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Aerocapture is a mass-efficient orbital insertion method that utilizes atmospheric drag to de-

celerate a spacecraft, making it an enabling technology for Ice Giant exploration. However, the

severe hypersonic environments encountered during aerocapture create significant challenges due to

the intrinsic coupling between a spacecraft’s trajectory and its aerothermodynamic environment.

Traditional spacecraft design approaches treat these subsystems separately, relying on iterative

methods that neglect their direct interaction. This dissertation takes a step toward a more inte-

grated treatment of hypersonic systems by developing robust aerocapture guidance frameworks that

directly integrate aerothermodynamic uncertainty information obtained using high-fidelity computa-

tional fluid dynamics (CFD). First, a detailed uncertainty quantification (UQ) and global sensitivity

analysis (GSA) is conducted at key points along a Neptune aerocapture trajectory, accounting for

variations in chemical kinetic parameters and the freestream composition. This analysis yields high-

fidelity uncertainty bounds for convective and radiative heating distributions, as well as aerodynamic

coefficients. Next, the information obtained from the UQ/GSA study is distilled into a reduced-

order model using Gaussian process regression (GPR), which enables the efficient propagation of

aerothermodynamic uncertainty along an entire trajectory. Finally, two aerocapture guidance algo-

rithms, both based in the principles of sequential convex programming (SCP), are developed. The

first is the convex predictor-corrector aerocapture guidance (CPAG) algorithm, which repeatedly

solves a deterministic, constrained optimal control problem. CPAG eliminates the need for discrete

lateral logic to control out-of-plane error and seamlessly integrates system-level constraints, such as

heat load and aerodynamic loading, into its corrective logic. The second takes a stochastic optimal

control approach to the aerocapture guidance problem, in which aerothermodynamic, aerodynamic,

and atmospheric uncertainty are explicitly modeled within the optimization problem. This ap-
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proach simultaneously optimizes a feedback control law with uncertainty in mind. Both guidance

algorithms are compared against the state of the art and are shown to robustly guide aerocapture

vehicles to their target orbit in the presence of uncertainty. By directly integrating aerothermody-

namic modeling with trajectory optimization and guidance, this dissertation helps bridge the gap

between traditionally separate subsystems in hypersonic vehicle and mission design.
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“In the face of overwhelming odds, I’m left with only one option: I’m gonna have to science the

shit out of this.”

— Mark Watney



Chapter 1

Introduction

“To confine our attention to terrestrial matters would be to limit the human spirit.”

— Stephen Hawking

On July 24th, 1969, the Apollo 11 spacecraft reentered the Earth’s atmosphere, returning

astronauts Neil Armstrong, Buzz Aldrin, and Mike Collins from humanity’s first Lunar landing. The

sole goal of the spacecraft was to deposit these three men safely in the Pacific Ocean, decelerating

from an initial velocity of 11.03 km/s to rest. To do so, the vehicle had to actively guide itself through

the Earth’s atmosphere, requiring the precise management of the dissipation of the vehicle’s kinetic

energy. If too much energy is dissipated, the vehicle fails to reach its intended destination, but

insufficient energy dissipation will result in the spacecraft impacting the surface at lethal speeds.

According to the conservation of energy, energy cannot be created or destroyed, only transferred or

transformed from one form to another. So, what happened to the nearly 338 GJ of initial kinetic

energy of the spacecraft as it traversed Earth’s atmosphere?

The answer lies in the severe aerothermodynamic phenomena that govern hypersonic flight.

As the Apollo Command Module plunged into the atmosphere, the air molecules surrounding the

spacecraft were rapidly decelerated and compressed, forming a strong shock wave around the vehicle

that transferred the majority of the gas’ kinetic energy into thermal energy. Due to the immense

energy in the freestream, this resulted in temperatures within the shock layer exceeding the surface

of the Sun. To survive this harsh environment, the spacecraft required a robust thermal protection

system (TPS), which was designed to gradually burn away as the vehicle maneuvered itself through
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the atmosphere using its guidance, navigation, and control (GNC) system. This ablative TPS not

only absorbed and dissipated the extreme heat but also influenced the vehicle’s aerodynamic profile,

necessitating precise GNC adjustments to maintain trajectory accuracy.

This fundamental interplay between a vehicle’s trajectory and its aerothermodynamics en-

vironment is inherent to hypersonic flight, particularly in applications such as planetary entry,

aerocapture, and atmospheric reentry. The trajectory of a hypersonic vehicle dictates the rate at

which energy is dissipated, directly influencing the heating environment and aerodynamic forces

experienced by the vehicle. Conversely, the aerothermodynamic response — including shock forma-

tion, boundary layer behavior, and heat transfer — affects aerodynamic forces, which in turn alter

the vehicle’s trajectory. This two-way coupling is especially critical for vehicles relying on aero-

dynamic forces to guide themselves. Historically, this coupling has been treated using an iterative

approach in which each subsystem (e.g., TPS, GNC, etc.) is treated individually, and the design

of one is used to inform the design of another. There is, at present, a gap in the treatment of this

coupling in space-exploration settings, and if the interplay between subsystems can be accounted

for accurately, the overall system performance and design process could see significant benefit [1, 2].

The central aim of this dissertation is to take a step in the direction of filling this gap, and, while

the application of this research is for aerocapture systems, the fundamental physics of the problem

render it relevant to any hypersonic system.

1.1 Aerocapture

One such field that is a prime candidate for a more coupled approach is aerocapture, which

is an orbital insertion technique that relies on atmospheric drag to reduce a spacecraft’s energy. A

general aerocapture concept of operations is illustrated in Figure 1.1, where an inbound hyperbolic

orbit is converted into a bound, elliptical orbit by performing a single pass through a planet’s

atmosphere. Typically, two orbital correction burns, labeled as ∆V1 and ∆V2 in Figure 1.1, are

scheduled to raise the periapsis out of the planet’s atmosphere and clean up any errors in the

apoapsis radius, respectively.
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Figure 1.1: Aerocapture concept of operations.

Despite being proposed as early as the 1960s [3, 4, 5], aerocapture, to date, has never been

used in a mission. The first proposal to use aerocapture was the Aeroassisted Flight Experiment

(AFE) [6], which was developed to gather the required validation data for computational modeling

of the nonequilibrium phenomena (discussed in more detail in Chapter 2) that could not be collected

in ground-test facilities [7]. Unfortunately, the AFE was canceled due to mass and budget concerns

and a refocusing of NASA’s priorities to the Space Shuttle program. Aerocapture was proposed

for a variety of missions following the AFE, including the Mars Surveyor orbiter [8] and Mars

Sample Return [9], however, it was never executed due to factors including perceived risk, cost, and

program cancellations. Later, in the early 2000s, a series of system-level analyses were performed

for aerocapture concepts at Mars [10], Venus [11], Titan [12], and Neptune [13]. The last of these

concluded that successful aerocapture at Neptune would require a substantial development of new

technology, including higher lift-to-drag ratio vehicle geometries, deviating substantially from flight-

proven heritage technology.

Consequently, when the most recent Planetary Science Decadal Survey [14] identified missions

to the outer planets to be of high scientific interest, including a Uranus orbiter and probe as the

highest priority flagship mission [15], the participating agencies proposed a mission concept involving

a heritage blunt-body aeroshell using a propulsive orbit insertion [16]. Because they are far from
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the Sun, a mission to the Ice Giants using standard, fully-propulsive orbit insertion techniques has

a transit time ranging from 13 to 15 years. Reducing this transit time would require prohibitively

large propulsive ∆V requirements for successful orbit insertion, significantly reducing the allowable

payload mass and science capabilities. Aerocapture can alleviate many of these concerns, by enabling

faster transit times and increased science payload mass [17, 18, 19, 20, 21], yet its perceived risk

prevented it from being proposed as the baseline architecture for Ice Giant exploration. In the

last few years, there has been substantial effort directed at demonstrating that the developmental

requirements concluded in the original 2004 Neptune aerocapture study [13] are not necessary, and

that successful Ice Giant aerocapture can be accomplished using heritage technology [22, 23].

Successful aerocapture requires the integration of numerous technologies. Two subsystems

that are particularly relevant for aerocapture, and that will be the focus of this dissertation, are

the aerothermodynamics and atmospheric guidance system of the spacecraft. Owed to the immense

entry velocities, substantial aerothermal1 analysis of the spacecraft is required to design its TPS,

and a robust guidance system is needed to control the trajectory during the atmospheric flight

phase, such that it can enter as closely to the target orbit as possible. Central to this dissertation

is the explicit treatment of the coupling between these two domains, and the following sections

provide motivating background for each.

1.1.1 Aerocapture Aerothermodynamic Modeling

Fundamentally, the discipline of aerothermodynamics is concerned with the analysis of the

extreme environments produced during hypersonic flight, with the goal of accurately predicting

the heating, pressure, and shear-stress profiles on the surface of the spacecraft during its flight

through an atmosphere. For aerocapture, the high velocities produce substantial convective heating,

and, if the velocity is high enough, radiative heating. Predicting the extent to which each of

these sources contributes to the total heating environments requires a detailed understanding of

the nonequilibrium thermochemistry in the high-temperature gas surrounding the vehicle. Efforts
1 “Aerothermodynamic” and “aerothermal” are used interchangeably throughout this dissertation.
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supporting this need have been progressing since the 1950s [24], and early success in the space-

exploration domain was demonstrated during the Mercury, Gemini, and Apollo eras. A typical

aerothermodynamic analysis of a spacecraft consists of experimental techniques, using wind tunnels,

shock tunnels, and ballistic ranges, and computational methods, including computational fluid

dynamics (CFD) and direct simulation Monte Carlo (DSMC) methods [25].

Each analysis must be tailored to the intended planetary destination, as the aerothermody-

namics in an atmosphere like Earth differ substantially from that in the atmosphere of Mars or

Neptune. Unlike Earth, the atmosphere of the Ice Giants consists primarily of hydrogen (H2) and

helium (He), with trace amounts of methane (CH4). In order to determine the magnitude of the

convective and radiative heating, it is necessary to predict the state of the gas behind the shock.

Behind the shock wave formed around the entry vehicle, the molecules H2 and CH4 will dissociate

into their constituent atoms H and C, and the short time scales produced in hypersonic flight pro-

duce conditions that may or may not be in thermochemical equilibrium. Therefore, it is necessary

to determine the finite rate at which reactions occur in H2/He/CH4 mixtures.

In the 1970s, the first experimental efforts were directed at characterizing the rates of chemi-

cal reactions of He/H2 mixtures in strongly shocked flows. Leibowitz [26] measured the ionization

equilibrium times in a 21% H2+79% He mixture for shock speeds up to 18 km/s. Shortly there-

after, Livingston and Poon [27] conducted a similar experiment using an 84% H2+16% He mixture

in which the shock speeds reached 40 km/s. In 2002, an experiment by Bogdanoff and Park [28]

tested a 100% H2 mixture for shock speeds up to 30 km/s. Each of these experiments predicted

drastically different ionization rates, which Park [29] attributed to post-shock radiation contami-

nation of the data. Despite the speculation over the validity of these rates, the rates measured by

Leibowitz [26] and Leibowitz and Kuo [30] remain the standard kinetic model for simulating Ice

Giant aerothermodynamics.

On the theoretical side, a series of studies were carried out by Park [24]. He investigated

phenomena such as hydrogen Lyman-α radiation [31], and eventually produced a comprehensive

theoretical model [29] that attempted to account for the experimental defects observed in the work
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of Leibowitz and Livingston and Poon. These were then used to assess the aerothermodynamic

environment of a Neptune aerocapture vehicle [32, 33], which concluded that the radiative-heating

environments for the proposed Neptune aerocapture scenario [34] were high.

Until recently, very few studies have considered the effects of CH4 on the aerothermodynamics

of an Ice Giant aerocapture scenario. Some computational results have shown the addition of CH4

can drastically increase the radiative-heating environments [32, 35], while experimental observations

[36, 37] have shown a weaker radiation augmentation. This uncertainty is further exacerbated

by the inability of all CFD-compatible thermochemical models to accurately predict the radiance

measurements obtained experimentally [38]. Instead, Carroll et al. [39, 40] have shown that a

detailed treatment of the state-specific kinetics of H2/He is required to improve the agreements

between numerical simulation and experimental measurements. Uncertainties in the aerothermal

predictions are not desired because they can lead to unnecessarily heavy TPS, which can have a

ripple effect throughout the spacecraft and may limit the payload mass allocation. The discrepancy

between computational and experimental results, combined with the effect of aerothermodynamic

uncertainty on an aerocapture vehicle design, are the driving motivations for the detailed uncertainty

quantification (UQ) effort carried out in Chapter 3.

The role of uncertainty quantification in spacecraft aerothermodynamic design has become

more prevalent over the last several years [41, 42, 43]. Modeling of aerothermodynamics phenomena

requires hundreds of (potentially uncertain) input parameters for chemical kinetic rates, mixture and

species transport properties, exchange of energy between translational and internal energy modes,

and gas-surface interactions. Sophisticated global sensitivity analysis (GSA) techniques are shown

to handle these high-dimensional problems efficiently [44, 42, 45, 46, 47], and the same techniques

used in these works are employed in this dissertation. Apportionment of uncertainty to individual

parameters using GSA provides a quantitative basis for parameters that should be investigated

further which can lead to increased confidence in TPS and vehicle design. This dissertation also

seeks to extend the benefits of uncertainty quantification beyond single trajectory points to an entire

trajectory, techniques for which are further explored in Chapter 4.
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1.1.2 Aerocapture Guidance

In a general aerocapture setting, the role of the onboard guidance system is to determine

the required aerodynamic lift and/or drag force vector orientation, so that the spacecraft can exit

the atmosphere and enter its target orbit without expending considerable amounts of propellant

to perform orbital-correction maneuvers. Guidance commands are driven by the flight control law,

which, by necessity, is closed-loop because the vehicle will likely deviate from the desired trajectory

due to external disturbances and parametric uncertainties. The performance of an aerocapture

guidance algorithm is typically evaluated statistically through repeated Monte Carlo simulations,

which incorporate random variations in atmospheric conditions, initial vehicle states, and numerous

other uncertain parameters. A “robust” aerocapture guidance algorithm is, thus, one that can

properly respond to the uncertainty present in the environment and adapt its commands accordingly.

Despite never being flow, aerocapture guidance algorithm development has received substan-

tial attention over the years. Early iterations of aerocapture guidance were derived from the Apollo

entry guidance law, which uses a linear feedback control law obtained using the calculus of varia-

tions about a pre-determined reference trajectory [48]. This form of guidance, often referred to as

a terminal point controller (TPC), is sensitive to the design of the reference trajectory and requires

the tuning of the feedback gains. Despite the lightweight nature of TPC guidance, the gain-tuning

process is problem dependent and can limit its generality and robustness.

An alternative to reference-tracking guidance are predictor-corrector algorithms. Predictor-

corrector algorithms predict, either analytically or numerically, the remainder of the trajectory using

the current control policy, which is then used to calculate the required corrections to the control,

typically such that some performance index is minimized [49]. Due to the increased onboard com-

putational requirements, predictor-correctors typically apply significant simplifications, including

reduced sets of equations of motion and univariate, parametric control profiles. Analytic predictor-

correctors (APC) utilize analytic solutions to the equations of motion within the prediction phase,

which are limited to specific classes of flight, such as an equilibrium-glide condition [50] or ballis-
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tic motion [51]. While APC benefits from the reduction in computation burden, the assumptions

made to obtain the analytic solutions degrade the accuracy of the predictor, inherently limiting

its robustness. The Hybrid Predictor-Corrector Aerocapture Scheme (HYPAS) combines an APC

with reference-tracking logic, and was the guidance algorithm considered in NASA’s extensive 2004

aerocapture systems-analysis campaign. Because it combines predictor-corrector logic and reference-

tracking logic, HYPAS bypasses the need to design a reference trajectory in advance. However, its

prediction accuracy suffers when the true motion of the vehicle is not well approximated by an

equilibrium glide.

On the other hand, numerical predictor-correctors (NPC) make predictions by numerically

integrating the spacecraft equations of motion onboard [52]. Although historically deemed impracti-

cal due to high computational demands, advancements in space-rated flight computer performance

have made NPC guidance feasible, as demonstrated during the Artemis 1 skip entry. [53]. An

extension of the Orion NPC, called PredGuid+A [54], seeks a constant bank-angle such that the

∆V required to correct the orbit is minimized. The fully numerical predictor corrector guidance

(FNPAG) [55] relaxes the assumption of a constant bank angle, using a bang-bang bank-angle pro-

file that follows from the solution to a deterministic optimal control problem. FNPAG has been the

subject of numerous aerocapture studies [56, 57, 58, 59] and is considered to be the state of the art.

Because of the onboard computational requirements, existing NPC algorithms typically solve

an unconstrained optimization problem, rendering the inclusion of system-level constraints – such as

aerodynamic heating and loading – infeasible. A method for augmenting the FNPAG control profile

to compensate for path constraints is presented in [52], however, doing so negates the optimality of

form originally derived in [55]. With the increase in onboard computational capabilities, though,

comes the ability to solve more complex optimization problems. This has been adopted heavily in

the powered-descent community, in which convex-optimization based algorithms have been shown

to be capable of running in real time onboard a spacecraft [60]. Convex-optimization based guidance

has seen great success for a variety of applications including, but not limited to, powered descent

guidance [61, 62, 63], atmospheric entry [64, 65, 66], low-thrust trajectory design [67], aerocapture
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trajectory optimization [68, 69, 70, 71], and stochastic feedback control policy design [72, 73].

The inability to impose mission-critical constraints in an NPC setting, combined with the recent

advancement in numerical optimization techniques, are the fundamental motivators for the advanced

NPC guidance algorithm developed in Chapter 6.

Regardless of the underlying architecture, an aerocapture guidance algorithm has to be ro-

bust to uncertainty. Generally, the sources of environmental2 uncertainty can be placed into one

of two categories: aerodynamic and aerothermodynamic. Aerodynamic uncertainty stems from

the lack of knowledge in a planet’s atmospheric properties and the aerodynamic properties of the

spacecraft itself, among others. Aerothermodynamic uncertainty, on the other hand, is produced by

the uncertainty in the predictions of the convective- and radiative-heating environments along the

aerocapture trajectory. As highlighted at the beginning of this chapter, these two disciplines are

inherently coupled, yet in current entry and aerocapture guidance algorithm performance analyses,

aerodynamic uncertainty is the only environmental uncertainty considered. In [74], atmospheric

density uncertainty is explicitly included in the optimization of an aerocapture feedback control

policy, highlighting the benefit of a stochastic treatment of the guidance problem. The lack of

aerothermodynamic uncertainty inclusion in aerocapture guidance design, and the demonstrated

success of stochastic-optimal-control based guidance techniques form the basis for the stochastic

aerocapture guidance algorithm developed in Chapter 7.

1.2 Dissertation Overview

This dissertation takes a step toward a more direct integration of aerothermodynamic mod-

eling and guidance algorithm design for hypersonic systems. Aerocapture is chosen as the central

problem due to its unique challenges at the intersection of these disciplines. Despite its significance,

an explicit, high-fidelity treatment of the coupling between aerothermodynamics and guidance re-

mains largely unexplored in the hypersonics and space exploration research community. This work
2 The environment classifier is used because uncertainty is also present in other aspects of an aerocapture mission,

such as arrival state uncertainty and onboard navigation but are not relevant to the current discussion.
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addresses key challenges on both fronts, with efforts focused on high-fidelity aerothermodynamic

uncertainty quantification, the propagation of these uncertainties along an entire trajectory, and the

development of sophisticated, robust aerocapture guidance algorithms that explicitly account for

aerothermodynamic variability. By advancing the understanding of the interplay between aerother-

modynamic uncertainties and guided hypersonic flight, this dissertation improves the state of the art

in aerocapture modeling and control, contributing to the development of more reliable and efficient

planetary entry systems.

1.2.1 Organization

This dissertation consists of eight chapters. Chapter 2, introduces the high-fidelity numerical

tools used to model the aerothermodynamic environment of an aerocapture vehicle. It first explains

key hypersonic flow phenomena and their impact on vehicle design, then details the computa-

tional tools used, including CFD and radiative-transport models. Chapter 2 also covers methods

for assessing uncertainty in these models, identifying key contributing factors through uncertainty

quantification (UQ) and global sensitivity analysis (GSA). Finally, it introduces Gaussian process

regression (GPR) as a reduced-order modeling technique to efficiently estimate uncertainty along

an entire aerocapture trajectory.

The primary aerothermodynamic-focused results are contained in Chapters 3 and 4. Chap-

ter 3 applies the high-fidelity computational tools and uncertainty quantification (UQ) techniques

to analyze the aerothermodynamic environment of an Ice Giant aerocapture trajectory. Baseline

profiles for convective- and radiative-heating distributions and the axial-force coefficient are estab-

lished, followed by UQ and GSA to identify key parameters that most influence predictions of each

aerothermal quantity of interest. The effects of including H2
+, a species typically omitted from Ice

Giant aerothermodynamic analysis, are studied in an additional UQ/GSA analysis. In Chapter 4,

a Gaussian-process-regression-based framework is developed to approximate the uncertainty inter-

vals predicted in Chapter 3 along an entire aerocapture trajectory. The predictive capabilities of

the Gaussian-process based models are enhanced through the use of invariant kernel design, which
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enables physical constraints to be encoded within the surrogate structure.

Chapter 5 provides the preliminary material required for modeling aerocapture trajectories

and the fundamental requirements for active guidance systems. The mathematical foundations of

the guidance algorithms developed in the dissertation are reviewed, focusing on convex optimiza-

tion and sequential convex programming (SCP) for both deterministic and stochastic trajectory

optimization. In Chapter 6, the Convex Predictor-Corrector Aerocapture Guidance (CPAG) algo-

rithm is presented, which improves on current NPC algorithms by using convex optimization in the

correction phase. This allows for more complex control profiles and directly enforces aerothermody-

namic constraints. An extensive Monte Carlo campaign is conducted, comparing the performance of

CPAG to FNPAG. Then, a quantitative analysis of an energy-based apoapsis targeting expression

capable of accounting for non-spherical gravitational perturbations is given, highlighting its benefit

over conventional apoapsis expressions. Chapter 7 takes a stochastic optimal control approach to

the aerocapture guidance problem, in which uncertainty in the atmospheric density, vehicle aerody-

namics, and aerothermodynamic environment are explicitly considered in the design of a feedback

control policy. In support of this explicit uncertainty treatment, the theoretical underpinnings of the

effect of multiple, interacting, correlated noise sources are derived. Lastly, a summary, conclusion,

and recommended future work are provided in Chapter 8.
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Chapter 2

Preliminaries - Aerothermodynamic Modeling and Uncertainty Quantification

“Any dogma, whatever it may be, is bound to be wrong at some point because it is a

model of reality, not reality itself.”

— Isaac Asimov (Foundation, 1951)

2.1 Introduction

This chapter serves two primary purposes. First, it seeks to provide the reader with a back-

ground of the high-fidelity numerical tools used to model the aerothermodynamic environments

of an aerocapture vehicle. To set the stage, the chapter begins with a general overview of the

aerothermodynamic phenomena in hypersonic flows and their importance to aerocapture vehicle

design. In particular, a generalized description of the aerothermodynamic phenomena present in

hypersonic flows is presented, and their relevance to the design of aerocapture vehicles is highlighted.

With this context established, the chapter then describes the two main computational aerothermo-

dynamic tools employed in this dissertation: a computational fluid dynamics (CFD) tool and a

radiative-transport tool. The CFD tool section covers the mathematical models for chemical reac-

tions, thermodynamics, transport properties, and boundary conditions, followed by an explanation

of the radiative-transport tool.

Second, this chapter introduces the mathematical principles used to answer key questions

about each of the aforementioned models’ predictions. These questions are specifically: 1) What

is the uncertainty in each model’s predictions? 2) Which input parameters are contributing most

to that uncertainty? 3) How can the cumulative effects of that uncertainty along a trajectory be
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approximated? The first two of these questions have to do with the concepts of uncertainty quan-

tification (UQ) and global sensitivity analysis (GSA), respectively. It is therefore necessary to

present the theory behind polynomial chaos expansion (PCE) for UQ and GSA, including sparse

point-collocation techniques and the Sobol’ decomposition for sensitivity indices. The third question

deals with the topic of reduced-order modeling, as it is computationally intractable to perform a

detailed UQ analysis at every point along an aerocapture trajectory. Specifically, this research uses

Gaussian process regression (GPR), which is described in the final part of this chapter.

2.2 Physical Characteristics of Hypersonic Aerothermodynamics

This section explores the physical phenomena in hypersonic flows and their relevance to ae-

rocapture vehicle design and analysis. As noted in Chapter 1, the motion of an aerocapture vehicle

and its aerothermodynamic environment are governed by the conservation of mass, momentum, and

energy. When moving at hypersonic speeds, the amount of kinetic energy in the surrounding fluid

is extraordinarily high. Upon crossing the strong shock waves inherent to hypersonic flight, the

gas particles slow down, and the majority of their kinetic energy is converted into internal energy.

This surge in internal energy kick-starts many (if not all) of the defining characteristics of high

Mach-number flight, some of which are illustrated in Figure 2.1.

Consider, for example, a molecule of hydrogen (H2). When this molecule crosses the shock

wave in Figure 2.1, its velocity is slowed dramatically, and its internal energy begins to increase.

But what are these internal energy modes, and how does the amount of energy in them increase?

Generally, the constituent particles of a gas interact by colliding with each other, and these collisions

transfer energy between the particles and internal energy modes. From statistical mechanics, the

following five internal energy modes may be defined.

(1) Translational: the translational mode describes the kinetic energy of a particle and is re-

lated to the random molecular motion of the gas particles. From classical mechanics, it is

expressed as εtr = 1
2mv

2. All particles (atoms and molecules) have translational energy.
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Figure 2.1: Typical processes occurring behind a hypersonic shock wave.

(2) Rotational: the rotational mode describes the energy related to the rotation of a molecule

and is typically described using a rigid rotor model [75]. Generally, diatomic molecules

(e.g. H2) have two rotational degrees of freedom, while triatomic or larger molecules (e.g CH4)

have three. Only molecules have rotational energy.

(3) Vibrational: the vibrational energy describes the oscillations between atoms in molecules

due to the change in the length of the chemical bonds and is typically described using a

harmonic oscillator model [75]. Only molecules have vibrational energy.

(4) Electronic: the electronic energy mode describes the amount of energy contained in a par-

ticle’s electronic states. Bound electrons in atoms or molecules occupy discrete (quantized)

energy levels. This internal energy mode is typically only activated at high temperatures

(>10,000 K), and quantifying the populations of the excited electronic states is necessary

for predicting the radiative-heating environment. All atoms and molecules have electronic

energy.
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(5) Free-Electron: electrons that are no longer bound to an atom also have energy attributed to

their translational motion. Free electrons are produced through ionization reactions which

typically require large amounts of energy.

Returning now to Figure 2.1, a more apt description of the processes occurring behind the

strong shock wave can be given. As the hydrogen molecule crosses the shock wave, its translational

energy is transferred into the internal energy modes via collisions with other particles. At standard

conditions, the rotational mode is fully excited and in equilibrium with the translational mode. At

high temperatures, the next of these internal energy modes to typically activate is the vibrational

mode, which is referred to as “vibrational excitation.” When a particle is vibrationally excited, the

amount of energy contained within the molecule begins to approach the strength of the chemical

bonds, and at some point, the molecule will collide with another particle and dissociate into its

constituent atoms. Dissociation tends to occur preferentially for molecules in vibrationally excited

states, as their internal energy is more adjacent to the dissociation enthalpy of the molecule.

As the gas continues to dissociate, more and more particles will be produced (e.g. the dissoci-

ation of a hydrogen molecule produces two hydrogen atoms) which increases the rate at which the

particles collide with one another. If the total amount of energy in the gas is sufficiently high, these

collisions will eventually begin to populate the excited electronic states of the particles. Similar

to dissociation, the removal of an electron from an atom, or ionization, preferentially occurs from

electronically excited configurations because the high-lying electronic states are more energetically

adjacent to the ionization potential. The higher-energy, bound electron thus requires less additional

energy to increase its energy beyond the ionization potential. Excited bound electrons reside in

higher orbitals (i.e. further from the nucleus) which are less stable than lower-lying electron states,

so they eventually relax into lower-energy electronic configurations. The conservation of total en-

ergy consequently releases energy from the particle in the form of a photon. Emitted photons can

traverse the shock layer and be absorbed by the vehicle – a phenomenon known as radiative heating.

While not typically a concern for lower velocities, the high entry velocities of Ice Giant aerocapture
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can produce substantial radiative heating. Radiative emission/absorption can also come in other

forms (i.e. bound-bound, bound-free, free-free), but they are beyond the scope of this discussion.

Moving now to the right-hand side of Figure 2.1, the high-temperature gas encounters a

relatively cool surface, creating a steep temperature gradient. This form of energy transfer is known

as convective heating – a local phenomenon produced by the direct contact of the vehicle surface

with the high-temperature gas. Convective heating can also be augmented by the release of energy

produced by chemical bonds being formed as the dissociated/ionized gas recombines through the

boundary layer. A more rigorous characterization of both the convective and radiative heating for

Ice Giant aerocapture vehicles is found in Chapter 3.

In general, it is helpful to think about the various energy modes as “buckets” into which some

portion of the total energy can be stored. As more modes activate, more buckets become available,

and quantifying how much and the rate at which each fills is key to modeling the aerothermodynamic

environment of aerocapture vehicles. For example, the amount of hydrogen that has dissociated

from H2 into H is a crucial quantity to know if the radiative-heating environment is to be predicted

confidently, as high-temperature H2 contributes strongly to the total radiation. To develop this

quantitative understanding, it is essential to examine the principles of thermochemical equilibrium

and nonequilibrium, which govern the behavior of high-temperature gas flows in hypersonic regimes.

2.2.1 Thermochemical Equilibrium

In the context of hypersonic applications, the term “equilibrium” generally signifies that a

process or quantity is not changing with time, or any changes that do occur happen in an infinitesimal

amount of time. From the previous section, changes in a given process are governed by particle

collisions, so an equilibrium condition implies that a large number of collisions for a given process

occur before any other flow properties change. For hypersonic vehicles, it is necessary to distinguish

thermal equilibrium from chemical equilibrium. The former deals with the distribution of energy

among the various energy modes described in the previous section, while the latter deals with the

chemical composition of the gas. While these concepts are distinct, they are not independent.
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Instead, they are inherently coupled, as the distribution of energy will affect the types of chemical

reactions that can occur (e.g. dissociation occurs preferentially from vibrationally excited states).

2.2.1.1 Thermal Equilibrium

From quantum mechanics, the energy levels of each energy mode are “quantized”, meaning that

they exist in discrete, specific values, not in a continuous range. The translational and rotational

modes, however, are typically treated in a classical sense, as the energy spacing between the possible

energy levels for each is small. The other internal energy modes have relatively larger energy spacing

and are therefore treated discretely. For each mode, the distribution of energy within each of the

states is given by the Boltzmann distribution

ni
n

=

gi exp

(
− ϵi
kBT

)
∑
j
gj exp

(
− ϵj
kBT

) (2.1)

where ni is the number density of particles in the i-th state, n =
∑
i
ni is the total number density, ϵi

is the energy level of the i-th state, kB = 1.38× 10−23 J/K is the Boltzmann constant, and gi is the

degeneracy which accounts for scenarios in which multiple states occupy the same energy level. The

final variable in the Boltzmann distribution is the temperature T . This brings to light an important,

physical interpretation of what temperature means – it quantifies the amount of energy in a given

energy state at equilibrium. Consequently, thermal equilibrium signifies that the distribution of

energy across all modes is in equilibrium such that Ttrans = Trot = Tvib = Telec = Te− .

The denominator of the Boltzmann distribution is called the partition function

Q(T ) =
∑
i

gi exp

(
ϵi
kBT

)
. (2.2)

Physically, the partition function is the number of available quantum states where each term is

proportional to the number of particles in a given energy group. Statistical mechanics assumes

that the energy modes may be treated separately, each with their own partition function, so the

total partition function is expressed as the product of the individual partition functions for all

contributing energy modes.
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While the Boltzmann distribution is particularly useful for quantifying the energy distribution

within a given energy mode, it does not account for ionization. Ionization cannot be neglected in

this research because, as will be highlighted in Chapter 3, ionization of atomic hydrogen plays a key

role in radiative- and convective-heating environments for Ice Giant aerocapture. Specifically, the

Boltzmann distribution only deals with the distribution of excited states within a single ionization

state (e.g. H or H+, not H and H+), which is an insufficient description in the context of radiative-

heating predictions. The Saha-Boltzmann equation extends the Boltzmann distribution to account

for ionization and relates the number density of two ionization states at equilibrium

ni
n+

=
gine
2Q+

(
h2

2πmekBTe

)3/2

exp

[−hc (ϵi − ϵionize)
kBTe

]
. (2.3)

Here n+ is the ion number density, ne is the electron number density, ni is the number density of

the i-th excited state, Q+ is the ion partition function, me = 9.1091 × 10−31 kg is the electron

mass, h = 6.6256× 10−34 J·s is Planck’s constant, c = 2.9979× 108 m/s is the speed of slight, and

ϵionize is the ionization energy. Because ionization occurs preferentially from electronically excited

configurations, it is often more accurate to assume that the excited states of a neutral species

(e.g. H) are in equilibrium with the ions (e.g. H+) [76]. Figure 2.2 compares the state populations

predicted by Equations 2.1 and 2.3 for atomic hydrogen, where the electronic energy of level i is

given as ϵi = ϵionize
(
1− 1

i2

)
. Here, ϵionize = 13.6 eV is the ionization potential of atomic hydrogen.

The temperature is assumed to be T = 10,000 K, the total number density is taken to be n = 1023

1/m3, and the electron and ion number densities are both taken to be n+ = ne = 1022 1/m3. For

these conditions, the Saha-Boltzmann line is below the Boltzmann line at all energy levels.

The location of the Saha-Boltzmann line relative to the Boltzmann line provides insight

into the amount of chemical equilibrium at the local conditions. If there are fewer ions than at

equilibrium, the gas is net ionizing, and the Saha-Boltzmann line will be below the Boltzmann

line, as the excited states are underpopulated. On the other hand, if there are more ions than at

equilibrium, the gas is net recombining, and the Saha-Boltzmann line will be above the Boltzmann

line, as the excited states are overpopulated. At chemical equilibrium, Equations 2.1 and 2.3 are
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Figure 2.2: Comparison of Boltzmann and Saha-Boltzmann state-population distributions for
atomic hydrogen.

equivalent and the Boltzmann and Saha-Boltzmann lines lie on top of each other.

When dealing with a single chemical species, the conditions for thermal equilibrium relate

to the distribution of internal energy of that species. These conditions may easily be extended

to multi-species mixtures (e.g. H and H+ or H2, H, He, etc.). Specifically, thermal equilibrium

in a multi-species mixture implies that the internal energy modes are also in equilibrium between

species, such that the internal energy distribution for each is described by the same temperature.

2.2.1.2 Chemical Equilibrium

Instead of dealing with the distribution of internal energy, chemical equilibrium describes

the population distribution of individual chemical species within a multi-species mixture. As such,

thermochemical equilibrium implies both thermal and chemical equilibrium. The chemical compo-

sition of a multi-species mixture is governed by the types of chemical reactions that can occur at

the local thermodynamic conditions. For instance, H is formed from a variety of reactions, such as

the dissociation of H2 and the recombination of H+ into H. A general chemical reaction may be
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written as

Reactants↔ Products (2.4)

where the reactants and products are any of the species considered in the mixture. The condition for

chemical equilibrium is that the rates of the forward and reverse directions of Equation 2.4 are equal

and opposite such that the net rate is zero. The forwards and backwards rates are typically expressed

using rate coefficients, and the ratio of the two rate coefficients is known as the equilibrium constant.

More information on how the rate coefficients and equilibrium constants are calculated are provided

in Section 2.3. An important detail regarding chemical equilibrium is that the chemical composition

is directly linked to the local thermodynamic state (e.g. temperature and pressure). Therefore, if a

chemical equilibrium condition is assumed, it signifies that when temperature, pressure, and other

flow properties change, the chemical composition is changed instantaneously to the composition

defined by the local thermodynamic state. Figure 2.3 shows the equilibrium composition of an

H2/He mixture for a range of temperatures and a pressure of 1 atm.
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Figure 2.3: Equilibrium composition of H2/He mixture at P = 1 atm.

At these conditions, molecular hydrogen begins to dissociate around T = 3000 K and is

completely dissociated once the temperature exceeds 10,000 K. Atomic hydrogen begins to ionize
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around T = 6000 K, and H+ is the dominant species for T > 15, 000 K. Note that helium ions do

not start to appear until very high temperatures, as its ionization potential (24.6 eV) is much larger

than that of atomic hydrogen (13.6 eV). Despite the small amount of He+, the neutral helium mole

fraction decreases with temperature because the number of hydrogen atoms and ions is increasing.

The electron mole fraction is essentially equal to that of H+ because H+ is the dominant ionized

species. Understanding the conditions at which certain species persist can help reduce the number

of chemical species tracked in a numerical simulation, as those that are not expected to form can

be omitted from the thermochemical model.

2.2.2 Thermochemical Nonequilibrium

The previous discussion on thermochemical equilibrium assumes that any changes in processes

occur instantaneously or, equivalently, sufficient time has passed for collisions between particles to

produce equilibrium conditions. One can define the equilibrium condition for a given process using

a characteristic time τx

τx ≪ τf (2.5)

where τf is the flow characteristic time which is inversely proportional to the freestream velocity.

This definition acknowledges that the processes occurring behind a hypersonic shock wave take a

finite amount of time to proceed but assumes that the time scales are sufficiently disparate that they

may be considered independently. However, in most hypersonic applications, including aerocapture,

the flow characteristic time approaches the process characteristic time, and the finite-rate nature

of the process must be accounted for explicitly. When these time scales become comparable, the

fundamental assumption of equilibrium breaks down, and nonequilibrium effects must be considered.

Recall that thermal equilibrium allows for the energy distribution of all chemical species

to be described by a single temperature. Thermal nonequilibrium thus arises when the internal

energy distributions of all species have not had sufficient time to relax. During this time, multiple

temperatures are required to describe the flow. A common example of a multi-temperature model is

the two-temperature model [77]. In this model, the translational and rotational modes are assumed
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to be in equilibrium such that Ttrans = Trot = Ttr, and the vibrational, electronic, and free-electron

modes are assumed to be in equilibrium such that Tvib = Telec = Te− = Tve. This particular

grouping of energy modes is chosen because the translational and rotational modes respond rapidly

to changes in the local conditions, while the other internal energy modes are relatively slower to

relax. More complex multi-temperature models may be used if the conditions under investigation

are suspected to violate the two-temperature model’s assumptions [78]. Additionally, each species

could be assigned its own Tve and Ttr, however, this is usually not done in practice, as tracking

species-specific temperatures would drastically increase the computational complexity.

Similarly, chemical nonequilibrium arises when the forward and reverse rates of chemical

reactions within the flowfield are not balanced. Depending on the local thermodynamic conditions,

this results in a net production or depletion of certain species which consequently affects the internal

energy distribution of the mixture. Because of their effect on the flowfield properties, capturing the

combined effects of thermal and chemical nonequilibrium is essential for high-fidelity predictions of

critical quantities such as convective and radiative heating. Achieving this level of accuracy typically

requires advanced computational models, which are the focus of the next two sections.

2.3 Computational Fluid Dynamics

The numerical aerothermodynamic analysis in this dissertation uses the CFD code LeMANS

[79]. LeMANS is a finite-volume, multidimensional, parallelized CFD code designed to model the

thermochemical nonequilibrium phenomena relevant to hypersonic flows. It has been thoroughly

benchmarked against existing state-of-the-art hypersonic CFD solvers such as DPLR, LAURA,

and US3D. For the original documentation on LeMANS, the reader is referred to Ref. [79], and

further implementation details may be found in Ref. [80]. An overview of LeMANS is provided in

this section, along with models for thermal and chemical nonequilibrium in hypersonic flowfields.

Additional detail is provided for the models in LeMANS that are considered by the uncertainty

quantification and sensitivity analysis performed in Chapter 3.
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2.3.1 Navier-Stokes Equations

LeMANS solves the compressible, reacting Navier-Stokes equations that account for an arbi-

trary number of species ns and thermal and chemical nonequilibrium. The flow is modeled under

the continuum assumption. Translational and rotational modes of all species are assumed to be in

equilibrium and described by a single temperature Ttr, as the rotational mode only requires a few

collisions to equilibrate with the translational mode. The vibrational, electronic, and free electron

modes are assumed to be in equilibrium and described by a single temperature Tve.

With these assumptions in mind, the Navier-Stokes equations are stated as

∂Q

∂t
+∇ · (F − F v) = Scv (2.6)

where Q is a vector of conserved variables, F and F v are the inviscid and viscous fluxes, respectively,

and Scv is a vector of the source terms. The vector of conserved variables is explicitly stated as

Q =



ρ1

...

ρns

ρu

ρv

ρw

E

Eve



. (2.7)

Here, ρs is the density of species s, ρ is the bulk density, u, v, and w are the bulk velocity components,

and E and Ev are the total and vibrational-electronic-electron energy per unit volume of mixture,
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respectively. The vector of source terms is

Scv =



ẇ1

...

ẇns

0

0

0

0

ẇve



(2.8)

where ẇs is the net production of species s, and ẇve is the vibrational-electronic-electron energy

source term. The inviscid and viscous flux vector components in the x-direction are given by

F =



ρ1u

...

ρnsu

ρu2 + p

ρuv

ρuw

(E + p)u

Eveu



F v =



−Jx,1
...

−Jx,ns

τxx

τxy

τxz

τxxu+ τxyv + τxzw − (qtr,x + qve,x)−
∑

(Jx,shs)

−qve,x −
∑

(Jx,seve,s) .



. (2.9)

Here, p is the pressure, τij are the viscous stress components, and qtr,i and qve,i are the translational-

rotational and vibrational-electronic-electron heat fluxes in the i-th direction, respectively. Further-

more, hs is the specific enthalpy of species s, and Ji,s is diffusion flux in the i-direction for species s.

Flux vectors for the y and z directions are similar. Spatial integration is performed over the inviscid

and viscous fluxes using the finite-volume method, and the time integration is performed implic-

itly using the Backward Euler scheme. Temporal integration is first-order accurate, and spatial

integration is second-order accurate [79].
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2.3.2 Thermal and Chemical Nonequilibrium

Modeling of thermal nonequilibrium in LeMANS is accomplished using Park’s two-temperature

model [77]. Consequently, the energy levels of each mode are assumed to follow a Boltzmann dis-

tribution at the corresponding temperature. Exchange of energy between these modes is captured

through the source term for the vibrational-electronic-electron equation in Equation 2.8

ẇve = ẇepg + ẇc−v + ẇh−e + ẇe−i + ẇt−v . (2.10)

Here, ẇepg models the work done on the electrons by the electronic field induced by the electron

pressure gradient. The next term, ẇc−v is the vibrational energy-electronic-electron energy added

or removed by chemical reactions. A non-preferential dissociation model is assumed in this work, in

which molecules are created or destroyed at the average vibrational energy of the mixture. Energy

transfer between heavy particles and electrons is modeled using ẇh−e, and energy removed from

electron-impact ionization reactions is modeled using ẇe−i. Details for each of these source terms

are found in [79].

An explicit description of the vibrational-relaxation source term is given because the aerother-

modynamic uncertainty quantification study performed in this research assumes the Millikan-White

coefficients are uncertain. Relaxation between the translational-rotational modes and vibrational-

electronic-electron modes is modeled using the Landau-Teller equation [81]

ẇt−v =
∑
s

ρs
e∗v,s − ev,s

τs
. (2.11)

Here, e∗v,s and ev,s are the vibrational energy per unit mass of species s evaluated at Ttr and Tve,

respectively, and τs is the vibrational relaxation time of species s. Vibrational relaxation times are

expressed as

τs =< τs > +τps (2.12)

where τps is Park’s high-temperature correction [79], and the molar averaged Landau-Teller relax-

ation time is

< τs >=

∑
r
Xr∑

r
Xr/τsr

. (2.13)
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Here, Xr is the mole fraction of species s, and τsr is given by the Millikan-White expression [82]

τsr =
101325

p
exp

[
asr

(
T−1/3 − bsr

)
− 18.42

]
(2.14)

where asr and bsr are interaction-dependent constants usually fit from experimental data. The

factor of 101325 converts the pressure p into atmospheres. Park’s high-temperature correction term

τps is introduced to account for the fact that the baseline Millikan-White curve fits underpredict

the relaxation times at high temperatures [24].

Chemical nonequilibrium in LeMANS is modeled using a finite-rate chemistry model. A

generic reaction may be specified as

∑
αs [S]↔

∑
βs [S] (2.15)

where [S] represents one of the chemical species, and α and β are the stoichiometric coefficients.

The source term in Equation 2.8 for the production of species s is given by

ẇs =Ms

∑
k

ẇsk (2.16)

where Ms is the molar mass of species s and ẇsk is the production of species s by reaction k

ẇsk = (βsk − αsk)

103kfk∏
j

(
10−3 ρj

Mj

)αjk

− 103kbk
∏
j

(
10−3 ρj

Mj

)βjk (2.17)

In Equation 2.17, kfk and kbk are the forward and backward reaction-rate coefficients, respectively.

LeMANS models forward reaction rates coefficients using a modified-Arrhenius form

kf = AfT
ηf
f exp (−Df/Tf )

[
cm3 ·mol−1 · s−1

]
(2.18)

where Af , ηf , and Df are reaction-specific constants, and Tf is the controlling temperature of the

forward reaction. Backward reaction rate coefficients are obtained using the principle of detailed

balance in which the forward and backward rate coefficients are related through the equilibrium

constant Keq evaluated at the backward controlling temperature Tb

kb(Tb) =
kf (Tb)

Keq(Tb)
. (2.19)
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For the hydrogen-helium-methane mixtures studied in this work, a Gibbs free energy approach is

used to calculate the equilibrium constant for all reactions. The factors of 103 and 10−3 in Equation

2.17 are used to convert the rate-coefficient units, which are typically specified in cm3·mol−1·s−1,

into SI units.

2.3.3 Transport Processes and Properties

The shock waves produced during hypersonic flight produce large gradients of mass, momen-

tum, and energy in the flowfield. In general, transport processes serve to smooth out these gradients

through the transfer of either mass, momentum, or energy throughout the mixture. Specifically,

these processes are accomplished by diffusion, viscosity, and heat flux, respectively. This section

provides explicit descriptions for the models used to describe each of these phenomena, as the

uncertainty quantification study performed Chapter 3 considers uncertainty in the parameters un-

derpinning the calculation of each transport coefficient.

Diffusion in LeMANS is modeled using a modified version of Fick’s law

Js ̸=e = −ρDs∇Ys + Ys
∑
r ̸=e

ρDr∇Yr (2.20)

where Ds is the species diffusion coefficient, and Ys = ρs/ρ is the species mass fraction. Previous

work in air [83] has shown that this model well approximates the full multicomponent diffusion

solution given by the Stefan-Maxwell equations. Because the mass of an electron is significantly

less than the heavy particles, the diffusion flux of electrons is treated using an ambipolar diffusion

model

Je =Me

∑
s̸=e

JsCs
Ms

(2.21)

where Me is the electron molecular mass, and Cs is the charge of species s (i.e. +1 for ions and 0

for neutral species). The ambipolar assumption implies that the electrons move with the ions and

is used to guarantee charge neutrality of the flowfield.

Momentum fluxes and shear stresses are modeled in LeMANS assuming a Newtonian fluid
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and Stokes’ hypothesis

τij = µ

(
∂uj
∂xi

+
∂ui
∂xj

)
+ δijλ∇u (2.22)

λ = −2

3
µ (2.23)

where µ is the mixture coefficient of viscosity and δij is the Kronecker delta.

Heat fluxes for both the translational-rotational and vibrational-electronic-electron modes are

computed using Fourier’s law

qtr = −κtr∇Ttr (2.24)

qve = −κve∇Tve (2.25)

where κtr and κve are the mixture thermal conductivity for the translational-rotational and vibra-

tional-electronic-electron modes, respectively.

Each of the aforementioned transport processes requires knowledge of specific mixture trans-

port properties. These are the diffusion coefficient, viscosity, thermal conductivity for diffusion,

momentum flux, and heat flux, respectively. A common model for the mixture transport properties

is Wilke’s semi-empirical mixing rule [84]. However, it has been shown that the Wilke-based model

underpredicts the heat transfer when temperatures in the shock layer exceed 10,000 K [83], which

occurs frequently for the Ice Giant aerocapture environments studied in this work. Instead, the

transport properties are computed using Gupta’s mixing rule [85], which is considered to be more

accurate than the Wilke model because it accounts for collision integrals in the multicomponent

nature. For the two-temperature model assumed by LeMANS, the collision integrals are evaluated

at an appropriate controlling temperature. For heavy-heavy collisions (e.g. H-H), the controlling

temperature is taken to be Ttr, and for collisions involving electrons, the controlling temperature is

taken to be Tve.

Using Gupta’s mixing rule, the mixture viscosity is calculated by

µ =
∑
s ̸=e

msγs∑
r ̸=e

γr∆
(2)
s,r(Ttr) + γe∆

(2)
s,e(Tve)

+
meγe∑

r
γr∆

(2)
e,r(Tve)

(2.26)
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where the collision terms ∆s,r are evaluated at the controlling temperatures. The molar concentra-

tion of each species, γs, is calculated by

γs =
ρs
ρMs

. (2.27)

The mass of each species, ms, is given by

ms =
Ms

Nav
(2.28)

where Nav = 6.022× 10−23 mol−1 is Avogadro’s number.

The mixture thermal conductivity for the translational mode is calculated by

κt =
15

4
kB
∑
s ̸=e

γs∑
r ̸=e

as,rγr∆
(2)
s,r(Ttr) + 3.54γe∆

(2)
s,e(Tve)

(2.29)

where

as,r = 1 +
[1− (ms/mr)] [0.45− 2.54 (ms/mr)]

[1 + (ms/mr)]
2 . (2.30)

The thermal conductivity for the rotational mode is given by

κr = kB
∑

s=molecules

γs∑
r ̸=e

γr∆
(1)
s,r(Ttr) + γe∆

(1)
s,e(Tve)

(2.31)

where it is emphasized that the summation is over molecules. The mixture thermal conductivity

for the translational-rotational mode is then the sum of Equations 2.29 and 2.31. The thermal

conductivity for the vibrational-electronic mode is calculated by

κvel = kB
Cvve
Ru

∑
s=molecules

γs∑
r ̸=e

γr∆
(1)
s,r(Ttr) + γe∆

(1)
s,e(Tve)

(2.32)

where Cvve is the specific heat at constant volume for the vibrational-electronic mode, and Ru =

8.314 J/mol/K is the universal gas constant. The thermal conductivity for electrons is

κe =
15

4
kB

γe∑
r
1.45γr∆

(2)
e,r(Tve)

. (2.33)

The collision terms, ∆(1)
s,r and ∆

(2)
s,r , in the previous equations are given by

∆(1)
s,r(T ) =

8

3

[
2MsMr

πRuT (Ms +Mr)

]1/2
10−20πΩ(1,1)

s,r (T ) (2.34)
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∆(2)
s,r(T ) =

16

5

[
2MsMr

πRuT (Ms +Mr)

]1/2
10−20πΩ(2,2)

s,r (T ) (2.35)

where the constant 10−20 converts Angstroms, the standard unit for collision integrals, to square

meters. In Equations 2.34 and 2.35, the collision integral terms πΩ(l,j)
s,r must be calculated according

to the type of collision (i.e. neutral-neutral, neutral-electron, neutral-ion, etc.). For collisions

involving neutral species, the collision integrals are expressed using a curve fit of the form

πΩ(l,j)
s,r = DTA(lnT )

2+B lnT+C (2.36)

where A, B, C, and D are interaction-dependent constants that are obtained from experiments

and/or high-fidelity simulations. For interactions including hydrogen and helium, values for these

curve-fit coefficients are taken from Palmer et al. [86], and the data from Park et al. [87] are used

for all other neutral-neutral and neutral-ion interactions. Interactions between two charged species

are modeled using Coulumbic theory as described by Wright et al. [88].

Finally, the binary diffusion coefficients between heavy particles and electrons are calculated

by

Ds,r =
kBTtr

p∆
(1)
s,r(Ttr)

(2.37)

De,r =
kBTve

p∆
(1)
e,r(Tve)

. (2.38)

The species diffusion coefficient used in the conservation equations is given by

Ds =
γ2tMs (1−Msγs)∑

r ̸=s
(γs/Dsr)

(2.39)

where

γt =
∑
s

γs . (2.40)

2.3.4 Boundary Conditions

The surface boundary condition requires specification of the thermodynamic state and the

chemical composition. For the thermodynamic state, this dissertation assumes a radiative-equilibrium
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boundary condition in which the surface temperature Tw is related to the wall-incident heat flux

qwall via

qwall = εσSBT
4
w . (2.41)

Here, ε is the surface emissivity, and σSB = 5.670 × 10−8 W/m2/K4 is the Stefan-Boltzmann

constant. Furthermore, the chemical composition boundary condition assumes the surface is fully

catalytic to ions and electrons. Catalytic recombination occurs when dissociated/ionized species

recombine at the surface. This process releases energy and increases the surface heating, which is

a more conservative assumption than a non-catalytic surface. Accurate surface-heating predictions

require that the near-surface gradients be sufficiently resolved. A quantitative description of the

boundary-layer resolution is made by defining the nondimensional lengthscale

y+ =
uτ∆yρ

µ
(2.42)

where uτ =
√
τw/ρ is the friction velocity, and ∆y is the height of the first cell normal to the

surface. Generally, a value of y+ < 1 is desired, which ensures that the first computational cell lies

within the viscous sublayer of the boundary layer.

2.4 Radiative Transport Modeling

While LeMANS is capable of providing high-fidelity predictions of the convective heating and

aerodynamic coefficients of an aerocapture vehicle, it cannot calculate the radiative-heating envi-

ronment on its own. Radiative-heating calculations require knowledge of excited-state population

distributions for each chemical species, and modeling each excited state as a separate species in

LeMANS is computationally intractable for vehicle-scale simulations. Instead, the calculation of

the state-population distributions and resulting radiative heating is performed by the NASA Ames

tool NEQAIR. As an input, NEQAIR takes the number densities and temperatures predicted by

LeMANS along a given line of sight. This information is then used to calculate the populations of

excited species and spectral radiance produced at wavelength regions of interest using a line-by-line

radiation solver. The net wall-directed radiative heating is obtained by integrating the spectral ra-
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diance using a tangent-slab approximation, which assumes that the properties along a line of sight

extend infinitely parallel to the line. Using a tangent-slab approximation reduces the necessary

amount of calculations and is a reasonable assumption for predicting the radiative heating along

the forebody of a blunt entry vehicle [89].

NEQAIR offers multiple methods for computing excited state populations. Under strong

thermochemical nonequilibrium, assuming a Boltzmann distribution for all species can lead to in-

accurate radiation predictions, as excited states may not have had sufficient time to relax. A more

accurate approach is the quasi-steady-state (QSS) model, which determines electronic state popula-

tions by balancing excitation and quenching rates to achieve a net-zero time rate of change for each

state. While incorporating the finite rates of excitation and quenching improves the fidelity of state-

population calculations, it increases the computational complexity and requires reliable excitation

and quenching rate data at relevant conditions.

For the H2/He system, a combination of Boltzmann and QSS models [90] are used to compute

species state populations. Helium state populations are calculated with an assumed Boltzmann

distribution, while the hydrogen molecule and atom are calculated using QSS methods. As described

in [90], helium is an inert substituent, so assuming a Boltzmann state distribution for He does not

affect the radiative heating calculation. Atomic carbon is modeled using a QSS assumption, but

the remaining carbon-based species state populations are modeled with a Boltzmann assumption.

For additional details on the hydrogen QSS models, the reader is referred to Ref. [90].

2.5 Uncertainty Quantification and Sensitivity Analysis Methodology

This section details the methods utilized to perform UQ and GSA. Specifically, it describes

the mathematical theory necessary to answer the first two questions described in the introduction

regarding the predictions of the computational models. These are: 1) What is the uncertainty in

each model’s predictions? 2) Which input parameters are contributing most to that uncertainty? A

polynomial chaos expansion UQ technique is used to answer the first question, and Sobol’ indices

are used to answer the second.
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Before getting into the theory behind each of these techniques, it is helpful to define some

terminology that is central to UQ and GSA. Generally, there are two types of uncertainty: aleatory

and epistemic [91]. Aleatory uncertainty comes from the random variation in physical data used as

an input to the computational model, and it is often referred to as “irreducible” because its variability

cannot be controlled. Typically, aleatory uncertainty is modeled using a probability distribution

function (e.g. Gaussian). Epistemic uncertainty comes from the lack of knowledge with regard to a

specific model parameter and is typically represented using intervals. Epistemic uncertainty is also

referred to as “reducible” uncertainty, as it may be decreased by collecting more data. This research

treats all uncertainty as epistemic, as additional data for each source could reduce the corresponding

uncertainty interval.

In the context of sensitivity analysis, a distinction must be made between local and global

sensitivity analysis. Both are methods used to assess how variations in input parameters affect a

model’s output. Local sensitivity analysis examines how small changes in a single parameter affect

the model while keeping others fixed, often using derivatives. It is computationally efficient and

useful for identifying trends but is generally valid only within a narrow range and does not account

for parameter interactions. Global sensitivity analysis, on the other hand, evaluates the influence of

input variations across the entire parameter space, using statistical methods like variance decompo-

sition (e.g., Sobol’ indices) or Monte Carlo sampling. This approach accounts for nonlinear effects

and parameter interactions, providing a more comprehensive understanding of system behavior.

While computationally more expensive, it is particularly useful for complex, nonlinear models, such

as those used to study aerocapture systems, where parameter interactions and uncertainties play

a significant role. As such, unless stated otherwise, any usage of the term “sensitivity analysis”

throughout this dissertation implies a global sensitivity analysis.

2.5.1 Polynomial Chaos Expansion

Recently, the use of polynomial chaos expansion (PCE) for large-scale UQ and global sensi-

tivity analysis has become quite popular in the aerospace field [92, 93, 94, 95, 42, 44, 96, 46, 47].
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PCE is a surrogate modeling technique based on a spectral representation of the uncertainty. A

surrogate-based approach is attractive for UQ problems in which the deterministic model is expen-

sive to evaluate, as statistical information can be computed directly from the surrogate. Hundreds of

thousands of samples from the uncertain parameter space can be efficiently propagated through the

fit PCE, bypassing the need to evaluate the deterministic model a statistically-significant number

of times. Here, the “deterministic model” refers to a single LeMANS or NEQAIR simulation.

The PCE surrogate is used to approximate the functional relationship between random pa-

rameters and a given quantity of interest (QoI) by decomposing the QoI response function R into

a linear combination of deterministic and stochastic components

R =

Q∑
i=0

αiΨi(ξ) . (2.43)

Here, αi and Ψi are the deterministic component and random variable basis function, respectively,

of the i-th mode of the response R, and ξ is a vector of normalized random (uncertain) parameters.

The choice of the basis functions Ψi depends on the distribution of each random parameter and

may be determined using the Ashey key [97]. Because this work treats all sources of uncertainty as

epistemic, Legendre polynomials are used as the polynomial basis functions, as they have a bounded

domain over the interval [−1, 1]. By definition, Equation 2.43 is an infinite series (Q =∞), however,

in practice, it is typical to truncate the sum over a discrete set of output modes. The number of terms

required to form a complete expansion in Equation 2.43 is a function of number of the uncertain

parameters Nξ, and the order of the polynomial expansion p

Nt = Q+ 1 =
(Nξ + p)!

Nξ!p!
. (2.44)

The form of Equation 2.44 highlights the “curse of dimensionality” commonly associated with PCE,

as the number of terms required grows increasingly large for problems with many uncertain param-

eters. As shown in Figure 2.4, the number of terms for a total-order expansion quickly becomes

computationally prohibitive for high-dimensional problems, as is the case in the present work.
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Figure 2.4: Number of terms required for total-order PCE.

2.5.2 Sparse Point-Collocation PCE

Many methods exist for obtaining the expansion coefficients αi in Equation 2.43. Generally,

they may be categorized into one of two approaches: intrusive and non-intrusive. Intrusive methods

are generally more complex to implement, as they may require significant modification to the under-

lying computational model. On the other hand, non-intrusive polynomial chaos (NIPC) methods

only require the functional inputs and corresponding outputs to construct a surrogate model capable

of approximating the complex computational model (i.e. they treat the computational model as a

black box). Due to its success in many aerothermodynamic UQ studies [92, 93, 94, 95, 42, 44], this

work uses a non-intrusive point-collocation technique to obtain the unknown basis coefficients αi

by solving the following linear system given Ns evaluations of the computational model

R(ξ1)

R(ξ2)

...

R(ξNs
)


=



Ψ0(ξ1) Ψ1(ξ1) · · · ΨQ(ξ1)

Ψ0(ξ2) Ψ1(ξ2) · · · ΨQ(ξ2)

...
...

. . .
...

Ψ0(ξNs
) Ψ1(ξNs

) · · · ΨQ(ξNs
)





α0

α1

...

αQ


. (2.45)
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Here, R(ξi) is the deterministic model output for random sample ξi, where i = 1, . . . , Ns. Note

that, to obtain an analytical solution to Equation 2.45, Nt evaluations of the deterministic model

are required. As highlighted in the previous section, the minimum number of terms can become

substantially large for high-dimensional problems, such that obtaining an analytical solution for the

expansion coefficients is computationally prohibitive. If fewer than Nt samples are available, the

linear system is underdetermined, and an infinite number of solutions exist.

However, in high-dimensional parametric UQ problems, it is unlikely that all parameters

contribute substantially to the total uncertainty in the model response. In this case, many of the

coefficients in the polynomial expansion will be equal or close to zero, and the solution vector α

will be sparse. For underdetermined systems (Ns < Nt), techniques such as L1-regularization [98]

may be used to encourage the solution vector to be sparse. Examples of the successful use of this

approach for aerothermodynamic UQ problems may be found in Refs. [93] and [44]. However, as

motivated by West and Johnston [42], this work utilizes least-angle regression (LAR), as it does not

require the solution to an optimization problem, reduces computational complexity, and has been

shown to give similar results to optimization-based techniques like L1-regularization. Introduced

by Efron et al. [99], LAR is an iterative regression algorithm for solving underdetermined linear

systems in which the regressors are moved from a candidate set to an active set based on their

correlation with the solution residual. For more details on the LAR algorithm implementation in

an NIPC-PCE setting, the reader is referred to Ref. [42].

2.5.3 Propagation of Uncertainty through PCE

Once the expansion coefficients αi have been computed using the Ns evaluations of the com-

putational model, the PCE surrogate may be used to efficiently obtain statistical information about

the select QoI. To do so, a large number (usually on the order of 105–106) of random samples ξj are

propagated through the surrogate to obtain the corresponding approximate function response R̂(ξ)

R̂j(ξj) =

Q∑
i=0

αiΨi

(
ξj
)

. (2.46)
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The set of function-response values obtained is statistically significant enough to then compute

quantities such as 95% confidence bounds on the QoI. In addition to percentiles, the use of a PCE

surrogate allows for the first two statistical moments, the mean and variance, to be computed

analytically from the expansion coefficients αi

mean
(
R̂
)

= µ̂ = α0 (2.47)

var
(
R̂
)

= D̂tot =

Q∑
i=1

α2
iE
[
Ψ2
i (ξ)

]
. (2.48)

For the Legendre polynomials used in this work, the variance reduces to

D̂tot =

Q∑
i=1

α2
i . (2.49)

2.5.4 Sobol’ Decomposition

The use of a PCE-based UQ technique lends itself naturally to a GSA methodology that

uses Sobol’ indices to allocate portions of the total QoI variance to individual parameters. Sobol’

indices are derived using a variance-based sensitivity analysis technique that leverages a Sobol’

decomposition of the total variance Dtot

Dtot =

Nξ∑
i=1

Di +

i=Nξ−1∑
1≤i<j≤Nξ

Di,j +

i=Nξ−2∑
1≤i<j<k≤Nξ

Di,j,k + . . .+D1,2,...,Nξ
(2.50)

which is a sum over partial variances due to variations in the Nξ unique input parameters. Partial

variances with a single subscript, Di, account for variance that is solely due to variations in the i-th

parameter and are commonly referred to as “first-order” variances. Partial variances that have more

than one subscript account for variance due to interactions between two or more uncertain param-

eters and are typically referred to as “higher-order” variances. Applying the Sobol’ decomposition

to the variance obtained from the PCE surrogate yields

D̂tot =

Nξ∑
i=1

D̂i +

i=Nξ−1∑
1≤i<j≤Nξ

D̂i,j +

i=Nξ−2∑
1≤i<j<k≤Nξ

D̂i,j,k + . . .+ D̂1,2,...,Nξ
(2.51)

where the partial variances are expressed as a function of the expansion coefficients

D̂i1,...,im =
∑

β∈{i1,...,im}

α2
βE
[
Ψ2
β(ξ)

]
, 1 ≤ i1 < . . . < im ≤ Nξ . (2.52)
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An m-th order Sobol’ index is then explicitly defined as

Si1,...,im =
D̂i1,...,im

D̂tot

(2.53)

which gives the relative contribution of the uncertain parameters (i1, . . . , is) to the total variance

and satisfies the equation

1 =

Nξ∑
i=1

Si +

i=Nξ−1∑
1≤i<j≤Nξ

Si,j +

i=Nξ−2∑
1≤i<j<k≤Nξ

Si,j,k + . . .+ S1,2,...,Nξ
. (2.54)

First-order Sobol’ indices, or those with a single subscript, are interpreted as the percentage of

the total variance that may be attributed to variations in a single uncertain parameter. Similarly,

higher-order Sobol’ indices represent the amount of uncertainty that is allocated to interactions

between uncertain parameters. It is also possible to define a total Sobol’ index, which is the sum of

all Sobol’ indices that include a given parameter i

STi =
∑
Li

D̂i1,...,im

D̂tot

, Li = {(i1, . . . , im) : ∃ k, 1 ≤ k ≤ m, ik = i} . (2.55)

For example, if Nξ = 3, the total Sobol’ index for the first uncertain parameter would be

ST1 = S1 + S1,2 + S1,3 + S1,2,3 . (2.56)

2.5.5 Monitoring Convergence

Predictions from the PCE surrogate are a direct function of the expansion coefficients. Because

the sparse approximation used to obtain the expansion coefficients implicitly assumes Ns < Nt, it is

necessary to ensure that expansion coefficients have converged. Instead of tracking changes in the

expansion coefficients themselves, a common technique for assessing the convergence of the PCE is

to use the change in Sobol’ indices from one set of sample points to the next. In general, there are far

more expansion coefficients than Sobol’ indices, so using Sobol’ indices to track convergence requires

fewer values to be tracked. In particular, the total Sobol’ index is well-suited for monitoring the

PCE convergence, as it captures the sensitivity contributions from individual parameter variation

as well as mixed contributions caused by parameter interactions. This research computes both
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the maximum change in total Sobol’ index, and the mean change in total Sobol’ index across all

parameters as the expansion sample size grows. Specifically, for the j-th total Sobol’ index and

sample size n > 1, these are expressed as

∆ST,max,n = max
{
|STj ,n − STj ,n−1| : j = 1, . . . , Nξ

}
(2.57)

∆ST,mean,n = mean
{
|STj ,n − STj ,n−1| : j = 1, . . . , Nξ

}
. (2.58)

Equations 2.57 and 2.58 provide simple metrics for the change across all Sobol’ indices as more

samples are used to create the polynomial expansion, and a maximum change of 1–2% over several

consecutive iterations is considered an acceptable tolerance for convergence.

2.5.6 Implementation Details

Here, it is worth mentioning how the previously described UQ/GSA theory is applied in

practice. Generally, one may assume that the PCE surrogate will be inaccurate for very small

values of Ns. Therefore, instead of fitting the PCE and checking the total Sobol’ index convergence

after each evaluation of the computational model, batches of simulations of size Nb are run and the

PCE is fit after each batch has completed. In this work, a batch size of Nb = 100 is used. For each

batch, Nb samples of the uncertain parameters are generated from a joint-marginal distribution using

a space-filling Latin-hypercube sampling algorithm, where each marginal distribution corresponds

to one of the input parameters. Once the input space has been sampled, the UQ and GSA is

performed as follows (summarized visually in Figure 2.5):

(1) Evaluate LeMANS and NEQAIR Nb times using the generated samples.

(2) Compute Nd values of the desired QoIs from each LeMANS and NEQAIR solution.

(3) Solve Equation 2.45 for the expansion coefficients using the LAR algorithm.

(4) Compute total Sobol’ indices using Equation 2.55.

(5) Propagate uncertainty through the fit PCE surrogate and compute statistics of response.
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(6) Evaluate convergence metrics using Equations 2.57 and 2.58.

(7) Generate an additional Nb samples and repeat steps 1-6 if convergence criteria is not met.

The sampling of the input space, construction of the orthogonal basis polynomials, LAR algorithm,

and calculation of the Sobol’ indices are all implemented using the Matlab toolbox UQLab [100].

Black-Box Solver Interface (LeMANS and NEQAIR)

Setup case n

Unertain inputs:
kf , τs, πΩ

(1,1)
s,r , πΩ(2,2)

s,r

LeMANS Simulation

Outputs: qconv
Cx, Ttr, Tve, ns

NEAIR Simulation

Outputs: qrad

Construct PCE
surrogate for each QoI

R̂ =
Q∑
j=0

αjΨj(ξ)Calculate total Sobol’ indices
ST , Eq. 2.55, and statistics

Evaluate convergence
metrics, Eqs. 2.57-2.58Generate Nb samples

Transform from
normalized interval [-1,1]
to physical dimensions

Initialize parameter disribtuions Analysis complete

qconv, Cx

Ttr, Tve
ns

qrad

YesNo

Figure 2.5: Flowchart of UQ/GSA framework used in this research.

2.6 Reduced-Order Modeling using Gaussian Process Regression

The third and final question related to the predictions from LeMANS and NEQAIR is: how

can the cumulative effects of that uncertainty along a trajectory be approximated? Performing a

detailed UQ study at each point along an aerocapture trajectory is computationally intractable, but

capturing the cumulative effects of the aerothermodynamic uncertainty along the entire trajectory

is necessary for robust thermal protection system (TPS) design. As such, it is desirable to develop
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a reduced-order modeling framework that is capable of incorporating aerothermal uncertainties into

its predictions. This section describes the fundamental concepts of Gaussian process regression

(GPR), which is a powerful surrogate-modeling technique for uncertain systems.

2.6.1 Gaussian Processes

In a general supervised learning problem, the goal is to learn some unknown mapping f :

RD 7→ R from empirical input-output data. Typically, the user only has access to noisy out-

puts/measurements such that for an input (feature) x ∈ RD, the available output data (target)

y ∈ R is of the form

y(x) = f(x) + ϵ (2.59)

where ϵ ∼ N (0, σ2n) is modeled as independent and identically distributed (i.i.d.) Gaussian noise

with zero mean and standard deviation σn. Numerous techniques exist to approximate the function

f , but most are limited by assuming that the underlying function takes a parametric form defined

by a finite set of parameters. GPR is considered a non-parametric regression method, or more

intuitively, a method where the underlying functional form has an infinite number of parameters,

as it takes a Bayesian approach to the general regression problem in Equation 2.59. A Gaussian

process (GP) is a generalization of the Gaussian distribution and may be thought of as a distribution

over all functions [101], where for a series of inputs in the set X =
{
xi ∈ RD : i = 1, . . . , N

}
, the

corresponding outputs in the set Y = {yi ∈ R : i = 1, . . . , N} are assumed to be jointly Gaussian

distributed. Similar to a standard multivariate Gaussian distribution, a GP is completely defined

by its mean function µ(x) : RD 7→ R and covariance matrix K ∈ SN×N
+ where the i,jth element of

the covariance matrix is defined by a kernel function k(·, ·) such that Kij = k(xi,xj). A function

represented by a GP is denoted by

f(x) ∼ GP
(
µ(x), k(x,x′)

)
. (2.60)
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2.6.2 Kernel Functions

The form of the covariance function k(·, ·) must produce valid covariance matrices, meaning

that for any set of inputs, the mapping k(·, ·) produces a symmetric, positive definite matrix.

Numerous functions exist for the choice of k, and the reader is referred to Ref. [102] for a more

in-depth analysis of valid kernel functions. In this dissertation, the two primary kernel functions

used are the squared exponential (SE) kernel

k(x,x′)SE = σ2 exp

(
−1

2
r2
)

(2.61)

and the Matérn 5/2 kernel

k(x,x′)5/2 = σ2
(
1 +
√
5r +

5

3
r2
)
exp

(
−
√
5r
)

(2.62)

where

r =

√√√√ D∑
d=1

(xd − x′d)
2

l2d
. (2.63)

Here, σ2 is the variance, and ld is the length scale associated with dimension d. Note that it is

not strictly necessary to assign a length scale for each input dimension d. One could just as easily

use a single length scale for all input dimensions, however, this generally restricts the regressive

capabilities of the GP. Particularly for scenarios in which the response function behaves differently

in each input dimension, it is more robust to assign each input dimension its own length scale. This

technique is known as automatic relevance determination (ARD), and, unless specified otherwise,

is used for all GP models constructed in this dissertation.

The set of parameters θ = {σ, ld : d = 1, . . . , D} is often referred to as the hyperparameter

set for the GP, and it defines the structure of the covariance matrix K. Proper selection of the

hyperparameters is central to GPR, as the covariance matrix K not only determines the shape of

the GP distribution, but ultimately defines the characteristics of the functions sampled from the

GP. Before discussing how to determine the best (optimal) values for the GP hyperparameters, it is

useful to demonstrate the qualitative effects of the variance and length scale parameters. Generally,

the variance σ2 controls how far away from the mean a sampled function lies. A larger variance will
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produce a “wider” distribution of functions, while a smaller variance produces sampled functions

that are more clustered near the mean. On the other hand, the length scale l controls how quickly

the correlation between data points decays with distance. Physically, a smaller length scale will

produce sampled functions that are more “wiggly,” while a larger length scale will produce more

smoothly varying functions. To help illustrate these concepts, functions sampled from a GP prior

using an SE kernel with varying hyperparameter values are visualized in Figure 2.6, where the

shaded region denotes the 3σ uncertainty of the prior distribution.
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Figure 2.6: Functions sampled from GP priors using squared-exponential kernel with various vari-
ances, σ2, and length scales, l.

Selecting a kernel function, like the SE, is not a “once-size-fits-all” approach to constructing

a GP surrogate, meaning that some kernel functions will perform better than others for a given

regression problem. As an example, the SE kernel function works extremely well for a broad class

of sufficiently smooth functions, but it tends to struggle if there are discontinuities in the first few

derivatives of the underlying function f . It is for this reason that some GP models fit in this

dissertation use an SE kernel, while others use the Matérn 5/2 kernel. For example, aerodynamic

coefficients generally vary smoothly across the relevant input dimensions (density, velocity, angle of

attach), while surface-heating profiles tend to have sharp peaks near the shoulder of the vehicle.
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2.6.3 Posterior Predictive Distribution

In practice, one does not typically sample from the GP prior, as the sampled functions are

in no way related to some underlying set of data/measurements. Instead, it is desirable to “infer”

functions that are most likely to be represented by the available data, thereby allowing the modeler

to predict the value of f(x) at locations where data is not available. Inference on f is performed

by conditioning the prior distribution in Equation 2.60 on training data, and the resulting con-

ditional distribution is referred to as the posterior distribution. For a set of N training points

X =
{
xi ∈ RD : i = 1, . . . , N

}
and corresponding noisy outputs Y = {yi ∈ R : i = 1, . . . , N}, the

GP prior placed on the function f means that the observations Y are, by definition, jointly Gaussian

with the corresponding outputs f(x) ∈ RN . Without loss of generality, assume that the GP prior

has zero mean. Then, at any set of test points X∗ Y

f(X∗)

 ∼ N

0
0

 ,
K(X,X) + σ2nIN K(X,X∗)

K(X∗,X) K(X∗,X∗)


 (2.64)

where the notation K(·, ·) is introduced to represent the matrix whose i, jth element is given by

Kij = k(·, ·). Using the standard results for conditioning multivariate Gaussian distributions, the

posterior predictive mapping f̂ is also represented by a GP of the form

f̂(X∗) ∼ p(f(X∗)|X∗,X,Y ,θ) = GP(µ̂, k̂) (2.65)

where the posterior predictive mean µ̂ and covariance matrix K̂ are given by

µ̂(X∗) = K(X∗,X)
[
K(X,X) + σ2nI

]−1
Y (2.66)

K̂(X∗,X∗) = K(X∗,X∗)−K(X∗,X)
[
K(X,X) + σ2nI

]−1
K(X,X∗) . (2.67)

Note that the predictive mean in Equation 2.66 is a linear combination of the noisy observations

Y , which is referred to as a linear predictor [101]. On the other hand, the predictive covariance in

Equation 2.67 is only a function of the observation and test inputs, which is a known property of

Gaussian distributions and is reflected in the form of the kernel function. The predictive covariance
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is also implicitly a function of the kernel hyperparameters, which are not known a priori, but are

rather learned during the training process.

The regression, or “training”, aspect of GPR involves determination of the hyperparameters θ,

and optionally the observation noise σn, of the GP (the observation noise is sometimes referred to as

the “likelihood variance” in the GPR literature [101]). This is typically achieved through numerical

optimization, in which the negative of the log marginal likelihood is minimized to determine the

optimal set of hyperparameters θ∗

θ∗ = argmin
θ,σn

ln p(Y |X,θ, σn) (2.68)

ln p(Y |X,θ, σn) = −
1

2
Y T

(
K + σ2nI

)−1
Y − 1

2
ln
∣∣K + σ2nI

∣∣− N

2
ln 2π . (2.69)

Here, the shorthand notation K = K(X,X;θ) is introduced for clarity. The minimization of

Equation 2.69 may be achieved by a variety of numerical optimization algorithms, such as the

Adam [103] optimizer.

2.6.4 Simple GPR Example

To help demonstrate the capabilities of GPR, a simple one-dimensional regression problem

is used. Consider the scenario where the true function is f(x) = sin (x), however, only noisy

measurements of the form

y(x) = sin (x) + ϵ (2.70)

are available. The noise variance is assumed to be σ2n = 5.0 × 10−2, and 15 noisy observations are

available that are randomly sampled from the uniform distribution U (1, 4) as shown in Figure 2.7.

A GP prior with a zero mean and squared-exponential covariance function is placed on the

function f(x), and the Adam optimizer [103] is used to optimize the kernel variance, kernel length

scale, and the likelihood variance. The optimized hyperparameters are summarized in Table 2.1.

The kernel parameters offer valuable insights into the regularity of the GP model function and

the underlying data. The kernel variance parameter, σ2, quantifies the uncertainty in the random
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Figure 2.7: Noisy measurements and true function for simple GPR problem.

function predictions and directly reflects the spread of the data. This differs from observation

noise, σ2n, which represents measurement accuracy, whereas variance captures the uncertainty of

the underlying function given the noisy observations. The length-scale parameter, l, expressed in

units of the input dimension, indicate the distance over which significant variations in the output

variable occur. As seen in Table 2.1, the optimized length scale for this problem is on the order

O(1). Intuitively, this means that the underlying function f(x) should not vary significantly over

input ranges smaller than this. For this simple problem, this implication is easily confirmed by

inspection of Figure 2.7.

Table 2.1: Optimized hyperparameters for toy GPR problem.

Hyperparameter Kernel variance σ2 Kernel length scale l Observation noise

Value 0.86 1.36 4.34× 10−2

Figure 2.8 illustrates the posterior mean and 3σ uncertainty, as well as three random samples

drawn from the posterior distribution computed. In practice, the random samples are obtained by

sampling a multivariate-normal distribution with the mean defined by Equation 2.66 and the co-

variance matrix defined by Equation 2.67. In general, the posterior mean shows excellent agreement

with the true function f(x), and the 3σ confidence interval contains the true function everywhere.

Note that the posterior distribution can be sampled at any input location, including outside (i.e.

extrapolating) the bounds of the training data. However, when sampled far enough away from the
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training data, the uncertainty in the model’s predictions grow, as the covariance function uses the

distance between the training data and the point at which the posterior is being sampled. This

characteristic is reflected in Figure 2.8, where the variance in the model’s predictions is generally

low near the training data and grows larger away from the training data set. Such behavior is a

well-known characteristic of GPR and allows for the “out-of-distribution” (i.e. extrapolating instead

of interpolating) uncertainties to be estimated. This feature is useful when the underlying function

is not known a priori, as the increased posterior variance directly informs the user where additional

training data is needed.

0 1 2 3 4 5

−2

0

2

x

f
(x
)

Observations ±3σ
True Mean

Figure 2.8: Simple 1D Gaussian process regression posterior distribution.

The material presented in this section covers the most basic usage of GPR for the devel-

opment of probabilistic surrogate models. For most of the surrogates developed in this disser-

tation, however, more advanced features are required. More complex frameworks enable the use

of multi-output, multi-fidelity, and constrained GPR, which are particularly useful for hypersonic

applications because physical information about the underlying function can be used to improve

the model’s predictive capabilities. For example, it is well known that heat flux increases with

freestream velocity, so it is beneficial to encode this constraint within the structure of the GP itself.

The mathematical background and construction of GPs with these advanced features is discussed

in detail in Chapter 4. All Gaussian process models in this work are constructed using the toolbox

GPflow [104], a python toolbox built on top of TensorFlow 2 [105] for efficient and highly flexible

GP design.



51

2.7 Summary

This chapter introduced the fundamental concepts of thermochemical nonequilibrium and the

computational tools used to model it. First, the physical processes occurring behind strong shock

waves were discussed, emphasizing their relevance to aerocapture vehicles. The distinction between

thermochemical equilibrium and nonequilibrium was then established, along with key terminology

for describing hypersonic flow states. Next, two high-fidelity numerical tools for modeling thermo-

chemical nonequilibrium in aerocapture aerothermodynamics were presented. The first, the CFD

code LeMANS, predicts aerodynamic forces and convective heating, while the second, NEQAIR,

computes radiative heating.

Following the description of the computational models, the theory behind uncertainty quantifi-

cation (UQ) and sensitivity analysis techniques used in this research was introduced. This included

the mathematical foundations of sparse point-collocated polynomial chaos expansion for estimating

uncertainty in a given quantity of interest, as well as Sobol’ indices for sensitivity analysis. Finally,

the fundamental principles of Gaussian process regression (GPR), a probabilistic reduced-order

modeling technique, were explained, and an introductory example usage of GPR was given.



Chapter 3

Aerothermodynamic Analysis and Uncertainty Quantification

“When this baby hits 88 miles per hour, you’re gonna see some serious stuff.”

— Doc, Back to the Future

3.1 Introduction

At this point in the dissertation, the path to answering questions related to high-fidelity

aerothermodynamic modeling of an Ice Giant aerocapture vehicle has been paved. In Chapter 1,

the pitfalls of the typical, low-fidelity, aerothermodynamic models used in aerocapture trajectory

simulations were emphasized, particularly their inability to account for aerothermodynamic uncer-

tainty. Then, Chapter 2 laid the computational groundwork for improving upon these low-fidelity

models by using high-fidelity CFD, UQ, and surrogate modeling. Now comes the time to apply the

high-fidelity computational tools and UQ techniques described in Sections 2.3 and 2.5, respectively.

In this Chapter, a high-fidelity computational analysis of the aerothermodynamic environ-

ments of an Ice Giant aerocapture scenario is performed. First, a review of existing high-fidelity

studies, both experimental and computational, on the aerothermodynamic environments in Ice

Giant atmospheres is performed. Then, the specific thermochemical models used to simulate an

H2/He/CH4 atmosphere in this research are described. Next, a reference aerocapture trajectory is

generated, along which four key points are selected for analysis. The aerothermodynamic analysis

is then conducted in two parts. In the first part, the nominal values for all input parameters are

used to generate baseline profiles for three aerothermodynamic quantities of interest (QoIs). These
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QoIs are namely the convective- and radiative-heating distributions, and the axial-force coefficient.

Next, the UQ/GSA framework presented in Chapter 2.5 is used to quantify the uncertainty in each

of the QoIs and identify the parameters contributing most to the uncertainty. Finally, the effects of

including H2
+ in the thermochemical model, a species typically omitted from Ice Giant aerocapture

aerothermodynamic analyses, on the resulting QoIs are presented.

3.2 Background

Predicting the convective- and radiative-heating environments of an aerocapture vehicle re-

quires highly sophisticated analysis tools, in which high-fidelity models for chemical kinetic rates,

mixture and species transport properties, exchange of energy between translational and internal

energy modes, and gas-surface interactions are used. The Ice Giants’ atmospheres are primarily

composed of hydrogen (H2) and helium (He), and there have been several studies designed to ob-

tain two-temperature compatible models for the chemical reaction rates in H2/He mixtures. These

include the works of Leibowitz et al. [26, 30], Park [29], and Boyd [106]. Owed to the large entry

velocities, modeling the high-temperature, post-shock environments of an Ice Giant aerocapture sce-

nario requires an accurate description of the kinetics of molecular hydrogen dissociation and atomic

hydrogen ionization. However, each of the aforementioned models predict vastly different hydrogen

ionization rates, and previous work from Hansson et al. [107] has shown that none are able to pro-

duce post-shock species distributions that agree well with experimental results. Recently developed

state-to-state chemical kinetic models from Colonna et al. [108, 109, 110, 111] have demonstrated

that the inclusion of otherwise omitted minority species, such as H3
+ and H– , can drastically alter

the post-shock species distribution and improve agreement with experimental data. On the other

hand, a series of similar state-to-state based studies from Carroll et al. [112, 40] have found that

slight modifications to existing state-specific rate data produce an improved agreement between

computational and experimental results without needing to model H3
+ or H– . Unfortunately, these

state-specific models are not compatible with existing two-temperature solvers that would be used

to model vehicle-scale geometries. However, Carroll et al. [112] determined that increasing the
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existing ionization rates of Leibowitz et al. [30] by a factor of 5 produced reasonable agreement

between two-temperature and state-to-state radiance predictions. Regardless, any uncertainty in

the level of dissociation and ionization within the shock layer can produce substantial variation in

the aerothermodynamic environment, particularly the radiative heating.

In a past experimental shock-tube campaign, Cruden et al. [113] sought to characterize the

radiative heating contribution to the aerothermodynamic environment of H2/He mixtures. They

observed significant levels of nonequilibrium and radiation for shock speeds in excess of 25 km/s;

however, for shock speeds below 25 km/s, little radiation was observed. In addition to H2 and He,

the Ice Giants also contain trace amounts of methane (CH4). While typically omitted from Ice Giant

aerothermodynamic analyses, there is evidence that the inclusion of CH4 can substantially alter the

radiative-heating environment. A recent computational study from Coelho et al. [35] demonstrated

that introducing a concentration of 1.5% CH4 by mole resulted in an aerothermodynamic environ-

ment in which 50% of the heating was attributed to radiation. However, the hydrogen ionization

rates used in [35] are reported to be two orders of magnitude lower than the actual values presented

by Leibowitz et al. [30]. As observed by Carroll et al. [112], the Leibowitz rates already underpre-

dict the radiance produced at conditions relevant to Ice Giant aerocapture, so the slower ionization

modeled by Coelho et al. [35] is likely underpredicting the proportion of radiation produced by

hydrogen. Furthermore, Coelho et al. concluded that considering CH4 in the freestream produces

significant radiation for shock speeds as low as 19 km/s. Recent experimental efforts from Steer

et al. [114] observed that mixtures of 0.845/0.15/0.005 and 0.8/0.15/0.05 of H2/He/CH4 (by mole)

produced radiation signatures that were not present in pure H2/He mixtures for shock speeds up

to 18.9 km/s. Cruden and Tibere-Inglesse [37] also found that the addition of 0.4% by mole CH4

produced radiative features that were not present in H2/He-only mixtures for shock speeds up to 26

km/s, however, they were smaller than those observed by Steer et al. [114] (owed to the increased

CH4 and He concentrations in [114]) and were far outweighed by hydrogen-based features. The

actual amount of CH4 in the atmospheres of Neptune and Uranus is highly uncertain, such that

the amount of CH4 in the troposphere can range from 1-5% by mole [115]. While the majority of
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an Ice Giant aerocapture trajectory remains within the stratosphere (where less CH4 is expected),

the potentially large sensitivity of radiative heating to the amount of freestream CH4, and the

high level of uncertainty in the amount of freestream CH4 motivates further quantification of the

aerothermodynamic uncertainty for H2/He/CH4 mixtures.

To date, there has only been one major effort to quantify the aerothermodynamic uncertainty

in H2/He mixtures at conditions representative of an Ice Giant aerocapture mission. Palmer et

al. [86] quantified the uncertainty in convective and radiative stagnation-point heating rates for a

1-meter aeroshell entering the atmospheres of Saturn and Uranus at velocities of 28.2 km/s and 22.3

km/s, respectively. Their study performed a large Monte Carlo analysis consisting of thousands of

CFD simulations in which chemical reaction-rate coefficients, transport properties, and vibrational

relaxation times were assumed to be uncertain. An extensive review of the transport properties

in H2He mixtures was performed in [86] which was used to inform the uncertainty intervals on

collision-integral parameters. On the other hand, no review of the chemical reaction-rate coeffi-

cients was made. Rather, the nominal rate coefficients were taken from Leibowitz et al. [26, 30],

and a Gaussian distribution with a 3σ uncertainty of an order of magnitude was imposed. This

gives no consideration to other models [29, 106] for the same reactions and can result in overly-

conservative aeroheating uncertainty estimates. Palmer et al. [86] concluded that, for catalytic

surfaces, the convective heating 2σ-uncertainty was only a few percent, but as high as 18% for non-

catalytic surfaces. For the highest-velocity Saturn entry case, significant radiation was observed

that nominally accounted for ∼10-20% of the total heating. Additionally, the radiative-heating

uncertainty was significantly larger with 2σ-uncertainties of up to 280%. No radiative heating re-

sults were presented for the Uranus scenario due to the lower entry velocity. Furthermore, Palmer et

al. [86] did not model CH4 as a freestream species and only considered the stagnation-point heating.

In reality, an aerocapture mission at the Ice Giants could have entry velocities in excess of 30 km/s

[13, 116], and the surface heating at the vehicle’s shoulder can be as high as at the stagnation-point.

More recently, a study from Erb et al. [117] assessed the impact of modeling practices like coupled

radiation and ablation on surface heating uncertainties, but their work was directed at Jovian entry
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and not Ice Giant aerocapture. Due to the immense entry velocity for Jovian entry (47.4 km/s),

the aerothermodynamic environment is dominated by radiation, so the same conclusions of Erb et

al. [117] cannot necessarily be made for an Ice Giant aerocapture environment.

In light of these existing works and the increased attention toward Ice Giant aerocapture, there

is a need for an updated and more comprehensive quantification of the aerothermodynamic uncer-

tainty in H2/He/CH4 mixtures. Specifically, the current work builds upon previous analysis [45]

and performs a sensitivity analysis and uncertainty quantification (UQ) study of the aerothermody-

namic environment of a Neptune aerocapture scenario, where the imposed uncertainty intervals are

informed by existing data, when possible. Furthermore, consideration is given to the uncertainty

in the heating distributions, not just the stagnation point, and the freestream composition is taken

to be uncertain in order to reflect the lack of knowledge in the Ice Giant atmosphere composition.

A parametric analysis, considering uncertainty in reaction-rate coefficients, collision integral fitting

parameters, and vibrational-relaxation time fitting parameters is performed to determine the uncer-

tainty in the axial-force coefficient, and convective- and radiative-heating distributions. Finally, a

global sensitivity analysis is performed in which Sobol’ indices are used to identify the processes con-

tributing most to the uncertainty in the selected aerothermodynamic quantities of interest. Because

an Ice Giant aerocapture mission has yet to be flown, it is necessary to characterize the aerother-

modynamic environment across a broad range of densities and velocities. As such, an aerocapture

mission to Neptune is chosen over Uranus because of the nominally larger entry velocity1 . Neptune

and Uranus are believed to have similar atmospheres, with Uranus having slightly less methane

than Neptune. However, the results in this Chapter demonstrate a minor level of sensitivity to the

freestream methane concentration, so the differences in atmospheric compositions between Uranus

and Neptune will not produce drastically different results. Therefore, the findings in this work are

also applicable to a Uranus aerocapture scenario.
1 Some Uranus aerocapture concepts have similarly high entry velocities [116]
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3.3 Computational Modeling Approach and Sources of Uncertainty

This section provides an overview of the computational models used to simulate the aerother-

modynamic environment of an Ice Giant aerocapture mission. Section 3.3.1 describes the setup of

the computational fluid dynamics and radiative transport codes, and Section 3.3.2 discusses the

primary uncertainty sources considered.

3.3.1 Computational Fluid Dynamics and Radiation Models

The gas is assumed to be in thermochemical nonequilibrium where the translational and

rotational modes are described by a single temperature Ttr, and the vibrational, electronic, and

free electron energy modes are described by a single temperature Tv. To model an atmosphere

composed of H2, He, and CH4, a 12-species thermochemical model is used that considers: H2, CH4,

CH3, CH2, CH, H, C2, C, H+, C+, He, and e– . Only neutral helium is considered due to its large

ionization potential, as He+ is not likely to form for V∞ < 30 km/s. Other minor species (e.g.

C2H, C2H2, CH+, etc.) are not considered because they are either not expected to form in the

gas phase or do not contribute significantly to the aerothermodynamic quantities of interest [32].

The reaction data set for the 12-species model includes 106 chemical reactions. Dissociation of H2

is modeled using rate data from Leibowitz [26]. Baseline atomic hydrogen ionization rate data is

taken from Leibowitz and Kuo [30], but all hydrogen-ionization reactions are increased by a factor

of 5 as recommended by Carroll et al. [112]. Finally, the rate data of Lino da Silva et al. [118] is

used to model all carbon-based reactions. Forward reaction rates are modeled using the modified-

Arrhenius form in Equation 2.18. The specifics of all 106 chemical reactions employed in this work

are summarized in Appendix A.1.

As described in Section 2.3.3, diffusion in LeMANS is modeled using a modified version of

Fick’s law where the diffusion coefficients are computed using collision integrals. Previous work in

air [83] has shown that this model well approximates the full multicomponent diffusion solution given

by the Stefan-Maxwell equations. However, Erb et al. [117] found that adopting the full Stefan-
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Maxwell approach was necessary due to the substantial difference in molecular weight between

hydrogen and the large amount of heavier carbon-based species blown into the boundary layer via

ablation. This work does not model ablation, so the boundary layer is predominantly composed

of hydrogen, as the only source of carbon is the trace amount in the freestream. Therefore, the

simpler modified Fick’s law with species transport properties obtained from collision integrals is used.

Future work that considers coupled CFD-material response should consider the more rigorous Stefan-

Maxwell approach. Interactions between neutral-neutral and neutral-ion species are modeled using

the approach of Gupta et al. [85], whereas, interactions between two charged species are modeled

using Coulumbic theory as described by Wright et al. [88]. Collision integral fits for interactions

including hydrogen and helium are taken from Palmer et al. [86], and the data from Park et al. [87]

are used for all other neutral-neutral and neutral-ion interactions. The Gupta parameterization of

the collision integral is given in Equation 2.36. For the 12 species considered in this work, there

are 69 interactions involved corresponding to 138 total collision integrals (i.e. the Ω(1,1) and Ω(2,2)

collision integrals). Physically, the Ω(1,1) and Ω(2,2) collision integrals represent how interactions

between particles in the gas affect the transport properties of the mixture (i.e. viscosity, diffusivity,

and thermal conductivity).

LeMANS models the relaxation of the vibrational and translational modes using the Landau-

Teller model, where the vibrational-relaxation times are computed using the Millikan-White for-

mulation [82] with Park’s high-temperature correction [24]. The expression for the Millikan-White

vibrational-relaxation time curve fit is given in Equation 2.14, and the values of a and b used in the

Millikan-White cure fits for interactions involving H2 and He are summarized in Table 3.1. The vi-

brational relaxation of CHx species is not explicitly modeled. Because the freestream concentration

of CH4 is small, and because CH4 tends to dissociate quickly, neglecting the vibrational relaxation

of CHx will not substantially affect the overall energy balance within the flow.

Radiative heating calculations are performed using the NASA line-by-line radiation code

NEQAIR [119], which requires the temperatures and species number densities along a specific line

of sight. For computational simplicity, the temperatures and densities calculated using LeMANS
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Table 3.1: Millikan-White fitting parameters for interactions involving H2 and He [86].

Interaction a b

H2-H2 65.110 6.8210× 10−3

H2-He 69.971 4.6820× 10−3

H2-H 9.6730 7.2500× 10−2

are used directly as the NEQAIR inputs. As such, the radiative heating is determined in an

uncoupled fashion in which the flowfield computed by LeMANS is provided to NEQAIR, but the

radiative heating source term within LeMANS is assumed to be zero. The use of a coupled LeMANS-

NEQAIR simulation could be addressed in future work. NEQAIR computes the radiation spectra in

a wavelength region of interest and provides the integrated radiance at specific points in space, and

the wall-incident radiative heat flux is obtained using a tangent-slab approximation. As described in

Chapter 2, NEQAIR provides numerous options for calculating the species excited state populations.

A QSS model is used for species that have QSS rate data available, while all other species are

assumed to follow a Boltzmann distribution. Helium state populations are assumed to follow a

Boltzmann distribution, while the hydrogen molecule and atom populations are calculated using

QSS methods. As described in [90], helium is an inert substituent, so assuming a Boltzmann state

distribution for He does not affect the radiative heating calculation. Atomic carbon is modeled

using a QSS assumption, and the remaining carbon-based species state populations are modeled

with a Boltzmann assumption. Uncertainty in the NEQAIR databases and QSS models are not

considered and are left as future work. The version of NEQAIR used in this work also implements

a preliminary H free-free contribution to the total radiation calculation.

3.3.2 Sources of Uncertainty

This work considers uncertainty in each of the physical models described in Section 3.3.1.

In addition to uncertain chemical reaction-rate coefficients, transport properties, and vibrational-

relaxation times, uncertainty in the freestream CH4 mass fraction is considered. There is significant
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speculation over the impact of CH4 on the resulting flowfield [35, 114], and the actual quantity of

CH4 present in the Ice Giants’ atmospheres is not well known [115]. Therefore, this work seeks

to include the uncertainty in the freestream CH4 quantity to more comprehensively assess the

uncertainty in the Ice Giant aerothermodynamic environment. This study treats all uncertainty

as epistemic, and Table 3.2 summarizes the uncertain parameters varied in this study as well as

their uncertainty multiplier intervals. The choice of the uncertainty intervals is intended to reflect

that knowledge (or lack thereof) in each parameter. Intervals for the reaction-rate coefficients are

informed from available rate data [26, 30, 120, 87, 29, 118], and intervals for the collision integrals and

vibrational-relaxation times are taken from Palmer et al. [86]. The current data in NeptuneGRAM

is believed to serve as an upper limit for the trace CH4 levels in Neptune’s atmosphere [115]. As

such, the uncertainty interval for the freestream methane concentration uses the value taken from

NeptuneGRAM as the upper limit and 25% of that value as the lower limit.

Table 3.2: Uncertain parameters for H2/He/CH4 flows.

Category Model Parameter Varied Uncertainty Interval, Ui

Rate Coefficients kf = AfT
ηf
f exp(−Df/Tf ) Af Table A.1

Collision Integrals Ω(1,1),Ω(2,2) = Df(T ) D ±10% for neutral-neutral
±50% for all others [86]

V-T Relaxation Time Millikan-White Slope ±10%
Freestream CH4 NeptuneGRAM Mass fraction [0.25, 1.0]

In total, 248 sources of uncertainty are considered. These include 106 forward-reaction-rate

leading coefficients, 138 collision-integral leading coefficients, 3 vibrational-relaxation parameters,

and the freestream methane concentration.

3.4 Selection of Freestream Conditions

This section provides an overview of the selection of freestream conditions to be analyzed

using the UQ methodology presented in the previous section. A representative trajectory for an

aerocapture mission at Neptune is presented in Section 3.4.1 along with the four conditions at which
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the UQ analysis is run. The nominal aerothermal environments for each condition are discussed in

Section 3.4.3.

3.4.1 Neptune Aerocapture Trajectory

The Neptune aerocapture entry state is derived from an existing Neptune aerocapture systems

analysis [13] which gives an initial altitude and inertial velocity of h0 = 1000 km and V0 = 29.0

km/s, respectively. Figure 3.1 displays a representative aerocapture trajectory obtained by guiding

the entry vehicle to a target orbit with an apoapsis altitude of 100,000 km and target periapsis

altitude of 3,000 km using the fully numerical predictor-corrector aerocapture guidance (FNPAG)

algorithm [55]. In the trajectory simulation, the vehicle is assumed to have a constant lift-to-drag

ratio of L/D = 0.3, and the inertial entry flight path angle is taken to be γ0 = −11.5 degrees.
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Figure 3.1: Trajectory points selected for sensitivity analysis and UQ.

Four locations along the trajectory are chosen for detailed UQ analysis. The first occurs at

t = 198 s after entry interface and corresponds to the maximum convective heating condition, as

the maximum heating typically informs the TPS material selection. The second and third points

occur at t = 110 s and t = 150 s after entry interface, respectively. These two points are chosen

to be before the maximum heating condition where the heat flux is still expected to be high and
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the modeling of nonequilibrium phenomena is more important due to the decreased freestream

density. The final point occurs at t = 250 s after entry interface. This point occurs after the

maximum convective heating condition and is chosen to investigate the effects of lower-speed flight

on the aerothermodynamic environment. Table 3.3 summarizes the freestream conditions for all

four trajectory points, where the freestream density and species concentrations are obtained from

NeptuneGRAM [121]. The nominal freestream CH4 mass fraction is taken to be the midpoint of the

uncertainty interval defined in Table 3.2, and the freestream H2 and He mass fractions are modified

holding the ratio of H2/He from NeptuneGRAM constant.

Table 3.3: Freestream conditions at which detailed UQ analysis is performed.

Trajectory Point ρ (kg/m3) V (km/s) H2/He/CH4 Mass Fraction (%)

t = 110 s 3.63×10−7 28.7 67.3/31.4/1.30
t = 150 s 3.40×10−6 28.5 65.3/30.9/3.80
t = 198 s 1.42×10−5 27.0 64.5/30.7/4.80
t = 250 s 1.55×10−5 24.3 64.4/30.7/4.90

3.4.2 Numerical Setup

The entry vehicle is modeled as an axisymmetric, 70-degree sphere-cone with a base diameter

of 5 meters and a nose radius of 1.25 meters, which is consistent with the most recent Ice Giant

aerocapture studies [22, 122]. While the aerocapture trajectory is produced assuming lifting flight,

quantification of the uncertainty in the full three-dimensional aerothermal quantities of interest

is left as future work. A grid convergence study is performed to determine the proper resolution

of the computational domain. Figure 3.2 shows the difference in the convective- and radiative-

heating distributions obtained on “coarse”, “medium”, and “fine” grids, which have wall-tangential

and wall-normal resolutions of 81×161, 161×321, and 161×641, respectively. The results obtained

on the medium and fine grids deviate by less than 1% of each other for all QoIs. Therefore, all

further simulations are performed on the medium-resolution grid. Mesh adaptation is performed

to improve the solution quality by aligning the outer boundary of the computational domain with
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the bow shock, such that 90% of the grid normal to the surface lies within the shock layer. Wall-

normal grid spacing is selected to ensure y+ < 1 in order to properly resolve the boundary layer. A

representative computational domain is shown in Figure 3.3, along with contours of the vibrational-

electronic-free-electron temperature. For all simulations, the vehicle surface is assumed to be fully

catalytic and in radiative equilibrium with a surface emissivity of 0.9. Inclusion of a finite-rate

surface chemistry model within the UQ analysis is left as future work. Finally, a laminar flow

assumption is made. While modeling turbulent flow would increase the convective heating, the

proper selection of a turbulence model and quantification of the uncertainty in its parameters is

beyond the scope of this work.
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Figure 3.2: Grid convergence study for convective (a) and radiative (b) heating.
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Figure 3.3: Representative computational grid and corresponding contours of vibrational-electronic-
electron temperature.

3.4.3 Nominal Solutions

Before performing the detailed UQ analysis, the aerothermal environments for each trajec-

tory point are obtained using the baseline/nominal models. At each point, the convective- and

radiative-heating distributions are obtained along the vehicle surface, and the axial-force coefficient

is computed using the resulting pressure and shear-force profiles.

Figure 3.4 shows the stagnation-line profiles of the temperatures and pressures for each of the

trajectory points. The t = 150 s, 198 s, and 250 s trajectory points all reach thermal equilibrium,

while the t = 110 s point does not. A peak translational temperature just below 25,000 K is

observed, and the three cases that reach thermal equilibrium display and equilibrium temperature

of approximately 10,000 K. Slower relaxation is observed for the t = 110 s and 150 s cases due to

the lower freestream density. Furthermore, as the freestream density decreases, the shock standoff

distance increases. A peak stagnation-point pressure of approximately 10 kPa is predicted for the

t = 198 s condition. Convective- and radiative-heating distributions at each of the trajectory points

are shown in Figure 3.5. Generally, the convective heating decreases as the freestream density and

velocity decrease, as expected. For all but the t = 250 s trajectory point, the radiative heating
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is a large percentage of the total heating along the surface, suggesting that radiative heating is

of significant importance for freestream velocities in excess of 25 km/s. Despite a lower relative

convective-heating distribution, the radiative heating at the mid-altitude trajectory point (t = 150

s) is similar to that at the maximum convective heating trajectory point (t = 198 s) with peak

values of 168 W/cm2 and 163 W/cm2, respectively. However, the maximum-heating condition is

the only trajectory point where the radiative heating does not decrease monotonically along the

vehicle surface due to the more severe post-shock conditions.
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Figure 3.4: Nominal stagnation-line temperature (a) and pressure (b) profiles for all four trajectory
points.

Figure 3.6 shows the nominal spectral and integrated radiance profiles along the stagnation

line of sight for each trajectory point. For all four trajectory points, the majority of the radiative

heating is accumulated between wavelengths of 100-200 nm in which the primary radiative features

are the H2 Lyman band (100-160 nm) and the H Lyman-α line (121.57 nm). The spectral radiance

profiles for the maximum heating (t = 198s) condition and the mid-altitude condition (t = 150

s) show similar spectral characteristics, with higher overall spectral radiance values observed at

the maximum heating condition. However, H2 dissociates more slowly at higher altitudes, so the
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Figure 3.5: Nominal heating environments for the four trajectory points used in detailed analysis.
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amount of radiance produced from the H2-Lyman band is higher for the mid-altitude case than

the max-heating case due. The three most prominent atomic lines observed are the H Lyman-α

line (121.57 nm), H Balmer-α line (656.28 nm), and the H Paschen-α line (1875 nm). There are

also a series of prominent carbon emission lines in the spectral range 146-250 nm. These features

contribute some to the total radiance, indicating that the presence of CH4 in the freestream does

increase the radiative heating, albeit slightly. As the freestream density decreases, a lower overall

contribution to radiance from atomic lines is observed, as there is both a decrease in H2 dissociation

and reduced freestream CH4 concentration.
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Figure 3.6: Nominal spectral radiance (a) and integrated radiance (b) along the stagnation line of
sight.

Overall, the radiative environment in these flight regimes is dominated by hydrogen features,

which is consistent with previous work [37]. This is emphasized in Figure 3.7, which shows the

fractional contributions of the species dominating the radiative-heating distribution. At higher

altitudes (t = 110 s), nearly all of the radiative heating is from H2. As the vehicle descends into

the atmosphere, a larger contribution from H is observed due to the increasing levels of dissociation

and ionization within the shock layer. However, as the freestream velocity decreases below 25 km/s,
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the prominent radiative species again becomes H2. For altitudes below 400 km, there is a minor

contribution from carbon-based species due to the higher freestream CH4 concentration. Specifically,

atomic carbon is found to contribute ∼5-8% of the total stagnation-point radiative heating.

Finally, the nominal axial-force coefficients for each trajectory point are computed using the

pressure and shear distributions along the vehicle surface and are summarized in Table 3.4. The

axial force coefficient is relatively invariant across the four trajectory points which is expected for

high hypersonic Mach numbers.

Table 3.4: Nominal values of axial-force coefficient.

Trajectory Point Cx

t = 110 s 1.62
t = 150 s 1.64
t = 198 s 1.64
t = 250 s 1.62
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Figure 3.7: Fractional species contribution to radiative-heating distribution at each trajectory point.
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3.5 Uncertainty in Aerothermodynamic Quantities of Interest

This section presents a detailed uncertainty quantification and sensitivity analysis of the

convective heating, radiative heating, and axial-force coefficient at the four trajectory points along

the representative Neptune aerocapture trajectory. At each condition, the deterministic models

are evaluated a total of 200 times. Next, the NIPC-PCE methodology described in Section 2.5.2

is used to determine the overall uncertainty in each QoI, and total Sobol’ indices are computed

to assess the global sensitivity of each QoI to the uncertain model parameters. For each QoI, the

convergence of the PCE is monitored by tracking the total Sobol’ indices as described in Section

2.5.5. Results for the convective and radiative heating at the four trajectory points are presented

in Sections 3.5.1–3.5.4, and results for the axial-force coefficient at all four conditions are presented

in Section 3.5.5.

3.5.1 Maximum Heating Condition Heating (t = 198 s)

Figure 3.8 shows the total Sobol’ indices and epistemic uncertainty intervals for the convective

heating along the vehicle surface at the maximum heating condition. Note that Figure 3.8a only

shows the Sobol’ indices corresponding to parameters that contribute≥ 1% to the convective-heating

uncertainty. The uncertainty in the convective heating remains similar across the majority of the

surface with a maximum of 10.7% above and -5.6% below the nominal prediction. At the stagnation

point, the convective heating is nominally 449 W/cm2 with a 95% confidence interval of 432–467

W/cm2. At the shoulder (arc length = 2.6 m), the convective heating is nominally 308 W/cm2 with

a 95% confidence interval of 299–321 W/cm2.

At the stagnation point, the variability in the convective heating is primarily attributed

to the uncertainty in the H2-H Ω(1,1) collision integral and hydrogen electron-impact ionization

(EII) reaction-rate coefficient, which account for 59.2% and 26.6% of the uncertainty, respectively.

Because the surface is modeled as fully catalytic to ions, the species concentration gradients near

the wall are primarily H2 and H, explaining the dependence of the convective heating on the H2-H
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Figure 3.8: Total Sobol’ indices (a) and epistemic uncertainty bounds (b) for the convective-heating
distribution at the maximum heating trajectory point.

Ω(1,1) collision integral. In addition, there is a significant level of ionization along the stagnation

line. The hydrogen EII reaction strongly affects the boundary-layer edge temperature which, in

turn, affects the convective heating (and transport properties throughout the boundary layer).

Moving downstream from the stagnation point, the convective-heating uncertainty becomes

driven almost exclusively by collision integrals. For most of the frustum (0 < x < 0.8 m), the

variability in the H2-H Ω(1,1) collision integral accounts for approximately 80% of the uncertainty

in the convective heating. The sensitivity of the convective heating to the hydrogen EII reaction-

rate coefficient nearly vanishes, as most ionization occurs in the stagnation region. Approaching

the shoulder, the uncertainty in the rate coefficient for H2 + H ↔ 3H starts to contribute more

to the convective-heating uncertainty, and it peaks around x = 0.78 m with a total contribution

of 18.2%. The gas moving along streamlines in the boundary layer at x = 0.78 m has already

spent a significant amount of time reacting within the boundary layer, so the hydrogen dissociation

reaction will affect the species concentration distribution, and therefore, convective heating more in

this region than others.
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At the shoulder, the uncertainty in the convective heating becomes dominated by the hy-

drogen EII rate coefficient. Because the flow is cooling near the shoulder, the chemical processes

in this region are dominated by recombination phenomena. To more clearly assess the effects of

recombination versus ionization on the resulting heat transfer, the chemical production terms for

the electron-impact ionization reaction

H+ e− ↔ H+ + 2e− (3.1)

are computed. Hydrogen atoms are “lost” from the forward direction of Equation 3.1 and are formed

from the reverse direction of Equation 3.1. As such, the net production of hydrogen atoms due to

Equation 3.1 is computed as

rnet = rform + rloss = nH+ne−ne−kb(Tb)− nHne−kf (Tf ) (3.2)

where ni is the number density of species i, and kf and kb are the forward and backward rate

coefficients evaluated at the forward and backward controlling temperatures Tf and Tb, respectively.

Figure 3.9 shows the chemical source term for the EII reaction computed using Equation 3.2

and the nominal values for all CFD parameters. There is a significant loss of hydrogen atoms (i.e.

ionization) in the stagnation region directly behind the shock. This is expected, as the gas in this

region is being compressed at high temperatures. There is also significant recombination closer to

the surface in the stagnation region. The amount of recombination of hydrogen ions into neutral

hydrogen atoms remains high throughout much of the flowfield, and the size of the recombination

zone increases approaching the shoulder. Right at the shoulder, there is a spike in the rate at which

the reverse of Equation 3.1 proceeds. This local increase in recombination affects the temperature

throughout the boundary layer and therefore surface heating, confirming that the large Sobol’ index

for the EII reaction rate at the shoulder is due to the reverse of Equation 3.1.

Figure 3.10 shows the total Sobol’ indices and epistemic uncertainty intervals for the radiative

heating along the vehicle surface at the maximum-heating condition. The uncertainty in the ra-

diative heating is high, with a maximum of 68.8% above and -64.0% below the nominal prediction.
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maximum heating condition using nominal aerothermal models.

These uncertainties are greater than the radiative heating margin used by Morgan et al. [123] to

size the TPS for a Uranus aerocapture system but less than the 2σ uncertainties reported by Palmer

et al. [86]. Additionally, the magnitude of the radiative heating along the entire surface is high,

including the shoulder. At the stagnation point, the radiative heating is nominally 163 W/cm2

with a 95% confidence interval of 118–254 W/cm2. At the shoulder, the peak radiative heating is

nominally 93.9 W/cm2 with a 95% confidence interval of 78.0–132 W/cm2.

Along the majority of the surface, the uncertainty in the radiative heating is dominated by the

variability in the hydrogen dissociation reaction-rate coefficient H2 +H↔ 3H. This is because any

undissociated molecular hydrogen that persists into the high-temperature shock layer contributes

significantly to the overall radiative heating. Additionally, this reaction is the primary source of

atomic hydrogen, which is the dominant source of radiation at this flight condition (see Figure 3.7c).

A similar finding was reported by Palmer et al. [86].

Moving downstream from the stagnation point, two interesting changes occur. First, an

increase in the contribution to the radiative-heating uncertainty from the freestream CH4 concen-

tration is observed. As shown in Figure 3.7c, the dominant source of radiation from carbon-based
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Figure 3.10: Total Sobol’ indices (a) and epistemic uncertainty bounds (b) for the radiative-heating
distribution at the maximum heating trajectory point.

species at this condition is atomic C. Additionally, ionization of atomic carbon is observed to

peak downstream of the stagnation point due to the relatively slower carbon EII reaction rate. As

such, any increase in the freestream CH4 concentration results in more carbon ions, and therefore

electrons, along the frustum, explaining the increase in the Sobol’ index for the freestream CH4

approaching the shoulder. Overall, the contribution of freestream CH4 uncertainty to the variation

in the radiative heating is small, with a maximum value of 2.0% at x = 0.81 m.

Second, at the shoulder, 99% of the uncertainty in the radiative heating is attributed to

uncertainty in the hydrogen EII rate coefficient. Figure 3.11 compares the electron temperature

and electron number density along the line of sight at the shoulder (shown as the black line in

Figure 3.9) and the resulting spectral and integrated radiance for three cases: the nominal case, the

case with the highest hydrogen EII rate (labeled “max”), and the case with the lowest hydrogen EII

rate (labeled “min”). Electron temperature and electron number density are key parameters in the

radiance calculation, so comparing them can provide insight into the source of the radiative heating

differences. Generally, as the EII rate decreases, the level of ionization along the shoulder line of
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Figure 3.11: Electron temperature and electron number density profiles (a) and radiance (b) along
the shoulder line of sight for the nominal, minimum, and maximum hydrogen EII rates.

sight increases. This is because the shoulder is a recombination driven region, so a slower ionization

rate also means a slower recombination rate. Sufficient ionization occurs in the stagnation region

for all three cases, so the electron number density at the shoulder is significantly influenced by the

EII reaction recombination rate. Additionally, as the EII reaction rate decreases, the radiance at

the shoulder increases.

In particular, there are significant differences in the radiance from the H Lyman-α line at

121.57 nm. Emission from the H Lyman-α line corresponds to an electron transitioning from

H(n = 2) to H(n = 1), so the decreased EII rate causes the population of the second energy

level (n = 2) of atomic hydrogen to increase. This is confirmed in Figure 3.12a which shows

the atomic hydrogen electronic state population computed by NEQAIR along the shoulder line

of sight for the nominal and lowest hydrogen EII rates. The three colored lines denote the first

three electronic levels, and the grayed lines denote all higher electronic states. On average, the

population of H(n = 2) is higher when the EII rate is decreased, which increases the contribution of

the H Lyman-α line to the total radiative heating. Additionally, Figure 3.12b compares the atomic
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hydrogen state populations for the minimum hydrogen EII rate at two locations (shown as the

black circles in Figure 3.9) along the shoulder line of sight computed assuming nonequilibrium state

population distributions and state populations determined assuming a Saha-Boltzmann distribution.

For both locations along the shoulder line of sight, the nonequilibrium H(n = 2) state population is

the furthest below the corresponding Saha-Boltzmann value, while other states are much closer to

(or even on top of) equilibrium with the free electrons and continuum species. Because H(n = 2) is

the furthest from Saha-Boltzmann equilibrium, its population is most likely to be affected by any

changes in the electron number density. Due to the increased electron number density profile for

the “min” case in Figure 3.11b, there should be a larger net flux of electrons to the H(n = 2) state

through both ground state excitation and recombination. The recombination event is more likely

near the surface, where the H(n = 2) state is significantly depleted, which is consistent with the

conclusion that the shoulder is a recombination-driven region.
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Figure 3.12: Electronic state populations of H along the shoulder line of sight (a) and comparison
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77

3.5.2 Mid-Altitude Condition Heating (t = 150 s)

Figure 3.13 shows the total Sobol’ indices and epistemic uncertainty intervals for the con-

vective heating along the vehicle surface at the mid-altitude condition. The uncertainty in the

convective heating is slightly larger than that computed for the maximum heating condition, with

a maximum of 7.5% above and -4.4% below the nominal prediction. At the stagnation point, the

convective heating is nominally 257 W/cm2 with a 95% confidence interval of 246–273 W/cm2. At

the shoulder, the convective heating is nominally 168 W/cm2 with a 95% confidence interval of

162–176 W/cm2.
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Figure 3.13: Total Sobol’ indices (a) and epistemic uncertainty bounds (b) for the convective-heating
distribution at the mid-altitude trajectory point.

At the stagnation point, the primary source of uncertainty in the convective heating is the

hydrogen EII reaction-rate coefficient, which accounts for 58.6% of the total uncertainty. The

remainder of the stagnation-point convective heat flux uncertainty is attributed to collision-integral

uncertainty, with the largest contribution coming from the H2-H Ω(1,1) collision integral at 20.9%.

This trend is the opposite of what is found for the maximum-heating condition, in which the

primary source of the stagnation-point convective heat flux uncertainty is the H2-H Ω(1,1) collision
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integral. Compared to the maximum-heating condition, the mid-altitude trajectory point has a lower

freestream density and a higher freestream velocity. As a result, the EII reaction heavily affects the

shock standoff distance and, therefore, temperature distribution throughout the stagnation region.

This is emphasized in Figure 3.14, which shows the stagnation-line temperature and electron number

density profiles for the 200 cases used to construct the PCE. A substantial variation in shock standoff

distance is observed, which explains the large contribution of the uncertainty in the hydrogen EII

rate coefficient to the uncertainty in the stagnation-point convective heating. The mid-altitude

freestream conditions are in somewhat of an intermediate zone, as the ionization rate is either quite

slow or quite fast, depending on the value of kf for Equation 3.1. If kf for Equation 3.1 is sufficiently

large, then EII reactions will proceed faster causing the average stagnation line temperature and

shock standoff distance to decrease. Conversely, if the kf for Equation 3.1 is sufficiently small, the

net rate of ionization is slower, and the shock-layer translational temperature and shock standoff

distance are larger. Such a high level of variability is observed because the freestream density

is just high enough to produce sufficient collisions in the post-shock flow to the point where the

ionization is relatively fast (if kf is greater than nominal), but it is also just low enough to produce

relatively slow ionization (if kf is lower than nominal). Furthermore, for EII to be active, the

heavy-particle ionization reactions must first produce a sufficient density of free electrons, which

explains the smaller contribution of the rate coefficient for the reaction H + H ↔ H+ + e− to the

convective-heating uncertainty.

The contribution from the hydrogen EII reaction-rate coefficient is less pronounced moving

downstream from the stagnation point. Along the frustum, up to 64% of the convective-heating

uncertainty is attributed to the H2-H Ω(1,1) collision integral, and up to 21% is attributed to the

hydrogen EII reaction rate. There is also a smaller allocation of uncertainty to the H-H+ Ω(1,1)

collision integral, which accounts for approximately 9-10% of the convective-heating uncertainty.

The collision integrals and hydrogen EII reaction rate drive the transport properties within the

boundary-layer and the temperature at the boundary-layer edge, respectively, which explain their

large contribution to the uncertainty in the convective heat flux.
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Figure 3.14: Profiles of the stagnation line translational temperature (a) and electron number
density (b) at the mid-altitude trajectory point.

Rounding the shoulder, a similar phenomenon as the maximum-heating condition is observed,

where the majority of the convective heat-flux uncertainty is attributed to the hydrogen EII reaction-

rate coefficient. Right before the shoulder (x = 0.83 m), 63.5% of the uncertainty in the convective

heat flux is attributed to the hydrogen EII rate coefficient. Similar to the maximum-heating con-

dition, this is again due to the shoulder environment being driven by recombination phenomena.

Additionally, because the lower freestream density produces less overall ionization, a more pro-

nounced sensitivity to the reaction-rate coefficient of H2 + H ↔ 3H is observed. At the shoulder,

the uncertainty in this rate coefficient accounts for 33.5% of the convective-heating uncertainty.

Figure 3.15 shows the total Sobol’ indices and epistemic uncertainty intervals for the radiative

heating along the vehicle surface at the mid-altitude condition. Uncertainty in the radiative heating

is high, with a maximum of 96.9% above and -49.1% below the nominal prediction. The magnitude

of the radiative heating along much of the surface is large, but it is smaller around the shoulder. At

the stagnation point, the radiative heating is nominally 168 W/cm2 with a 95% confidence interval

of 90.6–318 W/cm2. At the shoulder, the peak radiative heating is nominally 78.0 W/cm2 with a
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95% confidence interval of 43.5–152 W/cm2.
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Figure 3.15: Total Sobol’ indices (a) and epistemic uncertainty bounds (b) for the radiative-heating
distribution at the mid-altitude trajectory point.

Similar to the maximum-heating condition, the majority of the radiative-heating distribution

uncertainty is attributed to the uncertainty in the rate coefficient for the reaction H2 + H ↔ 3H.

For most of the surface (x < 0.8 m), uncertainty in this rate coefficient accounts for more than

98% of the variability in the radiative heating. Because the freestream density is lower, molecular

hydrogen persists deeper into the shock layer which contributes significantly to the radiative heating.

The presence of molecular hydrogen deeper within the shock layer is also emphasized by the minor

contribution (∼ 1%) of the reaction-rate coefficient for the dissociation of H2 with partner H2, which

is not identified as a primary source of uncertainty at the maximum-heating condition.

At the shoulder, a similar trend to the maximum-heating condition is observed, where the con-

tribution of the hydrogen dissociation reaction-rate coefficient to the radiative-heating uncertainty

decreases, and the contribution from hydrogen EII reaction-rate coefficient increases. The magni-

tude of this decrease, however, is significantly smaller than what is observed at the maximum-heating

condition. Here, 71.4% of the uncertainty in the radiative heating is attributed to uncertainty in the
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hydrogen dissociation rate coefficient, while only 12.6% is attributed to uncertainty in the hydrogen

EII rate coefficient. This is explained by the lower overall levels of ionization in the flowfield, so

the shoulder heating phenomenon discussed in the previous section is less pronounced. It is fur-

ther emphasized by the minor contribution (4.00%) of the rate coefficient for the heavy-particle

ionization reaction H + H ↔ H+ + H + e− to the shoulder radiative heating. This reaction is a

precursor reaction to the hydrogen EII reaction, so it has a more pronounced effect when EII does

not dominate the ionization process. Unlike the maximum-heating condition, the radiative heating

is not observed to be sensitive to the freestream CH4 concentration. At higher altitudes, the mole

fraction of CH4 in the atmosphere is lower, so there is far less contribution to the net radiative

heating from carbon-based species.

3.5.3 High-Altitude Condition Heating (t = 110 s)

Figure 3.16 shows the total Sobol’ indices and epistemic uncertainty intervals for the convec-

tive heating along the vehicle surface at the high-altitude condition. There is a noticeable increase in

the convective-heating uncertainty along the vehicle frustum, with a maximum of 5.09% above and

-11.7% below the nominal prediction. At the stagnation point, the convective heating is nominally

102 W/cm2 with a 95% confidence interval of 98.5–106 W/cm2. At the shoulder, the convective

heating is nominally 58.4 W/cm2 with a 95% confidence interval of 52.7–60.3 W/cm2.

A substantial change in the processes dominating the convective-heating uncertainty is ob-

served relative to the previous two trajectory points. At the stagnation point, uncertainty in collision

integrals accounts for 58.4% of the convective-heating uncertainty, with 39.8% of that coming from

the H2-H Ω(1,1) collision integral. Due to the much lower freestream density, H2 does not completely

dissociate along the stagnation line, which explains why 24.4% of the convective-heating uncertainty

is attributed to the uncertainty in rate coefficient for the dissociation of H2 with partner H. As there

is far less ionization in the stagnation region, this reaction largely dictates the stagnation-line species

concentration distribution, which explains why a larger variety of collision integrals is affecting the

convective heating variability. For the little ionization that does occur in the stagnation region, the
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Figure 3.16: Total Sobol’ indices (a) and epistemic uncertainty bounds (b) for the convective-heating
distribution at the high-altitude trajectory point.

hydrogen heavy-particle ionization reaction H+H↔ H++H+e− affects the convective heating the

most, contributing about 5.4% to the overall convective-heating uncertainty. Very little sensitivity

of the convective heating to the hydrogen EII reaction-rate coefficient is observed at the stagnation

point because insufficient ionization has occurred along the stagnation line for this reaction to be

particularly active.

Moving downstream from the stagnation point, the sensitivity of the convective heating to

the uncertainty in the collision integrals decreases, and the sensitivity to the hydrogen ionization

reaction-rate coefficients increases. Because the density at the high-altitude trajectory point is

so low, the majority of atomic hydrogen ionization occurs downstream of the stagnation region,

as shown in Figure 3.17. Note that, for 0 ≤ x ≤ 0.3 m, the rate coefficient for the ionization

of atomic hydrogen with partner atomic hydrogen contributes more to the overall uncertainty in

convective heating than the EII rate coefficient does, whereas, for x > 0.3 m, the opposite is true.

This is because a sufficient amount of free electrons must first be produced before the EII reaction

can become active, and the primary source of free electrons is initially from the heavy-particle
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ionization reaction H + H ↔ H+ + H + e−. The delayed ionization of hydrogen also explains

why the lower epistemic uncertainty bound in Figure 3.16b is further from the nominal prediction

downstream of the stagnation point, as the hydrogen EII reaction causes more cooling of the flow

near the boundary layer. From Figure 3.17, it is interesting to note that the hydrogen EII reaction

is primarily moving in the forward direction (i.e. ionizing), with a much smaller region near the

surface where it is net moving in the reverse direction (i.e. recombination). This is in contrast to

the previous two trajectory points, where the hydrogen EII is almost always moving in the reverse

direction downstream from the stagnation region.
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Figure 3.17: Net rate of production of hydrogen atoms from the reaction H + e− ↔ H+ + 2 e− at
the high-altitude condition using nominal aerothermal models.

Figure 3.18 shows the total Sobol’ indices and epistemic uncertainty intervals for the radiative

heating along the vehicle surface at the high-altitude condition. The uncertainty in the radiative

heating is high, with a maximum of 161% above and -60% below the nominal prediction. The mag-

nitude of the radiative heating along much of the surface is lower than the previous two trajectory

points, almost vanishingly so around the shoulder. At the stagnation point, the radiative heating

is nominally 68.7 W/cm2 with a 95% confidence interval of 29.9–151 W/cm2. At the shoulder, the

peak radiative heating is nominally 24.6 W/cm2 with a 95% confidence interval of 10.0–64.2 W/cm2.
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Figure 3.18: Total Sobol’ indices (a) and epistemic uncertainty bounds (b) for the radiative-heating
distribution at the high-altitude trajectory point.

All of the uncertainty in the radiative heating is attributed to the uncertainty in the rate coef-

ficients for hydrogen dissociation. At the stagnation point, the uncertainties in the rate coefficients

for H2 dissociation with partners H and H2 account for 98.7% and 1.10% of the radiative-heating

uncertainty, respectively. Compared to the mid-altitude trajectory point, a slightly larger overall

allocation of uncertainty is observed for the dissociation of H2 with partner H2 because of the even

lower freestream density. Unlike either of the other two trajectory points, the radiative heating does

not appear to be sensitive to any ionization reactions. The amount of ionization here is relatively

small, and, as shown in Figure 3.17, the hydrogen EII recombination phenomena observed at the

previous two trajectory points is not apparent at this trajectory condition. Therefore, it is not

expected that the radiative heating, particularly at the shoulder, be affected by ionization.

3.5.4 Lower-Speed Condition Heating (t = 250 s)

Figure 3.19 shows the total Sobol’ indices and epistemic uncertainty intervals for the convec-

tive heating along the vehicle surface at the t = 250 s condition. The uncertainty in the convective
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heating remains similar across the majority of the surface with a maximum of 4.90% above and

-4.10% below the nominal prediction. At the stagnation point, the convective heating is nominally

362 W/cm2 with a 95% confidence interval of 349–374 W/cm2. At the shoulder, the convective

heating is nominally 241 W/cm2 with a 95% confidence interval of 235–249 W/cm2.
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Figure 3.19: Total Sobol’ indices (a) and epistemic uncertainty bounds (b) for the convective-heating
distribution at the t = 250 s trajectory point.

Similar to the maximum-heating (t = 198 s) condition, the variability in the stagnation-point

convective heating is primarily attributed to the uncertainty in the H2-H Ω(1,1) collision integral,

which accounts for 84% of the uncertainty. Unlike the maximum-heating condition, however, little

sensitivity of the stagnation-point convective heating to the hydrogen EII rate coefficient is observed.

This is because the lower freestream velocity does not produce significant ionization within the shock

layer. The sensitivity levels for collision integrals He-H Ω(1,1) and H-H Ω(2,2) are similar to those at

the maximum convective heating condition.

Moving downstream from the stagnation point, the convective-heating variability becomes

driven almost exclusively by the uncertainty in the collision integrals, with a minor contribution

from the hydrogen EII rate coefficient. The small contribution from the hydrogen EII rate coefficient
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is explained by the small amount of ionization that occurs downstream from the stagnation region.

As the flow cools and begins recombining near the shoulder, the sensitivity of the convective heating

to the hydrogen EII reaction-rate coefficient decreases, and an increased sensitivity to the rate

coefficient for the reaction H2 +H↔ 3H is observed. Right at the shoulder, this reaction accounts

for 24.4% of the convective heating-uncertainty.

To more clearly assess the effects of recombination versus dissociation on the resulting heat

transfer, the chemical source terms for the dissociation of hydrogen with partner atomic hydrogen

(i.e. H2 + H ↔ 3H) are computed. Similar to Equation 3.2, the net rate production of hydrogen

molecules from this reaction is computed as

rnet = rform + rloss = nHnHnHkb(Tb)− nH2nHkf (Tf ) . (3.3)

Figure 3.20 shows the net production of H2 computed using Equation 3.3 and the nominal values for

all CFD parameters. Due to the high temperatures, there is a significant loss of hydrogen molecules

(i.e. dissociation) in the majority of the shock layer. As the flow expands around the vehicle

shoulder, the shock-layer temperatures decrease, which causes a net formation (i.e. recombination)

of hydrogen molecules. Along the surface, the transition from dissociation to recombination does not

occur until directly at the shoulder, where the increase in the total Sobol’ index for the H2+H↔ 3H

rate coefficient is observed. This indicates that it is the variability in the recombination processes

which is affecting the uncertainty in the convective heating at the shoulder, not dissociation. This

is consistent with the findings of previous sections. The recombination of H into H2 also explains

the increased contribution of the H2-H2 Ω(2,2) collision integral to the uncertainty in the convective

heating at the shoulder.

Figure 3.21 shows the total Sobol’ indices and epistemic uncertainty intervals for the radiative

heating along the vehicle surface at the t = 250 s condition. The uncertainty in the radiative heating

is high, with a maximum of 112% above and -65.8% below the nominal prediction. The magnitude

of the radiative heating along the entire surface is far lower than the previous trajectory points. At

the stagnation point, the radiative heating is nominally 32.0 W/cm2 with a 95% confidence interval
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of 16.4–65.1 W/cm2. At the shoulder, the peak radiative heating is nominally 9.92 W/cm2 with a

95% confidence interval of 4.61–20.2 W/cm2.
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Figure 3.20: Net rate of production of hydrogen molecules from the reaction H2 + H ↔ 3H at the
t = 250 s condition using nominal aerothermal models.
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Figure 3.21: Total Sobol’ indices (a) and epistemic uncertainty bounds (b) for the radiative-heating
distribution at the t = 250 s trajectory point.
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The majority of the uncertainty in the radiative heating is attributed to the rate coefficient for

H2 dissociation. At the stagnation point, the uncertainties in the rate coefficient for H2 dissociation

with partners H and H2 account for 97.1% and 1.06% of the radiative-heating uncertainty, respec-

tively. Compared to the maximum-heating trajectory point, a slightly larger overall allocation of

uncertainty is observed for the dissociation of H2 with partner H2 because of the lower freestream

velocity. Approaching the shoulder, the ionization of H via heavy-particle and electron impact start

to contribute more to the radiative-heating uncertainty. Instead of the H EII reaction dominating

the shoulder radiative-heating uncertainty, it is the heavy-particle ionization of H with partner H

that contributes most. The heavy-particle ionization reactions of H are precursor reactions to the

H EII reactions, and they are proportionally more active at this lower-speed condition. Similar

to the maximum-heating condition, it is the reverse direction of these reactions that is primarily

influencing the variability of the radiative heating at the shoulder. Finally, a slight sensitivity to

the rate coefficient for the reaction CH + CH4 ↔ C + H + CH4 is observed at the shoulder. This

reaction is an additional source of C and H, of which H is the dominant source of radiation at this

location.

3.5.5 Axial-Force Coefficient

Finally, consideration is given to the effect of the uncertainty in the CFD input parameters on

the variability of the aerodynamic coefficients of the entry vehicle. The aerodynamics will directly

influence the range of feasible aerocapture trajectories, so quantifying the uncertainty in them is

useful for overall mission design. Figure 3.22 shows the convergence of the total Sobol’ indices

for the axial-force coefficient at all four trajectory points. The total Sobol’ index profiles for all

trajectory points display a rapid level of convergence, except for the high-altitude trajectory point,

which requires more samples to converge.

Overall, the primary sources of uncertainty in the axial-force coefficient are the hydrogen

ionization reaction-rate coefficients, with a slight contribution of the rate coefficient for the disso-

ciation of H2 with partner H at the high-altitude condition. These reactions dictate the shape of
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the shock wave around the vehicle and, therefore, aerodynamic coefficients. Table 3.5 summarizes

the allocation of uncertainty in the axial-force coefficient for all four trajectory points, and Table

3.6 summarizes the epistemic uncertainty bounds computed from the PCE. The uncertainty in the

axial-force coefficient is small, with a maximum value of only a couple percent. Current aerody-

namic margins for the aerodynamic coefficients of Ice Giant aerocapture entry vehicles are on the

order of 3-5% for the axial-force coefficient and 10-20% for the normal force-coefficient [124]. While

this work cannot estimate the normal-force coefficient uncertainty due to the axisymmetric flow

assumption, these uncertainties are generally greater than the uncertainty predicted in this work.

No sensitivity to the freestream CH4 concentration is observed, as expected.

Table 3.5: Allocation of uncertainty in axial-force coefficient to uncertain CFD input parameters.

Parameter Contribution to Cx Uncertainty (%)

t = 110 s t = 150 s t = 198 s t = 250 s
H+ e↔ H+ + 2 e− 66.7 91.5 91.4 52.1
H+H↔ H+ +H+ e− 25.9 8.38 8.83 45.6
H2 +H↔ 3H 11.3 0.00 0.00 0.0

Table 3.6: Epistemic uncertainty bounds for the axial-force coefficient at each trajectory point.

Trajectory Point 95% Epistemic Uncertainty Bounds

t = 110 s 1.615–1.637
t = 150 s 1.616–1.663
t = 198 s 1.618–1.652
t = 250 s 1.618–1.629
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Figure 3.22: Convergence of total Sobol’ indices for the axial-force coefficient at all four trajectory
points.

3.6 Effects of H2
+

As shown in the previous section, the primary ionization reaction to which the radiative-

heating distributions are sensitive is the hydrogen EII reaction. In order for an EII reaction to

proceed, a sufficient number of free electrons must first be produced. In the 12-species thermochem-
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ical model used in this work, the only source of these initial free electrons are from the heavy-particle

ionization of H. Therefore, the point at which EII becomes active depends heavily on the rate at

which the heavy-particle ionization proceeds. An alternative path to the production of free electrons

is associative ionization (AI). While AI is the dominant source of the initial free electrons in air

[125], it has historically been omitted for hydrogen-helium flows because it typically only occurs if

one of the neutral collision partners is in an electronically excited state [29]. Unlike oxygen and

nitrogen in air, hydrogen does not have low-lying metastable excited electronic states, motivating

the belief that an insufficient amount of electronically excited hydrogen is present to drive the AI

reaction. However, Section 3.5.1 demonstrates that there is electronic excitation of atomic hydro-

gen, so it may be that AI is non-negligible. Carroll et al. [40] investigated the effects of including

H2
+ in a state-specific simulation of a 27.66 km/s shock tube experiment using an H2/He mixture.

They concluded that the inclusion of H2
+ was not necessary because it did not significantly alter

the post-shock species distributions or radiance calculations in the specific conditions they studied.

However, because this work considers a broader range of freestream conditions, neglecting H2
+ may

have an impact on the aerothermodynamic environments.

Figure 3.23 compares a Boltzmann-weighted rate using the data in [126] to the hydrogen AI

rate proposed by Lino da Silva [118]. More details on the Boltzmann-weighted rate may be found

in Appendix A.2. The rate of Lino da Silva is derived from dissociative recombination (DR) data

[127] and the principle of detailed balance. For comparison, the hydrogen heavy-particle ionization

rates from Leibowitz et al. [30] are also shown. The Boltzmann-weighted rate overpredicts the rate

of hydrogen AI relative to the rate of Lino da Silva because of the underlying Boltzmann state

distribution assumption. Additionally, both the Boltzmann-weighted rate and the rate of Lino da

Silva are greater than the heavy-particle hydrogen ionization reaction-rate coefficients, indicating

that the inclusion of AI would result in an earlier production of electrons and ionized species.

The remainder of this section quantifies the effect of including H2
+ on the nominal aerother-

modynamic environments and aerothermodynamic uncertainty. To do so, four additional reactions

are added to the existing rate set, the details of which are summarized in Appendix A.1. Note that
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these reactions are specifically chosen because they are the same reactions modeled by Carroll et

al. [40] to assess the effects of H2
+.
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Figure 3.23: Comparison of hydrogen associative ionization rates.

3.6.1 Effect on Nominal Aerothermodynamic Environments

Figure 3.24 compares the convective- and radiative-heating distributions for all four trajectory

points using the 12- and 13-species thermochemical models (i.e. with and without H2
+). The

convective-heating distributions are relatively unchanged. The inclusion of H2
+ slightly increases

the convective heating at all trajectory points, with the exception of the point at t = 110 s. The

decrease in the convective heating with the addition of H2
+ at the t = 110 s condition is due to the

decreased shock-layer temperatures produced by slightly greater levels of ionization. In contrast,

the radiative-heating profiles are significantly affected by the inclusion of H2
+. Specifically, the

inclusion of H2
+ decreases the radiative heating at the stagnation point and along most, if not all,

of the frustum for all four cases. Table 3.7 quantifies the effect of H2
+ on the stagnation-point

radiative heat flux for all four trajectory points. This decrease is most pronounced for the t = 150

s trajectory point because, as was shown in the previous section, the radiative heating produced at

this trajectory condition is particularly sensitive to the rate of the ionization just behind the shock.
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Figure 3.24: Nominal convective (a) and radiative (b) heating profiles with and without H2
+.

As shown in Figure 3.23, the rate of hydrogen AI is faster than the corresponding heavy-

particle ionization rates. Therefore, the inclusion of H2
+ should cause a faster rise in the electron

number density behind the shock. This is confirmed by Figure 3.25a, which compares the stagnation-

line profiles of the vibrational-electronic-electron temperature, Tv, and electron number density, ne,

produced with the 12- and 13-species thermochemical models at the t = 150 s trajectory point. A

faster rise in electron number density allows the hydrogen EII reactions to dominate the ionization

process more quickly behind the shock. As a result, the energy lost from translation due to ionization

cools the gas more quickly and produces a decrease in shock standoff distance. The more rapid

initiation of the hydrogen EII reaction is more clearly illustrated in Figure 3.25b, which shows the

nominal net rate of the hydrogen EII reaction along the stagnation line at the t = 150 s point with

and without H2
+. Here, the x-axis is normalized by the shock standoff distance for each case to

more clearly visualize the relative location behind the shock at which EII becomes active. Because

surface-incident radiative heating is a function of the volume of the surrounding radiating gas, a

smaller shock layer will result in a more optically thick gas and produce lower overall radiative
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Table 3.7: Effect of H2
+ on stagnation-point radiative heating.

Trajectory Point qstag,rad (W/cm2) Percent Change (%)
No H2

+ With H2
+

t = 110 s 68.7 53.1 -22.7
t = 150 s 168 133 -20.8
t = 198 s 163 150 -7.98
t = 250 s 32.0 28.5 -10.9

heating. Along the stagnation line, the decrease in radiation is primarily attributed to a decrease

in the H2 Lyman-α band. While the spectral locations of the radiative features are nearly identical

in the 12- and 13-species models, the decreased temperatures produced by the 13-species models

result in the dominant radiative features being slightly lower in magnitude than those produced by

the 12-species model.

While including H2
+ produces a clear decrease in radiative heating along the entire surface

for three trajectory points, its effects diminish along the vehicle surface for the maximum-heating

(t = 198 s) condition. Because, in this work, the highest levels of ionization are produced at this tra-

jectory point, the effects of any additional/faster ionization introduced by H2
+ are less pronounced.

This particularly becomes the case moving downstream for the stagnation region, where the slower

heavy-particle ionization reactions have had more time to contribute to the overall ionization level.

The blunted effect of H2
+ on the radiative heating at the maximum-heating condition is also em-

phasized by the fact that the stagnation-point radiative heating is decreased by a proportionally

smaller amount when compared to the other three trajectory points.
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3.6.2 Effect on Aerothermodynamic Uncertainty and Sensitivities

Uncertainty intervals for the reaction-rate coefficients involving H2
+ are taken from Table

A.2. The effect of including H2
+ on the 95% epistemic uncertainty bounds of the stagnation-

point convective heating is summarized in Table 3.8. Similar to the nominal convective-heating

distributions, the inclusion of H2
+ produces little change in the convective-heating uncertainty, as

the majority of the convective-heating uncertainty is driven by uncertainties in collision integrals.

The t = 110 s condition shows the only decrease in the convective-heating-uncertainty bounds, while

the other three conditions produce a slight increase. At the t = 110 s condition, the low freestream

densities cause much of the shock layer to be in thermal nonequilibrium. The introduction of

H2
+ thus results in a faster thermal relaxation process which produces less severe gradients near

the surface. This effect is less pronounced at the other trajectory points because of the higher

freestream densities. The relative differences shown in Table 3.8 are consistent across the majority

of the vehicle surface.

Table 3.8: Effect of H2
+ on stagnation-point convective heating epistemic uncertainty bounds.

Trajectory Point 95% Bounds (W/cm2) Percent Change (%)
No H2

+ With H2
+

t = 110 s 98.5–106 95.3–104 -3.25/-1.89
t = 150 s 246–273 250–278 +1.63/+1.83
t = 198 s 432–467 435–471 +0.69/+0.86
t = 250 s 349–374 351–377 +0.57/+0.80

Figure 3.27 displays the total Sobol’ indices for the convective-heating distribution at the

t = 110 s and t = 150 s trajectory points. The total Sobol’ index profiles for the t = 198 s and

t = 250 s trajectory points look similar to the results without H2
+ and are therefore omitted for

brevity. While the level of uncertainty in the convective heating is relatively unchanged with the

addition of H2
+, the parameters contributing most to that uncertainty change substantially. This

is particularly the case for the high-altitude (t = 110 s) condition, where the less dense gas is more

sensitive to changes in chemical reaction rates. For the t = 110 s condition, the convective heating
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is no longer sensitive to the rate coefficient for the heavy-particle ionization of H with partner

H. Because the hydrogen AI rate is faster than this heavy-particle ionization rate, this result is

expected. Instead, as shown in Figure 3.27a, nearly 50% of the convective-heating uncertainty in the

stagnation region is attributed to the rate coefficients for the dissociation and exchange reactions

involving H2
+. Similar to the case with no H2

+, the hydrogen EII rate coefficient begins to dominate

the convective-heating uncertainty approaching the shoulder, and the recombination of H into H2

dominates the uncertainty at the shoulder.

Moving to the t = 150 s trajectory point, differences in the total Sobol’ indices for the

convective heating are observed again. Specifically, the stagnation-point convective heating is less

sensitive to the hydrogen EII rate coefficient with the inclusion of H2
+. Previously, variability in

the hydrogen EII rate coefficient accounted for nearly 60% of the convective-heating uncertainty,

but Figure 3.27b indicates that the inclusion of H2
+ drops its contribution to approximately 35%.

In turn, the rate coefficient for the exchange reaction H2 + H+ ↔ H2
+ + H contributes to just

over 10% of the convective-heating uncertainty. Moving downstream from the stagnation point, the

sensitivities look similar to the case without H2
+, with most of the uncertainty along the frustum

being produced by collision-integral uncertainty.

At the maximum-heating condition (t = 198 s), the total Sobol’ indices again look similar to

the results obtained without H2
+. A slight decrease in the hydrogen EII rate coefficient total Sobol’

index is observed at the stagnation point, however, the large majority of the convective-heating

uncertainty is still driven by variability in the H2-H Ω(1,1) collision integral. The reverse direction of

the hydrogen EII reaction also drives the uncertainty in the shoulder convective heating. Notably,

unlike the results with no H2
+, a slight sensitivity (∼1.0-2.5%) of the convective heating to the

freestream CH4 concentration is observed. Because the inclusion of H2
+ produces a more rapid rise

in free electrons behind the shock, the carbon EII reaction will be more active. Because carbon

is only present in trace quantities, the rate at which carbon ions are produced will be particularly

sensitive to any changes in the amount of CH4 in the freestream. This also explains why the observed

sensitivity to the freestream CH4 concentration is small.
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Figure 3.27: Total Sobol’ indices for the convective-heating distribution including H2
+.
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Finally, at the t = 250 s condition, nearly identical total Sobol’ index profiles are obtained

when considering H2
+ to those obtained without H2

+. Similar to the t = 150 s and t = 198 s

trajectory points, a slight blunting of the total Sobol’ index for the hydrogen EII rate coefficient is

observed. A small sensitivity (∼ 1%) of the convective heating to the freestream CH4 concentration

is also observed, but, like the case with no H2
+, most of the convective-heating uncertainty is

attributed to variability in the H2-H Ω(1,1) collision integral.

The effect of including H2
+ on the 95% epistemic uncertainty bounds of the stagnation-

point radiative heating is summarized in Table 3.9. Unlike the convective-heating uncertainty,

the inclusion of H2
+ produces a substantial decrease in the upper bound of the 95% confidence

interval, in excess of 40% at the t = 110 s condition. These findings indicate that the inclusion

of H2
+ not only decreases the nominal radiative heating, but it also shrinks the total uncertainty

in the radiative-heating distributions (at least for the conditions considered in this work). This is

particularly impactful for the t = 150 s trajectory point which has the most severe upper bound on

radiative heating. A general decrease in shock standoff distance is produced with the inclusion of

H2
+, which lowers the post-shock temperatures and resultant radiative heating.

Table 3.9: Effect of H2
+ on stagnation-point radiative heating epistemic uncertainty bounds.

Trajectory Point 95% Bounds (W/cm2) Percent Change (%)
No H2

+ With H2
+

t = 110 s 29.9—151 23.1–85.3 -22.7/-43.4
t = 150 s 90.6—318 79.7–195 -12.0/-38.7
t = 198 s 118–254 117–197 -0.85/-22.4
t = 250 s 16.4–65.1 14.5–48.8 -11.6/-25.0

Figure 3.28 displays the total Sobol’ indices for the radiative-heating distribution at the

t = 198 s and t = 250 s trajectory points. The differences in the total Sobol’ index profiles

produced with and without H2
+ are more pronounced for these two conditions, so the total Sobol’

index profiles for the other two trajectory points are omitted for brevity. Starting with the t = 198

s condition, a decrease in the total Sobol’ index of the rate coefficient for dissociation of H2 with
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partner H, and an increase in the total Sobol’ index of the rate coefficient for the dissociation of H2

with partner He is observed. The inclusion of H2
+ further reduces the amount of H2 and H just

behind the shock, so the next most prominent species with which H2 can collide and dissociate is He.

Along the frustum and shoulder, the lowering of the H2-H dissociation total Sobol’ index is more

pronounced. In turn, there is a marked increase in the total Sobol’ indices for the hydrogen EII rate

coefficient and freestream CH4 concentration. As described previously, the inclusion of H2
+ results

in an earlier initiation of EII reactions. It follows that the additional/faster ionization that occurs

in the stagnation region will have a rippling effect on the species number densities and temperatures

downstream. Similarly, if the carbon EII can begin sooner because of the increased electron number

density produced by H2
+ reactions, the amount of carbon ions will be more strongly influenced by

the freestream CH4 concentration, and the radiation calculation will be affected accordingly.

The increase in the total Sobol’ index for the hydrogen EII rate coefficient is also observed

for the t = 250 s case, but the increase in the freestream CH4 total Sobol’ index along the frustum

is not. Due to the lower velocity, the level of ionization predicted by the 12-species rate mechanism

is relatively low, and no sensitivity of the radiative heating to ionization reactions is observed at

this condition when H2
+ is excluded. The faster AI and charge exchange reactions introduced with

the 13-species rate mechanism therefore have a more pronounced effect on the ionization levels for

the lower-speed conditions. Furthermore, the decrease in the sensitivity of the radiative heating to

the rate coefficient for H2 dissociation is more drastic than for the other trajectory points. Without

H2
+, variation in the rate coefficient for H2 dissociation accounts for 80-95% of the uncertainty along

most of the surface. Figure 3.28d, on the other hand, indicates that the inclusion of H2
+ drops the

contribution of H2 dissociation rate coefficient to the radiative-heating uncertainty by a factor of

∼2 near the shoulder. As a result, the sensitivity to the hydrogen ionization and ionization/charge

exchange reactions involving H2
+ is increased. Overall, the inclusion of H2

+ amplifies any effects

of ionization on the radiative-heating uncertainty. There is also a small (∼ 3%) contribution of

the CH4 dissociation reaction with partner H2
+ to the radiative-heating uncertainty. This reaction

produces additional H, which is the second most contributing species to the radiative heating along
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Figure 3.28: Total Sobol’ indices for the radiative-heating distribution including H2
+.
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the frustum at this condition. The total Sobol’ index for this reaction with partner H2
+ (instead

of a neutral collider) is a product of the uncertainty intervals used for the hydrogen AI reaction, as

they produce a highly uncertain H2
+ population.

For the t = 110 s and t = 150 s trajectory points, most of the radiative-heating uncertainty

is still attributed to the rate coefficient for H2 dissociation with partner H. Nearly all of the

radiation produced at these two conditions comes from H2, so it is expected that the primary

source of radiative-heating uncertainty is still related to H2 dissociation. Similar to the lower-

altitude conditions, variability in the rate coefficient for the dissociation of H2 with partner He (not

H2) contributes to approximately 8-10% of the total uncertainty. Furthermore, a small sensitivity

(∼1-2%) is observed for the rate coefficient for the reaction CH+H2
+ ↔ C+H+H2

+. This reaction

produces both C and H, which contribute more to the radiative heating than the reactant CH. A

specific sensitivity to this dissociation reaction with partner H2
+, instead of a neutral collider,

appears for the same reason as the lower-altitude trajectory points.

3.7 Summary

This Chapter conducted an uncertainty quantification (UQ) and global sensitivity analy-

sis (GSA) of the aerothermodynamic environment for an entry capsule performing aerocapture at

the Ice Giants. Most existing work on the modeling of Ice Giant aerothermodynamics consider a

freestream composed only of hydrogen and helium. However, there is also speculation about the ef-

fect of freestream methane (CH4) on the aerothermodynamic environment, particularly the radiative

heating. To investigate these effects, this work considered uncertainties in chemical reaction-rate

coefficients, transport property fitting parameters, vibrational-relaxation rates, and the freestream

CH4 concentration. A non-intrusive, point-collocated polynomial chaos expansion (NIPC-PCE)

method was used to compute Sobol’ indices and uncertainty bounds for convective- and radiative-

heating distributions, as well as the axial-force coefficient. The least-angle regression algorithm

was applied to promote sparsity in the polynomial expansion coefficient vector when solving the

NIPC-PCE problem.
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The convective heating was high at all four trajectory points. For the t = 110, 150, 198, and

250 s trajectory points, the stagnation point convective heat flux was nominally predicted to be 102,

257, 449, and, 362 W/cm2, respectively. The shoulder convective heat flux was nominally predicted

to be 58.4, 168, 308, and 241 W/cm2, respectively. For all four conditions, the uncertainty in the

convective-heating distributions was relatively small, ranging from 4.10–11.7%. At the stagnation

point, the primary sources of convective-heating uncertainty were determined to be the variation

in collision integrals and hydrogen electron-impact-ionization (EII) rate coefficient. The t = 150

s condition exhibited the highest level of sensitivity to the EII rate coefficient at the stagnation

point because of its large effect on the shock standoff distance. For the t = 150, 198 and 250

s conditions, the convective-heating uncertainty along the frustum of the vehicle was primarily

attributed to collision integrals, due to the surface being modeled as fully catalytic. At the t = 110

s condition, the frustum heating was largely sensitive to the hydrogen EII rate coefficient, because the

ionization of hydrogen was delayed to downstream of the stagnation region. For all four conditions,

convective heating at the shoulder was highly sensitive to hydrogen ionization rate coefficients,

particularly in the reverse direction, suggesting that recombination phenomena largely governed the

shoulder environments. In contrast, convective heating showed no sensitivity to the freestream CH4

concentration.

Radiative-heating environments were substantial for freestream velocities in excess of 25 km/s.

For the t = 110, 150, 198, and 250 s trajectory points, the stagnation point radiative heat flux was

nominally predicted to be 68.7, 168, 163, and 32.0 W/cm2, respectively. The peak shoulder radiative

heat flux was nominally predicted to be 24.6, 78.0, 93.9, and 9.92 W/cm2, respectively. For all four

conditions, the uncertainty in the radiative heating was high, with epistemic uncertainty bounds

exceeding 160%. At the t = 198 and 250 s condition, the primary source of radiative-heating

uncertainty at the stagnation point and along the frustum was determined to be the rate of H2

dissociation with partner H. Near the shoulder, there was a slight sensitivity of the radiative heating

to the freestream CH4 concentration, due to ionization of carbon being delayed to downstream of

the stagnation point. Spectral features of atomic carbon were present, but they did not contribute
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significantly to the total radiative heating. For the t = 198 s trajectory point, the primary source of

radiative-heating uncertainty at the shoulder was the hydrogen EII reaction rate coefficient, where

a decrease in the rate of this reaction increased the radiation. This was attributed to the increased

population of the second electronic state of hydrogen H(n = 2) which produced significant differences

in the radiation from the H Lyman-α line. Similarly, at the t = 250 s trajectory point, the ionization

of atomic hydrogen via heavy-particle impact was the largest source of uncertainty for the shoulder

radiation, and a minor contribution from the freestream CH4 was observed. At the t = 110 and

150 s conditions, the radiative-heating uncertainty was dominated by the rate coefficient for the

dissociation of H2 with partner H, due to the decreased freestream density and lower ionization

levels. No sensitivity of the radiative heating to the freestream CH4 concentration was found at

the t = 110 or 150 s conditions. Overall, the high levels of uncertainty observed in the radiative

heating environments would require substantial margin in the TPS design, which motivates further

investigation, both experimentally and computationally, into the rate of dissociation of molecular

hydrogen at aerocapture-relevant conditions.

The axial-force coefficient exhibited low levels of uncertainty, with a maximum value of a few

percent. The largest sources of uncertainty in Cx were determined to be the rate coefficients for

the ionization reactions H + e− ↔ H+ + 2 e−, and H + H ↔ H+ + H + e−, which dominated at

lower-altitude trajectory conditions. The rate coefficient for molecular hydrogen dissociation with

partner atomic hydrogen was also found to affect the axial-force coefficient at the highest-altitude

trajectory point. These three reactions drove the shape of the shock-wave around the vehicle and,

therefore, aerodynamic forces.

Finally, the effects of including H2
+ in the thermochemical model were investigated. The GSA

and UQ were repeated, and the results were compared to those obtained without H2
+. Inclusion

of H2
+ had little effect on the convective-heating distributions in both the nominal and uncertain

scenarios, although, some changes to key sensitivities driving the convective heating were observed.

Specifically, the lowest-density trajectory point demonstrated increased sensitivity to the additional

ionization reactions introduced by H2
+. While the sensitivities for the convective heating changed,
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the overall level of convective-heating uncertainty only varied by a few percent at most when com-

pared to the results produced with no H2
+. The radiative-heating distributions and sensitivities, on

the other hand, changed drastically with the inclusion of H2
+. A decrease in the nominal radiative

heating and the 95% confidence intervals for the radiative-heating distribution was observed for all

four trajectory points, in some cases by up to 40%. The inclusion of H2
+ produced a decreased sen-

sitivity of the radiative heating to the rate coefficient for H2 dissociation and an increased sensitivity

to the H EII rate coefficient and freestream CH4 concentration. As such, it is recommended that

the rate at which reactions involving H2
+ proceed at conditions relevant to Ice Giant aerocapture

be studied more thoroughly.



Chapter 4

Probabilistic Reduced-Order Aerothermodynamic Modeling

“Everything should be made as simple as possible, but not simpler.”

— Albert Einstein

4.1 Introduction

This chapter presents a method for developing efficient Gaussian Process Regression (GPR)

surrogate models for hypersonic aerothermodynamics and aerodynamics, with a focus on approxi-

mating the high-fidelity uncertainty quantification data from Chapter 3 along an entire aerocapture

trajectory. Three models are constructed to predict key quantities, including stagnation-point heat

flux, aerodynamic coefficients, and full surface heat-flux distributions, demonstrating strong pre-

dictive accuracy and generalization. A multi-fidelity GP framework is introduced, leveraging data

from both low- and high-fidelity aerodynamic models to improve efficiency and reduce computational

cost while preserving model predictive capabilities. Additionally, constrained GPR techniques are

explored to enforce physical properties like symmetry and monotonicity, further enhancing model

reliability. Finally, the surrogate models are integrated into a trajectory simulation, illustrating

the advantages of probabilistic aerodatabases over traditional lookup tables for quantifying the

hysteresis effects of aerothermodynamic uncertainty.
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4.2 Background

Generation of high-fidelity aerothermodynamic and aerodynamic databases (referred to as

aerodatabases for brevity) is an integral part of the design of aerocapture systems. They are used

to inform the design of almost all vehicle subsystems such as guidance, navigation and control,

thermal protection system, and structural design. An aerothermodynamic database, consisting of

both convective and radiative heating estimates, is used to design and size the thermal protection

system (TPS) that protects the vehicle from the severe aerodynamic heating experienced during

hypersonic flight [122, 123]. Obtaining an accurate prediction, and the associated uncertainty

in that prediction, allows for a more robust TPS design and higher confidence levels for mission

success. Similarly, a high-fidelity aerodynamic database is required for various elements of the

mission design phase including six degree-of-freedom trajectory simulation [128], stability analysis,

and aerodynamic loading predictions.

A standard aerodatabase consists of two components: a nominal value for some quantity of

interest (QoI), and an associated uncertainty about the nominal value [129]. The level of uncertainty

in a given aerothermodynamic QoI is essential for assessing the robustness of the aerocapture system

to modeling uncertainties. In Chapters 6 and 7, extensive Monte Carlo campaigns are conducted to

quantify the robustness of two novel aerocapture guidance algorithms. These Monte Carlo analyses

require estimates of the uncertainty in QoIs, and a method of generating dispersed quantities of

interest that are consistent with the underlying model/process. Furthermore, the number of entries

in an aerodatabase can be quite large, making their construction a time-consuming process. For ex-

ample, in addition to an extensive amount of experimental data, the Orion Crew Vehicle hypersonic

aerodynamics database required over 1000 high-fidelity computational fluid dynamics simulations

[130]. Assembling this large quantity of data into a coherent and useful format is nontrivial, and

the complexity only grows as the geometry of the vehicle changes throughout the mission design

cycle. Assignment of uncertainty levels consistent with the underlying data is crucial, yet existing

approaches to impose bounds and distributions of QoIs use more ambiguous ad hoc approaches
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[129, 130]. Therefore, there is a definite need for a more robust and efficient method to generate

aerodatabases for nominal and off-nominal scenarios.

Recent studies have focused on improving the development of aerodatabases, with particu-

lar emphasis on statistical and probabilistic approaches rather than traditional methods relying on

complex lookup tables [131, 132, 133, 134, 135, 136]. Scoggins et al. [137] investigated the use of

a multihierarchy Gaussian process (GP) model to efficiently fuse aerodynamic data from multiple

sources, producing a surrogate capable of predicting both mean and dispersed aerodynamic coeffi-

cients for the Orion Crew Vehicle. Using the same Orion dataset, Nakamura-Zimmerer et al. [138]

developed structured covariance neural networks to parameterize the mean and covariance functions

of a GP, demonstrating improved scalability with larger training datasets compared to traditional

GP regression. Later work from Scoggins et al. employed GP-based surrogate models [122], and

Bayesian regression [139] to develop aerodatabases for a NASA Ice Giant aerocapture concept.

These probabilistic techniques have proved to be an effective means of integrating data from multi-

ple sources into a single model capable of generating statistically consistent aerodatabases. In turn,

the explicit probabilistic treatment of the aerodatabase lends itself to more informative conclusions,

such as uncertainty in the entry vehicle trim conditions [137], when compared to heritage methods.

This chapter builds on these probabilistic methods to create surrogate models for the hy-

personic aerodynamics and aerothermodynamics and an aerocapture vehicle [140]. In addition to

the canonical GP-techniques presented in Chapter 2, it utilizes both multi-output and multi-fidelity

Gaussian process techniques to lessen the need for extensive high-fidelity computational fluid dynam-

ics simulations across the full trajectory range. Multi-output models enhance prediction accuracy

by identifying correlations among different variables of interest [141], while multi-fidelity strategies

decrease the quantity of high-fidelity data points necessary to build an adequately precise surrogate

model [142, 143, 144, 145]. In particular, an efficient multi-output and autoregressive multi-fidelity

approach [146, 147] is implemented to develop surrogate models for key parameters such as surface

heating and aerodynamic coefficients. These models enable the rapid creation of probabilistic aero-

databases, delivering prediction uncertainties that align with those of the underlying training data.
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Although a Neptune aerocapture mission serves as the example, this framework is adaptable to any

hypersonic flight system.

4.3 Beyond Vanilla Gaussian Process Regression

The fundamental Gaussian Process Regression (GPR) theory presented in Chapter 2 pro-

vides a powerful foundation for constructing surrogate models, offering flexibility, incorporation

of uncertainty into the predictions, and the ability to interpolate sparse data. However, for ad-

vanced aerodatabase design, standard GPR techniques alone are insufficient. This section details

the advanced GPR techniques employed throughout this chapter and dissertation.

4.3.1 Multi-Output Gaussian process Regression

The quantities of interest in this work (aerodynamic coefficients, heating rates, etc.) all have

some level of underlying physical correlation. Therefore, it may be advantageous to design a model

that attempts to learn the relationship between multiple outputs at once. In the case of vector-valued

predictions, the unknown mapping becomes a multidimensional function f : RD 7→ RM with M > 1.

The GP correspondingly has a mean function µ : RD 7→ RM , and the covariance matrix becomes a

block-structured matrix K ∈ SMN×MN
+ , where M is the dimension of each output/observation and

N is the number of training samples. This framework is often referred to as “multi-task” Gaussian

process regression, where the goal is to predict M different functions simultaneously. For multi-task

prediction, Equation 2.60 is written as [141]

f(x) ∼ GP
(
µ(x),K(x,x′)

)
(4.1)

where the covariance matrix is more explicitly written as

K(X,X) =



(K(X1,X1))1,1 . . . (K(X1,X2))1,M

(K(X2,X1))2,1 . . . (K(X2,XM ))2,M

... . . .
...

(K(XM ,X1))M,1 . . . (K(XM ,XM ))M,M


MN×MN

. (4.2)
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Here, Xm ∈ RN for m = 1, . . . ,M is the set of inputs corresponding to the mth output of f

and (K(·, ·))m,m′ is an N × N matrix where m, m′ ∈ [1,M ]. The posterior predictive mean and

covariance are then obtained using the same analysis applied to the scalar-output problem.

One can potentially improve the posterior predictions in a multi-output setting if the dimen-

sions of the output target are correlated by incorporating the correlation into the structure of the

GP kernel. The simplest method of correlating the outputs of a multi-output GP is the intrinsic

model of coregionalization (IMC) [148, 149, 141], which is sometimes also called the linear model

of coregionalization (LMC). In IMC, the covariance of the GP outputs fm(x) for i = 1, . . . ,M is

defined via

cov(fi(X), fj(X
′)) = k(X,X ′) ·B[i, j] (4.3)

such that the covariance of the ith function at X and the jth function at X ′ is a kernel k(X,X ′)

times the i, jth entry of a positive definite matrix B ∈ RM×M . To ensure that the matrix B is

positive definite, the model training procedure uses a separate matrix W such that

B =WW T + diag(κ) (4.4)

where κ≪ 1 is added for numerical stability and additional positive definiteness guarantees.

4.3.2 Multi-Fidelity Gaussian process Regression

Obtaining sufficient aerodynamic/aerothermodynamic data from a high-fidelity source such

as computational fluid dynamics (CFD) is a time-consuming process. In many cases, numerous

methods, with varying levels of fidelity, may be available to predict the same quantity of interest.

For example, a low-fidelity estimate of the aerodynamic coefficients may rapidly be attained using

modified-Newtonian theory, while a higher-fidelity estimate would require more computationally

expensive three-dimensional CFD simulations. In this situation, the lower-fidelity, cheaper to obtain

data can be used to supplement the higher-fidelity data in a multi-fidelity modeling framework. The

denser, low-fidelity data is used to learn the general trends in the quantities of interest with respect
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to the input variables (e.g. altitude, velocity), and the sparser, higher-fidelity data is used to anchor

these trends when possible.

One of the most common approaches is the linear Auto-Regressive (AR1) method of Kennedy

and O’Hagan [146], and it has been used extensively in the engineering world [131, 132, 133, 150,

151, 152, 144, 137]. Suppose there are s levels of information sources that each produce an output

yt(xt) for t = 1, . . . , s. If the input and output of each data set is organized in pairs by increasing

fidelity, then y1 represents the cheapest and least accurate data available, and ys represents the

most expensive and most accurate data available. The AR1 method defines the autoregressive

scheme

ft(x) = ρt−1ft−1(x) + δt(x) (4.5)

where ft(x) and ft−1(x) are Gaussian processes priors defined for the data at fidelity level t and

t−1, respectively. In this setting, ρ ∈ R is a constant that quantifies the level of correlation between

the outputs of each model, and δt(x) is a Gaussian process that is assumed to be independent from

the GP used to model ft. Training a model of the form in Equation 4.5 requires the GP’s describing

each fidelity level to be trained simultaneously. In this setting, the inversion of the GP kernel

matrix is required to minimize Equation 2.69, which may become computationally prohibitive if the

training data set is excessively large. To reduce this computational cost, Le Gratiet [147] proposed

a recursive formulation of the AR1 model in which the GP prior in Equation 4.5 is replaced with

the GP posterior of the previous inference level

ft(x) = ρt−1f̂t−1(x) + δt(x) (4.6)

where the (̂·) notation is used to represent the posterior of the GP. This modification allows each

fidelity level t to be trained independently, greatly reducing the computational cost. For example,

in the case of two levels of fidelity, the first level is trained directly on the lowest-fidelity data set,

and the subsequent GP is trained on the difference between the training data at that level and the

corresponding subset of observations from the lower-fidelity data set. Note that this assumes that

the training inputs for each level of fidelity Xt are a subset of the previous level’s training data set
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such that Xt ⊆ Xt−1 ⊆ . . . ⊆ X1. The posterior distribution at any test point x for each level is

then obtained as

f̂t(x) = GP(µ̂t, K̂t) (4.7)

µ̂t(x) = ρt−1µ̂t−1(x) +Kt(x,Xt)
[
Kt(Xt,Xt) + σ2n,tI

]−1
(Y t − ρt−1µ̂t−1(Xt)) (4.8)

K̂t(x,x
′) = ρ2t−1K̂t−1(x,x

′) +Kt(x,x
′) (4.9)

−Kt(x,Xt)
[
Kt(Xt,Xt) + σ2n,tI

]−1
Kt(Xt,x

′)

where the correlation coefficient is computed via [137]

ρt−1 =
Y T
t Y t

Y T
t Y t−1(Xt)

. (4.10)

It is noted that a more general, non-linear model, introduced by Perdikaris [153] et al. in

2017, called the non-linear autoregressive Gaussian process (NARGP), has been shown to capture

non-linear correlations between each fidelity level more accurately than AR1 [142]. However, this

work demonstrates that the AR1 model is sufficiently accurate for predicting the desired quantities

of interest, so the additional complexity of the NARGP model is not required.

4.4 Application to Neptune Aerocapture

This section presents an application of the GPR framework described in Chapter 2 and Sec-

tion 4.3 to develop surrogate models to predict aerothermodynamic and aerodynamic quantities

of interest for an aerocapture mission at Neptune. The atmospheric entry state is derived from

Lockwood et al. [13] that defines a retrograde entry with an inertial entry velocity of VI = 29 km/s

and initial altitude of h0 = 1000 km. For consistency with the analysis in Chapter 3, the entry

vehicle is modeled as a 5 m diameter, 70-degree sphere cone with a nose radius of 1.25 meters.

For all CFD simulations, the chemical kinetics model of Leibowitz [26] and Leibowitz and Kuo

[30] are used, and the vehicle surface is assumed to be fully catalytic and in radiative equilibrium with

a surface emissivity of 0.9. For all GP models, the input space includes altitude-velocity pairs such

that xi = [hi, Vi]. To bound the values of hi and Vi at which to collect heating and aerodynamic
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data, the theoretical entry corridor for the entry vehicle is determined to produce the bounding

lift-up (bank angle σb = 0 deg.) and lift-down (bank angle σb = 180 deg.) trajectories as shown in

Figure 4.1a. These trajectories produce velocity bounds of Vi ∈ [15, 30] km/s and altitude bounds of

hi ∈ [190, 480] km, where the upper bound on the altitude is chosen such that the Knudsen number

is approximately 0.01, when considering a length scale of 5 m, so that the continuum assumption

is valid [154]. LeMANS is used to simulate 50 altitude-velocity pairs that are shown as the closed

symbols in Figure 4.1a, which are generated from a Latin Hypercube sampling algorithm using a

“minimax” criterion [155]. Each simulation performs an axisymmetric computation at zero angle

of attack, and the resulting surface heat-flux and pressure/shear distributions are used to compile

the training and test data sets for the various GP surrogate models. The training dataset is also

augmented with the four data points used in the detailed UQ analysis in Chapter 3. An example

of flow field pressure contours computed by LeMANS for a freestream altitude and velocity of 193

km and 25.8 km/s, respectively, is shown in Figure 4.1b.
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Figure 4.1: Bounding lift-up and lift-down trajectories with CFD database points (a) and example
pressure contours computed by LeMANS (b).
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4.4.1 Simultaneous Prediction of Stagnation-Point Heating and Axial-Force Coef-

ficient

The first task of this work is to generate a single model capable of predicting both the

convective heating and aerodynamic coefficients of the entry vehicle. To do so, the outputs of the

GP are correlated using the LMC described in Section 4.3.1, and the output space is the log of

the stagnation-point heat flux and axial force coefficient such that yi =
[
log10(qstag,i), Cx,i

]
, where

i = 1, . . . , N . The log of the heat flux is chosen because it produces a more linear relationship

between the model inputs and outputs and improves model convergence.

Gaussian processes are highly capable at modeling noisy/uncertain data. While training a

GP typically involves optimizing the posterior likelihood variance σ2n, it is also possible to enforce

a particular value of σ2n. This is typically done in scenarios where the noise level of the data is

known a priori ; for example, if a sensor has a known measurement noise, it is possible to infuse that

uncertainty directly into the GP’s predictions. Chapter 3 demonstrated that uncertainty in both

the heating and aerodynamic exists due to parametric uncertainty in the CFD inputs. Therefore, it

is desirable for the trained GP model to account for these uncertainties in its predictions. To first

order, the computed uncertainty in Chapter 3 defines a known measurement noise σ2n in the general

regression problem in Equation 2.59, so the model no longer has to learn this value during training.

Instead, the values of σ2n for the stagnation-point heating and axial-force coefficient are set to be

Gaussian random variables with a mean located at the posterior predictive mean of the GP and a

standard deviation consistent with the uncertainties calculated in Chapter 3.

A 90/10 training-validation split is used to partition the available data, meaning 90% of the

data points are used to train the model, and the remaining 10% are reserved for assessing the trained

model’s predictive capabilities. The input space is standardized by using z-score normalization (i.e.

zero mean and unit variance) [156] to ensure that all input factors operate on the same scale. The

model hyperparameters are optimized by minimizing Equation 2.69 using the Adam [103] optimizer

with an initial learning rate of 0.1. Training is terminated once the loss averaged over some window
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stops decreasing, within some small tolerance (e.g. δ = 1 × 10−6), from one iteration to the next.

The optimized hyperparameters for the multi-output GP are summarized in Table 4.1, which have

been left in non-dimensional form as a result of the z-score normalization.

Table 4.1: Optimized hyperparameters for multi-output GP trained to predict stagnation-point heat
flux and axial-force coefficient.

Hyperparameter Variance, σ2 Altitude Length Scale, lh Velocity Length Scale, lV

Value 7.76×10−2 5.258 5.478

It is possible to learn a significant amount from the optimized model hyperparameters. The

variance σ2 is an estimate of the uncertainty in the trained GP’s predictions and is directly tied

to the variance in the data used to train the model. The units of the length scale parameters

correspond to the input dimension and indicate the distance in that dimension in which significant

variations in the output variable are expected. Recall that, because of the z-score normalization, the

input dimensions are technically unitless, but they can be put into dimensional units by inverting

the z-score normalization procedure. By standardizing the training input space, a more consistent

comparison between input dimensions may be made. Input dimensions with larger length scales

signify that less variability is expected in the output, while smaller length scales indicate the function

varies more rapidly over that dimension. Note that the optimized altitude and velocity length scales

are of the same order of magnitude. This indicates that the GP outputs are expected to have a

similar level of variation with changes in altitude and velocity. At first, such a trend is inconsistent

with existing models for both stagnation-point heat flux and aerodynamic coefficients. Fay & Riddell

[157], and later Sutton & Graves [158], derived expressions for the stagnation-point convective

heating that show cubic dependence on the freestream velocity, but a square-root dependence on

the freestream density (and therefore altitude). However, recall that the GP targets contained

the log of the stagnation-point convective heat flux. In log-space, the Fay & Riddell/Sutton &

Graves relationships between stagnation-point convective heating and altitude/velocity becomes

linear, which is consistent with the results in Table 4.1. A similar conclusion may be made for the
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axial force coefficient when considering Newtonian theory [159].

To certify that the trained model is capable of producing accurate predictions across the entire

input space, it must be evaluated at altitude-velocity pairs that are included in the training data set

and at test points that are not included in the training data set. Table 4.2 summarizes the trained

model’s ability to predict the stagnation-point convective heat flux and axial-force coefficient at the

45 altitude-velocity pairs in the training data set, and the remaining 5 pairs in the test data set.

The net posterior-predictive relative error is defined as

Error =

∥∥∥∥∥ f̂(X)− Y (X)

Y (X)

∥∥∥∥∥ (4.11)

where f̂(X) is the trained GP’s mean prediction at the input X, and Y (X) is the corresponding

training/test data collected at the input X. Here, the input X is either the training set or the

validation set.

Table 4.2: Accuracy statistics for multi-output GP trained to predict stagnation-point heat flux
and axial-force coefficient as computed by Equation 4.11.

Error over training set (%) Error over validation set (%)

qstag 5.78 10.1
Cx 2.55 2.70

Here, a difference between the accuracy in the stagnation-point convective heat flux and axial-

force coefficient is observed. While the model is able to predict the axial-force coefficient accurately

on both the training and validation data sets, the accuracy in prediction is lower for the stagnation-

point convective heat flux. This is explained by the fact that observation-noise values consistent with

the uncertainties calculated in Chapter 3 were enforced on the heat-flux and axial-force coefficient

data in order to account for the parametric uncertainty in the CFD results. Recall that the heat-flux

uncertainties are substantially larger than the aerodynamic uncertainties, so, it is expected that the

posterior mean of the GP does not perfectly reproduce the heat-flux data that was used to train

the model. Instead, the posterior-predictive distribution should contain the training data.

Figures 4.2 and 4.3 show the trained GP’s posterior predictive mean and 100 random samples
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for the stagnation-point heating and axial-force coefficient, respectively, for altitudes in the range

h ∈ [150, 500] km at a velocity of V = 27.0 km/s. This velocity is intentionally chosen to be

consistent with the velocity of the maximum-heating condition in Chapter 3. Note that the upper

and lower bounds of this altitude range are outside of the altitude values used during training. The

nominal stagnation-point convective heat flux and axial-force coefficient for the maximum-heating

condition in Chapter 3 are plotted for reference, where the error bars represent the uncertainty from

the PCE surrogate.
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Figure 4.2: Posterior predictions of stagnation-point convective heating at V = 27.0 km/s.
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Figure 4.3: Posterior predictions of axial-force coefficient at V = 27.0 km/s.
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The GP does an excellent job at predicting the trends in both the stagnation-point heat flux

and the axial-force coefficient. Additionally, as shown in Figure 4.2, the GP surrogate is successfully

able to incorporate the uncertainty in the stagnation-point heating computed by the PCE surrogate

from Chapter 3 into its predictions across the entire altitude space. The model slightly overpredicts

the stagnation-point convective heating at higher velocities, with a maximum relative error of 3.9%

between the posterior-predictive mean and the CFD data. Again, this difference is expected due to

the specified noise level in the CFD data, but to reduce the predictive error, it would be necessary

to include additional training data in the high-velocity region of parameter space. This is straight-

forward to achieve, as the data currently allocated for model testing can be used to augment the

current training data set, and additional training data can be generated to augment the original

set. There is a noticeable increase in the variation of the GP’s predictions for altitudes lower than

200 km, as these altitudes are lower than the lowest-altitude data point included in the training

procedure. The increase in function variation away from training data is a well-known characteristic

of Gaussian process regression and allows for the “out-of-distribution” (i.e. extrapolating instead of

interpolating) uncertainties to be estimated. The predictions at altitudes where more training data

is available are more accurate than that shown in Figure 4.2, as expected, with a maximum relative

error of approximately 2.0%. The training and test data are well contained within the uncertainty

level determined by the trained GP.

The model also does an excellent job at predicting the axial-force coefficient as shown in

Figure 4.3. From Newtonian theory, aerodynamic coefficients for hypersonic blunt bodies should

vary slightly with Mach number, so it is encouraging that the profile in Figure 4.3 is relatively

flat. Even though predictions for a constant velocity of 27 km/s are shown, the Mach number

changes with altitude due to the variation in the speed of sound. Due to the slightly sparser

altitude training data at V = 27.0 km/s, the model shows larger predictive uncertainties at higher

altitudes. These higher altitudes lie outside the theoretical entry corridor shown in Figure 4.1a,

so the increased aerodynamic uncertainty in this region has no implication for trajectory/guidance

design. An increase in predictive uncertainty away from training data is a known phenomenon of
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GPR, and it indicates that including more data where the predictive uncertainty is higher would

improve the model’s overall predictive capabilities. There is both slight over- and under-prediction

of the axial-force coefficient by the GP, but the maximum relative difference between the posterior

predictive mean and the training and test data is only 1.09%. Similar to the stagnation-point

heating results, the GP’s predictions at conditions near more training data are more accurate, with

errors on the order of 0.5%.

4.4.2 Prediction of Convective Heat-Flux Surface Distributions

It is desirable to predict the heat-flux across the surface of the vehicle, as entire surface-

heating profiles are required during the design phase and TPS design [123]. Additionally, the ability

to efficiently and accurately model the vehicle’s aerothermodynamic environment, along with its

associated uncertainty, could enable the development of more advanced guidance algorithms that

utilize the full surface-heating distribution to inform the resulting guidance law. For blunt-body

capsules, the heat flux at the shoulder can be comparable in magnitude to the stagnation-point heat

flux. Expanding the aerothermodynamic model within a guidance algorithm beyond a simplified

stagnation-point heating model would ensure that heating across the entire vehicle is accounted for

during trajectory planning.

The input space is expanded to be xi = [hi, Vi, si], where the added variable s is a normalized

arc length along the vehicle surface. This is chosen because an input of s = 0 produces a prediction

at the stagnation point, and an input of s = 1 produces a prediction at the shoulder. The output

space is taken to be the surface heat flux at the input arc-length value such that yi = qi(si), where

i = 1, . . . , N . Instead of using the log of the heat flux, as was done in Section 4.3.1, both the

input and output space are normalized using z-score normalization. This is chosen because the

relationship between the freestream altitude/velocity and the entire surface-heating distribution is

not as well-defined as the relationship between altitude/velocity and stagnation-point heating. A

90/10 training-validation split is used to partition the available data, such that 45 of the 50 CFD

data sets are used to train the model, and the remaining 5 are reserved for model validation. Using
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the raw CFD data would produce a training data set size of N = 45 × nsurface, where nsurface is

the number of wall-tangential points along the vehicle surface used in the CFD simulations. To

prevent the training data set from becoming too large, the surface profiles are interpolated onto a

linearly spaced grid of 100 points, such that nsurface = 100. The optimized hyperparameters for the

variance and length scales corresponding to the altitude, velocity, and non-dimensional arc length

are summarized in Table 4.3. Recall that these values are also non-dimensional because of the

z-score normalization.

Table 4.3: Optimized hyperparameters for single-output GP trained to predict convective heat-flux
distributions.

Hyperparameter Variance, σ2 Length Scale, lh Length Scale, lV Length Scale, ls

Value 10.8 0.845 2.54 0.117

Compared to the hyperparameters obtained in Section 4.3.1, a different trend is observed in

the values shown in Table 4.3. In this case, it is shown that ls ≤ lh ≤ lV , which indicates that the GP

outputs are most sensitive to changes in the non-dimensional arc length and are the least sensitive

to changes in the velocity. It is expected that the heat-flux distribution will be most sensitive to the

position along the body, as regions with sharp curvature (e.g. the shoulder) produce augmentations

in surface heating. However, the results in Table 4.3 show that the heat-flux distribution varies

more with changes in freestream altitude than changes in freestream velocity. A normalized heat

flux, known as the Stanton number, may be introduced to remove the dependency of the surface

heating on the freestream conditions

St =
q

0.5ρV 3
. (4.12)

Figure 4.4a shows the Stanton number surface profiles for four difference freestream conditions.

The blue lines indicate conditions that have similar freestream altitude (but different velocities),

and the red lines indicate conditions that have similar freestream altitudes (but different velocities).

Clearly, there is a much larger variation in the Stanton number when the freestream altitude is

changed than there is when the freestream velocity changes. This is likely because the heat-flux
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distribution is also a strong function of the local surface shear stress, which depends more on the

freestream density (and therefore altitude) than it does the freestream velocity. Surface shear-stress

profiles computed for each of the four cases are plotted in Figure 4.4b, confirming that a much

larger difference in viscous effects are observed by varying the freestream altitude than by varying

the freestream velocity.
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Figure 4.4: Bounding lift-up and lift-down trajectories with CFD database points (a) and example
Pressure contours computed by LeMANS (b).

To demonstrate the trained GP’s ability to rapidly predict entire convective heat-flux dis-

tributions, the model is evaluated at altitude-velocity conditions that are in both the training and

validation data sets. Figure 4.5 illustrates the surface heat-flux distributions predicted by the GP for

(h, V )training = (368 km, 21.9 km/s), which is a condition included directly within the training data

set. The solid blue lines show the results obtained from LeMANS, while the dashed red lines and

shaded red area show the posterior predictive distribution from the trained GP. Excellent agreement

between the posterior predictive mean and the data taken directly from LeMANS is observed, as ex-

pected. Similar predictions are made at an off-training point, (h, V )validation = (215 km, 20.3 km/s),

as shown in Figure 4.6. The uncertainty in the posterior predictions is larger for the off-training
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Figure 4.5: Posterior predictions of surface heating at h = 368 km and V = 21.9 km/s. These
conditions are included in the model training data set.
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Figure 4.6: Posterior predictions of surface heating at h = 215 km and V = 20.3 km/s. These
conditions are not included in the model training data set.

point, as expected, but the posterior predictive mean of the GP still shows excellent agreement

with the data obtained directly from LeMANS. It is interesting to note that, near the shoulder

where |s| ≈ 0.95, there is a slight oscillation in the heating magnitudes predicted by the GP. The

explanation for such behavior is that the optimizer is attempting to find a value for ls that is able

to capture both the sharp changes in heat flux near the shoulder and the more gradual changes in

heat flux near the frustum and stagnation region.
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4.4.3 Three-Dimensional Aerodynamic Model

In addition to altitude and velocity, a full aerodatabase must be able to account for variation

in aerodynamic coefficients as a function of angle of attack. Consequently, it is necessary to develop

a GP-based model that includes angle of attack as an input. To achieve this, 50 three-dimensional

CFD simulations are conducted, where altitude and freestream velocity values correspond to the

points shown in Figure 4.1a, while angle-of-attack values are selected using a Latin-hypercube

sampling approach. The angle-of-attack bounds are chosen to be α ∈ [−20, 0] degrees, as blunt

bodies produce positive lift at negative angles of attack. Additionally, because the entry vehicle is

geometrically axisymmetric, its aerodynamic characteristics should be symmetric in angle of attack,

such that CL(−α) = −CL(α) and CD(−α) = CD(α), so it is not necessary to collect data at positive

angle-of-attack values.

The GP input space is defined to be xi = [hi, Vi, αi], where the added variable α is the vehicle

angle of attack, and the output space is the lift and drag coefficients, such that yi = [CL,i, CD,i],

where i = 1, . . . , N . Instead of using a simple 90/10 training-validation split of the available data,

the training data set is gradually increased in size. By gradually increasing the training data set

size, a clearer measure of model convergence can be obtained, and it is of interest to see how the

trained model’s predictions change as more data is added to the training set. Specifically, models

are generated with N = 10, 20, 30, 40, and 45 3D-CFD data points, where the training points

are randomly selected from the entire data set. Note that, by taking this approach, at least 5

data points are reserved for model validation. When training each model, the feature vectors are

normalized using z-score normalization, and the model outputs are correlated using the intrinsic

model of coregionalization described in Section 4.3.1. The optimized hyperparameters for all five

GPs are summarized in Table 4.4, where the presented values have been given dimensional units by

inverting the z-score normalization process for a more intuitive interpretation.

The length scale corresponding to the angle-of-attack dimension is much smaller than the

range of angle-of-attack values used during training, whereas the length scales for the altitude
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Table 4.4: Optimized hyperparameters for multi-output GP trained to lift and drag coefficients as
a function of altitude, velocity, and angle of attack.

N Variance, σ2 Length Scale, lh Length Scale, lV Length Scale, lα

10 1.03×10−3 605 km 62.8 km/s 3.50 deg
20 7.36×10−4 653 km 37.0 km/s 6.40 deg
30 2.39×10−3 632 km 31.4 km/s 10.0 deg
40 1.06×10−2 672 km 31.4 km/s 11.7 deg
45 9.33×10−3 645 km 31.4 km/s 11.8 deg

and velocity are larger than the range of altitude/velocity values used in training. This indicates

that, for the variation in inputs of interest, more variation in aerodynamic coefficients with changes

in angle of attack is expected. This is consistent with the underlying physics of the model, as

aerodynamic coefficients are expected to be most sensitive to angle of attack. The model trained

with only 10 data points has the smallest angle-of-attack length scale, which is likely because the 10

data points used displayed large amounts of variation over the angle-of-attack values considered. A

similar conclusion may be made for the velocity length scale being significantly larger than models

with more training data, where the data instead showed little variation over the velocity values

considered. Additionally, it is interesting that the velocity length scale does not change for N ≥ 30,

indicating that the velocity dependence of the aerodynamic coefficients is more easily learned than

others. Overall, each length shows a relative degree of convergence by increasing the training data

set size, as increasing the data set size samples the input space more thoroughly.

Recall that the training data set contains angle-of-attack values in the range αtrain ∈ [−20, 0]

degrees. Because the entry vehicle is geometrically axisymmetric, its aerodynamic characteristics

should be also symmetric in angle of attack, such that CL(−α) = −CL(α) and CD(−α) = CD(α).

Using this information allows for the out-of-distribution accuracy to be assessed rapidly by querying

the trained GP models for αtest > 0. Figures 4.7–4.9 show the lift, drag, and lift-to-drag ratio

response surfaces, respectively, predicted by the posterior mean of GPs trained with 10, 20, and

45 data points. All surfaces are generated for V ∈ [15, 30] km/s and α ∈ [−20, 20] degrees at an

altitude of h = 300 km.
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(a) 10 points. (b) 20 points. (c) 45 points.

Figure 4.7: Lift-coefficient response surfaces at h = 300 km generated from GP trained using 10
data points (a), 20 data points (b), and 45 data points (c).

(a) 10 points. (b) 20 points. (c) 45 points.

Figure 4.8: Drag-coefficient response surfaces at h = 300 km generated from GP trained using 10
data points (a), 20 data points (b), and 45 data points (c).

(a) 10 points. (b) 20 points. (c) 45 points.

Figure 4.9: Lift-to-drag ratio response surfaces at h = 300 km generated from GP trained using 10
data points (a), 20data points (b), and 45 data points (c).

The models trained with 10 data points produce some adherence to aerodynamic symmetry
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for α > 0, but only for the lift coefficient and lift-to-drag ratio. Generally, the lift coefficient is

linear in angle of attack, and the drag coefficient is quadratic in angle of attack, so it is expected

that the out-of-distribution predictions of the drag coefficient are less consistent than those for the

lift coefficient and lift-to-drag ratio. However, as the training data set size increases, the response

surfaces begin to show much more consistent aerodynamic symmetry in angle of attack. To more

clearly assess the GP’s out-of-distribution predictive capabilities, slices of the response surfaces in

Figures 4.7–4.9 are shown in Figures 4.10–4.12 for a freestream velocity of V = 30 km/s.
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Figure 4.10: Slices of lift/drag coefficients and lift-to-drag ratio at h = 300 km and V = 30 km/s
obtained from GP trained using 10 3D-CFD data points.
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Figure 4.11: Slices of lift/drag coefficients and lift-to-drag ratio at h = 300 km and V = 30 km/s
obtained from GP trained using 20 3D-CFD data points.
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Figure 4.12: Slices of lift/drag coefficients and lift-to-drag ratio at h = 300 km and V = 30 km/s
obtained from GP trained using 45 3D-CFD data points.

The solid lines in Figures 4.10–4.12 represent the GP mean profile, and the shaded regions are

the corresponding 3σ bounds for each quantity of interest. In addition to the posterior distributions

predicted by each GP, dashed lines are plotted for α > 0 that represent the expected aerodynamic

coefficient value due to aerodynamic symmetry (i.e. CL(−α) = −CL(α) and CD(−α) = CD(α))

based on the GP’s predictions for α < 0. Note that using the predictions for α < 0 from the GP

as the expected values for α > 0 is more valid when more training data is included, where the GP

produces excellent predictions of all aerodynamic coefficients. However, for lower training data set

sizes, it also illustrates the relative degree of aerodynamic symmetry of the response surfaces gener-

ated by the GP. As the number of data points used to train the GP increases, the predicted posterior

distributions become more symmetric in angle of attack. The out-of-distribution (α > 0) predic-

tions by the GP show a remarkable level of accuracy by the time that 45 data points are included

in the training process, as the posterior mean profiles for each aerodynamic coefficient show good

agreement with their respective expected profiles. Generally, the GP mean underpredicts the lift

coefficient and lift-to-drag ratio for α > 0 and shows very good agreement with the drag coefficient.

However, the expected profiles of all aerodynamic quantities of interest are contained within the

posterior distribution predicted by the GP. Overall, the results in Figures 4.10–4.12 demonstrate

that the GP-based model is able to extrapolate beyond its training data set with a notable level
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of accuracy – a phenomenon that is not typically observed in GP regression. This is primarily

attributed to the use of the LMC to correlate the lift and drag coefficients. If this aerodatabase had

been constructed using a standard lookup-table technique, a standard linear extrapolation approach

for extrapolating the aerodynamic coefficients for α > 0 would be significantly less accurate than

what is shown in Figure 4.12. Additionally, the usage of heritage look-table techniques would not

produce uncertainty estimates that are consistent with the uncertainty in the data used to construct

the model, whereas the uncertainty in the GP-based predictions are statistically consistent with the

data used to train the model.

Three-dimensional CFD is required to generate an aerodynamic database that is capable of

modeling aerodynamic coefficients as a function of angle of attack. However, the computational

expense of a 3D-CFD simulation is significantly larger than that of an axisymmetric simulation,

which increases the expense required to produce a sufficiently accurate aerodatabase. Therefore, it

is of interest to investigate alternative methods to decrease the computational expense associated

with generating a full 3D aerodatabase. In particular, this task also seeks to investigate the ability

of the multi-fidelity modeling technique outlined in section 4.3.2 to decrease the number of 3D-CFD

data sets necessary to assemble an aerodatabase.

To construct a multi-fidelity model, a specific fidelity level must be assigned to all available

data. Specifically, this model uses the axisymmetric CFD data collected in Section 4.3.1 as the “low-

fidelity” data, and the 3D-CFD data as the “high-fidelity” data. This fidelity hierarchy is chosen

as an axisymmetric CFD is significantly less computationally expensive compared to a 3D-CFD

simulation (e.g. an axisymmetric solution may be obtained in a few hours, whereas a 3D solution

may require days to converge). As such, the multi-fidelity GP consists of two levels of fidelity where

f1(x) = δ1(x) (4.13)

f2(x) = ρ1f̂1(x) + δ2(x) . (4.14)

Here, x = [h, V, α], the subscript (·)1 is the fidelity level of the axisymmetric CFD, and the

subscript (·)2 is the fidelity level of the 3D-CFD. Recall that the multi-fidelity architecture described
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in Section 4.3.2 assumes a nested structure to the data in each fidelity level. Fundamentally, this

would require evaluating the low-fidelity model at nonzero angle-of-attack values. However, since an

axisymmetric CFD simulation assumes α = 0, it is presumed that the low-fidelity model returns the

α = 0 result even when queried at nonzero angles of attack. Therefore, by using the axisymmetric

CFD as the low-fidelity data, the high-fidelity model is essentially trained to learn an angle-of-attack

correction to the aerodynamic coefficients obtained by the axisymmetric model.

For each GP in the multi-fidelity model, the target vector consists of the lift and drag coef-

ficients such that yi = [CL,i, CD,i], where the outputs are correlated using the IMC. Due to the

axisymmetric assumption, the low-fidelity model returns CL,i = 0 for all inputs. The low-fidelity

GP is first trained using all 50 axisymmetric CFD data points. To assess the effect of varying the

high-fidelity data-set size, high-fidelity models are then generated with N = 10, 20, 30, 40, and 45

3D-CFD data points. Figure 4.13 compares the relative error in the lift and drag coefficients pre-

dicted by the multi-fidelity model to the corresponding predictions obtained using the single-fidelity

model generated using only 3D-CFD data.
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Figure 4.13: Relative error of GP trained to predict three-dimensional aerodynamic coefficients for
training data sets that include various numbers of 3D-CFD data.

For all 3D-CFD data-set sizes, the multi-fidelity model produces more accurate predictions of

both the lift and drag coefficients. Additionally, the multi-fidelity model converges to a low relative

error more rapidly than the single-fidelity model, as only 20 3D-CFD data points are required to
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produce predictions as accurate as the most accurate single-fidelity model. The multi-fidelity model

is able to learn the general trends in the aerodynamics by using the axisymmetric CFD to train

the low-fidelity model, and then anchor its predictions in the much sparser high-fidelity data set.

Interestingly the single-fidelity model produces an increase in the lift-coefficient error for N = 30

training data points. This is likely due to the random sampling of the input space for training each

model and greater variability in lift-coefficient values relative to the drag coefficient. The results in

Figure 4.13 demonstrate that a multi-fidelity modeling architecture could significantly reduce the

number of high-fidelity CFD simulations required to generate a full-scale aerodatabase, which would

allow for more rapid vehicle analysis and trajectory design.

4.4.4 Using Gaussian-Process Based Models in Trajectory Simulations

As a final demonstration of the advantages associated with Gaussian-process based surro-

gate models for hypersonic entry vehicle design, the models trained in Sections 4.4.1 and 4.4.2 are

used to evaluate the aerothermodynamic environment along the representative Neptune aerocapture

trajectory in Figure 3.1 of Chapter 3.

The altitude and velocity values from Figure 3.1 are first used to evaluate the GP trained

to predict the uncertain stagnation-point convective heat flux. Figure 4.14a shows 100 samples

from the posterior distribution of the GP and Figure 4.14b shows the corresponding integrated

heat load, Q =
∫
q(t)dt. The black lines in Figure 4.14 are the corresponding stagnation-point

heat flux and heat load predicted by the standard Sutton-Graves correlation for a hydrogen-helium

atmosphere [158]. The predictions from the GP-based model reflect the uncertainty in the CFD

simulations used to train the model, whereas the Sutton-Graves model only returns a deterministic

estimate of the aerothermodynamic environment of the vehicle. To ensure that a vehicle’s thermal

protection system is sufficiently robust to its aerothermodynamic environment, the range of heat-

flux and heat-load values shown in Figure 4.14 must be considered. The use of a GP-based model

allows for the aerothermodynamic uncertainty to be propagated along the entire trajectory, allowing

for a rapid assessment of the aerothermodynamic environment and its associated uncertainties. A
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Figure 4.14: Stagnation-heat flux (a) and integrated heat load (b) computed using GP-based model
and Sutton-Graves correlation.

difference between the heat-flux magnitudes predicted by the GP-based model and the Sutton-

Graves is observed, but this is expected, as the Sutton-Graves model is generally used as a low-

fidelity engineering model to quickly estimate the stagnation-point heat flux.

Next, the model developed in Section 4.4.2 is used to predict the aerothermodynamic envi-

ronment of multiple locations on the vehicle heat shield along the trajectory in Figure 3.1. Using

the altitude and velocity values from the representative trajectory, the convective heat flux and heat

load are predicted at the stagnation point (s = 0), the shoulder (s = 0.95), and a point midway

along the frustum (s = 0.5). Figure 4.15 shows the ability of the GP-based model to quickly evaluate

the aerothermodynamic environment of multiple locations along the vehicle heat shield. Estimates

of the heat flux and heat load are necessary for TPS material selection and sizing, so a model that

is capable of efficiently predicting entire heating distributions and corresponding heat-load profiles

could significantly accelerate the TPS design phase.
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Figure 4.15: Stagnation-heat flux (a) and integrated heat load (b) computed using GP model trained
to predict convective heat-flux distributions.

4.5 Incorporation of Physical Constraints

In the previous section, the baseline GP models were trained without explicitly enforcing

physical constraints, such as symmetries and monotonicity, resulting in increased prediction un-

certainty in regions of sparse training data. This issue is particularly evident in the prediction

of aerodynamic coefficients at positive angles of attack, where the GP model fails to capture the

expected symmetric behavior about zero degrees for smaller training set sizes. To address these

limitations, this section explores methods for incorporating physical constraints directly into the

GP framework. Intentional manipulation of the GP kernel function’s structure provides a means

to improve predictive accuracy and enforce physically consistent trends, enhancing the reliability of

the GP-based models for aerothermodynamic applications.

4.5.1 Encoding of Symmetry

A Gaussian process (GP) is completely defined by its mean and covariance functions, and

it is typically assumed that the mean function of the GP prior is zero. As such, the form of the

functions produced from a GP depend solely on the structure of the covariance (kernel) function.
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The previous analyses in the chapter use “off-the-shelf” kernel functions, meaning no modification to

them has been made, which makes the uncertainty in their predictions increase the further the model

is sampled from the training data. Reducing this uncertainty typically requires collecting additional

data in the uncertain region, however, this can be avoided in scenarios where the underlying function

is symmetric (e.g. f(x) = x2 is symmetric about x = 0). This symmetry can be exploited in the

kernel design which not only produces more accurate model predictions, but it also reduces the

amount of training data necessary to construct the model.

Expressing symmetry in a GP kernel is an example of a GP that has an “invariant” prior. This

implies that there exists some finite set of transformations of the input space {g1, g2, . . . : gi ∈ G}

to which the function should remain invariant

f(x) = f(g(x)) ∀ x, ∀g ∈ G . (4.15)

For the functions produced by a GP to obey the set of invariances, the kernel function must also

respect the set of invariances [160]

k(x,x′) = k(g(x), g(x′)) ∀ x, ∀g ∈ G . (4.16)

One technique for constructing an invariant kernel is “summing over the orbit” [161], where the

“orbit” of x with respect to some group G is the set {g(x) : g ∈ G}. In this approach, the invariance

is expressed in the kernel as a double sum over the orbits of x and x′

kinvariant(x,x
′) =

∑
g∈G

∑
g′∈G

k(g(x), g′(x′)) (4.17)

where k(·, ·) is a standard kernel function (e.g. SE). As an example, consider the one-dimensional

symmetry about x = 0 (i.e. reflection about the y-axis)

f(x) = f(−x) . (4.18)

Here, the set of transformations is g1(x) = x and g2(x) = −x, which yields an invariant kernel

structure of

kreflect(x, x
′) = k(x, x′) + k(x,−x′) + k(−x, x′) + k(−x,−x′) . (4.19)
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For stationary kernels like the SE and Matérn,1 Equation 4.19 reduces to

kreflect(x, x
′) = k(x, x′) + k(x,−x′) . (4.20)

This form of symmetry is particularly relevant to the blunt, axisymmetric aeroshells studied

in this dissertation, as the drag coefficient should be symmetric about an angle of attack of zero.

Before implementing Equation 4.20 for the entire aerodatabase, however, it is useful to demonstrate

its capabilities on a simpler problem. Consider the noisy function f(x) = x2, which is symmetric

about x = 0. However, assume that measurements of this function are noisy such that

f(x) = x2 + ϵ ϵ ∼ N (0, σ2n) (4.21)

and that observations of f(x) only exist for x ≥ 0. Two cases are considered. The first trains a

GP using the standard SE kernel, and the second uses the symmetric kernel defined in Equation

4.20, where the baseline kernel is an SE kernel. Figure 4.16 shows 50 functions sampled from the

posterior distribution of both models. The invariant kernel maintains its predictive accuracy across

the entire domain, while the standard kernel does not.
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Figure 4.16: Posterior distributions for GPs trained using a standard squared-exponential kernel
(a) and a kernel designed to enforce symmetry about x = 0 (b).

1 A stationary kernel only depends on the distance between the input locations ∥x− x′∥
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4.5.1.1 Quasi-Symmetry

An additional case considers functions that are “quasi-symmetric” about x = 0, such as

f(x) = x3. In reality, these functions are reflected about the x and y axis, but the approach

outlined here is technically enforcing an invariance of the GP kernel about x = 0. Specifically, the

mapping to be encoded within the structure of the GP kernel is

f(x) = −f(−x) . (4.22)

Because this is not an exact invariance, these mappings are referred to as “quasi-symmetric”. For

the axisymmetric aeroshells studied in this dissertation, the lift coefficient is quasi-symmetric in

angle of attack (i.e. CL(α) = −CL(−α)). To incorporate the quasi-symmetry into the kernel, the

sum over the orbit becomes

kquasi(x, x
′) = k(x, x′)− k(x,−x′) (4.23)

where it is assumed that the baseline kernel k(·, ·) is stationary.

To demonstrate the effect of using Equation 4.23 over a standard GP kernel, consider the

noisy function

f(x) = x3 + ϵ ϵ ∼ N (0, σ2n) (4.24)

where training data is only available for x ≥ 0. Figure 4.17 shows samples drawn from a GP trained

using a standard SE kernel and its corresponding covariance matrix, and Figure 4.18 shows the

same information obtained when using Equation 4.23 for the kernel. Note how the GP trained

using Equation 4.23 produces superior predictions for x < 0 than the GP trained using a standard

kernel. This improvement is reflected in the covariance matrices of both GPs. For the GP trained

using a standard SE kernel, the covariance matrix has a single positive band along the diagonal

(this is typical for SE kernels). However, the covariance matrix obtained using Equation 4.23 has a

positive band along one diagonal, and a negative band along the opposite diagonal. This negative

correlation is what enforces the mapping f(x) = −f(−x) in the trained GP.

The framework described in this section may easily be expanded to multi-variate functions

that have symmetry/quasi-symmetry about 0 in one (or more) of the input dimensions by using
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Figure 4.17: Sampled functions (a) and resulting covariance matrix (b) for GP trained using a
standard SE kernel.
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Figure 4.18: Sampled functions (a) and resulting covariance matrix (b) for GP trained using a
quasi-symmetric kernel function.

separate kernels for each input dimension. For example, if a function takes a two-dimensional input

x = [x, y], and the function is symmetric only about x = 0, the invariant kernel is of the form

k(x,x′) = kreflect(x, x
′) + kSE(y, y

′) . (4.25)
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A similar approach can be taken for the quasi-symmetric case (or cases where the function has

symmetries and quasi-symmetries). For instance, while the lift/drag coefficients for an axisym-

metric aeroshell are quasi-symmetric/symmetric in angle of attack, they are not necessarily quasi-

symmetric/symmetric in other input dimensions like altitude or velocity. Because the surrogates

developed in this dissertation take multidimensional inputs, the invariances are constructed using

kernels similar to the form of Equation 4.25.

4.5.2 Application to Aerodatabase

The first objective is to enhance the predictive capabilities of the three-dimensional aerody-

namic GP model at positive angles of attack. As observed in the previous section, the baseline

GP model, trained without enforcing physical constraints, exhibits increased uncertainty in this

region. This behavior arises due to the lack of symmetry enforcement and the limited availability

of training data at positive angles of attack. To address these issues, an invariant kernel is designed

to encode aerodynamic symmetry and quasi-symmetry in the angle of attack coordinate. Because

the symmetry is addressed directly in the kernel, the LMC is not used to correlate the outputs of

the GP. Instead, two separate GPs are trained to predict the lift and drag coefficients, where the

kernel function for each is

kCD
(x,x′) = kreflect(α, α

′) + kSE([h, v], [h
′, v′]) (4.26)

kCL
(x,x′) = kquasi(α, α

′) + kSE([h, v], [h
′, v′]) . (4.27)

Here, kreflect and kquasi are expressed using Equations 4.20 and 4.23, respectively, and kSE is a

standard squared-exponential kernel.

Similar to the approach in Section 4.4.3, surrogates with varying training data-set sizes are

generated. Figure 4.19 compares the predictions of the GP trained with the LMC and standard ker-

nel to the GP trained with the symmetry-informed kernels for N = 45. The predictions at negative

angles of attack are nearly identical for the two approaches, however, substantial differences are ob-

served at positive angles of attack. Because of the symmetric invariance encoded within the kernel,
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the symmetry-informed GP maintains its predictive confidence for α > 0. Furthermore, it produces

perfect symmetry in the angle-of-attack dimension, while the baseline model from Section 4.4.3 does

not. This is further visualized in Figure 4.20, which compares the drag-coefficient response surfaces

produced by the posterior mean of each GP model. Here, the symmetry is observed across the

entire input space, emphasizing the capability of the invariant kernel to encode physical constraints

without requiring additional training data. Generating data for use in hypersonic aerodatabases,

whether computationally or experimentally, is expensive and a time-consuming process, so any way

of accelerating the time to produce a sufficiently accurate surrogate is beneficial.

−20 −15 −10 −5 0 5 10 15 20
−1

0

1

2

Interpolation Extrapolation

Angle-of-Attack (deg.)

C
oe

ffi
ci

en
t

V
al

ue

LD
CL
CD

(a) Without symmetry.
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Figure 4.19: Comparison of the posterior distributions for aerodynamic coefficients at h = 300 km
and V = 30 km/s without (a) and with (b) symmetry encoded in GP kernel.
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(a) Without symmetry. (b) With symmetry.

Figure 4.20: Comparison of the posterior distributions for aerodynamic coefficients at h = 300 km
and V = 30 km/s without (a) and with (b) symmetry encoded in GP kernel.

4.6 Summary

This chapter presented a Gaussian Process Regression (GPR) framework for developing effi-

cient surrogate models to approximate high-fidelity aerothermodynamic uncertainty along an aero-

capture trajectory. The constructed models successfully captured key aerodynamic and aerothermal

quantities, including stagnation-point heat flux, aerodynamic coefficients, and full surface heat-flux

distributions, demonstrating strong predictive accuracy and generalization. A multi-output GPR

methodology was used to improve model predictions by identifying underlying correlations between

data sets, and a multi-fidelity GPR approach was introduced to integrate low- and high-fidelity

data, reducing computational cost while maintaining predictive performance.

Next, the surrogate models were incorporated into a trajectory simulation framework, high-

lighting the advantages of probabilistic aerodatabases in quantifying hysteresis effects due to aerother-

modynamic uncertainty. The GPR models developed in this chapter will serve as a critical compo-

nent in the stochastic guidance algorithm presented in Chapter 7. By integrating these probabilistic

models into the guidance framework, the algorithm will be able to account for aerothermodynamic

uncertainty explicitly in the trajectory design phase and acknowledge the inherent coupling between

the vehicle aerodynamics and its trajectory.
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Finally, to improve the physical consistency of the models, the GP kernel functions were care-

fully manipulated to enforce invariances in the GP posterior. Doing so ensured that the predictions

adhered to expected aerodynamic trends, such as symmetry in the aerodynamic coefficients. These

constraints enhanced the surrogate’s predictive capabilities, particularly when extrapolating beyond

the training dataset.



Chapter 5

Preliminaries - Trajectories and Guidance

“The missile knows where it is at all times. It knows this because it knows where it
isn’t.”

— Missile Guidance for Dummies

5.1 Introduction

Similar to Chapter 2, this chapter introduces the fundamental tools and techniques used to

generate aerocapture trajectories. It begins by describing the dynamical models used to simulate the

motion of an aerocapture spacecraft, including methods for addressing non-spherical gravitational

forces and uncertain aerodynamic forces. An overview of bank-angle modulation, the technique

used in this dissertation for steering an aerocapture vehicle, is then provided. The necessity of

aerocapture guidance is introduced by defining the aerocapture entry corridor, followed with a

description of the current state-of-the-art full numerical predictor-corrector aerocapture guidance

(FNPAG) algorithm.

Second, this chapter introduces the mathematical principles underpinning each of the guid-

ance algorithms developed in this dissertation. Specifically, the basics of convex optimization and

sequential convex programming (SCP) - a technique capable of addressing the limitations of the FN-

PAG algorithm - are described. An overview of SCP for trajectory optimization is given, including

several general tutorials developed by the author for applying the principles of SCP to both deter-

ministic and stochastic optimization problems. Finally, the chapter concludes with a description

of the usage of chance constraints for constraining uncertain variables in stochastic optimization
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problems.

5.2 Dynamical Models

This section describes the equations of motion used to model a hypersonic vehicle moving

through a planet’s atmosphere subject to atmospheric and gravitational forces. These are vital

to characterize in the design of aerocapture trajectories, as they shape the overall flight profile of

the spacecraft. Furthermore, the atmospheric models are often highly uncertain and are therefore

necessary to study when designing robust aerocapture guidance algorithms.

5.2.1 Coordinate Frame

The motion of an aerocapture vehicle is described in a planetocentric coordinate system in

which the origin is located at the center of the planet. A convenient coordinate frame for atmospheric

flight is the planet-centered, planet-fixed frame expressed in spherical coordinates. In a planet-fixed

frame, the coordinate system rotates with the central body. The position is described by the radial

distance from the center of the planet r, the longitude θ, and the latitude ϕ, as shown in Figure 5.1.

Longitude is measured from the x-axis and is defined positive to the east, and latitude is measured

from the equatorial plane along a meridian and is defined positive to the north.

The velocity vector is described by the velocity magnitude and the two angles shown in Figure

5.2: the flight-path angle γ, and the heading angle ψ. As illustrated in Figure 5.2a, the flight-path

angle γ is defined as the angle between the local horizontal plane (the plane passing through the

vehicle that is orthogonal to the radius vector) and the velocity vector. It is positive when the

velocity vector is above the horizontal plane. The heading angle ψ is defined as the angle between

the local parallel of latitude and the projection of the velocity vector onto the horizontal plane. It

is measured positive in the right-handed direction about the radius vector, as shown in Figure 5.2b.
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Figure 5.1: Description of position vector in spherical coordinates.
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Figure 5.2: Definition of the flight-path angle (a) and heading angle (b).
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5.2.2 Equations of Motion

The six coordinates used to describe the position and velocity are defined as the states of the

vehicle. To describe the evolution of each state, the following system of equations is used [162]

ṙ = v sin γ (5.1a)

θ̇ =
v cos γ cosψ

r cosϕ
(5.1b)

ϕ̇ =
v cos γ sinψ

r
(5.1c)

v̇ = −D − gr sin γ − gϕ cos γ sinψ +Ω2r cosϕ (sin γ cosϕ− cos γ sinϕ sinψ) (5.1d)

vγ̇ = L cosσ − gr cos γ +
v2

r
cos γ + gϕ sin γ sinψ + 2Ωv cosϕ cosψ+ (5.1e)

Ω2r cosϕ (cos γ cosϕ+ sin γ sinϕ sinψ)

vψ̇ =
L sinσ

cos γ
− v2

r
cos γ cosψ tanϕ− gϕ

cosψ

cos γ
+ 2Ωv (tan γ cosϕ sinψ − sinϕ) (5.1f)

− Ω2r
sinϕ cosϕ cosψ

cos γ

σ̇ = u . (5.1g)

Equation 5.1 is simply Newton’s second law of motion applied to the motion of a vehicle about an

oblate, rotating planet in spherical coordinates. Effects of planetary rotation are captured by the

terms involving the rotation rate Ω. In this definition, the vehicle state has been augmented with

the bank-angle σ, the rate of which is defined as the control input u. The actual control applied

to the spacecraft would be a torque, for which the bank-angle rate serves as a proxy. As shown in

Figure 5.3, the bank-angle is defined as the rotation of the lift vector about the velocity vector. A

bank-angle of σ = 0 deg. is referred to as “lift-up”, and a bank-angle of σ = 180 deg. is referred

to as “lift-down”. Modulation of the bank angle between these two limits is a common technique

for steering hypersonic reentry vehicles, including the Space Shuttle [163], Mars Science Laboratory

[164], Mars 2020 [165], and Orion spacecraft [53]. Changing the bank angle affects the amount of

lift acting in the vertical and horizontal planes which allows for both the longitudinal/in-plane and

lateral/out-of-plane motion to be controlled. Note that bank-angle modulation is only effective if
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the spacecraft is capable of producing lift. For the axisymmetric, blunt reentry capsules studied in

this dissertation, lift is typically produced by trimming the vehicle to a non-zero angle of attack, α,

using a center-of-gravity offset. Determining the bank-angle profile along the aerocapture trajectory

is the fundamental task of the guidance algorithms developed in this dissertation.

Figure 5.3: Bank-angle definition.

5.2.3 Force Models

The planet itself is modeled as an oblate spheroid which leads to non-uniform gravitational

accelerations. Accounting for non-spherical gravitational fields is more important for aerocapture

than other atmospheric flight applications because they influence the spacecraft’s path not just

during the atmospheric pass, but also in the resulting orbit. A widely used method for modeling

these higher-order gravitational perturbations is spherical harmonics which represents the gravita-

tion potential as an infinite sum. In practice, however, this sum is typically truncated to a finite set

of terms because the higher-order terms are small or their effects are negligible. For large planetary

bodies like those studied in this dissertation, the most dominant gravitational perturbation comes

from the second zonal-harmonic or “J2” which captures the effects of oblateness on the gravitational



146

field. Truncating the spherical-harmonic sum to only include terms with J2 yields the following

radial and latitudinal gravity components

gr =
µ

r2

(
1 + J2

(
Re
r

)2 (
1.5− 4.5 sin2 ϕ

))
(5.2a)

gϕ = 3
µ

r2

(
J2

(
Re
r

)2

sinϕ cosϕ

)
(5.2b)

where µ is the planet’s gravitational parameter, and Re is the planet’s equatorial radius. Table

5.1 summarizes the gravitational force-model parameters for the three destinations considered in

this research. Note that if J2 = 0, Equation 5.2 reduces to the standard Keplerian expression for a

point-mass gravity model.

Table 5.1: Planetary constants for each destination.

Planet µ (km3/s2) Re (km) J2 (·) Ω (rad/s)

Neptune 6,835,100 24,764 3.411× 10−3 1.0834× 10−4

Mars 42,828 3,396.2 1.960× 10−3 7.088× 10−5

Earth 398,600 6,378.1 1.083× 10−3 7.292× 10−5

In Equation 5.1, L and D are the lift and drag accelerations acting on the vehicle, respectively.

For a non-thrusting spacecraft they are given as

L =
ρv2L/D

2β
(5.3)

D =
ρv2

2β
. (5.4)

Here, ρ is the local freestream density, L/D =
CL
CD

is the lift-to-drag ratio, and β =
m

CDAref
is

the ballistic coefficient. The dynamics of the vehicle are highly dependent upon the atmospheric

density, and accurate knowledge of the density is a driving factor in an aerocapture guidance al-

gorithm’s performance. The Global Reference Atmosphere Models (GRAMs) are used to capture

the geospatial variation and uncertainty in the atmospheric properties of the aerocapture desti-

nations studied in this research. GRAM is an engineering model for simulating the variation in

atmospheric properties of various planets and has been used extensively for entry and aerocapture
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studies [164, 166, 167, 168, 55, 169, 170, 74, 171, 172]. Using GRAM allows for both nominal and

dispersed density profiles to be sampled, and Figure 5.4 illustrates the density variability produced

by NeptuneGRAM, MarsGRAM, and EarthGRAM. The shaded regions denote the ±3σ variability,

and the colored lines denote three dispersed density profiles. The data in NeptuneGRAM is from a

single Voyager flyby, while the data in MarsGRAM and EarthGRAM is much denser. This explains

the higher density variability at low altitudes observed for NeptuneGRAM.
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Figure 5.4: Density variation produced by GRAM for Neptune (a), Mars (b), and Earth (c).

5.3 Aerocapture Corridor

An important metric when assessing the feasibility and mission requirements for aerocapture

is the entry corridor width. Generally, the entry corridor width is defined as the range of entry flight-

path angles that produce feasible aerocapture trajectories. There are two types of corridor widths:

theoretical and “mission-specific,” and the criteria for a feasible aerocapture trajectory depends on

which corridor-width classification is used. For the theoretical entry corridor, a feasible aerocapture

trajectory is one which places the spacecraft into any orbit (i.e. does not crash or escape), while the

mission-specific corridor requires that the trajectory results in the spacecraft entering a specific orbit.

For both classifications, the corridor width is determined by propagating full lift-up and full lift-

down trajectories from atmospheric interface to atmospheric exit and determining the steepest and

shallowest permissible entry flight-path angles, respectively. Because lift-up and lift-down produce
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the maximum amount of vertical lift, these trajectories can be used to bound the trajectory space

for a given entry vehicle and target orbit.

Figure 5.5 presents the trajectories for each entry corridor definition for a Neptune aerocapture

scenario with an entry velocity of 29 km/s. The vehicle is assumed to have a constant lift-to-drag

ratio of LD = 0.3 and ballistic coefficient of β = 110 kg/m2, and the atmospheric density is taken

to be the nominal NeptuneGRAM profile. For the mission-specific corridor, the target orbit is taken

to have an apoapsis radius of ra,target = 100, 000 km.
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Figure 5.5: Comparison of theoretical and mission-specific entry corridor trajectories for Neptune
aerocapture. The solid lines denote the lift-up trajectories, and the dashed lines denote the lift-down
trajectories.

For this configuration, the theoretical corridor width is 2.27 degrees, and the mission-specific

corridor width is 1.07 degrees. Characterization of the entry corridor width is necessary for designing

the hyperbolic approach trajectory, as it should be wider than the 3σ delivery uncertainty of the

entry flight-path angle. Because the lift-up and lift-down trajectories bound the flight envelope,

they also bound the aerothermodynamic environment of the entry vehicle. In particular, the lift-up

trajectory produces the maximum heat flux, while the lift-down trajectory produces the maximum

integrated heat load. Note that the corridor widths reported here assume a nominal entry state

and nominal models for the density and aerodynamics of the entry vehicle. In reality, each of these
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are uncertain, and any uncertainty introduced into the system narrows the corridor width. For the

Monte-Carlo analysis performed in Chapter 6, the nominal entry flight-path angle is chosen to be

the center of the entry-corridor.

5.4 Aerocapture Guidance

Each of the models described in the preceding sections constitutes an input to the design and

optimization of an aerocapture trajectory1 . However, as highlighted by the quote at the beginning

of Chapter 2, every model is inherently wrong and has some level of uncertainty associated with it.

The entry-corridor calculations in the previous section assume the aerocapture vehicle has constant

aerodynamic properties, yet the results of Chapters 3 and 4 indicate that this assumption is invalid.

Consider the scenario where an engineer is tasked with designing the bank-angle profile along an

aerocapture trajectory. Likely, he or she will begin by assuming that the entry vehicle has defined

characteristics – lift-to-drag ratio, ballistic coefficient, etc.– that the atmosphere has a known density

profile, and that the entry condition is fixed. From inspection of Figures 5.4 and 5.5, these are likely

poor assumptions. So, what would happen if, when the spacecraft arrives to the target destination,

the actual aerodynamic properties of the vehicle or the actual density profile differ from the models

used to derive the bank-angle profile? Or the actual entry condition is different? The trajectory

would deviate substantially from the desired path, and the vehicle would miss the target orbit (or

even fail to capture into orbit). To avoid these catastrophic results, it is necessary to update the

bank-angle profile in real time as the vehicle is progressing along its trajectory using information

about where the vehicle is (i.e. current state) and where it is trying to go (i.e. target orbit). This is

the role of the guidance system.

While many definitions for guidance exist, the following quote concisely summarizes the role

of guidance in this research [173].

“Guidance is about the determination of the maneuvering commands to steer the
1 In reality, there are many more models such as mass properties, reaction control system (RCS), and six-degree-

of-freedom aerodynamics, that go into a high-fidelity trajectory simulation, but that is beyond the scope of this
discussion.
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vehicle to fly a trajectory that satisfies the specified terminal/targeting condition
as well as other pertinent constraints, and, if required, optimizes a defined perfor-
mance.”

— Ping Lu, Editor-in-Chief - Journal of Guidance, Control, and Dynamics

The guidance system can be thought of as the “brains” of the spacecraft. It makes decisions based

on information provided from the navigation system and given models for the spacecraft and envi-

ronment that will steer the vehicle to its desired state. Guidance is often conflated with control, so

a brief distinction between the two is made here. The control system is more like the “muscles” of

the spacecraft – it takes the maneuvering command output from guidance and then determines the

necessary forces/torques or actions of the control effectors (thrusters, flaps, etc.) in order for the

guidance command to be realized.

Guidance encompasses a wide range of concepts, and no single method defines the design

of a guidance algorithm. Common approaches include reference-based guidance, target-condition-

driven guidance, and computational guidance, among others [173]. The algorithms developed in

this dissertation fall within the realm of computational guidance, characterized by their reliance on

physics-based models and extensive numerical computation. As discussed in Chapter 1, a prominent

example of such an approach is the Fully Numerical Predictor-Corrector Aerocapture Guidance

(FNPAG) algorithm [55]. FNPAG has been used for numerous aerocapture studies [56, 57, 58, 59,

174] and is considered to be the state of the art. Given that the algorithms developed in this research

are directly benchmarked against FNPAG, it is necessary to discuss its theoretical foundation and

implementation details.

5.4.1 Fully Numerical Predictor-Corrector Aerocapture Guidance (FNPAG)

FNPAG is derived from optimal control theory, in which the performance objective (cost

function) is the in-plane ∆V required to reach the final orbit after aerocapture. However, the optimal

aerocapture guidance problem is highly non-convex, making it difficult to solve. To alleviate some

of this difficulty, the FNPAG guidance law is derived considering only the longitudinal equations of

motion and excludes path constraints like aerodynamic loading and heating. As such, the equations
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of motion in Equation 5.1 are reduced to

ṙ = v sin γ (5.5a)

v̇ = −D − µ sin γ

r2
(5.5b)

γ̇ =
1

v

[
L cosσ +

(
v2 − µ

r

) cos γ

r

]
. (5.5c)

Note these equations do not consider the effects of a rotating planet or non-spherical gravity. Because

the cost function is defined to be a function only of the terminal longitudinal state, Pontryagin’s

Minimum Principle [175] may be used to express the form of the optimal bank angle

σ = argmin
0≤σ≤π

{
prv sin γ + pv

(
−D − µ sin γ

r2

)
+ pγ

[
L

v
cosσ +

(
v2 − µ

r

) cos γ

rv

]}
(5.6)

where pr, pv, and pγ are the costate variables. Recognizing that Equation 5.6 is linear in cosσ and

that L
v > 0, the optimal bank-angle structure is found to be bang-bang

σ∗ =

σmin if pγ < 0

σmax if pγ > 0

(5.7)

where the minimum and maximum bank angles are [σmin, σmax] = [0, π]. There is an intermediate

possibility for Equation 5.7, where pγ = 0 over some finite time interval, implying that the optimal

bank-angle value could lie anywhere between its bounds. This is known as “singular” optimal control,

however, the possibility of such a case is proven to be impossible in an aerocapture scenario [55].

While it is impractical to solve the full optimal control problem onboard, the theoretical

insights produced by the optimal-control analysis allow the FNPAG guidance law to be designed

with optimality in mind. The bang-bang bank-angle profile produces a one-dimensional, parametric

control profile that is assumed by the guidance system. This reduces the computational complexity

of the guidance correction phase, as only a single parameter needs to be optimized.

FNPAG approaches the guidance problem using a two-phase algorithm, and each phase uses

a numerical predictor-corrector (NPC) to solve a single-variable root-finding problem. In the first

phase, the NPC solves for the time at which the bang angle switches from lift-up to lift down,

denoted as the switching time ts, that satisfies an apoapsis-targeting condition. During phase one,
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a bang-bang bank-angle profile is enforced during the prediction component of the NPC. While

theoretically optimal, assuming a pure bang-bang profile in which the bank-angle switches from

0 deg. to 180 deg. is not robust to dispersions, as it leaves no margin for correction later in the

trajectory. Therefore, it is customary to use a larger lower bound and smaller upper bound during

the prediction portion of phase one. In the FNPAG literature, these lower and upper bounds are

denoted as σ0 and σd, respectively [55]. Once the current t > ts, the algorithm transitions to phase

two in which the NPC seeks a constant bank-angle magnitude that satisfies the apoapsis targeting

condition. For both phases, the apoapsis-targeting condition is expressed assuming Keplerian motion

from atmospheric exit to apoapsis

ra(xf )− ra,target = 0 ra(xf ) = a

1 +

√
1−

v2fr
2
f cos

2 γf

µa

 (5.8)

where a is the semi-major axis

a =
µ

2µ/rf − v2f
. (5.9)

Because FNPAG uses bank-angle modulation, a separate lateral logic algorithm is required

to determine the sign of the bank angle (either positive or negative), as the longitudinal channel of

the guidance system only computes the bank-angle magnitude [176]. For aerocapture, the lateral

logic is used to help target an orbit with a specific inclination (or wedge angle2 if a specific right

ascension of the ascending node is known). If the bank-angle sign has to be reversed, the vehicle

must fly an open loop control profile until the reversal is completed which makes it more susceptible

to dispersions and accumulation of error. The version of FNPAG used in this research uses a

predictive lateral-logic law developed by Smith [176] to manage inclination error. Simultaneously

solving for the bank-angle magnitude and direction is prohibited by the fundamental assumption

of longitudinal motion made in the optimal-control analysis.

FNPAG is a highly-capable aerocapture guidance algorithm, however, it does have its lim-

itations. These have been mentioned throughout this section, but it is worth highlighting them

explicitly. Namely, these are the inability to consider system-level constraints such as aerothermo-
2 The wedge angle defines the angle between current and desired orbit angular-momentum vector.
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dynamic heating and loading, and the inability to explicitly solve for the bank-angle direction. Each

of these shortcomings is a product of the simplifications made during the derivation of the FNPAG

guidance law, as it is computationally intractable to solve the full, nonlinear, constrained optimal

control problem onboard a spacecraft.

5.5 Convex Optimization

An attractive characteristic of an optimization problem is its convexity [177]. Optimization

problems that are convex can be solved both reliably and efficiently – two key characteristics of

a robust guidance algorithm. While nonlinear, non-convex optimal control problems can require

substantial computational effort to solve, modern interior-point algorithms (IPMs) are capable of

solving convex-optimization problems in polynomial time [178]. Furthermore, if a problem is convex,

an algorithm is guaranteed to converge to a global optimum, provided the problem is feasible. If

the problem is infeasible, convex-optimization algorithms can return a “certificate of infeasibility”

which provides a mathematical basis for the source of the infeasibility.

Unfortunately, most aerospace optimal control problems are non-convex due to their non-

linear dynamics and complex constraints. Recently, however, there has been a growing interest

in solving non-convex optimization problems using convex-optimization-based algorithms, due to

their computational efficiency and demonstrated ability to solve a wide range of complex problems

[179, 180]. In specific cases, it is possible to perform lossless convexification of the non-convex

problem, by which the original, non-convex optimal control problem is exactly converted into an

equivalent convex optimization problem [61, 181]. Sadly, this only applies to a specific class of

optimal control problems. Because equations of motion are enforced as equality constraints in op-

timal control problem, scenarios that involve highly nonlinear dynamics, such as those in Equation

5.1, cannot be solved using lossless convexification. Instead, a more general convex-optimization

framework, known as sequential convex programming (SCP), must be used. This section presents

the mathematical principles of convex optimization and SCP, as they are the foundation for the two

guidance algorithms presented in Chapters 6 and 7.
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5.5.1 Basic Definitions

A parametric optimization problem may generally be stated as

min
x ∈ X

f0(x)

s.t. fi(x) ≤ 0 ∀i ∈ {1, . . . ,m} ,

hi(x) = 0 ∀i ∈ {1, . . . , p}

(P)

which is commonly referred to as the nonlinear programming (NLP) form. Here, the optimization

variables are x ∈ X ⊂ Rn, where X is the set in which x is contained. In order for (P) to constitute

a convex optimization problem, the following criteria must be met [177]:

(1) The set X must be a convex set.

(2) The objective function f0(x) is a convex function in x.

(3) The inequality constraints fi(x) are convex functions in x.

(4) The equality constraints hi(x) are affine functions of x.

A set C is considered convex if the line segment between any two points in C also lies in C. This

may be formally stated as

θx1 + (1− θ)x2 ∈ C ∀ x1,x2 ∈ C 0 ≤ θ ≤ 1 (5.10)

More generally, a set is convex if every point in the set can be “seen” by every other point, along

an unobstructed straight path between them, where unobstructed means lying in the set [177].

Furthermore, a function f : Rn 7→ R is convex if its domain, dom(f), is a convex set and

f (θx+ (1− θ)y) ≤ θf(x) + (1− θ) f(y) ∀ x,y ∈ dom(f) 0 ≤θ ≤ 1 . (5.11)

Geometrically, this definition implies that the line segment between the points (x, f(x)) and (y, f(y))

lies above the graph of f . Similarly, it implies that the function’s gradient (tangent line) is always

below the function. This is visually represented for a one-dimensional function in Figure 5.6.

Finally, an affine function is a function that is linear in the optimization variables such that the

equality constraints are expressed in the form hi(x) = aTi x+ bi.
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Figure 5.6: Convex function in one dimension.

5.5.2 Sequential Convex Programming

SCP takes an iterative convexify-and-solve process to march toward a solution of the origi-

nal non-convex problem [182]. SCP works by linearizing or convexifying the non-convex parts of

the problem — such as nonlinear dynamics and/or constraints — around an initial guess/reference

trajectory. Each iteration then solves this convex subproblem, typically using efficient convex op-

timization methods like interior-point algorithms, and updates the reference using the solution to

the subproblem. Because of its convex nature, the solution to the subproblem is globally optimal

but only valid within the approximations made during the convexification process (i.e. lineariza-

tion). For example, Figure 5.7 shows an example of using SCP to minimize the non-convex function

f(x) = x4 − 2x3 + 0.3x. The algorithm is initialized for two different initial conditions, and at

each iteration k, the convex approximation is formed about the global minimum of the previous

approximation. Because the convex approximation is only locally optimal, the converged minimum

is sensitive to the initial guess x0. While SCP doesn’t guarantee convergence to a global optimum of

the original problem, its computational efficiency and ability to handle complex systems, like those

in aerocapture guidance and control, make it a powerful practical tool.

SCP has seen great success for a variety of applications including, but not limited to, pow-
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Figure 5.7: Sequential convex approximations (blue) of the non-convex function f(x) = x4 − 2x3 +
0.3x (black) initialized at x0 = −1 (a) and x0 = 2.25 (b).

ered descent guidance [61, 62, 63], atmospheric entry [64, 65, 66], low-thrust trajectory design [67],

aerocapture trajectory optimization [68, 69, 70, 71], and stochastic feedback control policy design

[72, 73]. Additionally, SCP is capable of handling complex constraints, such as state-triggered con-

straints [183, 63], nonlinear equality constraints [184], and reaction control system (RCS) constraints

[185] that would be difficult (if not impossible) to enforce using alternative trajectory optimization

methods.

Generally, the convex subproblem must be recast into the form of (P) (satisfying criteria for

convexity) so that it can be interpreted and solved by an existing convex-optimization algorithm.

This can be a tricky task to accomplish by hand, as it requires significant bookkeeping of the problem

structure. Fortunately, existing convex-programming interfaces such as CVX [186] in Matlab, CVXPY

[187] in Python, and Convex.jl [188] in Julia may be used to automatically parse the optimization

problem into a solver-compatible form, allowing the user to express the optimization problem more

naturally. All of the convex-optimization implementations in this research are formulated using

Convex.jl3 . For further details on the usage of SCP for general aerospace trajectory optimization,
3 Tutorials on using Convex.jl for trajectory optimization can be found on the author’s GitHub

https://github.com/jens-rataczak/JuliaConvexOptDemos
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the reader is referred to Ref. [182].

5.6 Stochastic Optimization

SCP provides a powerful baseline framework for solving complex trajectory-optimization prob-

lems by iteratively approximating nonlinear constraints and dynamics with convex forms, yielding

a solution that is explicitly defined for the problem’s parameters and initial conditions. This means

that the optimized trajectory or control sequence is precisely determined for those specific start-

ing parameters; however, any subsequent changes — whether in the environment, vehicle state, or

mission requirements — necessitate adjustments to the original solution. In Chapter 6, the con-

trol profile is updated in response to perturbations along the trajectory using a predictor-corrector

algorithm that resolves a deterministic optimization problem at a given frequency. The iterative

nature of a predictor-corrector algorithm is what makes them robust to uncertainty. An alternative

approach to addressing uncertainty is to include it directly within the optimization problem.

Stochastic sequential convex programming (SSCP) extends the SCP approach to consider

uncertainty directly within the optimization framework. Instead of iteratively solving a deterministic

optimization problem, SSCP simultaneously optimizes a control policy that uses both feedforward

and feedback terms by solving a stochastic optimization problem. The optimized feedback control

policy allows for the nominal feedforward control profile to be updated in the loop, replacing the need

to resolve the optimization problem onboard. In contrast to the deterministic version of SCP, the

stochastic optimization process implicitly accounts for uncertainty in the system. In this research,

uncertainty exists in nearly all models used to simulate an aerocapture trajectory.

Including uncertainty directly within an optimization problem is challenging because con-

straints involving uncertain variables must be treated probabilistically. For example, consider the

scenario where an optimization variable x is constrained to be less than a certain value such that

xk ≤ b ∀ k. A deterministic solution to the optimization problem may produce a trajectory like the

black line in Figure 5.8, where the inequality constraint is active at tk. However, now let the initial

condition of x be normally distributed (a common assumption in control applications) with mean
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x̄ and covariance Px such that x0 ∼ N (x̄, Px). Propagating the control profile obtained from the

deterministic optimization problem would result in a distribution of trajectories, as shown by the

shaded region in Figure 5.8, many of which would violate the constraint xk ≤ b. So, the question

becomes: how can the distribution of x be constrained?

t

x

xk ≤ b

Constraint violation

t0 t1 tNtk−1 tk+1tk

Figure 5.8: Illustration of the effect of uncertainty on the solution to a deterministic trajectory-
optimization problem.

5.6.1 Chance Constraints

Constraints enforced on random (uncertain) variables are commonly referred to as chance

constraints. Chance constraints are stochastic analogues of deterministic inequality constraints.

Consider a random variable x with a known probability distribution. In cases where the distribution

of x is bounded, classical deterministic inequality constraints (e.g. x ≤ b) may be used such that

xmax ≤ b, where xmax is the upper bound on x. However, for variables with unbounded distributions,

such as Gaussian distributions, no such upper limit exists, as the distribution will never meet

the hard constraint. Chance constraints address this by constraining the probability of constraint

violation. A chance constraint is generically expressed as

Pr [x ∈ S] ≥ 1− δ (5.12)
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where x ∈ Rnx is a vector of uncertain variables, and S is the feasible region. The value δ is called

the “risk bound” and describes the level of confidence to which the constraint should be satisfied

(i.e. δ = 10−3 results in 99.9% constraint satisfaction). Equation 5.12 may be re-written as

Pr [x ∈ S] =
∫
x∈S

f(x)dx ≥ 1− δ (5.13)

where f is the probability density function for x. In general, inclusion of Equation 5.13 within an

optimization problem is computationally intractable. However, an equivalent, deterministic form

may be obtained if two assumptions are met: 1) the state vectors are normally distributed such that

x ∼ N (x̄, Px), and 2) the feasible regions are affine in the state vectors such that S =
{
x | aTx ≤ b

}
(i.e. a half space).

To derive the equivalent, deterministic form of a chance constraint where the state variable

is subject to multivariate Gaussian distributions and the feasible region is representable by a half

space, recall the definition of the cumulative distribution function for a standard (i.e. zero mean,

unit variance), univariate Gaussian random variable γ

Pr [γ ≤ b] = cdf(b) =

∫ b

−∞
f(γ)dγ γ ∼ N (0, 1) . (5.14)

Next, notice that y = aTx is also a univariate Gaussian random variable. It then follows that

E[y] = ȳ = E[aTx] = aTE[x] = aT x̄ (5.15)

Cov[y] = E[(y − ȳ)(y − ȳ)T ] = E[(aTx− aT x̄)(aTx− aT x̄)T ] = aTPxa . (5.16)

Therefore, y is a univariate Gaussian random variable such that y ∼ N (aT x̄,aTPxa). Next, recall

that any non-standard, univariate Gaussian random variable may be defined in terms of a standard,

univariate Gaussian random variable such that

y = aT x̄+ γ
√
aTPxa γ ∼ N (0, 1) . (5.17)

This allows Equation 5.12 to be written as

Pr [x ∈ S] = Pr
[
aTx ≤ b

]
= Pr

[
aT x̄+ γ

√
aTPxa ≤ b

]
≥ 1− δ (5.18)
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which can be simplified to

Pr

[
γ ≤ b− aT x̄√

aTPxa

]
≥ 1− δ . (5.19)

Using the cumulative distribution function, Equation 5.19 can be written as

Pr

[
γ ≤ b− aT x̄√

aTPxa

]
= cdf

(
b− aT x̄√
aTPxa

)
≥ 1− δ . (5.20)

Using the inverse cumulative distribution function, this is simplified to

aT x̄+ cdf−1(1− δ)
√
aTPxa ≤ b . (5.21)

Note that the inverse cumulative distribution function for a univariate, normally-distributed ran-

dom variable is readily available in most scientific computing languages. Therefore, under the

assumptions listed above, an equivalent form of Equation 5.13 is

Pr
[
aTx ≤ b

]
, x ∼ N (x̄, Px)⇔ aT x̄+ cdf−1(1− δ)

√
aTPxa ≤ b . (5.22)

The final obstacle with chance constraints lies in reformulating them into a structure com-

patible with an SSCP algorithm. Generally, the SSCP method determines sequences of the mean

state x̄k and the covariance Px,k. Unfortunately, the presence of the square root in Equation 5.22

renders it non-convex with respect to Px. Chapter 7 addresses this challenge in the development of

a stochastic aerocapture guidance algorithm.

5.7 Summary

This chapter outlined the core principles of aerocapture trajectories and the objectives of

aerocapture guidance. It began by presenting the equations of motion that govern the simulation of

an aerocapture spacecraft’s flight, incorporating models for gravitational and aerodynamic forces.

Following this, the notion of an aerocapture “entry corridor” was introduced, defining the range of

feasible trajectories for a specific problem configuration and offering guidance on the selection of

atmospheric-entry conditions. The chapter then provided an explanation of aerocapture guidance,

featuring an overview of the state-of-the-art FNPAG algorithm.
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The chapter then explored the mathematical foundations of convex optimization and de-

tailed the application of sequential convex programming (SCP) to trajectory optimization. This

included fundamental definitions and simple tutorials on the usage of the SCP techniques employed

throughout the remainder of this dissertation. The discussion extended the SCP framework from

deterministic to stochastic optimization problems with a motivating example that highlighted the

benefit of including uncertainty explicitly in the optimization process. Finally, the use of chance

constraints to enforce probabilistic constraints on uncertain variables was introduced, and the chal-

lenges of including chance constraints within an SCP framework were identified.



Chapter 6

Convex Predictor-Corrector Aerocapture Guidance

“The necessary number of iterations is one more than the number you have currently

done. This is true at any point in time.”

— Akin’s Third Law

6.1 Introduction

This chapter presents the convex predictor-corrector aerocapture guidance (CPAG) algorithm.

It seeks to address several of the shortcomings in the current state-of-the-art NPC aerocapture

algorithms identified in Chapter 5 by solving a convex optimization problem in the correction

phase. Adopting a more advanced optimization technique allows for more complex control profiles

to be generated. This removes the need for separate lateral logic to determine the bank-angle sign

and allows for system-level path constraints (such as heating and loading) to be considered directly

in the correction step. CPAG explicitly enforces constraints on the peak aerodynamic loading and

integrated convective heat load, while existing aerocapture guidance algorithms cannot.

The chapter begins by deriving the convex subproblem solved iteratively in CPAG’s cor-

rection phase, relying on the physical models and mathematical principles outlined in Chapter 5.

Next, CPAG’s performance is evaluated against the Fully Numerical Predictor-Corrector Aerocap-

ture Guidance (FNPAG) algorithm through a series of Monte Carlo analyses, spanning a variety

of planetary destinations and aerocapture vehicle configurations. A broad assessment of CPAG’s

robustness across multiple scenarios provides deeper insight into its capabilities and highlights con-

ditions that may push its limits. Results are presented for aerocapture at Neptune, Mars, and Earth,



163

though the algorithm’s framework is adaptable to any feasible destination. The chapter concludes

with an analysis of an energy-based apoapsis targeting approach, which accounts for non-Keplerian

motion between atmospheric exit and apoapsis.

6.2 Background

It is the role of the onboard guidance system to determine the required aerodynamic lift and/or

drag force vector orientation during aerocapture, so that the spacecraft can exit the atmosphere and

enter its target orbit without consuming a large amount of propellant to perform orbital-correction

maneuvers. Current state-of-the-art guidance algorithms employ a fully-numerical, predictor cor-

rector (NPC) approach [52] that has several advantages over heritage guidance systems. These

include: the ability to adapt to large trajectory dispersions, no reliance on a pre-planned reference

trajectory, and no separate reference trajectory tracking laws. The successful use of NPC guidance,

highlighting these benefits, was recently demonstrated during the Artemis 1 skip entry [53]. De-

spite never being flown, predictor-corrector aerocapture guidance algorithm development has seen

substantial interest over the years. Skip entry and aerocapture are relatively similar, and Orion’s

skip-entry guidance algorithm was also extended to handle aerocapture scenarios [189]. Later, the

fully numerical predictor corrector aerocapture guidance (FNPAG) algorithm [55] was introduced,

in which a bang-bang bank angle profile was proposed in order to minimize the ∆V required to

correct the final orbit. FNPAG has been used for numerous aerocapture studies [56, 57, 58, 59, 174]

and is considered to be the state of the art. Further details on FNPAG are found in Chapter 5.

The hypersonic environments encountered during aerocapture produce severe, often highly

uncertain, aerodynamic heating. Because the thermal protection system (TPS) must be designed

with these uncertainties in mind, the consideration of aerothermodynamic constraints is integral

to mission success. If the guidance system can directly consider aerothermodynamic constraints

in its decision-making process, a more mass optimal TPS could be designed. Such a capability

would be particularly beneficial for highly mass-constrained missions like Ice Giant aerocapture.

The benefit of NPC guidance for Ice Giant aerocapture has been demonstrated in recent work
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[190, 58, 169], but none of the analyses directly enforce path constrains in the prediction-correction

process. An entry vehicle’s aerothermodynamic environment is tightly coupled to its trajectory,

so the inclusion of aerodynamic loading and heating constraints would be a key characteristic of

an advanced aerocapture guidance algorithm. However, the optimal aerocapture guidance problem

is highly non-convex, making it difficult to solve even without constraints. Because of this, the

FNPAG guidance law is derived using only the longitudinal equations of motion and excludes path

constraints like aerodynamic loading and heating. While these simplifications make the problem

easier to analyze, they prohibit any explicit consideration of out-of-plane targets (e.g. inclination,

RAAN) and aerothermodynamic constraints. A method for augmenting the FNPAG control pro-

file to compensate for path constraints is presented in Ref. 52, however, it effectively negates the

optimality statement of the control profile originally derived in Ref. 55. The assumptions made by

FNPAG do have some benefit, as they produce a one-dimensional, parametric control profile that

is assumed by the guidance system. This reduces the computational complexity of the guidance

correction phase, as only a single parameter needs to be optimized. Specifically, FNPAG solves

a single-variable root-finding problem to obtain either a bank-angle switching time or a constant

bank-angle value [55]. While this simplifies the problem to be solved onboard, it makes incorporat-

ing features such as finite-rate bank-angle maneuvers and reversals more challenging. In the case of

bank-angle modulation, a separate lateral logic algorithm is required to determine the sign of the

bank angle (either positive or negative), as the longitudinal channel of the guidance system only

computes the bank-angle magnitude [176]. For aerocapture, the lateral logic is used to help target

an orbit with a specific inclination (or wedge angle if a specific right ascension of the ascending node

is known). If the bank-angle sign has to be reversed, the vehicle must fly an open loop control profile

until the reversal is completed which makes it more susceptible to dispersions and accumulation of

error. As such, it is desirable for an aerocapture guidance system to be capable of determining the

bank-angle magnitude and direction simultaneously.

Most aerospace optimal control problems are non-convex due to their nonlinear dynamics

and complex constraints. As highlighted in Chapter 5, there has been a growing interest in the
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use of convex-optimization [177] based algorithms due to their computational efficiency and ability

to solve a wide range of problems [179, 180]. Specifically, sequential convex programming (SCP)

takes an iterative convexify-and-solve process to march toward a solution of the original non-convex

problem [182]. For real-time, onboard guidance, SCP presents an attractive option, as modern

interior point methods (IPM) are capable of solving the convex problem in polynomial time [178].

Reynolds et al. [191] have shown that problem-specific structure can be exploited enabling real-

time solution capabilities, and the Masten Space Systems Xombie demonstrated the feasibility of

SCP on spaceflight hardware [60]. Such demonstrations motivate the use of SCP within other

real-time guidance applications such as entry and aerocapture. Ridderhof et al. [74] presented

a chance-constrained aerocapture guidance algorithm that optimized a series of feedback control

gains using SCP. They demonstrated the effective use of a feedback control policy for a Mars

aerocapture scenario under atmospheric density uncertainty, but they did not consider out-of-plane

motion or system-level constraints like aerodynamic heating and loading. Recent work by Tracy et

al. [192, 193] has investigated the use of SCP within the correction step of an NPC entry-guidance

algorithm, eliminating the need for a separate lateral guidance law common to existing NPC entry-

guidance algorithms. The work presented in [192, 193] did consider system-level constraints in the

mathematical formulation of the NPC algorithm, although explicit satisfaction of the constraints

was not demonstrated. While entry and aerocapture are different, they both require the accurate

guidance of a hypersonic entry vehicle to a terminal target. Therefore, it is of interest to use SCP

within an NPC aerocapture guidance algorithm.

6.3 Convex-Programming Formulation

Aerocapture trajectories involve highly nonlinear dynamics and both terminal and path con-

straints. The nonlinear, non-convex optimization aerocapture trajectory optimization problem in-

vestigated in this work is expressed as the following free time-of-flight problem
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min
x∈X ,u∈U ,tf≥0

J(x(t), u(t)) s.t. (6.1a)

ẋ(t) = f(x(t), u(t)) (6.1b)

ra(x(tf ), tf ) = ra,target (6.1c)

i(x(tf ), tf ) = itarget (6.1d)

a(t) ≤ amax (6.1e)

Q(tf ) ≤ Qmax (6.1f)

umin ≤ u(t) ≤ umax (6.1g)

x(t0) = x0 . (6.1h)

Here, x = [r, θ, ϕ, v, γ, ψ, σ] is the state, the control u is the bank-angle rate, f(x(t), u(t))

models the nonlinear dynamics (equations of motion) of the vehicle given in Eq. 5.1, ra is the

apoapsis radius, i is the orbital inclination, Q(tf ) =
∫ tf
t0
q̇(τ)dτ is the convective heat load obtained

by integrating the convective heat flux q̇(t), and a = 1
g0

√
L2 +D2 is the aerodynamic load factor.

Radiative heating is not explicitly considered here because its severity is highly dependent on the

entry conditions and atmospheric composition of the destination. However, the optimization frame-

work described herein is easily amenable to its inclusion if radiative heating is expected to be high

and an acceptably accurate radiative-heating model is available1 . The final inclination is expressed

as a function of the final state as

cos if = cosϕf cosψf . (6.2)

The subscript (·)f is used to denote a quantity at the final time t = tf , which is taken to be the

time at which the vehicle exits the planet’s atmosphere. Instead of directly computing the final

inclination using an inverse-cosine operation, this work simply uses Eq. 6.2 to enforce the terminal

inclination constraint, as the inclination is defined over the range i ∈ [0, π]

cos if − cos itarget = 0 . (6.3)
1 At the time of this dissertation, a radiative-heating correlation does not exist for Ice Giant destinations.
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In many aerocapture studies [55, 169, 174, 194], the terminal apoapsis target is expressed by

directly computing the apoapsis radius as a function of the final state using Equation 5.8. Instead,

this work targets a specific apoapsis radius using the energy-like expression

ε(xf ) =
µ

rf

[
1− J2

2

(
Re
rf

)2 (
3 sin2 ϕf − 1

)]
−
v2f
2

− µ

ra,target

[
1− J2

2

(
Re

ra,target

)2 (
3 sin2 ϕtarget − 1

)]
+
r2fv

2
f cos

2 γf

2r2a,target
. (6.4)

The form of Eq. 6.4 is derived by equating the specific energy at the atmospheric exit state to the

specific energy at the target apoapsis radius. The velocity at the target apoapsis radius is derived by

assuming that the specific angular momentum h = rv cos γ is conserved from the atmospheric exit

state to the target apoapsis radius. The standard Keplerian gravitational potential µ/r is expanded

to account for perturbations due to J2, which cannot be done with the typical two-body expression

in Eq. 5.8. The target latitude ϕtarget is an additional constant related to the target inclination and

argument of periapsis. As will be shown in Section 6.5, the apoapsis targeting performance is found

to be relatively insensitive to the value of ϕtarget, so precise selection of this value is not necessary.

This work assumes a constant value of ϕtarget = 0 for all simulations.

The apoapsis target is enforced as a nonlinear equality constraint, which cannot be included

directly in a convex optimization setting. A common approach for converting non-convex constraints

into an approximate convex form is through local linearization using a first-order Taylor series

expansion. This process requires the computation of the constraint’s first order sensitivities (i.e.

Jacobian) about a reference point. The form of Eq. 5.8 presents a challenge, as the Jacobian of

Eq. 5.8 with respect to the final state xf = [rf , θf , ϕf , vf , γf , ψf , σf ] diverges to infinity when the

exit velocity equals the local escape velocity. The specific components of the Jacobian that contain

the singularity are those corresponding to the final velocity vf and flight-path angle γf . However,

as shown in Fig. 6.1, the magnitude of the Jacobian of Eq. 6.4 is well-defined for all exit-velocity

values, whereas, the Jacobian computed using Eq. 5.8 diverges when vf = vesc.

The increasingly large Jacobian magnitude shown in Fig. 6.1a produces difficulties for nu-

merical optimizers. For example, if an optimizer were given an initial reference trajectory that
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Figure 6.1: Jacobian of apoapsis targeting constraint with respect to the final state computed using
Eq. 5.8 (a) and Eq. 6.4 (b).

remained hyperbolic (i.e. vf > vesc), then it would be unlikely to converge on a control profile that

would produce a captured trajectory that meets the apoapsis targeting constraint. Physically, this

issue is consistent with two-body orbital mechanics in which the apoapsis radius is not defined for

hyperbolic orbits. Using an energy-based expression for the terminal apoapsis constraint alleviates

this issue, as energy and angular momentum are well-defined for any orbit. For aerocapture, it is

assumed that rf = r0, which is known, so the only unknowns in Equations 5.8 and 6.4 are vf and γf .

This is possible because t0 and tf correspond to the atmospheric entry and exit times, respectively.

While the energy-based expression does not directly solve for the apoapsis radius as a function of

the exit state, the values of vf and γf that correspond to the root of Eq. 6.4 are identical to those

obtained when setting Eq. 5.8 equal to ra,target if J2 = 0. When J2 ̸= 0, the values of vf and γf

determined using Eq. 6.4 will differ in order to account for the effects of J2 on the exo-atmospheric

trajectory from atmospheric exit to apoapsis. This behavior is explored in more depth in the Effects

of Planetary Oblateness Section (Sec. 6.5).

In many cases, the ∆V requirements of post-aerocapture orbits produced using an apoapsis

targeting approach and a direct ∆V minimization approach are equivalent [54]. This is particularly
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the case for highly elliptical target orbits because the periapsis raise maneuver becomes increasingly

small as the target apoapsis radius increases. However, in cases where the periapsis raise maneuver

dominates the in-plane ∆V requirements, simply targeting an apoapsis radius will not produce ∆V

optimal results. A typical expression for computing the required in-plane ∆V is

∆V1 +∆V2 =
√

2µ

(∣∣∣∣∣
√

1

ra
− 1

ra + r∗p
−
√

1

ra
− 1

2a

∣∣∣∣∣ +
∣∣∣∣∣
√

1

r∗p
− 1

r∗a + r∗p
−
√

1

r∗p
− 1

ra + r∗p

∣∣∣∣∣
)

.

(6.5)

Here, ra and rp are the apoapsis radius and periapsis radius, respectively, determined from the

final state, and r∗a and r∗p are the corresponding target values. The version of FNPAG in [55] also

presents an option to directly minimize Eq. 6.5, however, this work targets an orbit using an apoapsis

radius constraint. Equation 6.5 presents two challenges for the proposed SCP framework. First,

its Jacobian presents difficulties for numerical optimizers in the same way Eq. 5.8 does. Deriving

a singularity-free expression for ∆V minimization is left as an open area of research. Second,

it assumes that the vehicle exits the atmosphere on a captured, elliptical orbit and is therefore

undefined if the predicted trajectory remains hyperbolic. Due to dispersions along the trajectory, it

is possible that the predicted trajectory remains hyperbolic, especially if the target orbit is highly

elliptical. While evaluating Eq. 6.5 at exit conditions that correspond to a hyperbolic orbit will

return a non-zero value, that value has no physical meaning. Therefore, this work introduces a

term that encourages the maximization of the resulting periapsis radius in order to minimize the

periapsis raise ∆V

1

rp(xf )
=

a
1−

√
1−

v2fr
2
f cos

2 γf

µa

−1

. (6.6)

The maximization of the resulting periapsis radius will reduce the in-plane ∆V , as the optimization

problem constrains the apoapsis radius to match the target. Note that Eq. 6.6 is well-defined for any

orbit. Minimizing the periapsis-raise ∆V becomes increasingly important for low target apoapsis

radii (e.g. circular orbit), as the periapsis-raise ∆V is typically smaller than the apoapsis-correction

∆V for highly-elliptical target orbits. For this reason, Eq. 6.6 is omitted from the cost function for

highly-elliptical target orbits.
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The cost function in this work is defined as

J(x, u, t) = α1
1

rp(x(tf ))
+ α2

∫ tf

t0

∥u(t)∥22 dt = α1
1

rp(x(tf ))
+ α2

∫ tf

t0

∥σ̇(t)∥22 dt . (6.7)

Here, the αi are weighting terms that can be used to scale the cost-function terms accordingly.

Additional discussion on cost-function scaling is presented in Section 6.4. The L-2 norm squared of

the bank-angle rate is chosen in order to encourage smoothly varying bank-angle profiles. As such,

the full nonlinear, non-convex optimization problem to be solved in this work may be stated as

Problem 1. (Nonlinear optimal control problem): Determine the optimal u(t), x(t), and tf that

minimize the cost (6.7) subject to equality constraints on the dynamics (6.1b), apoapsis radius (6.4),

inclination (6.3), and initial condition (6.1h), and inequality constraints on the load factor (6.1e),

heat load (6.1f), and control magnitude (6.1g).

While obtaining a solution to Problem 1 is possible, it cannot be computed rapidly due to

the lack of convexity introduced by the nonlinear dynamics and complex path/terminal constraints.

Therefore, CPAG replaces Problem 1 with an approximate convex model, called a convex subproblem,

that is solved sequentially in the prediction-correction process. In general, the sequential convex

programming procedure may be summarized as follows. First, a user-supplied initial guess to the

trajectory is input. This initial guess is directly supplied by the prediction phase of the algorithm in

which the current control plan is integrated forward in time until the current guess of the final time is

reached. Any non-convexities in Problem 1 are removed by a local linearization about the reference

trajectory [182], while the convex elements are retained. Next, the continuous-time, free final time

subproblem is converted into a finite-dimensional, fixed final time convex optimization problem by

discretizing the time domain and introducing a time dilation parameter. The convex subproblem

can then be solved using a convex optimization algorithm, and the reference control is updated

using the solution to the subproblem. The optimized control then becomes the reference for the

next prediction, and this process is repeated until convergence. The sequential convex optimization

framework described in this work is generally based on the penalized trust region (PTR) [183]

algorithm, but it is tailored to be used within a predictor-corrector guidance algorithm framework
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instead of a pure trajectory-optimization framework. In the PTR algorithm, the trust-region radii

are added to the cost function which allows the optimizer to expand/contract the trust regions

accordingly and avoids otherwise complex trust-region logic. Figure 6.2 illustrates the general SCP

process, and each of these steps is discussed in further detail for the remainder of this section.

Initial
Guess

Reference
Trajectory

Linearize
(6.3.2)

Discretize
(6.3.3)

Solve
(6.3.7)

Stopping
Criteria

Converged
Solution

Update Step

Figure 6.2: Flowchart of the sequential convex programming (SCP) algorithm.

6.3.1 Problem Reformulation

Before converting the nonlinear optimal control problem in Problem 1 into an approximate

convex subproblem, a slight reformulation is proposed to reduce the risk of constraint violations for

the heat load and load factor constraints. Specifically, the state x is augmented with the heat load

and square of the load factor

x̃(t) = [x(t), ã(t), Q(t)] (6.8)

where x̃ is referred to as the “augmented” state, and ã = a2. Because a ≥ 0, constraining a2 is

equivalent to constraining a, so the square of the load factor is chosen due to its simpler Jacobian.

The augmented state dynamics may then be written as

˙̃x(t) =


ẋ(t)

˙̃a(t)

Q̇(t)

 =


f(x(t), u(t))

∂ã(x(t))

∂t

q̇(x(t))

 = F (x(t), u(t)) (6.9)

where q̇(x(t)) is the instantaneous heat flux, and the partial derivative
∂ã

∂t
may be obtained using

Eqs. 5.1, 5.3, and 5.4. The form of Eqs. 6.8 and 6.9 is chosen for two reasons. First, computing the

heat load requires integrating the heat flux along the entire trajectory. While convex approximations

of integral quantities exist (e.g. trapezoidal integration [182]), the linearization and discretization
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procedure discussed in the following sections allows for a more exact enforcement of the heat load

constraint in the convex subproblem. Because the reference trajectory, about which the convex

subproblem is formed, is produced by numerically integrating the nonlinear equations of motion, a

more accurate description of how the heat load changes along the corrected trajectory is obtained.

Finally, expressing the path constraint variables as an additional state variable allows the proposed

framework to be amenable to continuous time constraint satisfaction through the selection of an

appropriate penalty function [195]. Following this reformulation, Eq. 6.1 may be equivalently stated

as

min
x̃∈X ,u∈U

J(x̃(t), u(t)) s.t. (6.10a)

˙̃x(t) = F (x̃(t), u(t)) (6.10b)

g(x̃(t0), x̃(tf )) = 0 (6.10c)

h(x̃(t), u(t)) ≤ 0 (6.10d)

where g ∈ R3 enforces the apoapsis (Eq. 6.4), inclination (Eq. 6.2), and initial condition equality

constraints (Eq. 6.1h), and h ∈ R3 enforces the load factor (Eq. 6.1e), heat load (Eq. 6.1f), and

control inequality constraints (Eq. 6.1g). For a more concise presentation, the tilde notation denoting

the augmented state is dropped for the remainder of the chapter.

6.3.2 Linearization

In a predictor-corrector algorithm, the time of flight is not known a priori, so the optimizer

needs to solve for it. To include the time of flight tf in the optimization problem, the time domain is

scaled to be in the non-dimensional time interval τ ∈ [0, 1], where τ is defined such that τ = t/tf =

t/p. Using the chain rule, the augmented-state dynamics with respect to the non-dimensional time

become
dF

dτ
=

◦
x(τ) =

dF

dt

dt

dτ
= tfF (x(t), u(t)) = pF (x(t), u(t)) (6.11)

where
◦
(·) denotes the derivative with respect to the non-dimensional time. Equation 6.11 is often

referred to as time dilation and is used to convert a free final time problem into an equivalent fixed
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final time problem [183].

The next step in converting Eq. 6.10 into a convex form is to linearize the nonlinear dynamics

using a first-order Taylor-series expansion

◦
x(τ) ≈ A(τ)x(τ) +B(τ)u(τ) + Σ(τ)p+ z(τ) (6.12)

where x ∈ Rn+2 is the augmented state vector, u ∈ R is the bank-angle rate, p ∈ Rp represents

any problem-dependent parameters, A is the state zero-input dynamics matrix, B is the control

matrix, Σ is the parameter matrix, and z is a drift term that is produced by the linearization of the

nonlinear equations of motion. In this work, the parameter p is taken to be the final time of flight

tf ∈ R++. Using Eq. 6.11, the matrices in Eq. 6.12 are computed using a first-order Taylor series

expansion about a reference trajectory (x̄(τ), ū(τ)) and time of flight p̄

A(τ) = p̄
∂F

∂x

∣∣∣∣
x̄,ū,p̄

(6.13)

B(τ) = p̄
∂F

∂u

∣∣∣∣
x̄,ū,p̄

(6.14)

Σ(τ) =
∂F

∂p

∣∣∣∣
x̄,ū,p̄

= F (x̄(τ), ū(τ)) (6.15)

z(τ) = −A(τ)x̄(τ)−B(τ)ū(τ) . (6.16)

Next, the non-convex terminal equality constraints are linearized about the reference. Using Eq. 6.2,

the terminal inclination constraint is approximated as

cos (i(xf )) ≈
∂ cos(i)

∂x

∣∣∣∣
ref

· (xf − x̄f ) + cos (i(x̄f )) = cos (itarget) (6.17)

where the subscript (·)ref is used to denote the quantity being evaluated at the reference (x̄, ū, p̄).

Similarly, using Eq. 6.4, the terminal apoapsis constraint is approximated as

ε(xf ) ≈
∂ε

∂x

∣∣∣∣
ref

· (xf − x̄f ) + ε(x̄f ) = 0 . (6.18)

Note that these constraints depend only on the state x, so no additional partial derivatives with

respect to the control u or problem parameters p are required. Furthermore, because the heat load

and load factor are included in the augmented state definition, the Jacobian of each is automatically
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captured in Eq. 6.12. Further details on each of the Jacobians described in this section are found

in Appendix B.1.

6.3.3 Discretization

To convert the continuous-time, infinite-dimensional optimal control problem into an equiv-

alent parameter optimization problem that can be solved by convex optimization algorithms, the

continuous expressions from the previous section must be converted into discrete-time equivalents.

To do so, a set of N temporal nodes is chosen such that

0 = τ1 < τ2 < . . . < τN−1 < τN = 1 . (6.19)

The spacing of the temporal nodes τk is up to the user, and this work elects to distribute them

uniformly across the interval [0, 1]. Recall that by introducing the time dilation parameter p = tf ,

the free-time-of-flight problem can always be discretized over the domain τ ∈ [0, 1]. While the

values of τk remain fixed, an adaptive mesh procedure could be implemented using a technique

known as “generalized time dilation” [195] which expresses the time-dilation factor as a continuous-

time control input instead of a fixed parameter. At each node, let Φ(τk+1, τk) : R 7→ R(n+2)×(n+2)

denote the state transition matrix (STM) for the system in Eq. 6.12. From linear systems theory,

the STM evolves according to

◦
Φ(τ, τ0) = A(τ)Φ(τ, τ0), Φ(τ0, τ0) = I(n+2)×(n+2) . (6.20)

The control is discretized using a first-order hold [196, 197, 183], which assumes a linear variation

between temporal nodes k and k+1

u(τ) = σ−k (τ)u(τk) + σ+k (τ)u(τk+1) ∀ τ ∈ [τk, τk+1) (6.21)

where σ−k (τ) and σ+k (τ) are defined as

σ−k (τ) =
τk+1 − τ
τk+1 − τk

σ+k (τ) =
τ − τk

τk+1 − τk
. (6.22)
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Utilizing the STM, the continuous-time, linear dynamics of the augmented state can now be trans-

formed into an equivalent discrete-time, linear form such that

xk+1 = Akxk +B−
k uk +B+

k uk+1 +Σkp+ zk k = 1, . . . , N − 1 (6.23)

where

Ak = Φ(τk+1, τk) (6.24a)

B−
k = Ak

∫ τk+1

τk

Φ−1(ξ, τk)σ
−
k (ξ)B(ξ)dξ (6.24b)

B+
k = Ak

∫ τk+1

τk

Φ−1(ξ, τk)σ
+
k (ξ)B(ξ)dξ (6.24c)

Σk = Ak

∫ τk+1

τk

Φ−1(ξ, τk)Σ(ξ)dξ (6.24d)

zk = Ak

∫ τk+1

τk

Φ−1(ξ, τk)z(ξ)dξ . (6.24e)

Here ξ is a dummy variable introduced for the integration of Eq. 6.24 over the interval τ ∈ [τk, τk+1].

For more details on the implementation aspects of this discretization procedure, the reader is referred

to Appendix B.2.

The process of linearization and discretization may lead to a solution that is not dynamically

feasible, meaning that the solution does not obey the full nonlinear dynamics. This is typically

mitigated by introducing unconstrained slack variables called “virtual control” to the discrete, linear

dynamics to relax the requirement for the solution to be dynamically feasible [198]. These slack

variables are then heavily penalized in the subproblem cost function to encourage the converged

solution to be dynamically feasible. This approach is particularly useful for problems in which the

initial reference trajectory is not dynamically feasible [182].

Instead of relaxing the dynamics constraints using virtual control, this work takes an approach

made possible by the nature of predictor-corrector guidance algorithms. The prediction phase of

the guidance algorithm produces a dynamically feasible trajectory x̄(t) that acts as the reference

about which the problem is linearized. Note that the “reference” trajectory described here is not

the same as a pre-planned reference trajectory used in some guidance algorithms, but is rather
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a reference for the local linearization procedure. Instead of solving for a sequence of full state

xk and control uk vectors and final time tf at each iteration, the proposed algorithm solves for

corrections δxk = xk − x̄k, δuk = uk − ūk, and δp = p− p̄ about the reference values. Because the

reference is dynamically feasible, a trivial solution of all zeros for δxk, δuk, and δp always exists,

which eliminates concerns of the optimizer not converging on a dynamically feasible trajectory [192].

This is a crucial characteristic of a robust on-board guidance algorithm. Therefore, the constraints

describing the dynamics in Eq. 6.23 are reformulated as

δxk+1 = Akδxk +B−
k δuk +B+

k δuk+1 +Σkδp ∀ k = 1, . . . , N − 1 . (6.25)

Next, the apoapsis and inclination targeting constraints are approximated as

R · δxN + cos (i(x̄N ))− cos (itarget) = 0 (6.26)

H · δxN + ε(x̄N ) = 0 (6.27)

where R =
∂ cos(i)

∂x

∣∣∣∣
k=N

, and H =
∂ε

∂x

∣∣∣∣
k=N

. Similarly, the periapsis minimization term in Eq. 6.6

is approximated via
1

rp(xf )
≈ P · δxN +

1

rp(x̄N )
(6.28)

where P =
∂(1/rp)

∂x

∣∣∣∣
k=N

. Because the load factor and heat load are included in the augmented

state, the constraints on the load factor and heat load are expressed simply as

En+1 · (x̄k + δxk) ≤ amax ∀ k = 1, . . . , N (6.29)

En+2 · (x̄N + δxN ) ≤ Qmax (6.30)

where Ei ∈ Rn+2 is a vector to index the i-th entry in the state vector. While the use of a dynam-

ically feasible reference trajectory alleviates concerns of dynamic infeasibility in each subproblem,

it does not guarantee that the load factor and heat load path constraints are satisfied. Therefore,

non-negative slack variables are introduced such that

En+1 · (x̄k + δxk)− amax ≤ νa ∀ k = 1, . . . , N (6.31)
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En+2 · (x̄N + δxN )−Qmax ≤ νQ (6.32)

and νa and νQ are appended to the cost function. Finally, the initial condition and bank-angle-rate-

magnitude constraints may be expressed as

∥ūk + δuk∥2 ≤ umax ∀ k = 1, . . . , N (6.33)

δx1 = 0 . (6.34)

6.3.4 Improved Balancing of In-Plane and Out-of-Plane Accuracy

The current treatment of the optimal control problem only penalizes deviations in the apoapsis

radius and inclination at the final node tk = tf . This is sufficient for the apoapsis-targeting problem,

however, it presents a challenge if high-accuracy final apoapsis and final inclination are desired. In

early implementations of CPAG, achieving a balance between in-plane and out-of-plane accuracy

proved challenging, often requiring a trade-off where in-plane accuracy was compromised to ensure

sufficiently precise out-of-plane metrics [71]. When only penalizing the final inclination error, CPAG

produces bank-angle profiles that contain a single switch in the bank-angle sign from positive to

negative. This, in turn, produces an inclination profile like the black line in Figure 6.3 that initially

deviates from the desired value and then asymptotically approaches the target at the end of the

trajectory. While optimal from a control-effort perspective, it provides no margin for dispersions

along the trajectory. Physically, the need for balancing the two performance metrics is a product

of the coupling of in-plane and out-of-plane motion inherent to bank-angle modulation.

A more robust formulation is to penalize not just the final inclination error, but also the

inclination error at intermediate times tk < tf . While requiring more control effort, it produces

a lower average inclination error along the entire trajectory, which improves robustness. To meet

the more stringent intermediate inclination-error requirements, the bank-angle profiles produced

under this formulation contain multiple switching events, and the resultant inclination profiles tend

to look more like the gray line in Figure 6.3. Additional switching events are easily handled by

CPAG because it solves for the control magnified and direction simultaneously, so the switching is
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explicitly accounted for in both the prediction and correction phases.

t

i

t1 t2 tN

iN

ik

ik−1

ik+1

Figure 6.3: Comparison of inclination-targeting formulations.

The numerical implementation of the intermediate inclination error penalization is achieved

by constraining the final N −Ni − 1 points in the subproblem

Rk · δxk + cos (i(x̄k))− cos (itarget) ≤ ν∆i,k ∀k = Ni, . . . , N − 1 . (6.35)

Note that this constraint is only applied until the N − 1 node because the terminal constraint in

Equation 6.26 is applied at the final node. From numerical experimentation, a value of Ni = 0.8N

is found to give good results, as constraining every node proved to be too restrictive. The cost

function is then augmented with the slack variables ν∆,i to encourage small inclination errors at

each constrained node

J = J0 + λ ∥ν∆i∥2 (6.36)

where λ ∈ R+ is a scalar weight and J0 is the original cost. As the value of λ increases, the inclination

errors at intermediate time steps are penalized more, and more bank-angle reversals are produced.

Figure 6.4 shows an example comparing the inclination profiles produced with and without the

intermediate inclination-error penalty. When minimizing the inclination error only at the final time

step, large errors are observed along the trajectory for t = 200-350 seconds. In contrast, the use of

Equation 6.35 keeps the inclination error within 0.5 degrees for the entire trajectory, which provides
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CPAG with more flexibility to adjust the entire inclination profile to meet the terminal inclination

constraint. The tighter inclination-errors require produce greater control costs, often times resulting

in control saturation. Therefore, when using Eq. 6.35, the control magnitude is limited to 0.5umax

for the first call to CPAG, which ensures sufficient control-authority margin is maintained. After

the first call, this constraint is removed to allow CPAG to use more control when needed.
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(b) With intermediate penalty.

Figure 6.4: Comparison of inclination profiles produced without (a) and with (b) penalties on
intermediate inclination errors.

This work assumes the target inclination is the inclination at atmospheric entry. In this

situation, a bank-angle profile that is full lift-up or full lift-down along the entire trajectory would

produce no intermediate inclination error. For this reason, when the value of λ is large enough to

produce multiple bank reversals, CPAG tends to fly the end of the trajectory full lift-up. In practice,

this saturates the control and leaves no margin in the longitudinal channel2 . In an aerocapture

guidance algorithm, a more robust bank-angle profile would terminate somewhere near the midpoint

of lift-up and lift-down [55]. A naive approach of encouraging this behavior would be to constrain

the final N − Nbank nodes to be equal to 90 degrees. This is suboptimal because it may be more

efficient to have the final bank angle be -90 degrees. Instead, the optimizer should be able to decide
2 This is a known pitfall of bank-angle modulation.
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which direction the final N −Nbank bank-angle values should be

σk ∈ {−90, 90} k = N −Nbank, . . . , N . (6.37)

Such a problem typically requires either a mixed-integer optimization algorithm [199], or a workaround

such as homotopic paths combined with smooth approximations as done in [200]. To avoid both of

these additional complexities, the constraint in Eq. 6.37 may be rewritten treating σk as a continuous

variable subject to the following nonlinear equality constraint [184]

(σk − 90) (σk + 90) = 0 σk ∈ R . (6.38)

Unfortunately, this is not affine in σk and cannot be explicitly forced as an equality constraint

in CPAG’s convex subproblem. However, it is convex when relaxed into epigraphic form [201]

and can be solved using the augmented convex-concave decomposition (ACCD) [184]. The ACCD

decomposes Eq. 6.38 into the following four inequality constraints

−ε1 ≤ 0 (6.39a)

−ε2 ≤ 0 (6.39b)

σ2k − (a+ b)σk + ab− ε1 ≤ 0 (6.39c)

(a+ b− 2σ̄k)σk + σ̄2k − ab− ε2 ≤ 0 (6.39d)

where σ̄k is the bank angle along the reference trajectory x̄k, a = 90 degrees, and b = −90 degrees.

The slack variables ε1 and ε2 are appended to the cost function to encourage constraint satisfaction

at convergence. Equation 6.39 is only included in the subproblem during the first call to CPAG, as

constraining the final bank angle later in the trajectory results in less robust apoapsis targeting.

Figure 6.5 compares the bank-angle profiles produced by CPAG with and without Eq. 6.39

for values of λ = 103 and Nbank = 25. Without the ACCD, CPAG flies the final portion of its

trajectory nearly full lift-up, which leaves no margin for apoapsis undershoot cases. As shown in

Figure 6.5b, the ACCD is able to alleviate this concern in a robust manner, as CPAG is free to

choose a final bank-angle of ±90 degrees.
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Figure 6.5: Comparison of bank-angle profiles produced without (a) and with (b) ACCD decision-
making on the final bank-angle value.

6.3.5 Scaling of the Optimization Variables

In trajectory optimization problems, the magnitude of the optimization variables can vary

significantly. For example, in Eq. 5.1, the radius r ∼ O(106), whereas, the bank angle rate σ̇ ∼

O(100). This large discrepancy in magnitude can lead to significant buildup of numerical error from

iteration to iteration of the optimization process, which is undesirable for an onboard guidance

algorithm. One of two approaches may be taken in the scaling of the optimal control problem. The

first scales the continuous-time equations of motion and constraints as done in [202, 203], while

the second scales the discretized, parameter-optimization problem [204, 191]. This work adopts the

latter technique and chooses to scale the discretized problem, as it allows for more precise scaling

within the SCP framework. To this end, the following affine transformation is introduced

δxk = Sxδx̂k + cx (6.40a)

δuk = Suδûk + cu (6.40b)

δp = Spδp̂+ cp (6.40c)

where Sx, Su, Sp are diagonal, square matrices, cx, cu, cp are vectors of commensurate size that

center the variables, and the hat notation (̂·) denotes the scaled variable. The specific form of the
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i-th diagonal entry of S and i-th entry of c for some quantity a is

Sa,ii =
ai,upper − ai,lower

2
(6.41a)

ca,i =
ai,upper + ai,lower

2
. (6.41b)

Here ai,upper and ai,upper are upper and lower bounds on the i-th component of quantity a that

will produce the scaled variables to lie in the range âi ∈ [−1, 1]. The form of Eq. 6.41 is a general

approach for scaling all the optimization variables to be of similar order of magnitude. However,

because the optimization variables in this work are corrections about the reference values, the lower

and upper values of each optimization variable are taken to be equal and opposite in magnitude.

This particular choice yields ca = 0 for the state, control, and parameter scaling. The scaling values

used in this work are summarized in Table 6.1.

Table 6.1: Values used to scale optimization variables in CPAG.

Variable δr δθ δϕ δv δγ δψ δσ δQ δu δtf

Sa,ii 1 km 0.2 deg. 0.2 deg. 50 m/s 0.2 deg. 0.2 deg. 15 deg. 0.5 kJ/cm2 0.1 deg/s 5 s

6.3.6 Complete Convex Subproblem

Following the previous sections, Problem 1 is successfully converted into an approximate, first-

order, discrete-time problem that can be solved using a variety of convex-optimization algorithm

tools. The first-order approximation is only valid in a neighborhood around the reference solution,

so the solution must be kept close enough to the reference trajectory. This is accomplished by using

the following trust region constraint

∥δxk∥22 + ∥δuk∥22 ≤ ηk ∀ k = 1, . . . , N (6.42a)

∥δp∥22 ≤ ηp (6.42b)



183

where ηk ∈ R+, and ηp ∈ R+ are the trust region radii. To aid in convergence, the trust region radii

are added as solution variables, and the cost function is augmented with

Jtr = wT
trη + wtr,pηp (6.43)

where wtr ∈ RN++ and wtr,p ∈ R++ are trust region weights. The use of a PTR lets the trust region

radii be determined by the optimizer instead of a separate trust-region adaptation law. Finally,

the hard constraints on the apoapsis radius (Eq. 6.27) and final inclination (Eq. 6.26) may produce

feasibility issues. Therefore, for a more numerically robust implementation in a predictor-corrector

guidance algorithm, the constraints are expressed using an exact penalty term in the cost function.

With that, the complete cost function may be stated as

J =

N∑
k=1

α1(ūk + δuk)
2 + α2 ∥R · δxN + cos (i(x̄N ))− cos (itarget)∥+

α3 ∥H · δxN + ε(x̄N )∥ + α4

∥∥∥∥P · δxN +
1

rp(x̄N )

∥∥∥∥+ α5 ∥ν∥1 + Jtr + λ ∥ν∆i∥2 (6.44)

where ν = [νa, νQ]
T , the αi ∈ R+ are constants used to weight each term in the cost appropriately,

and λ ∈ R+ is used to penalize the intermediate inclination errors. The values of αi should be

chosen such that the terminal accuracy (i.e. apoapsis, inclination, etc.) terms are penalized the

most, and the trust region radii do not get too large. More detail on the selection of these weights

is provided in Section 6.4. Recall that the slack variables for the ACCD are appended to the cost

function only during the first call to CPAG. Finally, the solution variables are scaled by substituting

δxk ← Sxδx̂k, δuk ← Suδûk, and δtf ← Spδt̂f wherever they appear, so that the decision variables

become the scaled state, control, and final time corrections. The full convex subproblem to solve at

each guidance cycle is then

Problem 2. (CPAG convex subproblem): Determine the values of δx̂k, δûk, δt̂f , and ν that

minimize the cost (6.44) subject to equality constraints on the linearized dynamics (6.25) and initial

condition (6.34), and inequality constraints on the load factor (6.31), heat load (6.32), control

magnitude (6.33), intermediate inclination error (6.35), and trust regions (6.42).
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6.3.7 Predictor-Corrector Formulation

The CPAG algorithm is summarized in Algorithm 1. At time tn when the guidance algorithm

is called, the current state x(tn) = x0 and control profile u = ū are used to integrate the trajectory

forward in time until the final time is reached. Next, the convex subproblem described in Problem 2

is solved to obtain a correction δu to update the nominal control profile such that uk = ūk+δuk ∀ k,

as shown in Fig. 6.6. The loop in Algorithm 1 repeats until the change in the trajectory ∥δx̂∥2 is

below some threshold or a maximum number of iterations is reached. The optimized control profile

determined at tn > 0 is flown until a time of tn+1 = tn + ∆t, where ∆t is some specified time

interval, and the process is repeated. When CPAG is called for the first time, the initial value of

tf is determined by numerically integrating the remainder of the trajectory until the atmospheric

exit radius is reached. The initial guess for the control is assumed to be u(t) = 0. While a more

specific choice for the initial control is allowable, assuming an initial value of zero is acceptable even

if it produces a trajectory that remains hyperbolic due to the improved numerical robustness of the

energy-based apoapsis radius expression in Eq. 6.4.

Algorithm 1: CPAG Algorithm
1 Input: Current state x0, control u = ū, and final time tf
2 for n = 1: max iterations do
3 Predict remaining trajectory x̄ using x0 and u
4 Compute Ak, B−

k , B+
k , Σk, zk about x̄ using Eq. 6.24

5 Compute R, H, and P using Eqs. 6.26, 6.27, and 6.28
6 Solve convex subproblem for δx̂k, δûk, and δt̂f
7 uk += Suδûk, Update control profile
8 if ∥δx̂∥2 ≤ tolerance then
9 Break

10 end
11 end
12 Output: u
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Figure 6.6: Schematic of convex predictor-corrector process performed at t = tn.

6.4 Numerical Monte Carlo Results

In this section, CPAG is applied to aerocapture scenarios at Neptune, Mars, and Earth.

CPAG is implemented in Julia [205] using the Convex.jl [188] toolbox and Clarabel [206] solver. All

simulations are carried out on a MacBook Pro laptop with 32 GB of RAM and an M2 Pro CPU. The

performance of CPAG is compared to the state-of-the-art algorithm FNPAG3 by performing Monte

Carlo analyses that disperse aerocapture-relevant parameters, including aerodynamic coefficients,

initial conditions, and the atmospheric density profile. For each destination, the cost function

scaling parameters αi are set according to the values in Table 6.2. The cost-function terms with the

highest priority, specifically the apoapsis target and the constraint satisfaction, are weighted more

heavily. On the other hand, the trust region and control weights are relatively small to allow for

large enough changes to the trajectory and control.

The standard version of FNPAG [55] uses Keplerian expressions for targeting the apoapsis

radius and computing the in-plane ∆V (e.g. Eqs. 5.8 and 6.5), which assume the exo-atmospheric

portion of the trajectory is not affected by J2. For a more consistent comparison of CPAG and

FNPAG, the Monte Carlo analyses in Sections 6.4.1–6.4.3 maintain this assumption such that J2

in Equation 6.4 is set to zero. Section 6.5 relaxes this assumption, where the use of Eq. 6.4 to
3 FNPAG is also implemented in Julia.
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incorporate the effects of J2 within the apoapsis targeting is explored in more detail.

Table 6.2: Values used to scale cost function in CPAG.

Term Value

Control, α1 1× 10−2

Inclination, α2 5.0
Apoapsis, α3 1,000
Periapsis, α4 0.0 (Neptune and Mars), 1.0 (Earth)
Constraints, α5 1,000
Trust region, wtr, wtr,p 1× 10−3

Interm. Inclination, λ 1,000

6.4.1 Neptune Monte-Carlo Results

The entry state is derived from an existing Neptune aerocapture systems analysis [13], and

the initial conditions x0 = [r0, ϕ0, θ0, v0, γ0, ψ0, σ0], expressed in the inertial frame, are summarized

in Table 6.3. The initial flight path angle is chosen to be in the middle of the nominal aerocapture

corridor, and the initial bank-angle value is chosen to be consistent with the value of σ0 used by

FNPAG. Atmospheric properties are modeled using NeptuneGRAM [121], and all dispersed density

profiles use a density perturbation scale of 1.0, which corresponds to the 3σ uncertainties computed

within GRAM.

Table 6.3: Nominal inertial initial conditions for Neptune mission.

h0 (km) ϕ0 (deg.) θ0 (deg.) v0 (km/s) γ0 (deg.) ψ0 (deg.) σ0 (deg.)

1000 0 0 29.0 -11.64 45 10

A 100, 000 × 3, 000 km orbit with a final inclination of 45 degrees is targeted. The entry

vehicle is modeled as an MSL-style, 70-degree sphere cone with a base diameter of 5 meters and a

nominal lift-to-drag ratio and ballistic coefficient of L/D = 0.3 and β = 110 kg/m2, respectively.

Once the sensed acceleration exceeds a limit of 0.1 g, the guidance system is initialized and is called

at a frequency of 1 Hz. When CPAG is first called, Problem 2 is discretized using N = 50 nodes,
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and each subsequent call to CPAG only uses nodes that are defined for tk ≥ t0, where t0 is the

current time. Control and problem-specific constraints for the Neptune aerocapture scenario are

summarized in Table 6.4. The bank-angle rate and acceleration are limited to ±20 deg/s and ±5

deg/s2, respectively, which is consistent with previous work [174]. A load factor limit of amax = 10 g

is assumed, which is within the structural capabilities of atmospheric entry capsules. The heat load

constraint is set to Qmax = 98 kJ/cm2. As will be shown later, this specific value is chosen to be

approximately equal to the 50-th percentile of the heat-load distribution produced by FNPAG. The

Sutton-Graves correlation [158] for Neptune is used to model the stagnation-point convective heat

flux. It is assumed that the guidance system has direct access to surface heating measurements,

however, a more sophisticated estimation algorithm, such as that presented in [207], could be used

to estimate the aerothermal environments if more limited measurements are available. Following

Section 6.3.4, the intermediate inclination errors are penalized with a weight of λ = 1000, and the

final Nbank = 25 nodes are constrained using the ACCD.

Table 6.4: Control and problem-specific constraints for Neptune aerocapture.

Parameter Max. Value

Bank-angle rate 20 deg/s
Bank-angle accel. 5 deg/s2

Load factor amax 10 g
Heat load Qmax 98 kJ/cm2

The performance of CPAG is first assessed in a nominal scenario (i.e. no dispersions). In this

configuration, the guidance simulation and the truth simulation use the same density, aerodynamic,

and initial condition. Evaluating a guidance algorithm in a nominal scenario allows for easy diagnosis

of the algorithm’s fundamental settings, as it should result in excellent aerocapture performance.

This work quantifies the performance of the guidance system using the final apoapsis targeting

error and total ∆V required to correct the post-aerocapture orbit. For a trajectory that exits the

atmosphere on an elliptical orbit, a three-burn concept of operations is assumed. The first burn is

applied at apoapsis and is used to raise the trajectory periapsis out of the atmosphere to the desired
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altitude, and the second burn is applied at periapsis to correct for any apoapsis targeting errors.

The final burn is applied at the corrected apoapsis and is used to correct orbit’s inclination

∆V3 = 2v∗a sin(∆i/2) (6.45)

where v∗a is the apoapsis velocity of the target orbit, and ∆i is the error in the orbit’s inclination.

Using Equations 6.5 and 6.45, the total ∆V is ∆Vtot = ∆V1 +∆V2 +∆V3.

Figure 6.7 shows the resulting trajectory profile and inclination in the nominal scenario, and

Fig. 6.8 shows the corresponding bank-angle rate and bank-angle profiles. For this case, the in-plane

orbital corrections require a ∆V1,2 = 190.0 m/s. The in-plane cost is dominated by the periapsis

raise maneuver, as CPAG produces a nominal apoapsis error of ∆ra = 100 m, and the target orbit

is highly elliptical (eccentricity of 0.94). The out-of-plane corrections require a ∆V3 = 0.0 m/s, as

the final inclination error is ∆i = 0 degrees.
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Figure 6.7: Time history of apoapsis altitude (a) and inclination (b) produced using CPAG in a
nominal scenario.

As shown in Fig. 6.8, once CPAG is initialized at t ≈ 120 seconds, it begins modulating the

bank angle rate in order to hit the target apoapsis radius and inclination. To maintain a sufficiently

small inclination error along the entire trajectory, several bank-angle reversals are observed. Recall

that CPAG solves for an entire bank-angle rate profile (i.e. magnitude and direction) at each
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time step. This allows for the bank-angle reversals illustrated in Fig. 6.8b to be accounted for

explicitly within both the prediction and the correction phase, as the algorithm is trying to meet

both apoapsis and inclination targets simultaneously. This characteristic is significantly different

from existing aerocapture guidance algorithms that use discrete lateral logic algorithms to determine

bank-angle reversals. However, the bank-angle profile in Fig. 6.8b is not a “bang-bang” profile, as

the corresponding bank-angle rates are within the limit of 20 deg/s. In [55], it is shown that the ∆V

optimal bank-angle profile is bang-bang, suggesting that CPAG may be losing some optimality in its

performance. However, as shown in the following results, the ∆V produced by CPAG is close to the

∆V produced by FNPAG, which does fly bang-bang bank-angle profiles. Therefore, the optimality

lost by not flying a pure bang-bang profile is sufficiently small.
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Figure 6.8: Bank-angle rate profile determined by CPAG (a) and resulting bank-angle profile (b) in
a nominal scenario.

As described in Section 6.3, CPAG uses a penalized trust region (PTR) technique to keep

the solution near the reference and encourage convergence to a feasible solution. As the algorithm

converges, the trust region radii shrink. This characteristic is demonstrated in Fig. 6.9 which shows

the evolution of the trust region radii at each discrete node when CPAG is called for the first time

in the nominal scenario. At the first point (k = 1), the trust region radius is driven to zero due to
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the initial-condition constraint. For later values of k, the trust region radii adapt as needed in order

to shape the trajectory and control profiles, and once the algorithm is in the vicinity of the optimal

solution, they begin to shrink quickly. This behavior indicates that the algorithm is functioning as

intended and showcases the flexibility of the PTR formulation.
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Figure 6.9: Convergence of trust region radii during first call to CPAG.

To assess the performance of CPAG in off-nominal scenarios, a 1000-case Monte Carlo anal-

ysis is performed in which the vehicle aerodynamic coefficients, vehicle mass, entry velocity, entry

flight-path angle, and atmospheric density profile are dispersed according to the values in Table

6.5. In each of the Monte Carlo runs, the predictor step of CPAG utilizes the nominal aerodynamic

model and nominal density profile from NeptuneGRAM, while the truth simulation uses the dis-

persed aerodynamics and density profile. The GRAM profiles are implemented as lookup tables

in both the guidance and truth simulation. Two first-order fading-memory filters, as described in

Ref. 55, are used to scale the nominal lift and drag accelerations using sensed acceleration data

accessible from the vehicle’s inertial measurement unit (IMU) to help account for the differences

in the aerodynamic/density models used onboard and those used by the truth simulation. The

navigation state is assumed to be perfect for all simulations. Uncertainties in the initial velocity

and flight-path angle are chosen to be consistent with recent interplanetary navigation solutions

for Ice Giant aerocapture missions [116] and recent aerocapture guidance analyses [208, 128, 209].
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The aerodynamic dispersions are chosen to produce an uncertainty in the lift-to-drag ratio of ap-

proximately ±0.05, and an uncertainty in the ballistic coefficient of approximately ±10.0 kg/m2.

Atmospheric density dispersions are applied using NeptuneGRAM with a density perturbation scale

of 1.0, which returns the 3σ GRAM density distribution. Samples for all parameters, except for

density, are generated from normal distributions using the nominal and 3σ values in Table 6.5.

Table 6.5: Dispersions applied in Monte Carlo analysis.

Quantity Nominal Value 3σ Uncertainty Distribution
Lift coefficient, CL 0.495 0.065 Normal
Drag coefficient, CD 1.65 0.05 Normal
Mass, m 2200 kg 150 kg Normal
Entry velocity, v0 29.0 km/s 100 m/s Normal
Entry FPA, γ0 -11.64 deg 0.2 deg Normal
Density Mean GRAM Dispersed GRAM From GRAM

For consistent comparison, a 1000-case Monte Carlo analysis with identical dispersions is

run using FNPAG. Similar to the settings used for CPAG, FNPAG is initialized once the sensed

acceleration reaches 0.1 g, after which it is called at a frequency of 1 Hz. The predictor step of

FNPAG also utilizes the nominal aerodynamic model and density profile from NeptuneGRAM,

while the truth simulation uses the dispersed aerodynamics and density profile. Two first-order

fading-memory filters, identical to those used by CPAG, are used to scale the nominal lift and drag

accelerations. Finite-rate bank maneuvers are modeled with a maximum bank-angle rate of 20 deg/s,

and a maximum bank-angle acceleration of 5 deg/s2. FNPAG has two tuning parameters σ0 and

σf that dictate the bang-bang bank-angle profile flown during its first phase. This work assumes

values of σ0 = 10 degrees and σf = 90 degrees for all trajectories in the Monte Carlo analysis.

These values are chosen to provide sufficient control margin and crossrange control authority [55].

A choice of σf = 90 degrees is made because it is found to produce a good balance of robustness and

performance, as larger values tend to result in fewer trajectories capturing. The bank-angle sign is

determined using predictive logic that manages inclination error [176] in which a maximum of five

bank reversals is assumed. Note that this specific lateral logic was developed separately from the
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original FNPAG algorithm, which used a simpler inclination-based dead band to determine bank

reversals. Similar to CPAG, FNPAG assumes that the navigation state is perfect. However, unlike

CPAG, FNPAG has no way of modifying its commands to account for the heat-load constraint.

For all 1000 cases, CPAG produces a capture rate of 100%, while FNPAG had two cases that

remained hyperbolic producing a capture rate of 99.8%. This is potentially because FNPAG uses

the standard apoapsis radius expression in Eq. 5.8 which is not well-behaved for hyperbolic orbits.

The two algorithms produce similar apoapsis targeting accuracy, and Fig. 6.10 shows the apoapsis

accuracy and required in-plane ∆V . Each algorithm produces similar trends in the resultant pe-

riapsis and apoapsis radii, with more apoapsis undershoot occurring for lower periapsis radii and

more apoapsis overshoot at higher periapsis radii. Generally, a lower periapsis radius indicates that

too much energy has been depleted during the atmospheric flight, so the resulting apoapsis radius

is below the target value, whereas, a higher periapsis radius indicates the opposite result. The
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Figure 6.10: Comparison of apoapsis targeting accuracy (a) and required in-plane ∆V (b) for
Neptune aerocapture.

average error in apoapsis radius is 1.69% and 1.54% using CPAG and FNPAG, respectively. The

slightly larger apoapsis error produced by CPAG is due to the relative weighting of the apoapsis

and inclination terms in the convex subproblem. This relative weighting is a trade that may be
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tailored to a specific aerocapture scenario to place a greater emphasis on either the in-plane or

out-of-plane accuracy (or a balance between the two). Figure 6.10b shows the in-plane ∆V required

to correct the apoapsis and periapsis radii for both algorithms. The distribution of in-plane ∆V

for each algorithm is relatively similar, with CPAG having slightly more cases in the higher ∆V

bins. The control law for FNPAG is derived from optimal control theory, so the similarity in the

two distributions demonstrates that the sequential convex optimization routine employed by CPAG

is not sacrificing significant performance by solving a sequence of approximate convex subproblems.

The in-plane ∆V may be separated into two components: the periapsis raise, and the apoapsis

correction. Figure 6.11 displays histograms for each of these components for both algorithms.

The magnitude of the periapsis raise burn required for both algorithms is similar, with mean ∆V

requirements of 188 m/s and 190 m/s for CPAG and FNPAG, respectively. As shown in Fig. 6.10a

the similarity in the periapsis raise ∆V magnitude is attributed to the similar range of periapsis

radii produced by CPAG and FNPAG. The magnitude of the apoapsis correction burn required

when using CPAG is slightly higher than that required when using FNPAG, with mean apoapsis

correction ∆V requirements of 30.3 m/s and 29.9 m/s for CPAG and FNPAG, respectively.
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Figure 6.11: Comparison of periapsis raise ∆V (a) and apoapsis correction ∆V (b) for Neptune
aerocapture.
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In addition to the in-plane ∆V requirements, consideration must be also be given to the

∆V necessary to correct the final orbit inclination. The out-of-plane ∆V3 requirements for each

algorithm are shown in Fig. 6.12a, and the corresponding total ∆V requirements are shown in

Fig. 6.12b. A noticeable difference between the two algorithms is observed for the out-of-plane

performance, with 50-th percentile requirements of 0.44 m/s and 4.5 m/s for CPAG and FNPAG,

respectively. This difference is attributed to the difference in the architecture of the two algorithms.

Specifically, FNPAG separates the longitudinal (i.e. bank-angle magnitude) and lateral (i.e. bank-

angle direction) guidance channels, whereas CPAG solves for both the lateral and longitudinal

controls simultaneously. By separating the two channels, the bank reversal is not accounted for

within the prediction phase and the desire to target a specific inclination is not considered in the

correction phase. As a result, the FNPAG correction phase only seeks to minimize in-plane (i.e.

apoapsis) errors, while CPAG is able to consider both in-plane and out-of-plane targets. During

the discrete bank-angle reversals performed by FNPAG, the vehicle must fly an open-loop control

profile until the reversal is complete, during which it is susceptible to the accumulation of additional

error.
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Figure 6.12: Required ∆V for inclination change (a) and total orbit correction (b) for Neptune
aerocapture.



195

Figure 6.13 compares the integrated stagnation-point heat load and load factor for both al-

gorithms. Recall that CPAG is able to directly enforce the satisfaction of both the heat-load and

load-factor constraints in its correction phase, while FNPAG has no way of doing so. Therefore, in

order to stress CPAG more, the magnitude of the heat-load constraint used in CPAG is approxi-

mately chosen to be the 50-th percentile of the heat load distribution produced by FNPAG. Figure

6.13a demonstrates that CPAG is able to satisfy the heat-load constraint of 98 kJ/cm2 in 100%

of the cases, while FNPAG only produces a constraint satisfaction rate of 47.4%, by design. The

addition of the heat-load constraint also explains why the in-plane ∆V requirements for CPAG are

slightly higher than for FNPAG, indicating that CPAG is sacrificing some orbit targeting accuracy

in order to satisfy the heat-load constraint. Finally, as shown in Fig. 6.13b, both algorithms satisfy

the load-factor constraint of 10 g. The initial phase of an aerocapture trajectory is typically flown

with a near lift-up bank angle, so the peak aerodynamic loading is typically not that high. Overall,

CPAG produces less severe aerothermodynamic (heating and loading) environments compared to

FNPAG due to the explicit consideration of these quantities in the correction process.

Heat Load (kJ/cm²)
80 85 90 95 100 105

C
o
u
n
t

0

50

100

150

200

250 CPAG
FNPAG
Limit

(a) Heat Load.

Peak Load Factor (g)
4 5 6 7 8 9 10

C
o
u
n
t

0

150

300

450

600
CPAG
FNPAG
Limit

(b) Maximum load factor.

Figure 6.13: Integrated heat load (a) and maximum load factor (b) for both CPAG and FNPAG
for Neptune aerocapture.

Table 6.6 presents an overall comparison for the statistics of all quantities of interest obtained
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using both CPAG and FNPAG. With respect to the ∆V requirements, both algorithms produce

similar results. Note that the 2 cases that did not capture for FNPAG produce an inflated standard

deviation in the in-plane and total ∆V requirements. CPAG satisfies the system-level constraints in

100% of cases, whereas, FNPAG fails to do so. Table 6.6 also compares the computational time of

each algorithm, where the reported times correspond to the amount of time spent on each predictor-

corrector iteration. Figure 6.14 illustrates a representative time history of the computational time

required by CPAG. Generally, at later iterations, less time is required as the number of points N in

the discretized problem has decreased which leads to faster solve times. In general, FNPAG requires

slightly less time than CPAG, although the solve times for both are sufficiently small.

Table 6.6: Comparison of Neptune aerocapture statistics for CPAG and FNPAG.

CPAG (Capture Rate = 100.0%) Mean Std. Dev. 1st Perc. 50th Perc. 99th Perc.

In-Plane ∆V (m/s) 218.4 28.94 188.9 209.1 326.0
Out-of-Plane ∆V (m/s) 1.235 1.686 7.900×10−4 4.385×10−1 7.010
Total ∆V (m/s) 219.6 29.14 189.2 210.8 328.5
Apoapsis Error (%) 1.688 1.744 1.136×10−2 1.119 7.557
Max. Load Factor (g) 5.626 0.4686 4.615 5.605 6.983
Heat Load (kJ/cm2) 89.24 2.160 83.06 89.32 94.27
Computational Time (ms) 18.8 4.75 12.9 17.5 34.0

FNPAG (Capture Rate = 99.8%) Mean Std. Dev. 1st Perc. 50th Perc. 99th Perc.

In-Plane ∆V (m/s) 219.6 216.8 187.9 202.6 306.7
Out-of-Plane ∆V (m/s) 5.413 4.499 4.777×10−2 4.487 23.30
Total ∆V (m/s) 225.1 217.0 190.5 208.3 313.4
Apoapsis Error (%) 1.543 9.503 1.612×10−2 7.443×10−1 6.293
Max. Load Factor (g) 6.081 3.463×10−1 5.211 6.096 6.918
Heat Load (kJ/cm2) 98.03 2.236 93.94 98.10 102.2
Computational Time (ms) 5.10 1.76 4.22 5.10 9.46
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Figure 6.14: Time history (a) and histogram (b) of computational time required during each CPAG
iteration.

6.4.2 Mars Monte-Carlo Results

The entry state for Mars is derived from Refs. [210] and [208], which investigated the use of

aerocapture for human-scale missions to Mars, and the initial conditions are summarized in Table

6.7. All atmospheric properties are modeled using MarsGRAM [211], where the dispersed density

profiles produced use a density perturbation scale of 1.0. The target orbit for the Mars aerocapture

demonstration is a highly elliptical, 1-sol orbit, with an apoapsis altitude of 33,793 km, a periapsis

altitude of 250 km, and an inclination of 90 degrees (i.e. polar). In contrast to the low L/D blunt

capsule studied for the Neptune aerocapture scenario, the Mars aerocapture scenario considers a

mid L/D geometry with nominal mass and aerodynamic properties summarized in Table 6.8. A

higher L/D vehicle has more control authority than a blunter vehicle, and comparing CPAG and

FNPAG across a variety of vehicle geometries provides a more comprehensive comparison of the

two algorithms.

CPAG and FNPAG are both initialized once the sensed acceleration exceeds a limit of 0.1

g, after which each guidance system is called at a frequency of 1 Hz. When CPAG is first called,

Problem 2 is discretized usingN = 50 nodes, and each subsequent call to CPAG only uses nodes that
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Table 6.7: Nominal inertial initial conditions for Mars mission [210, 208].

h0 (km) ϕ0 (deg.) θ0 (deg.) v0 (km/s) γ0 (deg.) ψ0 (deg.) σ0 (deg.)

150 0 0 6.2 -10.1 90 10

are defined for tk ≥ t0, where t0 is the current time. Control and problem-specific constraints for the

Mars aerocapture scenario are summarized in Table 6.9. The load factor and heat load constraints

in CPAG are set to amax = 3 g (to be consistent with human-rated mission requirements) and 6.35

kJ/cm2, respectively, and both CPAG and FNPAG limit the bank-angle rate to a magnitude of

20 deg/s and the bank-angle acceleration to 5 deg/s2. For both algorithms, the prediction step

utilizes the nominal density profile from MarsGRAM, while the truth simulation uses a dispersed

density profile, and the predicted lift and drag accelerations are scaled using first-order fading-

memory filters. The stagnation-point heat flux is modeled using the Sutton-Graves correlation for

the Martian atmosphere. A 1000-case Monte Carlo analysis is run for both CPAG and FNPAG using

the 3σ aerodynamic and initial condition uncertainties listed in Table 6.5, and the atmospheric

density is dispersed using MarsGRAM. A comparison of the performance of each algorithm is

presented in Figures 6.15–6.18.

Overall, CPAG and FNPAG produce similar distributions of in-plane ∆V requirements. Due

to the highly elliptical 1-sol target orbit, the periapsis raise burn is much smaller than the apoapsis

correction burn. As a result, the decreased apoapsis targeting accuracy observed for CPAG produces

slightly higher overall in-plane ∆V requirements. Because the inclination burn is applied at apoapsis,

the ∆V required to correct the final inclination is significantly smaller than those shown for Neptune.

As a result, both algorithms have small out-of-plane ∆V requirements.

Table 6.8: Nominal mass and aerodynamic properties for mid L/D vehicle [210].

Mass (kg) L/D β (kg/m2)

62,000 0.55 380
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Table 6.9: Control and problem-specific constraints for Mars aerocapture.

Parameter Max. Value

Bank-angle rate 20 deg/s
Bank-angle accel. 5 deg/s2

Load factor amax 3 g
Heat load Qmax 6.35 kJ/cm2
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Figure 6.15: Comparison of apoapsis targeting accuracy (a) and in-plane ∆V (b) for Mars aerocap-
ture.
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Figure 6.16: Comparison of periapsis raise ∆V (a) and apoapsis correction ∆V (b) for Mars aero-
capture.
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Figure 6.17: Required ∆V for inclination change (a) and total orbit correction (b) for Mars aero-
capture.
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Figure 6.18: Comparison of stagnation-point heat lead (a) and load factor (b) for Mars aerocapture.



201

Both FNPAG and CPAG produce load-factor distributions that are below the limit of 3

g. On the other hand, the heat load constraint of 6.35 kJ/cm2 is satisfied in 100% of the cases

using CPAG but only 59.4% of the cases using FNPAG. The heat-load constraint causes CPAG to

produce lower periapsis radii, which explains the difference in the periapsis altitude distributions in

Fig. 6.15a. It is interesting that lower periapsis radii are observed for the Mars aerocapture case,

while higher periapsis radii are observed for the Neptune aerocapture case. This is likely explained

by the different vehicle geometries assumed for each scenario. Due to the lower entry velocity and

highly elliptical target orbit, the aerothermodynamic environments are less extreme relative to the

Neptune results. It may be possible to increase the apoapsis targeting accuracy of CPAG if the

heat-load constraint is relaxed. An overall comparison of the statistics for the aerocapture quantities

of interest obtained using both CPAG and FNPAG is presented in Table 6.10.

Table 6.10: Comparison of Mars aerocapture statistics for CPAG and FNPAG.

CPAG (Capture Rate = 100.0%) Mean Std. Dev. 1st Perc. 50th Perc. 99th Perc.

In-Plane ∆V (m/s) 17.50 4.280 12.29 16.51 30.27
Out-of-Plane ∆V (m/s) 1.383 1.267 4.380×10−3 1.118 5.769
Total ∆V (m/s) 18.88 4.739 12.48 17.91 33.36
Apoapsis Error (%) 2.585 2.120 4.623×10−2 2.101 10.03
Max. Load Factor (g) 2.255 1.406×10−1 1.947 2.253 2.585
Heat Load (kJ/cm2) 5.755 1.705×10−1 5.347 5.765 6.124
Computational Time (ms) 17.8 4.13 11.2 17.9 32.5

FNPAG (Capture Rate = 100.0%) Mean Std. Dev. 1st Perc. 50th Perc. 99th Perc.

In-Plane ∆V (m/s) 16.51 4.667 11.65 15.08 32.80
Out-of-Plane ∆V (m/s) 8.669×10−1 7.205×10−1 1.148×10−2 6.8967×10−1 3.229
Total ∆V (m/s) 17.37 4.948 11.932 15.96 34.88
Apoapsis Error (%) 2.390 2.306 3.622×10−1 1.713 10.28
Max. Load Factor (g) 1.592 1.005×10−1 1.3752 1.586 1.822
Heat Load (kJ/cm2) 6.327 1.756×10−1 5.916 6.312 6.764
Computational Time (ms) 5.08 1.23 4.18 5.64 10.26

6.4.3 Earth Monte-Carlo Results

The entry state for Earth is taken from the original FNPAG paper [55], and the initial

conditions are summarized in Table 6.11. All atmospheric properties are modeled using EarthGRAM
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[212], where the dispersed density profiles produced use a density perturbation scale of 1.0. The

target orbit for the Earth aerocapture scenario (representative of a lunar return mission) is a 200

km circular orbit with an inclination of zero degrees, and the entry vehicle is chosen to be consistent

with the Orion MPCV. The nominal mass and aerodynamic properties, taken from Ref. [55], are

summarized in Table 6.12.

Table 6.11: Nominal inertial initial conditions for Earth mission [55].

h0 (km) ϕ0 (deg.) θ0 (deg.) v0 (km/s) γ0 (deg.) ψ0 (deg.) σ0 (deg.)

122 0 0 11.02 -5.74 0 10

Table 6.12: Nominal mass and aerodynamic properties for Orion MPCV [55].

Mass (kg) L/D β (kg/m2)

8983.4 0.27 323

CPAG and FNPAG are both initialized once the sensed acceleration exceeds a limit of 0.1

g, after which each guidance system is called at a frequency of 1 Hz. When CPAG is first called,

Problem 2 is discretized usingN = 50 nodes, and each subsequent call to CPAG only uses nodes that

are defined for tk ≥ t0, where t0 is the current time. Control and problem-specific constraints for the

Earth aerocapture scenario are summarized in Table 6.13. The load factor and heat load constraints

in CPAG are set to amax = 6 g and 13.5 kJ/cm2, respectively, and both CPAG and FNPAG limit

the bank-angle rate to a magnitude of 20 deg/s and the bank-angle acceleration to 5 deg/s2. For

both algorithms, the prediction step utilizes the nominal density profile from EarthGRAM, while

the truth simulation uses a dispersed density profile, and the predicted lift and drag accelerations

are scaled using first-order fading-memory filters. The stagnation-point heat flux is modeled using

the Sutton-Graves correlation for the Earth atmosphere. A 1000-case Monte Carlo analysis is run

for both CPAG and FNPAG using the 3σ aerodynamic and initial condition uncertainties listed

in Table 6.5, and the atmospheric density is dispersed using EarthGRAM. A comparison of the
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performance of each algorithm is presented in Figures 6.19–6.22.

Table 6.13: Control and problem-specific constraints for Earth aerocapture.

Parameter Max. Value

Bank-angle rate 20 deg/s
Bank-angle accel. 5 deg/s2

Load factor amax 6 g
Heat load Qmax 13.5 kJ/cm2

While CPAG produces slightly worse overall apoapsis targeting, it actually results in lower

overall in-plane ∆V requirements. From Fig. 6.19a, CPAG tends to have higher periapsis radii com-

pared to FNPAG. Because the target orbit is circular, the periapsis raise burn dominates the overall

in-plane ∆V requirements. Compared to FNPAG, the slightly higher periapsis radii for CPAG

result in lower overall periapsis raise ∆V values, while the apoapsis error requires a relatively larger

apoapsis correction burn. However, the magnitude of the apoapsis correction burn is significantly

less than the periapsis raise burn, explaining why the overall in-plane ∆V requirements for CPAG

are lower than that for FNPAG. Similar to the previous two cases, the ∆V required to correct the

final inclination is low for CPAG. Unlike the previous two cases, there are a few outlier cases for

CPAG where the inclination correction burn is high. The out-of-plane ∆V for FNPAG is larger

due to the low-altitude circular target orbit, as the lower-altitude orbit has a higher velocity than

the target orbits for Neptune and Mars, so any inclination targeting errors will be magnified. As a

result, the total ∆V requirements for CPAG are lower than those for FNPAG. The FNPAG results

could likely be improved by considering a larger value of σd, as the Earth scenario has little risk of

any trajectories remaining hyperbolic.

From Fig. 6.22a, the heat-load distributions for CPAG and FNPAG are much more similar

than those for Neptune and Mars. The heat load constraint of 13.5 kJ/cm2 is satisfied for 100%

of the cases using CPAG, but only in 89.0% of the cases when using FNPAG. A larger similarity

in the heat-load profiles is observed likely because the lower target apoapsis altitude constrains the

trajectory space more than if the target orbit were highly elliptical. The load factor constraint of 6
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Figure 6.19: Comparison of apoapsis targeting accuracy (a) and in-plane ∆V (b) for Earth aero-
capture.
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aerocapture.
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Figure 6.21: Required ∆V for inclination change (a) and total orbit correction (b) for Earth aero-
capture.

g is satisfied for 100% of the cases using both algorithms. An overall comparison of the statistics

for the aerocapture quantities of interest obtained using both CPAG and FNPAG is presented in

Table 6.14.



206

Heat Load (kJ/cm²)
11 12 13 14

C
o
u
n
t

0

100

200

300

400
CPAG
FNPAG
Limit

(a) Heat load.

Peak Load Factor (g)
2 3 4 5 6

C
o
u
n
t

0

100

200

300
CPAG
FNPAG
Limit

(b) Load factor.

Figure 6.22: Comparison of stagnation-point heat lead (a) and load factor (b) for Earth aerocapture.

Table 6.14: Comparison of Earth aerocapture statistics for CPAG and FNPAG.

CPAG (Capture Rate = 100.0%) Mean Std. Dev. 1st Perc. 50th Perc. 99th Perc.

In-Plane ∆V (m/s) 84.56 13.08 59.39 83.58 116.6
Out-of-Plane ∆V (m/s) 1.960 4.507 2.197×10−3 3.112×10−1 23.01
Total ∆V (m/s) 86.52 13.55 61.39 85.23 118.1
Apoapsis Error (%) 1.414×10−1 3.284×10−1 3.167×10−3 1.024×10−1 6.637×10−1

Max. Load Factor (g) 4.332 5.300×10−1 2.842 4.407 5.297
Heat Load (kJ/cm2) 12.93 2.805×10−1 12.15 12.97 13.42
Computational Time (ms) 19.5 4.55 10.1 20.1 34.4

FNPAG (Capture Rate = 100.0%) Mean Std. Dev. 1st Perc. 50th Perc. 99th Perc.

In-Plane ∆V (m/s) 99.35 14.00 74.36 97.42 145.4
Out-of-Plane ∆V (m/s) 5.415 4.472 1.009×10−1 3.770 18.39
Total ∆V (m/s) 104.7 12.99 84.41 102.7 148.7
Apoapsis Error (%) 7.738×10−2 5.612×10−2 1.933×10−3 6.780×10−2 2.360×10−1

Max. Load Factor (g) 3.623 3.524×10−1 2.978 3.592 4.493
Heat Load (kJ/cm2) 13.05 3.657×10−1 12.22 13.05 13.84
Computational Time (ms) 5.77 1.91 4.00 5.81 11.2
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6.5 Effects of Planetary Oblateness

The effects of J2 on the exo-atmospheric phase of an aerocapture trajectory and resulting

∆V requirements have yet to be explored in the literature. The apoapsis radii and in-plane ∆V in

the previous section are computed using the Keplerian expressions in Eqs. 5.8 and 6.5, respectively.

However, these assume that the effects of J2 after the vehicle exits the planet’s atmosphere are

negligible. Equation 6.4, on the other hand, presents an alternative expression for the apoapsis

radius as a function of the atmospheric exit condition that relaxes the assumption of Keplerian

motion in the exo-atmospheric phase. Because the magnitude of the J2 perturbations depends on

the latitude, the user must specify a target latitude ϕtarget in Eq. 6.4 which may or may not be

known. This section assesses the sensitivity of Eq. 6.4 to the choice of ϕtarget and shows how using

Eq. 6.4 to target an apoapsis radius instead of the Keplerian expression in Eq. 5.8 can result in

more accurate ∆V predictions.

To demonstrate how Eq. 6.4 depends on ϕtarget, the Neptune aerocapture scenario in Section

6.4.1 is used. For target inclinations itarget ∈ [0, 90] degrees, and values of ϕtarget ∈ [0, 90] degrees,

CPAG is used to guide the entry vehicle to the target orbit using Eq. 6.4. A value of J2 = 3.411×10−3

is used in both the equations of motion and Eq. 6.4, and CPAG is assumed to have perfect knowledge

of its environment (i.e. no dispersions). For each pair of itarget and ϕtarget, the ∆V required to correct

the final orbit is computed using two methods. The first is the standard Keplerian expression in

Eq. 6.5, and the second uses a numerical single-shooting approach in order to account for the

effects of J2 on the exo-atmospheric trajectory. Figure 6.23 compares the ∆V computed using each

technique assuming an initial latitude of ϕ0 = 0 degrees.

For each approach, the computed ∆V shows almost no dependence on the selection of ϕtarget.

For all pairs of itarget and ϕtarget, the numerically computed ∆V varies by less than 1%, while there

is a noticeable variation in the Keplerian ∆V with the target inclination. This indicates that, under

certain conditions, using the Keplerian expression in Eq. 6.5 to compute the required in-plane ∆V

can produce substantial errors. Recall that the previous Monte Carlo analysis in Sections 6.4.1–6.4.3
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Figure 6.23: ∆V computed using Keplerian expression (a) and numerical single-shooting approach
(b) for Neptune aerocapture for ϕ0 = 0 degrees.

assumed J2 = 0 in Eq. 6.4. As such, if the distributions of in-plane ∆V were to be recomputed using

the numerical integration approach in this section, they would be shifted toward larger ∆V values,

as the Keplerian expressions used to compute the ∆V are inaccurate. The conditions under which

Eq. 6.5 approaches the numerically computed ∆V relate to the specific energy at the atmospheric

exit condition. Specifically, the local “Keplerian” energy at the atmospheric exit condition must be

close to the “true” energy at the resulting apoapsis radius. Here, the “Keplerian” and “true” energy

are defined using Eqs. 6.46 and 6.47, respectively

εKeplerian =
µ

r
− v2

2
(6.46)

εtrue =
µ

r

[
1− J2

2

(
Re
r

)2 (
3 sin2 ϕ− 1

)]
− v2

2
. (6.47)

Note these are the negative of the standard specific energy in orbital mechanics, which is chosen for

consistency with Eq. 6.4. Figure 6.24 shows the time history of the true energy after atmospheric

exit for two different cases. For each case, the solid line corresponds to the true energy computed

using Eq. 6.47, and the dashed line corresponds to the Keplerian energy computed at atmospheric

exit. The first case, denoted by the red lines, corresponds to a scenario in which the Keplerian energy

at atmospheric exit (t = 0 min.) is close to the true energy at apoapsis (t ≈ 400 min.). When
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this happens, the ∆V computed using Eq. 6.5 and the ∆V computed numerically agree well. The

second, case, denoted by the blue lines, corresponds to a scenario in which the Keplerian energy

at atmospheric exit is not close to the true energy at apoapsis. Here, the Keplerian expression

overpredicts the ∆V by approximately 10%.
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Figure 6.24: Comparison of Keplerian and true energy time histories during exo-atmospheric phase
of trajectory.

Because J2 perturbations depend strongly on the latitude, the same analysis is repeated for

initial latitudes in the range ϕ0 ∈ [0, 80] degrees. Figure 6.25 shows the Keplerian ∆V computed

using Eq. 6.5 as a function of the target inclination. Here, depending on the initial latitude, the

use of Keplerian expressions can result in overpredictions of ∆V by up to 25%. On the other hand,

the numerically computed ∆V remains relatively constant across all scenarios, demonstrating that

Eq. 6.4 is able to account for the effects of J2 on the exo-atmospheric phase of the aerocapture

trajectory.

The analysis presented here indicates that existing Keplerian expressions (e.g. Eqs. 5.8 and

6.5) are inaccurate when considering higher-order gravitational effects. Therefore, it is recommended

that the energy-based expression in Eq. 6.4 be used for targeting an apoapsis radius in aerocapture

guidance algorithms. The form of Eq. 6.4 is general and may be used by any NPC aerocapture

algorithm, not just CPAG. Additionally, Eq. 6.4 could be extended to even higher-order gravitational
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perturbations if the spherical-harmonic coefficients are known and are sufficiently large.
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Figure 6.25: ∆V computed using standard Keplerian expression for a variety of initial latitudes and
target inclinations.

6.6 Summary

This chapter presented CPAG, an advanced predictor-corrector aerocapture guidance al-

gorithm based in convex optimization. It was shown that replacing the standard, simple one-

dimensional optimization problem typically solved in the correction phase of a fully numerical

predictor-corrector (NPC) algorithm with the solution to a convex optimization problem allowed

the algorithm to produce more complex control profiles. This eliminated the need for a sepa-

rate lateral logic algorithm to determine the bank-angle direction. CPAG also easily incorporated

system-level constraints, such as aerodynamic loading and integrated heat load, into its correction

phase, whereas, existing NPC aerocapture guidance algorithms either required separate logic or were

unable to do so. The increase in control-profile complexity came at a slight reduction in performance

and increase in computational time. An improved balancing between in- and out-of-plane accuracy

was achieved by penalizing intermediate inclination errors and using the augmented convex-concave

decomposition (ACCD).

Numerical results demonstrated that CPAG was capable of guiding both low and mid lift-to-

drag ratio vehicles to their desired orbit with a high level of accuracy in the presence of aerodynamic,
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delivery, and atmospheric uncertainty. Monte Carlo analyses were performed to compare the per-

formance of CPAG to the current state-of-the art NPC aerocapture guidance algorithm FNPAG for

aerocapture scenarios at Neptune, Mars, and Earth. For Neptune, and Mars, the total ∆V require-

ments obtained using CPAG were slightly greater than those obtained using FNPAG. At Earth,

CPAG produced lower overall total ∆V requirements. A significant improvement in inclination

targeting was observed using CPAG, which was attributed to the direct consideration of the final

inclination within CPAG’s correction phase. CPAG satisfied the imposed heat-load and load-factor

constraints for 100% of the cases at all three destinations, whereas, FNPAG produced significantly

lower heat-load constraint satisfaction rates. The ability to improve aerothermal constraint satis-

faction allows for a more precise sizing of the thermal protection system (TPS). CPAG can easily

adapt to the aerothermodynamic constraints, while FNPAG is unable to do so. Overall, the pro-

posed convex-optimization framework was shown to be sufficiently robust to the relevant sources of

uncertainty in aerocapture missions. It incorporated system-level constraints in a straightforward

way and eliminated the need for a separate lateral logic algorithm to determine bank-angle sign.

Finally, an energy-based expression for targeting an apoapsis radius that can account for

perturbations from non-spherical gravitational fields was presented. It was shown that assuming

Keplerian motion during the exo-atmospheric phase of the aerocapture trajectory can produce

substantial overpredictions in the ∆V required to correct the final orbit. The use of the energy-based

expression for targeting an apoapsis radius, on the other hand, was able to relax this assumption

and improve the accuracy in the predicted ∆V requirements by almost 25%. For missions where the

expected ∆V requirements are large, a 25% improvement in the predictive accuracy would produce

a drastic decrease in onboard fuel requirements, allowing for more mass to be allocated to science

objectives.



Chapter 7

Stochastic Aerocapture Guidance

“It is not the unknown that should concern us, but the rigidity of our response to it.”

— Dune

7.1 Introduction

This chapter takes a stochastic optimal control approach to the aerocapture guidance problem,

in which uncertainty in the atmospheric density, vehicle aerodynamics, and aerothermodynamic en-

vironment are explicitly considered in the design of a feedback control policy. This is substantially

different from the approach of CPAG in Chapter 6, which repeatedly solves a deterministic optimal

control problem. Instead, a sequence of feedforward controls and feedback gain matrices are opti-

mized offline in a stochastic optimal control setting, which are then implemented as lookup tables

in the guidance system. In support of this explicit uncertainty approach, the theory describing how

multiple interacting and correlated noise sources affect the system is developed.

7.2 Background

Generally, the approach for obtaining a solution to a trajectory optimization problem may

be categorized into one of two methods: indirect methods and direct methods [213]. In the indi-

rect approach, the optimal control profile is indirectly solved for by computing the Hamiltonian

and associated adjoint variables using Pontryagin’s minimum principle. Vinh et al. has extensively

employed this approach for the optimization of lifting entry trajectories [214, 215], however, their
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analyses never included any aerothermodynamic or vehicle-scale constraints. Furthermore, solv-

ing an optimal control problem with an indirect method is often more difficult, particularly in the

presence of inequality constraints, due to the sensitivity of the adjoint dynamics to their initial

conditions. Direct methods introduce a more practical approach to solving trajectory optimization

problems by reducing the infinite-dimensional optimal control problem to a finite-dimensional para-

metric optimization problem. Both of these approaches, however, are only made more challenging

when uncertainty in the optimization variables and constraints is introduced.

In a stochastic setting, constraints must be treated probabilistically, and a common approach

is to use stochastic analogs to deterministic path/terminal constraints called chance constraints

[216]. The introduction of uncertainty brings with it a substantial increase in computational com-

plexity, as evaluating chance constraints requires the propagation of multi-variate uncertainty dis-

tributions through the nonlinear aerocapture dynamics. Significant effort has been directed toward

the development of solution techniques for nonlinear, stochastic optimal control problems in the

presence of chance constraints. These include the use of sequential convex programming (SCP),

as in the work of Oguri et al. [217, 218] and Ridderhof et al. [219, 74], and the use of higher-

order state-transition tensors, as in the case of Boone et al. [220]. In any solution procedure, a

model for the relevant sources of uncertainty is required. Determining a high-fidelity estimate of

the aerothermodynamic uncertainty distributions, even just at a single flight condition, requires

significant computational resources, and the level of uncertainty is not constant along an aerocap-

ture trajectory [45]. It is computationally intractable to model the aerothermodynamic uncertainty

at every point along the aerocapture trajectory, but it is also necessary to incorporate the spatial

variation of the uncertainty along a trajectory. Ridderhof et al. [74] present an approach for incor-

porating spatially varying atmospheric density uncertainty in chance-constrained optimal control

problems using Gaussian random fields (also known as Gaussian processes). As such, this work

utilizes Gaussian-process (GP) based surrogate models to efficiently map the uncertainty at key

trajectory points to the entire trajectory domain [140]. The GP model is trained on data obtained

from analyses performed using a high-fidelity computational fluid dynamics (CFD) code to account
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for the various hypersonic thermochemical nonequilibrium phenomena relevant to aerocapture tra-

jectories.

Overall, this chapter seeks to directly consider the aerothermodynamic uncertainty present

in Ice Giant aerocapture scenarios within a stochastic trajectory optimization problem. Gaussian-

process based surrogate models trained on data from high-fidelity models are used to efficiently

incorporate the uncertainty in the aerothermodynamic heating environments along the aerocapture

trajectory, and the aerothermodynamic constraints are enforced using chance constraints. A sequen-

tial convex programming approach (SCP) [177] is developed due to its wide use in the aerospace

trajectory optimization field [179, 68, 182, 180, 71, 70] and demonstrated ability to efficiently solve

chance-constrained trajectory optimization problems [221, 217, 74]. A Neptune aerocapture mission

is used for numerical demonstration, however, the proposed methodology could be applied to any

aerocapture or planetary entry mission in which significant aerothermodynamic uncertainty exists.

The chapter is organized as follows. Section 7.3 discusses the development of stochastic

aerothermodynamic and atmospheric density models using Gaussian processes. A nonlinear, stochas-

tic aerocapture trajectory optimization problem is formulated in Section 7.4, and a solution method-

ology using sequential convex programming is provided in Section 7.5. A 3,000 case Monte Carlo

analysis is performed in Section 7.6, and conclusions are given in Section 7.7.

7.3 Stochastic Aerothermodynamic and Atmosphere Models

This section provides details on the models used to approximate the uncertainty present in

aerocapture trajectories. These include the aerodynamics and aerothermodynamics of the spacecraft

and the atmospheric density profile.

7.3.1 Stochastic Aerothermodynamic Model for Neptune Aerocapture

The aerothermodynamic constraint considered in this chapter is the stagnation-point convec-

tive heat load. Previous work [70] modeled the stagnation-point convective heat flux using a GP

as a function of altitude and velocity. However, because this work also considers uncertainty in
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the atmospheric density, it is necessary to capture the coupling between the atmospheric density

uncertainty and the heat-flux uncertainty. To this end, let the nominal stagnation-point convective

heat flux be modeled using a generalized Sutton-Graves [158] form

˙̄q = Cρavb (7.1)

where ρ is the freestream density in kg/m3, v is the freestream velocity in km/s, and C, a, and b are

constants. Using the training data in Chapter 4, a least-squares fit of Equation 7.1 is performed. The

fit parameters are summarized in Table 7.1, which produce heat-flux values with units of W/cm2.

Table 7.1: Generalized Sutton-Graves coefficients for Neptune atmosphere.

C a b

11.84 0.4897 2.779

The uncertain stagnation-point convective heat flux is given by

q̇ = ˙̄q (1 + δq̇) (7.2)

where δq̇ is a zero-mean GP taking values as a function of the atmospheric density, ρ, and freestream

velocity, v. Based on the uncertainty intervals computed in Chapter 3, and the GP’s fit in Chapter

4, the heat-flux variation covariance function is defined using a squared-exponential kernel with

variance σ2q = 1.5 × 10−3, and lengthscales lρ = 10 kg/m3 and lv = 1 km/s. These values pro-

duce heat-flux uncertainties of 3σ ∼ 12%, which is consistent with the highest convective-heating

uncertainties observed in Chapter 3. The methodology presented in this Chapter does not require

that the data used to construct the aerothermodynamic model be derived from high-fidelity CFD

simulations. A standard Sutton-Graves correlation [158], could be used just as easily.

Similarly, the lift and drag coefficients are given by

CL = C̄L (1 + δCL
) (7.3)

CD = C̄D (1 + δCD
) (7.4)
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where δCL
and δCD

are zero-mean GP’s taking values as a function of the altitude h = r−Re, where

Re is the planet radius, and velocity. The aerodynamic coefficients are not modeled as a function

of density because they are relatively invariant at high hypersonic Mach numbers. While each

aerodynamic model could be extended to depend on density, doing so would introduce additional

complexity, and the coupling between density and aerodynamic coefficients is less critical than that

between density and heat flux. Both the lift- and drag-coefficient variations are modeled using a

squared-exponential kernel with a variance of σ2CL,D
= 1×10−3 and lengthscales of lh = 100 km and

lv = 5 km/s, which provide aerodynamic uncertainties consistent with the Monte-Carlo analysis

performed in Chapter 6.

7.3.2 Stochastic Atmosphere Modeling

Following [74], the atmospheric density is given by

ρ = ρ̄ (1 + δρ) (7.5)

where ρ̄ is the nominal NeptuneGRAM [121] profile. The density variation δρ is a zero-mean GP

taking values as a function of altitude. Based on the NeptuneGRAM model, the density variation

covariance function is defined as [74]

kρ(h1, h2) = exp

(
−|h1 − h2|

Hscale

)
×


b(min(h1, h2)) min(h1, h2) ≤ htrans

σ2ρ,max min(h1, h2) > htrans

(7.6)

where Hscale is the scale height, and

b(h) = σ2ρ,max exp

(
h− htrans
cscale

)
(7.7)

The constants htrans and cscale determine the scale of the exponential variance model, and σ2ρ,max

is the maximum density variance. The specific values used in this work are Hscale = 50 km,

σρ,max = 1 × 10−2, htrans = 60 km, and cscale = 30 km. Samples of δρ are compared to density

variations computed using NeptuneGRAM in Figure 7.1. It is acknowledged that the GP-based

atmosphere model underpredicts the density variability from NeptuneGRAM at high altitudes.
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However, the density in this region is low, so some underprediction is acceptable, as it does not

significantly affect the trajectory. This is corroborated by the results at the end of the chapter,

which demonstrate sufficient robustness to density variability.
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Figure 7.1: Samples from the density variation process with the 3σ confidence interval shaded.

7.4 Stochastic Optimal Control Problem Formulation

This section presents the physical models used in the development of the stochastic aerocap-

ture trajectory optimization problem. The equations of motion governing the atmospheric flight

mechanics are provided in Section 7.4.1, and the nonlinear, stochastic aerocapture trajectory opti-

mization problem under aerothermodynamic uncertainty is formulated in Sections 7.4.2 and 7.4.3.

7.4.1 Aerocapture Equations of Motion

The equations of motion over an oblate-spheroid, rotating planet are given in Equation 5.1

of Chapter 5. A gravitational model up to J2 harmonics is used, and the control is taken to be the

bank angle rate σ̇.
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7.4.2 Variable Time of Flight Formulation

The heat-load is sensitive to the duration of the trajectory, so it is of interest to allow the

time of flight to vary as needed. A free time of flight problem may be cast as a fixed time of flight

problem using a transformation called generalized time dilation [195]. In this approach, a strictly

increasing, continuously differentiable mapping t : [0, 1] 7→ R+, with boundary conditions t(0) = t0

and t(1) = tf , is defined. The derivative of this mapping is defined as

s(τ) =
dt(τ)

dτ
=

◦
t(τ) (7.8)

for τ ∈ [0, 1], where
◦
(·) denotes the derivative with respect to the non-dimensional time. The term

s(τ) is referred to as the time dilation factor and is treated as an additional control input. Next,

the state x = [r, θ, ϕ, v, γ, ψ, σ] is augmented with the heat load and physical time t such that

x̃(τ) = [x(t(τ)), Q(t(τ)), t(τ)] (7.9)

where x̃ is the “augmented” state. The augmented state dynamics may then be written as

◦
x̃(τ) =


ẋ(t)

Q̇(t)

1


dt(τ)

dτ
=


f(x(t), u(t))

q̇(x(t))

1


dt(τ)

dτ
= F (x̃(τ), ũ(τ)) (7.10)

where q̇(x(t)) is the instantaneous heat flux, and ũ = [u(t(τ)), s(τ)] is the original control augmented

with the time dilation factor. The form of Equations 7.9 and 7.10 is chosen for two reasons. First,

computing the heat load requires integrating the heat flux along the entire trajectory. While convex

approximations of integral quantities exist (e.g. trapezoidal integration [182]), the linearization and

discretization procedure discussed in the following sections allows for a more exact enforcement of

the heat load constraint in the convex subproblem. Because the reference trajectory, about which

the convex subproblem is formed, is produced by numerically integrating the nonlinear equations

of motion, a more accurate description of how the heat load changes along the updated trajectory

is obtained. Finally, expressing the path constraint variables as an additional state variable allows

the proposed framework to be amenable to continuous time constraint satisfaction [222, 195].
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Next, the inclusion of the aerothermodynamic uncertainty is considered. Following the work

of [74], the nonlinear, stochastic state equations of motion are defined as

◦
x̃(τ) = F (x̃(τ), ũ(τ),Ψ(x̃(τ))) (7.11)

where Ψ is a vector of the Gaussian processes used to model the uncertainties in the system. For the

uncertainties considered in this work, this produced Ψ = [δq, δCL, δCD, δρ]
T . For a more concise

presentation, the tilde notation denoting the augmented state is dropped for the remainder of the

chapter.

7.4.3 Nonlinear Optimization Problem Formulation

The initial state is assumed to be Gaussian-distributed about the nominal value such that

x0 ∼ N (x̄0, P0), where x̄0 = E[x0] is the nominal initial state and P0 = E[(x0 − x̄0)(x0 − x̄0)
T ]

is the initial state covariance. Note that, even if the aerothermodynamic environment were not

modeled as a stochastic process, the assumption of a random initial condition inherently makes the

entire augmented state dynamics stochastic. To help keep the state close to the nominal trajectory,

the control is assumed to follow a state-dependent feedback control policy defined at time τ

u(τ) = ū(τ) +K(τ)(x(τ)− x̄(τ)) (7.12)

where ū(τ) ∈ Rm is the nominal feedforward control, and K(τ) ∈ Rm×(n+2) are feedback gains to

be determined in the numerical optimization process. The control in Equation 7.12 is inherently

stochastic due to its dependence on the state x. It is emphasized that the form of Equation 7.12 is

general and does not assume any parameterization of the control (e.g. zero-order hold, first-order

hold, etc.).

The constraints considered in this work consist of both path and terminal constraints. Because

the state, and therefore control, are not deterministic, any constraint on the control or state must

be treated stochastically. Constraints on uncertain (random) variables are typically referred to as

chance constraints, which probabilistically constrain unbounded random variables; for instance,

P[ξ ≤ a] ≥ 1− δ (7.13)
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where δ ∈ (0, 1) is the maximum allowable probabilistic bound for the violation of ξ ≤ a. For

example, a value of δ = 10−3 would correspond to 99.9% confidence. A series of path chance

constraints are enforced on the control to satisfy bank-angle rate magnitude constraints such that

P[∥σ̇k∥2 ≤ σ̇max] ≥ 1− δσ̇ ∀ k (7.14)

P[∥sk∥2 ≤ smax] ≥ 1− δs ∀ k (7.15)

where σ̇max and smax are the upper bounds on the magnitude of the bank-angle rate and time-

dilation factor, respectively.

Overall, it is desired that the vehicle be on a trajectory that allows it to reach a specified

apoapsis radius when it exits the planet’s atmosphere. Therefore, a terminal constraint is formulated

to ensure that the nominal trajectory hits the target apoapsis radius

ra(x̄f )− ra,target = 0 . (7.16)

The subscript (·)f is used to denote a quantity at the final time τ = τf , which is taken to be the time

at which the vehicle exits the planet’s atmosphere. In most work [55, 169, 174, 194], the terminal

apoapsis target is expressed by directly computing the apoapsis radius as a function of the final

state

ra(xf ) = a

1 +

√
1−

v2fr
2
f cos

2 γf

µa

 (7.17)

where a is the semi-major axis

a =
µ

2µ/rf − v2f
. (7.18)

Instead, this work targets a specific apoapsis radius using the energy-like expression

ε(x̄f ) =
µ

rf
−
v2f
2
− µ

ra,target
+
r2fv

2
f cos

2 γf

2r2a,target
= 0 (7.19)

which is obtained through the conservation of specific energy and angular momentum from the

atmospheric exit condition to the target apoapsis radius. This particular form of the terminal

apoapsis constraint is chosen because it produces the same solution as Equation 7.17 and has more
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robust numerical properties [71]. A constraint is placed on the nominal initial condition such that

x̄(τ0) = x̄0 (7.20)

where x̄0 is the nominal initial state.

The cost function used in this work considers minimizing the following expression

J = Var [ra(x(τf ))] +

∫ 1

0
∥ū(τ)∥22 dτ+∫ 1

0
(u(τ)− ū(τ))T Ru (u(τ)− ū(τ)) dτ +

∫ 1

0
(x(τ)− x̄(τ))T Qx (x(τ)− x̄(τ)) dτ (7.21)

where Var [ra(x(τf ))] is the apoapsis radius variance, and Qx ∈ S(n+2)×(n+2)
+ and Ru ∈ Sm×m

+ are

positive semi-definite matrices that penalize the deviation in the state and control, respectively.

Note that the standard cost function seeking to directly minimize
∫
∥u(τ)∥22 dτ is not applicable

due to the stochastic nature of the control in Equation 7.12.

Finally, it must be ensured that the heat load accumulated during the atmospheric flight

does not exceed the capabilities of the vehicle’s thermal protection system. A property of Gaussian

processes is that the outputs are jointly normally distributed, which makes a GP-based aerother-

modynamic model amenable to the proposed chance constraint framework. Specifically, it is desired

that the final heat load QN not exceed some threshold

P[Q(τf ) ≤ Qmax] ≥ 1− δQ (7.22)

where Qmax is the imposed heat-load limit. As such, the nonlinear stochastic optimal control

problem to be solved in this work is

Problem 3. Find the optimal history of ū(τ), K(τ), and x̄(τ) that minimize the cost Eq. 7.21

subject to equality constraints on the dynamics Eq. 7.10, terminal apoapsis radius Eq. 7.19, and

initial condition Eq. 7.20, and inequality constraints on the control magnitude Eq. 7.14 and 7.15,

and terminal heat-load Eq. 7.22.
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Figure 7.2: Flowchart of the stochastic sequential convex programming (SCP) algorithm.

7.5 Solution via Sequential Convex Programming

Obtaining a solution to Problem 3 is exceptionally difficult due to its stochastic nature and

the lack of convexity introduced by the non-linear dynamics and complex path/terminal constraints.

Therefore, this work proposes to replace Problem 3 with an approximate convex model, called a

convex subproblem, that is solved sequentially. A graphical representation of this process is shown

in Figure 7.2. In general, the sequential convex programming procedure may be summarized as

follows. First, the nonconvexities in Problem 3 are removed by a local linearization about the refer-

ence trajectory [182], while the convex elements are retained. The continuous-time, free final time

subproblem is then converted into finite-dimensional, fixed final time convex optimization problem

by discretizing the time domain. Additional consideration must also be given to the conversion of

the stochastic chance constraints into equivalent deterministic forms. Then, the convex subproblem

can be solved by a variety of existing convex solvers, and the reference trajectory and control are

updated with the solution to the subproblem.

7.5.1 Special Considerations for Interacting Gaussian Processes

In [74], only a single GP was used in the development of the stochastic optimal control

problem. Because this work models multiple sources of uncertainty, it is necessary to consider the

situation where two of the GP’s interact with one another. For example, the drag force is given as

D =
1

2
ρv2CDAref (7.23)
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where Aref is the vehicle reference area. Substituting the uncertain density and drag coefficient

yields

D =
1

2
ρ̄ (1 + δρ) v2C̄D (1 + δCD)Aref =

1

2
ρ̄v2C̄D (1 + δρ+ δCD + δρδCD) . (7.24)

In general, the interaction term cannot be represented using a GP because the product of two GP’s

is no longer Gaussian. However, because the solution procedure outlined in the following sections

only requires the statistics of the GP’s evaluated along the reference trajectory, the product of

the two GP’s can be treated as Gaussian in distribution space. This is analogous to the fact that

the product of two Gaussian random variables is not Gaussian, but the product of two Gaussian

distributions is1 . Here, it is assumed that the GP’s are statistically independent. As shown in the

following result, the mean and covariance of the product of two GP’s only depends on the mean

and covariance functions of the GP’s in the interaction term.

Proposition 1. The product of two Gaussian processes Ψ1(t) and Ψ2(t) with mean functions µ1(t)

and µ2(t), respectively, has the mean function

E [Ψ1(t)Ψ2(t)] = µ1(t)µ2(t) . (7.25)

Proof. The GP’s are assumed to be statistically independent which yields

E [Ψ1Ψ2] = E [Ψ1]E [Ψ2] = µ1µ2 (7.26)

Proposition 2. The product of two Gaussian processes Ψ1(t) and Ψ2(t) with mean functions µ1(t)

and µ2(t), respectively, and covariance functions k1(t, τ) and k2(t, τ), respectively, has the covariance

function

k3(t, τ) = k1(t, τ)k2(t, τ) + µ1(t)µ1(τ)k2(t, τ) + µ2(t)µ2(τ)k1(t, τ) . (7.27)

Proof. From the definition of the covariance

Cov [Ψ1(t)Ψ2(t),Ψ1(τ)Ψ2(τ)] = E [(Ψ1(t)Ψ2(t)− µ1(t)µ2(t)) (Ψ1(τ)Ψ2(τ)− µ1(τ)µ2(τ))] (7.28)
1 See https://mathworld.wolfram.com/NormalProductDistribution.html.

https://mathworld.wolfram.com/NormalProductDistribution.html
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where the result of Proposition 1 has been used. The above term is simplified to yield

E [Ψ1(t)Ψ1(τ)]E [Ψ2(t)Ψ2(τ)]− µ1(t)µ1(τ)µ2(t)µ2(τ) . (7.29)

By definition, the following holds

E [Ψ1(t)Ψ1(τ)] = k1(t, τ) + µ1(t)µ1(τ) (7.30)

E [Ψ2(t)Ψ2(τ)] = k2(t, τ) + µ2(t)µ2(τ) . (7.31)

Substituting this into the above expression produces

[k1(t, τ) + µ1(t)µ1(τ)] [k2(t, τ) + µ2(t)µ2(τ)]− µ1(t)µ1(τ)µ2(t)µ2(τ) (7.32)

which gives the desired result upon simplification.

To this end, whenever the product of two GP’s is encountered in the equations of motion, it

is replaced with a separate GP that has mean and covariance functions defined by Equations 7.25

and 7.27. This result is similar to the well-known fact that the product of two Gaussian probability

density functions yields a separate Gaussian probability density function.

7.5.2 Linearization and Discretization of Dynamics

The first step in converting Problem 3 into a convex form is to linearize the nonlinear dynamics

using a first-order Taylor-series expansion around a nominal trajectory x̂(τ), control û(τ), and mean

disturbance µ̂(τ)

◦
x(τ) ≈ A(τ)x(τ) +B(τ)u(τ) +G(τ)Ψ̂(τ) + z(τ) (7.33)

where x ∈ Rn+2 is the augmented state vector, u ∈ Rm is the control, A is the state zero-input

dynamics matrix, B is the control matrix, G is a matrix mapping the GP into the state, Ψ̂ is the

Gaussian process vector evaluated along the nominal trajectory (i.e. Ψ̂ = Ψ(x̂)), and z is a drift

term that is produced by the linearization of the nonlinear equations of motion. As described in

[74], the nominal trajectory serves as a mapping between time and space, which is used to reduce
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the spatially varying Gaussian process to a temporal process. This allows perturbations from the

GP to be approximated by a sequence of jointly Gaussian random vectors, the statistics of which

are computed about the nominal trajectory. Perturbations from the GRF are then approximated

by a sequence of jointly Gaussian random vectors, which produces a more tractable subproblem

in which the system is only subject to temporal disturbances. The matrices in Equation 7.33 are

defined as

A(τ) =
∂F

∂x

∣∣∣∣
x̂,û,µ̂

(7.34a)

B(τ) =
∂F

∂u

∣∣∣∣
x̂,û,µ̂

(7.34b)

G(τ) =
∂F

∂Ψ

∣∣∣∣
x̂,û,µ̂

(7.34c)

z(τ) = F (x̂(τ), û(τ), µ̂(τ))−A(τ)x̂(τ)−B(τ)û(τ)−G(τ)µ̂(τ) (7.34d)

where µ̂ is a vector of the mean functions of the Gaussian processes evaluated along the nominal

trajectory (i.e. µ̂ = µ(x̂)). Further details on these Jacobians are found in Appendix B.1.

The convective heat flux is modeled using the generalized Sutton-Graves expression in Equa-

tion 7.1, which raises the atmospheric density to the power ρa. This introduces substantial com-

plexity to the problem, as it involves raising a Gaussian process to the power of a. Instead, before

linearizing about the reference, the density dependence in Equation 7.1 is approximated using the

tangent-line as a global overestimator

ρa ≤ aρ̂a−1ρ+ (1− a)ρ̂a ∀ρ, ρ̂ > 0 (7.35)

which holds for any a ≤ 1. In Equation 7.35, ρ̂ is the density evaluated along the nominal trajectory

x̂. As a result, the approximate heat-load dynamics are a linear function on the density GP δρ.

While this introduces additional conservatism into the optimization framework, it is relatively small

as demonstrated by the numerical results in Section 7.6.

To convert the continuous-time, infinite-dimensional optimal control problem into an equiv-

alent parameter optimization problem that can be solved by convex optimization algorithms, the
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continuous expressions from the previous section must be converted into discrete-time equivalents.

To do so, a set of N temporal nodes is chosen such that

0 = τ1 < τ2 < . . . < τN−1 < τN = 1 . (7.36)

Recall that by introducing the time dilation factors, the free-time-of-flight problem can always be

discretized over the domain τ ∈ [0, 1]. At each node, let Φ(τk+1, τk) : R 7→ Rn×n denote the state

transition matrix (STM) for the system in Equation 6.12. From linear systems theory, the STM

evolves according to

◦
Φ(τ, τ0) = A(τ)Φ(τ, τ0), Φ(τ0, τ0) = In×n . (7.37)

The control is discretized using a first-order hold [196, 197, 223], which assumes that the control

varies linearly between temporal nodes k and k + 1

u(τ) = λ−k (τ)u(τk) + λ+k (τ)u(τk+1) ∀ τ ∈ [τk, τk+1) (7.38)

where λ−k (τ) and λ+k (τ) are defined as

λ−k (τ) =
τk+1 − τ
τk+1 − τk

λ+k (τ) =
τ − τk

τk+1 − τk
. (7.39)

Utilizing the STM, the continuous-time, linear dynamics can now be transformed into an equivalent

discrete-time, linear form such that

xk+1 = Akxk +B−
k uk +B+

k uk+1 +wk + zk k = 1, . . . , N − 1 (7.40)

where the discrete matrices and vectors are defined via

Ak = Φ(τk+1, τk) (7.41a)

B−
k = Ak

∫ τk+1

τk

Φ−1(ξ, τk)λ
−
k (ξ)B(ξ)dξ (7.41b)

B+
k = Ak

∫ τk+1

τk

Φ−1(ξ, τk)λ
+
k (ξ)B(ξ)dξ (7.41c)

wk = Ak

∫ τk+1

τk

Φ−1(ξ, τk)G(ξ)Ψ̂(ξ)dξ (7.41d)
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zk = Ak

∫ τk+1

τk

Φ−1(ξ, τk)z(ξ)dξ . (7.41e)

Here ξ is a dummy variable introduced for the integration of Equation 7.41 over the interval τ ∈

[τk, τk+1]. Following [74], the Gaussian disturbance term wk has mean and covariance

E[wk] = Ak

∫ τk+1

τk

Φ−1(ξ, τk)G(ξ)µ̂(ξ)dξ (7.42)

Cov(wk,wℓ) = Ak

 τk+1∫
τk

τℓ+1∫
τℓ

Φ−1(ξ1, τk)G(ξ1)K̂(ξ1, ξ2)G
T (ξ2)Φ

−T (ξ2, τℓ)dξ2dξ1

ATk(7.43)

where K̂(t, τ) = diag [k1(t, τ), k2(t, τ), . . .] is a diagonal matrix with elements corresponding to the

covariance functions of the Gaussian processes evaluated along the nominal trajectory, and ξ1 and

ξ2 are additional integration dummy variables.

The dynamics of the mean state evolve according to

E[xk+1] = x̄k+1 = Akx̄k +B−
k ūk +B+

k ūk+1 + zk + w̄k (7.44)

where w̄k is computed using Equation 7.42. To express the discrete-time dynamics of the covariance,

the change in the state around the mean is first written as

xk+1 − x̄k+1 = δxk+1 = Akδxk +B−
k δuk +B+

k δuk+1 + δwk (7.45)

where δwk = wk − w̄k. Using the feedback-control policy in Equation 7.12 and recognizing that

δuk = uk − ūk = Kkδxk, Equation 7.45 may be written as

δxk+1 = (I −B+
k Kk+1)

−1
[
(Ak +B−

k Kk)δxk + δwk

]
. (7.46)

Because the initial state is assumed to be Gaussian-distributed with mean x̄0 and covariance

P0, it then follows that the covariance evolves through the discrete-time linear dynamics as

Pk+1 = (I −B+
k Kk+1)

−1
[
(Ak +B−

k Kk)Pk(Ak +B−
k Kk)

T +Σk
]
(I −B+

k Kk+1)
−T (7.47)

where Σk = Cov(wk,wk) is the Gaussian process covariance matrix from Equation 7.43 where the

integration domain is [τk, τk+1]× [τk, τk+1]. Simplifying Equation 7.47 yields
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Pk+1 − Pk+1K
T
k+1B

+T

k −B+
k Kk+1Pk+1 +B+

k Kk+1Pk+1K
T
k+1B

+T

k =

AkPkA
T
k +AkPkK

T
k B

−T

k +B−
k KkPkAk +B−

k KkPkK
T
k B

−T

k +Σk . (7.48)

Equation 7.48 is non-convex in Pk andKk. To transform the covariance dynamics into an equivalent,

convex form, the following transformations are introduced [224]

Uk = KkPk (7.49)

Yk = UkP
−1
k UTk . (7.50)

This produces the following form of the covariance dynamics

Pk+1 = AkPkA
T
k +AkU

T
k B

−T

k +B−
k UkA

T
k +B−

k YkB
−T

k + UTk+1B
+T

k +

B+
k Uk+1 −B+

k Yk+1B
+T

k +Σk (7.51)

which is now convex in the decision variables Pk ⪰ 0, Uk, and Yk ⪰ 0. According to [224], the

following linear matrix inequality (LMI) must be imposed in order for Equation 7.50 to be satisfiedPk UTk

Uk Yk

 ⪰ 0 (7.52)

which is convex and is obtained by taking the Schur compliment of Equation 7.50. In physical

terms, when solved to optimality, Yk is the covariance of the control. After solving for the optimal

sequence of Pk, Uk, and Yk, the feedback gain matrices are obtained by Kk = UkP
−1
k .

7.5.3 Treatment of Correlated Noise

The form of the covariance dynamics in Equation 7.51 is only valid for systems subject to

Brownian motion disturbances [224]. Clearly, this is not the case when the noise is modeled using

a GP, as the disturbances at each time step are correlated to all other time steps. Unfortunately,

including this correlation using the block-covariance form of Equation 7.51 yields a result that is

non-convex. To see this, let

B̃k =
(
I −B+

k Kk+1

)−1 (7.53)
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Ãk = Ak +B−
k Kk . (7.54)

The cross-covariance between the state xk and disturbance wk is thus given by

Cov(xk,wk) = E
[
B̃kÃkδxkδw

T
k B̃

T
k

]
. (7.55)

Substituting Equation 7.45 yields the following result

Cov(xk,wk) = B̃k

k−1∑
i=1

j=i+1∏
j=k

ÃjB̃j−1

Σi,k

 B̃T
k =Mk (7.56)

which assumes that the initial state xk=1 is uncorrelated from the disturbances wk. The covariance

matrix Σi,k = Cov (wi,wk) is computed using Equation 7.43. This form is clearly non-convex due

to the multiplicative terms involving Kk.

Failing to account for the cross-covariance terms in the covariance dynamics leads to lossy

propagation of the covariance, which is not desirable for an aerocapture guidance algorithm. To

maintain the convex form of 7.51, but still incorporate the cross-covariance terms, this work proposes

to relax Mk into the covariance dynamics using the solution of the previous subproblem. Therefore,

after the first iteration of the SCP procedure, Equation 7.51 becomes

Pk+1 = AkPkA
T
k +AkU

T
k B

−T

k +B−
k UkA

T
k +B−

k YkB
−T

k + UTk+1B
+T

k +

B+
k Uk+1 −B+

k Yk+1B
+T

k +Σk +Mk +MT
k (7.57)

where the additional MT
k accounts for the symmetric nature of the GP cross-covariance matrix.

7.5.4 Convex Constraint Formulation

Because chance constraints are probabilistic by nature, equivalent deterministic forms must

be derived. First, a convex approximation of the terminal constraint on the apoapsis radius in

Equation 7.19 is obtained using a first-order Taylor series expansion about the reference such that

ε(x̄f ) ≈
∂ε

∂x

∣∣∣∣
ref

· (x̄N − x̂N ) + ε(x̂N ) = 0 . (7.58)
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The initial condition constraint in Equation 7.20 is simply

x̄k=1 = x̄0 . (7.59)

Equivalent forms of the chance constraints on the control magnitude in Equations 7.14 and

7.15 are obtained using the results of Ref. [219]. Letting y ∼ N (µ,Σ) be an m-dimensional random

vector with m = 1 or m = 2, then an equivalent form of Equation 7.14 or 7.15 is

∥µ∥2 +
√
λmax(Σ)

√
2 log

1

δ
≤ ρ⇔ P [∥y∥2 ≤ ρ] ≥ 1− δ (7.60)

where ρ > 0, and 0 < δ < 1. A proof of Equation 7.60 may be found in Ref. [219]. Since the

control is normally distributed with mean ūk and covariance Puk = Yk, the chance constraints on

the bank-angle rate and time dilation factor magnitude in Equations 7.14 and 7.15 are expressed as

∥¯̇σk∥2 +
√
λmax(Yk)

√
2 log

1

δσ̇
≤ σ̇max ∀ k = 1, . . . , N (7.61)

∥s̄k∥2 +
√
λmax(Yk)

√
2 log

1

δs
≤ smax ∀ k = 1, . . . , N . (7.62)

Unfortunately, the square root in Equations 7.61 and 7.62 makes them non-convex. Therefore, this

work takes the approach of [225] by introducing the variables ρu,k, χu,k, ρs,k, χs,k ≥ 0 such that

ρu,kIm − Yk ⪰ 0 ∀ k = 1, . . . , N (7.63)

ρs,kIm − Yk ⪰ 0 ∀ k = 1, . . . , N (7.64)

ρu,k = χ2
u,k ∀ k = 1, . . . , N (7.65)

ρs,k = χ2
s,k ∀ k = 1, . . . , N . (7.66)

This allows Equations 7.61 and 7.62 to be written as

∥¯̇σk∥2 + χu,k

√
2 log

1

δσ̇
≤ σ̇max ∀ k = 1, . . . , N (7.67)

∥s̄k∥2 + χs,k

√
2 log

1

δs
≤ smax ∀ k = 1, . . . , N . (7.68)

However, Equations 7.65 and 7.66 are now non-convex. As such, they are approximated using a

first-order Taylor series expansion about a reference χ̄k

ρu,k = χ̄u,k + 2χ̄u,k (χu,k − χ̄u,k) + νu,k ∀ k = 1, . . . , N (7.69)
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ρs,k = χ̄s,k + 2χ̄s,k (χs,k − χ̄s,k) + νs,k ∀ k = 1, . . . , N (7.70)

where νu,k and νs,k are slack variables introduced due to the linearization of Equations 7.65 and

7.66. The initial guesses for χ̄u,k and χ̄s,k are taken to be 0.3umax and 0.3smax, respectively, as

recommended by [225].

Next, the constraint on the integrated heat load at the final time must be addressed. Because

the heat load is included in the state vector, it is assumed to be normally distributed. Therefore,

the following relationship holds

P [Qf ≤ Qmax] = cdf

(
Qmax − E [Qf ]√

Cov(Qf )

)
(7.71)

which allows the constraint in Equation 7.22 to be written as

P[QN ≤ Qmax] ≥ 1− δQ ⇔ E [Qf ] + cdf−1(1− δQ)
√

Cov(Qf ) ≤ Qmax (7.72)

where cdf−1(·) is the inverse function of the standard Gaussian cumulative distribution function.

Substituting the decision variable Pk into Equation 7.72 yields

ξTQx̄N + cdf−1(1− δQ)
√
ξTQPkξQ ≤ Qmax (7.73)

where ξQ ∈ Rn+2 is used to query the element of the state x̄k that corresponds to the heat load.

Again, the square root in Equation 7.73 makes it non-convex. Instead, following [226], Equation

7.73 is written as a difference of convex (DC) functions by squaring both sides

(
cdf−1(1− δQ)

)2
ξTQPkξQ −

(
Qmax − ξTQx̄N

)2 ≤ 0 (7.74)

Qmax − ξTQx̄N ≥ 0 (7.75)

where Equation 7.75 is needed to enforce equivalence with Equation 7.73. DC constraints are only

convex if the second term is affine in the decision variables [227] which is not the case for Equation

7.74. Non-convex DC constraints may be handled using the convex-concave procedure (CCP) [228].

The CCP linearizes the second term around the reference trajectory x̂ such that

(
cdf−1(1− δQ)

)2
ξTQPkξQ −

[(
Qmax − ξTQx̂N

)2 − 2ξTQ
(
Qmax − ξTQx̂N

)
(x̄N − x̂N )

]
≤ 0 (7.76)
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which is affine in PN and x̄N . Finally, to alleviate artificial infeasibility concerns, a slack variable

νQ is introduced to relax Equation 7.76 to the form

(
cdf−1(1− δQ)

)2
ξTQPkξQ−

[(
Qmax − ξTQx̂N

)2 − 2ξTQ
(
Qmax − ξTQx̂N

)
(x̄N − x̂N )

]
≤ νQ . (7.77)

The slack variable νQ is then heavily penalized in the cost function to encourage constraint satis-

faction at convergence.

To express the variance in the final apoapsis, the terminal apoapsis is first approximated

around the reference as

ra(xN ) ≈ ra(x̂N ) +
∂ra
∂x

∣∣∣∣
ref

(xN − x̂N ) (7.78)

where the partial derivative is of the Keplerian apoapsis radius expression in Equation 7.17, not the

energy-based expression in Equation 7.19, as Equation 7.19 does not explicitly solve for the apoapsis

radius. Because the state is assumed to be normally distributed, it follows that the variance of the

apoapsis radius is

Var(ra(xf )) = SPNS
T (7.79)

where S =
∂ra
∂x

∣∣∣∣
ref

. Using the cyclic property of the trace operator, a deterministic, convex form of

the cost function in Equation 7.21 may be written as

Jcvx = SPNS
T + α0

N∑
k=1

∥ūk∥22 +
N∑
k=1

tr(Ru,kYk) +

N−1∑
k=1

tr(Qx,kPk) + α1 ∥ν∥1 + α2νQ (7.80)

where αi ∈ R+ are penalty weights, and Ru,k, Qx,k are weighting matrices for the control and state,

respectively, and ν = [νu,νs]. As recommended by [74], the state covariance is penalized based on

the local dynamic pressure

Qx,k =
1

q̂2

(
∂q

∂x

)T ( ∂q
∂x

)
(7.81)

where q = 1
2ρv

2 is the dynamic pressure, and q̂ is the dynamic pressure evaluated along the reference

trajectory x̂.
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7.5.5 Scaling of the Optimization Variables

In spacecraft trajectory optimization problems, the magnitude of the optimization variables

can vary significantly. For example, in Eq. 5.1, the radius r ∼ O(106), whereas, the bank angle

rate σ̇ ∼ O(100). This large discrepancy in variable magnitude can lead to significant buildup of

numerical error from iteration to iteration of the optimization process. It has been shown that

proper scaling of the optimization variables can increase both the accuracy and efficiency of the

optimization process [202]. For this reason, the optimization variables for the mean state and

control are scaled by introducing the following affine transformation [191]

x̄k = Sx ˜̄xk + cx (7.82a)

ūk = Su ˜̄uk + cu (7.82b)

where Sx, Su, Sp are diagonal, square matrices, cx, cu, cp are vectors that center the variables of

commensurate size, and the tilde notation (̃·) denotes the scaled variable. The specific form of the

i-th diagonal entry of S and ith entry of c for some quantity a is

Sa,ii =
ai,upper − ai,lower

2
(7.83a)

ca,i =
ai,upper + ai,lower

2
. (7.83b)

Here ai,upper and ai,upper are approximate upper and lower bounds on the i-th component of quantity

a that will produce the scaled variables to lie in the range ãi ∈ [−1, 1]. A summary of the scaling

values used in this work for the mean state and control is provided in Table 7.2. The optimization

variables for the covariance dynamics are scaled via

Pk = DP̃kD
T (7.84)

Uk = ŨkD . (7.85)

Here, the scaling matrix is taken to be D = P
1/2
f , where P

1/2
f is a matrix that satisfies Pf =

P
1/2
f

(
P

1/2
f

)T
. Since Pf is not known ahead of time, it should be selected to be close to the desired

closed-loop final covariance. Note that the matrix Yk is not scaled, as recommended by [229].
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Table 7.2: Values used to scale mean optimization variables in stochastic SCP algorithm.

Parameter ai,upper ai,lower

r (km) 1000 200
θ (deg) 0.2 -0.2
ϕ (deg) 0.2 - 0.2
v (km/s) 30 20
γ (deg) 10 -12
ψ (deg) 0.2 -0.2
σ (deg) 180 0.0
Q 100 0.0
t (s) 800 0.0
u (deg/s) 20 -20
s (s) 800 0.0

7.5.6 Complete Convex Subproblem

The first-order approximation of the dynamics is only valid in a neighborhood around the

reference trajectory, so the solution must be kept close enough to the reference trajectory to avoid

a phenomenon known as artificial unboundedness. This is accomplished by introducing the trust

region constraints

∥x̄k − x̂k∥2 + ∥ūk − ûk∥2 ≤ ηk ∀ k = 1, . . . , N (7.86)

where the ηk ∈ R+ are the trust region radii. The convex cost function is augmented with the slack

variables used to relax the control magnitude and heat-load constraint, and the trust region radii,

such that the final cost function is written as

Jcvx,aug = Jcvx +wT
trη (7.87)

wtr ∈ RN++ is a vector of trust region weights. Finally, the solution variables are scaled by substitut-

ing x̄k ← Sx ˜̄xk+cx, ūk ← Su ˜̄uk+cu, Pk ← DPkD
T , and Uk ← ŨkD wherever they appear, so that

the decision variables become the scaled state, control, and covariance. The convex subproblem to

be solved at each iteration in the SCP process is

Problem 4. Find the values of ˜̄uk, ˜̄xk, P̃k, Ũk, YK , χk, νk, νQ, and ηk that minimize the

cost Eq. 7.87 subject to equality constraints on the mean dynamics Eq. 7.44, covariance dynam-
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ics Eq. 7.51, initial condition Eq. 7.59, terminal apoapsis radius Eq. 7.58, and control magnitude

Eqs. 7.69 and 7.70, and inequality constraints on the control magnitude Eqs. 7.63, 7.64, 7.67 and

7.68, terminal heat-load Eqs. 7.75 and 7.76, and trust regions Eq. 7.86.

7.5.7 Sequential Convex Programming Formulation

The SCP requires an initial reference trajectory about which the convex subproblem is formed.

To improve the convergence behavior of the algorithm, the deterministic version of Problem 4 is first

solved. This deterministic solution then provides a starting point for the stochastic optimization

process. At each iteration, the nonlinear equations of motion are linearized around the current

reference trajectory to formulate a convex optimization problem. Solving the convex subproblem

yields an updated solution that is used to refine the feedforward control inputs. Subsequently, the

nonlinear equations of motion are integrated numerically using the updated controls to produce a

new reference trajectory. After the first iteration, the cross-covariance terms in Equation 7.56 are

relaxed into the covariance dynamics constraint using the solution from the previous iteration. This

iterative procedure continues until the change in the mean trajectory ∥x̄k − x̂k∥2 is below some

threshold, and the slack variables ν and νQ are sufficiently small. Algorithm 2 summarizes this

process.

Algorithm 2: Sequential convex programming approach for solving Problem 2
1 Input: Initial mean state x̄0 and forward control ūk, initial covariance P0

2 for n = 1: max iterations do
3 Integrate mean dynamics to get reference trajectory x̂ using x0 and ū
4 Compute linear system matrices Ak, B+

k , B−
k , zk, and wk using Eqs. 7.41 and 7.42

5 Compute GP covariance Σk using Eq. 7.43
6 if n ≥ 2 then
7 Compute cross-covariance terms Mk using Eq. 7.56
8 end
9 Solve convex subproblem for ˜̄xk, ˜̄uk, P̃k, Ũk, and Yk

10 ūk += Su ˜̄uk + cu, Update feedforward control profile
11 Kk = UkP

−1
k , Compute feedback gain matrices

12 end
13 Output: feedforward control, ūk and feedback gain matrices, Kk
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7.6 Results

This section applies the stochastic sequential convex programming algorithm described in

Section 7.5 to a Neptune aerocapture scenario. Uncertainty in the vehicle’s initial state, stagnation-

point heat flux, aerodynamic coefficients, and the atmospheric density is considered. An optimal se-

quence of feedforward controls and feedback matrices are obtained in order to guide the entire initial

distribution to a terminal distribution while satisfying probabilistic constraints on the control mag-

nitude and terminal heat load. The values used to scale the cost function in Equation 7.87 are sum-

marized in Table 7.3. An approximate final covariance of Pf = diag[σ2r , σ
2
θ , σ

2
ϕ, σ

2
v , σ

2
γ , σ

2
ψ, σ

2
σ, σ

2
Q, σ

2
t ],

where 3σr = 10, 000 m, 3σθ = 0.2 deg, 3σϕ = 0.2 deg, 3σv = 100 m/s, 3σγ = 0.1 deg, 3σψ = 0.2

deg, 3σσ = 180 deg, 3σQ = 40 kJ/cm2, and 3σt = 50 s, is used to scale the covariance dynamics in

the subproblem.

Table 7.3: Values used to scale cost function in SCP algorithm.

Term Value

Control, α0 1× 10−3

Control Cov., Ru,k diag([1× 10−3, 1× 10−3])
State Cov., Qx,k From Eq. 7.81
Control slack, α1 100
Heat load slack, α2 1,000
Trust region, wtr 1× 10−3

7.6.1 Neptune Aerocapture Reference Mission

The entry state is derived from an existing Neptune aerocapture systems analysis [13], and

the nominal initial conditions x̄0 = [r0, ϕ0, θ0, v0, γ0, ψ0, σ0] are summarized in Table 7.4. The

initial flight path angle is chosen to be in the middle of the nominal aerocapture corridor for a

100, 000 × 3, 000 km target orbit. The atmospheric density is modeled using the nominal profile

from NeptuneGRAM [121]. To be consistent with the geometry studied in Ref. [45], the entry

vehicle is modeled as an MSL-style, 70-degree sphere cone with a base diameter of 5 meters and
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a nose radius of 1.25 m. The nominal lift-to-drag ratio and ballistic coefficient are L/D = 0.3

and β = 110 kg/m2, respectively, as summarized in Table 7.5. To provide the initial guess for the

stochastic sequential convex programming algorithm, the deterministic version of Problem 4 is first

solved. A value of N = 50 is used, and Problem 4 is solved in Julia [205] using the Convex.jl

[188] toolbox and MOSEK solver [230]. Figure 7.3 shows the nominal trajectory and corresponding

heat-load profile. The resulting apoapsis altitude error is less than 100 m, and the final heat load

is 84 kJ/cm2.

Table 7.4: Nominal inertial initial conditions for Neptune mission.

h0 (km) ϕ0 (deg.) θ0 (deg.) v0 (km/s) γ0 (deg.) ψ0 (deg.) σ0 (deg.)

1000 0 0 29.0 -11.64 0 10

Table 7.5: Nominal mass and aerodynamic properties for entry vehicle.

Mass (kg) CL CD Aref (m2)

3563.7 0.495 1.65 19.6
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Figure 7.3: Nominal apoapsis altitude (a) and heat-load profile (b) obtained from solution to de-
terministic problem.
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7.6.2 Uncertainties

Four key uncertainties are considered: initial conditions, stagnation-point heat flux, aerody-

namics, and the atmospheric density. Each is integrated into the algorithm to guide the optimization

process toward solutions that are both feasible and robust under real-world variability.

Initial condition uncertainty is modeled as a multivariate Gaussian distribution, with the

mean state taken as the values provided in Table 7.4, and the covariance is specified using the

initial 3σ values in Table 7.6. Only the initial altitude, velocity, flight-path angle, and bank angle

are dispersed, as these states define the majority of the aerothermodynamic environment. This

probabilistic representation captures plausible deviations in the initial conditions, ensuring that the

optimization accounts for potential variations in the trajectory’s starting state due to delivery error.

Uncertainty in the stagnation-point heat flux, aerodynamics coefficients, and atmospheric density

is modeled using the GP models described in Section 7.3

The control magnitude and time-dilation factor magnitude are constrained such that the prob-

ability of exceeding the allowable limits is below a specified threshold, ensuring that the requested

control authority is feasible, and the time dilation produces a physical time mapping. Similarly, the

final heat load is constrained to ensure that aerothermal loads remain below the limitations of the

TPS. These chance constraints enable the algorithm to generate solutions that balance performance

and robustness, providing trajectories that are not only optimal under nominal conditions but also

resilient to significant uncertainties. This ensures safety and reliability in both control actuation

and thermal protection. The constraint boundary and confidence interval for each chance constraint

are summarized in Table 7.7.

Table 7.6: Initial covariance used in optimization and Monte Carlo analysis.

h (km) v (km/s) γ (deg.) σ (deg.) Q (kJ/cm2) t (s)

3σ0 1.0 0.1 0.2 10 1.0 1.0
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Table 7.7: Control and problem-specific constraints for Neptune aerocapture.

Parameter Max. Value Confidence Interval

Bank-angle rate, σ̇max 20 deg/s δσ̇ = 1− 0.9973
Time dilation factor, smax 800 s δs = 1− 0.9973
Heat load, Qmax 98 kJ/cm2 δQ = 1− 0.9973

7.6.3 Monte Carlo Analysis

Algorithm 2 is run for a total of five iterations, after which the optimized feedback gains

are computed. The termination is dictated by user feedback. To assess the performance of the

optimized control policy, a 3,000 case Monte Carlo analysis is performed. For each of the cases, the

initial conditions are sampled from the distribution in Table 7.6, the stagnation-point heat flux and

aerodynamic coefficients are modeled using a single sample from the respective GP models, and the

atmosphere is dispersed using NeptuneGRAM. The simulation for each case is terminated when the

spacecraft returns to the original altitude or when the final time is reached, whichever occurs first.

The dispersed profiles are integrated through the nonlinear equations of motion in two different

scenarios. In the first scenario, only the optimized feedforward control is used. This is referred to

as the “open-loop” profile in the coming results. The second scenario uses both the feedforward

control and feedback gain matrices and is referred to as “closed-loop.” Using the first-order hold

parameterization on the control, both the feedforward and feedback controls are computed using

linear interpolation at intermediate times τ ∈ [τk, τk+1]. Figures 7.4–7.9 summarize the results. In

Figures 7.4–7.8, the nominal profile is shown in black, 20 of the 3,000 dispersed profiles are shown

in red, and the 99% confidence intervals are shown in the shaded region. Figure 7.9 shows all 3,000

data points.
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Figure 7.4: Apoapsis-altitude profiles produced using open-loop (a) and closed-loop (b) control
policies.
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Figure 7.5: Distribution of ∆V using open-loop (a) and closed-loop (b) control policies.

In the open-loop results, only the nominal case is able to reach the target apoapsis altitude,

whereas the closed-loop control successfully guides the entire initial distribution to the desired

target. From Figure 7.4, the average open-loop apoapsis altitude error is in excess of 100,000 km,

while the average closed-loop apoapsis altitude error is less than 40 km. Additionally, the open-loop

control results in 36 cases that remain hyperbolic (i.e. do not capture), while the closed-loop policy
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Figure 7.6: Bank-angle profiles produced using open-loop (a) and closed-loop (b) control policies.
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Figure 7.7: Bank-angle rate profiles produced using open-loop (a) and closed-loop (b) control poli-
cies.

produces a 100% capture rate. The substantial increase in apoapsis accuracy is reflected in Figure

7.5, which compares the ∆V requirements for two control policies. For the closed- and open-loop

control policies, the 99-th percentile ∆V requirements are 3502 m/s and 337 m/s, respectively,

indicating that the closed-loop policy produces over an order of magnitude improvement.

The nominal bank-angle profile resembles a bang-bang form, with a sharp rise around t = 85
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Figure 7.8: Heat-load profiles produced using open-loop (a) and closed-loop (b) control policies.
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Figure 7.9: Distributions in final time and heat load using open-loop (a) and closed-loop (b) control
policies.

seconds, after which it settles at a constant value of approximately 75 degrees. A bang-bang

bank-angle profile is known to minimize the ∆V required to correct the in-plane orbital elements

[55]. As such, the trends observed in Figure 7.6 demonstrate that choosing to target an apoapsis

radius, and not directly minimize ∆V , is not resulting in significant loss of optimality. The effect

of the feedback control on the bank angle is clearly observed in Figure 7.6. Because the open-loop
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scenario only uses the nominal feedforward control, the resulting distribution of open-loop bank-

angle profiles is relatively small. The variation in Figure 7.6a is solely a product of the uncertainty

in the initial bank angle. In contrast, the closed-loop bank-angle profiles in Figure 7.6b exhibit

greater variability. Feedback control is acting directly on the bank-angle rate, so this behavior is

expected and demonstrates the ability of the feedback controller to respond to dispersions in the

initial conditions and heat flux. Additionally, the first-order hold parameterization of the bank-angle

rate is apparent, as all bank-angle profiles are smooth. Some jaggedness is observed in Figure 7.6b

due to the wrapping of the bank angle to the range σ ∈ [−180, 180] degrees. A zero-order hold on

the bank-angle rate would also produce smooth bank-angle profiles (although slightly less smooth

than a first-order hold), however, it would produce a discontinuous bank-angle rate (i.e. infinite

bank acceleration) which cannot be achieved by a spacecraft’s control systems.

From Figures 7.7, the bank-angle rate magnitude chance constraint is satisfied for the open-

loop and closed-loop profiles. The nominal bank-angle rate peaks just below the 20 deg/s limit,

preserving margin for dispersions. Because the open-loop results only use the nominal feedforward

bank-angle rate and time-dilation factor, it is expected that there is no control magnitude constraint

violation. Generally, the closed-loop bank-angle rate profiles remain close to the nominal feedforward

profile. Small, relatively, constant deviations are observed which produce the smoothly varying

bank-angle profiles in Figure 7.6b. The bank-angle rate profiles produced in all cases are well

within the capabilities of existing entry systems [194].

Interestingly, the open-loop and closed-loop control policies produce a similar level of heat-

load constraint satisfaction, as shown in Figures 7.8 and 7.9. Specifically, the open-loop policy

results in seven of the 3,000 cases exceeding the heat-load limit of 98 kJ/cm2, and the closed-loop

policy produces six cases that exceed the limit. These correspond to 99.76% and 99.80% constraint

satisfaction rates, respectively, which are both within the specified 3σ confidence interval. As

illustrated in Figure 7.9, the closed-loop heat-load shows significant correlation with the final time

of flight, as expected. On the other hand, Figure 7.9a shows that the open-loop policy produces a

much broader and less correlated distribution of the time of flight and the heat load. This difference
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arises because open-loop control produces greater variability in the altitudes and velocities traversed

along the trajectory, which are stronger influences on the final heat load than variations in the final

time. Finally, the control magnitude and time-dilation factor chance constraints are satisfied in

99.97%, and 100% of the 3,000 cases, respectively. Table 7.8 summarizes the constraint satisfaction

rates for all chance constraints in this analysis.

Table 7.8: Chance constraint satisfaction rates using closed-loop control.

Constraint Max. Value Specified Satisfaction Rate (%) Actual Satisfaction Rate (%)

Heat load 98 kJ/cm2 99.73 99.80
Bank-angle rate 20 deg/s 99.73 99.97
Time-dilation 800 s 99.73 100.0

The developed algorithm demonstrates sufficient robustness to the uncertainties under in-

vestigation, effectively managing variability in initial conditions, stagnation-point heat flux, aero-

dynamics, and atmospheric density, while satisfying chance constraints on critical parameters. By

explicitly coupling the aerocapture trajectory to the aerothermodynamic environment, the algorithm

integrates the vehicle’s dynamics and aerothermal loads in a more cohesive and realistic manner.

This explicit coupling enables the stochastic SCP framework to address challenges in a highly

coupled system, ensuring reliable trajectory design and thermal protection even under significant

uncertainty. The direct consideration of uncertainty differs from existing closed-loop controllers,

such as the fully numerical predictor-corrector guidance (FNPAG) [55] algorithm, which are unable

to account for aerothermodynamic constraints or aerothermodynamic uncertainty.

Table 7.9 provides a final comparison of the statistics for all key variables derived from the

stochastic algorithm and FNPAG (as discussed in Chapter 6). It’s worth noting that the heat-

load statistics for FNPAG do not incorporate uncertainties in the aerothermodynamic environment;

including these would increase FNPAG’s total heat-load. Even without accounting for heat-flux

uncertainty, FNPAG exceeds the heat-load constraint in approximately 50% of cases, whereas the

stochastic algorithm meets the constraint with 99.8% confidence. Overall, the closed-loop con-
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trol policy and FNPAG yield comparable ∆V requirements and apoapsis accuracy, with FNPAG

performing slightly better. Since the closed-loop controller explicitly addresses aerothermodynamic

uncertainty, relaxing the heat-load constraint and related uncertainties could enhance the stochastic

algorithm’s performance in terms of ∆V and apoapsis targeting.

Table 7.9: Comparison of Neptune aerocapture statistics for the stochastic algorithm and FNPAG.

Closed Loop (Capture Rate = 100.0%) Mean Std. Dev. 1st Perc. 50th Perc. 99th Perc.

In-Plane ∆V (m/s) 224.1 29.59 192.3 217.1 337.6
Apoapsis Error (%) 1.690 1.398 3.232×10−2 1.427 6.892
Heat Load (kJ/cm2) 83.94 6.637 70.63 83.27 96.91

Open Loop (Capture Rate = 98.8%) Mean Std. Dev. 1st Perc. 50th Perc. 99th Perc.

In-Plane ∆V (m/s) 1071 723.6 204.7 909.0 3502
Apoapsis Error (%) 140.7 1400 7.570×10−1 36.94 1628
Heat Load (kJ/cm2) 83.97 4.536 74.38 83.80 94.59

FNPAG (Capture Rate = 99.8%) Mean Std. Dev. 1st Perc. 50th Perc. 99th Perc.

In-Plane ∆V (m/s) 219.6 216.8 187.9 202.6 306.7
Apoapsis Error (%) 1.543 9.503 1.612×10−2 7.443×10−1 6.293
Heat Load (kJ/cm2) 98.03 2.236 93.94 98.10 102.2

7.7 Summary

This chapter developed a robust and efficient stochastic aerocapture guidance algorithm de-

signed to respond to uncertainties in delivery state, aerothermodynamics, and atmospheric density.

The algorithm leveraged Gaussian-process (GP) surrogates to model uncertainty in the entry ve-

hicle’s stagnation-point convective heating, aerodynamic coefficients, and atmospheric properties,

which provided a computationally efficient and accurate representation of the uncertainties as a

function of their relative input spaces. The stochastic optimal control problem was solved using a

stochastic sequential convex programming (SSCP) framework, in which both feedforward control

inputs and feedback gain matrices were optimized. Chance constraints were enforced to ensure prob-

abilistic satisfaction of critical constraints—such as control authority and terminal heat load—while

guiding the spacecraft to its target orbit. A distinguishing feature of this approach was the incor-
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poration of variable time of flight within the feedback control design, enabling dynamic adaptation

to uncertainties and enhancing the framework’s flexibility.

By directly coupling aerocapture dynamics with aerothermal uncertainty, this method estab-

lished an efficient stochastic framework that captured the complex interplay between trajectory

and aerothermodynamic environment. A 3,000-case Monte Carlo analysis was used to assess the

algorithm’s robustness for a Neptune aerocapture scenario. Open-loop results exhibited inconsis-

tent orbit targeting, with significant deviations from the desired apoapsis altitude and frequent

violations of heat-load constraints. In contrast, the closed-loop control strategy successfully miti-

gated all uncertainty sources, achieved precise orbit insertion, and maintained constraint compliance

within specified tolerances. Furthermore, this approach required substantially less ∆V for final or-

bit adjustments compared to the closed-loop policy, with over an order of magnitude improvement

observed when using the closed-loop policy.



Chapter 8

Conclusions

“What we know is a drop, what we don’t know is an ocean.”

— Isaac Newton

This chapter provides an overview of the research conducted in this dissertation. It begins by

briefly outlining the methodologies and key results from each preceding chapter. Then, it highlights

the distinct contributions this work offers to the field. Finally, it explores the broader trajectory of

this research and offers specific suggestions for future investigations.

8.1 Dissertation Summary

Chapter 2 described the physical concepts and numerical methodologies required to model

the thermochemical nonequilibrium phenomena that occur behind the strong shock waves produced

along an aerocapture trajectory. It began by exploring the physical processes in a hypersonic envi-

ronment, highlighting their importance for aerocapture vehicles, and clarified the difference between

thermochemical equilibrium and nonequilibrium. It then described two numerical tools: LeMANS, a

CFD code used to predict aerodynamic and convective-heating environments, and NEQAIR, which

modeled the radiative heating. Lastly, it outlined the mathematical foundations of two surrogate-

modeling methods: polynomial chaos expansion (PCE) and Gaussian process regression (GPR).

It presented a global sensitivity analysis (GSA) approach based on PCE and explained the core

application of GPR in probabilistic surrogate modeling, emphasizing their importance for aerother-

modynamics uncertainty quantification (UQ).
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In Chapter 3, an aerothermodynamic UQ/GSA study was presented for an entry capsule

performing aerocapture at Neptune. Convective heating showed low uncertainty (4.10–11.7%), pri-

marily influenced by hydrogen electron-impact-ionization (EII) rate coefficient and collision integral

variability. Radiative heating, significant at velocities above 25 km/s, exhibited high uncertainty

(>160%), driven mainly by H2 dissociation rate coefficients, with an increased shoulder sensitivity

to hydrogen EII. Variability in the freestream CH4 concentration, which is currently speculated to

strongly affect the radiative heating, produced little impact on the radiative-heating uncertainties.

Including H2
+ in the model notably reduced radiative heating by up to 40%. The findings of Chap-

ter 3 suggested a need for conservative thermal protection system (TPS) design due to radiative

uncertainties and a call for further research into hydrogen-related reactions.

A Gaussian Process Regression (GPR) framework was presented in Chapter 4 for creating

efficient surrogate models capable of approximating the high-fidelity aerothermodynamic uncer-

tainty predicted in Chapter 3 along an entire aerocapture trajectory. These models accurately

predicted key quantities, and their associated uncertainties, including stagnation-point heat flux,

aerodynamic coefficients, and surface heat-flux distributions. A multi-output GPR approach was

utilized to identify underlying data correlations, and a multi-fidelity approach enabled the efficient

blending of low- and high-fidelity data, balancing cost and accuracy. The surrogates were then inte-

grated into a trajectory simulation framework, showcasing their ability to quantify hysteresis effects

from aerothermodynamic uncertainty. To ensure physical consistency, GPR kernel functions were

modified to enforce invariances, such as symmetry in aerodynamic coefficients. These modifications

greatly improved the predictive accuracy, especially when extrapolating beyond the training data.

Chapter 5 laid out the fundamental concepts of aerocapture trajectories and the goals of

aerocapture guidance. It started by detailing the equations of motion for simulating a spacecraft’s

trajectory, accounting for gravitational and aerodynamic forces, and introduced the “entry corridor”

concept, which bounds the feasible trajectory space and helps inform the selection of atmospheric-

entry conditions. It then explained the fundamental goals of guidance, including a description

of the fully numerical predictor-corrector aerocapture guidance (FNPAG) algorithm. The chapter
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concluded by presenting the fundamental aspects of convex optimization and explained how sequen-

tial convex programming (SCP) is used for trajectory optimization, including several introductory

tutorials for using SCP to solve both deterministic and stochastic trajectory-optimization problems.

The first aerocapture guidance algorithm developed in this dissertation was presented in

Chapter 6. It introduced the convex predictor-corrector aerocapture guidance (CPAG) algorithm,

a predictor-corrector aerocapture guidance algorithm built on the principles of SCP. By solving

a convex optimization problem in the correction phase, CPAG was able to reason about more

complex control profiles, removing the need for a separate lateral logic algorithm to manage out-of-

plane error. It also seamlessly integrated system-level constraints like aerodynamic loading and heat

load into the correction phase -— something that existing NPC algorithms like FNPAG cannot do.

Numerical tests showed CPAG effectively guided vehicles with low to mid lift-to-drag ratios to their

target orbits under aerodynamic, delivery, and atmospheric uncertainties, with Monte Carlo analyses

comparing it to FNPAG for Neptune-, Mars-, and Earth-aerocapture scenarios. CPAG slightly

underperformed FNPAG for in-plane ∆V requirements at Neptune and Mars but outperformed

it at Earth, while showcasing a substantial improvement in inclination targeting and constraint

satisfaction rate relative to FNPAG. The convex framework managed uncertainties effectively and

made constraint integration straightforward. Finally, an energy-based method for targeting an

apoapsis radius that accounted for non-spherical gravity perturbations was presented. It was shown

that, for many conditions, standard Keplerian expressions are inaccurate, and using the energy-

based expressed improved ∆V prediction accuracy by up to 25%.

An alternative, stochastic optimization approach, was taken for the aerocapture guidance

problem in Chapter 7. A chance-constrained covariance steering problem was defined, subject to

spatially-varying uncertainty in the aerothermodynamics, aerodynamic, and atmospheric density.

The GPR framework developed in Chapter 4 was leveraged to model the uncertainty in the aerody-

namics and aerothermodynamics, and a Gaussian-process based approximation of the atmospheric

density was used to model the uncertainty in the planetary atmosphere. A state-feedback con-

trol law was optimized to simultaneously compute both feedforward and feedback control terms to
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guide an uncertain atmospheric entry distribution to the target orbit, while probabilistically satis-

fying aerothermodynamic constraints to a prescribed tolerance. In doing so, this chapter explicitly

coupled trajectory dynamics with aerothermal uncertainty in a robust and efficient manner.

8.2 Contributions

Within the context of studying the interplay between hypersonic aerothermodynamics and

trajectory/guidance design for aerocapture, the major contributions of this research may be sum-

marized as follows:

• Aerothermodynamic uncertainty quantification and sensitivity analysis for Ice

Giant aerocapture: A modern and comprehensive assessment of the aerothermodynamic

uncertainty in Ice Giant aerocapture trajectories was performed, supporting the current

interest in Ice Giant exploration.

• Development of a reduced-order modeling framework using Gaussian-process re-

gression for aerothermodynamic uncertainty propagation: A probabilistic approach

was employed to develop surrogate models that reliably captured aerothermodynamic un-

certainty, with physical constraints incorporated to enhance model accuracy and decrease

the required training data volume.

• Predictor-corrector aerocapture guidance algorithm using convex programming:

Principles of SCP were used to design an NPC guidance algorithm that easily incorporated

system-level constraints and eliminated the need for discrete lateral logic. Its capabilities

were compared to the current state of the art, highlighting its advantages and disadvantages.

• Robust apoapsis targeting for NPC guidance: An energy-based expression for target-

ing an apoapsis radius in aerocapture guidance algorithms was formulated. Because energy

is well-defined for any orbit, it substantially improves the convergence properties of NPC

guidance algorithms, especially for highly elliptical target orbits. It is compatible with any

NPC guidance, not just CPAG.
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• Stochastic aerocapture guidance: A stochastic optimization problem that considers

aerodynamic, atmospheric, and aerothermodynamic uncertainty was used to solve for a feed-

back control policy that could be implemented onboard a spacecraft. Explicit treatment of

the aerothermodynamic uncertainty within the guidance law provides a more comprehensive

approach to the design and analysis of aerocapture guidance and aerothermodynamics.

• Development of a generalized trajectory-optimization program: A general purpose

trajectory simulation and optimization program for broader use in the NGPDL hypersonics

research group was designed. A particle swarm optimization algorithm, combined with a

modular optimization-problem definition format, allows for rapid exploration of the hyper-

sonic trajectory space [231, 232].

• Tutorials on convex optimization for trajectory optimization: Solving a non-convex

optimal control problem using SCP is challenging, both numerically and in implementation.

In an attempt to help others avoid many of the headaches associated with using SCP,

this dissertation produced several introductory tutorials for solving both deterministic and

stochastic trajectory-optimization problems. They have been made open source and are

available on the author’s GitHub.

8.3 Recommendations for Future Work

The research carried out in this dissertation addressed the interplay of hypersonic aerothermo-

dynamics and trajectories at a fundamental level, and there are still many new interesting directions

to explore. Some of these are listed below.

Aerothermodynamic Uncertainty Quantification for Ice Giant Aerocapture

• Inclusion of turbulence: The UG/GSA study performed in Chapter 3 assumed laminar flow.

For MSL-scale entry capsules, the flow will likely be turbulent throughout much of the heat

pulse, so it will be necessary to quantify the level of heating and uncertainty augmentation

https://github.com/jens-rataczak/JuliaConvexOptDemos
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introduced by turbulent physics. West and Johnston [42] provide a starting point for key

parameters in turbulent flow, but an adaptation to H2/He/CH4 mixtures would be necessary.

• Coupled CFD-Material-Response-Radiation UQ: As noted in Chapter 3, the radiative heat-

ing in the earlier portions of the Ice Giant aerocapture is a similar order of magnitude as the

convective heating. As a result, the exclusion of the radiative source term in LeMANS is

likely incorrect. The presence of the additional source term in the energy balance will pro-

duce a net cooling of the flow, which could have substantial effects on both the convective-

and radiative-heating environments. Furthermore, because the UQ study in Chapter 3 is

along a trajectory, it would be more representative to include the transient material re-

sponse in the analysis. Carter and Boyd [47] and Erb et al. [117] provide an excellent

review of carbon-based reactions and their uncertainties for ablative materials used in an

entry-capsule TPS. The work of Erb et al. [117] would be more representative of the work

done in this dissertation, as they investigated a Jovian entry mission. This approach has

further implications beyond the uncertainty in ablation reactions, as an ablating TPS serves

to cool the surface of the vehicle. Generally, a cooler surface temperature produces higher

convective heat fluxes, which would affect the feasible trajectory space.

• Investigation of higher-fidelity physics: For the high velocities in Ice Giant aerocapture, it

may be necessary to consider more advanced physics within the computational models. The

first area for investigation would be the effects of ionization potential lowering, as a sub-

stantial sensitivity to the hydrogen ionization rate coefficients was observed. As the electron

number density increases, the ionization potential for H decreases, as originally bound or-

bits past a certain principal quantum number can no longer exist (i.e. the electron becomes

unbound). This reduces not only the number of electronic levels treated for evaluating

the thermodynamic properties of H, but also the heat of formation for H+ [233]. Erb et

al. [117] found the effects of ionization potential lowering to be substantial for Jovian entry,

however, the conclusions of such an extreme environment cannot necessarily be generalized
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to all H2/He atmospheres. The next key area to investigate would be the usage of the full

Stefan-Maxwell multi-component diffusion model. While there is a large difference in the

molecular weights between hydrogen/helium and carbon-based species, an effective binary

diffusion coefficient was used in Chapter 3, as the amount of carbon present in the boundary

layer is small. This assumption would break down if ablation products are modeled, because

a larger concentration of heavier hydrocarbons would be injected into the boundary layer.

• Rarefied conditions: The goal of this dissertation was to take steps toward a more coupled

treatment of the aerothermodynamics and trajectory of a hypersonic vehicle, yet only select

locations along a trajectory were analyzed in detail. To further characteristic the coupling

between the trajectory/guidance design and aerothermodynamic uncertainty, it would be

necessary to extend the UQ/GSA analysis to higher-altitude, rarefied regimes. In Martian

atmospheres, the motion of the sonic line around the shoulder of an MSL-style capsule

can produce aerodynamic instabilities [234, 235], so it would be interesting to quantify the

extent of this effect, if anything, for Ice Giant atmospheres. This would require the use of

a direct simulation Monte Carlo (DSMC) solver, which is not a trivial undertaking.

Usage of Gaussian-Processes for Aerothermodynamics

• Bayesian inference of aerothermal quantities of interest Bayes’ theorem is stated as

P (A|B) =
P (B|A)P (A)

P (B)
(8.1)

where the P (A|B) is the probability of observing event “A” given that event “B” has occurred,

P (B|A) is the likelihood of observing event “B” (i.e. the conditional, joint probability), P (A)

is the prior probability density of event A, and P (B) is the prior probability density of event

B. A benefit of GPR is that the surrogate predicts a conditional distribution, meaning

P (B|A) is obtained for free. In the context of aerothermodynamic modeling, the event “B”

could be the heat flux, and event “A” represents the CFD inputs and GP hyperparameters.

Chapter 3 identified several parameters to which the convective and radiative heating were
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sensitive, and the GPR framework developed in Chapter 4 could be used to infer these

parameters using surface measurements of the heating environment. This approach could

be extended to other QoIs, such as trim conditions [137] and freestream compositions,

provided there is a strong enough correlation.

• Explicit constraints on GPR posterior distribution: Chapter 4 presented a technique for

encoding aerodynamic symmetry into the GP kernel, which drastically improved the three-

dimensional aerodynamic surrogate model’s out-of-distribution predictive capabilities. Other

constraints of interest would be inequality constraints on the GP and its derivatives, specif-

ically boundedness and monotonicity. Agrell [236] presents a method for enforcing these

types of constraints in a GPR framework, although it requires knowledge of the kernel’s

derivatives which makes it challenging to apply to the multi-output and multi-fidelity mod-

els developed in Sections 4.4.1 and 4.4.3, respectively.

Aerocapture Guidance

• Direct-force control: The guidance algorithms developed in this dissertation used bank-angle

modulation to control the spacecraft. As highlighted in Chapter 6, using the bank angle to

steer inherently couples the in- and out-of-plane motion, making the balancing of apoapsis

and inclination accuracy difficult. An alternative to bank-angle modulation is direct-force

control (DFC) [169, 209, 237]. DFC independently controls the angle of attack and sideslip

angle, which decouples the in- and out-of-plane guidance channels. A DFC version of CPAG

would be particularly interesting, as the convex-optimization foundation would allow for

complete angle-of-attack and side-slip angle profiles to be optimized simultaneously.

• More detailed aerothermal constraints: In Chapters 6 and 7, the aerothermodynamic con-

straints were imposed on the integrated heat load. The heat load is correlated to the thick-

ness of the TPS, as a thicker TPS is required to prevent the bond-line temperature limit

from being exceeded in harsher aerothermal environments. Accounting for a bond-line tem-

perature constraint in a trajectory optimization problem, while more realistic, introduces
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additional computational complexity because it requires computing the transient material

response of the heat shield along the entire trajectory. However, the GPR framework in

Chapter 4 could be used to rapidly propagate the surface-heating environment along the

trajectory, allowing a computationally efficient, one-dimensional heat-conduction code to

be included within the optimization framework.

• Stochastic density model within NPC guidance: The two guidance algorithms developed in

this dissertation solved either a deterministic or a stochastic optimal control problem. Each

approach has their benefits, so it would be interesting to pursue a hybrid deterministic-

stochastic guidance approach. One route for this could be including the stochastic density

model used in Chapter 7 within the prediction phase of an NPC guidance like CPAG or

FNPAG. Typically, NPC guidance algorithms use a nominal density profile in the prediction

phase that is scaled up or down using sensed acceleration data. An alternative to this would

be to use an unscented transform (UT) to propagate multiple trajectories using several re-

alizations of the stochastic density model [238]. Instead of predicting a single, deterministic

final state, the UT would enable the NPC to construct a terminal state distribution, poten-

tially improving its robustness to density variability. Because each sample used to construct

the UT is independent, this is a process that could be parallelized.

• Out-of-plane targets in stochastic guidance: The only target for the guidance in Chapter 7

was an apoapsis radius, and it would be interesting to extend the stochastic algorithm to

additionally consider an inclination target.

• Auto-Tuned Weights: Both algorithms developed in this dissertation required the cost-

function and constraint penalty weights to be painstakingly tuned by hand. Recent work

from Mceowen et al. [239] has developed techniques for auto-tuning these weights, which

decreases the amount of effort required to tune the weights for a given problem. This could

potentially improve the robustness and generalization of both CPAG and the stochastic

aerocapture guidance algorithm.
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Appendix A

Hydrogen-Helium-Methane Chemical Kinetic Models

A.1 Chemical Rate Model

Table A.1: Flow field chemical reactions for Ice Giant aerocapture aerothermodynamic analysis.

Number Reaction Third Body Af (cm3/mol/s) ηf Df (K) Ui Ref.
Dissociation
1 H2 + M ↔ H + H + M Molecules 1.04e19 -1.00 51,958 [0.25, 3.0] [26]

H2 + M ↔ H + H + M Atoms except He 8.35e19 -1.00 51,958 [0.25, 3.0] [26]
H2 + M ↔ H + H + M He 4.17e18 -1.00 51,958 [0.25, 3.0] [26]

2 CH4 + M ↔ CH3 + H + M All 1.22e28 -2.91 54,000 [0.1, 10] [118]
3 CH3 + M ↔ CH2 + H + M All 2.82e14 0.00 42,460 [0.1, 10] [118]
4 CH3 + M ↔ CH + H2 + M All 5.00e15 0.00 42,800 [0.1, 10] [118]
5 CH2 + M ↔ CH + H + M All 4.00e15 0.00 41,800 [0.1, 10] [118]
6 CH2 + M ↔ C + H2 + M All 1.30e14 0.00 29,700 [0.1, 10] [118]
7 CH + M ↔ C + H + M All 1.90e14 0.00 33,700 [0.5, 2] [118]
8 C2 + M ↔ C+C+M All 3.72e14 0.00 69,800 [0.1, 10] [118]
Ionization
9 H + H ↔ H+ + e– + H 3.09e11 0.50 116,100 [0.1, 10] [30, 112]
10 H + He ↔ H+ + e– + He 2.44e11 0.50 116,100 [0.1, 10] [30, 112]
11 H + e– ↔ H+ + e– + e– 1.14e14 0.50 157,800 [0.1, 10] [30, 112]
12 H + e– ↔ H+ + e– + e– 2.10e14 0.50 116,100 [0.1, 10] [30, 112]
13 C + e– ↔ C+ + e– + e– 1.24e15 0.28 142,700 [0.5, 10] [118]
Exchange
14 H2 + C ↔ CH + H 4.00e14 0.00 11,700 [0.5, 2] [118]
15 CH4 + H ↔ CH3 + H2 1.54e14 0.00 6,874 [0.1, 10] [118]
16 CH3 + H ↔ CH2 + H2 6.03e13 0.00 76,000 [0.5, 2] [118]
17 CH2 + H ↔ CH + H2 4.21e08 -0.09 -1,560 [0.1, 10] [118]
18 CH + C ↔ C2 + H 2.00e14 0.00 0.0000 [0.1, 10] [118]
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Table A.2: Additional chemical reactions included when considering H2
+.

Number Reaction Af (cm3/mol/s) ηf Df (K) Ui Ref.
Dissociation
1 H2

+ + e– ↔ H+ + H + e– 1.46e17 0.0 37,460 [0.1, 10] [120]
Ionization
2 H + H ↔ H2

+ + e– 1.13e15 -0.06 129,060 [0.5, 100] [118, 126]
3 H2 + e– ↔ H2

+ + e– + e– 4.05e13 0.52 180,767 [0.5, 2] [118]
Exchange
4 H2 + H+ ↔ H2

+ + H 1.90e14 0.00 21,902 [0.1, 10] [120]

A.2 Boltzmann-Weighted Rate Coefficient

The associative ionization (AI) reaction studied in this research is H(n = 1) + H(n = i >

1) ↔ H2
+ + e−, where n is the principal quantum number. In [40], the first 18 electronic states

of hydrogen are explicitly modeled, and the state-specific AI rate data of Srećković et al. [126] is

used. However, because LeMANS uses Park-style two-temperature kinetics, the individual electronic

states of hydrogen are not tracked. Instead, a “Boltzmann-weighted” rate coefficient may be defined

as [125]

kBW (Ttr, Tv) =

18∑
n=2

F1(Tv)Fn(Tv)kn(Ttr) (A.1)

where kn(Ttr) is the AI rate coefficient of the channel corresponding to the n-th excited state of

hydrogen, and the Fn is the Boltzmann fraction of the n-th electronic state. The Boltzmann fraction

is defined as

Fn(Tv) =
gn exp (−θn/Tv)∑18
i=1 gi exp (−θi/Tv)

(A.2)

where θn and gn are the characteristic electronic temperature and degeneracy of the n-th electronic

state, respectively. Values of θn and gn are taken from the NIST database [240] and are summarized

in Appendix A.3. Because ionization occurs preferentially from electronically excited configurations,

whose populations are often below that of a Boltzmann distribution at Tv = Te in a net-ionizing

environment, the Boltzmann-weighted rate can serve as an upper bound in an ionizing flow.

To validate the implementation of the Boltzmann-weighted rate, its prediction of the rate of

associative ionization is compared to the net state-specific rate of associative ionization. Number
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densities of the electronic states of atomic hydrogen are computed using NEQAIR along two lines

of sight. The first line of sight corresponds to the stagnation line, and the second corresponds to

the shoulder. The net state-specific rate is give by

rnet(T ) =

18∑
i=2

nH(n=1)nH(n=i)ki(T ) (A.3)

where nH(n=i) is the density of the i-th excited state of hydrogen predicted by NEQAIR and ki is the

state-specific rate corresponding to the i-th channel. Figure A.1 displays the AI rates predicted by

the Boltzmann-weighted rate and the net state-to-state rate. In these results, NEQAIR assumes all

state populations are Boltzmann, so the agreement between the two rates is expected. Figure A.2

relaxes the Boltzmann population assumption in NEQAIR and instead uses the QSS approximation.

The gray lines in each figure denote the AI rate for each electronic state of atomic hydrogen, and

the blue line denotes the AI rate from Lino da Silva [118].

Generally, the Boltzmann-weighted rate overpredicts the rate of AI relative to the net state-

to-state rate when the gas is net ionizing and underpredicts the rate of AI when the flow is net

recombining. As shown in Figure A.2, the excited states of atomic hydrogen are depleted relative to

the corresponding Boltzmann value in Figure A.1. In a net ionization flow, there are fewer ions than

at equilibrium, so the Saha-Boltzmann state population will be below the Boltzmann population.

Therefore, the period of net ionization should see an overprediction from the Boltzmann-weighted

rate, as the excited states have not had time to reach equilibrium. Along the stagnation line, the

net state-to-state rate and Boltzmann-weighted rate converge near x = −0.1 m, indicating that

the state populations have reached equilibrium. As the gas recombines in the boundary layer, the

opposite phenomenon occurs, and the excited states are overpopulated relative to Boltzmann (i.e.

Saha-Boltzmann above Boltzmann). For all cases, the rate from Lino da Silva is lower than the

Boltzmann-weighted rate.
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Figure A.1: Comparison of AI rate predicted by Boltzmann-weighted and net state-to-state rate at
the stagnation line (a) and shoulder (b) using a Boltzmann assumption in NEQAIR.
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Figure A.2: Comparison of AI rate predicted by Boltzmann-weighted and net state-to-state rate at
the stagnation line (a) and shoulder (b) using a QSS model in NEQAIR.
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A.3 Atomic Hydrogen Electronic Energy Data

Electronic-energy level data for neutral atomic hydrogen, taken from the NIST [240], is

summarized in Table A.3. The degeneracy g of the hydrogen atom may be expressed gener-

ally as gn = 2n2, where n is the principal quantum number. Characteristic electronic tempera-

tures θn are computed from the corresponding energy via θn = 1.986 × 10−23En/kB, where the

kB = 1.3806 × 10−23 J/K is the Boltzmann constant. The factor of 1.986 × 10−23 comes from the

assumption that En is expressed with units of cm−1.

Table A.3: Atomic hydrogen electronic energy levels, taken from [240].

Energy Level n Energy (cm−1) Characteristic Electronic Temp θn (K) Degeneracy gn
1 0 0 2
2 82259.1 118231.7981 8
3 97492.3 140126.6235 18
4 102824 147789.9273 32
5 105292 151337.2076 50
6 106632 153263.2025 72
7 107440 154424.5487 98
8 107965 155179.1363 128
9 108325 155696.5677 162
10 108582 156065.9563 200
11 108772 156339.0451 242
12 108917 156547.455 288
13 109030 156709.871 338
14 109119 156837.7916 392
15 109191 156941.2779 450
16 109250 157026.0792 512
17 109299 157096.5073 578
18 109340 157155.437 648



Appendix B

Useful Mathematical Results

B.1 Analytical Jacobians

This section provides expressions for the Jacobians of various functions used throughout

this dissertation. These include the equations of motion and terminal constraints used in the

development of the aerocapture trajectory optimization problems.

B.1.1 Equations of Motion

The equations of motion which describe the motion of a spacecraft in spherical coordinates

about an oblate, rotating planet are

ṙ = v sin γ (B.1a)

θ̇ =
v cos γ cosψ

r cosϕ
(B.1b)

ϕ̇ =
v cos γ sinψ

r
(B.1c)

v̇ = −D − gr sin γ − gϕ cos γ sinψ +Ω2r cosϕ (sin γ cosϕ− cos γ sinϕ sinψ) (B.1d)

vγ̇ = L cosσ − gr cos γ +
v2

r
cos γ + gϕ sin γ sinψ + 2Ωv cosϕ cosψ+ (B.1e)

Ω2r cosϕ (cos γ cosϕ+ sin γ sinϕ sinψ)

vψ̇ =
L sinσ

cos γ
− v2

r
cos γ cosψ tanϕ− gϕ

cosψ

cos γ
+ 2Ωv (tan γ cosϕ sinψ − sinϕ) (B.1f)

− Ω2r
sinϕ cosϕ cosψ

cos γ

σ̇ = u . (B.1g)
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These may be compactly represented as f(x(t), u(t)), where x = [r, θ, ϕ, v, γ, ψ, σ] is the state, and

the bank-angle rate σ̇ is taken to be the control u. A first-order Taylor series expansion about a

reference trajectory x̄(t) and control ū(t) yields

f(x(t), u(t)) ≈ f(x̄(t), ū(t)) +
∂f

∂x

∣∣∣∣
x̄,u

(x(t)− x̄(t)) +
∂f

∂u

∣∣∣∣
x̄,u

(u(t)− ū(t)) . (B.2)

The partial derivatives ∂f
∂x and ∂f

∂u are the Jacobians of the equations of motion with respect to the

state and control, respectively. They are expressed as

∂f

∂x
= A =



a11 a12 a13 a14 a15 a16 a17

a21 a22 a23 a24 a25 a26 a27

a31 a32 a33 a34 a35 a36 a37

a41 a42 a43 a44 a45 a46 a47

a51 a52 a53 a54 a55 a56 a57

a61 a62 a63 a64 a65 a66 a67

a71 a72 a73 a74 a75 a76 a77



(B.3)

∂f

∂u
= B =

06×1

1

 (B.4)

where

a11 = a12 = a13 = a16 = a17 = 0 (B.5)

a14 = sin γ (B.6)

a15 = v cos γ (B.7)

a21 = −
v cos γ cosψ secϕ

r2
(B.8)

a22 = a27 = 0 (B.9)

a23 =
v cos γ cosψ secϕ tanϕ

r
(B.10)

a24 =
cos γ cosψ secϕ

r
(B.11)

a25 = −
v cosψ secϕ sin γ

r
(B.12)
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a26 = −
v cos γ secϕ sinψ

r
(B.13)

a31 = −
v cos γ sinψ

r2
(B.14)

a32 = a33 = a37 = 0 (B.15)

a34 =
cos γ sinψ

r
(B.16)

a35 = −
v sin γ sinψ

r
(B.17)

a36 =
v cos γ cosψ

r
(B.18)

a41 = −
1

2

∂ρ

∂r

v2

β
ρD + sin γ

(
Ω2 cos2 ϕ+

µ

r5
(
2r2 + 6J2R

2
e − 18J2R

2
e sin

2 ϕ
))

+

1

r5
(
12J2R

2
eµ− r5Ω2

)
cos γ cosϕ sinϕ sinψ (B.19)

a42 = a47 = 0 (B.20)

a43 =
1

r4
[(
9J2R

2
eµ− 2r5Ω2

)
cosϕ sin γ sinϕ+

(
−3J2R2

eµ− r5Ω2
)
cos γ cos2 ϕ sinψ+(

3J2Re
2µ+ r5Ω2

)
cos γ sin2 ϕ sinψ

]
(B.21)

a44 = −
vρ

β
ρD (B.22)

a45 =
1

r4
[
−µ cos γ

(
r2 + J2R

2
e

(
1.5− 4.5 sin2 ϕ

))
+ 3J2R

2
eµ cosϕ sin γ sinϕ sinψ+

r5Ω2 cosϕ (cos γ cosϕ+ sin γ sinϕ sinψ)
]

(B.23)

a46 = −
1

r4
(
3J2R

2
eµ+ r5Ω2

)
cos γ cosϕ cosψ sinϕ (B.24)

a51 =
1

2

∂ρ
∂rL/Dv

2 cosσ

βv
ρL+

1

r5v

[
cos γ

(
−r3v2 + 2r2µ+ 6J2R

2
eµ+ r5Ω2 cos2 ϕ− 18J2R

2
eµ sin

2 ϕ
)
+(

−12J2R2
eµ+ r5Ω2

)
cosϕ sin γ sinϕ sinψ

]
(B.25)

a52 = 0 (B.26)

a53 =
1

r4v

[(
9J2R

2
eµ− 2r5Ω2

)
cos γ cosϕ sinϕ− 2r4vΩcosψ sinϕ+(

3J2R
2
eµ+ r5Ω2

)
cos 2ϕ sin γ sinψ

]
(B.27)

a54 =
1

2

ρL/D cosσ

β
ρL+

1

r4v2
[
cos γ

(
r3v2 + r2µ+ 1.5J2R

2
eµ− r5Ω2 cos2 ϕ− 4.5J2R

2
eµ sin

2 ϕ
)
+
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−3J2R2

eµ− r5Ω2
)
cosϕ sin γ sinϕ sinψ

]
(B.28)

a56 = cosϕ

[
1

r4v

(
3J2R

2
eµ+ r5Ω2

)
cosψ sin γ sinϕ− 2Ω sinψ

]
(B.29)

a57 = −
1

2

L/Dvρ sinσ

β
ρL (B.30)

a61 =
1

2

∂ρ
∂rL/Dv sec γ sinσ

β
ρL+

cosψ

r5v

[(
12J2R

2
eµ− r5Ω2

)
cosϕ sec γ sinϕ+ r3v2 cos γ tanϕ

]
(B.31)

a62 = 0 (B.32)

a63 = −
1

r4v

(
3J2R

2
eµ+ r5Ω2

)
cos 2ϕ cosψ sec γ − 1

r
v cos γ cosψ sec2 ϕ−

2Ω (cosϕ+ sinϕ sinψ tan γ) (B.33)

a64 = sec γ

[
1

2

L/Dρ sinσ

β
ρL +

1

r4v2
(
3J2R

2
eµ+ r5Ω2

)
cosϕ cosψ sinϕ

]
−

1

r
cos γ cosψ tanϕ (B.34)

a65 =
1

2

L/Dvρ sec γ sinσ tan γ

β
ρL+

cosϕ sec γ

[
2Ω sec γ sinϕ− 1

r4v

(
3J2R

2
eµ+ r5Ω2

)
cosψ sinϕ tan γ

]
+

1

r
v cos γ cosψ tan γ (B.35)

a66 = cosϕ

[
1

r4v

(
3J2R

2
eµ+ r5Ω2

)
sec γ sinϕ sinψ + 2Ωcosψ tan γ

]
+

1

r
v cos γ sinψ tanϕ (B.36)

a67 =
1

2

L/Dvρ cosσ sec γ

β
ρL (B.37)

a71 = a72 = a73 = a74 = a75 = a76 = a77 = 0 . (B.38)

Here, L/D = CL
CD

is the lift-to-drag ratio, β = m
CDAref

is the ballistic coefficient, J2 is the second

spherical harmonic for the gravitational model, Re is the equatorial radius of the planet, µ is

the gravitational constant of the planet, and ρL and ρD are the first-order fading memory filter

multipliers. The partial derivative of the density with respect to the radius depends on the density

model. If the density is assumed to vary exponentially, such that

ρ(h) = ρ0 exp (−h/H) (B.39)
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where H is the scale height, the Jacobian is

∂ρ

∂r
= −ρ0

H
exp (−h/H) . (B.40)

Otherwise, if the density is implemented as a lookup table, the Jacobian ∂ρ
∂r may be computed

using either a finite-difference approximation or automatic differentiation. This work uses the

ForwardDiff.jl toolbox in Julia for all automatic differentiation.

B.1.1.1 Consideration of Augmented State

When the state is augmented with the heat load and square of the load factor, as in Chapters

6 and 7, additional partial derivatives must be computed. The square of the load factor and the

heat load are computed as

ã =
1

g20

(
L2 +D2

)
(B.41)

Q =

∫ t

0
q(t)dt . (B.42)

Substitution for the lift and drag accelerations yields

ã =
1

g20

[(
ρv2L/D

2β

)2

+

(
ρv2

2β

)2
]

(B.43)

which is simplified to

ã =

(
L/D2 + 1

4g20β
2

)
ρ2v4 . (B.44)

Differentiating with respect to time yields

˙̃a =

(
L/D2 + 1

4g20β
2

)(
2ρv4

dρ

dt
+ 4ρ2v3

dv

dt

)
. (B.45)

It is assumed that the density only varies with altitude (i.e. ρ = ρ(r)) such that the dynamics of

the density are written as
dρ

dt
=
∂ρ

∂r

∂r

∂t
=
∂ρ

∂r
v sin γ (B.46)

where Eq. B.1a has been used, and the partial derivative ∂ρ
∂r is computed as previously described.

Using Eq. B.1d, the dynamics of the squared load factor are then

˙̃a =

(
L/D2 + 1

4g20β
2

)[
2ρv5 sin γ

∂ρ

∂r
+
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4ρ2v3
(
−D − gr sin γ − gϕ cos γ sinψ +Ω2r cosϕ (sin γ cosϕ− cos γ sinϕ sinψ)

)]
. (B.47)

Finally, differentiating Eq. B.42 with respect to time yields

∂Q

∂t
= Q̇ = q (B.48)

where q is the heat flux. Equations B.47 and B.48 are then differentiated with respect to the

augmented state and included in matrix A. Because the density, aerodynamic, and heat-flux models

used in this dissertation are not always analytic (i.e. exponential, Sutton-Graves, etc.), the partial

derivatives of the squared load factor and heat load are computed using automatic differentiation.

B.1.1.2 Generalized Time-Dilation Formulation

A free time of flight problem may be cast as a fixed time of flight problem using a transfor-

mation called generalized time dilation [195]. In this approach, a strictly increasing, continuously

differentiable mapping t : [0, 1] 7→ R+, with boundary conditions t(0) = t0 and t(1) = tf , is defined.

The derivative of this mapping is defined as

s(τ) =
dt(τ)

dτ
=

◦
t(τ) (B.49)

for τ ∈ [0, 1], where
◦
(·) denotes the derivative with respect to the non-dimensional time. The term

s(τ) is referred to as the time dilation factor and is treated as an additional control input. Next,

the state x = [r, θ, ϕ, v, γ, ψ, σ] is augmented with the physical time t such that

x̃(τ) = [x(t(τ)), t(τ)] (B.50)

where x̃ is the “augmented” state. The augmented state dynamics may then be written as

◦
x̃(τ) =

ẋ(t)
1

 dt(τ)

dτ
=

f(x(t), u(t))
1

 dt(τ)

dτ
= F (x̃(τ), ũ(τ)) (B.51)

where ũ = [u(t(τ)), s(τ)] is the original control augmented with the time dilation factor. The

Jacobian of the augmented state dynamics with respect to the augmented state and augmented
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control are expressed as

∂F

∂x̃
= A =

s(τ)∂f∂x s(τ)
∂f

∂t
∂s

∂x

∂s

∂t

 =

s(τ)∂f∂x 0n×1

01×n 0

 (B.52)

∂F

∂ũ
= B =

s(τ)∂f∂u ∂

∂s
(s(τ)f)

∂s

∂u

∂s

∂s

 =

s(τ)∂f∂u f

0 1

 (B.53)

where n is the dimension of the non-augmented state, and the partial derivatives ∂f
∂x and ∂f

∂u may

be computed as in Section B.1.1. This formulation also works when the state is augmented with

additional variables such as the heat load, and the Jacobian ∂f
∂x is recomputed accordingly.

B.1.2 Terminal Constraints

The terminal constraints considered in this dissertation include those on the final apoapsis

radius and inclination. The expression used to enforce the apoapsis radius target is

ε(xf ) =
µ

rf

[
1− J2

2

(
Re
rf

)2 (
3 sin2 ϕf − 1

)]
−
v2f
2

− µ

ra,target

[
1− J2

2

(
Re

ra,target

)2 (
3 sin2 ϕtarget − 1

)]
+
r2fv

2
f cos

2 γf

2r2a,target
= 0 . (B.54)

The Jacobian of Eq. B.54 is written as

∂ε

∂x
=

[
e1 e2 e3 e4 e5 e6 e7

]T
(B.55)

where

e1 =
rv2 cos2 γ

r2a,target
− µ

4r4
(
4r2 − 3J2R

2
e + 9J2R

2
e cos 2ϕ

)
(B.56)

e2 = e6 = e7 = 0 (B.57)

e3 = −
3J2R

2
eµ cosϕ sinϕ

r3
(B.58)

e4 = −v +
r2v cos2 γ

r2a,target
(B.59)

e5 −
r2v2 cos γ sin γ

r2a,target
(B.60)
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The expression used to enforce the inclination constraint is

cosϕ cosψ − cos itarget = 0 (B.61)

and its Jacobian is
∂ cos i

∂x
=

[
i1 i2 i3 i4 i5 i6 i7

]T
(B.62)

where

i1 = i2 = i4 = i5 = i7 = 0 (B.63)

i3 = − sinϕ cosψ (B.64)

i6 = − cosϕ sinψ . (B.65)

Finally, in cases where the periapsis maximization term is included in the cost function, its Jacobian

must be computed. The inverse of the periapsis radius is expressed as

1

rp(xf )
= p(xf ) =

a
1−

√
1−

v2fr
2
f cos

2 γf

µa

−1

. (B.66)

The Jacobian of Eq. B.66 is expressed as

∂p

∂x
=

[
p1 p2 p3 p4 p5 p6 p7

]T
(B.67)

where

p1 =
1

r2µ3P2

[
−rv2

(
rv2 − 3µ

) (
rv2 − 2µ

)
cos2 γ − 2µ3(P1 − 1)

]
(B.68)

p2 = p3 = p6 = p7 = 0 (B.69)

p4 =
1

µ2P2

[
2rv3 cos2 γ − 2vµ (P1 + cos 2γ)

]
(B.70)

p5 =
1

µ3P2

[(
rv3 − 2vµ

)2
cos γ sin γ

]
(B.71)

and

P1 =

√
1 +

1

µ2
rv2 (rv2 − 2µ) cos2 γ (B.72)

P2 = P1 (P1 − 1)2 . (B.73)
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B.1.2.1 Consideration of the Augmented State

When the state is augmented with the heat load and square of the load factor, no additional

partial derivatives are required for the terminal constraints. This is because they do not depend

explicitly on either the squared load factor or the heat load. Additional zeros are included in the

Jacobians to account for the increased state dimension.

B.2 Discretization of Continuous-Time Linear Systems

Consider the following equations of motion for a continuous-time, linear, time-varying system

ẋ(t) = A(t)x(t) +B(t)u(t) + z(t) (B.74)

where x ∈ Rn, is the state, u ∈ Rm, is the control, A ∈ Rn×n and B ∈ Rn×m are known system

matrices, and z(t) ∈ Rn is a known drift term. To convert Equation B.74 into an equivalent discrete-

time formulation, the following result from linear system theory is utilized. Let Φ(t, t0) : R 7→ Rn×n

denote the state transition matrix (STM) for the system in Equation B.74 over the time interval

[t0, t]. From linear systems theory, the STM evolves according to

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = In×n . (B.75)

Using the STM, Equation B.74 is integrated from t = tk to t = tk+1 which yields

xk+1 = Φ(tk+1, tk)xk +

∫ tk+1

tk

Φ(tk+1, τ)B(τ)u(τ)dτ +

∫ tk+1

tk

Φ(tk+1, τ)z(τ)dτ (B.76)

where xk denotes the state at t = tk. Note that integrating the right-hand side of Equation B.76

requires computing the STM Φ(tk+1, τ) for each intermediate time τ ∈ [tk, tk+1]. This introduces

substantially more computational complexity than desired, so an alternative formulation of Equation

B.76 is defined. Recall that the following properties hold for the STM

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (B.77)

Φ(t1, t0) = Φ(t0, t1)
−1 . (B.78)
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This allows us to rewrite Equation B.76 as

xk+1 = Φ(tk+1, tk)xk+

∫ tk+1

tk

Φ(tk+1, tk)Φ(tk, τ)B(τ)u(τ)dτ+∫ tk

tk

Φ(tk+1, tk)Φ(tk, τ)z(τ)dτ (B.79)

which is simplified to

xk+1 = Φ(tk+1, tk)xk+Φ(tk+1, tk)

∫ tk+1

tk

Φ(τ, tk)
−1B(τ)u(τ)dτ+

Φ(tk+1, tk)

∫ tk

tk

Φ(τ, tk)
−1z(τ)dτ . (B.80)

The form of Equation B.80 only requires the integration of the STM from tk to tk+1 which is more

computationally efficient than using Equation B.76.

Next, an assumption on the control u(τ) is required. This dissertation uses a first-order hold,

which assumes a linear variation between temporal nodes k and k+1

u(τ) = σ−k (τ)u(τk) + σ+k (τ)u(τk+1) ∀ τ ∈ [τk, τk+1) (B.81)

where σ−k (τ) and σ+k (τ) are defined as

σ−k (τ) =
τk+1 − τ
τk+1 − τk

σ+k (τ) =
τ − τk

τk+1 − τk
. (B.82)

This allows Equation B.80 to be simplified to

xk+1 = Akxk +B−
k uk +B+

k uk+1 + zk (B.83)

where

Ak = Φ(τk+1, τk) (B.84)

B−
k = Ak

∫ τk+1

τk

Φ−1(ξ, τk)σ
−
k (ξ)B(ξ)dξ (B.85)

B+
k = Ak

∫ τk+1

τk

Φ−1(ξ, τk)σ
+
k (ξ)B(ξ)dξ (B.86)

zk = Ak

∫ τk+1

τk

Φ−1(ξ, τk)z(ξ)dξ . (B.87)
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B.2.1 Stochastic Systems

Next, consider the following stochastic differential equation (SDE)

dx(t) = (A(t)x(t) +B(t)u(t) + z(t))dt+G(t)dw(t) (B.88)

where G(t) ∈ Rn×n is a known system matrix, and w(t) is an n-dimensional Brownian motion

vector. Following the same procedure as above allows us to write

xk+1 = Akxk +Bkuk + zk +Gkwk (B.89)

where Gk is any matrix such that

Gkwk
d
= Ak

∫ tk+1

tk

Φ(τ, tk)
−1G(τ)dw(τ) (B.90)

and d
= denotes equality in distribution. It follows that Gk satisfies

GkG
T
k = Ak

(∫ tk+1

tk

Φ(τ, tk)
−1G(τ)G(τ)TΦ(τ, tk)

−Tdτ

)
ATk . (B.91)

As such, Gk can be obtained by taking any matrix square root, such as the Cholesky factorization,

of the integral on the right-hand size of Equation B.91.
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