP to the relevant referen
e length of interest L. The �uidequations are appropriate when the Knudsen number is small, typi
ally Kn < 0.01,and the �ow is near equilibrium.
Kn =

λMFP

L
(3.7)Starting from the kineti
 model of a gas with an assumed Maxwellian distribution(Eq. 3.3), the zeroth, �rst, and se
ond moments of the Boltzmann transport equation(Eq. 3.1) 
orrespond to 
onservation of mass, momentum, and energy. A pra
ti
aldi�
ulty in this approa
h is that any moment of the transport equation involves
ontributions from the next higher moment. This 
losure problem is resolved byena
ting a moment 
losure, where higher order moments are expressed in terms oflower order moments. In pra
ti
e, a Chapman-Enskog expansion of the equilibriumfun
tion is taken to third order terms, and the fourth moment of the expandeddistribution then depends only on the lower moments.Taking the moments of the Maxwellian distribution produ
es the Euler equationsfor invis
id �uid �ow (Eq. 3.8). One signi�
ant limiting fa
tor in the use of the Eulerequations is that no gradient transport is possible. Physi
al phenomena su
h as heat



35transfer and momentum transfer at a wall 
annot be des
ribed.
∂ρ

∂t
+ ∇ · (ρv) = 0

∂ (ρv)

∂t
+ ∇ · (ρvv) + ρa = −∇P (3.8)

∂ (ρe)

∂t
+ ∇ · (ρev) + ρa · v = −P∇ · vThe well known Navier-Stokes equations in Eq. 3.9 
an be obtained in a sim-ilar fashion by starting with a �rst order Chapman-Enskog perturbation of theMaxwellian distribution [59℄. Again, moments of the Boltzmann transport equa-tion produ
e the 
onservation laws for mass, momentum, and energy.

∂ρ

∂t
+ ∇ · (ρv) = 0

∂ (ρv)

∂t
+ ∇ · (ρvv) + ρa = −∇P + ∇ · τ (3.9)

∂ (ρe)

∂t
+ ∇ · (ρev) + ρa · v = −P∇ · v + τ : ǫ −∇ · qThe Navier-Stokes equations in
lude gradient transport. Momentum transporto

urs via shear stress and energy transport o

urs via heat �ux. However, the devi-atori
 shear stress tensor τ and heat �ux ve
tor q introdu
e a 
losure problem sin
eneither is expli
itly a fun
tion of the independent thermodynami
 variables. Typi-
ally the equation set is 
losed by assuming 
onstitutive relations, su
h as Newtonian�uid vis
osity to repla
e the stress tensor and Fourier heat 
ondu
tion to repla
e theheat �ux ve
tor. The 
onstitutive relations may introdu
e additional transport 
o-e�
ients su
h as vis
osity and thermal 
ondu
tivity that must be determined aswell.Higher order perturbations of the Maxwellian distribution have been 
onsid-ered [59℄, leading to the Burnett equations. Su
h models su�er from the same sortof 
losure problems as the Navier-Stokes equations, and produ
e signi�
antly more



36
ompli
ated forms of the stress tensor and heat �ux. Higher-order models are 
or-respondingly more di�
ult to solve, and the Burnett equations in parti
ular areunstable without higher-order 
orre
tions.Equivalent 
onservation laws 
an be developed for a plasma by in
luding ele
tro-magneti
 for
e 
ontributions to momentum and energy [58℄. Additionally, Maxwell'slaws are used to determine 
onsistent ele
tromagneti
 �elds. Typi
ally the e�e
tsof vis
ous for
es are negligible 
ompared to ele
tromagneti
 for
es, so 
ontributionsfrom the shear stress tensor are omitted here. Collisional resistan
e to ele
tri
al 
ur-rent a�e
ts momentum transport in the �ow, giving rise to the resistive term ∼ j

σand the ele
tri
al 
ondu
tivity σ. The equation set in Eq. 3.10 is the basis of themagnetohydrodynami
 (MHD) equations for a plasma.
∂ρ

∂t
+ ∇ · (ρv) = 0

∂ (ρv)

∂t
+ ∇ · (ρvv) + ρa + ρ

e

m
(E + v ×B) = −∇P + ρ

e

m

j

σ

∂ (ρe)

∂t
+ ∇ · (ρev) + ρa · v + ρ

e

m
E · v = −P∇ · v −∇ · q

∇ · B = 0 (3.10)
∇ · E =

e

ε0
(ni − ne)

∇× E = −∂B

∂t

∇× B = µ0j + ε0µ0
∂E

∂tA number of analyti
 solutions to the MHD equations 
an be found after tak-ing appropriate limits and substantially rearranging these equations. Su
h solutionsdes
ribe many plasma waves, in
luding magnetosoni
 waves and Alfven waves [63℄.However, many pra
ti
al situations are too 
omplex for analyti
 solutions, and nu-meri
al solutions must be found instead.



373.2 Geometri
 Shadowing ModelThe 
entral premise of the shadowing model is that 
ertain parti
le traje
toriesare blo
ked or shadowed in the vi
inity of a physi
al obstru
tion. This shadowing
auses the distribution fun
tion to di�er from the distribution at points far from theobstru
tion. Sin
e the ma
ros
opi
 plasma properties are 
al
ulated as moments ofthe distribution, plasma at a shadowed point has di�erent properties than una�e
tedplasma far from the surfa
e.The model des
ribed here was originally developed in the 
ontext of strongly�owing, magneti
ally 
on�ned, tokamak fusion plasmas [5, 64, 65℄. The derivationgiven here 
losely follows the approa
h des
ribed by Valsaque et al. [66℄. One minorvariation from that approa
h is to normalize the equations with length and velo
itys
ales that are 
onsistent with other models 
onsidered in this dissertation.3.2.1 The Vlasov equation and shadowing solutionIn the shadowing model, the in�owing plasma is fully ionized, neutral, and 
on-sists of ele
trons and an arbitrary distribution of ions. The ions are analyzed with akineti
 model derived from the Boltzmann transport equation. A steady, 
ollision-less, planar sheath is assumed by taking the steady state (∂f
∂t

= 0
) and 
ollisionless

(C = 0) limits in Eq. 3.1 and redu
ing the �ow to one dimension. The resulting formin Eq. 3.11 is often referred to as the Vlasov equation. Note that the distributionfun
tion redu
es to f (x, vx) under these simpli�
ations.
vx

∂f

∂x
+ ax

∂f

∂vx
= 0 (3.11)The a

eleration in this 
ase simpli�es to the 
ontributions from the ele
tri
�eld along the dire
tion of �ow, as in Eq. 3.12. Sin
e the �ow is one dimensional,



38there is no possible magneti
 �eld orientation that would generate a magneti
 for
e
ontribution along the dire
tion of �ow. The ele
tri
 �eld is also rewritten in termsof the ele
tri
 potential for 
onvenien
e.
ax =

e

mi
Ex = − e

mi

dφ

dx
(3.12)The di�usive sour
e term in Eq. 3.13 is added to represent a random transfer ofparti
les between the shadowed region in the sheath and the ambient plasma [66℄.The ambient plasma has a freestream distribution fun
tion f∞ (vx), whi
h shouldbe re
overed from f (x, vx) in the limit as x → −∞. A simple ex
hange frequen
yparameter w is de�ned that assumes a uniform di�usion rate of parti
les into andout of the sheath, regardless of lo
ation or parti
le velo
ity.

SDiffusion = w (f∞ (vx) − f (x, vx)) (3.13)The s
hemati
 diagram in Fig. 3.1 shows the 
oordinates of the shadowing sheathmodel and representative forms of the distribution fun
tion at a few points in thesheath. The surfa
e of the probe is lo
ated at x = 0, and the plasma is 
on�nedto negative values of x upstream of the probe. The velo
ity is de�ned su
h thatpositive vx 
orresponds to forward �ow, toward the probe surfa
e, and negative vx
orresponds to ba
kward �ow, away from the probe surfa
e. The ambient plasmadistribution is f∞ (vx) and remains un
hanged at all points in the sheath. The lo
aldistribution fun
tion in the sheath is f (x, vx), and far from the probe the lo
aldistribution approa
hes the ambient distribution, f (x −→ −∞, vx) = f∞ (vx). Atthe surfa
e of the probe, the distribution fun
tion for ba
kward �owing velo
itiesis identi
ally zero, f (0, vx) = 0 for vx < 0. The ex
hange frequen
y w is 
onstantthroughout the sheath, and determines the rate that parti
les di�use between theambient and lo
al distributions.
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Figure 3.1: S
hemati
 of the geometri
 shadowing model, showing the regions of the�ow and the distribution fun
tion.Combining Eqs. 3.11-3.13 gives a di�erential equation for the distribution fun
tionthroughout the sheath as in Eq. 3.14. That expression is only a model of the ionplasma. To model the neutral plasma, a similar expression for the ele
tron plasmawould be required and the ele
trostati
 Poisson equation would 
lose the set.
vx

∂f

∂x
− e

mi

dφ

dx

∂f

∂vx

= w (f∞ (vx) − f (x, vx)) (3.14)Using the standard plasma parameters of Debye length, λD, and plasma fre-quen
y, ωP , as given in Eq. 3.15, this equation 
an be re
ast in the normalizedvariables of Eq. 3.16. The normalized velo
ity is represented as a Ma
h number Mwith respe
t to Bohm velo
ity, vB, and the normalized temperature τ is the ratioof ion to ele
tron temperature. This 
hoi
e of normalizations is 
onsistent with theplanar Bohm sheath model that will follow in Se
. 3.3.
λD =

√

ε0kBTe

e2ne

, ωP =

√

e2ne

ε0me

, vB = λDωP =

√

kBTe

me

(3.15)
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z =

x

λD
, W =

w

ωP
, Φ =

eφ

kBTe
, n

′

i =
ni (z)

ni,∞
, M =

vx

vB
, τ =

Ti

Te
(3.16)After normalizing and rearranging, the di�erential equation for f (z, M) is:

M
∂f

∂z
− dΦ

dz

∂f

∂M
= W (f∞ − f) (3.17)In order to obtain an analyti
 solution it is ne
essary to assume negligible ele
tri
�elds (dΦ

dz
= 0
), whi
h produ
es the form in Eq. 3.18. The boundary 
onditions inEq. 3.19 require the distribution fun
tion to approa
h the ambient distribution farfrom the probe surfa
e, to have no ba
kward �ow at the probe surfa
e.

M
∂f

∂z
= W (f∞ − f) (3.18)

f (z → ∞, M) = f∞ (M) , f (0, M) =























0, M ≤ 0

f∞ (M) , M > 0

(3.19)This 
an then be solved as a non-homogeneous partial di�erential equation, andthe solution takes the form shown in Eq. 3.20. Moments of the modi�ed velo
itydistribution fun
tion 
an then be taken as de�ned in Eq. 3.2 to obtain the lo
aldensity, mean velo
ity, and temperature.
f (z, M) = f∞ (M)

[

1 − H (−M) exp

(

−W

M
z

)] (3.20)The Heaviside fun
tion H (−M) a
tivates an exponential fall o� in density forba
kward �owing parti
les (M < 0) as the �ow approa
hes the surfa
e. This aspe
tdes
ribes a shadowing e�e
t where the ba
kward �owing parti
les are not presentat the surfa
e, but di�use into the sheath upstream of the surfa
e. Forward �owingparti
les (M > 0) maintain the ambient density at all points in the sheath.This solution 
an also be easily modi�ed to 
onsider the sheath on a ba
kwardfa
ing surfa
e by 
hanging the boundary 
onditions. In parti
ular, the inequality in



41the se
ond 
ondition in Eq. 3.19 must be reversed. The solution retains the sameform ex
ept that the sign of the Ma
h number argument is swit
hed in the Heavisidefun
tion.A few immediate observations 
an be made about this model. First, sin
e theanalyti
 solution negle
ts any ele
tri
 and magneti
 �elds, this is only a gasdynami
model and 
annot 
apture all of the behavior expe
ted for 
harged parti
les in anele
trostati
 sheath. Se
ond, the fun
tional form of the ambient distribution fun
tionis not important in this solution, so it is appli
able to any in�ow 
ondition. However,the nature of the ambient distribution is 
arried throughout the sheath. Third, thismodel 
annot be translated to physi
al dimensions unless the normalized ex
hangefrequen
y W is found.3.2.2 Results and Dis
ussionThe geometri
 shadowing model solves for the lo
al ion distribution fun
tionin the sheath based on an arbitrary freestream distribution fun
tion. In order tofa
ilitate 
omparison with the planar Bohm sheath model, the in�ow distribution isassumed to be a Maxwellian. It is trivial to normalize one velo
ity 
omponent ofthe Maxwellian distribution fun
tion from Eq. 3.3 to the form seen in Eq. 3.21, withthe two parameters of drift Ma
h number MD = vD

vB
and freestream ion to ele
trontemperature ratio τ∞ = Ti∞

Te
.

f∞ (M) dM =
1√

2πτ∞
exp

(

−(M − MD)2

2τ∞

)

dM (3.21)The dire
t result of the analyti
 solution is a modi�ed distribution fun
tion 
al-
ulated from Eq. 3.20. Examples of the distribution fun
tion at several positionsin the sheath are shown in Fig. 3.2. The freestream plasma 
onditions and param-eter values for this example are: equal ion and ele
tron temperatures, τ = 1; ion
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Figure 3.2: Pro�les of the lo
al distribution fun
tion in the shadowing sheath solu-tion.drift velo
ity equal to the Bohm velo
ity, MD = 1; and ex
hange frequen
y equal tothe plasma frequen
y, W = 1. Changing the parameters of the ambient distributionfun
tion has the usual e�e
t, with larger MD shifting the entire distribution to highervelo
ities and larger τ∞ a
ting to broaden the distribution.The e�e
t of 
hanging the ex
hange parameter W is to s
ale the rate of expo-nential fallo� for the shadowed velo
ity range. A more meaningful alternative in-terpretation is that 
hanging W s
ales the physi
al length of the shadowing sheath.As a pra
ti
al note, the plasma frequen
y is the fastest time s
ale for the ele
trons.The rate of ion transfer presumably o

urs on a slower time s
ale, so the normalizedex
hange frequen
y is expe
ted to be small (W ≪ 1) for a physi
ally realisti
 plasma.Far from the probe surfa
e (z → −∞) the distribution approa
hes the Maxwellianof Eq. 3.21. For intermediate values of z, the distribution has an exponentiallys
aled probability for velo
ities less than zero, and retains the ambient distribution
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Figure 3.3: Pro�le of ion number density in the shadowing sheath solution.for velo
ities greater than zero. At the surfa
e (z = 0) the modi�ed distribution isa trun
ated Maxwellian, with identi
ally zero probability for all ba
kward �owingvelo
ities. The lo
al distribution fun
tion is 
ontinuous at all z < 0, but has adis
ontinuity at z = 0.The thermodynami
 properties of the lo
al plasma are 
omputed by taking themoments of the modi�ed distribution at ea
h position in the sheath. Sin
e the mod-i�ed distribution fun
tion is not an elementary fun
tion, the moments are obtainedthrough numeri
al integration. The �rst moment of the distribution yields the lo
alion density pro�le in Fig. 3.3 and the se
ond moment yields the mean velo
ity pro�lein Fig. 3.4. Ea
h point on these pro�les 
orresponds to an integral over the modi�eddistribution fun
tion at that position in the sheath.Number density drops as the �ow approa
hes the surfa
e, sin
e the ba
kward�owing part of the distribution is shadowed out. Sin
e only parti
les with negative
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Figure 3.4: Pro�le of ion mean velo
ity in the shadowing sheath solution.velo
ities are shadowed out, the mean velo
ity in
reases near the probe surfa
e.This re�e
ts the de
rease in number of parti
les with negative velo
ity, but does notindi
ate any a

eleration of the �ow. Ion �ux is not 
onserved through the sheath,sin
e the di�usion pro
ess represented by the ex
hange frequen
y a
ts to transfer�ux between the sheath and the ambient plasma.The lo
al ion temperature pro�le 
an be 
omputed from the se
ond 
entral mo-ment of the lo
al distribution, as in Fig. 3.5. The temperature shows a gradualde
rease as the �ow approa
hes the surfa
e, sin
e the distribution tends toward asmaller spread about a higher mean velo
ity. The low velo
ity tail be
omes less sig-ni�
ant in the temperature 
al
ulation as the probability of the shadowed velo
itiesde
reases near the probe surfa
e.The ele
tron properties and plasma potential are not solved in this model. Infa
t, the potential must be 
onstant in order to 
omply with the assumption of
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Figure 3.5: Pro�le of ion temperature in the shadowing sheath solution.zero ele
tri
 �elds. However, it is illustrative to relax that assumption and derive aplasma potential from the ion density pro�le. This 
an be a

omplished by assumingplasma neutrality, so that the lo
al ele
tron density is equal to the ion density, andthen further assuming the Boltzmann relation for the ele
trons, so that the ele
trondensity is a fun
tion of the plasma potential.The resulting expression for the potential is a fun
tion of the ion density as inEq. 3.22, and the resulting potential pro�le is shown in Fig. 3.6. In this form itis assumed that the potential far from the surfa
e is zero, and the potential at thesurfa
e 
annot be assigned.
Φ (z) = ln

(

n
′

i

) (3.22)Valsaque et al. have 
ompared this derived potential pro�le with the potentialpro�le obtained from numeri
al kineti
 simulations that in
lude ele
tri
 �elds [66℄.The analyti
al shadowing pro�le shows surprisingly good agreement with the kineti
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Figure 3.6: Pro�le of plasma potential in the shadowing sheath solution.model results in that paper, prompting the 
on
lusion that ele
tri
 �eld e�e
ts arenot predominant and that geometri
 shadowing is the primary me
hanism that drivesion properties in the sheath. The primary e�e
t of the ele
tri
 �eld seems to be asmoothing of the distribution fun
tion that avoids the abrupt 
hange in derivativeat M = 0 that appears in the analyti
al distribution fun
tion.While there is some support for the a

ura
y of the derived potential, the geo-metri
 shadowing model remains fundamentally a gasdynami
 model. The trendsobserved in the lo
al ion density, velo
ity, and temperature pro�les are all 
onsistentwith a neutral, expanding �ow. Essentially, the ba
kward �owing parti
les behaveas a 
ounter�owing wake region superimposed on the uniform forward �ow. A moremeaningful alternative interpretation is that ba
kward �owing parti
les expand intothe sheath from the ambient plasma in order to repla
e the parti
les that are shad-owed out by the surfa
e.



473.3 Collisionless Planar Bohm SheathOne of the earliest solutions to the plasma sheath is the 
ollisionless planar Bohmsheath model. In this solution, a neutral plasma is modeled with a 
ollisionless �uiddes
ription of the ions and the Boltzmann relation for the ele
trons. Self-
onsistentele
trostati
 �elds are determined through the ele
trostati
 Poisson equation. The
on
ept of a presheath and an important stability 
riterion are introdu
ed in theanalysis of this sheath model.The derivation presented here is unique in that it 
onsiders multiple ion spe
ieswith arbitrary 
harge states. This form is useful for appli
ation to the 
ompli
atedion distributions expe
ted in an EP exhaust plume. The original single spe
ies form
an be easily re
overed at any point, and is better suited to demonstrate the Bohm
riterion.3.3.1 Fluid equations and a solutionThe in�owing plasma in this model is fully ionized, neutral, and 
onsists ofisothermal ele
trons and one or more 
old ion spe
ies (i.e., Ti = 0) �owing towarda perfe
tly absorbing surfa
e [1, 3℄. In the sheath, ele
trons and ions only intera
twith the self-
onsistent potential �eld. For simpli
ity, the potential is assumed to bezero and have zero gradient at the sheath edge, φ (x = 0) = 0 and ∇φ|0 = 0. At thesurfa
e, the potential is a �xed negative value φ (x = L) = −φw. This geometry isshown s
hemati
ally in Fig. 3.7. The thi
kness of the sheath L is not known initially.Under the assumptions that the sheath is steady, 
ollisionless, and planar, 
onser-vation of mass for ea
h ion spe
ies redu
es to 
onservation of mass �ux as in Eq. 3.23,whi
h 
an be further simpli�ed to 
onservation of number �ux by dividing throughby the ion mass. The subs
ript j refers to the jth ion spe
ies, and the subs
ript s
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Figure 3.7: S
hemati
 of the planar Bohm sheath geometry.denotes properties at the edge of the sheath.
mjnjsvjs = mjnjvj (3.23)Conservation of energy in a steady, 
ollisionless, planar sheath redu
es to theLagrangian form in Eq. 3.24, 
onsisting of a kineti
 energy term (

1
2
mv2

) and anele
trostati
 potential energy term (eφ). The ion 
harge state is an integer multiple
Zj of the ele
tron 
harge, whi
h fa
tors into the potential energy term.

1

2
mjv

2
js =

1

2
mjv

2
j (x) + Zjeφ (x) (3.24)The velo
ity at any point in the sheath 
an then be related to initial velo
ityand lo
al plasma potential by rearranging the 
onservation of energy to the form inEq. 3.25. This intermediate result 
an be 
ombined with the 
onservation of number�ux to yield Eq. 3.26, whi
h expresses the lo
al ion density only in terms of the



49sheath edge properties and the lo
al plasma potential.
vj (x) = vjs

(

1 − 2
Zjeφ (x)

mjv
2
js

)1/2 (3.25)
nj (x) = njs

vjs

vj (x)
= njs

(

1 − 2
Zjeφ (x)

mjv
2
js

)−1/2 (3.26)The isothermal ele
tron �uid is assumed to follow the Boltzmann relation through-out the sheath. Sin
e the in�owing plasma is neutral, the ele
tron density at thesheath edge must be equal to the total positive 
harge density due to the ions. Thatdensity is found by taking a sum over all ion densities, weighted by the 
harge stateof ea
h spe
ies. The resulting nes in Eq. 3.27 gives the ele
tron density at the sheathedge.
nes =

∑

Zjnjs (3.27)The sheath edge be
omes the preferred referen
e point for the Boltzmann relation,Eq. 3.28, sin
e both the potential and ele
tron density are known there.
ne (x) = nes exp

(

eφ (x)

kBTe

) (3.28)In Eq. 3.29 the ele
trostati
 Poisson equation relates the potential to the lo
al
harge densities. A weighted sum over the various ion spe
ies is ne
essary to obtainthe positive 
harge density.
d2φ

dx2
= − e

ε0

(

∑

Zjnj (x) − ne (x)
) (3.29)Inserting Eqs. 3.26 and 3.28 into this form produ
es the non-linear di�erentialequation for potential shown in Eq. 3.30. To simplify the notation, φ (x) is writtenas φ from this point on.

d2φ

dx2
=

e

ε0



nes exp

(

eφ

kBTe

)

−
∑

j

Zjnjs

(

1 − 2
Zjeφ

mjv
2
js

)−1/2


 (3.30)



50This equation 
an be re
ast using the normalized variables of Eq. 3.31. TheDebye length λD and Bohm velo
ity vB are appropriate length and velo
ity s
ales,and the Ma
h number with respe
t to Bohm velo
ity appears. A new parameter rjsis the freestream 
harge fra
tion for the jth ion spe
ies.
z =

x

λD
, Mj =

vj

vB
, Φ =

eφ

kBTe
, rjs =

njs

nes
(3.31)The di�erential equation takes the form in Eq. 3.32 after normalizing and rear-ranging.

d2Φ

dz2
= exp (Φ) −

∑

j

Zjrjs

(

1 − 2
ZjΦ

M2
j

)−1/2 (3.32)This form 
an be integrated on
e analyti
ally by multiplying the entire expressionby dΦ
dz

dz as shown in Eq. 3.33. The limits of integration are from the sheath edge at
z = 0 to any arbitrary position in the sheath, 0 < z < L. The boundary 
onditionson potential at the sheath edge are Φ (0) = 0 and dΦ

dz
|0 = 0. Note that ea
h term inthe summation 
an be integrated separately.

∫ z

0

d2Φ

dz2

dΦ

dz
dz =

∫ z

0

exp (Φ)
dΦ

dz
dz −

∫ z

0

∑

j

Zjrjs

(

1 − 2
ZjΦ

M2
j

)−1/2
dΦ

dz
dz (3.33)The slightly more 
ompli
ated form in Eq. 3.34 is found after integration. Atthis point a numeri
al method is required to integrate a se
ond time to obtain thepotential. The modi�ed form in Eq. 3.35 is better suited to numeri
al integration,although some 
are must be taken to 
hoose the proper root of the radi
al.

1

2

(

dΦ

dz

)2

= exp (Φ) − 1 +
∑

j

rjsM
2
j

[

(

1 − 2
ZjΦ

M2
j

)1/2

− 1

] (3.34)
dΦ

dz
=

√

√

√

√

√2







exp (Φ) − 1 +
∑

j

rjsM2
j

[

(

1 − 2
ZjΦ

M2
j

)1/2

− 1

]







(3.35)Sin
e the length of the sheath is not known, it is useful to perform a 
oordinatetransform su
h that the probe surfa
e is at z = 0 and then integrate this equation
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Figure 3.8: Pro�le of plasma potential in the Bohm sheath solution.by mar
hing from the surfa
e out to the sheath edge at z = −L. Sin
e the potentialat the surfa
e is known, dΦ
dz


an be 
al
ulated and Eq. 3.35 
an then be solvedas an initial value problem. This approa
h reveals that the solution for potentialapproa
hes Φ = 0 asymptoti
ally, leading to an in�nitely long sheath. In pra
ti
e,the solution 
an be terminated at an arbitrary distan
e or potential.An example solution is obtained for the 
ase M = 1. The pro�le of plasmapotential is shown in Fig. 3.8. On
e the potential has been obtained, the lo
al plasmaproperties 
an be 
al
ulated from previous expressions. The ion velo
ity and density
an be 
al
ulated from Eqs. 3.25-3.26, and the ele
tron density 
an be 
al
ulatedfrom Eq. 3.28. The pro�les of ion and ele
tron density are shown in Fig. 3.9.3.3.2 The Bohm 
riterionSin
e the 
onditions for a steady solution are not readily apparent from Eq. 3.35,
onsider the simpli�
ation to a plasma with one spe
ies of single 
harge ions. The
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Figure 3.9: Pro�les of ion and ele
tron number density in the Bohm sheath solution.summation over spe
ies simpli�es to a single term, the freestream 
harge fra
tionbe
omes rjs = 1, and the 
harge state be
omes Zj = 1 as in Eq. 3.36. The boundary
onditions on potential at the sheath edge remain Φ (0) = 0 and dΦ
dz
|0 = 0.

dΦ

dz
=

√

√

√

√2

{

exp (Φ) − 1 + M2

[

(

1 − 2
Φ

M2

)1/2

− 1

]} (3.36)The quantity in the radi
al must be positive for a non-os
illatory sheath solution,and this imposes a 
onstraint on the Ma
h number when the potential Φ is small. Inorder to evaluate that 
onstraint, both terms 
ontaining the potential are expressedas Taylor expansions about Φ = 0 in Eqs. 3.37 and 3.38, following the analysis byBohm [3℄. The expansions are 
arried out to se
ond order, sin
e the lower orderterms will 
an
el out.
exp (Φ) = 1 + Φ +

Φ2

2
+ . . . (3.37)

(

1 − 2

M2
Φ

)1/2

= 1 − 1

2

(

2

M2
Φ

)

− 1

8

(

2

M2
Φ

)2

+ . . . (3.38)



53The expansions are then inserted into the argument of the radi
al in Eq. 3.39 andsimpli�ed to the result in Eq. 3.40. The inequality indi
ates the 
ondition to ensurea stable sheath solution.
1 + Φ +

Φ2

2
− 1 + M2

[

1 − 1

2

(

2

M2
Φ

)

− 1

8

(

2

M2
Φ

)2

− 1

]

≥ 0 (3.39)
Φ2

2

(

1 − 1

M2

)

≥ 0 (3.40)Drawing a 
on
lusion from the inequality, a steady solution for the sheath onlyexists if M > 1. This is the Bohm 
riterion, whi
h has the physi
al interpretationthat the ion speed must be greater than the Bohm velo
ity at the edge of the sheath.However, in many appli
ations a stationary bulk plasma is in 
onta
t with a surfa
e.In su
h 
ases a presheath region is required, where small ele
tri
 �elds a
t to a

el-erate ions up to the Bohm velo
ity at the edge of the sheath. A presheath requiresthe original assumption of zero ele
tri
 �eld at the sheath edge to be relaxed.3.3.3 Results and Dis
ussionExa
t similarity with the geometri
 shadowing sheath model 
onditions 
annotbe a
hieved. However, the potential at the surfa
e and the in�ow Ma
h number 
anbe mat
hed in order to fa
ilitate a 
omparison between the results from both models.The shadowing model example was solved for a single ion population with a Ma
hnumber MD = 1, and the 
al
ulated potential at the probe surfa
e in Fig. 3.6 is
Φw = −0.1728 at z = 0. These 
onditions satisfy the Bohm 
riterion, so the samewall potential and Ma
h number are assumed in this example solution of the Bohmsheath model.The di�erential equation in Eq. 3.36 is solved for the potential pro�le in thesheath as shown in Fig. 3.10. Sin
e the Bohm 
riterion is satis�ed, the solution has
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Figure 3.10: Pro�le of potential from the Bohm sheath.no os
illatory aspe
t and de
reases monotoni
ally from the freestream to the surfa
eat z = 0. The potential asymptoti
ally approa
hes zero far from the surfa
e asmentioned previously.The ion and ele
tron densities 
an then be 
al
ulated from this potential usingnormalized forms of the Boltzmann relation from Eq. 3.28, and lo
al ion densityfrom Eq. 3.26. The Bohm sheath solution indi
ates a non-neutral region near theprobe, as eviden
ed by separation of the density pro�les in Fig. 3.11. The non-neutral region is a physi
ally meaningful feature, sin
e the large disparity betweenion and ele
tron mass makes the ele
trons more mobile than the ions. Ele
tronsrespond to the negative probe potential more strongly than ions, leading to a regionof non-neutral plasma near the surfa
e.Although both ion and ele
tron density de
rease as the �ow approa
hes the sur-fa
e, two di�erent pro
esses are responsible. The negative potential a
ts to a

elerate
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Figure 3.11: Pro�les of ion and ele
tron density from the Bohm sheath.the ions toward the probe, as seen from the pro�le of ion velo
ity in the sheath inFig. 3.12. The �ux is the produ
t of lo
al density and lo
al velo
ity, and it is 
learfrom Eqs. 3.25-3.26 that the �ux must be 
onstant for the ions. Sin
e the ion �owmaintains a 
onstant �ux, the ion density de
reases as the ion velo
ity in
reases.In 
ontrast, the negative potential a
ts to repel the ele
trons, so only those ele
-trons with su�
ient initial kineti
 energy are able to rea
h the lo
al potential. In thismodel the ele
trons follow the Boltzmann relation, so the ele
tron density shows anexponential fall o� as the potential de
reases. Sin
e the wall potential is relativelysmall 
ompared to the ele
tron temperature in this example, there is not a signi�
antde
rease in ele
tron density.One of the attra
tive features of the Bohm sheath model is that the solution 
an bereadily returned to dimensional variables if the ele
tron temperature and freestreamdensity are known. This pro
ess is equally straightforward for the situation with
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Figure 3.12: Pro�le of ion velo
ity from the Bohm sheath.multiple ion 
omponents. This makes the Bohm sheath a useful tool for pra
ti
aldesign purposes in both experimental and 
omputational settings.3.4 Comparison of model resultsThe geometri
 shadowing sheath model and the planar Bohm sheath model 
an-not reprodu
e exa
tly the same in�ow 
onditions. This limitation stems from thedi�erent assumptions about the in�owing ions made in the models. The Bohmsheath model assumes one or more 
old ion spe
ies, with zero ion temperature, whilethe shadowing sheath model assumes a Maxwellian ion distribution with a non-zerotemperature.The shadowing sheath model 
ould a
hieve a 
old ion 
ondition by taking thelimit of τ∞ = 0, 
orresponding to an ion temperature that is negligible 
ompared tothe ele
tron temperature. However, that 
auses the normalized Maxwellian distri-bution (Eq. 3.21) to approa
h a delta fun
tion at the drift Ma
h number. All of the



57interesting behavior in the shadowing model derives from partial shadowing of thedistribution fun
tion, so that limit would produ
e 
onstant properties throughoutthe sheath.Instead, it is more useful to a
hieve partial similarity by mat
hing the in�owingion Ma
h number and some property at the surfa
e. The obvious 
hoi
e is to set thepotential at the surfa
e, sin
e that is usually 
ontrolled in experimental appli
ations.In the shadowing sheath model however, the surfa
e potential is not 
oupled into thesolution and is only found afterward. As su
h, the shadowing sheath model mustbe solved �rst, and the 
al
ulated surfa
e potential 
an then be used in the Bohmsheath model.This pro
ess was 
arried out in Se
s. 3.2.2 and 3.3.3. The ion density pro�leso�er the most meaningful 
omparison, sin
e both sheath models a
tually 
al
ulateion density. Then a visual inspe
tion of Fig. 3.3 for the shadowing sheath and the iondensity pro�le of Fig. 3.11 for the Bohm sheath gives some insight into how well themodels agree. At �rst glan
e, there seems to be no agreement at all. The pro�le inthe shadowing model shows a thin sheath, with all of the density variation o

urringwithin 5 Debye lengths of the surfa
e. The pro�le from the Bohm sheath modelshows a mu
h thi
ker sheath, with nearly 7% deviation from the freestream densityat more than 15 Debye lengths from the surfa
e.However, the shadowing sheath model has one undetermined parameter, the ex-
hange frequen
y W . The ex
hange frequen
y is equal to the plasma frequen
y inthe previous solution, whi
h implies that ion parti
le ex
hange o

urs on an ele
trontimes
ale. In fa
t the ion ex
hange frequen
y should o

ur on an ion times
ale, whi
hwould 
orrespond to a mu
h smaller value of W . The ex
hange frequen
y modi�esthe length s
ale of the shadowing sheath, and a smaller value produ
es a thi
ker



58sheath.An estimate of the ex
hange frequen
y that brings the shadowing sheath modelinto better agreement with Bohm sheath model is obtained by a least-square errorte
hnique. An ion number density pro�le is 
omputed from the shadowing sheathmodel for varying W . Sin
e the distribution at the surfa
e is not a�e
ted, thepotential at the surfa
e is un
hanged and the previous Bohm sheath solution 
an beused as a �xed referen
e. A value of W is found that minimizes the sum of squareerror between the ion density pro�les from both models, 
omputed at 1500 �xedpoints along the pro�les.For the in�ow 
onditions of MD = 1 and τ∞ = 1, the least-square �t for theex
hange frequen
y is found to be W = 0.088. The resulting pro�les of ion densityare shown in Fig. 3.13, and pro�les of potential are shown in Fig. 3.14. For the iondensity the agreement between the shadowing sheath model and the Bohm sheathmodel is generally very good. The potential shows larger dis
repan
ies, but re
allthat in the shadowing sheath model the potential is assumed to be related to the iondensity via neutrality and the Boltzmann relation.It should be noted that the value of the ex
hange frequen
y reported above isonly e�e
tive at the given �ow 
onditions. There is no single value that 
an a
hieve
onsistent agreement between the two sheath models over a broad range of plasma
onditions. It may be possible to develop a fun
tional form of the ex
hange frequen
yas W (MD, τ∞), but that lies beyond the s
ope of this work.From a philosophi
al viewpoint, the two models are intended to des
ribe di�erentaspe
ts of the sheath. The Bohm sheath model isolates the e�e
ts of self-
onsistentele
trostati
 �elds, while the shadowing model isolates the e�e
ts of non-equilibriumin the lo
al distribution fun
tion. Together these models provide some understand-



59

z

n
i’

-15 -10 -5 0
0.7

0.8

0.9

1

1.1

Shadow
Bohm
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60ing of the physi
al pro
esses at work, and form the foundation for more advan
edmodeling te
hniques. In the next 
hapter, a 
omputational 
ode is dis
ussed thatin
orporates elements from the kineti
 des
ription and the �uid des
ription in orderto a
hieve a high-�delity simulation of a plasma.



Chapter IVHybrid Fluid PIC-DSMC Numeri
al Model
A re
urring theme is that the governing equations for a plasma 
annot be solvedanalyti
ally for most pra
ti
al appli
ations. As a result, a variety of te
hniques havebeen developed to obtain numeri
al solutions to the kineti
 models, Euler equations,Navier-Stokes equations, and MHD equations. This 
hapter des
ribes a hybrid modelthat in
orporates both a parti
le method and a �uid method to des
ribe a plasma.When 
hoosing a numeri
al model it is important to identify the degree of non-equilibrium in the �ow. For strongly 
ollisional �ows that remain near equilibrium,a �uid method is mu
h less 
omputationally intensive than a parti
le method andshould produ
e equally a

urate results. At the other extreme, nearly 
ollisionless�ows or �ows that in
orporate a strongly non-equilibrium pro
ess may require aparti
le method to obtain a

urate results at all. In some 
ases one region of a�ow might be adequately treated with a �uid method, while another region of the�ow requires the in
reased �delity of a parti
le method. Flows with lo
alized non-equilibrium 
an bene�t from hybrid te
hniques des
ribed by S
hwartzentruber etal. [67℄ that use either �uid or parti
le methods for distin
t regions of a �ow.Plasmas are 
omposed of both ions and ele
trons, and the large mass ratio be-tween those parti
les introdu
es additional forms of non-equilibrium. Ionization en-61



62ergy from generating the plasma is 
arried primarily by the ele
trons, resulting in ahigher temperature for ele
trons than for ions. The 
ombination of higher tempera-ture and lower mass leads to a higher 
ollision rate for ele
trons, so that the ele
tronrelaxation time is mu
h shorter than the ion relaxation time. Although 
ollisions be-tween ions and ele
trons generally a
t to bring the entire plasma toward equilibrium,the mass ratio makes these 
ollisions mu
h less e�e
tive than 
ollisions between twoele
trons or 
ollisions between two ions.Sin
e there is a signi�
ant di�eren
e between the ele
tron and ion time s
ales,it is useful to 
onsider an intermediate time s
ale where the ion motions are a

u-rately resolved and the ele
tron motions 
an be averaged. This leads to a hybridapproa
h that uses a parti
le method to model the ions and a �uid method to modelthe ele
trons. Hybrid te
hniques of this sort have been used su

essfully for EPmodeling [68, 69, 70℄, and are also well-suited to plasma diagnosti
 modeling.4.1 Ion and neutral parti
le modelsIt is not feasible to solve the full kineti
 des
ription of an ion plasma, but prob-abilisti
 parti
le simulations in
orporate mu
h of the same underlying physi
al rea-soning. Two 
omplementary methods are used to model the ion and neutral parti
lesin this work. The Parti
le In Cell (PIC) method is used to move the ion and neutralparti
les and to 
al
ulate self-
onsistent ele
tri
 �elds that a
t on 
harged parti-
les. The Dire
t Simulation Monte Carlo (DSMC) method is used to model parti
le
ollisions.4.1.1 Parti
le In CellThe motion of a 
harged parti
le is determined by the 
olle
tive ele
tri
 and mag-neti
 �elds generated by all other 
harged parti
les in the plasma. In order to obtain



63a physi
ally meaningful solution, the di�erential equations for ele
tri
 and magneti
�elds in Maxwell's laws must be solved in tandem with the parti
le equations ofmotion.The PIC method [47℄ a

omplishes this by tra
king ma
roparti
le motion andele
tri
 �eld 
al
ulations on a 
omputational grid. Ea
h ma
roparti
le representsmany ions or neutrals, and is assigned average properties from the pres
ribed distri-bution fun
tion. Parti
le movement 
an be de
oupled from the �eld 
al
ulations by
hoosing a time step su
h that the displa
ement is small and the lo
al �elds do notvary signi�
antly. This method 
onsists of the following four main steps.First, the 
harge density is weighted from parti
le position to the nodes of the
omputational grid. In this work, the weighting s
heme is a simple bilinear inter-polation for an axisymmetri
, stru
tured, re
tangular grid. Alternative weightings
hemes 
an be devised for this and other 
omputational grid geometries.Se
ond, ele
tri
 �elds are 
al
ulated by solving the appropriate ele
trostati
 orele
trodynami
 equation over all the nodes of the 
omputational grid. Often theele
tri
 potential is solved instead by using the ele
trostati
 Poisson equation, andele
tri
 �elds are then 
al
ulated from the gradient of the potential. Maxwell'sequations must be solved if magneti
 �elds are signi�
ant or if a

urate time evolutionis required.Third, the parti
le a

eleration is 
al
ulated by weighting the ele
tri
 �elds fromthe nodes to the parti
les. The parti
le velo
ity 
an then be updated as well. Again,a simple bilinear interpolation is used in this work.Fourth, parti
les are moved for a time step with the new velo
ity. Any boundaryintera
tions are handled at this point, in
luding parti
le inje
tion at the inlet andparti
le removal at edges. The velo
ity of new parti
les is assigned probabilisti
ally



64from the assigned distribution fun
tion at the inlet.These four steps are then repeated over a desired number of iterations. Dependingon how the parti
les are initialized in the 
omputational domain, some initial tran-sients may o

ur. Sampling of the instantaneous density and ele
tri
 �elds allowsthe statisti
al s
atter to be redu
ed over a number of iterations.The PIC method is essentially a 
ollisionless formulation of kineti
 theory for aplasma. However, 
ollisions provide the me
hanism for ionization and re
ombinationand 
ontribute to the ele
tri
al resistan
e in a plasma. Sin
e these pro
esses maya�e
t the 
urrent, it is important for a plasma diagnosti
 simulation to have the
apability to model 
ollisions.4.1.2 Dire
t Simulation Monte CarloCollisions are in
orporated through the DSMC method, whi
h was developedextensively by Bird [48℄. Sin
e the a
tual number of parti
les and 
ollisions is far toolarge for dire
t simulation, DSMC tra
ks ma
roparti
le motion on a 
omputationalgrid. At ea
h 
ollision time step, parti
les are paired up by 
omputational 
ell and
ollisions are evaluated statisti
ally. This method 
an be readily integrated withthe PIC method to in
lude both 
ollisions and 
harged parti
le motion with self-
onsistent ele
tri
 �elds.In a PIC-DSMC formulation, the main role of the DSMC method is to handle
ollisions. This involves a series of 
al
ulations to determine the number of 
ollisionsin ea
h 
ell, the 
ollision probability for ea
h pair of parti
les, and the new parti
leproperties after a 
ollision o

urs.The number of simulated 
ollisions in a 
ell 
an be 
al
ulated by taking theprodu
t of 
ollision frequen
y and the 
ollision time step, with an additional fa
tor
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ounting for the ma
roparti
le weights in the 
ell. The result from kineti
 theoryin Eq. 4.1 gives the 
ollision frequen
y νab of spe
ies a with spe
ies b as a fun
tion ofthe density of the target spe
ies nb, the mean relative speed vab, and a 
ollision 
rossse
tion σab [59℄. In this work only xenon-xenon 
ollisions are modeled. A variablehard sphere (VHS) model with ω = 0.12 is used to 
al
ulate the atom-atom 
ollision
ross se
tion as in 4.2. The 
ross se
tion for atom-ion 
harge ex
hange 
ollisions isgiven by the empiri
al �t in Eq. 4.3 [71℄. In these expressions the relative speed isin units of m
s
. No ion-ion 
ollisions are modeled.

νab = nbvabσab (4.1)
σXe−Xe =

2.12 × 10−18 m2

v2ω
ab

(4.2)
σXe−Xe+ = 2 [142.21 − 23.30 log |vab|]

(

12.13

13.6

)− 3

2

× 10−20 m2 (4.3)A random pair of parti
les is sele
ted from the 
ell for ea
h simulated 
ollision.Whether or not the 
ollision o

urs is determined statisti
ally by an a

eptan
e-reje
tion method, where a random number is 
ompared to the 
ollision probability.If the random number is larger than the probability, the 
ollision o

urs and theparti
les velo
ities are pro
essed.The post-
ollision parti
le velo
ities are 
al
ulated as a result of random s
at-tering, subje
t to 
onservation of momentum and energy for the parti
les. A newrelative velo
ity is 
al
ulated, and a new angle is sele
ted. The new velo
ities forboth parti
les are then 
al
ulated from the new relative velo
ities and the 
enter ofmass velo
ity.These steps are repeated at every 
ollision time step. As was assumed in the PICmethod, the 
ollision time step is small enough that parti
le displa
ement is smalland the parti
le movement 
an be de
oupled from the 
ollision 
al
ulations. Again,



66sampling 
an be used to redu
e the statisti
al s
atter introdu
ed by this treatmentof the 
ollisions.4.2 Ele
tron �uid modelsThe ele
tron �uid models used in this work are derived from the MHD equationspresented in Chapter III. Three distin
t models are used: the Boltzmann model,the non-neutral detailed model, and the Poisson-
onsistent detailed model. Thesemodels progressively in
rease the �delity of the ele
tron �uid from a simple Boltz-mann relation to a 
oupled ele
trostati
 �uid model. Ea
h of the models has uniquerequirements and limitations as des
ribed in the following se
tions.4.2.1 Derivation from ele
trostati
 MHD equationsEa
h of the three ele
tron �uid models 
an be derived from the ele
trostati
 MHDequations. The ele
trostati
 MHD equations are obtained by taking the limit of zeromagneti
 �elds (B = 0) in the �uid 
onservation laws and Maxwell's laws. The re-sulting equation set in
ludes 
onservation of mass or 
ontinuity, Eq. 4.4, 
onservationof momentum, Eq. 4.5, 
onservation of energy, Eq. 4.6, and the ele
trostati
 Poissonequation, Eq. 4.7. These equations are written spe
i�
ally for an ele
tron �uid, andthe negative ele
tron 
harge has been taken into a

ount by adjusting the signs ofthe relevant terms.
∂ρe

∂t
+ ∇ · (ρeve) = 0 (4.4)

∂ (ρeve)

∂t
+ ∇ · (ρeveve) = −∇Pe − ρe

e

me
E + ρe

e

me

je

σ
(4.5)

∂ (ρee)

∂t
+ ∇ · (ρeeve) = −Pe∇ · ve − ρe

e

me

E · ve −∇ · q (4.6)
∇ · E =

e

ε0
(ni − ne) (4.7)



67A number of assumptions and simpli�
ations are 
ommon to all three ele
tron�uid models. The �rst simpli�
ation is to take the steady state limit, so that ∂
∂t

= 0in ea
h of the 
onservation laws.The density ρe in the 
onservation laws is rewritten in terms of number density
ne a

ording to Eq. 4.8. This provides a single 
onsistent variable for the 
onser-vation laws and the ele
trostati
 Poisson equation, and also avoids any numeri
al
ompli
ations from working with the small value of the ele
tron mass.

ρe = mene (4.8)The ideal gas law is assumed as the equation of state for the ele
tron �uid.The pressure and internal energy 
an then be repla
ed by the forms in Eq. 4.9 andEq. 4.10, whi
h use the density and temperature.
Pe = nekBTe (4.9)
e =

3

2

kBTe

me
(4.10)The ele
tri
 �eld is expressed in terms of the plasma potential φ as given inEq. 4.11. With this substitution, the ele
trostati
 Poisson equation be
omes a math-emati
al Poisson equation for the potential.

E = −∇φ (4.11)The heat �ux ve
tor is assumed to follow the Fourier heat 
ondu
tion law givenin Eq. 4.12, with the ele
tron thermal 
ondu
tivity κ as a parameter.
q = −κ∇Te (4.12)The ele
tron transport 
oe�
ients are evaluated using the basi
 de�nitions frommole
ular transport [60℄. The ele
tri
al 
ondu
tivity σ in Eq. 4.13, and the thermal
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ondu
tivity κ in Eq. 4.14, both depend on the total ele
tron 
ollision frequen
y νe.
σ =

nee
2

meνe

(4.13)
κ =

2.4nek
2
BTe

meνe

(

1

1 + νei

νe

√
2

) (4.14)The total ele
tron 
ollision frequen
y is the sum of the ele
tron-ion 
ollision fre-quen
y νei and the ele
tron-neutral 
ollision frequen
y νen as de�ned in Eq. 4.15.The ele
tron-ion 
ollision frequen
y in Eq. 4.16 is 
al
ulated from 
lassi
al elasti
s
attering [60℄, while the ele
tron neutral 
ollision frequen
y in Eq. 4.17 is 
al
ulatedusing an empiri
al �t [72℄ of the ele
tron-neutral 
ross se
tion Qen (Te) in the generalform of Eq. 4.1.
νe = νei + νen (4.15)

νei = ni
4
√

2π

3

(

me

kBTe

)
3

2
(

e2

4πε0me

)2

ln

∣

∣

∣

∣

∣

12π

(

ε0kB

e2

)
3

2
(

T 3
e

ne

)
1

2

∣

∣

∣

∣

∣

(4.16)
νen = nn

4

3

(

8kBTe

πµen

)
1

2

Qen (Te) (4.17)After making these assumptions and substitutions, the equation set 
an be writtenas in Eqs. 4.18-4.21. The remaining terms on the left hand side of the momentum andenergy equations have been expanded and simpli�ed using the 
ontinuity equation.In this form it appears that there are four 
oupled equations for �ve independentvariables: ne, ve, Te, φ, and je. However, the 
urrent 
an be expressed in terms ofthe density and velo
ity as je = eneve. For now the 
urrent is left in pla
e as areferen
e marker for further manipulation.
∇ · (neve) = 0 (4.18)

meneve∇ · ve = −∇ (nekBTe) + nee∇φ + nee
je

σ
(4.19)

neve · ∇
(

3

2
kBTe

)

= −nekBTe∇ · ve + nee∇φ · ve + ∇ · (κ∇Te) (4.20)
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∇2φ = − e

ε0

(ni − ne) (4.21)Following the example of Boyd and Yim [73℄, there are a few additional manip-ulations that will simplify the numeri
al solution.By introdu
ing a stream fun
tion Ψ as de�ned in Eq. 4.22, the 
ontinuity equa-tion be
omes a Lapla
e equation as given in Eq. 4.23. With this modi�
ation, allof the di�erential equations from the 
onservation laws and the ele
trostati
 Pois-son equation are ultimately expressed in terms of the Lapla
ian operator. A singlesolution te
hnique 
an then be used to solve ea
h of the di�erential equations.
∇Ψ = nev (4.22)
∇2Ψ = 0 (4.23)The momentum equation 
an be simpli�ed by negle
ting the inertial term (∼ menev),sin
e it is mu
h smaller than the other terms. The remaining terms 
an then be re-arranged as Eq. 4.24 to isolate the ele
tron 
urrent.

je = σ

[

kB

e

(

∇Te + Te
∇ne

ne

)

−∇φ

] (4.24)The energy equation 
an be rearranged as shown in Eq. 4.25, whi
h fa
ilitates asolution for the temperature.
∇2Te +

(∇κ

κ
− 3

2

kB

κ
nev

)

· ∇Te −
(

kB

κ
ne∇ · v

)

Te −
e

κ
ne∇φ · v = 0 (4.25)All three ele
tron �uid models work with this modi�ed set of equations: theele
trostati
 Poisson equation, Eq. 4.21, the 
ontinuity equation, Eq. 4.23, the 
urrentequation, 4.24, and the temperature equation, Eq. 4.25. Further development of thethree models diverges at this point, so ea
h model is des
ribed separately in thefollowing se
tions.



704.2.2 Boltzmann modelThe Boltzmann model is obtained by making the assumptions that lead to theBoltzmann relation. Brie�y, the ele
tron �uid must be unmagnetized, 
ollisionless,isothermal, and 
urrentless. The �rst assumption, that the �uid is unmagnetized,has already been made early in the pre
eding development as B = 0.The 
ollisionless assumption is equivalent to the limit νe → 0. Referring to thetransport 
oe�
ients in Eqs. 4.13 and 4.14, this limit 
orresponds to in�nite ele
tri
aland thermal 
ondu
tivities. This is a
tually 
onsistent with the other assumptionsof isothermal and 
urrentless �uid. A gradient in temperature drives heat �ux,whi
h a
ts to redu
e the gradient. In the limit of in�nite thermal 
ondu
tivity, theheat �ux redistributes the thermal energy instantaneously and produ
es a uniformtemperature. A uniform 
harge distribution results from the limit of in�nite ele
tri
al
ondu
tivity, so no gradient in 
harge exists to a drive 
urrent.The isothermal assumption makes Te 
onstant throughout the �ow, whi
h repla
esthe temperature equation of Eq. 4.25 entirely. It also eliminates a term from the
urrent equation, sin
e ∇Te = 0.The 
urrentless assumption is applied by setting je = 0 in the 
urrent equation.Fa
toring out the 
ondu
tivity leaves only two terms from the right hand side ofEq. 4.24, whi
h must sum to zero as in Eq. 4.26.
0 =

kBTe

e

∇ne

ne
−∇φ (4.26)This 
an be rearranged and solved by separation of variables, using the referen
e
ondition ne = ne0 where φ = φ0.

∇ne

ne
=

e

kBTe
∇φ



71
ln

∣

∣

∣

∣

ne

ne0

∣

∣

∣

∣

=
e

kBTe

(φ − φ0)Finally, the solution 
an be rearranged to the Boltzmann relation form in Eq. 4.27,whi
h gives the ele
tron density in terms of the plasma potential.
ne = ne0 exp

[

e

kBTe
(φ − φ0)

] (4.27)This �uid model is exa
tly 
onsistent with the Boltzmann relation assumed inthe analyti
 sheath models. The hybrid �uid PIC results from this model 
orrespond
losely to the analysis in the planar Bohm sheath model, so results from this modelare expe
ted to be in ex
ellent agreement with the planar Bohm sheath. Compar-ison of results with the analyti
 sheath solution 
an be used to validate the overalloperation of the hybrid model.The Boltzmann model is also useful for identifying and quantifying any two di-mensional e�e
ts, sin
e the only substantive di�eren
e from the planar Bohm sheathis the axisymmetri
 geometry. This is a useful baseline 
omparison to have before
onsidering the more 
ompli
ated detailed �uid models.4.2.3 Non-neutral detailed modelThe non-neutral detailed model is obtained by applying the 
harge 
ontinuity
ondition of Eq. 4.28.
∇ · je = 0 (4.28)Inserting the expression for 
urrent from Eq. 4.24 into this form produ
es Eq. 4.29,whi
h is a signi�
antly more 
ompli
ated expression of the 
harge 
ontinuity 
ondi-tion.

∇ ·
{

σ

[

kB

e

(

∇Te + Te
∇ne

ne

)

−∇φ

]}

= 0 (4.29)



72Sin
e the energy equation is solved for temperature, this equation 
an either besolved for plasma potential or for ele
tron number density. In the work by Boyd andYim, this was solved for the plasma potential [73℄, and the assumption of plasmaneutrality was used in pla
e of the ele
trostati
 Poisson equation.Expanding Eq. 4.29 and rearranging to the form in Eq. 4.30 shows the 
hara
terof the di�erential equation when solved for plasma potential. The 
oe�
ients on thepotential terms are simple, but there is a 
ompli
ated sour
e term.
∇2φ +

(∇σ

σ

)

· ∇φ − kB

e
∇ ·
[

σ

(

∇Te + Te
∇ne

ne

)]

= 0 (4.30)The assumption of neutrality is not valid in a plasma sheath, so the ele
trostati
Poisson equation is solved for ele
tron density in Eq. 4.31 to 
omplete the non-neutraldetailed model. This 
al
ulation is not 
omputationally reliable: the 
oe�
ient ε0

e
isvery large, ∼ 5.5 × 107, but the 
al
ulated value of the Lapla
ian of the potential isvery small. Put another way, there is very poor resolution of ele
tron density fromthis 
al
ulation.

ne = ni −
ε0

e
∇2φ (4.31)This formulation is sensitive to statisti
al s
atter in the ion density reported fromthe PIC model. Averaging te
hniques 
an be used to redu
e the s
atter, but it is moree�e
tive to maintain a large number of 
omputational parti
les per 
ell. Additionally,any averaging introdu
es some lag into the 
oupling between ele
tron density andpotential. This raises the possibility of arti�
ial os
illation in the plasma potentialand ele
tron density that 
ould overwhelm the expe
ted physi
al behavior.Sin
e the Lapla
ian of ele
tron density appears in Eq. 4.30 and the density itselfis 
al
ulated from the Lapla
ian of plasma potential, the di�erential equation forpotential begins to resemble a biharmoni
 equation. That is, taking the gradient or



73Lapla
ian of number density introdu
es higher order derivatives into the di�erentialequation for potential. The boundary 
onditions on potential must then be handled
arefully to avoid introdu
ing singularities in higher order derivatives. One approa
his to 
al
ulate fourth order a

urate boundary values, but this is di�
ult to enfor
eat points near the 
orners of the probe. An alternative approa
h is to use a sten
ilto 
al
ulate average values of ∇2φ along boundaries.The original neutral detailed model has been used su

essfully, and there is rea-son to believe that relaxing the assumption of neutrality would result in a fun
tionalnon-neutral model. However, as will be seen in the next 
hapter, the spe
i�
 imple-mentation of the non-neutral model in this work does not fun
tion as intended. Theinitialized 
onditions and order of 
al
ulations during iteration 
an only lead to aneutral solution with ∇2φ = 0 throughout the �ow �eld.4.2.4 Poisson-
onsistent detailed modelThe Poisson-
onsistent detailed model is also obtained by applying the 
harge
ontinuity 
ondition, and derives from the same intermediate result in Eq. 4.29.However, that equation is solved for ele
tron number density in this model, ratherthan for plasma potential.The alternative arrangement in Eq. 4.32 shows the 
hara
ter of the di�erentialequation when solved for number density. The identity ne∇ 1
ne

= −∇ne

ne
has beenused to obtain a similar form in the ∇ne 
oe�
ient.

∇2ne +

(∇ (σTe)

σTe
− ∇ne

ne

)

· ∇ne +
1

σTe
∇ ·
[

σ

(

∇Te −
e

kB
∇φ

)]

ne = 0 (4.32)This form is more 
ompli
ated than the di�erential equation for potential. Oneparti
ular issue is that the ∇ne 
oe�
ient is non-linear. There are no sour
e termsin this arrangement, but that is not a signi�
ant advantage.



74The per
eived bene�t of the Poisson-
onsistent model is that the ele
trostati
Poisson equation 
an be solved for plasma potential. This avoids the poor resolutionissue in the non-neutral model, sin
e the ion and ele
tron densities are of the sameorder and 
ontribute to a sour
e term in the di�erential equation for plasma potential.This formulation also pre
ludes the problems with statisti
al s
atter and bound-ary 
onditions that hampered the non-neutral model. Di�erential equations are mu
hmore forgiving of lo
alized statisti
al s
atter than algebrai
 equations, sin
e the in-tegration pro
edure that leads to the solution a
ts to dissipate random variations.The PIC model ion density 
an be used dire
tly in the ele
trostati
 Poisson equationwithout any averaging, even with a relatively small number of parti
les per 
ell.Unlike the non-neutral model, the di�erential equation for number density doesnot indire
tly in
lude higher order derivatives. The ele
trostati
 Poisson equationrelates the Lapla
ian of plasma potential to the ele
tron number density, so at worstthe di�erential equation for number density has additional non-linearity in its 
oef-�
ients. Standard se
ond order a

urate boundary 
onditions are su�
ient for thismodel.The Poisson-
onsistent model is used for the �rst time in this work. Although thenon-linearity in this model initially presented a signi�
ant obsta
le, the problem wasover
ome by assuming 
onstant 
oe�
ients during ea
h solution of the di�erentialequation. In the next 
hapter it will be shown that the Poisson-
onsistent detailedmodel a

urately 
aptures the features of the ele
trostati
 sheath.4.2.5 Summary of the ele
tron �uid model equationsIt is 
onvenient to have the various equations for ea
h �uid model organized inthe side-by-side 
omparison of Table 4.1. The iteration pro
edure is also more readily



75apparent in this form.Table 4.1: Summary of ele
tron �uid model equationsBoltzmann Non-neutral Poisson-
onsistentContinuity Eq. 4.23−→ Ψ, ve Eq. 4.23−→ Ψ, ve Eq. 4.23−→ Ψ, veCurrent Eq. 4.27−→ ne Eq. 4.30−→ φ Eq. 4.32−→ nePoisson Eq. 4.21−→ φ Eq. 4.31−→ ne Eq. 4.21−→ φTemperature Isothermal Eq. 4.25−→ Te Eq. 4.25−→ Te4.3 Hybrid �uid PIC model iteration 
y
leSin
e the PIC, DSMC, and �uid models have been de
oupled over di�erent times
ales, the models 
an be solved iteratively. The 
y
le for an iteration weights parti
ledensity to the grid �rst, so that the ele
tron �uid equations 
an be solved for thepresent ion parti
le distribution. All of the ele
tron �uid equations are solved next,whi
h involves a sub
y
le iteration for the 
oupled momentum and energy equations.The new potential �eld is used to update the ele
tri
 �elds. The ions are thena

elerated a

ording to the new ele
tri
 �elds, moved, 
ollided, and sampled. Thewhole 
y
le is given here:1. Weight parti
le density to the nodes of the grid2. Solve ele
tron 
ontinuity equation on grid nodes3. Solve ele
tron momentum equation on grid nodes4. Solve ele
tron energy equation on grid nodes5. Repeat steps 3-4 to 
onverge 
oupled equations6. Weight ele
tri
 �elds from grid nodes to parti
les



767. Move parti
les in the grid 
ells8. Collide PIC parti
les in grid 
ells9. Sample parti
le properties on the grid
These steps do not ne
essarily have to be performed every time step, sin
e themodels are de
oupled over di�erent time s
ales. The 
ell spa
ing and the time step aredetermined in the next 
hapter based on the stability requirements for the ele
tron�uid model. The ion parti
les do not move very far during a single time step, andrequire several iterations to 
ross a 
omputational 
ell. In order to a

elerate theoverall 
onvergen
e, the ions are moved several times between ea
h solution of theele
tron �uid model equations.4.4 Dis
retization and ADI solverThe �uid equations in the pre
eding se
tions are developed as 
ontinuous fun
-tions. In order to solve these equations on the nodes of a 
omputational grid, theequations must be expressed using dis
rete operators. A �nite di�eren
e form of-fers 
omputational advantages and simpli�
ations for the axisymmetri
, stru
tured,re
tangular grid used in this work.4.4.1 Finite di�eren
e operatorsConsider the typi
al node in an axisymmetri
 
omputational grid. The 
entralnode has indi
es (i, j), and the adja
ent nodes have indi
es of (i ± 1, j) and (i, j ± 1)as in Fig. 4.1. Values of the variables, in
luding any spatial derivatives, are 
omputedand stored at the nodes.
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z
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Figure 4.1: A typi
al 
omputational node and its surroundings.In order to dis
retize the �uid equations, the gradient operator ∇ and the Lapla-
ian operator∇2 are needed. The gradient operator 
an be obtained in a se
ond ordera

urate form by taking the Taylor expansion of an arbitrary quantity Q about the
entral node at (i, j). This results in the �nite di�eren
e form in Eq. 4.33. Notethat under the axisymmetri
 assumption there is no azimuthal variation, so the θ̂
ontributions to the operator are identi
ally zero. The 
onstant subs
ript has beenomitted for 
larity, so Qi+1, j is denoted as Qi+1.
∇Q =

Qi+1 − Qi−1

xi+1 − xi−1
ẑ +

Qj+1 − Qj−1

rj+1 − rj−1
r̂ (4.33)As given in Eq. 4.34, the Lapla
ian operator 
an be related to the gradient op-erator by Green's �rst identity. This identity states that the integral of ∇2Q over avolume V is equal to the surfa
e integral of ∇Q normal to the surfa
e S that en
losesthe volume.

∫∫∫

V

∇2QdV =

∮

S

∇Q · n̂dS (4.34)



78For the axisymmetri
 geometry, the volume asso
iated with a node is an annular
ylinder. The bounding surfa
e 
onsists of four surfa
es: two annular surfa
es in the
r̂− θ̂ plane to the left and right of the node, and two 
ylindri
al surfa
es at 
onstantradius above and below the node. As depi
ted in Fig. 4.1, these surfa
es lie halfwaybetween adja
ent nodes.The desired �nite di�eren
e form of ∇2Q is a 
onstant value stored at the node,so the volume integral redu
es to the produ
t on the left hand side of Eq. 4.35.Assuming that the �nite di�eren
e form of ∇Q is also 
onstant over ea
h boundingsurfa
e, the surfa
e integral 
an likewise be redu
ed to a summation over the fourbounding surfa
es.

V ∇2Q =
∑

A

∇Q · A (4.35)The right hand side 
an be expanded and simpli�ed for the simple boundingsurfa
es, resulting in the 
ompa
t form of Eq. 4.36. The areas and the partial �nitedi�eren
e di�erentials are de�ned in Table 4.2. Note that the surfa
e 
oordinatesrequire slight modi�
ation for nodes along boundaries. The relevant 
oordinate ofthe 
enter node should be used when an adja
ent node does not exist (along edgesof the domain) or lies on a solid surfa
e (along edges of the probe).
∇2Q =

dQ

dx i+ 1

2

AR

V
− dQ

dx i− 1

2

AL

V
+

dQ

dr j+ 1

2

Ao

V
− dQ

dr j− 1

2

Ai

V
(4.36)



79Table 4.2: Areas and di�erentials in the �nite di�eren
e Lapla
ian operatorLeft annulus AL = π
(

r2
j+ 1

2

− r2
j− 1

2

)

dQ
dx i− 1

2

= Qi−Qi−1

xi−xi−1Right annulus AR = π
(

r2
j+ 1

2

− r2
j− 1

2

)

dQ
dx i+ 1

2

= Qi+1−Qi

xi+1−xiInner 
ylinder AI = 2πrj− 1

2

(

xi+ 1

2

− xi− 1

2

)

dQ
dr j− 1

2

=
Qj−Qj−1

rj−rj−1Outer 
ylinder AO = 2πrj+ 1

2

(

xi+ 1

2

− xi− 1

2

)

dQ
dr j+ 1

2

=
Qj+1−Qj

rj+1−rjVolume V = π
(

r2
j+ 1

2

− r2
j− 1

2

)(

xi+ 1

2

− xi− 1

2

)Coordinates xi− 1

2

= 1
2
(xi−1 + xi) xi+ 1

2

= 1
2
(xi + xi+1)

rj− 1

2

= 1
2
(rj−1 + rj) rj+ 1

2

= 1
2
(rj + rj+1)After inserting the forms from Table 4.2 into Eq. 4.36 and simplifying, the �nitedi�eren
e form of the Lapla
ian operator 
an be written in the unwieldy form ofEq. 4.37.

∇2Q =
Qi+1 − Qi

(xi+1 − xi)
(

xi+ 1

2

− xi− 1

2

) − Qi − Qi−1

(xi − xi−1)
(

xi+ 1

2

− xi− 1

2

) (4.37)
+

2rj+ 1

2

(Qj+1 − Qj)

(rj+1 − rj)
(

r2
j+ 1

2

− r2
j− 1

2

) −
2rj− 1

2

(Qj − Qj−1)

(rj − rj−1)
(

r2
j+ 1

2

− r2
j− 1

2

)This 
an be written in the 
ompa
t form of Eq. 4.38 by using the 
oe�
ientsde�ned in Table 4.3.
∇2Q = CRQi+1 + CLQi−1 + COQj+1 + CIQj−1 + CCQ (4.38)Table 4.3: Finite di�eren
e Lapla
ian 
oe�
ientsLeft node CL = 1

(xi−xi−1)

(

x
i+ 1

2

−x
i− 1

2

)Right node CR = 1

(xi+1−xi)

(

x
i+1

2

−x
i−1

2

)Inner radial node CI =
2r

j− 1
2

(rj−rj−1)

(

r2

j+ 1
2

−r2

j− 1
2

)Outer radial node CO =
2r

j+ 1
2

(rj+1−rj)

(

r2

j+ 1
2

−r2

j− 1
2

)Center node Cc = − (CR + CL + CI + CO)



80The �nite di�eren
e operators for the gradient, Eq. 4.33, and the Lapla
ian,Eq. 4.38, 
an be used to formulate the dis
rete ele
tron �uid equations on the axisym-metri
 
omputational grid. The next task is to obtain a solution to the di�erentialequations.4.4.2 Solution te
hnique for di�erential equationsEa
h of the di�erential equations that appear in the ele
tron �uid models 
an berearranged to the form F (Q) = 0, where Q is the independent variable that is beingsolved, and F (Q) is the rearranged �nite di�eren
e form of the di�erential equation.By analogy, the solution is the �ow �eld value of Q that 
orresponds to a �root� of
F (Q).This type of di�erential equation 
an be solved using a Newton-Raphson iterations
heme. The Newton-Raphson method treats the problem essentially as a root �nd-ing exer
ise in an arbitrary number of dimensions. The iterative equation in Eq. 4.39resembles a Taylor expansion for the 
urrent value of the �ow �eld variable Qt nearthe desired solution. The desired out
ome from this 
al
ulation is an updated valueof the �ow �eld variable Qt+1 that satis�es F (Qt+1) = 0.

Qt+1 = Qt − F (Qt)

(

dF

dQ t

)−1 (4.39)Rearranging this to be more 
ompatible with the linear form Ax = b yieldsthe iteration rule in Eq. 4.40. The solution of this equation gives the quantity
δQ = (Qt+1 − Qt), whi
h is a 
orre
tion to the 
urrent �ow �eld Qt. Many numeri
alte
hniques are available to solve linear equations in this form.

dF

dQ t

(δQ) = −F (Qt) (4.40)The greatest 
hallenge in using Newton-Raphson iteration stems from determin-ing the iterative di�erential dF
dQt

. Provided that the operators in the di�erential



81equation are linear, the di�erential and operator order 
an be inter
hanged and theiterative di�erential 
an be found easily.As a simple example, 
onsider Eq. 4.23, the 
ontinuity equation that is solved inall three �uid models. The stream fun
tion is the independent variable, so Q = Ψand F (Ψ) is simply the 
ontinuity equation, as in Eq. 4.41. Sin
e the Lapla
ianoperator is a linear operator, the order of the operations 
an be inter
hanged as inthe intermediate relations of Eq. 4.42. This result 
an be then inserted into Eq. 4.40as an operator on δΨ to obtain the iteration rule for the 
ontinuity equation inEq. 4.43. Note that the subs
ript t is omitted ex
ept where required for 
larity.
F (Ψ) = ∇2Ψ = 0 (4.41)

dF

dΨ
=

d

dΨ

(

∇2Ψ
)

= ∇2

(

d

dΨ
Ψ

)

= ∇2 (4.42)
∇2 (δΨ) = −∇2Ψt (4.43)The temperature equation of Eq. 4.25 provides a se
ond example. The numberdensity, potential, and velo
ity are held 
onstant during the iteration for temperature,so the sour
e term and 
oe�
ients 
an be repla
ed by 
onstants as in Eq. 4.44.Inter
hanging the order of operations leads to Eq. 4.45 for the iterative di�erentialfor temperature. The sour
e term had no temperature dependen
e, and does notappear in the iterative di�erential.

F (Te) = ∇2Te + c1 · ∇Te − c2Te − c3 = 0 (4.44)
dF

dTe
= ∇2 + c1 · ∇ − c2 (4.45)The di�erential equation for plasma potential in the non-neutral detailed model,Eq. 4.30, 
an be handled in the same fashion. Number density, velo
ity, and temper-ature are 
onstant during iteration for potential, leading to the 
onstant 
oe�
ient



82form in Eq. 4.46. That form readily produ
es the iterative di�erential in Eq. 4.47.
F (φ) = ∇2φ + c1 · ∇φ − c2 = 0 (4.46)

dF

dφ
= ∇2 + c1 · ∇ (4.47)If the form of the di�erential equation is non-linear, it is more di�
ult to �nd theiterative di�erential. Consider the ele
trostati
 Poisson equation for the Boltzmannmodel in Eq. 4.48, where the ele
tron density has been expressed a

ording to theBoltzmann relation with φ0 = 0 for simpli
ity. The �rst two terms 
an be handledas in the previous examples.The derivative must be taken of the exponential of the potential in the thirdterm. This produ
es a di�erential iterator that has some dependen
e on the 
urrentvalue of φt. The di�erential iterator and the 
orresponding iteration rule are shownrespe
tively in Eqs. 4.49 and 4.50.

F (φ) = ∇2φ +
e

ε0
ni −

e

ε0
ne0 exp

(

eφ

kBTe

)

= 0 (4.48)
dF

dφ
= ∇2 − e2ne0

ε0kBTe
exp

(

eφ

kBTe

) (4.49)
∇2δφ − δφ

λ2
D

exp

(

eφt

kBTe

)

= ∇2φt +
e

ε0

[

ni − ne0 exp

(

eφt

kBTe

)] (4.50)The �nal equation is also the most di�
ult to evaluate. The di�erential equationfor ele
tron number density in the ele
trostati
 Poisson equation has a non-linear
oe�
ient on the ∇ne term. The other 
oe�
ients 
an be repla
ed with 
onstants asin Eq. 4.51, sin
e the velo
ity, temperature, and potential are held 
onstant duringthe solution for number density.
F (ne) = ∇2ne +

(

c1 −
∇ne

ne

)

· ∇ne + c2ne = 0 (4.51)



83The iterative di�erential is straightforward ex
ept for the non-linear term:
d

dne

(

−∇ne

ne
· ∇ne

)This expression 
an be evaluated in a number of di�erent ways, but not everyevaluation leads to a stable iteration rule. In fa
t the best 
omputational performan
eis obtained by 
al
ulating the 
oe�
ient on
e, and then leaving it as a 
onstant for therest of the iteration. Under that assumption, the fun
tion and iterative di�erentialare simple linear operators as seen in Eqs. 4.52 and 4.53.
F (ne) = ∇2ne + c1 · ∇ne + c2ne = 0 (4.52)

dF

dne
= ∇2 + c1 · ∇ + c2 (4.53)It should be noted that all of the results in this se
tion are valid for both 
on-tinuous and dis
rete operators. The �nite di�eren
e operators from Se
. 4.4.1 
ansubstituted into these expressions without any modi�
ation.4.4.3 ADI solverThe iteration rules from the pre
eding dis
ussion (su
h as Eq. 4.43 or Eq. 4.50)take the form of banded diagonal matri
es when expressed using the �nite di�eren
eoperators of Se
. 4.4.1. Numeri
al te
hniques in
luding the Alternating Dire
tionImpli
it (ADI) method [50, 74℄ have been developed to solve these types of linearequations.Banded diagonal matri
es are signi�
antly more di�
ult to solve than tridiagonalmatri
es. However, an approximate solution 
an be obtained by negle
ting the termsin the bands and solving just the tridiagonal system. For the di�erential equations inthe �uid models, this pro
ess is equivalent to solving the di�erential equations along



84just one dire
tion. A 
onsistent solution 
an be obtained by solving the equationsalternately for rows and 
olumns.This work uses a standard implementation of the ADI method to solve the dif-ferential equations that appear in the ele
tron �uid models. The solution te
hniqueis well known, and details 
an be found in most numeri
al and programming hand-books [75℄.4.5 ADI a

ura
y and stability for the detailed modelsThe 
ompli
ated di�erential equations that appear in the detailed models arenot well understood, and have not been evaluated in terms of well-posedness oruniqueness. At the outset it is not 
ertain that the ADI solver will be able to solvethe equations and obtain a stable, physi
ally meaningful solution.Inspe
tion of the equations, parti
ularly the forms in Eq. 4.46 and Eq. 4.52,reveals a strong similarity to one dimensional di�erential equations with analyti
 so-lutions. Therefore the di�
ult equations from the non-neutral and Poisson-
onsistentdetailed models are solved analyti
ally in one dimensional limits with 
onstant 
oef-�
ients.As a test of the ADI solver, the di�erential equations are also solved on a domain
onsisting of a single row. The ADI solver performan
e will be evaluated by 
ompar-ing the a

ura
y of those solutions against the exa
t analyti
 solutions. Challenging
onditions are tested to verify that the ADI solver 
an handle di�
ult solutions thatin
lude os
illations or unbounded behavior.4.5.1 One dimensional non-neutral detailed modelThe di�erential equation for potential from the non-neutral model, Eq. 4.46, 
anbe rewritten in the form of Eq. 4.54. In this form the sour
e term is represented by a



85for
ing fun
tion f , and the 
oe�
ient is denoted as α to distinguish it from 
onstantsof integration later. The analyti
 solution is more readily apparent if the equation is
ast in terms of the ele
tri
 �eld as in Eq. 4.55, using the usual ele
trostati
 relation.
∇2φ + α · ∇φ = f (4.54)
∇E + α · E = −f (4.55)In the limit of one dimensional �ow, this simpli�es to the non-homogeneous 
on-stant 
oe�
ient di�erential equation of Eq. 4.56. Note that this equation is essentiallyan initial value problem with the x 
oordinate a
ting as the time variable.
dEx

dx
+ αEx = −f (4.56)The solution has the general form of Eq. 4.57, where the non-homogeneous so-lution is a 
onstant value c2. Assuming an �initial� 
ondition Ex(0) = Ew and a�steady state� 
ondition Ex(x −→ ∞) = E∞ allows the 
onstants of integration tobe determined.

Ex = c1 exp (−αx) + c2 (4.57)
c1 = (Ew − E∞) , c2 = E∞The potential 
an then be found by integrating the ele
tri
 �eld as in Eq. 4.58,sin
e Ex = −dφ

dx
in one dimension.

φ (x) = −
∫

Exdx = −
∫

(Ew − E∞) exp (−αx) + E∞dx (4.58)The integration is straightforward and produ
es the form in Eq. 4.59. An initial
ondition on the potential is φ (0) = φw,whi
h allows the last 
onstant of integrationto be determined.
φ (x) =

1

α
(Ew − E∞) exp (−αx) − E∞x + c3 (4.59)
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Figure 4.2: ADI solutions of the 1D non-neutral model potential equation
c3 = φw − 1

α
(Ew − E∞)Inserting the 
onstant and rearranging produ
es the �nal form of the solution inEq. 4.60.

φ (x) =
1

α
(Ew − E∞) [exp (−αx) − 1] − E∞x + φw (4.60)The magnitude of the 
oe�
ient α determines the overall nature of the solution.The two limiting 
ases are a predominantly linear solution when α ≫ (Ew − E∞), ora predominantly exponential solution when α ≪ 1. For intermediate values of α, thesolution will appear exponential at small values of x but level o� and appear linearat large values of x.The ADI results are 
ompared with exa
t solutions in Fig. 4.2 for the 
onditions

Ew = −2, E∞ = −0.02, and φw = 0 over a range of α values. The e�e
t of the
α 
oe�
ient on the solution is 
learly visible. The ADI solver reprodu
es the exa
tsolutions to within ma
hine pre
ision in every 
ase.



874.5.2 One dimensional Poisson-
onsistent modelThe di�erential equation for number density from the Poisson-
onsistent model,Eq. 4.32, 
an be rewritten with 
onstant 
oe�
ients α and β as Eq. 4.61.
∇2ne + α · ∇ne + βne = 0 (4.61)In the limit of one dimensional �ow, this simpli�es to the homogeneous 
onstant
oe�
ient di�erential equation of Eq. 4.62. Note that this equation has exa
tly thesame form as a damped harmoni
 os
illator problem with the x 
oordinate a
ting asthe time variable.
d2ne

dx2
+ α

dne

dx
+ βne = 0 (4.62)This has an analyti
 solution [76℄ that 
an be underdamped (ζ < 1), 
riti
allydamped (ζ = 1), or overdamped (ζ > 1), depending on the relative magnitudesof the 
oe�
ients α and β.

ne (x) = exp (−ζωx)
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√

n2
e0 + θ2

ud sin
(

ω
√

1 − ζ2x + arctan
(

ne0

θud

))

0 < ζ < 1

ne0 + (dne0 + ωne0)x ζ = 1

1
2
(ne0 − θod) exp

(

−ω
√

ζ2 − 1x
)

+1
2
(ne0 + θod) exp

(

ω
√

ζ2 − 1x
)

ζ > 1 (4.63)
ω =

√

β, ζ =
α

2ω
, θud =

dne0 + ζωne0

ω
√

1 − ζ2
, θod =

dne0 + ζωne0

ω
√

ζ2 − 1The ADI results are 
ompared with exa
t solutions in Fig. 4.3 for the 
onditions
ne0 = 5, dne0 = 3, and ω = 1 over a range of ζ values. The ADI solver performsex
ellently, and reprodu
es the exa
t solutions to within ma
hine pre
ision.



88

x

n
e

0 5 10 15
-6

-4

-2

0

2

4

6

8

10
ζ=0.05 exact
ζ=0.05 ADI
ζ=0.5 exact
ζ=0.5 ADI
ζ=1 exact
ζ=1 ADI
ζ=2 exact
ζ=2 ADI

Figure 4.3: ADI solutions of the 1D Poisson-
onsistent model number density equa-tionIn the Poisson-
onsistent model, the 
oe�
ient α is non-linear. This is beyondthe 
apabilities of the simple analyti
 solution that is available, so the ADI solveris not tested against that 
ase. The 
ases shown are 
ertainly not exhaustive. It ispossible that the ADI solver may be
ome unstable or ina

urate for other untested
onditions. However, the pre
eding results are very promising and indi
ate that theADI solver is 
apable of solving the 
ompli
ated di�erential equations of the detailedmodels.



Chapter VFaraday Probe Simulations
The hybrid �uid PIC model is used to simulate the �ow around an axisymmetri
Faraday probe geometry for a variety of in�ow plasma 
onditions and probe oper-ating 
onditions. An initial study validates the operation of the hybrid �uid PICmodel by 
omparing its results against the planar Bohm sheath solution. Furtherstudies 
hange the in�owing ion distribution, add neutral gas parti
les, or vary theoperational settings of the Faraday probe.The Boltzmann model is used extensively to develop an understanding of the �owover a broad range of 
onditions. The e�e
ts of in�ow plasma properties are exploredby making in
remental 
hanges to the in�ow ion distribution. Over several steps thedistribution is modi�ed from a 
old ion beam to a 
ompli
ated multiple Maxwellianion and neutral distribution that approximates an EP exhaust plume.Probe performan
e is also investigated, using the Boltzmann model in two studiesthat vary the operating 
onditions of the probe. Performan
e is evaluated by 
om-paring the simulated 
olle
ted 
urrent to the freestream 
urrent, and by observingstreamlines of 
urrent upstream of the 
olle
ting surfa
e.The non-neutral detailed model is only used in a validation test, where the im-plementation is shown to be �awed. This model is not used for any additional89



90simulations in this dissertation and is not developed any further, sin
e an alternativedetailed model is available.The Poisson-
onsistent detailed model is used to repeat the studies of the in�owion distribution. Sin
e this model uses a detailed ele
tron momentum equation andin
ludes an ele
tron energy equation, these studies 
an also be used to assess thevalidity of the Boltzmann relation for the ele
trons. Results from these studies areshown to be in ex
ellent agreement with the Boltzmann �uid model results, providedthe in�ow distribution has a su�
iently small fra
tion of ba
kward �owing parti
les.A review of the results from all the studies leads to a few 
omments and re
om-mendations for probe design and operation. The Faraday probe is predi
ted to bereliable and a

urate over all the 
onditions 
onsidered. Standard pra
ti
es for thedesign and use of Faraday probes are deemed to be e�e
tive at obtaining an a

uratemeasurement of the ion 
urrent.5.1 Basis for simulationThese simulations are intended to be representative of a Faraday probe at a pointfar o�-axis in the plume of a Hall thruster. Plasma 
onditions are determined from
omplementary numeri
al simulations and experimental measurements of a thrusterplume, made available by other resear
hers. The Faraday probe is des
ribed in detailin an experimental referen
e, and that geometry is adapted for use here.5.1.1 Hall thruster plume propertiesBusek Co. manufa
tures the BHT-200, a small, low power Hall thruster. Theplume of this devi
e has been investigated via experiments and numeri
al simulations,providing several sour
es [33, 35, 73, 77℄ to help determine the plasma 
onditions.The two primary sour
es are the numeri
al simulations by Boyd and Yim [73℄, and



91the experimental measurements by Ma [77℄.The �ow 
onditions at a point 50 
m downstream and 75° o�-axis are determinedfrom a previous numeri
al simulation by Boyd and Yim [73℄, and are summarized inTable 5.1. The plasma is neutral at that point, so it is assumed that ni = ne and
vi = ve for simpli
ity. The exa
t values are not 
riti
al, and it will be 
onvenient tomodify these 
onditions in order to maintain a 
onstant ion 
urrent density.Table 5.1: Plasma properties 50 
m downstream and 75° o�-axis in the BHT-200plume.[73℄

ni 1.1 × 1014 m−3

vi 2, 381 m
s

Te 1 eV

φ ∼ 1 VFor the reported 
onditions, the Debye length is λD = 0.0709 cm and the Bohmvelo
ity is vB = 855 m
s
, giving a Ma
h number with respe
t to Bohm velo
ity of

M = 2.78. This 
orresponds to a stable Bohm sheath solution. Additionally, allof the freestream ion 
urrent should rea
h the front surfa
e of the probe, sin
e theprobe will be biased to negative potential for all the simulations in this dissertation.5.1.2 Faraday probeThe Faraday probe in Ref. [77℄ is a nude planar probe depi
ted in Fig. 5.1. The
ir
ular 
olle
ting surfa
e has a radius of 0.952cm, and the annular guard ring has anouter radius of 1.272cm. There is a 0.066cm radial gap between the 
olle
ting surfa
eand the guard ring. The gap is smaller than the Debye length for these 
onditions,so the sheath should remain essentially uniform over the entire 
olle
ting surfa
e.
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Figure 5.1: Faraday probe used in experimental BHT-200 measurements [77℄.The 
olle
ting surfa
e and guard ring are held at a �xed bias potential of −5 Vto repel ele
trons. Again, the exa
t value of the bias potential is not important andit 
an be 
hanged for 
onvenien
e. Sin
e the length of the sheath in
reases withthe wall potential, most of the simulations use a small bias potential to redu
e thedomain length and 
omputational time.5.2 Simulation geometry and numeri
al parametersThe 
ylindri
al geometry of the Faraday probe lends itself to an axisymmetri

omputational domain. Using the planar Bohm sheath solution as a guide, thedomain 
an be sized and boundary 
onditions for the �uid and PIC models 
an beformulated. Computational mesh dimensions must be small enough to resolve theDebye length, and the time step must be sele
ted su
h that parti
les do not 
rossmultiple 
ells per iteration.5.2.1 Computational domainFor the 
onditions in Table 5.1 and a maximum wall potential of −15 V, theBohm sheath solution suggests 15λD(1.06 cm) as an estimate of the required domain



93length. The appropriate radial extension beyond the side of the probe body is noteasily determined, and is set at one quarter-radius beyond the outer probe edge.Sin
e the �ow is supersoni
 and nearly 
ollisionless, the pla
ement of the outer edgeof the domain should not greatly a�e
t the properties on the upstream fa
e of theprobe.Experien
e with the detailed models suggests that the maximum 
ell spa
ingshould be at least a fa
tor of 12 smaller than the Debye length. Rounding in favor of
onservative values, the re
tangular 
ells are uniformly sized at 4×10−5 m on a side.The �nal geometry extends 390 
ells (1.560 cm) along the probe axis and 390 
ells
(1.560 cm) radially, with 238 elements (0.952 cm) along the 
olle
ting surfa
e and 80elements (0.320 cm) along the guard ring surfa
e. This geometry is shown in Fig. 5.2for referen
e. Altogether there are 112,350 
ells outside of the probe body. At steadystate, there are approximately 1.5-2 million parti
les in the domain, depending onthe in�ow ion distribution.
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Figure 5.2: Computational domain for Faraday probe simulations.



945.2.2 Time step and global iterationThe simulation time step is sele
ted so that the fastest ions travel less than one
ell length per iteration. Ions that enter at twi
e the thermal speed beyond the driftvelo
ity arrive at the probe with a velo
ity of 6, 945 m
s
. Dividing the 
ell length bythis speed and rounding down sets the time step at 5 × 10−9 s.The simulation is allowed to iterate for 10,000 time steps to rea
h a 
onvergedstate, followed by 20,000 sampled time steps. The total simulation time is 30-35 hours, depending on the spe
i�
 ion in�ow distribution.5.2.3 Boundary 
onditionsThe PIC model and the ele
tron �uid models require boundary 
onditions alongall the edges of the domain and at the surfa
es of the probe. Referring to the labelsin Fig. 5.2, there are six regions of boundary 
onditions.Region 1 is the axisymmetri
 
enterline. Parti
les are automati
ally rotated atthe 
enterline as part of the axisymmetri
 move routine. A zero gradient 
onditionis enfor
ed on the radial 
omponent of all variables in the �uid models, in
luding thestream fun
tion Ψ, plasma potential, ele
tron number density, and ele
tron temper-ature.Region 2 is the upstream inlet for the �ow. Parti
les are introdu
ed at thisboundary with a random position and statisti
ally sampled velo
ity in ea
h 
ell.The number of parti
les introdu
ed per time step is determined from the assignedinlet density and mean velo
ity, adjusted by the parti
le weight in the 
ell. Parti
lesthat 
ross this boundary are removed from the simulation.The ele
tron temperature and gradient of stream fun
tion (equivalent to theele
tron number density �ux) are assigned along the inlet. The plasma potential and



95ele
tron number density are set using Robin or third kind boundary 
onditions. Asan example, Eq. 5.1 sets the plasma potential φ1 at the boundary node based onthe potential at the se
ond node φ2 that simultaneously satis�es both the assignedpotential φ0 and assigned axial gradient dφ
dz

∣

∣

0
at an imaginary node one 
ell length

△z outside of the domain.
φ1 =

3

4
φ0 +

1

4
φ2 +

1

2

dφ

dz

∣

∣

∣

∣

0

△z (5.1)Region 3 is the outer radial inlet. Parti
les are inje
ted along this edge using thesame pro
edure as in Region 2, and parti
les that 
ross this boundary are removedfrom the simulation. A 
onstant gradient 
ondition is enfor
ed on the radial 
ompo-nent of the stream fun
tion, and zero gradient 
onditions are enfor
ed on the radial
omponent of plasma potential, ele
tron number density, and ele
tron temperature.Region 4 is the downstream �ow exit. Parti
les are only removed along this edge.A 
onstant gradient 
ondition is enfor
ed on the stream fun
tion, and zero gradient
onditions are enfor
ed on the axial 
omponent of plasma potential, ele
tron numberdensity, and ele
tron temperature.Region 5 is the body of the probe. Parti
les undergo di�use re�e
tion from thissurfa
e with full thermal a

ommodation, and ion parti
les are neutralized. Thegradient of stream fun
tion is assigned, whi
h is equivalent to setting the ele
tron
urrent �ux to the surfa
e. The plasma potential, ele
tron number density, andele
tron temperature are assigned at the surfa
e.Region 6 is the 
olle
ting surfa
e of the probe. The same boundary 
onditions asin Region 5 are enfor
ed on parti
les and ele
tron �uid variables. When ion parti
lesare neutralized at this surfa
e, the 
olle
ted 
urrent is in
remented by the 
harge ofthe ion parti
le. This gives the simulated 
olle
ted 
urrent, whi
h is averaged over



96the sampling time steps.The boundary 
onditions on ele
tron number density are only required for thePoisson-
onsistent detailed model. Sin
e it is not pra
ti
al to solve the di�erentialequation for ne at the surfa
e, a kineti
 approximation to the number density is usedinstead. Ele
trons are assumed to follow a Maxwellian distribution at the inlet of thedomain. Using a Lagrangian formulation for 
onservation of energy, the distributionfun
tion at the wall fw (v) 
an be related to the inlet distribution fun
tion f (v) bythe velo
ity shift in Eq. 5.2. Sin
e the wall potential φw is negative, a given velo
ityat the wall 
orresponds to a larger velo
ity at the inlet.
fw (v) dv = f

(
√

v2 − 2
e

m
φw

)

dv (5.2)It is assumed that all ele
tron parti
les that rea
h the wall are absorbed, so thedistribution fun
tion is zero for v < 0. Integrating over the distribution fun
tion asin Eq. 5.3 gives the boundary value of ele
tron number density at the probe surfa
e.
ne,w =

∫ ∞

0

fw (v) dv (5.3)This is not an exa
t solution to the di�erential equation for ele
tron numberdensity, but it serves as an a

eptable approximation for the boundary 
ondition.5.3 Hybrid PIC Boltzmann model studiesThe Boltzmann model is used to obtain the results in �ve main studies here.Three studies are designed to explore the �ow �eld by varying the geometry andin�ow ion 
onditions. Two additional studies investigate the performan
e of theFaraday probe for various operating 
onditions.The �rst study is a quasi one dimensional simulation that is used to validate theoperation of the hybrid �uid PIC 
omputational 
ode. The se
ond study simulates



97the same 
onditions on the two dimensional axisymmetri
 probe geometry to identifyany higher dimensional e�e
ts. The third study is an investigation of in�ow iondistribution e�e
ts, 
ondu
ted by in
rementally adding 
omponent distributions tothe in�ow plasma.In the fourth study, the guard ring bias potential is varied relative to the 
olle
tingsurfa
e bias to determine the e�e
tive 
olle
ting area of the probe. The �fth studyis a sweep over a broad range of bias voltage, to 
hara
terize the probe performan
eover a range of bias potentials.5.3.1 Quasi one dimensional studyThe �rst aspe
t of the quasi one dimensional study is to perform a validationof the hybrid PIC �uid 
ode by reprodu
ing the 
onditions of the planar Bohmsheath model. To that end, the 
omputational domain is limited to a 
ylinder thatlies immediately upstream of the 
olle
ting surfa
e, with a new outer radial edge at
r = 0.0952 cm.The boundary 
onditions on the outer radial edge are modi�ed to simulate asymmetry plane as follows. No parti
les are inje
ted, and parti
les that 
ross theboundary are spe
ularly re�e
ted ba
k into the domain. Zero gradient 
onditionsare enfor
ed on the stream fun
tion, plasma potential, ele
tron number density, andele
tron temperature.Sin
e the planar Bohm sheath model assumes a 
old ion beam, the ion tempera-ture at the inlet is set to 300 K. This is mu
h lower than the ele
tron temperature,but still high enough to avoid the 
omputational di�
ulties asso
iated with zero tem-perature. All other plasma properties remain as given in Table 5.1. This 
onditionis referred to as the 
old ion 
ase.



98A radial average is taken of the hybrid �uid PIC model results in order to makeuseful 
omparisons with the Bohm sheath solution. This is a

omplished by averagingthe �rst 100 
ells (0.004 m) from the 
enterline at a �xed axial position. The resultingpro�le is representative of the plasma properties near the 
enterline of the simulatedprobe.The Boltzmann model hybrid �uid PIC results are ex
ellent for the 
old ion 
ase.Contours and pro�les of plasma potential, Figs. 5.3-5.4, ele
tron number density,Figs. 5.5-5.6, and ion number density, Figs. 5.7-5.8, show ex
ellent agreement withthe Bohm sheath solution. The 
ontours of ea
h variable are normal to the axis,indi
ating that quasi one dimensional �ow has been a
hieved. The pro�les of sim-ulated properties are indistinguishable from the Bohm sheath solution pro�les forevery property.This level of agreement indi
ates that the Boltzmann model 
an very a

uratelysimulate the physi
s underlying the formation of an ele
trostati
 sheath. It shouldbe noted that the ele
tron number density is a fun
tion of the plasma potential bythe Boltzmann relation. As su
h, the simulated ele
tron number density is not trulyan independent variable, and will show the same trends as the plasma potential.
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Figure 5.3: Contours of plasma potential for the one dimensional 
old ion 
ase.
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Figure 5.4: Pro�les of plasma potential for the one dimensional 
old ion 
ase.
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Figure 5.5: Contours of ele
tron number density for the one dimensional 
old ion
ase.
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Figure 5.6: Pro�les of ele
tron number density for the one dimensional 
old ion 
ase.
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Figure 5.7: Contours of ion number density for the one dimensional 
old ion 
ase.
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Figure 5.8: Pro�les of ion number density for the one dimensional 
old ion 
ase.The se
ond aspe
t of the quasi one dimensional study is to isolate the e�e
t ofion temperature on the properties in the sheath. The hot ion 
ase uses an inlet ion



102temperature of 1 eV, along with the other 
onditions in Table 5.1. In this 
ase theion temperature is large enough that there is a signi�
ant spread in velo
ities aboutthe mean velo
ity.The simulations of the hot ion 
ase maintain quasi one dimensional �ow in thisgeometry, so the 
ontours are omitted. The pro�les of plasma potential, Fig. 5.9, andele
tron number density, Fig. 5.10, still show very good agreement with the Bohmsheath solution pro�les. However, the ion number density, Fig. 5.11, is about 5%lower than expe
ted through most of the sheath.
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Figure 5.9: Pro�les of plasma potential for the one dimensional hot ion 
ase.
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Figure 5.10: Pro�les of ele
tron number density for the one dimensional hot ion 
ase.
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Figure 5.11: Pro�les of ion number density for the one dimensional hot ion 
ase.This di�eren
e 
an be explained by the presen
e of low speed ions in the distribu-tion for the hot ion 
ase. A given di�eren
e in ele
trostati
 potential leads to a larger



104in
rease of velo
ity for slow parti
les than for fast parti
les. Sin
e the ion numberdensity �ux is 
onstant, the density de
reases as the mean velo
ity in
reases. Themean velo
ity will in
rease faster for a distribution with low speed ions than for adistribution of uniform speed ions, whi
h results in a lower density at a 
orrespondingplasma potential.5.3.2 Two dimensional studyThe next study using the Boltzmann model is 
ondu
ted on the axisymmetri
probe geometry. For the sake of easy 
omparison with the quasi one dimensionalresults, the guard ring is eliminated so that the outer diameter of the probe is at theradius of the 
olle
ting surfa
e. The 
onditions of the 
old ion 
ase are simulated toreprodu
e the planar Bohm sheath 
onditions.Contours and pro�les of plasma potential, Figs. 5.12-5.13, ele
tron number den-sity, Figs. 5.14-5.15, and ion number density, Figs. 5.16-5.17, show ex
ellent agree-ment with the Bohm sheath solution near the 
enterline. Edge e�e
ts are visible asstrong 
urvature in the 
ontours near the front 
orner of the probe. However, thee�e
ts are only signi�
ant for ∼ 0.0015 m or 2 λD from the outer edge of the probe.
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Figure 5.12: Contours of plasma potential for the 
old ion 
ase.
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Figure 5.13: Pro�les of plasma potential near the 
enterline for the 
old ion 
ase.
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Figure 5.14: Contours of ele
tron number density for the two dimensional 
old ion
ase.
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Figure 5.15: Pro�les of ele
tron number density near the 
enterline for the 
old ion
ase.
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Figure 5.16: Contours of ion number density for the two dimensional 
old ion 
ase.
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Figure 5.17: Pro�les of ion number density near the 
enterline for the 
old ion 
ase.The hot ion 
ase shows very similar features on the axisymmetri
 probe geometry.The 
ontours are visually indistinguishable from those of the 
old ion 
ase, so they



108are not shown here. The pro�les of plasma potential, Fig. 5.18, ele
tron numberdensity, Fig. 5.19, and ion number density, Fig. 5.20, are marginally 
loser to theBohm sheath solution than the hot ion 
ase in the quasi one dimensional model.The slight improvement is likely due to the weak fo
using e�e
t of the 
urvedpotential �eld. The low speed ions are still a

elerated, but part of the a

elerationis radial and does not a�e
t the �ux. As a 
onsequen
e the ion number density staysslightly higher and attains better agreement with the Bohm sheath pro�le.
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Figure 5.18: Pro�les of plasma potential near the 
enterline for the hot ion 
ase.
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Figure 5.19: Pro�les of ele
tron number density near the 
enterline for the hot ion
ase.
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Figure 5.20: Pro�les of ion number density near the 
enterline for the hot ion 
ase.



1105.3.3 Multiple 
omponent studiesThe third study using the Boltzmann model builds a 
ompli
ated in�ow iondistribution by adding together several Maxwellian 
omponents. The intera
tionof the di�erent 
omponent populations is evaluated by 
omparing the ion numberdensity pro�le for one 
omponent simulated separately against the pro�le for thesame 
omponent simulated with one or more additional 
omponents.This is a

omplished in two stages, �rst a 
ombination of high speed, high tem-perature beam ions and low speed, low temperature 
harge ex
hange (CEX) ions issimulated. Se
ond, a 
ombination of beam, CEX, and double 
harge ions is simu-lated. The plasma 
onditions are reported in Table 5.2 for the beam-CEX 
ase, andTable 5.3 for the beam-CEX-double 
omposite 
ase. In both of these 
ases the totalfreestream 
urrent density is held 
onstant by adjusting the density of the 
omponentpopulations.The number density, drift velo
ity, and temperature for the 
omponent distri-butions are sele
ted in keeping with the assumption that the probe is pla
ed faro�-axis in a Hall thruster plume. For the sake of 
omparison with other results,the ion 
urrent density is held 
onstant at the same value as in the single 
ompo-nent 
ases. Experiments that 
ompare 
ollimated and un
ollimated Faraday probemeasurements suggest that CEX ions a

ount for the majority of the 
urrent at highangles from the 
enterline [41℄. Using a similar ratio, the CEX 
omponent is assumedto 
arry 75% of the ion 
urrent density, and the beam 
omponent 
arries the remain-der. The beam velo
ity is kept at the same value as in the previous single 
omponent
ases. The CEX velo
ity is determined by assuming a slightly supersoni
 
ondition,
MCEX = 1.20. The number density of the 
omponents 
an then be 
al
ulated fromthe 
omponent 
urrent density and velo
ity.



111Table 5.2: Plasma properties for the beam-CEX 
omponent 
ase.
ni, 1014 m−3 vi,

m
s

Ti, KBeam 0.480 2,381 11,600CEX 1.439 1,026 300Ele
trons 1.919 1,365 11,600For the beam-CEX-double 
omposite 
ase, the double 
harge ions are assumedto 
arry 10% of the total 
urrent. Experimental measurements report a 
omparablefra
tion in the far �eld, for low power thrusters [78℄ and high power thrusters [79,80℄. In this 
ase the double 
harge 
omponent is assumed to have a drift velo
ityequal to the average speed of the beam and CEX populations. Assuming the sametotal ion 
urrent density as before, these assumptions 
an be used to determine aunique velo
ity and number density for the double 
harge ions. The double 
hargetemperature is not well de�ned, sin
e the parti
les are assumed to be drawn fromboth the beam and CEX populations. The double 
harge temperature is thereforeset at 11,600 K to represent the broad range in velo
ity.Table 5.3: Plasma properties for the beam-CEX-double 
omposite 
ase.
ni, 1014 m−3 vi,

m
s

Ti, KBeam 0.432 2,381 11,600CEX 1.295 1,026 300Double 0.096 1,365 11,600Ele
trons 1.919 1,365 11,600Note that the assumptions for the CEX and double 
omponents are not entirelyrepresentative of an EP plume. Sin
e 
harge ex
hange ions are formed throughoutthe plume, there is likely to be a broad velo
ity distribution that would be betterrepresented by a high temperature. Double 
harge ions are formed in the thruster



112or by 
ollisions in the near �eld, and a

eleration by the ele
trostati
 �elds wouldprodu
e a �nal drift velo
ity that is higher than the single 
harge ions a
hieve. Avariation of the 
omposite distribution that takes these e�e
ts into 
onsideration isdes
ribed and used in Se
. 5.5.2. However, these details are not 
ru
ial for evaluatingthe intera
tion between two or more 
omponents.For these simulations, the most useful 
omparisons 
an be made from the pro�lesof ion number density. The plasma potential and ele
tron number density maintainthe same level of agreement with the Bohm sheath solution that has been demon-strated previously.For the beam-CEX 
ase, Figs. 5.21 and 5.22 are respe
tively the pro�les of beamand CEX ion number density when simulated as separate plasmas. Noti
e that theseparate 
omponents demonstrate the behavior dis
ussed previously: the 
old CEXions are in very good agreement with the Bohm sheath solution, and the hot beamions are at about 5% lower density throughout the sheath.
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Figure 5.21: Pro�les of ion number density near the 
enterline for the beam 
ompo-nent 
ase.
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Figure 5.22: Pro�les of ion number density near the 
enterline for the CEX 
ompo-nent 
ase.Figure 5.23 shows the pro�les of beam and CEX ion number densities when sim-



114ulated as two 
omponents of the same plasma. A third pro�le labeled �All ions� givesthe pro�le of 
harge density in the sheath, and is 
ompared against the Bohm sheathsolution 
al
ulated from the ele
tron properties. Both of the 
omponent spe
iesmaintain essentially independent sheaths, while the total 
harge density appears tofollow the Bohm sheath solution 
al
ulated from the total 
harge density.
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Figure 5.23: Pro�les of total and 
omponent ion number density near the 
enterlinefor the beam-CEX 
ase.Contours of per
ent di�eren
e in density between the separate simulations andthe 
ombined beam-CEX simulation in Figs. 5.24-5.25 show that the individual 
om-ponent densities only intera
t in a region just upstream of the probe surfa
e. This is
onsistent with the 
olle
tive behavior of the plasma. Sin
e the �ow is 
ollisionless,individual parti
les only intera
t with the 
olle
tive ele
trostati
 �eld. The presen
eof a se
ond 
omponent population in
reases the 
harge density of the plasma andde
reases the Debye length, whi
h shields the bulk plasma more e�e
tively.
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Figure 5.24: Contours of per
ent di�eren
e in beam ion number density for the beam-CEX 
ase.

Figure 5.25: Contours of per
ent di�eren
e in CEX ion number density for the beam-CEX 
ase.Individual parti
les do not feel the ele
trostati
 for
es until 
loser to the probe.



116However, sin
e the boundary 
onditions enfor
e a �xed potential on the probe walls,the parti
les must fall through the same total potential drop. As a result, the parti
lesa
hieve the same velo
ity at the surfa
e of the probe as if there were no other ion
omponents shielding them from the potential. Therefore the 
omponent ion numberdensities approa
h the expe
ted values from their respe
tive Bohm sheath solutionsat the surfa
e of the probe.The same trends are observed when adding a double 
omponent. The separatesimulation of the double 
omponent produ
es the pro�le in Fig. 5.26, and the 
ompos-ite simulation produ
es the pro�les in Fig. 5.27. The simulated total 
harge densityvery a

urately reprodu
es the Bohm sheath solution 
al
ulated from the ele
tronproperties.
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Figure 5.26: Pro�les of ion number density near the 
enterline for the double 
om-ponent 
ase.
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Figure 5.27: Pro�les of total and 
omponent ion number density near the 
enterlinefor the beam-CEX-double 
omposite 
ase.As 
ould be expe
ted from the beam-CEX results, adding a double 
harge 
ompo-nent does not signi�
antly a�e
t the properties of the other 
omponent distributionsat the surfa
e of the probe.5.3.4 Guard ring bias studyIn most experimental setups, the guard ring is biased to the same potential asthe 
olle
ting surfa
e. This is intended to produ
e a uniform sheath over the probesurfa
e, so that there is little or no fo
using of 
urrent density onto the 
olle
tingsurfa
e. Then the area of the 
olle
ting surfa
e is equal to the area of the 
urrent�ux tube in the plasma, and the 
urrent density 
an be 
al
ulated by dividing the
olle
ted 
urrent by the 
olle
ting area.This study uses the Boltzmann model to investigate how the 
olle
ted 
urrent andstreamlines of 
urrent are a�e
ted if the guard ring were intentionally or a

identally



118biased to a di�erent potential than the 
olle
ting surfa
e. The 
olle
ting surfa
e isbiased to −5 V in this study, and two 
ases are presented: a �rst 
ase where theguard ring bias is set to −10 V, and a se
ond 
ase where the guard ring bias is setset to 0 V. Additional 
ases are not presented here, sin
e they do not demonstrateany new features.The beam-CEX distribution is used in this study so that any e�e
ts 
ould beanalyzed for relative trends on 
omponents with di�erent average speeds and tem-peratures. For example, the CEX ions generally have a lower axial speed than thebeam ions, and might be de�e
ted near the edge of the 
olle
ting area while the beamions are una�e
ted. However, no signi�
ant di�eren
es between the two populationswere identi�ed.Contours of plasma potential and 
harge density are shown in Figs. 5.28 and 5.29for the −10 V guard ring bias, and in Figs. 5.30 and 5.31 for the 0 V ring bias. Inthis 
ase it is more useful to observe the streamlines of 
urrent in the �ow.

Figure 5.28: Contours of plasma potential for the guard ring bias of -10 V.
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Figure 5.29: Contours of 
harge density for the guard ring bias of -10 V.

Figure 5.30: Contours of plasma potential for the guard ring bias of 0 V.
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Figure 5.31: Contours of 
harge density for the guard ring bias of 0 V.Streamlines are shown for the −10 V guard ring bias 
ase in Fig. 5.32, for theuniform−5V bias 
ase in Fig. 5.33, and for the 0V guard ring bias 
ase in Fig. 5.34. Inea
h �gure there is a streamline originating at a radius of 0.00952m that 
orrespondsto the radius of the 
olle
ting surfa
e. Ideally, that streamline should 
onne
t to thenot
h in the probe that separates the 
olle
ting surfa
e from the guard ring. Thebest alignment o

urs for the uniform −5 V bias 
ase. However, the e�e
t of a ±5 Vdi�eren
e between the guard ring and the 
olle
ting area does not drasti
ally alterthe streamlines.
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Figure 5.32: Streamlines of 
urrent for the guard ring bias of -10 V.
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Figure 5.33: Streamlines of 
urrent for the uniform bias of -5 V.
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Figure 5.34: Streamlines of 
urrent for the guard ring bias of 0 V.The simulated 
olle
ted ion 
urrent for ea
h of these guard ring 
ases is shown inFig. 5.35 and reported in Table 5.4. The simulated 
olle
ted ion 
urrent is 
omparedwith the theoreti
al ion 
urrent based on the 
urrent density in the freestream.Although there is a small error in the uniform bias 
ase, it is not large enoughto justify 
hanging the guard ring bias.
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Figure 5.35: Simulated 
olle
ted 
urrent as a fun
tion of guard ring bias.Table 5.4: Simulated 
olle
ted 
urrent for the guard ring relative bias.
φw, V Ji,Sim, µA Ji,Theory, µA Error, µA Error, %0 13.383 11.948 1.435 12.01-3 12.421 11.948 0.473 3.96-5 12.004 11.948 0.056 0.47-7 11.638 11.948 -0.310 -2.60-10 11.121 11.948 -0.827 -6.925.3.5 Bias voltage sweep studyThe �nal study with the Boltzmann �uid model is a sweep of the probe biasvoltage from 0 V to −10 V, with the entire probe biased to a uniform potential.This study is intended to assess the a

ura
y of the Faraday probe over the range of
urrent 
olle
ting 
onditions. At a large negative potential, the probe only 
olle
tsan ion 
urrent sin
e nearly all ele
trons are repelled. At zero potential, the probe
olle
ts approximately equal ion and ele
tron 
urrents.



124The beam-CEX distribution is used in this study for 
onsisten
y with the guardring bias study. Sin
e the entire probe body is biased uniformly, the di�erent 
om-ponents are not expe
ted to show di�erent behaviors.Properties in the �ow �elds are not important in this study, ex
ept to note the
onsistent level of agreement with the appli
able Bohm sheath solution. The simu-lated 
olle
ted 
urrents are shown graphi
ally in Fig. 5.36, and reported in Table 5.5.The theoreti
al total 
olle
ted 
urrent is 
al
ulated at ea
h probe bias setting fromthe freestream ion 
urrent and the fra
tion of ele
tron 
urrent with su�
ient velo
ityto rea
h the probe.
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Figure 5.36: Simulated 
olle
ted 
urrent over a range of probe bias.



125Table 5.5: Simulated 
olle
ted 
urrent for the probe bias sweep.
φw, V JTot,Sim, µA JTot,Theory, µA Error, µA Error, %0 -0.007 0.020 -0.027 135.-1 8.961 8.957 0.003 0.04-2 10.940 10.930 0.011 0.10-3 11.614 11.590 0.024 0.21-4 11.857 11.820 0.037 0.32-5 11.958 11.902 0.056 0.47-6 12.011 11.931 0.080 0.67-7 12.043 11.942 0.101 0.85-8 12.072 11.946 0.126 1.05-9 12.102 11.947 0.155 1.30-10 12.128 11.948 0.180 1.51From these results it is expe
ted that the Faraday probe a

urately measures theundisturbed freestream 
urrent. The apparently large error at 0 V is due to takingthe di�eren
e between two small values of total 
urrent. At all other bias potentialsthe error in 
olle
ted 
urrent is less than 2%.There is a 
orrelation between probe bias voltage and error in the 
olle
ted 
ur-rent, whi
h 
orresponds to sheath expansion. Re
all that the plasma potential 
on-tours are 
urved near the outer edge of the probe, indi
ating a radial 
omponent ofthe ele
tri
 �eld that tends to fo
us ions toward the 
enterline of the probe. Thesheath extends farther from the probe for a larger potential drop, so the ele
tri
 �eldfo
uses a larger volume toward the 
enterline. In this 
ase the ions have a large axialvelo
ity, so the fo
using e�e
t is small.



1265.3.6 Comparison with experimentThe experiment in Ref. [77℄ provides one experimental datum for 
omparison. Inthat experiment the Faraday probe was biased uniformly to -5 V. The experimentallymeasured 
urrent at the point 50 
m downstream and 75° o�-axis in the BHT-200Hall thruster plume is reported as 12.3µA. The simulated measurement for the -5 V
ase in Table 5.5 is slightly lower, at 11.958µA. This is deemed very good agreement,with less than 3% di�eren
e between the values.The numeri
al parameters of the simulations in the pre
eding se
tions were 
on-stru
ted to simulate the plasma �ow at the same point in the plume for the sameprobe operating 
ondition as in the experiment. However, re
all from Se
. 5.1.1 thatthe initial estimate of the plasma 
onditions was taken from a previous numeri
alsimulation of the BHT-200 plume. The good agreement between the simulated 
ol-le
ted 
urrent and the experimental 
olle
ted 
urrent is a further 
on�rmation thatthe parti
ular details of the ion distribution do not have a signi�
ant e�e
t on theprobe measurement.5.4 Hybrid PIC Non-neutral detailed model studyThe non-neutral detailed model is only used to simulate the 
old ion 
ase, whi
h isintended to serve as a validation 
ase by approximating the 
onditions of the planarBohm sheath model. This 
ase reveals a serious problem with the implementation,so no additional studies are 
ondu
ted using this model.Re
all that the �ow 
onditions for the 
old ion 
ase are intended to reprodu
e theassumptions of the planar Bohm sheath model. The ion temperature is Ti = 300 K,with the number density, velo
ity, and ele
tron properties des
ribed in Se
. 5.1.1 andsummarized in Table 5.1.



127The 
ontours and pro�le of plasma potential in Figs. 5.37 and 5.38 reveal asigni�
ant problem with the non-neutral model: the new results are not remotelysimilar to the Bohm sheath solution. The plasma potential pro�le in the sheathappears paraboli
, with a large gradient at the inlet edge of the domain.

Figure 5.37: Contours of plasma potential for the 
old ion 
ase.
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Figure 5.38: Pro�les of plasma potential near the 
enterline for the 
old ion 
ase.Contours of ele
tron number density in Fig. 5.39 and ion number density inFig. 5.40 appear almost identi
al. The ele
tron number density 
ontours show sta-tisti
al s
atter that is an artifa
t of the 
al
ulation that uses the instantaneous ionnumber density from the PIC module. However, no sampling is performed on theele
tron number density.
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Figure 5.39: Contours of ele
tron number density for the 
old ion 
ase.

Figure 5.40: Contours of ion number density for the 
old ion 
ase.Ex
ept for the statisti
al s
atter, the pro�les of ele
tron number density inFig. 5.41 and ion number density in Fig. 5.42 also appear identi
al. This indi
ates



130a neutral plasma up to the probe surfa
e, whi
h is not 
onsistent with the expe
tedphysi
al pro
esses in the sheath.
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Figure 5.41: Pro�les of ele
tron number density near the 
enterline for the 
old ion
ase.
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Figure 5.42: Pro�les of ion number density near the 
enterline for the 
old ion 
ase.Neither the plasma potential nor the number density results from the simulationare 
onsistent with the expe
ted features of an ele
trostati
 sheath. The ele
tri
�eld is expe
ted to vanish in the bulk plasma. That would 
orrespond to approxi-mately zero gradient in plasma potential at the inlet, rather than the large value seenin the results. The plasma is expe
ted to be
ome non-neutral where the negativeprobe potential repels ele
trons and a

elerates ions, rather than remaining neutralthroughout the sheath as in the results.The neutral plasma result leads to an understanding of how this model fails. Thesimulation is initialized with uniform ion and ele
tron number densities and uniformplasma potential equal to the inlet values. The initial value of ∇2φ is thereforezero throughout the domain. Ele
tri
 �elds are 
al
ulated and the ion parti
lesare a

elerated and moved, giving new values of ion number density. The ele
tronnumber density is then 
al
ulated from the existing plasma potential and new ion



132number density a

ording to the Poisson equation form in Eq. 4.31 of Chapter IV.Sin
e the value of ∇2φ is zero, this 
al
ulation is equivalent to assuming neutrality.The di�erential equation for plasma potential is solved next, but the sour
e term iszero sin
e the ion and ele
tron densities are equal. Over many iterations the plasmapotential evolves to a

ommodate the boundary 
onditions, but the plasma remainsneutral throughout the domain. This set of initial 
onditions together with thisiteration pro
edure 
an only lead to a neutral plasma result.Although it may be possible to rearrange the iteration steps to obtain a non-neutral result, this model is not developed any further in this dissertation. ThePoisson-
onsistent model is available as an alternative, and su

essful, detailed model.Additionally, the non-neutral detailed model is signi�
antly more time intensive thanthe Poisson-
onsistent model due to the larger number of ion parti
les required tolimit statisti
al s
atter and maintain stable ele
tron number density 
al
ulations.5.5 Hybrid PIC Poisson-
onsistent detailed model studiesThe Poisson-
onsistent detailed model is used in two main studies that parallelthe Boltzmann model studies of the plasma �ow �eld. The �rst study uses thePoisson-
onsistent model to simulate the 
old ion 
ase for 
omparison with the Bohmsheath solution. The se
ond study uses the Poisson-
onsistent model to simulate the
omposite multiple ion 
omponent 
ase, and identi�es a possible limitation of themodel.5.5.1 Bohm sheath validation 
aseOn
e again, the �ow 
onditions for the 
old ion 
ase approximate the assumptionsmade in the planar Bohm sheath model. The ion temperature is Ti = 300 K. Theele
tron properties and the ion number density and velo
ity are des
ribed in Se
. 5.1.1



133and summarized in Table 5.1.The 
ontours of plasma potential in Fig. 5.43 show a nearly uniform sheath overthe entire 
olle
ting surfa
e, with edge e�e
ts limited to the outermost 0.002m (3 λD)of the probe surfa
e. The pro�le of plasma potential in Fig. 5.44 is in ex
ellentagreement with the Bohm sheath solution.

Figure 5.43: Contours of plasma potential for the 
old ion 
ase.
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Figure 5.44: Pro�les of plasma potential near the 
enterline for the 
old ion 
ase.The 
ontours of ele
tron number density in Fig. 5.45 are solved from the di�er-ential equation in Eq. 4.32 of Chapter IV. Some statisti
al s
atter is evident in the
ontours, and is expe
ted sin
e the ele
tron number density is 
oupled to the ionnumber density by way of the ele
trostati
 Poisson equation.Although the di�erential equation is signi�
antly more 
ompli
ated than theBoltzmann relation, the ele
tron number density pro�le in Fig. 5.46 still shows ex
el-lent agreement with the Bohm sheath solution. This indi
ates that the Boltzmannrelation is an appropriate assumption for these 
onditions.
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Figure 5.45: Contours of ele
tron number density for the 
old ion 
ase.
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Figure 5.46: Pro�les of ele
tron number density near the 
enterline for the 
old ion
ase.The 
ontours and pro�le of ion number density in Figs. 5.47 and 5.48 are likewise



136in ex
ellent agreement with the Bohm sheath solution.

Figure 5.47: Contours of ion number density for the 
old ion 
ase.
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Figure 5.48: Pro�les of ion number density near the 
enterline for the 
old ion 
ase.The Poisson-
onsistent model very a

urately reprodu
es the Bohm sheath solu-



137tion for the 
old ion 
ase, whi
h veri�es the basi
 formulation and implementationof the model. The boundary 
onditions for ele
tron number density also appear towork well. The ADI solver shows no di�
ulties with the di�erential equation forele
tron number density, despite 
on
erns about its 
omplexity and non-linearity.5.5.2 Multiple 
omponent plasma studiesIntermediate studies of the hot ion 
ase and the beam-CEX 
ase are omitted forbrevity, sin
e the Poisson-
onsistent model yields 
onsistently good agreement withthe Bohm sheath solutions for those 
ases. A modi�ed 
omposite beam-CEX-doubledistribution 
ase is more interesting, sin
e it 
an be used to show a limitation in thepredi
tive 
apabilities of the Bohm sheath model.The in�ow ion distribution here is a variation of the original 
omposite 
ase de-s
ribed in Se
. 5.3.3, referred to as the hot 
omposite 
ase. The beam 
omponentis un
hanged. The density and drift velo
ity of the CEX 
omponent remains un-
hanged, but the temperature is raised to 11,600 K. Charge ex
hange ions are bornin 
ollisions with 
old neutral gas that di�used out of the thruster. The 
harge ex-
hange 
ollisions 
an take pla
e anywhere from the exit plane of the thruster to thesurfa
e of the probe, so a broad distribution in parti
le velo
ity develops dependingon the relative potential drop from the point of formation to the probe. The highCEX temperature is intended to better represent the spread in velo
ities.The properties of the double 
harge 
omponent are 
al
ulated by assuming that10% of the freestream 
urrent density is 
arried by the double 
harge parti
les. Theparti
les are assumed to be formed in the same lo
ations and the same ratio asthe beam and CEX 
omponents, and the ele
trostati
 a

eleration produ
es velo
itythat is larger by a fa
tor of √2 due to the double 
harge. The velo
ity for the



138double 
harge 
omponent is then √
2 times the mean velo
ity of the beam and CEX
omponents. The double 
omponent number density is then 
al
ulated from theknown 
urrent density and velo
ity.The 
onditions for the hot 
omposite 
ase are summarized in Table 5.3. Sin
ethe hot 
omposite 
ase demonstrates unexpe
ted behavior, a 
old 
omposite 
asewill also be simulated for 
omparison. The only di�eren
e between the 
ases is thatthe CEX 
omponent temperature is 300 K for the 
old 
omposite 
ase. All otherproperties for the in�ow distributions remain un
hanged from the values in the table.Table 5.6: Plasma properties for the hot 
omposite 
ase.

ni, 1014 m−3 vi,
m
s

Ti, KBeam 0.432 2,381 11,600CEX 1.295 1,026 11,600Double 0.068 1,930 11,600Ele
trons 1.863 1,406 11,600Simulations using the Poisson-
onsistent model produ
e 
ontours of the hot 
om-posite and 
old 
omposite 
ases that appear very similar to one another and toprevious results. It is therefore most e�e
tive to 
ompare the pro�les of plasmaproperties in the sheath.The pro�le of plasma potential for the hot 
omposite 
ase in Fig. 5.49 is seento be 
onsistently about 0.1 V lower than the Bohm sheath solution through mu
hof the sheath. This is a mu
h larger departure than expe
ted from the Poisson-
onsistent model. In 
ontrast, the plasma potential pro�le for the 
old 
omposite
ase in Fig. 5.50 is in ex
ellent agreement with the Bohm sheath pro�le.
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Figure 5.49: Pro�les of plasma potential near the 
enterline for the hot 
omposite
ase.
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Figure 5.50: Pro�les of plasma potential near the 
enterline for the 
old 
omposite
ase.The ele
tron number density pro�le for the hot 
omposite 
ase also shows a



140signi�
ant di�eren
e from the Bohm sheath solution in Fig. 5.51. However, thesame pro�le for the 
old 
omposite 
ase is in good agreement with the Bohm sheathsolution in Fig. 5.52.
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Figure 5.51: Pro�les of ele
tron number density near the 
enterline for the hot 
om-posite 
ase.
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Figure 5.52: Pro�les of ele
tron number density near the 
enterline for the 
old 
om-posite 
ase.Comparing the pro�les of ion number density from the hot 
omposite 
ase,Fig. 5.53, with the 
old 
omposite 
ase, Fig. 5.54, begins to explain the di�eren
ebetween the two 
ases. The CEX 
omponent of the hot 
omposite shows a signi�
antdeviation from the Bohm sheath solution at the inlet and throughout the sheath. In
ontrast, the 
old 
omposite CEX 
omponent is in very good agreement with theBohm sheath solution at all points. The beam and double 
omponents appear es-sentially the same for both 
ases, indi
ating that the di�
ulty in the hot 
omposite
ase lies with the CEX 
omponent.
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Figure 5.53: Pro�les of total and 
omponent ion number density near the 
enterlinefor the hot 
omposite 
ase.
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Figure 5.54: Pro�les of total and 
omponent ion number density near the 
enterlinefor the 
old 
omposite 
ase.



143The normalized distribution fun
tions for the hot 
omposite and 
old 
omposite
ases are shown in Fig. 5.55. A feature that stands out is that nearly 11.5% of thehot 
omposite CEX distribution is ba
k�ow, i.e., vi < 0. For 
omparison, just 0.27%of the beam 
omponent distribution is ba
k�ow, and 1.2% of the double 
ompo-nent distribution is ba
k�ow. The 
old CEX 
omponent distribution has negligibleba
k�ow.
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Figure 5.55: Normalized distribution fun
tions for the hot 
omposite and 
old 
om-posite 
ases.The Bohm sheath solution assumes 
old ions with a uniform positive velo
ity.However, a signi�
ant portion of the hot 
omposite CEX distribution is ba
k�ow,whi
h explains why the simulated density does not mat
h the predi
ted numberdensity far from the probe. An estimate of the density for just the forward �owingions in the hot 
omposite CEX 
omponent is 88.5% of the freestream density, or
1.15 × 1014, m−3. This is mu
h 
loser to the simulated value of hot 
omposite CEXdensity far from the probe in Fig. 5.53. The Bohm sheath solution 
al
ulated from



144freestream 
onditions is not a reliable predi
tor for the sheath stru
ture or 
olle
ted
urrent when a signi�
ant ba
k�ow 
omponent is in
luded. This limitation is looselyrelated to the Bohm 
riterion.The PIC model used in the Poisson-
onsistent simulations inje
ts parti
les intothe domain with velo
ities 
hosen statisti
ally from the freestream distribution.Therefore some of the CEX 
omponent parti
les introdu
ed along the outer radialedge of the domain are likely to be ba
k�owing parti
les. There are not enoughof those parti
les to 
ompletely replenish the ba
k�owing distribution everywhereupstream of the probe, so the simulation partly resembles a geometri
 shadowingsheath that rea
hes upstream from the probe. At present the PIC model only in-je
ts parti
les into the domain with positive velo
ity from the two inlet edges at theupstream and outer radial edges of the domain. This 
ould be improved by alsoinje
ting ba
k�ow parti
les from the downstream edge of the 
omputational domain,along region 4 in Fig. 5.2.The Poisson-
onsistent model simulations are in very good agreement with theBohm sheath solution, provided there is not a signi�
ant fra
tion of ba
k�ow. Byin
luding ba
k�owing parti
les, the Poisson-
onsistent model o�ers the possibilityto simulate plasma sheaths for 
onditions where the Bohm sheath 
annot obtain astable solution, su
h as in low Ma
h number �ows or in stationary plasmas.5.6 Con
lusions and impli
ations for probe designThe results in this 
hapter lead to several 
on
lusions about plasma behavior ina probe sheath, and a few design and operational guidelines for Faraday probes.The planar Bohm sheath solution is found to be an ex
ellent predi
tor for plasmaproperties near the 
enterline in the sheath. A high temperature Maxwellian ion



145distribution alters the ion number density in the sheath, lowering it by a few per
entfrom the Bohm sheath pro�le. A plasma 
omposed of one or more Maxwellian ion
omponents forms a sheath that is more 
ompa
t than any individual 
omponent,sin
e ea
h 
omponent 
ontributes to shielding the plasma from the probe potential.The Bohm sheath solution 
al
ulated from total 
harge density and mean velo
ityat the inlet is an ex
ellent predi
tor for plasma potential and total 
harge density inthe sheath of a 
omposite distribution. Additionally, the Bohm sheath solutions fornumber density 
al
ulated using the overall plasma potential remain good predi
torsfor ea
h 
omponent in the sheath of a 
omposite distribution.If the plasma 
onditions in
lude a signi�
ant reverse �ow 
omponent, the Bohmsheath solution is not a reliable predi
tor. This limitation is essentially a restatementof the Bohm 
riterion. A signi�
ant reverse �ow 
omponent sets up a geometri
shadowing situation, whi
h 
annot be handled with the planar Bohm sheath model.The hybrid �uid PIC models may still be 
apable of a

urate predi
tion of the sheath,provided that ion parti
les are inje
ted with forward and ba
kward velo
ities fromappropriate inlets.The two dimensional edge e�e
ts of the probe are limited to an annular regionnear the outer edge of the probe. In the studies reported here, the e�e
ts werelimited to about 3 λD from the edge of the probe. A Faraday probe should thereforebe designed with a guard ring that is at least 3λD wide, as 
al
ulated for the largestanti
ipated Debye length. The separation between the 
olle
ting area and the guardring should be minimized to maintain a uniform sheath over the entire probe surfa
e.The guard ring should be biased to the same potential as the 
olle
ting surfa
e.This 
on�guration 
an reliably measure the freestream 
urrent with less than 2% er-ror from 0V to −10V bias potential for the plasma 
onditions 
onsidered. However,



146sheath growth o

urs as the potential bias is made more negative, and two dimen-sional fo
using e�e
ts in
rease the 
olle
ted ion 
urrent. The error in the 
urrentdensity measurement due to sheath growth is about 0.25% per Volt for the probeand plasma 
onditions des
ribed.



Chapter VIMultigrid Methods
Simulations using the hybrid �uid PIC model take 
onsiderable time to 
omplete,from 25 hours for the quasi one dimensional 
ases to 35 hours for the multiple 
om-ponent 
ases des
ribed in Chapter V. The 
omputational domain needed to resolvean ele
trostati
 sheath is two to three times larger for a wake surfa
e than for a ramsurfa
e. The asso
iated 
omputational time requirement s
ales a

ordingly, mak-ing it impra
ti
al to attempt simulations of a reversed Faraday probe without �rstimproving the speed of the 
omputational 
ode.The 
omputational time of the hybrid �uid PIC 
ode is evaluated in this 
hapter.As part of that evaluation, routines that operate on the parti
les are identi�ed asmajor 
ontributors to the overall time. A multigrid method is introdu
ed that allowsa 
oarser grid to be used for the PIC model in order to redu
e the total parti
le 
ountand speed up the 
ode. The multigrid version of the hybrid �uid PIC 
ode is found tobe substantially faster than the single grid version while obtaining the same pre
isionand a

ura
y.

147



1486.1 Time pro�lingA time pro�le of the hybrid �uid PIC 
omputational 
ode is performed usingbuilt-in 
ompiler options and running the 
ode for 15,000 iterations. The resultsare reported in Table 6.1. Routines a

elerate, move, 
ollide, weight_to_grid, andsample 
arry out the steps of the PIC model for the simulated parti
les. Routinese_
ontinuity, e_momentum, e_energy, and e_poisson set up the 
oe�
ient matri
esand 
ondu
t the ADI iteration of the dis
rete di�erential equations in the ele
tron�uid model. Routine thomas_adi is the solver that is 
alled from ea
h of the �uidmodel routines to a
tually solve the di�erential equations for ea
h line or 
olumn.There are also other routines that are 
alled infrequently, in
luding initialization anddata output routines, that 
ontribute a small amount to the overall simulation time.Table 6.1: Time pro�le results of the hybrid �uid PIC 
omputational 
ode.Routine Time, s Time, % Typea

elerate 10,645.00 18.96 parti
leweight_to_grid 8,590.00 15.30 parti
lesample 8,475.00 15.09 parti
lemove 6,570.46 11.70 parti
lee_energy 6,302.90 11.22 �uidthomas_adi 4,855.80 8.65 �uide_poisson 4,362.23 7.77 �uide_momentum 3,866.20 6.89 �uide_
ontinuity 1,395.50 2.49 �uid
ollide 687.87 1.23 parti
leothers 399.90 0.70 -Total 56,151.06 100.00The �nal 
olumn of the table indi
ates whether the time spent in ea
h routines
ales with the number of parti
les or the number of nodes in the �uid grid. The



149four most time intensive routines all operate on parti
les, and together those routinesa

ount for 61% of the total simulation time. The next �ve routines all operate onthe �uid grid, and a

ount for 37% of the total simulation time. A redu
tion in eitherparti
le 
ount or grid node 
ount 
ould lead to a signi�
ant speedup.6.2 Multigrid te
hniqueIn Chapter V the grid spa
ing is driven by the requirements of the �uid model,and 
annot be in
reased signi�
antly without a�e
ting the a

ura
y of the simulationresults. However, the spa
ing is mu
h smaller than required to obtain a

urate resultsfrom the PIC or DSMC parti
le models. Sin
e the parti
le 
ount per 
ell is held near20 to maintain good statisti
al properties, the total number of simulated parti
les isvery high in the hybrid �uid PIC simulations.The disparity in grid spa
ing requirements suggests that an approa
h related tothe multigrid methods developed in 
omputational �uid dynami
s might be usefulhere. In a CFD appli
ation, a multigrid method is used to a

elerate the solutionof a system of di�erential equations. The equations are �rst solved on a 
oarse gridto obtain an approximate solution. That solution is �prolonged� or interpolated toprovide the initial estimate of the solution on a �ne grid. The equations are solvedon the �ne grid, and the �ne solution 
an then be restri
ted ba
k to the original
oarse grid, or prolonged to a �ner grid and solved again [81, 82℄.In the hybrid �uid PIC setting, a multigrid method 
an solve di�erent models onseparate grids. The parti
le model is used on the 
oarse �PIC grid� to obtain the ionand neutral number densities. Those densities are prolonged to a �ne ��uid grid.�The ele
tron �uid model equations are then solved on the �uid grid. By introdu
ing amultigrid system, the number of PIC 
ells and parti
les 
an be redu
ed on the 
oarse



150grid, while still maintaining the �ne spa
ing required for the �uid model solutionson the �uid grid.The modi�
ations and additions to the 
omputational 
ode are not extensive.Support for separate PIC and �uid grids must be added. A new interpolation stepmust be added to prolong the parti
le densities to the �uid grid, and the ele
tri
 �elda

eleration 
al
ulation must be modi�ed to weight ele
tri
 �elds from the nodes ofthe �uid grid to the parti
les. The multigrid iteration 
y
le is essentially the sameas the original iteration 
y
le in Se
. 4.4, ex
ept that the interpolation step is added:1. Weight parti
le density to the nodes of the PIC grid2. New: Interpolate parti
le density to nodes of the �uid grid3. Solve ele
tron 
ontinuity equation on �uid grid4. Solve ele
tron momentum equation on �uid grid5. Solve ele
tron energy equation on �uid grid6. Repeat steps 4-5 to 
onverge 
oupled equations7. Modi�ed: Weight ele
tri
 �elds from �uid grid nodes to parti
les8. Move parti
les on the PIC grid9. Collide PIC parti
les in PIC grid 
ells10. Sample parti
le properties on PIC gridFor simpli
ity, the PIC grid and the �uid grid are 
onstru
ted with 
oin
identnodes. The PIC grid has twi
e the 
ell spa
ing of the �uid grid, so that ea
h re
tan-gular PIC 
ell 
ontains exa
tly four re
tangular �uid 
ells. The interpolation routine



151transfers values from the PIC grid to the �uid grid at shared nodes, and uses linearinterpolation to 
al
ulate values at the additional �uid grid nodes.6.3 Validation and speedup assessment of multigrid versionThe new multigrid version of the hybrid �uid PIC 
omputational 
ode is validatedby repeating several of the 
ases from Chapter V. The 
omposite 
ase using thePoisson-
onsistent detailed model is 
onsidered the most di�
ult simulation, andthose results are 
ompared here. Contours of the potential, Fig. 6.1, ele
tron density,Fig. 6.2, and 
harge density, Fig. 6.3, are very 
onsistent between the original andmultigrid simulations.
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Figure 6.1: Contours of potential for the original and multigrid 
omposite simula-tions.
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Figure 6.2: Contours of ele
tron number density for the original and multigrid 
om-posite simulations.
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Figure 6.3: Contours of 
harge density for the original and multigrid 
omposite sim-ulations.There are no apparent systemati
 di�eren
es or large lo
al di�eren
es betweenthe original and multigrid simulation results. The di�eren
es 
an be quanti�ed atthe 
oin
ident nodes on the PIC grid, giving a maximum error of ±2% from the



155original solution. From these 
omparisons it is 
on
luded that the multigrid versiona

urately obtains the same solution as the original 
ode.The expe
ted speedup fa
tor for the multigrid version is based on the assumptionthat the time spent in parti
le routines s
ales linearly with the total parti
le 
ount,while the time spent in �uid routines s
ales linearly with the number of �uid gridnodes. The multigrid PIC grid has a fa
tor of 4 fewer 
ells than the original grid,so the parti
le 
ount drops by the same fa
tor and the expe
ted speedup fa
tor is 4for all of the parti
le routines. The multigrid �uid grid is identi
al to the originalgrid, so the �uid routines should take the same amount of time, giving an expe
tedspeedup fa
tor of 1 for all of the �uid routines.The speedup of the multigrid version of the 
ode is evaluated by performing atime pro�le using the same built-in 
ompiler options as before. The pro�le resultsare shown in Table 6.2 for the new multigrid version time, MG Time, together withthe original single grid version time, SG Time, for 
omparison.The a
tual speedup fa
tor is 
omputed as the ratio of the original time to thenew time. Ea
h of the �uid routines show a small speedup whi
h is probably dueto un
ontrolled se
ondary e�e
ts, su
h as better use of 
a
he memory. The parti
leroutines show a speedup fa
tor that meets or ex
eeds the anti
ipated fa
tor of 4.The routines move, weight_to_grid, and sample a
hieve a speedup that is nearly afa
tor of 2 higher than expe
ted. The new interpolation routine is added into routineweight_to_grid, making the speedup fa
tor even more impressive.The multigrid version a
hieves an overall speedup of 2.22, meaning that the samedomain and plasma 
onditions 
an be simulated in less than half the total time of theoriginal version. This is enough of a speedup so that the 
omputational time for asimulation of a reversed Faraday probe should be 
omparable to the time previously



156Table 6.2: Time pro�le results of the multigrid hybrid �uid PIC 
omputational 
ode.Expe
ted A
tualRoutine SG Time, s MG Time, s MG Time, % Speedup Speedupa

elerate 10,645.00 2,634.00 10.42 4 4.04weight_to_grid 8,590.00 1,218.20 4.82 4 7.05sample 8,475.00 1,048.90 4.15 4 8.08move 6,570.46 941.15 3.72 4 6.98e_energy 6,302.90 5,729.00 22.66 1 1.10thomas_adi 4,855.80 4,461.80 17.65 1 1.09e_poisson 4,362.23 4,037.85 15.97 1 1.08e_momentum 3,866.20 3,555.90 14.07 1 1.09e_
ontinuity 1,395.50 1,277.90 5.06 1 1.09
ollide 687.87 141.40 0.56 4 4.86others 399.90 232.04 0.92 1 1.72Total 56,151.06 25,278.14 100.00 1.88 2.22required for a Faraday probe simulation.



Chapter VIIReversed Faraday Probe Simulations
The multigrid version of the hybrid �uid PIC simulation 
ode is used to simulatethe axisymmetri
 �ow around a reversed Faraday probe, with emphasis on resolving�ow features on the wake side of the probe. For these 
ases the planar Bohm sheathsolution will not be useful, sin
e it 
annot provide a stable sheath solution for ions�owing away from the probe surfa
e. The geometri
 shadowing model solution 
ouldbe useful for 
omparison with the simulation results, provided an estimate of theex
hange frequen
y 
an be found to determine a physi
al s
aling.A geometri
 shadowing DSMC model will be developed by modifying the hybrid�uid PIC model to reprodu
e the assumptions of the geometri
 shadowing model.The resulting model is then used to perform a gasdynami
 simulation of the ionparti
les. The shadowing DSMC model does produ
e a �ow �eld that is 
onsistentwith the expe
tations of the shadowing model. However, no satisfa
tory geometri
shadowing sheath solution 
an be found to �t the ion number density pro�le fromthe simulation.The Boltzmann �uid model is used in the hybrid �uid PIC model to performa plasmadynami
 simulation of the same �ow that in
ludes ele
tri
 �elds. This�ow �eld solution is signi�
antly more 
omplex than predi
ted by the shadowing157



158model. Two dimensional e�e
ts introdu
e important �ow features on the wake sideof the probe that 
annot be des
ribed by a one dimensional theory. The geometri
shadowing sheath model is of little or no use in this situation.The Poisson-
onsistent detailed �uid model is also used to simulate the �ow. Mi-nor di�eren
es from the Boltzmann model are noted, but generally the models are ingood agreement. The Poisson-
onsistent model predi
ts more gradual plasma poten-tial variation over a larger area than the Boltzmann model, and the �ow stru
turesin the wake are a�e
ted a

ordingly. Again, the geometri
 shadowing sheath doesnot provide useful predi
tions of the �ow.The numeri
al simulations are used to 
al
ulate estimates of the ex
hange fre-quen
y by re
ording the rate that simulated parti
les 
ross into a region in the wake.The shadowing DSMC model demonstrates an approximately 
onstant ex
hange fre-quen
y for parti
les moving into the wake, but a mu
h lower, variable frequen
y forparti
les moving out of the wake. The Boltzmann and Poisson-
onsistent modelsprodu
e more 
ompli
ated pro�les of ex
hange frequen
y, with strong variations dueto the �ow features. The assumption of a 
onstant ex
hange frequen
y at all pointsin the sheath is very poor for these models.7.1 Flow 
onditionsThe �ow 
onditions are sele
ted to obtain an interesting physi
al situation thatremains representative of the 
onditions in an EP plume, while maintaining a pra
ti-
al simulation time. The geometri
 shadowing model provides some guidan
e aboutthe properties of the sheath on the wake side of the probe. In Eq. 7.1 the solutionfor the distribution fun
tion in the wake region is repeated. Sin
e the sheath lengthis de�ned where the exponential term is arbitrarily small, the sheath will extend far



159downstream if the Ma
h number is large.
f (z, M) = f∞ (M)

[

1 − H (M) exp

(

−W

M
z

)] (7.1)In the interest of keeping a smaller 
omputational domain and limiting the timerequirement, the �ow should be kept near a Ma
h number of one. The ele
trontemperature is assumed to be 11,600 K as in the previous 
onditions, whi
h gives aBohm velo
ity vB = 857.2 m
s
. This suggests a drift velo
ity vD = 1000 m

s
giving aMa
h number with respe
t to Bohm velo
ity of MD = 1.167.To mat
h the 
old ion 
ase that was used repeatedly as a validation 
ase, thenumber density is set at ni = 1.1 × 1014 m−3, although the ion number density doesnot appear as a parameter in the shadowing model. The ion temperature is set at

Ti = 300 K, whi
h determines the temperature ratio for the shadowing model as
τ∞ = 0.0259. The low ion temperature avoids a signi�
ant ba
k�ow 
omponent,whi
h 
an be demonstrated from the gaskineti
 Ma
h number. The a
ousti
 speedis 
al
ulated as va =

√

γkBTi/mi, giving va = 178.0 m
s
for xenon at 300 K. Thisprodu
es a strongly supersoni
 Ma
h number MD,a = 5.619.The �ow 
onditions and model parameters for the ions are summarized in Ta-ble 7.1. For the hybrid �uid PIC models, it will be ne
essary to have 
onditionsfor the ele
trons at the inlet as well. The plasma is assumed to be 
o-�owing andneutral, so that ni = ne and vi = ve in the freestream.Table 7.1: Ion plasma properties for reversed Faraday probe simulations.

vD = 1, 000. m
s

ni = 1.1 × 1014 m−3

vB = 855.7 m
s

MD = 1.167

Ti = 300 K τ∞ = 0.0259

va = 178.0 m
s

MD,a = 5.619



1607.2 Simulation domain and numeri
al parametersThe 
omputational domain for the reversed Faraday probe is similar to that usedfor the probe simulations. In this 
ase, the extent of the domain on the wake sideof the probe is estimated using a kineti
 argument. The boundary 
onditions areessentially un
hanged. Sin
e the reversed Faraday probe simulations are 
ondu
tedwith a multigrid method, numeri
al parameters for the 
omputational grid mustsatisfy the more demanding requirements.7.2.1 Computational domainThe geometri
 shadowing model does not provide a physi
ally s
aled solution, sono sheath length is available to give the required domain length. Instead, a kineti
argument is used to size the domain on the wake side of the probe.Ion parti
les at a su�
iently large initial radius will �ow past the side of theprobe body and di�use into the wake region. Ele
trostati
 �elds tend to a

elerateparti
les toward the 
enterline on the wake side of the probe, so the ele
tri
 �eld isnegle
ted to arrive at a 
onservative estimate of the domain length. Without ele
tri
�elds, radial di�usion is due to random thermal velo
ity of the parti
les.To fully resolve the wake, the domain should be long enough for parti
les of everyradial speed to di�use a
ross the diameter of the probe. Sin
e there are parti
leswith very low radial speed, this still results in a domain that is impra
ti
ally long.Instead, 
onsider the fastest parti
les to be at three times the mean speed. For xenonat 300 K, these parti
les have a radial speed of vr,max = 660 m
s
.The streamline for a parti
le that just passes the edge of the probe with themaximum radial speed gives the geometry in Fig. 7.1. From this geometry, it 
an bedetermined that the domain must extend at least 1.52 probe diameters downstream
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Figure 7.1: S
hemati
 of the wake behind a reversed Faraday probe, with the leadingexpansion ray and the streamline for parti
les with the fastest radialspeed.for these parti
les to di�use a
ross the diameter of the probe. No parti
les di�usefrom the va
uum region of the wake into the ambient plasma, so an expansion regionextends into the plasma as indi
ated by the dashed streamline for the imaginaryparti
le �owing outward at the maximum radial speed. By symmetry, this streamlinerea
hes a radius of 1.5 diameters at the minimum domain length, giving the radialextent of the domain.The simulation domain will be extended 20% farther downstream to allow someparti
les with lower radial speed to di�use 
ompletely a
ross the probe. The �nalsimulation geometry is shown in Fig. 7.2, dimensioned in terms of the probe diameterand the physi
al dimensions of the JPL Faraday probe. A region of �ow upstreamand alongside of the probe is simulated to obtain 
onsistent ambient 
onditions onthe wake side of the probe.
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Figure 7.2: Computational domain for reversed Faraday probe simulations.7.2.2 Computational gridSin
e this �ow will be simulated with the multigrid version of the hybrid �uidPIC 
ode, two 
omputational grids are required. The �uid grid is developed �rstand the PIC grid is then 
onstru
ted using every se
ond node of the �uid grid. Thisensures that ea
h PIC 
ell 
ontains exa
tly four �uid 
ells, and that ea
h PIC gridnode is 
oin
ident with a �uid grid node.The re
tangular 
ells of the �uid grid are uniformly sized at 8×10−5 m on a side.The �nal geometry extends 7.168 cm (896 
ells) along the probe axis and 3.840 cm(480 
ells) radially. The probe body is 1.280 cm (160 
ells) long with 0.96 cm (120elements) along the 
olle
ting surfa
e and 0.320 cm (40 elements) along the guardring surfa
e. The front surfa
e of the probe is 1.28 cm (160 
ells) from the upstreaminlet of the domain, and the ba
k surfa
e of the probe is 4.608 cm (576 
ells) from



163the downstream exit of the domain. Altogether there are 404,480 �uid 
ells outsideof the probe body.The PIC 
ells are then 1.6 × 10−4 m on a side, and the domain has 448 
ellsalong the probe axis and 240 
ells radially. The probe body is 80 
ells long, with60 
ells along the 
olle
ting surfa
e of the probe and 20 elements along the guardring. Altogether there are 101,120 PIC 
ells outside of the probe body. Note that thenumber of PIC 
ells is a
tually slightly smaller than in the original Faraday probesimulations. At steady state, there are approximately 1.7 million parti
les in thedomain.The simulation time step is sele
ted so that the fastest ions travel less than one
ell length per iteration. Assuming a probe potential of −5 V, ions that enter attwi
e the thermal speed beyond the drift velo
ity arrive at the probe with a velo
ityof 3, 070 m
s
. Dividing the 
ell length by this speed and rounding down sets the timestep at 5 × 10−8 s.The simulation is allowed to iterate for 10,000 time steps to rea
h a 
onvergedstate, followed by 20,000 sampled time steps. The total simulation time is approx-imately 45 hours. The performan
e gain of using multigrid is in full eviden
e: thisdomain has 3.6 times the number of �uid 
ells in the Faraday probe domain, butrequires just 30% more 
omputational time.7.2.3 Boundary 
onditionsThe boundary 
onditions on this domain are identi
al to the 
onditions on theFaraday probe simulations. Referring to the labels in Fig. 7.2, there are six regionsof boundary 
onditions that are repeated here.Region 1 is the axisymmetri
 
enterline. Parti
les are automati
ally rotated at



164the 
enterline as part of the axisymmetri
 move routine. A zero gradient 
onditionis enfor
ed on the radial 
omponent of all variables in the �uid models, in
luding thestream fun
tion Ψ, plasma potential, ele
tron number density, and ele
tron temper-ature.Region 2 is the upstream inlet for the �ow. Parti
les are introdu
ed at thisboundary with a random position and statisti
ally sampled velo
ity in ea
h 
ell.Parti
les that 
ross this boundary are removed from the simulation. The ele
trontemperature and gradient of stream fun
tion are assigned along this edge. Theplasma potential and ele
tron number density are set using third kind boundary
onditions.Region 3 is the outer radial inlet. Parti
les are inje
ted along this edge using thesame pro
edure as in Region 2, and parti
les that 
ross this boundary are removedfrom the simulation. A 
onstant gradient 
ondition is enfor
ed on the radial 
ompo-nent of the stream fun
tion, and zero gradient 
onditions are enfor
ed on the radial
omponent of plasma potential, ele
tron number density, and ele
tron temperature.Region 4 is the downstream �ow exit. Parti
les are only removed along thisedge, sin
e the Maxwellian distribution for the ions has negligible ba
k�ow. Thegaskineti
 Ma
h number is strongly supersoni
, further reinfor
ing this point. A
onstant gradient 
ondition is enfor
ed on the stream fun
tion, and zero gradient
onditions are enfor
ed on the axial 
omponent of plasma potential, ele
tron numberdensity, and ele
tron temperature.Region 5 in
ludes the guard ring and side body of the probe. Parti
les undergodi�use re�e
tion from this surfa
e with full thermal a

ommodation, and ion parti
lesare neutralized. The gradient of stream fun
tion is assigned, whi
h is equivalent tospe
ifying the ele
tron 
urrent �ux to the surfa
e. The plasma potential, ele
tron



165number density, and ele
tron temperature are assigned at the surfa
e. In keepingwith experimental pra
ti
e, the entire side of the probe body is biased to the samepotential as the 
olle
ting surfa
e.Region 6 is the 
olle
ting surfa
e of the probe. The same boundary 
onditions asin Region 5 are enfor
ed on parti
les and ele
tron �uid variables. When ion parti
lesare neutralized at this surfa
e, the 
olle
ted 
urrent is in
remented by the 
harge ofthe ion parti
le. This gives the simulated 
olle
ted 
urrent, whi
h is averaged overthe sampling time steps.7.3 Geometri
 shadowing DSMC modelThe geometri
 shadowing model assumes zero ele
tri
 �elds and plasma neu-trality, so several of the hybrid �uid PIC model 
apabilities must be dea
tivatedto obtain an equivalent 
omputational model. The neutrality 
ondition allows theele
tron �uid equations for 
ontinuity, momentum, and energy to be disabled. Theassumption of zero ele
tri
 �elds allows the ele
trostati
 Poisson equation to be dis-abled, and removes the need to 
al
ulate ele
trostati
 a

eleration on the parti
les.The remaining 
omputational 
ode is just a DSMC model for the ion parti
les,sin
e all of the �uid model equations and PIC ele
tri
 �eld routines are disabled. Thismodel performs purely gaskineti
 simulations. However, these simulations shouldmost 
losely reprodu
e the sheath solution from the geometri
 shadowing model.Contours of simulated ion number density are shown in Fig. 7.3. The �ow stru
-ture re�e
ts the assumptions used to size the domain. A va
uum region is formedimmediately behind the probe. Parti
les at the outer edge of the probe di�use to-ward the 
enterline, and the expansion spreads into the freestream �ow beyond theprobe radius. The �ow rejoins smoothly at the 
enterline, in
reasing from va
uum to
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Figure 7.3: Contours of ion density for the reversed Faraday probe 
ase.the freestream density. No over
ompression region develops, sin
e there is no for
eto a

elerate parti
les toward the 
enterline.A radial average of properties near the 
enterline does not provide a useful 
om-parison with the geometri
 shadowing sheath model in the wake region of the �ow,sin
e the shadowing sheath model 
annot predi
t the va
uum region. Instead, the
ylindri
al surfa
e at the outer diameter of the probe is a fair representation of thesituation in one dimension. Pro�les of ion density at a radius equal to the outer edgeof the probe 
ylinder are shown in Fig. 7.4. Sin
e there has been no radial averaging,the statisti
al s
atter in the pro�le is readily evident.The ex
hange frequen
y is not known a priori to 
al
ulate the shadowing sheathin physi
al dimensions, so a least-squares method is used to seek an ex
hange fre-quen
y that provides the best �t. However, there is not a satisfa
tory �t using a singlevalue of ex
hange frequen
y. This result is not unreasonable, sin
e the Maxwellian
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Figure 7.4: Pro�les of ion number density at the outer edge of the probe.distribution of radial speeds in the simulation leads to di�erent transport rates at dif-ferent radial speeds. Essentially the ex
hange frequen
y has a fun
tional dependen
eon radial speed in the simulation, while the shadowing sheath assumes a 
onstantex
hange frequen
y.Streamlines of 
urrent are shown in Fig. 7.5. The va
uum region behind the probeis 
learly delineated, and extends approximately 2 
m (28 λD) along the 
enterline.Tra
ing the streamlines that expand into the wake region ba
kward, it is seen thatmu
h of the wake �ow originates in a thin annulus immediately surrounding theprobe 
ylinder.Although the shadowing DSMC numeri
al model reprodu
es the assumptions ofthe shadowing sheath model, there are signi�
ant di�eren
es in the 
al
ulated sheathproperties. The one dimensional formulation does not predi
t a va
uum region, sothe shadowing sheath model is not dire
tly appli
able ex
ept at the outer edge of the



168

z, m

r,
m

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 7.5: Streamlines of 
urrent for the reversed Faraday probe 
ase.probe. Even there, the sheath model 
annot be brought into good agreement withthe simulation. In the DSMC simulation the parti
le velo
ity distribution leads to avariable ex
hange frequen
y, whi
h is oversimpli�ed to a 
onstant in the shadowingsheath model.The shadowing sheath model does a poor job of predi
ting the sheath propertieson the wake side of the probe for the shadowing DSMC simulation, so it is unlikelyto be a useful predi
tor for the hybrid �uid PIC simulations.7.4 Hybrid PIC Boltzmann modelIn terms of simulating a plasma, the hybrid �uid PIC models represent a largestep up from the shadowing DSMC model. The single most important di�eren
e isthe in
lusion of ele
trostati
 �elds. Plasmas are distinguished from gases primarilyby the ele
tri
al 
harge of the parti
les, and the asso
iated intera
tions with ele
tri
and magneti
 �elds. It should 
ome as no surprise then, that results from the hybrid
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Figure 7.6: Contours of ion density for the reversed Faraday probe 
ase.models show distin
tly di�erent �ow features from the DSMC simulation results.Contours of ion number density 
al
ulated with the hybrid PIC Boltzmann �uidmodel are shown in Fig. 7.6. The wake stru
ture is 
ompli
ated, and di�ers fromthe DSMC simulation results in three main features. First, the ele
trostati
 sheath
auses a region of de
reased density upstream of the probe and alongside the probebody. Se
ond, the �ow expands to a low density in the immediate wake of the probe,but does not develop a va
uum region. Third, a 
oni
al over
ompression region formsslightly downstream of the probe surfa
e.The 
ontours of ele
tron number density in Fig. 7.7 
an be 
ompared with the ionnumber density 
ontours to give a rough impression that the �ow throughout most ofthe domain is nearly neutral. The ele
tron number density only varies signi�
antlyfrom the ion number density near the probe surfa
es. These 
ontours appear noisysin
e the Boltzmann relation is used to 
al
ulate the ele
tron number density from
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Figure 7.7: Contours of ele
tron density for the reversed Faraday probe 
ase.the plasma potential. The exponential relation magni�es small variations in plasmapotential to mu
h larger variations in ele
tron number density.The 
ompli
ated features in the ion �ow �eld 
an be explained by the ele
trostati
sheaths along the probe surfa
es, whi
h alter the ion traje
tories signi�
antly. The
ontours of plasma potential in Fig. 7.8 and the 
urrent streamlines in Fig. 7.9 areuseful for illustrating the explanations.The �rst di�eren
e is in the regions of de
reased density upstream of the probeand extending outward radially from the side of the probe. The behavior upstreamof the probe is familiar from the Faraday probe simulations in Chapter V. As theplasma potential drops near the front fa
e of the probe, ions are a

elerated towardthe probe and the density falls. The same pro
ess a
ts along the side of the probe,ex
ept that the freestream �ow is initially parallel to the surfa
e and the ele
trostati
a

eleration turns ions toward the probe. The �ow farther from the probe surfa
e is
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Figure 7.8: Contours of plasma potential for the reversed Faraday probe 
ase.
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urrent for the reversed Faraday probe 
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172shielded from the potential drop, but expands toward the 
enterline in response tothe density gradient 
loser to the probe.The se
ond di�eren
e is in the wake region immediately behind the probe. Asseen in the streamlines, the �ow that arrives in this region has been turned by passingthrough the sheath on the side of the probe. This �ow has a larger average radialspeed than in the DSMC simulation, and the ele
tri
 �elds in the wake-side sheatha
t to turn the ions toward the rear fa
e of the probe. Together these e�e
ts aresu�
ient to turn the �ow 
ompletely around the 
orner of the probe without forminga va
uum region.The third di�eren
e is the 
oni
al over
ompression region downstream of theprobe. The �ow that rea
hes the area immediately behind the probe has been turnedby passing through the sheath alongside the probe body, and then expanded towardthe 
enterline when the adja
ent �ow was turned toward the rear fa
e of the probe.This results in a radially 
onverging �ow that 
omes to a stagnation point approx-imately 0.6 
m (8.5 λD) downstream of the probe. Moving downstream, the �owthat was expanded from alongside the probe 
onverges toward the 
enterline and
ompresses the �ow there. Meanwhile, the �ow near the 
enterline expands alongthe axis.The ion number density pro�le at the outer edge of the probe in Fig. 7.10 re�e
tsthe 
ompli
ated stru
ture of the wake. Ion number density near the probe surfa
e,from 2.56 
m to 2.76 
m, is approximately 
onstant at 2.4 × 1013 m−3. In thatregion the �ow is uniformly expanded and is essentially parallel to the rear fa
e ofthe probe. From 2.76 
m to about 5.4 
m, the ion number density shows a gradualin
rease that 
orresponds to moving a
ross the expansion to a higher density region.The number density then in
reases more qui
kly, whi
h 
orresponds to moving a
ross
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Figure 7.10: Pro�les of ion number density at the outer edge of the probe.the 
ompression region. The peak density of 1.0×1014 m−3 is rea
hed at 6.2 
m, andbeyond that point the expansion along the axis 
auses the number density to beginde
reasing again.It should be noted that the parti
ulars of the ion density pro�le are not unique.The radius of the probe, the bias potential on the probe, and the ratio of ion driftvelo
ity to thermal velo
ity all 
ontribute to the shape of this pro�le. The down-stream lo
ation and magnitude of the maximum ion density depend strongly on theradius of the probe and how e�e
tively the ele
trostati
 sheath fo
uses the �ow to-ward the 
enterline. However, the qualitative properties of the pro�le are expe
tedto be 
onsistent for similar �ow geometries.The ion number density pro�le is not 
onsistent with the exponential form ex-pe
ted in the geometri
 shadowing sheath model, so no attempt is made to �t thispro�le with a shadowing sheath solution. This upholds the expe
tation that the



174shadowing sheath model would not be a useful predi
tor for the sheath propertieson the wake side of the probe.7.5 Hybrid PIC Poisson-
onsistent detailed modelThe main di�eren
e between the Poisson-
onsistent detailed model and the Boltz-mann model is that the Poisson-
onsistent model solves the all three ele
tron �uid
onservation laws. Re
all from Chapter V that the di�eren
es between the modelresults are small for the Faraday probe simulations. Not surprisingly, simulation ofthe reversed Faraday probe using the hybrid PIC Poisson-
onsistent model yieldsresults that are very similar to the Boltzmann model results.The main stru
tures of the wake are shown in the 
ontours of ion number densityin Fig. 7.11. As seen previously, there is a region of de
reased density alongside andupstream of the probe body. Immediately behind the probe is a low density region,and an over
ompression region farther downstream. Comparing the ion numberdensity with the 
ontours of ele
tron number density in Fig. 7.12, it appears that the�ow is still nearly neutral ex
ept within a few Debye lengths of the probe surfa
es.There are two related minor di�eren
es from the 
ontours 
al
ulated in the Boltz-mann model simulations. The �rst is that the low density region along the side of theprobe body extends almost radially from the front of the probe, where it was sweptba
k from the front surfa
e in the Boltzmann simulation results. The se
ond di�er-en
e is that the over
ompression region in these results forms a 
one with a smallerhalf-angle and a lower peak number density than in the Boltzmann simulation.The �rst di�eren
e 
an be explained by the 
urvature of the plasma potential
ontours in Fig. 7.13, whi
h is less pronoun
ed than in the Boltzmann model results.The gradients in plasma potential extend farther into the plasma in the Poisson-
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Figure 7.11: Contours of ion density for the reversed Faraday probe 
ase.

Figure 7.12: Contours of ele
tron density for the reversed Faraday probe 
ase.
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onsistent simulation, so weak ele
tri
 �elds a�e
t more of the �ow. In this 
asethe ele
trostati
 a

eleration produ
es a 
omponent of a

eleration along the �owdire
tion as well as a 
omponent of expansion toward the 
enterline. This is visiblein Fig. 7.14 as a less pronoun
ed fo
using of the 
urrent streamlines near the frontsurfa
e of the probe.The gradients in plasma potential are smaller than in the Boltzmann simulation,so the ele
tri
 �elds are weaker in the Poisson-
onsistent simulation. Sin
e thisgenerates a smaller for
e and the �ow also develops a higher axial velo
ity, the �owdoes not turn around the edge of the probe as qui
kly. This leads to a region oflower density immediately behind the probe, and a generally lower potential in thewake region behind the probe. When the �ow 
onverges on the 
enterline in thePoisson-
onsistent simulation, the higher axial speed 
arries parti
les downstreamfaster. This redu
es the parti
le residen
e time, whi
h de
reases the peak numberdensity and narrows the 
one of the over
ompression region. This pro
ess explainsthe se
ond di�eren
e in the simulation results.The pro�le of ion number density at the outer edge of the probe in Fig. 7.15shows the same trends as des
ribed for the Boltzmann model simulation. The ionnumber density is 
onstant at approximately 2.0×1013m−3 near the fa
e of the probe,from 2.56 
m to 2.8 
m. The ion number density then in
reases gradually a
ross theexpansion until the edge of the 
ompression region, whi
h has moved downstream to6.0 
m. A
ross the 
ompression region the ion number density rises to a maximumof 8.6 × 1013 m−3 at 6.9 
m, before beginning to de
rease as the �ow a

eleratesdownstream.This pro�le is also in
ompatible with the geometri
 shadowing sheath model, sono attempt to �t a shadowing sheath is made. There is qualitative agreement between
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Figure 7.13: Contours of potential for the reversed Faraday probe 
ase.
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Figure 7.14: Streamlines of 
urrent for the reversed Faraday probe 
ase.
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Figure 7.15: Pro�les of ion number density at the outer edge of the probe.the results from the Boltzmann model simulation and the Poisson-
onsistent model,but the values of number density or plasma potential at a point in the �ow vary by10-15% between the simulations. The minor di�eren
es between the ele
tron �uidmodels be
ome more signi�
ant over the extended sheath on the wake side of theprobe.7.6 Ex
hange frequen
y resultsThe hybrid �uid PIC models 
an also be used to obtain an estimate of the ex-
hange frequen
y for use in the geometri
 shadowing sheath model. Sin
e the modelssimulate parti
les rather than the parti
le distribution fun
tions, it is useful to relatethe ex
hange frequen
y to a more easily 
al
ulated property.The sour
e term in the shadowing sheath model resembles a rate of 
hange of thelo
al distribution fun
tion, as in Eq. 7.2. There is no di�
ulty in integrating overall velo
ities to obtain the sour
e term for ion number density in Eq. 7.3, sin
e the



179ex
hange frequen
y is assumed to be 
onstant.
df

dt
= w (f∞ − f) (7.2)

∫

v

n∞
df

dt
dv =

∫

v

n∞w (f∞ − f) dv −→ dn

dt
= w (n∞ − n) (7.3)The numeri
al models operate on a dis
rete 
omputational grid, so it is usefulto integrate over the volume of the 
ell as in Eq. 7.4 to obtain the rate of 
hange ofparti
le 
ount in the 
ell.

∫

V

dn

dt
dV =

∫

V

w (n∞ − n) dV −→ dN

dt
= w (N∞ − N) (7.4)The sour
e term 
an be readily divided into separate terms for the addition andremoval of parti
les from the 
ell, giving the form in Eq. 7.5. The forms in Eq. 7.6
an be used to 
al
ulate the ex
hange frequen
ies win for parti
le addition and woutfor parti
le removal, based on the parti
le 
ount and the transfer rate.

dN

dt

∣

∣

∣

∣

in

− dN

dt

∣

∣

∣

∣

out

= winN∞ − woutN (7.5)
win =

1

N∞

dN

dt

∣

∣

∣

∣

in

wout =
1

N

dN

dt

∣

∣

∣

∣

out

(7.6)In the numeri
al simulations, every time an ion ma
roparti
le 
rosses in to orout of the 
ylinder downstream of the outer edge of the probe, an event 
ounteris in
remented. Multiplying the number of events by the ma
roparti
le weight anddividing by the total simulation time gives the average transfer rates dN
dt
. Pro�les ofthe normalized ex
hange frequen
ies are shown in Figs. 7.16-7.18 for all three of thenumeri
al models. Parti
le ex
hange is relatively rare in the shadowing DSMCmodel,so the pro�les for that model show larger statisti
al s
atter than the Boltzmann orPoisson-
onsistent model pro�les.
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Figure 7.16: Pro�les of simulated ex
hange frequen
y 
al
ulated using the shadowingDSMC model.The pro�les from the shadowing DSMC model are 
losest to the assumptionsmade in the geometri
 shadowing sheath model. The ex
hange frequen
y for parti
lesmoving into the 
ylinder is essentially 
onstant, averaging near win = 0.29. This
orresponds very well with the w = 0.3 value 
al
ulated in Se
. 7.3 to �t the ionnumber density pro�le near the surfa
e. The ex
hange frequen
y for parti
les movingout of the 
ylinder is mu
h lower and shows a distin
t trend. This is a departure fromthe geometri
 shadowing sheath assumption, and helps to explain why no satisfa
tory�t value 
ould be found previously.The ex
hange frequen
y pro�les for the Boltzmannmodel and the Poisson-
onsistentmodel are very similar. The ex
hange frequen
y into the 
ylinder immediately down-stream of the probe is very high, sin
e the �ow has turned around the edge of theprobe and is dire
ted into the 
ylinder. Moving farther downstream, the ex
hangefrequen
y drops to a plateau where the �ow is expanding toward the 
enterline. Sin
e
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Figure 7.17: Pro�les of simulated ex
hange frequen
y 
al
ulated using the Boltz-mann model.the radial speed is lower, the ex
hange frequen
ies into and out of the 
ylinder are
loser together. The onset of the over
ompression region appears as a se
ond dropin the ex
hange frequen
y into the 
ylinder. Eventually the ex
hange frequen
y outof the 
ylinder be
omes larger than the ex
hange frequen
y in to the 
ylinder, indi-
ating the expansion along the axis. The ex
hange frequen
y into the 
ylinder levelso� to a se
ond plateau in the expansion.Again, the assumptions that the ex
hange frequen
y is 
onstant and equal fortransfer in to and out of the 
ylinder are not appropriate for these pro�les. Theex
hange frequen
y shows so mu
h variation that no estimate is likely to produ
e ageometri
 shadowing sheath solution that resembles the observed ion number densitypro�les.These results 
an still be used to make order of magnitude estimates of theex
hange frequen
y for the gasdynami
 and plasmadynami
 
ases. The gasdynami
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Figure 7.18: Pro�les of simulated ex
hange frequen
y 
al
ulated using the Poisson-
onsistent model.
ase in the DSMC model simulation shows a nearly 
onstant, relatively low ex
hangefrequen
y into the 
ylinder, on the order of w = 0.3. The ex
hange frequen
y out ofthe 
ylinder is zero near the surfa
e of the probe and slowly rises as the wake is �lledin. The plasmadynami
 
ases in the Boltzmann and Poisson-
onsistent simulationsshow a relationship between the �ow orientation and the ex
hange frequen
y. Theex
hange frequen
y 
an be
ome very large if the dire
tion of �ow is normal to thesurfa
e. If the �ow is primarily parallel to the sheath, the ex
hange frequen
y showsa range of w = 1.4 − 1.8 for expansion into the sheath and a range of w = 0.5 − 0.6for expansion out of the sheath in the over
ompression region.7.7 Con
lusions for model usage and probe designSimulations of the reversed Faraday probe with the shadowing DSMC model, thehybrid Boltzmann model, and the hybrid Poisson-
onsistent model are not in good



183agreement with the geometri
 shadowing sheath solution. The 
al
ulated ex
hangefrequen
ies show signi�
ant variation and 
annot be represented well by a 
onstantvalue. Additionally, the number density in the wake is very low, so the ex
hangefrequen
y out of the probe is mu
h smaller than the ex
hange frequen
y into theprobe. These di�eren
es 
annot be addressed without redeveloping the shadowingsheath model altogether.The two dimensional e�e
ts are also a signi�
ant fa
tor, introdu
ing va
uumregions that the one dimensional shadowing sheath model 
annot predi
t. Ele
tro-stati
 a

eleration helps develop a more uniform �ow immediately downstream ofthe probe, sin
e 
harged parti
les 
an turn around the edge of the probe to rea
h therear fa
e of the probe without forming a va
uum region. However, this a

eleratesthe �ow toward the axis and 
reates an over
ompression region that is also beyondthe predi
tive 
apabilities of the geometri
 shadowing sheath.Ele
trostati
 a

eleration produ
es an extended expansion region alongside theprobe, and leads to a 
ompression region downstream of the probe. These e�e
tsare not predi
ted in the shadowing DSMC model, whi
h illustrates the importan
eof the ele
tri
 �elds for a

urate simulation of a plasma. The ele
tri
 �elds 
an alsosigni�
antly alter the dire
tion of the �ow, and 
an 
ompletely reverse the dire
tionof �ow.This may be an important 
onsideration for a reversed Faraday probe use. The
urrent streamlines from the Boltzmann and Poisson-
onsistent model simulationsindi
ate that all of the 
urrent that rea
hes the rear fa
e of the probe originates froman annular region at slightly larger radius than the probe. Obstru
tions o� axis andupstream from the probe might not a�e
t measurements on the upstream fa
e, but
ould interfere with measurements on the reversed fa
e of the probe. Features on



184the side of the probe body su
h as a mounting spar will 
ertainly a�e
t the �ow tothe rear fa
e of the probe.



Chapter VIIICon
lusion
In this 
hapter the important results and 
on
lusions des
ribed in the 
ourse ofthis dissertation are reviewed. In ful�llment of one of the major obje
tives of thiswork, a few re
ommendations are made regarding Faraday probe use.8.1 Summary and ReviewStandard diagnosti
 te
hniques assume that properties measured at the surfa
eof a probe 
an be related dire
tly to undisturbed plasma properties. However, animmersed Faraday probe a�e
ts the ambient plasma by introdu
ing physi
al ob-stru
tions and ele
trostati
 sheaths. Perturbations 
aused by the probe may lead tosystemati
 di�eren
es between the probe measurements and the undisturbed plasmaproperties.The work in this dissertation was intended to develop and use 
omputationalmodels to identify and quantify any di�eren
es 
aused by the presen
e of an immersedFaraday probe in a plasma. Both of these obje
tives have been a

omplished, as issummarized in the following se
tions.

185



1868.1.1 One dimensional analyti
 modelsIn order to obtain an initial understanding of the �ow features in a plasma sheath,two analyti
al models were developed as referen
e 
ases in Chapter III. Both modelswere derived from very general kineti
 or �uid des
riptions of the plasma by assumingsteady, 
ollisionless, one dimensional �ow.The geometri
 shadowing sheath model was derived from kineti
 theory and theBoltzmann transport equation in Se
. 3.2, with physi
al obstru
tion of parti
le tra-je
tories 
ausing variation of the plasma properties in the sheath. A di�usion-likesour
e term was used to model the transfer of parti
les between the distribution fun
-tion in the ambient plasma and the distribution fun
tion in the sheath. The rateof parti
le transfer was s
aled by introdu
ing an ex
hange frequen
y. An analyti
solution was then obtained by negle
ting the ele
tri
 �elds.The shadowing sheath solution des
ribed an exponential depletion of the ba
k-�owing distribution as the �ow approa
hes the probe. Moments of the lo
al distri-bution 
ould be 
al
ulated to obtain pro�les of the ion number density and velo
ityin the sheath. However, this solution 
ould not be s
aled into physi
al dimensionsunless a value of the ex
hange frequen
y 
ould be estimated by some other means.The planar Bohm sheath model was derived from �uid theory in Se
. 3.3, using the
onservation equations for mass and energy of the ions and assuming the Boltzmannrelation for the ele
trons. The ele
trostati
 Poisson equation was then written asa di�erential equation for the plasma potential and integrated using a numeri
almethod. It was noted that a steady solution was only possible if the ion drift velo
itywas greater than or equal to the Bohm velo
ity at the edge of the sheath. This
ondition is the Bohm 
riterion.The Bohm sheath solution gave pro�les of the plasma potential and the ion and



187ele
tron number densities in the sheath. Sin
e the sheath 
oordinate s
aled with theDebye length, the Bohm sheath solution 
ould be s
aled into physi
al dimensions.The one dimensional models were 
ompared in Se
. 3.4 using 
onditions thata
hieved partial similarity. A shadowing sheath solution was 
al
ulated for a givenfreestream Ma
h number. The plasma potential in the shadowing sheath modelwas 
al
ulated by assuming neutrality and then assuming the Boltzmann relation,so that the plasma potential 
ould be expressed as a fun
tion of the ion numberdensity. A planar Bohm sheath solution was then 
al
ulated for the same freestreamMa
h number and plasma potential at the probe surfa
e. A least-squares �t wasperformed on the ion number density pro�les to estimate the value of the ex
hangefrequen
y. The best �t was found with an ex
hange frequen
y W = 0.088, that is,the ex
hange frequen
y was 0.088 times the plasma frequen
y. However, it was notedthat this value is spe
i�
 to the 
onditions MD = 1 and τ∞ = 1.8.1.2 Two dimensional 
omputational modelsThe axisymmetri
 hybrid �uid PIC models were des
ribed in Chapter IV. Thelarge di�eren
e between the ele
tron and ion time s
ales in a plasma was noted, anda hybrid model was employed that used kineti
 models for the ions and neutrals and�uid models for the ele
trons.The ions and neutrals were modeled using the well-known Parti
le In Cell (PIC)and Dire
t Simulation Monte Carlo (DSMC) methods as des
ribed in Se
. 4.1.Ma
roparti
les were moved a

ording to the ele
tri
 �elds 
al
ulated at nodes ofthe 
omputational grid. Collisions were evaluated statisti
ally in 
ells of the 
ompu-tational grid.The ele
trons were modeled with one of three �uid models des
ribed in Se
. 4.2.



188The �rst �uid model used the Boltzmann relation and solved the ele
trostati
 Poissonequation for plasma potential. The Boltzmann �uid model 
losely approximated theassumptions of the planar Bohm sheath model.The se
ond �uid model was the non-neutral detailed model. This model solvedall three of the �uid 
onservation equations and the ele
trostati
 Poisson equation.The ele
tron momentum equation was solved for plasma potential in this model,leaving only the ele
trostati
 Poisson equation to solve for ele
tron number density.The 
al
ulation for ele
tron density was found to have poor resolution and highsensitivity to statisti
al s
atter in the ion number density. This model was usedpreviously as a neutral model, so that the Poisson equation 
ould be repla
ed byneutrality.The third �uid model was the Poisson-
onsistent detailed model. This model alsosolved the three �uid 
onservation equations and the ele
trostati
 Poisson equation.This model solved the ele
tron momentum equation for ele
tron number density, andthe Poisson equation for plasma potential. This model required additional boundary
onditions for the ele
tron number density, but was otherwise more robust than thenon-neutral detailed model.The ele
tron �uid equations were dis
retized using the �nite di�eren
e operatorsdes
ribed in Se
. 4.4.The di�erential equations for the plasma potential in the non-neutral detailedmodel and the ele
tron number density in the Poisson-
onsistent model were 
ompli-
ated and not well 
hara
terized in terms of stability. In se
tion 4.5, one dimensionalformulations of the di�erential equations were solved using a one dimensional alter-nating dire
tion impli
it (ADI) solver. The solutions obtained with the ADI solverwere in ex
ellent agreement with the exa
t analyti
 solutions. This provided 
on�-



189den
e that the ADI solver would also be able to obtain stable, a

urate solutions onthe axisymmetri
 
omputational domain.8.1.3 Faraday probe simulationsThe hybrid �uid PIC models were used to simulate the plasma �ow around an ax-isymmetri
 Faraday probe geometry in Chapter V. Plasma 
onditions were sele
tedto be representative of the 
onditions downstream and far o�-axis in the plume ofa low power Hall thruster. The 
omputational domain was sized from the upstreamlength of the Bohm sheath solution and the radial dimensions of a JPL Faradayprobe. The 
omputational grid spa
ing was determined from the stability require-ments of the �uid model di�erential equations, and the simulation time step was
al
ulated su
h that the fastest simulated parti
les do not travel more than a 
elllength per iteration.The hybrid PIC Boltzmann model was used extensively to investigate the e�e
tsof the in�ow ion distribution on the properties in the sheath and at the surfa
e of theprobe. In Se
. 5.3.1 the model was used on a quasi one dimensional 
omputationalgrid for a dire
t 
omparison with the planar Bohm sheath solution. The hybrid �uidPIC model very 
losely approximated the assumptions of the Bohm sheath solution,and the pro�les of the quasi one dimensional results were in ex
ellent agreement withthe Bohm sheath pro�les for the 
old ion 
ase. The hot ion 
ase showed the e�e
t ofa higher ion temperature, whi
h leads to a small de
rease in lo
al ion number densityin the sheath. The 
olle
ted 
urrent at the probe was una�e
ted.The hybrid PIC Boltzmann model was next used on the probe geometry 
ompu-tational domain to investigate two dimensional e�e
ts. In Se
. 5.3.2 the edge e�e
tsare shown to be limited to within 0.0015 m or 2 λD of the outer radial edge of the



190probe for both the 
old ion 
ase and the hot ion 
ase.Next the hybrid PIC Boltzmann model was used to simulate the plasma in�ow
onditions that in
rementally approa
hed the 
ompli
ated 
omposite distributionthat 
onsisted of beam, CEX, and double 
harge ions. The �rst 
ombination in
ludedjust beam and CEX ions, as the beam-CEX 
ase. As was des
ribed in detail inSe
. 5.3.3, the presen
e of a se
ond ion 
omponent a
ted to shield the parti
les fromthe potential drop until 
loser to the probe surfa
e. The Bohm sheath solution
al
ulated from the total ion density and bulk Ma
h number with respe
t to Bohmvelo
ity was shown to be a good predi
tor for the number densities and plasmapotential in the sheath. The 
omponent distributions formed essentially independentsheath stru
tures that were a

urately predi
ted by using the plasma potential andthe 
omponent freestream Ma
h number with respe
t to Bohm velo
ity.The beam-CEX-double 
omposite distribution was simulated in the same way,and the same high level of agreement with the Bohm sheath was maintained. Addinga double 
harge 
omponent did not signi�
antly a�e
t the properties of the other
omponents.The hybrid PIC Boltzmann model was also used to investigate what e�e
ts 
hang-ing the Faraday probe operating 
onditions had on the 
olle
ted 
urrent. The �rstof these studies, in Se
. 5.3.4, 
hanged the guard ring bias relative to the 
olle
tingsurfa
e bias. This 
reated potential gradients and ele
tri
 �elds that would fo
us ionsonto the 
olle
ting surfa
e if the guard ring was at a smaller negative bias than the
olle
ting surfa
e. The 
olle
ted 
urrent varied by 12% from the expe
ted freestream
urrent for a di�eren
e of 5 V between the 
olle
ting surfa
e and the guard ring.The se
ond study of the e�e
ts of 
hanging the Faraday probe operating 
onditionwas des
ribed in Se
. 5.3.5. The probe bias was varied over a range from 0 V to
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−10 V, and the total 
olle
ted 
urrent at ea
h bias was 
ompared to the theoreti
altotal 
urrent. The error in the 
olle
ted 
urrent showed a positive 
orrelation within
reasing negative bias, whi
h was attributed to sheath expansion. However, theaxial velo
ity was large in this 
ase, and the probe showed less than 2% error overthe range of bias potentials.A 
omparison of simulated 
olle
ted 
urrent with experimental measurement wasmade in Se
. 5.3.6. The simulated measurement was in 
lose agreement with theexperimental measurement, with less than 3% di�eren
e between the two. This levelof agreement is somewhat surprising, 
onsidering that the simulation parameterswere devised from a previous simulation of the BHT-200 plume, and that the detailsof the beam-CEX ion distribution were not determined rigorously. This reinfor
edthe 
on
lusion that the ion distribution does not have a signi�
ant impa
t on the
olle
ted 
urrent measurement.The hybrid PIC non-neutral detailed model was used to simulate the 
old ion
ase in Se
. 5.4. This simulation revealed a problem in the iteration s
heme su
hthat the Lapla
ian of plasma potential remained 
onstant and approximately zero,and the ele
tron density was equal to the ion density as a result. This model wasretired sin
e an alternative detailed model was available.The hybrid PIC Poisson-
onsistent model was used in Se
. 5.5 to simulate the 
oldion 
ase, and produ
ed results that were in ex
ellent agreement with the Bohm sheathsolution. The intermediate 
ombinations leading up to the 
omposite distributionwere not shown, but two modi�ed beam-CEX-double 
omposite 
ases were. The 
old
omposite 
ase had a CEX temperature of 300 K, so that there was essentially noba
k�ow in the plasma distribution. The hot 
omposite 
ase had a CEX temperatureof 11,600 K, whi
h gave a signi�
ant ba
k�ow of about 11.5% of the total distribution.



192The Poisson-
onsistent model simulation of the 
old 
omposite 
ase produ
ed resultsthat showed the usual good agreement with the Bohm sheath solution. However, thesimulation of the hot 
omposite 
ase produ
ed a CEX pro�le that was well belowthe Bohm sheath pro�le throughout the sheath. This dis
repan
y was dis
ussed andattributed to the assumption made in the Bohm sheath solution that ions have auniform positive velo
ity.In assessment of the model performan
e, the Bohm sheath solution was shownto be a reliable predi
tor for plasma properties in the sheath, provided that the iondistribution did not have a signi�
ant ba
k�ow 
omponent. This limitation is looselyrelated to the Bohm 
riterion. It was noted that the Poisson-
onsistent model mightbe 
apable of simulating the sheath for plasma 
onditions where the Bohm 
riterionwas not met and no Bohm sheath solution was available.8.1.4 Multigrid methodsThe simulation time required for the Faraday probe simulations was already 30-35 hours, so the three to four times larger domain required for reversed Faraday probesimulations 
ould not be simulated in a reasonable amount of time. Chapter VIdes
ribed the analysis of the 
ode performan
e and the in
lusion of a multigrids
heme to speed up the 
ode.A time pro�le of the 
omputational 
ode was performed in Se
. 6.1 that identi�edthe parti
le models as the largest time expense. It was noted that �uid model stability
onsiderations determined the 
omputational 
ell size, whi
h was mu
h smaller thanrequired for the PIC or DSMC models. A �xed number of parti
les per 
ell wasenfor
ed to maintain the statisti
s in the PIC model, leading to an ex
essive numberof parti
les. A multigrid method was proposed and implemented that allowed the



193PIC and DSMC models to be performed on a 
oarse PIC grid while the �uid modelswere performed on a �ne �uid grid. This was expe
ted to de
rease the overall parti
le
ount by a fa
tor four, whi
h would speed up the parti
le routines by a similar fa
tor.In Se
. 6.3 a time pro�le of the multigrid version of the 
ode was performed, andthe overall speed up fa
tor was shown to be 2.22. This value was slightly better thanthe expe
ted speed up fa
tor. The simulated properties in the �ow �eld were shownto be essentially un
hanged from the previous single grid version of the 
ode, with amaximum error of ±2% relative to the single grid solution. This enabled the reversedFaraday probe simulations to be performed, sin
e the multigrid version obtained thesame results as the original version of the 
ode and did so in less than half the totaltime.8.1.5 Reversed Faraday probe simulationsIn Chapter VII the plasma �ow around a reversed Faraday probe was simulated.The Bohm sheath solution 
ould not be used, sin
e the ions did not satisfy the Bohm
riterion on the ba
k fa
e of the probe. However, the shadowing sheath model 
ouldobtain a solution for the sheath on the ba
k fa
e of the probe. A modi�ed versionof the hybrid �uid PIC 
ode was developed in Se
. 7.3 to better approximate theassumptions of the geometri
 shadowing sheath model and provide a dire
t 
om-parison. The modi�
ations in
luded dea
tivating the ele
tron �uid models and theele
trostati
 a

eleration of the PIC model, so the remaining 
ode was just a DSMCmodel for the ions. This model was 
alled the geometri
 DSMC model.The plasma 
onditions were sele
ted to maintain a small 
omputational domainin order to limit the required 
omputational time. This suggested a Ma
h numberwith respe
t to Bohm velo
ity of slightly more than one. The ion number density



194and temperature were otherwise the same as the 
old ion 
ase. The 
omputationaldomain was sized using the kineti
 reasoning that the radial di�usion of the fastestparti
les would be several times faster than the mean radial speed. The domain wasmade long enough so that parti
les 
ould di�use a
ross the diameter of the probe.The results of the reversed Faraday probe using the shadowing DSMC modelwere des
ribed in Se
. 7.3. The observed �ow stru
tures generally reprodu
ed theassumptions used to size the domain. A va
uum region was formed immediatelybehind the probe. No for
es a

elerated the parti
les toward the 
enterline, so the�ow rejoined smoothly at the 
enterline with no over
ompression. The 
ylindri
alsurfa
e at the outer edge of the probe was the 
losest approximation to the one di-mensional sheath in the geometri
 shadowing model. The pro�le of ion density alongthat surfa
e was shown to have the same qualitative trends as the geometri
 sheathmodel pro�les. However, no single value of ex
hange frequen
y gave a satisfa
tory�t of the simulated ion pro�le. The e�e
tive ex
hange frequen
y in the shadow-ing DSMC model appeared to have a fun
tional dependen
e on the radial velo
ity,whi
h was not 
ompatible with the assumption of a 
onstant ex
hange frequen
y inthe geometri
 shadowing sheath model.The hybrid PIC Boltzmann model was used to simulated the reversed Faradayprobe in Se
. 7.4. The simulated �ow �eld was shown to be mu
h more 
ompli
atedthan predi
ted by the shadowing DSMC model. The ele
trostati
 sheath 
reatedexpansion regions upstream and along the side of the probe body. Parti
les thatpassed through the sheath on the side of the body were turned toward the 
enterline,whi
h allowed parti
les to turn around the edge of the probe without forming ava
uum region. The a

eleration toward the 
enterline also 
aused the formation ofa 
oni
al over
ompression region about the 
enterline in the wake downstream of the



195probe.The hybrid PIC Poisson-
onsistent model results in Se
. 7.5 were similar to theBoltzmann model results, ex
ept that the 
ontours of plasma potential showed lesspronoun
ed 
urvature throughout the domain. This produ
ed a smaller potentialgradient over a larger area that tended to a

elerate the parti
les along the axisof the probe as well as toward the 
enterline. Combined with the weaker ele
tri
�elds, the �ow was not turned around the edge of the probe as qui
kly, resulting ina lower density region immediately behind the probe than in the Boltzmann modelsimulation. Sin
e the axial velo
ity was higher where the �ow 
onverged on the
enterline, parti
les were 
arried downstream faster. This narrowed the 
one andde
reased the peak density in the over
ompression region.The simulated ex
hange frequen
ies for the shadowing DSMC model and thehybrid PIC models were dis
ussed in Se
. 7.6. The shadowing DSMC showed anapproximately 
onstant frequen
y for parti
les moving into the wake sheath, but amu
h lower frequen
y for parti
les moving out of the wake sheath. Both of the hybridmodels showed a 
ompli
ated pattern for the ex
hange frequen
y that was explainedby the orientation of the �ow velo
ity. The geometri
 shadowing sheath model 
ouldnot make use of these results, sin
e the ex
hange frequen
ies were not 
onstant andwere not equal for transfer into and out of the sheath.8.2 Impli
ations for probe design and te
hniqueThe results reported in Chapter V for the standard Faraday probe and in Chap-ter VII for the reversed Faraday probe 
an be interpreted to make several re
ommen-dations for the design and use of Faraday probes, ful�lling the third major obje
tiveof this dissertation.



196In Chapter V, hybrid PIC models produ
e simulated properties near the 
enter-line that are 
onsistently in good agreement with the planar Bohm sheath solutions.This holds true over the full range of in�ow plasma 
onditions, from the 
old ionbeam 
ase to the beam-CEX-double 
omposite 
ase. Edge e�e
ts are observed, butthe e�e
ts are limited to a few Debye lengths from the outer edge of the probe sur-fa
e. Additionally, the total 
olle
ted 
urrent at the surfa
e of the probe is alwaysin very good agreement with the theoreti
al 
urrent in the freestream.The results from the guard ring bias study in Se
. 5.3.4 show that the 
olle
ted
urrent most a

urately mat
hes the theoreti
al 
urrent when the guard ring and
olle
ting surfa
e are biased to the same potential. This is reinfor
ed by observingthat the 
urrent streamlines to the 
olle
ting surfa
e are normal to the surfa
e whenthe guard ring and 
olle
ting surfa
e are biased to the same potential.The results from the probe bias sweep study in Se
. 5.3.5 show that the 
olle
ted
urrent mat
hes the theoreti
al 
urrent within about 2% over a broad range of biaspotential. There is a gradual in
rease in the error as the bias voltage is made morenegative, whi
h 
orresponds to sheath expansion. Provided that the plasma has ahigh axial velo
ity, the error introdu
ed by sheath expansion will be small.The re
ommendations for operation of a Faraday probe are in agreement withthe established standard pra
ti
es:1. Use a guard ring that is a few Debye lengths wide to prevent edge e�e
ts fromrea
hing the 
olle
ting surfa
e.2. Keep the spa
e between the 
olle
ting surfa
e and the guard ring smaller thana few Debye lengths to maintain a uniform sheath over the entire 
olle
tingsurfa
e.



1973. Bias the 
olle
ting surfa
e and the guard ring to the same potential.4. Use the smallest bias potential that repels all of the ele
tron 
urrent to avoidsheath expansion.
When these re
ommendations are followed, the 
olle
ted 
urrent at the surfa
eof a Faraday probe a

urately re�e
ts the ion 
urrent in the freestream.Re
ommendations for the reversed Faraday probe are more di�
ult. Resultsfrom the hybrid PIC models in Chapter VII show a 
ompli
ated wake stru
ture withba
k�ow to the probe and a stagnation point near the ba
k surfa
e of the probe.For a strongly �owing plasma, the 
urrent that rea
hes the ba
k surfa
e of the probeoriginates upstream of the probe and is turned around the edge of the probe bypassing through the ele
trostati
 sheath along the side of the probe body. To avoidinterfering with the �ow that arrives at the rear fa
e of the probe, features along theside body of the probe should be minimized.If instead the intention is to measure a ba
k�ow 
urrent that originates down-stream of the probe, it is re
ommended that the body of the probe be allowed to�oat to the plasma potential. Then the forward �owing 
urrent along the side ofthe probe body would not be a

elerated toward the 
enterline, and would not turnaround the edge of the probe as easily. The bias potential on the rear 
olle
tingsurfa
e and guard ring should also use the smallest bias potential that still repelsthe ele
tron 
urrent to avoid sheath expansion that might draw in forward �owing
urrent.



1988.3 ContributionsIn the 
ourse of this dissertation a number of unique and original 
ontributionshave been made.� Se
. 3.4: A least-squares �t of ex
hange frequen
y is performed to mat
h ageometri
 shadowing sheath solution to a Bohm sheath solution. This is the�rst known quantitative assessment of the ex
hange frequen
y.� Se
. 4.5: The di�erential equations of ele
tron momentum 
onservation for thenon-neutral detailed model and the Poisson-
onsistent detailed model are 
har-a
terized as one dimensional 
onstant 
oe�
ient di�erential equations. The useof a one dimensional ADI solver to investigate the stability and a

ura
y of themodel equations had not been performed previously.� Chapter V: Hybrid �uid PIC models are used for the �rst time to simulate the�ow around a Faraday probe, in
luding a simulated 
olle
ted 
urrent at theprobe surfa
e.� Se
. 5.3.3: Combinations of ion 
omponent distributions are simulated, andshown to form independent sheath stru
tures that intera
t only with the 
ol-le
tive plasma potential. The Bohm sheath solution using the average Ma
hnumber is shown to be a good predi
tor of the 
olle
tive plasma potential andthe total ion number density in the sheath.� Chapter VI: This is the �rst known instan
e of a multigrid method beingin
orporated into a hybrid �uid PIC model.� Chapter VII: Hybrid �uid PIC models are used for the �rst time to simulatethe �ow around a reversed Faraday probe.



199� Se
. 7.6: The ex
hange frequen
ies into and out of the probe 
ylinder aresimulated for axisymmetri
 DSMC and hybrid �uid PIC models for the �rsttime.8.4 Future workThere are several areas in this dissertation where interesting questions remain orwhere further e�orts are needed.The reversed Faraday probe simulations require a substantial time to run, soonly a few basi
 
ases have been simulated at this point. It would be interesting tosimulate some of the 
omposite ion distributions to identify whether or not there issigni�
ant separation of the di�erent 
omponents on the wake side of the probe. Itwould also be interesting to investigate alternative boundary 
onditions for the biaspotential on the body of the probe, whi
h 
ould help improve the re
ommendationsfor use of the reversed Faraday probe.There is a ready opportunity to use the models in this work to produ
e simulationsfor 
omparison with experiments. Re
ent experimental investigations of the sheathformed in a plasma with multiple atomi
 spe
ies show that the di�erent spe
ies attainsigni�
antly di�erent velo
ities in the sheath [83, 84℄. The models in this work arewell-suited to 
onsider a similar situation numeri
ally, and would bene�t from thegeneralization involved with simulating other atomi
 spe
ies. The highly su

essfulperforman
e of the Bohm sheath model for 
omposite ion distributions suggests thatit might also be useful for the sheaths in multiple ion spe
ies plasmas.One physi
al e�e
t that 
ould a�e
t probe performan
e that is not 
onsideredin the present work is se
ondary ele
tron emission (SEE) at the 
olle
ting surfa
eof the probe. An emitted ele
tron 
urrent is indistinguishable from a 
olle
ted ion
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urrent at the probe surfa
e, and would result in an overestimate of the ion 
urrentin the ambient plasma [1℄. The 
omputational models des
ribed in this work 
ouldbe modi�ed to in
lude a model for SEE as part of the boundary 
onditions at theprobe surfa
es. It is expe
ted that the primary e�e
t of SEE would be to modifythe ele
tron properties near the probe surfa
e, but that the ion plasma would not bea�e
ted signi�
antly.With a few minor modi�
ations to the existing 
omputational 
ode, parti
les
ould be inje
ted at the downstream edge of the domain, allowing the simulation ofweakly �owing plasmas. This would enable the investigation of the reversed Faradayprobe for use in a quies
ent plasma, and would allow better representation of iondistributions like the hot 
omposite 
ase that have a signi�
ant ba
k�ow 
omponent.E�orts to extend the multigrid method to an additional level of 
omputationalgrids 
ould e�e
t another signi�
ant speed up in the overall 
ode performan
e byredu
ing the parti
le 
ount by another fa
tor of four. As the multigrid s
heme ispresently implemented, the �uid equations are only solved on the �nest grid. Usinga more traditional multigrid approa
h, the �uid equations 
ould be solved on the
oarse grid �rst, then prolonged and solved on the �ner grid. For best results ina multigrid setting, the �uid equation solver should operate qui
kly rather thana

urately. The ADI solver is therefore not well-suited for use in a multigrid s
heme.A faster iterative method would be more appropriate.The Poisson-
onsistent model is not pra
ti
al for simulation of an extendedplasma, sin
e the �uid model requires �ne 
ell spa
ing to maintain stability. Ina region where the plasma potential is small and gradients in plasma potential aresmall, signi�
ant 
omputational e�ort is expended to simulate pra
ti
ally neutral�ow. This suggests a di�erent sort of hybrid s
heme where the Poisson-
onsistent



201model is only solved in the non-neutral sheath regions while faster neutral modelsare solved in the rest of the plasma.One area for new development is the extension of the hybrid PIC Poisson-
onsistentmodel to a three dimensional implementation. The axisymmetri
 implementationused in this work 
annot investigate situations where the plasma velo
ity is in
linedrelative to the 
enterline of the probe.
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ABSTRACTComputational Simulation of Faraday Probe MeasurementsbyJeremiah J. Boerner
Chair: Iain D. Boyd

Ele
tri
 propulsion devi
es, in
luding ion thrusters and Hall thrusters, are be-
oming in
reasingly popular for long duration spa
e missions. Ground-based exper-imental testing of su
h devi
es is performed in va
uum 
hambers, whi
h develop anunavoidable ba
kground gas due to pumping limitations and fa
ility leakage. Besidesdire
tly altering the operating environment, the ba
kground gas may indire
tly a�e
tthe performan
e of immersed plasma probe diagnosti
s.This work fo
uses on 
omputational modeling resear
h 
ondu
ted to evaluate theperforman
e of a 
urrent-
olle
ting Faraday probe. Initial �ndings from one dimen-sional analyti
al models of plasma sheaths are used as referen
e 
ases for subsequentmodeling. A two dimensional, axisymmetri
, hybrid ele
tron �uid and Parti
le InCell 
omputational 
ode is used for extensive simulation of the plasma �ow arounda representative Faraday probe geometry.



1The hybrid �uid PIC 
ode is used to simulate a range of in�owing plasma 
ondi-tions, from a simple ion beam 
onsistent with one dimensional models to a multiple
omponent plasma representative of a low-power Hall thruster plume. These sim-ulations produ
e pro�les of plasma properties and simulated 
urrent measurementsat the probe surfa
e. Interpretation of the simulation results leads to re
ommenda-tions for probe design and experimental te
hniques. Signi�
ant 
ontributions of thiswork in
lude the development and use of two new non-neutral detailed ele
tron �uidmodels and the re
ent in
orporation of multi grid 
apabilities.


