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Electrospray thrusters are a class of electrostatic propulsion systems that utilize strong

electric fields to extract and accelerate charged particles and/or droplets from a conductive

fluid surface. A subset of electrospray thrusters include ionic liquid ion sources (ILISs)

that operate in a purely ionic emission mode and utilize room temperature molten salts,

otherwise known as ionic liquids, as propellant. ILISs have the highest specific impulse

across electrospray thruster technologies and offer high efficiency and scalability for small

satellite applications relative to conventional electric propulsion systems. Despite their

potential, electrospray thrusters face critical challenges related to emission stability, plume

characterization, and long-term operational reliability. This dissertation presents a coupled

continuum-kinetic computational framework to model ionic emission from a single emitter ILIS

configuration, coupling an electrohydrodynamic (EHD) meniscus model with a particle-in-cell

(PIC) and direct simulation Monte Carlo (DSMC) plume model to characterize the multiscale

process from the nanoscale emission dynamics at the emitter apex to the micronscale plume

downstream. The first component of this work develops a physics-based EHD model to resolve

the steady-state meniscus morphology and field-driven ionic emission from a porous emitter

architecture. A finite-element approach is employed to solve Laplace’s equation for the electric

potential and Stokes flow for the ionic liquid hydrodynamics, capturing interfacial stresses

governing meniscus formation. The resulting emission properties are then coupled to a kinetic

PIC model, which simulates ion trajectories, Coulombic interactions, and fragmentation

processes within the plume. A semi-empirical emission model is incorporated to improve

computational efficiency and ensure compatibility with experimental data. This framework is



iii

applied to analyze key electrospray thruster performance metrics, including emission current,

thrust, and beam divergence. Sensitivity analyses are conducted to explore the effects of

geometric and operational variations on plume characteristics, providing insights into failure

mechanisms such as electrode overspray and grid contamination. The results inform design

strategies to optimize emission stability and enhance thruster longevity. This dissertation

contributes a novel end-to-end modeling approach for ionic electrospray emission, offering a

computational toolset that aids in the development of next-generation ILIS thrusters.
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Chapter 1

Introduction

1.1 Electric Propulsion

The mid-20th century marked the beginning of the Space Age, ushering in an era of

rapid advancements in spacecraft propulsion technology that continues to this day. Among

these developments include electric propulsion (EP) systems, a class of space propulsion

technologies that utilizes electricity to accelerate a propellant and generate thrust [87]. The

source of this electrical power is derived externally (for example, from a solar array), which

uniquely characterizes EP systems relative to chemical propulsion systems where the energy

is stored in molecular bonds within the fuel. This allows the designers of EP devices to focus

on how to most efficiently utilize the propellant, which is achieved by maximizing the exhaust

velocity.

Efficiency is quantified by the thruster specific impulse, a metric that measures the

amount of impulse a thruster can generate per unit of expended mass. While most chemical

thrusters cannot surpass specific impulses of about 500 seconds, EP systems can exceed this

value by more than an order of magnitude [75]. As a result, a spacecraft requires comparatively

less fuel to execute a given mission, freeing up crucial mass and volume that can be allocated

to the payload, thereby maximizing mission capability. Alternatively, the reduced propellant

mass could be used to lower the overall mass of a spacecraft or satellite, leading to a reduced

cost in launch costs and increased accessibility to space that has contributed to the recent

proliferation of small satellites [1, 68, 74, 102].
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The history of EP dates back more than a century, beginning with the theoretical

basis that ionized gasses could propel spacecraft that was independently postulated by both

Robert Goddard in America as early as 1906 [53] and Konstantin Tsiolkovsky in Russia in

1911 [93]. From there, EP as we know it was first qualitatively and publicly conceptualized

by Herman Oberth in 1929 [101] and later refined by British physicists Shepard and Cleaver

in 1949 with the first quantitative study of the practicality of electrostatic propulsion for

deep-space missions [112]. These scientists laid the groundwork for the seminal research of

Ernest Stühlinger in the mid-1950s, whose systemic analysis on the feasibility of EP systems

[116–118] helped transition the field from a conceptual idea to a burgeoning discipline with

profound technological potential that continues to advance till this day.

Once established as a viable means of space propulsion, several EP research initiatives

emerged during the 1960s. In the U.S., these included programs at NASA’s Glenn Research

Center, Jet Propulsion Laboratory, and Hughes Research Laboratories. At the same time,

several programs were also begun at various Russian research institutions. This newfound

focus among Cold War superpowers quickly culminated with the first in-space demonstration

of EP in 1964 with NASA’s SERT-1 probe and shortly thereafter the USSR’s Zond-2 satellite,

where each spacecraft can be seen in Fig. 1.1. The former featured a electrostatic gridded ion

thruster while the latter featured a pulsed plasma thruster [87]. Since then, EP technology

has only continued with its rapid development, where today it is widely implemented across

commercial, defense, and civil space mission applications. By the end of 2019, approximately

600 spacecraft had been launched incorporating some variation of EP [75]. Today, its

implementation has exponentially grown mainly due to the launch of SpaceX’s StarLink

satellites equipped with Hall-effect thrusters. By the end of 2024, over 7,000 have been

launched out of a planned total of 12,000, where a possible future extension could extend the

fleet to over 34,000 satellites [88].

Modern EP systems can be partitioned into one of three broad categories depending

on the acceleration mechanism through which thrust is generated: electrothermal, electro-
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(a) (b)

Figure 1.1: Photographs of (a) NASA’s SERT-1 (Space Electric Rocket Test)
satellite alongside project manager Raymond J. Rulis and (b) Russia’s Zond-2
satellite. Both spacecraft launched in 1964 and were their respective country’s
first probes to successfully navigate using EP.

magnetic, and electrostatic [87]. Electrothermal propulsion systems use electricity to heat a

propellant, which is subsequently accelerated using a converging/diverging nozzle. Arcjets

and resistojets are the most common forms of electrothermal thrusters and vary in the method

of which they heat and accelerate propellants. Electromagnetic propulsion devices generate

thrust through the interaction of both electric and magnetic fields with the propellant. These

include pulsed plasma thrusters (PPTs) and magnetoplasmadynamic thrusters (MPDTs).

PPTs use electric arcs to ablate a solid propellant into a plasma, which acts as a circuit

between two electrodes and is subsequently accelerated by the force acting perpendicular

to the current flow. MPDTs generate plasmas by ionizing a gaseous material, where the

charged species are accelerated using either an applied or induced magnetic field through

the Lorentz force. Finally, electrostatic propulsion systems are characterized by their use of
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Table 1.1: Typical performance metrics and propellants utilized within various
spacecraft EP systems.

EP System Isp [s] Thrust [N] Power [kW] Propellant Ref.

Electrothermal
Arcjet 400–500 0.1 1 N2H4, NH3 [40, 137]

Resistojet 100–300 0.2 0.1–1 N2H4, N2,
Xe

[129, 137]

Electromagnetic
Hall thruster 1500 10−2–1 0.2–20 Xe [67, 106]

MPD thruster 1000-10000 0.5–50 102–103 Ar, H2, Li [59, 71]
Ablative PPT 500–1500 10−5–10−2 10−2 PTFE [2, 126]

Electrostatic
Gridded ion engine 3000 10−3–10−1 0.1–5 Xe [21, 119]

Electrospray 1000-5000 10−6–10−4 10−4 EMI-BF4,
EMIM

[18, 68]

static electric fields between electrodes to accelerate charged species, where common examples

include Hall-effect thrusters (HETs) and gridded ion thrusters (GITs). HETs utilize cross-field

discharges that are defined by the Hall effect to both ionize a gas and accelerate the resulting

plasma, while GITs operate by using a variation of techniques to initially generate a plasma

that is exposed to a series of biased grids that eject the positively charged species. Another

form of electrostatic propulsion—and the system that the remainder of this dissertation will

focus upon—are electrospray thrusters, and is further described in the subsequent sections.

Typical performance metrics and propellants utilized in the aforementioned EP systems can

be found in Table 1.1.

1.2 Electrospray Thrusters

1.2.1 Characterization

Electrospray thrusters are EP devices where an electrostatic field is applied to a

conductive liquid propellant, generating thrust with the extraction of droplets and/or ions

from the surface [1]. These systems are generally available in one of three variations that are
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characterized by the propellant used and emission modes they operate in. Colloid thrusters

use electrolytic solutions such as doped glycerol as propellants [98] and operate almost

exclusively in a droplet emission mode. Field emission electric propulsion (FEEP), also

known as liquid metal ion sources, utilize liquid metals such as Cesium and Indium and

operate predominantly in an ionic emission mode. Finally, ionic liquid ion sources (ILISs)

are thrusters that use room temperature molten salts, known as ionic liquids, as propellant

and can operate in both droplet and ion emission modes.

Since typical current levels emanating from a single emitter range from tens of nano-

Amperes to several micro-Amperes [55, 56], electrospray thrusters are often operated in

arrays of several hundred emitters to increase the performance capacity, a process known as

multiplexing. Across all thruster types, emission is enabled by the application of a potential

bias across two electrodes. Typically, one of these electrodes is the emitter itself and is often

shaped into a needle-like structure to focus the applied field strength towards the tip and

localize the site of emission. The means by which the emitter is wetted with propellant is

dependent on the emitter architecture. Externally-wetted emitters employ solid needle tips

that openly transport propellant over their external surface. These architectures are employed

in LMIS thrusters, where emitters are heated to sustain the liquid state of the metal, and

the large contact surface between the propellant and the emitter facilitates efficient heat

transfer. However, such open architectures restrict the selection of propellant to those with

low vapor pressures as to function in a vacuum environment. Capillary emitters, on the other

hand, employ closed architectures where propellant is internally transported within thin

tube electrodes, restricting exposure with the external environment to the free surface end.

These geometries are well-suited to traditional colloid thrusters as they support pressurized

flow-control systems, simultaneously enabling a wider range of applicable working liquids and

higher mass flow rates that would otherwise be untenable with passive flow configurations.

Lastly, porous emitters employ a hybrid of both open and closed architectures, transporting

propellant passively through a porous material. A schematic of porous emitters operating
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Figure 1.2: Schematic of porous electrospray emitters operating in a positive ionic
emission mode. At the apex, an emission site is shown where several polydisperse
ions emerge with varying degree of solvation.

within an ILIS configuration is presented in Fig. 1.2. The greater Laplace pressure induced

by the porous geometry enables the hydraulic capability of closed architectures while still

mitigating the challenges of clogging and overflow that is addressed by open architectures.

These configurations are often employed in ILIS thrusters as the large hydraulic impedance is

conducive to a purely ionic emission mode, further described in Chapter 2 where the physics

governing all electrospray emission is presented.

1.2.2 Motivation

Electrosprays were studied extensively as propulsion systems in the mid-20th century

through colloid thrusters [11, 84, 97, 104]. At the time, they were viewed as potential
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alternatives to ion engines as the larger mass of the droplets enabled comparatively higher

thrust densities and thus propulsive capability. Colloid thrusters developed during this

period demonstrated performance metrics ranging approximately from 1–300 µN of thrust per

emitter and 400–1,400 seconds of specific impulse [97]. Despite this initial success, interest in

electrospray propulsion research gradually diminished in the ensuing decades as spacecraft

continued to grow in size, and the microNewton-level thrust produced by these systems was

no longer sufficient to meet the increasingly demanding requirements of missions.

After several decades, electrospray research experienced a renaissance beginning in the

late 1990s as the demand for micropropulsion systems emerged with the onset of formation

flying missions [98]. The former refers to a class of missions where several spacecraft are flown

in a coordinated matter and maintain precise relative positions and orientations, often designed

for scientific observations, satellite constellations, or interferometry. A notable example

includes NASA’s Laser Interferometry Space Antenna (LISA), a planned probe that would

be the first dedicated space-based gravitational-wave observatory [134, 135]. Such a mission

requires several satellites operating in a noise-free environment and capable of counteracting

external disturbances on the order of 100 nano-Newtons. In 2015 the LISA Pathfinder was

launched, equipped with eight colloidal thrusters developed by Busek in collaboration with

the Jet Propulsion Laboratory as a technology demonstration mission [136]. Once reaching

the Sun-Earth Lagrange Point 1, the thrusters were operational for approximately 2,500

hours and successfully met all of the mission criteria. The success of the LISA Pathfinder

mission validated the feasibility of electrospray propulsion for precise spacecraft maneuvers,

paving the way for its integration into missions with similar requirements.

At the same time, the shrinking of instrumentation and increased accessibility to space

at the turn of the 21st century led to a proliferation of small satellites [74]; thus, necessitating

a propulsive device that can be scaled down to accommodate this new class of spacecraft.

Electrospray thrusters are uniquely suitable for micropropulsion relative to other EP systems

for several reasons. Firstly, the micron-scale of emitters are desirable for the stringent volume
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and mass limitations of small satellites. ILISs in particular utilize low vapor pressure ionic

liquids that are passively-fed via capillary action, precluding the need for pressurization or

flow control systems that further act to increase the compactness. Secondly, electrosprays lack

an active ionization process, which, in traditional EP devices, imposes significant constraints

on miniaturization. The heating associated with ionization in traditional EP systems become

increasingly inefficient at smaller scales, leading to performance losses [102]. By contrast,

electrospray thrusters operate without this limitation, reducing the overall thermal load and

making them inherently more scalable for small satellite applications. Finally, advancements in

micromachining/microelectromechanical systems (MEMS) fabrication methods have enabled

the efficient packing of hundreds of emitters into small packages [75], simultaneously increasing

thrust density and minimizing device volume.

Henceforth, the focus of this dissertation will be on ILIS thruster configurations. In

addition to their aforementioned applicability in micropropulsion, they uniquely offer the

highest specific impulses across electrospray thruster technologies. This is due to their

pure-ion emission mode, made possible by the combination of ionic liquid propellant and a

porous emitter architecture. A full description of the physics governing ion emission in ILIS

thrusters and how this relates to greater propellant efficiency is presented in Chapter 2.

1.2.3 Life-Limiting Mechanisms

Electrosprays hold immense potential as scalable and efficient EP devices but have yet

to realize their full potential due to various failure modes that have precluded their wide

deployment across miniturized spacecraft [20, 124]. Specifically within ILIS thrusters, there

exists several challenges that have prevented successful operation on the order of thousands of

hours as was demonstrated by the colloid thruster flown on NASA’s LISA Pathfinder mission.

One significant roadblock is the progressive electrochemical degradation of the thruster at

liquid-electrode interfaces as a result of chemical non-neutrality. At these interfaces, the

Coulombic nature of ionic liquids results in the emergence of a double layer (DL) as the free
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charges within the propellant act to screen the surface charge of opposite polarity present on

the electrode. During operation the DLs within a given emitter grow in magnitude as the bulk

ionic liquid is no longer quasi-neutral and current is lost during the field-evaporation process.

If left unaddressed, the potential gradient across the DL will grow and act analogously

to a capacitor, eventually manifesting as discharge current that not only decomposes the

propellant and corrodes the electrode, but can result in short circuits where the failure of

a single emitter in a grid can hinder the operation of an entire multiplexed array [19]. It

can been shown that using voltage alternation, where the polarity of the emitter is switched

at frequencies of approximately 1 Hz, the DL can be maintained under its electrochemical

window limit and undesired electric reactions can be mitigated [80].

However, electrochemical reactions are only one of several first-tier mechanisms that

influence the lifetime of electrospray thrusters. First-tier mechanisms directly emerge from

the fundamental design geometry, operation, and material and propellant selection of the

thruster [124]. How the thruster is designed and operated may also lead to other first-tier

mechanisms such as grid overspray, where emitted propellant impinges on a downstream

electrodes instead of accelerating past it. These processes may lead to additional, secondary

mechanisms that ultimately result in failure of the device’s power processing unit (PPU) and

thus overall thruster operation. For example, continued overspray over a porous electrode

will eventually result in saturation that would curtail the applied field strength, reducing

emitter efficiency. Excessive saturation may even screen out the surface charge completely in

localized areas of the grid, resulting in propellant pooling that repels incoming ions back in

the upstream direction, a secondary mechanism known as backspraying that only accelerates

the lifetime reduction of the thruster.

Electrode overspray is considered the primary mechanism of concern in electrospray

design [135, 136] and is the failure mode that the work of this dissertation will focus upon.

Generally, overspray can be partitioned into one of two submechanisms, distinguished by the

upstream processes that initiate the failure mode. The first, direct overspray, occurs when
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emitted propellant flux impinges directly onto the extractor or accelerating electrode rather

than passing cleanly through the grid aperture. This phenomenon is primarily dictated by

the geometric configuration of the thruster, emitter-electrode alignment, and the operating

conditions under which the device is run, such as applied voltage and upstream flow rate in

actively-fed thrusters. The second submechanism arises from physics governing the plume

evolution downstream of the emitter. In this case, overspray results from the radial expansion

of charged species due to Coulombic repulsion or the fragmentation of solvated ion clusters,

where neutral byproducts from dissociation are generated with trajectories that deviate

from the applied electric field streamlines. Because neutrals are unaffected by electrostatic

forces, they propagate along ballistic paths dictated by their initial fragmentation momentum,

contributing to unintended deposition on downstream components. The cumulative effect

of either submechanism can lead to progressive electrode contamination and saturation,

ultimately diminishing the operational lifespan and performance of the thruster. Consequently,

understanding and mitigating both forms of overspray are critical to ensuring the long-term

viability of electrospray systems.

Characterizing the onset overspray is particularly well-suited to computational modeling.

Various simulations could be executed in parallel for exploring design/operational configuration

spaces and can be used to identify conditions under which direct overspray is likely to

occur. By leveraging simulations, one can rapidly evaluate a wide range of geometric and

operational parameters that would otherwise be impractical or prohibitively expensive to test

experimentally. Furthermore, simulations serve as a valuable complement to experimental

efforts by helping refine testing parameters, ensuring that laboratory studies focus on the

most relevant regions of the operational space. Beyond direct overspray, numerical models

are also advantageous for investigating secondary overspray mechanisms such as radial plume

expansion. Unlike experiments, simulations offer precise control over physical processes,

enabling the isolation of Coulombic repulsion and fragmentation effects by selectively enabling

or disabling them in the model. This allows for a quantifiable assessment of each contribution
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to plume divergence, offering insights into the fundamental physics that govern overspray

behavior. By integrating computational modeling with experimental validation, a more

comprehensive understanding of mechanisms contributing to overspray can be achieved,

informing design strategies that mitigate failure modes and enhance the long-term reliability

of electrospray thrusters.

1.3 Review of Ionic Liquid Ion Source Modeling

Higuera [62] was the first to model the electrokinetics and ionic evaporation process

within the meniscus of ionic liquid, building upon his earlier work where he simulated cone-jet

emission [60]. He accomplished this by implementing the leaky-dielectric model (LDM), a

simplified framework on the electrohydrodynamics of fluids with small but finite conductivities

in response to an applied field. LDM was first introduced by Taylor et al. [122] and later

expanded by Melcher and Taylor [92], where a complete review of the model is offered by

Saville [110]. LDM addresses the unique electrokinetics of fluids with poor conductivities as

they do not demonstrate the level of conductance observed in traditional conductors with

free charge distributions but also do not have the level of resistivity observed in traditional

insulators. Instead, when an external field is applied to a leaky dielectric fluid, free charges

within the bulk travel in finite timescales on the order of the charge relaxation time, defined

as the ratio of the fluid relative permittivity to the conductivity. When this fluid shares an

interface with another dielectric or an insulator, the imbalance in conduction results in a net

surface charge. The result is that the bulk fluid can be assumed absent of free charge, and

the interface is subject to boundary conditions that enforce the normal component of the

electric displacement jump. The interfacial charges interact with the applied electric field to

generate forces that can deform the interface and drive fluid motion. LDM addresses this

by reducing the full Maxwell stress equations to a tractable set that captures the essential

physics of “leaky” conductors and can be applied as interfacial boundary conditions.

Higuera implemented the LDM framework to model the response of a fixed volume of
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liquid in vacuum resting on a metallic plate and under a uniform electric field. The physical

domain was partitioned into three numerical regimes that encapsulate the liquid droplet,

the vacuum, and the interfacial meniscus. A Laplacian model of the electric potential was

used within the liquid and vacuum domains and a Stokes model was used for the liquid

hydrodynamics. These choices were justified using a scaling law analysis that demonstrated,

to first order, the effects of space charge are negligible and do not need to be accounted for

in the potential model. This behavior is unlike what is observed in liquid metal ion sources

where significant space charge effects are present, however in ILISs this current is bounded

by the finite conductivity of the ionic liquid. Additionally the scaling law analysis found that

the meniscus hydrodynamics were dominated by the liquid viscosity and that the relative

internal forces from the evaporated mass flux were negligible in comparison, resulting in the

Stokes flow approximation.

Compared to the original Taylor analysis, Higera’s numerical model did not assume

an initial meniscus morphology, and steady-state solutions were found through a pseudo-

timestepping routine via a Runge-Kutta method in conjunction with boundary element

methods to solve the Laplace and Stokes problems. Two emission cases were explored, one

where the liquid volume was fixed and another where the flow was controlled by an upstream

feeding line. In the fixed-volume simulations, Higuera found the emission current had a

functional dependence on the electric field and qualitatively demonstrated the empirically-

observed phenomena of a starting voltage. The current profiles revealed negligible emission

regimes with low fields and a conduction-driven emission regime at higher field strengths.

In the feeding flow case, the input flow rate was assumed proportional to the combination

of an upstream reservoir pressure and the force exerted by the ionic liquid on the metallic plate.

The resulting traces of the emission current and field behavior were found to be very sensitive

to the hydraulic impedance and feed pressure, likely due to the feeding model. For example,

the force exerted on the plate by the ionic liquid likely is not present in capillary or porous

emitter architectures. These limitations were addressed by Coffman [31][30], where they
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built upon Higuera’s model by expanding the simulated parameter space, included a more

rigorous feeding architecture, and introduced the effects of Ohmic heating. Their simulations

unfolded additional equilibrium meniscus structures that emerge when the meniscus size is

large relative to the characteristic emission length scale localized at the apex. Within this

parameter space, the meniscus morphology was found to be predominantly a function of the

applied potential gradient and that, in accordance with Higuera, the emission characteristics

are heavily dependent on the feeding flow architecture. In the operational space of relatively

high applied fields and large menisci, the meniscus regularizes and the emission current

appears to be bounded to the order of the characteristic emission current. As the feeding

conditions are passive in an ILIS and are governed by the emission characteristics, the authors

were also able to quantify the relative bounds of the upstream pressure corresponding to the

aforementioned current limit.

EHD modeling of ILIS menisci continued to evolve with simulations conducted by

Gallud and Lozano [47] that further expanded the operational space by which stable menisci

geometries were sought, better elucidating the bounds of stability and range of emission

characteristics across meniscus sizes, hydraulic impedances, and applied field strengths. The

capability of the EHD model was also improved by including the effects of bulk free charge

within the ionic liquid that arise from thermal gradients that in turn produce conductivity

gradients. This broad parameter space exploration allowed the authors to characterize

emission and menisci behavior into four broad regions, three of which resulted in stable

menisci geometries. The first stable region corresponds to a low field strength and little to

no emission is observed, similar to the low field regimes described earlier by Higuera and

Coffman. The second stable region corresponds to large menisci, similar to that explored

by Coffman et al. [30], and are characterized by a minimum hydraulic impedance and an

emission current that is bounded to the order of the characteristic current size. The additional

considerations of the study allowed the authors to further categorize this region into two

subregions, where at higher field strengths the meniscus is prone to several uncharacterized
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instabilities such as bifurication that may be numerical or physical in nature. An additional

region was also identified at smaller meniscus sizes, where the interfacial pressure drop from

emission plays a larger role in the meniscus stability. The authors found that the field strength

threshold at which instability occurs in this region decreases as the hydraulic impedance

is increased. The additional temperature dependence introduced in the EHD model also

allowed the authors to investigate the role of energy transport, as neglecting this may result

in an underapproximation of current. The authors found that ohmic heating was largely

dissipated via conduction across the meniscus in all stable regimes. They found agreement

with the assumptions made in previous literature that pure ion emitting electrosprays largely

run cold as the thermal diffusivity of the emitter electrodes is significantly larger than that

of the ionic liquid propellant.

Complete ILIS thruster modeling must, of course, account for the downstream ion

dynamics of the plume that occur subsequent to the field emission process. Various studies

have been conducted that focus solely on high-fidelity simulation of the ionic plume with

minimal emphasis placed upon the initializing conditions [4, 14, 15, 33, 41, 79, 82, 89–91, 133].

For this reason, these works are largely outside the scope of this dissertation and are not

reviewed here for the sake of brevity. More interestingly, recent studies have begun exploring

multiscale frameworks that resolve both nanoscale emission phenomena and millimeter scale

plume dynamics [3, 100].

One such study of particular interest to this dissertation is that of Petro et al. [105],

where the EHD model built by Coffman and expanded by Gallud is coupled with a kinetic

plume model. Ion trajectories are initialized on the steady-state meniscus and are advected

downstream and radially by the applied electric field and intermolecular Coulombic repulsion.

The background field is provided by the EHD model and the space charge field is explicitly

calculated in the particle trajectory time integration using Coulomb’s law. The ion trajectories

are initialized using the spatial distribution of current density across the meniscus, and their

initial velocities correspond to the normal velocity of the fluid at their interfacial location. The
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explicit time-stepping coupled with the Coulombic space charge calculation requires refined

timestepping, so the authors partition the computational domain of the plume into several

regions where the rate at which inter-particle force calculations are made is progressively

relaxed. The authors also included a subroutine within the plume that accounts for the

fragmentation of solvated ion clusters. This fragmentation occurs in response to both the large

internal energy of ion clusters and the applied field that reduces the working function that

governs the dissociation process. The authors utilize both empirical data and high-fidelity

molecular dynamics results to approximate fragmentation rates for the most commonly

observed species in ILIS plumes and validate the energy distribution of their simulated beam

against retarding potential analyzer measurements. Collisions are not explicitly accounted for

in their model and collision rates were approximated using steady-state density and velocity

profiles of each emitted species. The multiscale nature of this work represents a remarkable

milestone in single emitter ILIS modeling, and paves the way for additional domain expansion

and simulation of multiplexed emitter arrays. However, the n-body numerical approach

implemented in their study is computationally expensive with a time complexity of O(n2),

becoming exponentially prohibitive with longer simulation times. For this reason simulations

of the multiscale model were bounded to 20 nanoseconds or less, reducing the length scale at

which plume phenomena can be studied and the feasibility of expanding into multi-emitter

domains. These limitations invite the formulation of an alternative end-to-end framework

that more efficiently resolves the ion dynamics within the plume without the cost of fidelity,

enabling simulation time scales on the order of microseconds or longer.

1.4 Scope and Outline of Dissertation

The scope of this dissertation is the development and numerical implementation of a

novel end-to-end single emitter model for ILIS electrospray thrusters and demonstration of

how simulations can assist in the mitigation of select failure mechanisms via design space

exploration and sensitivity analyses. This end-to-end emitter model requires an emission



16

submodel to resolve the total emission current from a steady-state interface that emerges

from the balance between electrohydrodynamic phenomena within the conductive propellant

and the applied electric field from the extractor electrodes. An additional plume submodel

is required whose initial conditions are specified by the output of the emission model. The

plume submodel would then resolve the trajectories of the evaporated ions subject to an

applied electric field, inter-species Coulombic repulsion, and fragmentation of larger clusters

into neutral and non-neutral species. Once established, the end-to-end model is used within a

design space exploration and for sensitivity analysis using response surfaces to quantify how

spatial characteristics of the plume respond to select geometric and operational conditions.

To provide a structured discussion of this work, the following chapters outline the theoretical

development, implementation, and analysis of the end-to-end emitter model in detail.

Chapter 2 establishes the fundamental physics underlying electrospray thruster emission

across all operational modes. It begins with the formation of a canonical structure known

as a Taylor cone that emerges when a conductive fluid is exposed to an applied potential

gradient and occurs due to the balance between hydrostatic pressure, capillary forces, and

electrostatic stresses. The chapter derives key scaling laws that lead to the universal Taylor

cone angle and elucidates how these relationships govern the cone-jet emission mode, including

expressions for the characteristic jet diameter, emission current, and droplet size. The analysis

continues with the transition from a cone-jet emission mode to a mixed ion-droplet emission

mode and ultimately a purely ionic emission mode that is characteristic of ILIS thrusters.

Emphasis is given on the physics of pure ion emission, as the chapter reviews the mechanics

of ion evaporation using ionic fluids and develops additional scaling laws that link thruster

performance to fundamental properties of the working liquid. Overall, the chapter lays the

mathematical and physical foundation of electrospray emission that underpins the numerical

models that are presented in the subsequent chapters.

Chapter 3 introduces a comprehensive electrohydrodynamic (EHD) meniscus model

for simulating steady-state ionic emission. It formulates a two-phase physics-based model
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by coupling Laplace’s equation for the electric potential in the vacuum and liquid domains,

the Stokes equations for the hydrodynamics within the liquid, and various electrokinetic

and surface charge boundary conditions at the liquid–vacuum interface. The chapter details

the derivation of interfacial stress balances, including the projection of Maxwell and fluid

stress tensors, and presents the numerical implementation using a two-phase finite element

method within the DUNE library framework. A global coupling algorithm is presented

that iteratively perturbs the meniscus shape to achieve convergence towards a steady-state

morphology. Verification test cases for the Laplace and Stokes solvers are introduced to

validate the approach, and simulation results are compared with established literature, with

discussions on numerical challenges and areas for future refinement.

Chapter 4 extends the meniscus-level simulations from the previous chapter into a

full end-to-end framework for modeling single-emitter ionic emission by coupling a kinetic

plume model that extends into the far-field downstream from the extractor electrode. A semi-

empirical emission model trained on AFRL’s AFET-2 thruster is introduced that substitutes

the capability of the original EHD model in certain operating conditions and is used due

to numerical challenges in the EHD model that precluded simulations from finding steady-

state meniscus configurations across operational conditions. The emission-plume coupling

is implemented as a one-way boundary condition that approximates the number density of

ionic species using the total emitted current. These species number densities initialize the

kinetic model, which combines Direct Simulation Monte Carlo (DSMC) for tracking rarefied

gas dynamics with a Particle-In-Cell (PIC) method tailored to single-polarity ionic plumes.

Key enhancements are made to the original kinetic model to account for single-polarity ionic

plumes, including a direct Poisson solver for non-quasineutral conditions and a field-free

fragmentation model to simulate the dissociation of solvated ion clusters. Finally, simulation

results for emission current, thrust, and plume spatial characteristics are evaluated against

experimental measurements from the AFET-2 thruster.

Chapter 5 demonstrates an example of how the end-to-end framework could be imple-
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mented to inform future ILIS design. Specifically, the chapter investigates how variations

in operational and geometric conditions affect spatial characteristics of the plume. A two-

dimensional case is conducted where extractor voltage and tip-to-extractor distances are

perturbed and their relative influence on plume width, sharpness, and tilt are studied using

super-Gaussian parameterizations of current density and beam intensity profiles. Surrogate

models are established to efficiently map the relationship between the design space and

plume characteristics, as well as enable sensitivity analysis studied. The chapter extends this

analysis with a three-dimensional case that studies the influence of translational and rotational

misalignments on plume characteristics, mimicking manufacturing variations of ILIS emitters

during thruster fabrication. Ultimately, the surrogate-based exploration provides actionable

insights for optimizing future ILIS thruster designs.

Chapter 6 concludes this dissertation, beginning with a summary of the work and

findings from each previous chapter. The chapter enumerates the novel contributions of the

conducted research, including the unique formulations of the EHD model, the development

of a modular finite element solver, the introduction of a semi-empirical ionic emission model

calibrated with experimental data, the extension of a DSMC/PIC solver to handle single-

polarity plumes with fragmentation, and the application of surrogate models for efficient

sensitivity analyses. Finally, the chapter presents recommendations for future work, including

improvements in implemented numerical methods, stronger coupling between emission and

plume solvers, enhanced fragmentation models, expanded design spaces, and multi-emitter

simulations.



Chapter 2

Governing Physics of Electrospray Emission

This chapter explores the underlying mechanisms that dictate the formation and

behavior of Taylor cones, the emergence of various emission modes from them, and the critical

parameters that characterize their performance. By establishing these foundational principles,

this chapter provides the theoretical groundwork necessary for the numerical models derived

in subsequent chapters.

2.1 Taylor Cones

The fundamental characterization of all electrosprays is that the source of their emission

emerge from the apices of Taylor Cones. Taylor cones occur when the interface between

a conductive fluid and an insulator (normally air or a vacuum, but dielectric liquids have

been used as well [8]) are electrically stressed past a critical threshold of stability. Sub-

critical stressing of the meniscus from an initial, rounded shape has been shown to follow

the behavior (to first order) of an inviscid, conductive liquid on a planar surface charged

by a uniform electric field [70, 120, 131, 132] known as a Frenkiel instability. Once the

instability threshold is met, the smooth and continuous interface is transformed into a novel

structure with conical features. Although other metastable structures may exist prior to this

transformation assuming an initial spheroidal morphology [69], this transition is often viewed

as an instantaneous process.

A schematic of this snap-off process for a capillary electrospray source is presented in
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Figure 2.1: Schematic of Taylor cone formation within a capillary-based electro-
spray configuration. In (a) where no potential gradient is applied, a spheroidal
droplet is formed that balances the interfacial pressure jump across the meniscus,
∆P , from upstream inlet conditions and the capillary pressure, Pc. Application
of a potential gradient in (b) results in an equipotential cone-like structure that
balances the interfacial pressure jump ∆P , the electric field traction normal to
the surface En, and the surface tension pressure from the working liquid Pst.

Fig. 2.1. Initially, before a potential gradient is applied between the capillary and electrode

shown in Fig. 2.1a, the conductive liquid at the free surface will form into a spheroidal

structure. The resultant topography emerges from the force balance between the hydrostatic

pressure jump across the meniscus, ∆P , and the capillary pressure, Pc. ∆P is set based

on the feeding mechanism and thus is dependent on the electrospray configuration utilized.

However, the value of the interfacial pressure gradient can be generally determined using

∆P = PB −QZ, (2.1)
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where PB is the back pressure set by the feeding mechanism, Q is the flow rate of the working

liquid, and Z is the hydraulic impedance. The QZ term represents the pressure loss of the

propellant as it travels from the reservoir to the emitter. In capillary geometries, PB is

often prescribed using active control systems and is set such that the meniscus is fastened,

preventing the potential loss of excess propellant. When no external field is applied, this is

accomplished by balancing ∆P with the capillary pressure,

Pc =
2γ

rc
, (2.2)

where γ is the surface tension coefficient of the working liquid, and rc is the internal radius

of the capillary tube.

In ILIS electrosprays that utilize porous configurations, a passive flow control mechanism

is implemented and the back pressure PB is instead determined statically. Assuming operation

in vacuum, PB for ILISs is equal to the Laplace pressure,

PB = − 4γ

DR

, (2.3)

where DR is the reservoir pore size. As a result, ∆P is enforced via the design of porous

emitters and reservoirs, where varying the pore size distribution has been shown to influence

both emission mode and stability [32].

To understand how the Taylor cone structure depicted in Fig. 2.1b emerges with the

introduction of an applied potential gradient, we consider the balance between capillary and

electrostatic stresses at the fluid-dielectric interface,

γ∇ · n̂ − 1

2
ε0(En)

2 = ∆P, (2.4)

where n̂ is the unit vector normal to the interface directed toward the dielectric medium, ε0 is

the vacuum permittivity, and En is the electric field component normal to the meniscus. The

first term on the left hand side of Eqn. (2.4) is the surface tension pressure and is a function
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of the interfacial curvature, ∇ · n̂, while the second term is the surface traction applied from

the electric field. The difference of these terms is equal to the aforementioned interfacial

pressure jump, ∆P . We initially study the case where ∆P = 0, in alignment with Taylor’s

classical analysis [121], seeking a solution that satisfies Eqn. (2.4) and is independent of the

feeding mechanism used. Rearranging the terms of Eqn. (2.4) results in an equation that

describes how the normal field component on the cone changes with respect to the surface

curvature,

En =

√
2γ

ε0
∇ · n̂. (2.5)

Next, Eqn. (2.5) is parameterized using a spherical coordinate system, where the origin

is placed at the cone apex as shown in Fig. 2.1b. From the Young-Laplace equation, the

interfacial curvature ∇ · n̂ is equal to (R−1
1 + R−1

2 ), where R−1
1 and R−1

2 are the principal

radii of curvature. For a cone, these would correspond to the curvatures acting normal

and tangential to the surface, where the latter orientation is equivalent to r. Along the

cone generator (i.e., r-direction), the curvature is zero and the remaining normal curvature

is henceforth denoted as 1/Rn. Expressing Rn as a function of r and θ is possible using

Meusnier’s theorem [5] from differential geometry, which states that the curvature of a circle

Cn with radius Rn passing through some point P is equivalent to the the curvature of another

circle C also passing through P , provided that both circles share the same tangent line at P .

This is visualized in Fig. 2.2, where a hypothetical force acting in the n̂ direction is shown

with curvature 1/Rn. Below, an additional circle orthogonal to the center axis, Cb, is shown

with curvature 1/Rb. If the circles defined by Rn and Rb meet at the same point along r, then

the curvature 1/Rn can be expressed as a function of Rb through the trigonometric relation,

1

Rn

=
cos θ
Rb

. (2.6)

Rb itself can be expressed using spherical coordinates via Rb = r sin θ. Substituting this
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θ

rn̂

Rn

Rb

Figure 2.2: Schematic of Meusnier’s theorem relating the normal curvature along
a cone with spherical coordinates r and θ.

relation into Eqn. (2.6) yields the equation for the normal curvature as a function of the

spherical system,

∇ · n̂ =
cos θ
r sin θ

=
cot θ
r

. (2.7)

Substituting Eqn. (2.7) into Eqn. (2.5) returns an updated equation describing how the

normal field evolves in the coordinate system of interest,

En =

√
2γ cot θ
ε0r

. (2.8)

Equation 2.8 can then be paired with Laplace’s equation, ∇2φ = 0, to formulate a boundary

value problem whose solution describes the equipotential surface of Taylor cones. Laplace’s

equation in spherical coordinates with azimuthal symmetry takes the form
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∂

∂r

(
r2
∂φ

∂r

)
+

1

sin θ
∂

∂θ

(
sin θ∂φ

∂θ

)
= 0, (2.9)

where it should be noted the internal potential domain is outside of the cone as shown in

Fig. 2.1b. Applying separation of variables on Eqn. (2.9) results in Legendre’s equation whose

general solution is

φ(r, θ) =
∞∑
n=0

Anr
nPn(cos θ) +

∞∑
n=0

Bnr
−(n+1)Pn(cos θ), (2.10)

where Pn is the Legendre function of the first kind. While the Legendre function of the

second kind, Qn, is also a solution of Eqn. (2.10), its singularity at θ = 0 precludes its

physical viability. The coefficients An and Bn are found by applying Eqn. (2.8) as a Neumann

condition for fixed Taylor cone angle θtc,

En = Eθ = −1

r

∂φ

∂θ
= −

∞∑
n

(
Anr

n−1 +Bnr
−(n+2)

) d
dθ
Pn(cos θ)

=

√
2γ cot θtc
ε0r

(2.11)

Equation 2.11 is valid solely at n = 1/2, where B1/2 = 0 and A1/2 is a constant. Thus, our

updated potential field is

φ(r, θ) = A1/2r
1/2P1/2(cos θ). (2.12)

Nontrivial equipotential solutions of Eqn. (2.12) require that P1/2(cos θ) = 0. This Legendre

function is plotted against θ and presented in Fig. 2.3, where it can be seen the root

corresponds with a Taylor cone half-angle of

θtc = 180◦ − 130.71◦ = 49.29◦. (2.13)

Taylor’s famous result in Eqn. (2.13) offers several important takeaways. The most

remarkable of which is that his solution is not dependent on any properties of the conductive

liquid nor the voltage of the extracting electrode, suggesting that Eqn. (2.13) is a universal
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Figure 2.3: Legendre function of the first kind Pn of degree n = 1/2 versus
spherical coordinate θ.

phenomenon. This fact has been experimentally verified [121], provided that space charge

effects are not significant and the geometric configuration enables Eqn. (2.12) as a valid

potential distribution.

Additionally, the potential solution at the interface Eqn. (2.12) is valid local to the cone

and, once established, is resilient to far-field perturbations of the electric field. This suggests

that the near-cone potential is governed by the local force balance of Eqn. (2.5). Nevertheless,

it should be expected that this idealized morphology may not hold when other forces are

introduced into the stress balance, such as an interfacial pressure gradient originating from a

feeding mechanism denoted in Eqn. (2.4) or during emission at the apex. Such perturbations

have been shown to influence the cone morphology [42]. Another disparity between ideal and

observed Taylor cone structures can be seen in the normal field distribution of Eqn. (2.8),
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where En ∝ 1/
√
r and thus En → ∞ as r → 0. This suggests that in the idealized structure,

the electric field becomes unbounded at the apex as it is applied over an infinitesimally small

region. Of course, this is not physically feasible in reality. When increasingly stronger fields

at the apex can no longer be supported by the liquid surface tension, the cone morphology

is locally broken and one of several possible emission modes emerge that each carry their

own unique characteristics. Their incipience is a function of both operating conditions and

properties of the working fluid and is described further in the subsequent section.

2.2 Cone-Jet and Mixed Emission Modes

Emission from Taylor cones have been studied and classified across a wide range of

operational and geometric regimes [25–28, 35, 44, 45, 58, 60, 61]. The regime of particular

interest to ILIS electrosprays is the purely ionic emission mode, where high localized field

strengths yield the direct evaporation of ions from the meniscus. To understand the physical

basis from which this occurs, we begin first with analysis of the simplest and most studied

emission regime, the steady cone-jet. A schematic of each emission regime, including the

aforementioned and the intermediate mixed mode, is presented in Fig. 2.4.

Cone-jets, as the name implies, are characterized by the continuous formation of a

liquid jet that is expelled from the cone apex, eventually breaking down into the formation

of electrically charged droplets. The jet and the cone can be studied separately when the

former’s length scale is considerably smaller than that of the meniscus, a condition that is

met with highly conductive working fluids in the range of 0.001–1 S/m. In this case, the cone

can be largely treated as an infinitely conductive, hydrostatic structure. However, the liquid

emission at the apex precludes the same assumption to be made in this region, known as

the cone-jet transition region, r∗cj. The presence of hydrodynamics near r∗cj indicates that

equipotentiality is no longer adhered to. This occurs when the time scale of the liquid passage,

r∗cj
3/Q, where Q is the jet flow rate, is of comparable order to the charge relaxation time,

εε0/K, where ε is the relative permittivity of the liquid and K is the conductivity. This
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Figure 2.4: Schematic of electrospray emission modes: (a) cone-jet consisting of
an elongated jet protruding from the cone apex that breaks into droplets, (b)
mixed cone-jet where reducing the flow rate acts to reduce the jet and introduce
field evaporation of ions at the cone-to-jet transition region, and (c) purely ionic
emission where further reduction of the flow rate completely suppresses the jet
and emission consists solely of ions evaporating from a closed meniscus.

condition enables us to quantify the characteristic length scale of the cone-jet transition

region,

r∗cj =

(
εε0Q

K

)1/3

. (2.14)

What Eqn. (2.14) demonstrates, and what will be continually demonstrated throughout this

dissertation’s analytical analysis of electrosprays, is that scaling laws are the fundamental

tool used to understand the order of magnitude of governing phenomena across each emission

mode. Continuing the analysis, the assumptions used to derive Eqn. (2.14) can also be used
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to derive the approximate emission current transported by cone-jet electrosprays. Near r∗cj,

it can be assumed that the majority of charge transport will be convected by the jet while

the surface is simultaneously relaxed, i.e. the surface charge distribution arises in response

largely to the normal electric field component, Eθ. Given the system geometry, the cone-jet

emission current Icj obeys

Icj = 2π(r∗cj sin θtc) σucj, (2.15)

where σ is the surface charge distribution and ucj is the liquid velocity. From Eqn. (2.8), the

surface charge can be shown to equate to

σ = ε0En = ε0Eθ = ε0

√
2γ cot θtc
ε0r

. (2.16)

Similarly, the liquid velocity can be shown to follow

ucj =
Q

2π(1− cos θtc)r∗cj2
. (2.17)

Using Eqns. (2.16) and (2.17), Eqn. (2.15) can be rewritten as

Icj ≈
√
2 cos θtc sin θtc
1− cos θtc

√
γKQ

ε
, (2.18)

where the constant coefficient of Eqn. (2.18) is approximately 2.86. The emission behavior

suggested by Eqn. (2.18) has been experimentally validated [60, 96, 103] where the constant

coefficient of Eqn. (2.18) is replaced by an empirical factor f(ε). Similar to the universal

Taylor cone angle of Eqn. (2.13), Eqn. (2.18) is remarkable in that it suggests the cone-jet

current is independent of the applied voltage, electrode geometry, and fluid viscosity.

Downstream from the cone-jet transition region, the axially extending jet is characterized

by its diameter, which has also been shown to approach [96]

dcj = g(ε)

(
εε0Q

K

)1/3

, (2.19)
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where g(ε) is another empirical factor related to f(ε) and is also a function of the liquid

relative permittivity. Once at the limit prescribed by dcj, the jet breaks down into a stream

of charged droplets. Although the balance between surface tension and the normal field is

broken at the cone-jet transition region, it is reasonable to postulate that this equilibrium

condition is still generally valid downstream within the jet and droplet emergence regions as

Eθ � Er. This enables the stress balance of Eqn. (2.4) to be repeated in the context of an

emitted droplet,

2γ

Rd

=
1

2
ε0(En)

2, (2.20)

where Rd is the droplet radius. Assuming a spherical droplet with a relaxed surface charge,

σd = qd/4πR
2
d = ε0En → En =

qd
4πε0R2

d

, (2.21)

where σd is the droplet surface charge and qd is the total charge within the droplet. Substituting

the right-most equation of Eqn. (2.21) into Eqn. (2.20) enables calculation of the maximum

charge qd,max a droplet can support before instability

qd,max = 8π
√
ε0γ R

3/2
d . (2.22)

Equation (2.22) is known as the Rayleigh limit [43] at which the addition of further charge or,

more commonly expected in cone-jet emission, perturbations in the morphology results in an

instability that fragments the initial droplet into smaller, spheroidal droplets. Normalizing

the Rayleigh limit charge with the droplet mass md = 4/3πR3
dρ, where ρ is the liquid mass

density, results in a maximum charge-to-mass ratio of

( q
m

)
cj,max

=
6
√
ε0γ

ρR
3/2
d

. (2.23)

Maximizing the charge-to-mass ratio, or specific charge, is critical in the context of electrospray

micropropulsion as it is directly proportional to the exhaust velocity (and thus specific impulse
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Isp) through the relation

Isp =
1

g

√
2Va

( q
m

)
, (2.24)

where g is the acceleration due to gravity, and Va is the accelerating potential. Equation

(2.24) indicates that increasing the specific charge results in a thruster that more efficiently

utilizes its propellant to change the momentum of its spacecraft. Equivalently, increasing the

specific charge reduces the acceleration potential required for a targeted specific impulse.

In practice, droplets emitted from steady cone-jets do not exhibit specific charges

near the maximum specified by Eqn. (2.23) due to their proclivity to fragment. Jets with

characteristic lengths dcj have been observed [35] to emit droplets with specific charges that

follow

( q
m

)
cj
=
f(ε)

ρ

√
γK

Q
, (2.25)

which is distinct from Eqn. (2.23) through its dependency on the liquid conductivity K and

flow rate Q. As such, Eqn. (2.25) is a function of different fluids and flow conditions but is

typically within the range of 102 − 104 C/kg.

Equations (2.24) and (2.25) together suggest that the cone-jet specific impulse is

proportional to the ratio of the liquid conductivity to its flow rate, Isp ∝ (K/Q)1/4. Simulta-

neously, increasing this relation acts to reduce the jet thickness dcj as stated by Eqn. (2.19)

(dcj ∝ (K/Q)−1/3). Therefore, in principle, a high specific charge can be achieved for a given

working liquid by continually decreasing the flow rate Q, albeit at the cost of current shown

by Eqn. (2.18). In practice, the validity of this relationship is limited by the emergence of

one of several phenomena.

The first of these phenomena include instabilities in the Taylor cone morphology that

arise when a non-dimensional flow parameter η, given by
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η =

√
ρKQ

γεε0
, (2.26)

drops below some critical threshold. For traditional capillary geometries, the minimum value

of η before instabilities arise is on the order of 0.5 [22, 50]. The underlying nature of this

instability is still not well understood, although it is postulated that the specific charge

cannot exceed the theoretical limit defined by the full dissociation of anions and cations in

the working fluid [96].

The second of these phenomena is observed when the flow rate itself is lowered below

a critical value, approximately when the jet thickness is on the order of 10−8 m. In this

regime, the decreasing current is compensated for by the prevalence of a process known as

ion or field evaporation. This evaporation process, where ions—often solvated such that

one or several neutral molecules are attached to it—directly emit from the liquid surface,

is mostly concentrated near the cone-jet transition region where the normal field Eθ is at

its maximum. This operational regime defines the mixed droplet-ion emission mode, first

discovered by Gamero-Castaño and Fernández de la Mora [49], and is visualized in Fig. 2.4b.

This regime is of interest in the context of micropropulsion as the emitted mass is largely

carried by droplets while a significant portion of the current is carried by ions, providing a

balance between thrust and specific impulse unavailable in other emission modes.

2.3 Purely Ionic Regime

Continued reduction of the flow rate acts to simultaneously reduce the droplet emission

while increasing the ion emission. While initially this results in a decrease of total current, a

greater efficiency in charge transport by the ions eventually contributes to an overall increase

in total emitted current. It should be expected then that an operational regime exists such

that the jet is suppressed completely and the total charge is carried solely by ions evaporating

from a closed meniscus. This emission mode exists under select conditions and is known as
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the purely ionic regime, visualized in Fig. 2.4c.

2.3.1 Ionic Liquids

Purely ionic emission is not a universal operational regime and is enabled when the

working propellant is an ionic liquid, defined as a chemical salt whose state is liquid at ambient

conditions. In certain contexts, a stricter definition is used where the salt must have a melting

point below 100◦C [73]. This regime has yet to be observed using organic electrolytes, the

other dominant branch of electrospray propellants, as they exhibit a minimum stable flow

rate Qoe
min of approximately

Qoe
min ≈ εε0γ

ρK
, (2.27)

although recent research has suggested that this minimum is also dependent on viscous

phenomena [51]. Regardless, Qoe
min is often much larger than what would be required to

support pure ionic emission as these propellants succumb to the instabilities discussed in

Section 2.2.

Several properties of ionic liquids distinguish them from standard electrolytes and thus

enable their ability to support closed meniscus emission. Firstly, ionic liquids do not consist

of any solvent which result in stronger Coulombic interparticle forces relative to Van der

Waals forces that govern electrolytes. Despite these larger attractive forces, ionic liquids resist

forming crystalline structures under ambient conditions and remain in a liquid state due to a

unique combination of structural and energetic properties of the ions involved. These ions are

usually large and asymmetrical, precluding them from efficiently packing into solid lattices

and delocalizing their charge over a greater volume. As a result, ionic liquids exhibit low

lattice energies that are overcome by their thermal energy at room temperature.

Secondly, ionic liquids often exhibit a wider electrochemical window, defined as the range

of voltages over which a substance remains stable before undergoing significant electrochemical
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decomposition. For many electrolytes the window is on the order of 1 V while ionic liquids

can achieve windows on the order of 4-5 V. This broader operational range contributes to the

ability of an ionic liquid to support a closed meniscus experiencing high local field strengths.

2.3.2 Emission Mechanics

The field evaporation of ions from the surface of a conductive fluid was first described by

Iribarne and Thomson [66] and subsequently characterized [49, 78]. Initially, the exploration

of an emission regime that consists predominantly of ions focused on systems where liquid

metals were utilized as the working fluid [46, 130]. These are known as liquid metal ion sources

(LMIS) and have conductivities that are significantly higher than standard electrospray ion

sources. As a result, the effects of charge relaxation are not present and the electric field

strength at the apex cannot be externally determined by the extractor electrode potential.

The observation of pure ionic emission on a closed meniscus using ionic liquids is due

to, in combination with the reasons mentioned in the aforementioned section, their high

conductivities and high surface tensions. The lack of a jet allows ion evaporation to be

modeled analogously to thermionic emission, as an activated process whose mathematical

form is that of a modified Arrhenius equation [65],

j · n̂ =
σkbT

h
exp

(
−Ea

kbT

)
, (2.28)

where j is the evaporated current density vector, σ is the surface charge density at the

interface, T is the temperature of the working fluid, kb is Boltzmann’s constant, h is Planck’s

constant, and Ea is the activation energy. For many ionic liquids Ea is on the order of 1-2 eV

[57] meaning that, in the absence of an externally applied field, significant ion emission would

not occur unless the temperature T was on the order of 1,000 degrees Kelvin. Inducing ion

emission thermally would require additional heating and load management subsystems, as

well as likely introduce scaling related inefficiencies observed in other EP devices where high
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Figure 2.5: Schematic of evaporated ion q and hypothetical mirror charge −q,
both a fixed distance d away from the liquid-dielectric interface. The method of
image charges is used to determine the reduction in free energy of solvation G(E)
required to enable the field emission process in ionic liquids.

temperatures are required for ionization. Instead, and more simply, an externally applied

electric field can be used to reduce this energy barrier.

Determining the value of Ea can be accomplished using the method of image charges

[54], visualized on Fig. 2.5. An ion of charge q is shown at some fixed distance d away from

the liquid-dielectric interface defined at the x − y plane. It is assumed the length scale is

sufficiently small such that the interfacial area shown has no curvature and is approximated

as a flat plane. Relative to the interface, the ion q experiences a repulsive force due to

the applied field equal to FE = qE and an attractive force from induced charge within the

conductive liquid. The method of image charges states that this attractive force is equal

to the force due to a hypothetical charge of opposite polarity −q located at z = −d. From

electrostatic theory this force is equal to FI = −q2/4πε0(2d)2. The total energy of the system
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is determined by calculating the work W required to bring q from z = ∞ to z = d,

W (d) =

∫ d

∞
FE dz +

∫ d

∞
FI dz =

∫ d

∞
qE dz −

∫ d

∞

q2

4πε0(2z)2
dz. (2.29)

It can be assumed that E = 0 at z = ∞, resulting in an energy of

W (d) = qEd+
q2

16πε0d
. (2.30)

When no external field is applied it can be shown that the derivative of Eqn. (2.30) is negative,

indicating that ion q would always experience an attractive force towards the ionic liquid.

Introducing the linear qEd term changes the gradient distribution, allowing q to experience a

net repulsive force at distance d if the field strength E is sufficiently high. The minimum

distance dmin at which this force balance occurs is the distance that equates FI and FE,

dmin =

√
q

16πε0E
. (2.31)

Substituting Eqn. (2.31) into Eqn. (2.30) yields the reduction in free energy of solvation G(E)

when applying a field of strength E,

W (dmin) ≡ G(E) =

√
q3E

4πε0
. (2.32)

However, this is not equal to the activation energy Ea as G(E) does not account for the

initial energy barrier of the ion in the absence of an external field. In that case, we assume

the ion q initially exists at some minimum distance di on the order of the ion length scale.

This is known as the ion solvation energy ∆G [56] and is an experimentally determined value

for W at d = di. The activation energy Ea is then equal to the difference between initial

energy barrier ∆G and the energy reduction by the external field E,

Ea = ∆G−G(E) (2.33)
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Using Eqns. (2.32) and (2.33), it can be shown that the minimum normal electric strength

Emin required for significant ion emission must satisfy

Emin ≥ 4πε0
q3

∆G2, (2.34)

which for standard ionic liquids is on the order of 109 V/m [48]. This exceeding high strength

is only possible near the Taylor cone apex at length scales on the order of nanometers. This

defines the emission regime and its value, alongside other regimes of interest during pure

ionic emission, are obtained using scaling laws further described in the subsequent section.

2.3.3 Scaling Laws

Approximation of the length scale of emission r∗ can be accomplished by revisiting the

interfacial stress balance of Eqn. (2.4) in the context of an ionic liquid meniscus undergoing

pure ionic emission. Firstly, we know from Eqn. (2.34) that the critical normal field for

significant ion emission is E∗ ≈ Emin. Next, the interfacial pressure jump is again neglected

and the electric traction Te is obtained via application of the unmagnetized Maxwell stress

tensor [70]

Te =
1

2
ε0

(
E2 − εEl2 + (ε− 1)Et

2
)
=

2γ

r∗
, (2.35)

where El is the normal electric field within the liquid and Et is the tangential component of

the electric field in the external dielectric domain. From the geometry it is expected that

Et → 0 as r → 0. An electric field within the ionic liquid El is expected initially in response

to the external field E∗ assuming full charge relaxation has yet to occur on the interface. To

approximate the liquid electric field component, an Ohmic conduction model is assumed

jl = KEl, (2.36)
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where jl is the current density normal to the interface within the liquid, in conjunction with

a surface charge obtained from the interfacial jump condition

σ = ε0E − ε0εE
l. (2.37)

Substituting Eqns. (2.36) and (2.37) into the ion evaporation law of Eqn. (2.28) allows one

to solve for the normal liquid electric field component,

El =
E/ε

1 + τ exp
(

1
kBT

[∆G−G(E)]
) , (2.38)

where τ is a non-dimensional time scale and is equal to

τ =
hK

εε0kBT
. (2.39)

τ in Eqn. (2.39) denotes the ratio of the time scale for charge emission with the time scale

for charge relaxation. For typical ionic liquids at room temperature, where K ≈ 1 S/m and

ε ≈ 10, τ � 1. At external fields near critical emission strengths E∗, the liquid normal field

strength is approximately El ≈ E∗/ε. Substituting this approximation into Eqn. (2.35) allows

one to solve for the characteristic length scale at which significant ion emission is expected,

r∗ ≈
(

ε

ε− 1

)
4γ

ε0E∗2 =

(
ε

ε− 1

)
q6γ

4π2ε30(∆G)
4
. (2.40)

Equation (2.40) can also be used to determine the characteristic emission current I∗,

assuming the evaporation surface morphology is a spherical cap of radius r∗. It should be

expected that the characteristic emission scaling obeys I∗ ∼ Aej
l, where Ae is the emission

area whose scaling follows Ae ∼ πr∗2. Expressed in terms of the critical field and properties

of the liquid, the characteristic emitted current is approximately

I∗ ≈ ε

(ε− 1)2
32πKγ2

ε20E
∗3 =

ε

(ε− 1)2
q9Kγ2

2π2ε50(∆G)
6
. (2.41)
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It should be noted that both Eqns. (2.40) and (2.41) demonstrate strong sensitivities to the

solvation energy ∆G. For an ionic liquid where K = 1 S/m, γ = 0.05 N/m, ε = 10, ∆G = 1

eV, the emitting radius would be approximately r∗ ≈ 52 nm with a total current of I∗ ≈

1000 nA. Using an ionic liquid with a solvation energy of ∆G = 1.5 eV instead would result

in an emission radius and current of 10 nm and 1000 nA, respectively. This range of currents

is comparable to what is experimentally observed in ionic liquids with similar characteristics

[56, 107].

2.4 Summary

This chapter examined the governing physics of electrospray emission, providing a

framework for understanding the mechanisms underlying Taylor cones, emission regimes,

and the scaling laws that dictate their behavior. Beginning with the classical formation of

Taylor cones, the analysis demonstrated this phenomenon originates from the balance between

surface tension, capillary forces, and electrostatic stresses at the liquid-dielectric interface.

Subsequently, the universal Taylor cone angle was derived and noted for its independence

from specific fluid properties or geometric constraints under idealized conditions.

Subsequent sections explored emission regimes, with particular attention to the steady

cone-jet mode and the transition to purely ionic emission. For cone-jet operation, scaling laws

for the cone-jet transition region, emission current, and jet diameter revealed the dependence

of these phenomena on key liquid properties, including conductivity, surface tension, and

flow rate. These relationships offer insight into the trade-offs between stability, thrust, and

specific charge in electrospray propulsion systems.

Reduction of the flow rate in a cone-jet enables the purely ionic regime when ionic liquids

are used as the working fluid. The analysis of this emission mode included the derivation

of a critical electric field for ion evaporation and the use of scaling laws to approximate

emission radius and current. The results reinforce the unique suitability of ionic liquids for
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ILIS applications, where their high surface tension and conductivity, combined with low

solvation energies, enable emission at length scales and field strengths unattainable with

traditional electrolytes.

These theoretical insights form the foundation for the numerical models derived in

subsequent chapters. The equations and scaling relationships developed here provide the

necessary constraints and boundary conditions for the implemented computational methods,

ensuring that the models developed accurately capture the physical phenomena governing

electrospray ionic emission.



Chapter 3

Electrohydrodynamic Meniscus Model

This chapter presents a physics-based model of an electrohydrodynamic (EHD) meniscus

undergoing steady-state ionic emission, designed to capture the multiscale phenomena inherent

in field emission from an ionic liquid under the diverse geometric and operational conditions

typical of electrospray thruster operation. As discussed in Chapter 2, the physical processes

governing this system span several spatial orders of magnitude—from the nanometer-scale

emission dynamics to the micron-scale meniscus geometry to the macroscopic electrical

and fluid dynamic fields—requiring a multiscale modeling approach. The EHD meniscus

model integrates the Taylor–Melcher leaky dielectric framework with a phenomenological ion

evaporation law to describe the current density distribution and the resulting ion emission

at the liquid–vacuum interface. This interfacial balance accounts for the electrostatics from

externally applied electric fields and the fluid mechanics of the conductive working liquid.

The former phenomenon is modeled using Laplace’s equation while the latter is captured via

the incompressible Navier–Stokes equations in the low–Reynolds number regime, ensuring

that viscous stresses and capillary forces are appropriately balanced at the meniscus.

The numerical implementation of this model employs a two-phase finite element frame-

work, partitioning the physical domain into two computational subdomains whose intersection

defines the EHD meniscus. To resolve the coupled Laplace and Stokes problems in the bulk

domains, the chapter details a global algorithm that enforces the interfacial boundary condi-

tions for a given meniscus morphology and iteratively perturbs the interfacial shape until
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a steady-state configuration is found. Particular emphasis is given to the challenges of

mesh deformation and numerical stability, which are addressed using interfacial perturbation

techniques and a stability analysis of the implemented framework.

The chapter is organized as follows. In Section 3.1, the computational domain is defined,

including detailed descriptions of both the macroscopic emitter configuration and the sub-scale

region surrounding the meniscus. Section 3.2 develops the theoretical model formulation,

presenting the governing equations for electrostatics, fluid dynamics, and interfacial stress

balance. Section 3.3 outlines the numerical implementation strategy, detailing the finite

element discretization, global coupling algorithm, and methods for handling interfacial

perturbations and internal mesh deformation. In Section 3.4, simulation results are presented

and compared with established literature, highlighting both the strengths and limitations of

the implemented approach.

3.1 Computational Domain

The computational domain implemented in this work is similar to that in [105], and is

presented in Fig. 3.1. The global domain, shown in Fig. 3.1a, includes a single two-dimensional

emitter affixed to a flat plate, denoted by Γemi. The radius of the emitter tip is xemi = 25 µ

m and the distance from the emitter center to the domain boundary is xdom = 150 µm. The

emitter profile is a function of the equation

y(x) = η0

√
a2

4
+

x2

1− η20
, (3.1)

where a is the linear eccentricity of the hyperbola and η0 is a non-dimensional parameter

governing the profile’s asymptote. The linear eccentricity is given by

a = 2demi

√
1 +

rc
demi

, (3.2)



42

(a) Macro-scale, two-dimensional domain
of a single emitter tip below two extractor
electrodes. A voltage differential is applied
between the emitter and electrodes to in-
duce electric fields strengths on the order
required for direct ion evaporation at the
propellant free surface. Field emission at
the interface is numerically treated within
a separate sub-scale domain at the emitter
apex, and is coupled to the macro-scale
domain via the Γsub intersection

(b) Sub-scale domain of an emission site
at the emitter apex presented in Fig. 3.1a.
Steady, open channel flow is assumed
for the propellant in Ωliq, where a fully-
developed velocity profile is imposed at the
Γinl inlet boundary. Geometry of the EHD
meniscus, Γint, is numerically perturbed to
find configurations that satisfy mechani-
cal equilibrium, a necessary prerequisite
before solving steady-state emission char-
acteristics

Figure 3.1: Computational domain of the EHD meniscus solver

where demi is the distance between the emitter apex and extractor electrode, and rc is the

radius of curvature at the emitter apex. The non-dimensional η0 parameter is defined as

η0 =
1√

1 + rc/demi

, (3.3)

where rc = 11 µm and demi = 100 µm. The extractor electrode thickness is dext = 25 µm,

the distance from the extractor electrodes to the domain ceiling is ddom = 100 µm, and the

distance from the emitter base to the tip is yemi = 200 µm.
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Within the subscale domain at the emitter apex, shown in Fig. 3.1b, an open fluid

channel of radius xinl = 20 nm is formulated at the tip center to account for upstream

conditions contributing to ion emission at the EHD meniscus, Γint. A fully developed velocity

profile is assumed at the channel inlet Γinl, as well as a channel length sufficiently longer

than the meniscus length. The centerline distance of the subscale domain is xsub = 100 nm,

with a height of ysub = 100 nm.

3.2 Model Formulation

The EHD meniscus model solves for current density across a steady–state free surface

undergoing field emission. It accomplishes this by solving the EHD conditions in the liquid

and vacuum domains Ωliq and Ωvac, respectively. An iterative routine then perturbs the shape

of the interface until an equilibrium solution has converged.

We begin by considering the electrostatic conditions that govern the two-phase system

in Fig. 3.1a. As the space charge surrounding the evaporating surface is negligible [63], no

charge density is considered within the vacuum domain Ωvac. Within the conductive bulk

fluid, EHD phenomena are modeled using the Taylor–Melcher leaky dielectric model [110],

where the volumetric charge is also considered negligible. Therefore, Laplace’s equation is

solved within each phase domain while enforcing continuity at their interface,

∇2φl = 0 in Ωliq, (3.4)

∇2φv = 0 in Ωvac, (3.5)

φl = φv on Γint, (3.6)

where φl and φv are the liquid and vacuum electric potentials, respectively. A potential

gradient is applied from the emitter Γemi and extractor electrodes Γext such that
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φl = 0 on Γemi ∪ Γinl, (3.7)

φv = V0 on Γext, (3.8)

where V0 is the voltage of the extractor electrodes. In the leaky dielectric model, poorly

conducting liquids are described as dielectric materials with uniform, non–zero Ohmic

conductivities. As a result, only conductive charge transport is considered and the current

density obeys

j = −K∇φl in Ωliq, (3.9)

where j is the current density, and K is the electrical conductivity. It should be noted that

this system of charge transport implicitly enforces charge continuity ∇ · j = 0, in the bulk

fluid, since the divergence of Eqn. (3.9) results in a scale factor of Eqn. (3.4). In the meniscus,

a phenomenological kinetic law originally described by Iribarne [65] is used for the evaporated

ion current,

j · n̂ =
σkbT

hc
exp

(
−1

kbT

[
∆G−

√
−∇φv · n̂
4πε0/q3

])
on Γint, (3.10)

where n̂ is the unit vector normal to the interface, kb is the Boltzmann constant, hc is the

Planck constant, T is the temperature, σ is the surface charge density at the interface, ∆G is

the solvation energy of the evaporated ions, q is the elementary charge, and ε0 is the vacuum

permittivity.

Viscous stress contributions to the EHD meniscus are accounted for in part by incom-

pressible Navier–Stokes equations at the low–Reynolds limit,

µ∇2u −∇p = 0 in Ωliq, (3.11)

∇ · u = 0 in Ωliq, (3.12)
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where µ is the dynamic viscosity, u is the fluid velocity, and p is the pressure. Inertial effects

are neglected due to an order–of–magnitude analysis by Higuera [63], where he demonstrated

that viscous forces are dominant in this spatial regime. While Eqn. 3.12 enforces mass

continuity in the bulk fluid, an additional condition at the interface is required to enforce

mass conservation of evaporated ions,

u · n̂ =
m

ρq
j · n̂ on Γint, (3.13)

where m is mass of the evaporating species and ρ is fluid density. The interfacial pressure

jump across the meniscus is given by

pint = pres −QZ on Γint, (3.14)

where pint is the interfacial pressure jump, pres is the pressure at the propellant reservoir, Q is

the inlet flow rate, and Z is the hydraulic impedance of the propellant. As vacuum conditions

are assumed, pres = 0 and the remaining equation is used to enforce a fully developed velocity

profile at the inlet Γinl.

Another characteristic of the leaky dielectric model is how it modifies the interfacial

conditions of dielectric materials. Instead of electric displacement continuity, a condition of

interfacial current continuity is enforced. The inevitable jump in electric displacement from

this modified condition is accounted for by an interfacial surface charge density distribution

given by

(ε∇φl −∇φv) · n̂ =
σ

ε0
on Γint, (3.15)

where ε is the relative permittivity of the propellant. Surface charge continuity at the

meniscus is enforced via a steady-state transport equation,
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u · ∇σ = (σn̂ · ∇u −K∇φl − j) · n̂ on Γint. (3.16)

Equation 3.16 describes the evolution of surface charge as a function of the rate charge is

conducted to the surface and the rate charge is evaporated from the surface.

Finally, we consider the interfacial stress balance. When projected in the normal and

tangential directions relative to the meniscus, it yields the form:

t̂ · (Tl − Te) · n̂ = 0 on Γint, (3.17)

n̂ · (Tl − Te) · n̂ = −γ∇ · n̂ on Γint, (3.18)

where t̂ is the unit vector tangent to the interface, Tl is the Newtonian fluid stress tensor, Te

is the electrostatic Maxwell stress tensor, and γ is the surface tension coefficient.

3.2.1 Normal and Tangential Projections of Stress Tensors

Before Eqns. (3.17) and (3.18) can be enforced as interfacial boundary conditions, the

liquid and electric stress tensor projections must be expressed as functions of the system

variables so that they can be implemented within the solver. The normal and tangential

projections of the interfacial Maxwell stress tensor are given by the leaky dielectric model

[110]

t̂ · Te · n̂ = −σ∇φv · t̂ on Γint, (3.19)

n̂ · Te · n̂ =
1

2
ε0
(
(∇φv · n̂)2 − ε(∇φl · n̂)2

)
+

1

2
ε0
(
(ε− 1)(∇φv · t̂)2

)
on Γint. (3.20)

Projections of the liquid stress tensor are not provided by the leaky dielectric model

and are subsequently derived using continuum mechanics of viscous flows. Generally, the

stress tensor can be expressed as a combination of two terms,
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Tl = −pI + τ , (3.21)

where p is the hydrostatic pressure defined by Eqn. (3.14), I is the identity matrix, and τ is

the deviatoric stress tensor. For a Newtonian viscous fluid,

τ = 2µE, (3.22)

where µ is the dynamic viscosity coefficient and E is the strain rate tensor of the form

E =
1

2
(∇u +∇uT). (3.23)

Equation 3.23 is defined as the symmetric component of the liquid velocity gradient ∇u.

Combining Eqns. (3.21) to (3.23) results in a final stress tensor

Tl = −pI + µ
(
∇u +∇uT) . (3.24)

The first projection of Eqn. (3.24) onto the interfacial normal direction n̂ can be shown to

equate to

Tl · n̂ =[−pI + µ
(
∇u +∇uT)] · n̂

=− pn̂ + µ(∇u · n̂ +∇uT · n̂).
(3.25)

Expansion of the ∇u · n̂ and ∇uT · n̂ terms yield

∇u · n̂ =


∂un̂

∂n̂
∂ut̂
∂n̂

∂un̂

∂t̂
∂ut̂

∂t̂


n̂

0

 =


∂un̂

∂n̂
∂un̂

∂t̂

 =

n̂ · ∇u · n̂

t̂ · ∇u · n̂

 , (3.26)

∇uT · n̂ =


∂un̂

∂n̂
∂un̂

∂t̂
∂ut̂
∂n̂

∂ut̂

∂t̂


n̂

0

 =


∂un̂

∂n̂
∂ut̂
∂n̂

 =

n̂ · ∇uT · n̂

t̂ · ∇uT · n̂

 , (3.27)
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where un̂ and ut̂ are the respective normal and tangential components of the liquid velocity.

The second projection of Eqn. (3.24) across each direction is found by substitution of

Eqns. (3.26) and (3.27) into Eqn. (3.25),

n̂ · Tl · n̂ = −p+ 2µ
∂un̂

∂n̂ on Γint, (3.28)

t̂ · Tl · n̂ = µ

(
∂un̂

∂t̂
+
∂ut̂
∂n̂

)
on Γint. (3.29)

Equations (3.28) and (3.29) represent the liquid stress tensor projections as a function of the

flow velocity, enabling the implementation of interfacial boundary conditions Eqns. (3.17)

and (3.18) within the EHD meniscus solver.

Once a steady-state meniscus morphology is found, the current density is integrated

along the interface to find the total emitted current,

I =

∫
Γint

j · n̂ dΓint, (3.30)

where I is the current emitted from the interface.

3.3 Numerical Implementation

Solutions of Eqns. (3.4)–(3.17) are found for a fixed meniscus shape Γint using finite

element methods implemented within the Distributed and Unified Numerics Environment

(DUNE), an open source, modular C++ library for solving partial differential equations using

grid-based methods [10, 13, 37].

The curvature of the initial meniscus is unlikely to satisfy the normal component of the

boundary condition of interfacial stress of Eqn. (3.18), resulting in a non-zero residual. This

residual is minimized using a pseudo-timestep routine that slowly perturbs the interfacial

morphology until Eqn. (3.18) is satisfied. Once the interface is perturbed, an additional

routine is required to deform the internal mesh nodes as well. The implemented interfacial

propagation and internal mesh deformation are described in Subsections 3.3.2 and 3.3.4.
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3.3.1 Laplace and Stokes Solvers

We begin by considering the multi-domain boundary value problem of Eqns. (3.4)–(3.6)

and Eqn. (3.15). These equations state that within each subdomain Ωliq and Ωvac, Laplace’s

equation is solved with continuity of the electric potential and a jump condition for the electric

potential gradient at the interfacial boundary. A monolithic routine is implemented to solve

the coupled Laplace problem simultaneously across both subdomains. This is accomplished by

discretizing the multi-domain boundary value problem using the Symmetric Interior Penalty

Galerkin (SIPG) method [38]. To do so, we begin by defining the finite element space

Sk := {ϕ ∈ L2(Ωliq ∪ Ωvac) : ϕ|T ∈ Πk ∀T ∈ T } (3.31)

where L2 denotes the set of square–integrable functions and T is the set of elements in the

multi–grid domain of Ωliq ∪ Ωvac. Unlike traditional Galerkin methods, the functions of this

space are not necessarily continuous at element boundaries and can hold multiple values. If

we define ΓT as the intersection of two adjacent elements Tin and Tout, then for a function

ϕ ∈ Sk we can define the jump across ΓT as

JϕKΓ(x) := ϕin(x)− ϕout(x) ∀x ∈ ΓT . (3.32)

Similarly, the average value on a given intersection can be defined

{ϕ}Γ(x) :=
1

2
(ϕin(x) + ϕout(x)) ∀x ∈ ΓT . (3.33)

Using these definitions the multi-domain Laplace problem is recast into its weak formulation,

a necessary prerequisite for discretization within the finite element method, of which the

full derivation is provided in Appendix A. Applying the SIPG method requires the weak

formulation to be recast into a residual formulation,

Find ϕ ∈ Sk : rSIPG(ϕ, θ) = 0 ∀θ ∈ Sk, (3.34)



50

where

rSIPG (ϕ, θ) =

∫
Ωliq

∇ϕ · ∇θ dΩliq +

∫
Ωvac

∇ϕ · ∇θ dΩvac (3.35)

−
∫
Γint

{〈∇ϕ, n̂〉}JθK dΓint −
∫
Γint

{〈∇θ, n̂〉}JϕK dΓint

+ κ
∑

Γ∈Γint

1

hΓ

∫
Γ

JϕKJθK dΓint

−
∫
Γint

J〈∇ϕ, n̂〉KJθK dΓint,

is minimized. 〈·, ·〉 denotes the inner product, κ is a penalty term, and hΓ is the characteristic

length scale of an arbitrary intersection Γ. The first two terms on the right-hand side of

Eqn. (3.35) represent the volumetric residual within each subdomain, while the following two

terms couple the subdomains by penalizing the interfacial jump in potential and enforcing

continuity. The final term corresponds to an interfacial jump in the potential gradient, whose

value is set by Eqn. (3.15). A slight reformulation of this equation yields

J〈∇φi+1, n̂〉K =
(
∇φi+1

l −∇φi+1
v

)
· n̂ =

σi+1

ε0
+ (1− ε)∇φi

l · n̂, (3.36)

where φi
l denotes the liquid electric potential from the current iteration in the global solver

routine. This formulation is required to enforce the final term, as the differing relative

permittivity of the materials preclude Eqn. (3.15) from being expressed as a function of the

difference between electric potentials. To overcome this, an identical term is added across

each side of the equation.

An iterative routine is required to enforce the interfacial electric displacement condition

of Eqn. (3.36) as the enforced value is a function of the solution itself. A solution to

Eqns. (3.34)–(3.35) is found using a Dirichlet-Neumann fixed-point iteration, solving the

problem within each subdomain using boundary data from the solution in the other subdomain.

A detailed description of this routine can be found in [128].
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Next, implementation of the Stokes problem described by Eqns. (3.11)–(3.12) is dis-

cussed. A complete formulation of the boundary value problem requires one to explicitly

define the boundary conditions as functions of the solution variables u and p, and is provided

by Eqns. (3.28) and (3.29). Only the tangent projection of the interfacial traction, Eqns. (3.17)

and (3.29), is enforced in the finite element formulation of the Stokes boundary value problem,

as the normal projection is handled by the interfacial and internal mesh deformation routines

described in Subsections 3.3.3 and 3.3.4.

Equations (3.28) and (3.29) are used to specify a Neumann condition tangent to

the interface within the weak formulation of the Stokes problem. The value said condition

corresponds to is the applied tangential stress by the external electric field, given by Eqn. (3.19).

Normal to the interface, the Dirichlet condition specified in Eqn. (3.13) is weakly enforced via

a penalty method [9]. The no-slip and no-penetration conditions are enforced on the channel

walls Γemi, while a zero Neumann condition is used at the inlet Γinl. The complete weak

formulation is provided in Appendix B, where the boundary value problem is subsequently

discretized and the linear system is solved iteratively using the generalized minimal residual

method (GMRES) [108] with no preconditioner.

3.3.2 Global Algorithm

As the Laplace and Stokes routines are the primary modules of the EHD meniscus

solver, we continue by describing the global algorithm that couples both routines to return

a converged solution for the current density distribution across the steady-state interface.

The EHD routine begins by solving Laplace’s equation in each domain with the condition

of potential continuity at the interface, Eqns. (3.4)–(3.6). An additional enforced interfacial

boundary condition includes the discontinuity of the electric displacement of Eqn. (3.36),

where during the initial iteration a value must be established for the surface charge density σ

and the interfacial liquid potential φl. The surface charge density is found by reformulating

the ion emission law of Eqn. (3.10) as a function of σ,
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σi+1 =
hc
kbT

exp

(
1

kbT

[
∆G−

√
−∇φi

v · n̂
4πε0/q3

])(
−K∇φi

l − jiconv
)

on Γint, (3.37)

where jconv is the current density convected at the interface. On the right hand side of

Eqn. (3.37), j · n̂ is decomposed as the sum of current conducted from the liquid and current

convected tangent to the interface due to the applied electric traction. jconv is found by

reformulating the surface charge conservation of Eqn. (3.16),

j · n̂ = σ (n̂ · ∇u · n̂)− u · ∇σ︸ ︷︷ ︸
jconv

−K∇φl on Γint. (3.38)

Then, for a given iteration, the convected current at the interface is

ji+1
conv = σi

(
n̂ · ∇ui · n̂

)
− u · ∇σi on Γint. (3.39)

Thus, to completely specify the boundary conditions for the Laplace solver we need interfacial

values for φl, φv, and jconv. These parameters are initialized to zero for the first iteration,

where their values from the previous iteration are used thereafter. The Laplace solver is

repeated until the integral of the square residual of the liquid and vacuum potential gradients

normal to the interface are below a certain threshold,

Rl =

∫
Γint

[
∇φi+1

l · n̂ −∇φi
l · n̂
]2
dΓint < εl, (3.40)

Rv =

∫
Γint

[
∇φi+1

v · n̂ −∇φi
v · n̂

]2
dΓint < εv. (3.41)

Once this inner convergence is met, the electric potentials are used to specify interfacial

boundary conditions for the Stokes solver. The Dirichlet condition normal to the interface is

calculated using Eqn. (3.13), where the current density is recalculated using the ion emission

law of Eqn. (3.10). For a given iteration, this takes the form
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ui · n̂ =
σikbT

ρ(q/m)hc
exp

(
−1

kbT

[
∆G−

√
−∇φi

v · n̂
4πε0/q3

])
on Γint. (3.42)

The Neumann condition tangential to the interface is specified by a combination of Eqns. (3.17),

(3.19) and (3.29). Again, for a given iteration, this takes the form

t̂ · ∇ui · n̂ =
−σi

µ
∇φi

v · t̂ on Γint. (3.43)

Once the Stokes problem is solved for the fluid velocity and pressure, the integral of

the square residual of the surface charge is checked if below a certain threshold,

Rσ =

∫
Γint

[
σi+1 − σi

]2
dΓint < εσ. (3.44)

If this criteria is not met, the solver restarts using the new fluid velocity u to initialize the

convected current at the interface jconv. Otherwise, we continue to the final equilibrium

condition where the residual of Eqn. (3.18) is checked. As previously mentioned, the right

hand side of Eqn. (3.18) corresponds to the surface tension and therefore the shape of the

meniscus. As such, any residual can only be minimized by perturbing the geometry of the

interface Γint.

A flow chart summarizing the global algorithm is presented in Fig. 3.2. Steady-state

solutions of the boundary value problem return the spatial distribution of current density

across the interface, which, when integrated, is equal to the total emitted ion current. In

Chapter 4, the EHD meniscus model is used to initialize injection number densities within a

DSMC-PIC solver where the characteristics of the resulting plume are studied.

3.3.3 Interfacial Perturbation

The interfacial perturbation method presented is adapted from the work of Coffman [31].

Shown in Eqn. (3.14), the pressure drop at the interface is equivalent to the difference between
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Figure 3.2: Global algorithm of the EHD meniscus solver

the reservoir pressure of the propellant and the pressure lost due to the flow rate of ions at

the meniscus. The pressure drop between the channel input of the computational domain Γinl

and the meniscus is considered small relative to the pressure contributions aforementioned

and is neglected. At the end of an iteration, the normal stress balance at the interface of

Eqn. (3.18) will not be satisfied unless it is in equilibrium, resulting in a residual term of the

form

n̂ · (Tl − Te) · n̂ + γ∇ · n̂ = Pint on Γint, (3.45)
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where Pint can be interpreted as a transient pressure contribution that dynamically alters the

interfacial shape at later timesteps. Given that the EHD solver seeks steady solutions, we

must implement a pseudo–timestepping routine such that the transient pressure contributions

are redistributed into the surface tension term γ∇ · n̂, thus perturbing the interfacial shape

Γint.

Redistributing the pressure contributions requires a mapping between the surface

tension term and the interfacial profile. It can be shown that for a two–dimensional Cartesian

geometry, the surface tension term satisfies the given second–order, nonlinear ordinary

differential equation,

Pγ = −γ∇ · n̂ = −γ y′′(x)

[1 + y′(x)2]3/2
, (3.46)

where Pγ is the pressure contribution of the surface tension, and y(x) is the spatial profile of

intersection Γint. Reformulating Eqn. (3.46) into its homogeneous form results in

y′′(x) +
Pγ

γ
[1 + y′(x)2]3/2 = 0. (3.47)

By solving Eqn. (3.47) using standard methods for ordinary differential equations, we now

have a means of obtaining a spatial profile of the interface Γint given an arbitrary surface

tension pressure. This allows us to update the Pγ at the end of every iteration with a

portion of the transient pressure contribution Pint, resulting in a new interfacial profile that

progressively minimizes this residual once Eqn. (3.47) is solved again. The surface tension

pressure for the i+ 1 iteration is given by

P i+1
γ = P i

γ + βP i
int, (3.48)

where β ∈ (0, 1] is an arbitrary relaxation parameter governing the rate at which the interface

is perturbed. The ideal value of β is a function of the spatial profile stability during the

current iteration. If the applied field is not stressing the interface such that a significant
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perturbation is required to reach equilibrium for a given iteration, then β can be set to

near unity. However, this is most likely not the case during ion emission due to the high

nonlinearities of the coupled system and necessitates that β � 1 for the algorithm to stably

approach an equilibrium configuration. The interfacial perturbation method is repeated until

the integral of the square residual of the transient pressure is below some threshold value,

Rint =

∫
Γint

[
P i+1
int − P i

int

]2
dΓint < εint. (3.49)

As redistribution of the interfacial nodes can cause instabilities in the surrounding ele-

ments within the fluid and vacuum domains Ωliq and Ωvac, due to potentially high distortions,

an addition mesh moving method is required. A routine is sought that evolves the mesh

while minimizing the likelihood of full or partial remeshing due to computational cost and is

described in the subsequent section.

3.3.4 Internal Mesh Deformation

Once the meniscus is numerically perturbed, an additional interpolation function is

required to map the boundary displacements to the internal mesh nodes. For unstructured

grids, the radial basis function (RBF) interpolation method [34, 111] is an efficient scheme

that generates high-quality meshes by solving a linear system that depends solely on the

boundary nodes. As a result, the algorithm is capable of efficiently handling large mesh

deformations, as in this case the time complexity would scale with the size of the interface

instead of the liquid and vacuum meshes. In addition, information on grid connectivity is not

required and the method preserves orthogonality near the deformation sites, minimizing the

skewness introduced to interfacial cells due to a numerically evolving meniscus.

The implementation of RBF begins with the interpolating function si(xk), which

describes the displacement in direction i (i = x, y, z) at node xk = [xk, yk], and is approximated

as a weighted summation of basis functions ϕ and low-order polynomial p(xk)
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si(xk) =

nb∑
j=1

αjϕ
(
||xk − xj||

)
+ p(xk), for k = 1 . . . nd (3.50)

where nb and nd are the number of boundary and domain nodes, respectively. The polynomial

p(x) is also expressed as a weighted sum of additional polynomials q(x) with degrees less

than or equal to p(x)

p(x) =
np∑
l=1

βlql(x), (3.51)

where np is the number of polynomials q(x). The weights αj and polynomial coefficients βj

are determined using the interpolation conditions at the boundary. The first of which is

si(xj) = di(xj) for j = 1 . . . nb, (3.52)

where di(xj) is the known displacement in direction i at boundary node xj. The second is

an orthogonality condition on the weights αj that acts to minimize the difference between

the known displacements di(xj) and the polynomial interpolation. In the implemented case

where a linear polynomial is used, this condition takes the form

nb∑
j=1

αj =

nb∑
j=1

αjxj =

nb∑
j=1

αjyj = 0. (3.53)

Combining Eqns. (3.52) and (3.53) into a linear system results in

Φb Pb

PT
b 0


α
β

 =

dbi

0

 , (3.54)

with α and β respectively containing the coefficients for αj and βl. Φb is a (nb × nb) matrix

whose entries at indices (j, k) contain the basis function evaluation ϕ
(
||xj − xk||

)
. Pb is a

nb × np matrix where, in the linear polynomial case where np = 3, row j is given by [1 xj yj ].

Explicit solutions of vector coefficients α and β are given by
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α = Φ−1
b (dbi − Pbβ) (3.55)

β = (PT
bΦ

−1
b PT

b )
−1PT

bΦ
−1
b dbi. (3.56)

Several choices of basis functions are available when solving Eqns. (3.55) and (3.56).

Within the EHD solver, an RBF known as a thin plate spline is implemented of the form

ϕ(x) = x2 log(x). This choice gives rise to a dense matrix Φb that is more computationally

expensive to solve but generally leads to greater accuracy relative to RBFs that produce a

sparse Φb [34]. Once the meniscus has evolved during a given iteration, the displacement of

perturbed interfacial nodes defining the vector dbi and Eqns. (3.55) and (3.56) are calculated

using standard linear solving methods. The displacements of the vacuum and liquid mesh

nodes di(xk) are then found by evaluating the original interpolation function of Eqn. (3.50)

at each internal grid point

si(xk) = di(xk) for k = 1 . . . nd, (3.57)

where each displacement is individually interpolated across each direction and later su-

perimposed to calculate the final position of an internal mesh node after the interface is

perturbed

xm+1
k = xm

k +
2∑

i=1

di(xm
k ) for k = 1 . . . nd (3.58)

for iteration m.

3.3.5 Verification Test Cases

Two verification test cases are presented in this section that demonstrate the enforcement

of several interfacial boundary conditions implemented across the Laplace and Stokes solvers.
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Figure 3.3: Simplified one-dimensional case to test implementation of multidomain
Laplace solver.

3.3.5.1 Multidomain Potential Case

The first test case verifies the enforcement of the subdomain boundary conditions within

the multidomain Laplace solver described in Subsection 3.3.1. Recall that the implemented

routine solves for the potential distribution within separate liquid and vacuum subdomains

whose solutions are coupled by conditions applied at a shared intersection. The global

solution is found by iteratively solving the potential across each subdomain until the residual

of Eqn. (3.35) is minimized. The boundary conditions of the intersection that are gradually

enforced are the continuity of potential (the Dirichlet condition φl = φv) and the Neumann

jump condition of Eqn. (3.36).

Enforcement of these conditions are demonstrated using a simplified domain and
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comparing analytical solutions of Laplace’s equation ∇2φtc = 0 where φtc is the test case

potential, against numerical simulation. The test problem, visualized in Fig. 3.3, consists

of rectangular liquid and vacuum subdomains stacked on top of each other, each with a

height of one unit and a length that extends infinitely. The electric potential varies solely

in the y direction, Dirichlet values of 0 V and 3000 V are prescribed at the upper and

lower boundaries respectively, and the aforementioned conditions are applied at their shared

intersection. Given these values, it can be shown that the liquid potential φtc
l and the vacuum

potential φtc
v are given by

φtc
l (y) =

(
σ/ε0 − 3000

εr + 1

)
y + 3000 (3.59)

φtc
v (y) =

(
εr(σ/ε0 − 3000)

εr + 1
− σ

ε0

)
(y − 2). (3.60)

The corresponding electric field magnitudes of Eqns. (3.59) and (3.60) are given by their

negative gradients,

Etc
l (y) = −dφ

tc
l

dy
= −

(
σ/ε0 − 3000

εr + 1

)
(3.61)

Etc
v (y) = −dφ

tc
v

dy
= −

(
εr(σ/ε0 − 3000)

εr + 1
− σ

ε0

)
(3.62)

In this case, the surface charge is explicitly defined as σ = 2000ε0 and a relative

permittivity of εr = 10 is used. Substituting these values into Eqns. (3.59) to (3.62) at y = 1

results in an interfacial potential of φtc
l = φtc

v = 2909 V and electric field strengths Etc
l = 91

V/m and Etc
v = 2909 V/m. For comparison, the one-dimensional distribution of the same

quantities from the numerical simulation is presented in Fig. 3.4. The numerical values are

shown to match the analytical model throughout the domain, especially at the interface where

the Dirichlet condition is not known a priori. As expected, the potential evolves at distinct

linear rates across each subdomain and is continuous at their intersection. The corresponding

electric field magnitude is a piecewise constant function demonstrating enforcement of the
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Figure 3.4: Numerical simulation of potential and electric field strength across
the Laplace test domain.

jump condition Eqn. (3.15) at the center. It can be shown that the difference in the strengths

of the analytical electric field across the interface is Etc
v (1) − Etc

l (1) = 2818 V/m, where

the numerical simulation is again in agreement. In conclusion, Fig. 3.4 verifies that the

implemented multidomain Laplace solver correctly determines the global potential distribution

that enforces the Dirichlet and Neumann boundary conditions prescribed at the intersection

of the subdomain.

3.3.5.2 Stokes Dual Boundary Condition Enforcement Case

A unique consideration of the boundary conditions in Eqns. (3.17) to (3.20) is required

for the Stokes problem, and a test case is conducted to demonstrate its implementation. The

simultaneous constraints of a normal-projected velocity and a tangent-projected viscous stress

tensor at the interface require a dimensionally dependent enforcement of both a Dirichlet
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Figure 3.5: Test case of Stokes solver implementation demonstrating balance of
dual normal-Dirichlet tangential-Neumann boundary condition at right outlet.

and a Neumann boundary condition. Physically, this corresponds to fluid flow normal to

the meniscus due to ion emission, whereas viscous stresses act on the component of fluid

moving tangentially to the free surface. While the Neumann condition naturally arises in the

weak formulation of the Stokes problem, the Dirichlet condition requires weak enforcement

using an added coercivity term. This term depends on an arbitrarily large penalty factor, α,

which requires calibration such that the ratio of the boundary conditions is approximately

unity; otherwise, the conditions are not enforced equally. As this penalty factor is problem

dependent, a simple, qualitative test case is conducted to determine its value for viscous

length scales, shown in Fig. 3.5. A square box with side length of unity is chosen, where

zero-Neumann conditions are enforced at the top and bottom boundaries, a no-slip and no-

penetration condition at the left boundary, and a dual normal-Dirichlet tangential-Neumann

condition—both of magnitude unity—at the right boundary. The direction of the tangent
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vector is mirrored in the horizontal center. Using the fluid properties of EMI-BF4, Fig. 3.5

demonstrates quasi-equal enforcement of the directionally dependent boundary conditions.

3.3.6 Numerical Challenges

Despite the verification cases discussed in Subsection 3.3.5, several numerical challenges

arose during the development of the EHD solver that precluded interfacial simulations from

converging sufficiently and consistently towards a steady-state morphology for a given set of

initial conditions. The source of these challenges is twofold: the linear solver implemented for

the Stokes problem and the stability of the interfacial perturbation scheme, both of which

are further described in the following sections.

3.3.6.1 Ill-Conditioned Stokes System

The Stokes problem of Eqns. (3.11) and (3.12) require specialized numerical methods to

solve efficiency within a finite element formulation, especially relative to the Laplace system.

This unique consideration comes from the variational form, of which the full derivation can be

found in Appendix B. One complication in solving the system of Eqns. (3.11) and (3.12) arises

due to unstable combinations of the pressure and velocity function spaces. The instability

can be attributed to the incompressibility condition, ∇ · u = 0, which is a constraint to the

velocity field within the momentum continuity equation Eqn. (3.11). Pressure, since it only

appears within the momentum equation, effectively acts as a Lagrange multiplier to enforce

the incompressibility condition. As a result, the function spaces of the solution (u, p) are

coupled, and mixed velocity-pressure elements are required to solve the weak formulation

of the problem. Once discretized, the block matrix system for the incompressible Stokes

equations is given by

K GT

G 0


{u}

{p}

 =

{fu}

{fp}

 (3.63)
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where K is the symmetric positive semi-definite matrix corresponding to the viscous term, G

is the matrix corresponding to the divergence operator coupling the velocity and pressure,

and f corresponds to the vector of source terms. The presence of the 0 matrix and coupled

matrices G and GT characterizes the linear system of Eqn. (3.63) as a saddle-point problem

that requires tailored numerical methods to solve effectively. Often this process begins by

factorizing the saddle-point matrix as a block lower-upper system,

 K G

GT 0

 =

 I 0

GK−1 I


K 0

0 S


I K−1GT

0 I

 , (3.64)

where

S = −GK−1GT (3.65)

is known as the Schur complement matrix and is generally not explicitly available. The

factorization of Eqn. (3.64) enables the use of separate linear solvers and preconditioners

for the pressure and velocity components that are best suited for each system. Ideally,

given the scale of the 2D EHD meniscus problem, an iterative Krylov method such as the

generalized minimal residual method (GMRES) [108] combined with a block preconditioner

that approximately inverts the velocity block K and approximates the pressure block S would

be sufficient to reliably solve the system.

Unfortunately, dedicated Stokes solvers are not available within the DUNE numerics

library used to develop the EHD solver, and incorporation of segregated schemes and

preconditioners into the DUNE framework is outside the scope of this dissertation. Instead,

a GMRES solver is implemented to solve Eqn. (3.63) without the addition of a block

preconditioner. Generally, it is found that the absence of a suitable preconditioner leads to

an ill-conditioned system with slow convergence times, high memory consumption, and poor

scalability. This issue is exacerbated at the meniscus apex where mesh refinement is required

to resolve the emission region, as the condition number of the saddle point matrix scales with
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the grid resolution.

3.3.6.2 Interfacial Propagation Stability

The interfacial perturbation method of Subsection 3.3.3 is critical in determining the

steady-state morphologies of the EHD meniscus. To ensure the interface is evolving towards an

equilibrium solution, characterization of the conditions necessary for numerical and physical

stability is required. We begin this process by reintroducing the normal interfacial stress

balance of Eqn. (3.18) in the form of

T n̂
e − T n̂

l − Pγ = 0, (3.66)

where T n̂
e and T n̂

l are the respective normal projections of the electric and liquid stress tensors

and Pγ is the surface tension pressure. If a meniscus under the equilibrium condition of

Eqn. (3.66) is perturbed, then each stress term can be decomposed into a steady and unsteady

component such that T = T0 + δT . The collective contribution of the unsteady terms would

equate to a transient change in interfacial pressure δPint, resulting in a modified normal stress

balance

T n̂
e,0 − T n̂

l,0 − Pγ,0 + δT n̂
e − δT n̂

l − δPγ = δPint. (3.67)

The three left-most steady terms of Eqn. (3.67) are equal to those of Eqn. (3.66) and can

be removed from consideration. When the remaining terms are normalized by the unsteady

surface tension contribution δPγ, it can be seen that

δT n̂
e

δPγ

− δT n̂
l

δPγ

− 1 =
δPint

δPγ

, (3.68)

where δPint/δPγ represents the ratio of the change in residual pressure to the change in

surface tension. Physical stability of the evolving meniscus requires that the residual pressure
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does not increase for a given perturbation in surface tension, i.e. δPint/δPγ ≤ 0, resulting in

the condition

δT n̂
e

δPγ

− δT n̂
l

δPγ

≤ 1 (3.69)

to be satisfied at all points across the interface.

The condition required for numerical stability can also be determined by using a similar

analysis. To illustrate this, we surmise a meniscus morphology that numerically satisfies

Eqn. (3.66) for a given set of operating conditions during iteration i− 1. During the next

iteration, a perturbation is applied analogously to Eqn. (3.67) resulting in the numerical

balance

δT n̂,i
e − δT n̂,i

l − δP i
γ = δP i

int. (3.70)

Next the difference in the unsteady electric and liquid normal stress contributions is reformu-

lated as a scalar multiple of the current surface tension perturbation, i.e. δT n̂,i
e −δT n̂,i

l = χ(δP i
γ),

enabling the residual pressure contribution to be expressed solely as a function of the surface

tension pressure

(χ− 1)δP i
γ = δP i

int. (3.71)

Combining Eqn. (3.71) with the equation for the surface tension pressure during the i+ 1

iteration, Eqn. (3.48), allows us to determine the ratio of surface tension pressures between

iterations as a function of numerical parameters

δP i+1
γ

δP i
γ

= 1 + β(χ− 1). (3.72)

It can be seen from Eqn. (3.72) that when χ < 1, δP i+1
γ /δP i

γ < 1 and the routine is physically

stable. In turn, the numerical routine governed by β will act to suppress any perturbations.

However, physical instability occurs when χ > 1 which then acts to destabilize the numerical
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routine as well. The coupling of physical and numerical stability results in a scheme that

can be expected to converge when a steady-state solution exists and numerically diverge

otherwise.

Such a routine may introduce challenges as seen in Subsection 3.3.6.1, where an ill-

conditioned Stokes system is more likely to result in a difference between fluid and electrical

stresses when χ > 1, precluding the solver from finding stable equilibrium morphologies

within a parameter space where a solution is expected. As a consequence, if a simulation does

not converge, the user is unable to discern whether the source is inherently physical or numeric

in nature. This issue may still occur regardless of the Stokes problem (e.g., if a simulation is

initialized with a morphology that is significantly perturbed relative to the final steady-state

configuration) and may be mitigated by implementing a scheme that decouples the physical

and numerical stability conditions. Examples of such are demonstrated by Coffman [31]

and Wohlhuter and Basaran [127], where their routines are capable of identifying unstable

physical solutions at the cost of increased computational complexity.

3.4 Steady-State Meniscus Simulation

Simulations are performed to demonstrate the EHD model of Section 3.2 and its

numerical implementation of Section 3.3. Numerical parameters and properties of the ionic

liquid simulated are presented in Table 3.1. The characteristics of the resulting meniscus are

compared with the simulations conducted by Gallud and Lozano [47] using a similar ionic

liquid meniscus model undergoing steady ionic emission.

Comparisons are enabled by using similar physical properties of the working ionic fluid,

and by using independent variables whose nondimensional values are consistent with those

used in [47]. Namely, these nondimensional parameters are Ê0, R̂, and Ẑ, which respectively

correspond to the electric field, contact line radius, and hydraulic impedance of the liquid

at the inlet. The non-dimensional external field is Ê0 = E0/Ec, where Ec =
√
4γ/ε0r0 and

r0 is the contact line radius of the inlet channel. Calculating the electric field for a given
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potential bias is found using ∆φ = −Ez0, where z0 is the distance between the emitter and

extractor electrodes. The non-dimensional radius is R̂ = r0/r
∗, where r∗ is the characteristic

emission radius, and the non-dimensional hydraulic impedance is Ẑ = Z/Z∗, where Z∗ is the

characteristic impedance given by Z∗ = 2γρ(q/m)/KE∗r∗3.

The meniscus morphology is initialized as an approximate Taylor cone with a half-angle

of 48◦, compared to the theoretical ideal of 49.29◦. A lower angle is chosen to reduce the

distance between the initial and final interfacial configurations, which in turn supports the

numerical stability of the solver, as fewer mesh deformations are required. Evolution of the

meniscus morphology across several iterations is presented in Fig. 3.6. Generally, larger

displacements are observed throughout the pseudo-timestep procedure near the emitter

centerline relative to the region near the contact line radius. This is especially apparent at the

apex itself, where a circular cap emerges whose radius is expected to be on the order of the

characteristic emission radius and is in agreement with similar literature [105]. The magnitude

of interfacial displacement is observed to decrease with increasing iteration, indicating that

the solver is converging towards a final morphology.

Table 3.1: Properties of the working ionic liquid and configuration parameters of
EHD meniscus simulations

Parameter Value
Ion Solvation Energy, ∆G 1.0 eV
Electric Conductivity, K 1.0 S/m
Viscosity, µ 0.037 Pa·s
Surface Tension, γ 0.05 N/m
Mass Density, ρ 1240 kg/m3

Charge to Mass Ratio, q/m 106 C/kg
Relative Permittivity, εr 10
Voltage Bias, ∆φ 2104 V
Hydraulic Impedance, Z 5.3×1019 Pa·s/m3

Reservoir Pressure, pr 0 Pa
Channel Radius, r0 1 µm
Emitter-Extractor Electrode Distance, z0 20 µm
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Figure 3.6: Evolution of meniscus morphology from an initial approximate
Taylor cone configuration to subsequent configurations with each pseudo-timestep
iteration. The inset provides a detailed view of the morphologies near the
meniscus apex.

However, after a set number of iterations, even with RBF interpolation for internal de-

formation, the mapping from mesh to spatial coordinates becomes increasingly ill-conditioned

with continued displacement—a property observed in cases where high curvature develops

relative to the initial configuration. Consequently, the Laplace and Poisson linear systems also

deteriorate with each iteration. These challenges are further exacerbated by the numerical

issues discussed in Section 3.3. For instance, the absence of a preconditioner in the Stokes

system limits solver performance, as the problem condition number grows with each interfacial

perturbation. Ultimately, these challenges result in a subsequent interfacial morphology that
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is unable to be solved due to the system instability. One of the roots in the interfacial

stability problem lies in the Eulerian specification of the flow field that normally precludes

handling of transient boundaries as physical quantities are mapped to fixed points in space.

The implemented interfacial perturbation method attempts to overcome this by applying

a separate Lagrangian update to the boundary between solver iterations and redistributes

the internal mesh nodes via interpolation of the boundary deformations. Although this may

be suitable for certain interfacial evolutions, the complete decoupling between the finite

element formulation and the internal mesh node evolution often prevents the global solver

from surpassing iteration counts on the order of 10 due to the eventual degradation of mesh

quality. Extensive simulations show that while RBF interpolation can resolve some interfacial

deformations, it often lacks the capacity to handle the magnitude needed for a transient

EHD meniscus without extensive remeshing operations. For this reason, it is recommended

that future studies consider the implementation of an arbitrary Lagrangian-Eulerian (ALE)

formulation [64] to better address the strong distortions observed in the continuum domains.

In the ALE description, the mesh evolution is integrated within the weak formulation of the

multi-domain problem, handling both the deformation of the domain and the transport of

quantities in a single, unified framework. Although this method would not entirely eliminate

the need for remeshing in cases of extreme deformation, it would significantly extend the

range of numerically stable perturbations before remeshing becomes necessary.

Despite these drawbacks, the final simulated meniscus shares characteristics with

converged menisci observed in the literature [30, 47]. The demonstrated simulation falls

within an operational regime defined by nondimensional contact line radii greater than R̂ ≈ 16

and fields within the range 0.49 < Ê0 < 1.1. Results from [47] indicate that static menisci in

this regime have an emission region on the order of the non-dimensional size r∗/r0 = R̂−1 and

non-dimensional electric fields on the order of the non-dimensional critical field E∗/Ec ∼ R̂1/2.

In the simulation conducted, r∗/r0 ≈ 0.018 and is on the same order to R̂−1 ≈ 0.047,

suggesting the solver under-approximates the emission region size. The nondimensional
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Figure 3.7: From top to bottom, normalized distributions of the (a) normal electric
stress, (b) surface tension, and (c) normal liquid stress across the interface during
the final stable iteration of the EHD meniscus solver.
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field strength at the apex is Ê ≈ 3.73 and is on the order of the non-dimensional critical

field Ê∗ ≈ 4.62. The simulated meniscus emits a non-dimensional current Î ≈ 2.1, which is

about an order of magnitude larger than the analogous value from [47] of 0.15. The relative

agreement in field strengths but disagreement in the emitted current suggest that the source

of the discrepancy is likely in the numerical handling of the hydrodynamics.

As mentioned, prototypical equilibrium shapes in this regime appear qualitatively

similar to a Taylor cone with a closed apex where emission is occurring [29]. The reason

for this is demonstrated in Fig. 3.7, where the normal projections of the interfacial stresses

of Eqn. (3.18) are plotted across the meniscus during the final stable iteration. Interfacial

stresses are normalized by the inlet capillary pressure Pc = 2γ/r0 = 105 Pa. Near the emitting

region in the electric stress distribution of Section 3.4, strong electric fields on the order of E∗

are balanced by high curvatures. However, it can be seen that the summation of each stress

magnitude at the meniscus apex is non-zero, demonstrating that a large transient pressure

Pγ is present within the system. Compared to the stress balance distributions in [47] within

the same operational regime, the largest distinction is within the fluid stresses. In Section 3.4

the simulated fluid pressures are extraordinarily high relative to the capillary pressure,

contradicting the behavior observed in the literature in which the inverse phenomenon occurs

and local capillary pressures at the apex are dominant. Another distinction is observed in

the velocity field near the emission region, where vortices are expected due to the advection

of liquid toward the centerline and only a small fraction of the transported fluid undergoing

evaporation. This qualitative behavior is observed during initial iterations of the EHD

solver, but vanishes likely due to the continued ill-conditioning of the Stokes problem. These

disagreements with the established literature suggest that the aforementioned numerical

challenges likely manifest in the solution of the liquid velocity and pressure fields, whose

errors ultimately propagate into the interfacial balance, resulting in an updated meniscus

that becomes increasingly unstable.
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3.5 Conclusions

In this chapter, a comprehensive EHD meniscus model was developed that incorporates

both electrostatic and hydrodynamic stresses at the emitter apex to calculate field-induced

ion emission. The model integrates a multiscale approach that resolves characteristics at the

micron-scale meniscus while simultaneously accounting for the far-field interactions in the

bulk fluid and vacuum domains. By employing the Taylor–Melcher leaky dielectric framework

alongside a phenomenological ion evaporation law, the formulation successfully couples the

electrostatic and fluid mechanical phenomena governing steady-state ionic emission of an

ionic liquid.

The numerical implementation of the model was accomplished through a multi-domain

finite element formulation within the DUNE framework that defines a bulk liquid and vacuum

subdomain and a dynamic meniscus at their interface. Several boundary conditions are

described and enforced at the meniscus, including continuity of the electric potential across

subdomains and accurately imposed interfacial stress balance conditions. Verification test

cases confirmed the solver’s ability to reproduce analytical solutions for the Laplace problem

and qualitatively enforce boundary conditions for the Stokes problem. Nonetheless, several

numerical challenges were identified—most notably, the ill-conditioning of the Stokes system

under high mesh refinement and the sensitivity of the interfacial perturbation scheme to large

deformations. These challenges highlight the need for alternative numerical strategies, such

as the integration of arbitrary Lagrangian–Eulerian formulations and tailored preconditioning

techniques of the Stokes system, to improve mesh stability across iterations and global solver

convergence.

Despite these limitations, the simulation results exhibit qualitative agreement with

theoretical expectations and experimental observations. The emergent meniscus morphology,

characterized by a near-Taylor cone shape with a closed apex, and the spatial distribution of

interfacial stresses align with established literature. This work thus lays a robust foundation
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for future investigations into ion emission dynamics, while also identifying key areas for

numerical refinement and model extension to additional spatial and operational configurations.



Chapter 4

Coupled Kinetic Plume Model

This chapter presents the development and implementation of a coupled kinetic plume

model for analysis of end-to-end behavior of a single-emitter ionic electrospray thruster.

Building on the EHD meniscus simulations described in Chapter 3, a novel ionic emission

model is presented and used to initialize a plume model at the emitter apex. Contrary to

the continuum approaches taken when considering the meniscus dynamics, the plume model

implements kinetic-based particle methods to simulate the downstream dynamics of ionic

species within the beam. Axisymmetric simulations of the end-to-end model are compared

against measurements of the porous-media electrospray thruster known as the Air Force

Electrospray Thruster Series 2 (AFET-2), developed at the Air Force Research Laboratory

(AFRL) [99].

The chapter begins with Section 4.1 by detailing the computational domain, designed to

replicate the physical characteristics of the AFET-2 thruster’s emitter and extractor geometry.

In Section 4.2, the ionic emission model is derived and bridges the meniscus and plume regions

through a one-way coupling. The model employs a reduced-order analytical framework to

predict ionic emission currents based on electric field distributions at the meniscus, which

are derived from the EHD solver. This is followed by the initialization of a direct simulation

Monte Carlo (DSMC) and particle-in-cell (PIC) hybrid kinetic model in Section 4.3 to

simulate the plume’s spatial and temporal evolution. Several enhancements to the original

PIC implementation are introduced, enabling the accurate treatment of single-polarity ionic
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plumes, as well as the inclusion of a field-free fragmentation model to capture the dissociation

dynamics of ion clusters.

Results from the simulations are validated against experimental data obtained from

AFET-2 in Section 4.5, with analyses covering emission currents, thrust, and various spatial

characteristics of the ion beam. The findings not only emphasize the importance of capturing

meniscus-level physics but also highlight key challenges, such as fragmentation and neutral

species effects, that impact thruster performance. The chapter concludes with insights into

the model’s implications for optimizing electrospray thruster designs and its potential for

guiding future experimental investigations.

4.1 Computational Domain

The computational domain is designed to mirror the physical configuration of a single

emitter within the multiplexed, porous-media electrospray thruster AFET-2 fabricated by

Natisin et al. [99]. Shown in Fig. 4.1, the two-dimensional, axisymmetric domain consists

of a single hyperboloidal emitter with the following geometric parameters: a base radius

remi = 80 µm, height zemi = 400 µm, and radius of curvature at the tip of rtip = 10 µm. The

emitter is positioned flush with the base of the extractor electrode, which itself extends a radial

distance rext = 254 µm away from the emitter center, and has a thickness of zext = 75 µm.

Surrounding the emitter and extractor electrode, the simulation boundary extends radially

to rdom = 500 µm and axially to a height of zdom = 1000 µm.

At the tip of the emitter, an inlet channel is integrated into the domain to mimic

the porous structure of the AFET-2 configuration. The channel, with a radius and length

each set to rc = 1 µm, replicates the pore size of P5 borosilicate glass used in the original

fabrication by Natisin et al. [99]. Within the channel defines the liquid subdomain, and is

bounded between the inlet boundary at the bottom and the interfacial meniscus. Beyond the

meniscus defines the vacuum subdomain that contains both the emission and plume regimes.

The meniscus itself is initialized with a quasi-Taylor cone morphology, with the primary
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Figure 4.1: Single emitter simulation domain of the weakly-initialized kinetic
plume model.

distinction being a rounded tip with a radius of curvature on the order of the characteristic

emission radius r∗, which is a function of the ionic liquid propellant. A detailed description

of the emission model is provided in Section 4.2.

4.2 Semi-Empirical Ionic Emission Model

An additional lower-fidelity ionic emission model is presented as a partial alternative

to the EHD meniscus model described in Chapter 3. The emission model is not a complete

substitute of the EHD model as it utilizes components of the original finite-element framework

and is only applicable under a subset of operational conditions, described further in the

subsequent sections. This alternative model—henceforth referred as the ionic emission

model—is designed to calculate the number density of each evaporated species as a function
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of the applied electric field at the site of emission. Broadly, it utilizes the EHD meniscus model

of Chapter 3 to resolve the field distribution at the meniscus, and a semi-empii analytical

model that utilizes the simulated field to approximate the total emission current for a given

extractor voltage. From this current, the number densities of the evaporated species are

calculated. These densities are subsequently used as a weak boundary condition to initialize

a kinetic plume model. The derivation and description of the emission model are elaborated

in the following paragraphs.

Initialization of the EHD model requires that the meniscus morphology be prescribed a

priori. For this study, the meniscus shape is set to that of an idealized Taylor cone whose

outer edge is pinned to an inlet channel of contact radius rc = 1 µm, which corresponds to a

fixed contact angle of θc = 139.3◦. The meniscus apex is also rounded into a spherical cap

whose radius matches that of the characteristic emission radius, r∗. This initial meniscus

geometry is approximately in alignment with the literature [30, 47], suggesting that as the

ratio of the contact radius to the emission radius decreases, the meniscus profile regularizes,

reducing the tip sizing to a radius on the order of r∗. At this regularized state, high-fidelity

simulations have suggested that the emitting current varies solely as a function of the applied

electric field and is on the order of a characteristic emission current, I∗. This informs the

basis of a simplified emission model first introduced by Gallud and Lozano [47], where the

emitted current can be approximated solely as a function of the vacuum electric field strength

near the meniscus apex. Physically, at this emission regime the high field strengths results

in interfacial electric stresses that are balanced nearly completely by the surface tension.

These stresses overcome the influence of viscous effects, the pressure differential from the

reservoir, and temperature gradients from Ohmic dissipation. The effects of conduction drive

the meniscus electrokinetics, such that variations in the electric field are linear with respect

to the emission current up to a maximum value on the order of I∗ and is bounded by the

finite conductivity of the ionic liquid propellant [30].

Derivation of the analytical model begins with the kinetic process describing the rate
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of ion evaporation from a conductive nonmetallic liquid [65],

je = σ
kBT

h
exp

(
− ζ

kBT

)
, (4.1)

where kB is the Boltzmann constant, h is the Planck constant, T is the liquid temperature, σ

is the surface charge density, and ζ is the activation energy of the species evaporation process.

Using the Müller-Schottky field evaporation model for polar liquids, the activation energy

can be modeled with the form [77],

ζ = ∆G−G(Ev
n) where G(Ev

n) =

√
q3Ev

n

4πε0
, (4.2)

where ∆G is the solvation energy of the evaporated species, Ev
n is the normal component of

the electric field on the vacuum side of the meniscus, q is the elementary charge, and ε0 is

the vacuum permittivity. Significant emission is not observed until the activation energy is

sufficiently reduced past the solvation energy, ζ = O(kBT ) � ∆G, and can be used to define

a critical emission field E∗ ≡ 4πε0(∆G)
2/q3.

Once activated, steady-state emission of species is only enabled when the charged

meniscus is in mechanical equilibrium, i.e. the electrical traction from the applied field is

balanced by the liquid surface tension. Assuming the emission region takes the form of a

spherical cap with emission radius r∗, the stress balance can be approximated as T e
n = 2γ/r∗,

where T e
n is the vacuum electric stress from the field normal to the meniscus and γ is the

coefficient of surface tension. Expansion of the electric traction via the Maxwell stress tensor

results in the balance equation,

1

2
ε0(E

v
n
2 − εEl

n

2
) =

2γ

r∗
, (4.3)

where ε is the relative permittivity and El
n is the normal electric field on the liquid side of

the meniscus. Equation (4.3) can be further modified when considering the behavior of ionic

liquid menisci near room temperature. It has been shown that under steady emission, the
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meniscus morphology normalizes such that Ev
n ∼ E∗ [30, 31]. At these conditions, the ratio of

the characteristic charge emission time is small relative to the characteristic charge relaxation

time, limiting the amount of surface charge that can accumulate at the interface. The result is

a meniscus whose behavior approaches that of a pure dielectric where El
n ∼ Ev

n/ε. Applying

these approximations onto Eqn. (4.3) results in an updated stress balance,

1

2
ε0E

∗2
(
ε− 1

ε

)
=

2γ

r∗
. (4.4)

For nominal ionic liquids where the factor (ε− 1)/ε is near unity, Eqn. (4.4) can be used to

define the characteristic emission radius, r∗ ∼ 4γ/ε0E
∗2 ≡ q6γ/4π2ε30∆G

4.

Within the bulk liquid, the characteristic flow velocity near the emission region is

defined as

u∗ =
j∗

ρ(q/m)
, (4.5)

where ρ is the mass density of the ionic liquid, m is the mass of the evaporated species, and

j∗ is the characteristic emission current density. Values for this characteristic velocity range

from 10−1-10−2 m/s for many typical ionic liquids [109]. The hydrodynamic time scale can

then be defined as r∗/u∗, which is nominally large relative to the charge relaxation time scale,

εε0K. As a result, charge transport can be considered instantaneous relative to the meniscus

hydrodynamics, enabling use of an Ohmic conduction model for the liquid electrokinetics,

je = KEl
n, (4.6)

where K is the electrical conductivity. Using the aforementioned relations, it can be shown

that the characteristic emission current density is then j∗ ∼ KE∗/ε = 4πε0K(∆G)2/q3ε, and

can be used to define a characteristic emission current I∗ = Aej
∗ = AeKE

∗/ε, where Ae is

the surface area of emission.

In the analytical model, the emission area is approximated as a spherical cap of radius
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rcap, where rcap is on the order of the characteristic emission radius r∗, i.e. Ae = 2πr2cap ≈

2πr∗2. Using the aforementioned scaling laws, the stress balance of Eqn. (4.3) can be

approximated by reformulating the surface tension term as a function of the emission current

density and emission current,

1

2
ε0(E

v
n
2 − εEl

n

2
) ≈ 2γ

√
2πje
Icap

, (4.7)

where Icap is the total emission current under the spherical cap approximation. To express

this current solely as a function of the vacuum electric field, Eqns. (4.1), (4.6), and (4.7)

require closure of the surface charge density. This is achieved by considering the interfacial

electrostatic boundary at the meniscus,

σ = ε0(E
v
n − εEl

n). (4.8)

It should be noted that Eqn. (4.8) is still valid within the steady emission regime (where El
n ∼

Ev
n/ε) as although the surface charge density is small relative to the electric displacements, its

value remains nonzero. Equation (4.8) is used to remove the direct surface charge dependency

of Eqn. (4.1). To do so, Eqn. (4.1) is first reformulated as a surface charge equation as a

function of the emission current density and vacuum electric field,

σ = jeF (E
v
n), (4.9)

where

F (Ev
n) =

h

kBT
exp

(
ζ

kBT

)
. (4.10)

Using Eqns. (4.8), (4.9), and (4.10), we can derive an equation for the liquid electric field

component as a function of the emission charge density and the vacuum electric field

component,
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El
n =

ε0E
v
n − jeF (E

v
n)

ε0ε
. (4.11)

Eqn. (4.11) describes a closed form expression that expands upon the boundary condition of

Eqn. (4.8) and utilizes the emission current density (instead of the surface charge) to bridge

the field distributions across the meniscus interface. Its dimensionality can be further reduced

due to the Ohmic conduction model of Eqn. (4.6), enabling the emission current density to

be expressed solely as a function of the vacuum field distribution,

je =
Ev

n

(ε/K) + (F (Ev
n)/ε0)

. (4.12)

Finally, substituting Eqns. (4.11) and (4.12) into Eqn. (4.7) results in an expression where

the emission current is approximated as a function of the vacuum electric field,

Icap ≈ 2πEv
n[

ε
K
+ F (Ev

n)
ε0

] [
ε0Ev

n
2

4γ

(
1− ε[

ε+K
ε0

F (Ev
n)

]2
)]2 . (4.13)

Emission characteristics of passively-fed porous electrosprays are inherently complex

and unique to each thruster configuration. Consequently, the emission model presented in

Eqn. (4.13) only provides an order-of-magnitude approximation to the emission current from

a single emitter. Numerous factors, both numerical and physical, can introduce higher-order

deviations in operational characteristics for a given thruster configuration. For instance,

spatial non-uniformities have been observed in the emission of multiplexed emitter arrays,

potentially caused in part by variance in pore sizing resulting in hydraulic coupling among

emitters [23, 55]. To address these effects, a calibration factor Cf is introduced into the

emission model, scaling the computed field distribution at the meniscus apex so that the

predicted emission current from a single emitter matches the experimentally measured average

current per emitter of the AFET-2 thruster array. Once calibrated with this factor Cf , the
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emission model can serve as a surrogate for the specific thruster configuration, allowing for

the initialization of plume simulations across a range of operational conditions consistent

with the AFET-2 thruster.

In summary, the EHD meniscus model resolves the vacuum electric field profile across

the interfacial meniscus, which then informs an analytic spherical cap emission model

described by Eqn. (4.13). Due to inherent complexities in electrospray physics, this analytic

approach is calibrated with an empirically derived scaling factor, Cf , ensuring the emission

current approximates the experimentally measured average per emitter from the AFET-2

thruster. The calibrated emission current subsequently serves as a boundary condition for

the initialization of the downstream plume model, described further in Section 4.3.

4.3 Plume Model

The plume model is used to simulate trajectories of the evaporated species from the

emission site to the downstream exit plane via modification of an in-house particle solver,

MPIC [24]. A description of MPIC as well as the changes made to account for single polarity

ionic plumes are presented in Subsection 4.3.1. A fragmentation model for select evaporated

species and its implementation is presented in Subsection 4.3.2. Lastly, details of the weak

coupling between the emission and plume models are described in Subsection 4.3.3.

4.3.1 MPIC Overview and Modifications for Single Polarity Ionic Plumes

MPIC was developed by coupling the direct simulation Monte Carlo (DSMC) method for

rarefied gas flow dynamics and the particle-in-cell (PIC) method that calculates inter-particle

electrostatic forces as a result of applied and induced electric fields. It has been validated

and implemented in several studies of plasma plumes [52, 94, 115]. The subsequent sections

provide a description of each numerical method, how they are implemented within MPIC,

and what modifications were made for its application to ILIS plumes.
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4.3.1.1 Direct Simulation Monte Carlo Method

The first numerical method implemented in MPIC is DSMC. Proposed by Graeme Bird

[12], the DSMC method simulates dilute gas flow where the molecular mean free path is of

comparable order with respect to a characteristic length scale. This regime is characterized

by the dimensionless Knudsen number (Kn),

Kn =
Λ

L
, (4.14)

where Λ is the mean free path of a given molecule and L is a representative physical length

scale of the system. When the Knudsen number is approximately near or greater than 0.01,

then the continuum assumption underlying the Navier-Stokes equations may no longer be

valid and a statistical approach is required to resolve the flow-field physics.

DSMC is one such probabilistic method, where rarefied flows are simulated using

representative macroparticles that are individually tracked within a finite domain [16].

Macroparticles are often representative of many physical molecules, as only a small subset

of total molecules require simulation for a sufficient molecular description of the flow field.

At any given timestep, the position and velocity of each macroparticle defines the dilute

gas state, where these quantities are used to advect the particles for subsequent timesteps.

Additional probabilistic models govern how intermolecular collisions and molecule-surface

collisions influence particle trajectories.

Within the plume model, every species is uniquely represented by its own macroparticle

type. The DSMC component of MPIC is predominantly responsible for tracking each particle

trajectory, with the governing forces affecting trajectories emerging from the electric field

(which is calculated independently by the PIC routines) instead of local contact forces

from other particles and domain boundaries. Repulsive Coulombic forces between ions in

combination with low number densities result in a plume that is effectively non-collisional. A

more in-depth calculation demonstrating the non-collisionality of the plume is presented in
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Section 4.4. Trajectory influences from molecule-surface collisions are minimized as charged

electrodes are the only boundaries with which species can interact. The applied field exerted

by said electrodes alongside the geometric configuration of the emitter often result in a

steady-state plume distribution where zero particles, at any point along their trajectory, have

collided with an electrode surface.

Thus, no modifications are made to the DSMC component of MPIC. Despite the lack of

collisionality, the method is still employed to calculate the rare occasion where such collisions

do occur. Additionally, various routines such as the particle tracker are utilized to implement

other numerical methods, such as PIC described in the subsequent section.

4.3.1.2 Particle In Cell Method

The second numerical method implemented within MPIC is the PIC method. PIC

is a kinetic method used to simulate the motion of charged particles under the influence

of electrostatic forces from both applied and induced electric fields [125]. The method is

well established and has been widely implemented in the study of low temperature plasmas

[36, 86], including the plumes of electric propulsion systems [17, 52].

The PIC algorithm functions by discretely tracking the position and velocities of each

charged particle, and uses these values to calculate macroscopic properties such as number and

charge densities. These macroscopic quantities are used to solve continuous field equations,

which dictate the long range forces acting on the particles and guiding their trajectories.

More formally, the PIC method solves the equation of motion of N particles governed by

Newton’s Second Law and the Lorentz force

dxi

dt
= vi, (4.15)

dvi

dt
=

qi
mi

(
E(xi) + vi × B(xi)

)
, (4.16)

for i = 1, ..., N , where x is the particle position vector, v is the particle velocity vector, E is



86

the electric field, and B is the magnetic field. As the plumes within an ILIS are subject to

electrostatic fields, B(xi) = 0.

Computationally, Eqns. (4.15) and (4.16) are spatially discretized within a domain and

are solved for the current density and field distributions, where those values are prescribed at

each mesh node. At any given time step, a particle’s continuous position is within the bounds

of a mesh cell that is defined by the surrounding nodes. For a given particle within a cell,

the force acting upon it is calculated in terms of the the field values at the surrounding cell

nodes. Similar to DSMC, the PIC method implements a particle mover and each simulated

particle can be representative of many physical particles. For this reason, a single module

handles both of these routines within MPIC. For the PIC implementation, an additional

Poisson solver is required to resolve the field equations of Eqns. (4.15) and (4.16).

MPIC was designed to study plume flows for conventional electric propulsion systems,

such as Hall thrusters. These plumes are modeled as conventional quasineutral plasmas that

consist of neutral species, ions, and electrons. A hybrid approach is implemented where

neutral and charged species are modeled discretely and a fluid model is implemented for the

electrons. The species are handled differently due to the difference in collision frequencies

between electrons and ions, where the former is nominally several orders of magnitudes larger

than the latter. As a result, electrons are more quickly able to ’normalize’ with respect to

ions and thus can be approximated as a fluid.

Originally within MPIC, the Boltzmann model was implemented as the electron fluid

model and is used to calculate the plasma potential. The Boltzmann model is derived from

the electron momentum equation given a number of assumptions. These include that the

electron fluid is isothermal, collisionless, the electron pressure obeys the ideal gas law, and

that any contributions from magnetic fields are negligible. Given these, the Boltzmann model

takes the form
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φ = φr +
kTref
q

ln (ne/nr) (4.17)

where φ is the electric potential φr is the reference potential, Tref is the reference temperature,

k is the Boltzmann constant, q is the elementary charge, ne is the electron number density,

and nr is the reference number density.

This model was expanded upon by Boyd and Yim [17], where the electrons are modeled

as a fluid using the conservation equations of mass, momentum, and energy. This higher

fidelity model, denoted the Detailed model, is solved to obtain fundamental electron properties

such as velocity, temperature, and plasma potential. Of the three conservation equations,

the one of most considerable interest—for reasons that will soon become apparent—is the

momentum conservation given by

∂

∂t
(meneve) +mene(ve · ∇)ve = −qne∇φ−∇pe + R, (4.18)

where me is the electron mass, ve is the electron velocity, pe is the electron pressure, and R is

a friction term. The Detailed model assumes that electrons behave as an ideal gas where

pe = nekTe, and that the friction term is equal to

R =
qnej
K

, (4.19)

where j is the current density and K is the electrical conductivity. If the flow is assumed

steady state, Eqn. (4.18) can be reformulated as a generalized Ohm’s law

j = K

(
−∇φ+

1

qne

∇(neKTe)

)
. (4.20)

For a given ne, ve, Te the plasma potential is obtained by solving Eqn. (4.20) under the charge

continuity condition

∇ · j = 0. (4.21)
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Substituting Eqn. (4.20) into Eqn. (4.21) results in a generalized Poisson equation for the

electron potential,

∇ · (K∇φ) = k

e

(
K∇2Te +KTe∇2(lnne) +K∇(lnne) · ∇Te

+ Te∇K · ∇(lnne) +∇K · ∇Te
)
.

(4.22)

In summary, Eqns. (4.18) and (4.22) are used to calculate the plume potential using

the Boltzmann and Detailed electron models, respectively, within the PIC implementation of

MPIC. For an ILIS plume, only ion and neutral species are considered and quasineutrality

is no longer applicable, yielding the models implemented within MPIC for determining the

potential invalid in the context of a single emitter electrospray model.

To correct this, a non-quasineutral approach is taken where the generalized Poisson

equation of Eqn. (4.22) is modified into a direct Poisson equation where the source term is

locally calculated at every cell using the charge density values defined at the surrounding

nodes. The result is a Poisson solver that is not derived from any electron model and is

capable of solving for the electric field distribution within a singularly polarized plume.

4.3.2 Fragmentation Model

Plumes of ionic electrosprays are polydispersive and consist of various ions and ion

clusters that vary in their degree of solvation. For the ionic liquid propellant used in this

study, 1-Ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4), these ion clusters take the

form [EMI-BF4]n [EMI+] when operating in a positive emission mode, where n corresponds

to the number of neutrals present in each molecule. Measurements have shown that ion

beams typically consist of single ions/monomers (n = 0), dimers (n = 1), and trimers (n = 2).

Although rare, larger ion clusters such as tetramers (n = 3) are occasionally observed as well

[72]. The relative composition of each species is dependent on the ionic liquid used as well as

the operating conditions of the thruster. For reference, time of flight mass spectrometry data

of the AFET-2 thruster, operating at an emitter current of 200 µA and extractor voltage of
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[EMI-BF4]EMI+
EMI+ EMI-BF4

Figure 4.2: Fragmentation process of a positive EMI-BF4 dimer.

1562 V, suggested a plume that consisted of approximately 45% monomers, 47% dimers, 6%

trimers, and up to 2% tetramers [99].

Once evaporated, the ion clusters of electrospray beams are often unstable and may

dissociate into smaller ion and neutral clusters. This dissociation process, known as frag-

mentation, increases the polydispersity of the ion beam and results in a decrease of overall

electrospray thruster performance [81]. This is due to the fact that post-fragmented ions

have lower kinetic energies than their pre-fragmented parent ions as a portion of the initial

energy is lost to the neutral cluster. This results in a post-fragmented ion with a final

kinetic energy less than that of the emitted potential and thus less efficient. Additionally, the

neutral clusters, unaffected by the applied electric field, may contribute to other life limiting

mechanisms such as pooling at the electrodes [124]. Therefore, it is imperative to consider

the effects of fragmentation in an ionic electrospray plume model.

In this study, the single fragmentation process where [EMI-BF4] [EMI+] dissociates into

an EMI+ monomer and EMI-BF4 neutral is considered. A schematic depicting this process is

shown in Fig. 4.2. Measurements of the dissociation rates of dimers in the field-free region

have been shown to follow the constant rate equation [95]
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fdim(t) = fdim,0 exp (−t/τ) , (4.23)

where fdim is the current fraction of dissociated dimers, fdim,0 is the current fraction of dimers

that enter the field-free region, t is the simulation time, and τ is the inverse of the dissociation

rate-constant, known as the mean lifetime. Fragmentation events upstream from the extractor

in the acceleration region are not considered and will be suggested as an area of future study.

As all emitted dimers eventually reach the field-free region, fdim,0 = 1. Using Eqn. (4.23), a

distribution of fragmentation times can be formulated and is used as a basis to implement a

fragmentation submodule into MPIC.

To do so, it must be first noted that previous work demonstrated a negligible velocity

change in the post-fragmented species during the dissociation process [100]. This can be

attributed to an average ion kinetic energy that is orders of magnitude larger than the

solvation energy, allowing the negligence of higher-order effects from the fragmentation

process itself. This allows for a simple numerical model where dimers, treated as point

particles, are converted into monomer-neutral pairs at the site of fragmentation and are

each assigned a velocity equal to that of the pre-event dimer. The process of determining

whether a dissociation event occurs begins at particle injection, where each dimer is assigned

a sampled fragmentation time relative to the global simulation time. The expression used to

generate time samples is derived using the corresponding cumulative distribution function of

Eqn. (4.23) and is given by

tf = −τ ln (1−R) + t0, (4.24)

where R is a random number sampled from the interval [0, 1), t0 is the global simulation

time at particle injection, and tf is the sampled fragmentation time. At every subsequent

timestep, each dimer’s assigned fragmentation time is compared against the global simulation

time. If the simulation time is greater, then the condition for dissociation is met and the
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dimer is numerically converted into a monomer-neutral pair.

4.3.3 Weak Coupling

The plume model is initialized by specifying the number density of each evaporated

species at site of emission. In this study, only monomers and dimers of EMI-BF4 when

operating in a positive emission mode are considered. At each timestep, macroparticles,

representations of real molecules, are injected into the computational domain at an inlet facet

located at the emitter apex. Emitted ions are assumed to follow a Maxwellian distribution

at 300 K, chosen as the approximate temperature when operated in room temperature and

accounting for the slight self-heating contribution from Ohmic and viscous dissipation [83].

Upon injection the current fraction of each species is set to 50%, an approximation based off

aforementioned time-of-flight mass spectrometry measurements by Natisin et al. [99].

The number densities of each monomer and dimer species at the injection site are found

using the equations

1

2
Icap = Aeq nm v̂m = Aeq nd v̂d, where v̂m =

√
8kBT

πmm

and v̂d =

√
8kBT

πmd

, (4.25)

where nm is the monomer number density, nd is the dimer number density, v̂m is the monomer

velocity, v̂d is the dimer velocity, mm is the monomer mass, and md is the dimer mass. Once

injected, as mentioned in Subsection 4.3.1, the electric field and space charge densities are

solved self-consistently at each node within the computational mesh using Poisson’s equation

and Newton’s second law, where the force term is prescribed by the Lorentz equation,

−∇2φ =
q

ε0
(nm + nd), (4.26)

d

dt
(mmv̂m +mdv̂d) = qÊv = −q∇φ, (4.27)

where φ is the electric potential.
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4.4 Simulation Description

The simulations in this chapter are designed to closely replicate the operating conditions

of experiments conducted by Natisin et al. [99], with select simulation parameters summarized

in Table 4.1. A total of seven extraction voltages are simulated, where five are chosen as the

focus of this study: 1426 V, 1562 V, 1639 V, 1748 V, and 1845 V. Specific parameters for

each simulation case, including the particle count of each species and their corresponding

number densities at the emission site, are presented in Table 4.2.

In each simulation, monomers and dimers are injected into the domain from a single

cell located at the emitter apex, with each species contributing equally to the total current

fraction. The number of particles generated at each timestep is a function of the source

number density specified by the emission model, the timestep duration, and the size of the

injection facet. The emission area of the injection cell is set to match the area used in the

derivation of the reduced emission model, ensuring the correct number of ions are generated

for the intended emission current. A macroparticle weighting of one is used, meaning each

simulation particle is representative of a single physical molecule.

The simulations employ a timestep of 10 picoseconds, heuristically determined to resolve

the ion trajectories near the emission site, over a total simulation time of 1.5 microseconds.

For the fragmentation process, a mean lifetime of 0.1 microseconds is used, based on molecular

dynamics simulations of EMI-BF4 dimers conducted by Petro et al. [105].

Table 4.1: Global simulation parameters prescribed across all cases for the coupled
continuum-kinetic single emitter simulations

Parameter Value
Monomer Current Fraction 0.5
Dimer Current Fraction 0.5
Dimer Mean Lifetime 0.1 µs
Timestep 10 ps
Simulation Duration 1.5 µs
Macroparticle Weighting 1.0
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Table 4.2: Initialization number densities of the monomer and dimer species for
each applied voltage case across each coupled continuum-kinetic single emitter
simulation. Current values are calculated from the steady-state species flux at
the site of emission.

Voltage [V] Current [nA] Monomer Number
Density [1/m3]

Dimer Number
Density [1/m3]

1426 197 1.6×1021 2.7×1021
1562 366 3.0×1021 5.0×1021
1639 514 4.2×1021 7.0×1021

1703 678 5.5×1021 9.3×1021

1748 822 6.7×1021 1.1×1022

1790 980 8.0×1021 1.3×1022

1845 1229 1.0×1022 1.7×1022

4.4.1 Axisymmetric Mesh Criteria

Figure 4.3 presents the axisymmetric mesh used for the 1562 V simulation case, and

is generally representative of the meshes utilized for the remaining cases. Figure 4.3a

presents the mesh in the regime between the emitter and extraction electrode, where the

symmetry is leveraged about the emitter centerline. Figure 4.3b illustrates a subset of

Fig. 4.3a, highlighting the site of emission at the emitter apex. The boundary facet where

monomer and dimer species are injected is denoted via the red arrow. To align with the

initialization condition set by Eqn. (4.25), the injection facet length must be on the order

of the characteristic emission radius, r∗. This can be approximated using the scaling laws

derived in Section 4.2, where r∗ ∼ q6γ/4π2ε30∆G
4. Using prototypical values of γ = 0.045

N·m and ∆G = 0.8 eV for EMI-BF4, this would result in r∗ ∼ 10−7 m.

Once injected, additional criteria must be considered for proper spatial resolution of

the mesh. Grid size has shown to be influential on the electric field and extrusion physics

of ILISs’ [14]. Due to ILISs’ similarities with plasmas, the Debye length is often used as a

characteristic scale and metric determining to what extend a computational grid should be

refined [3, 4, 33]. The Debye length is defined as the scale at which mobile charge carriers’

electric field is screened in a charged solution,
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Figure 4.3: Axisymmetric mesh utilized for the 1562 V simulation case. The
region between the emitter and extractor electrode is presented in (a) while the
region immediately surrounding the site of emission is presented in (b). The red
arrow in (b) denotes the facet where ion species are injected.
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λD =

√
ε0kBT

nq2
. (4.28)

It is particularly relevant in quasi-neutral plasmas where both positive and negative charges

are present and can respond collectively to electric fields. An ILIS plume, however, by being

singularly polar and breaking quasineutrality, lacks the rapid screening behavior characterized

by the Debye length. The lack of any significant electron density with the plume (during

positive emission) curtails any screening effect observed over the Debye length scale. As a

result, electric fields and potential variations within the ion beam can persist over larger

spatial scales than what the Debye scale would suggest. Thus, using the Debye length as a

characteristic scale for refinement would likely result in a mesh that is overrefined, adding

unnecessary computational cost on a given simulation.

Instead, the predominant factor in considering an appropriate mesh resolution lays

within resolving gradients of the ion number densities. This gradient is likely on the order

of the injection cell size near the emission site and quickly increases downstream as the ion

beam expands. This motivates the mesh resolution chosen around the emission site shown

in Fig. 4.3b, where the cell size is slightly larger but of comparable order to that of the

injection cell. A relatively constant cell sizing is used throughout the computational domain

to minimize the grid aspect ratio and thus minimize numerical instabilities within the Poisson

solver. It has been shown that increased aspect ratios result in a higher condition number of

the stiffness matrix [113], resulting in a higher likelihood of an ill-conditioned system that

can result in numerical instability or loss of precision.

4.4.2 Collisionality

As discussed in Subsection 4.3.1.1, interparticle collisions are not a dominant factor in

resolving the polydisperse plume. To demonstrate this, the mean free path for interparticle

collisions is approximated using the injection ion number densities of the highest extraction
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voltage case simulated, 1845 V. The ion densities within this emission region are the highest

relative to any other axial location within the ILIS plume due to Coulombic expansion of

the beam and the radial component of the electric field acting away from the centerline axis.

As a result, the injection ion number density of the 1845 V case would correspond to the

smallest collisional mean free path at any point within the domain across all simulation cases

considered.

To calculate this mean free path, the plume is approximated as a gas composed of hard

sphere particles in thermal equilibrium. Under these conditions the mean free path of dimers

when considering dimer-dimer and dimer-monomer collisions is given by [16]

λdim =

[
ndimσdd

√
2 + nmonσdm

√
1 +

mdim

mmon

]−1

, (4.29)

where λdim is the dimer mean free path, ndim and nmon are the number density of the dimer

and monomer species, respectively, mdim and mmon are the masses of the dimer and monomer

species, respectively, σdd is the collision cross section of dimer-dimer collisions, and σdm is

the collision cross section of dimer-monomer collisions. For hard-sphere collisions between a

single species A, the collision cross section is given by

σAA = πd2, (4.30)

where d is the particle diameter. For hard-sphere collisions between differing particle species

A and B, the collision cross section is

σAB =
π

4
(dA + dB)

2. (4.31)

The diameter of an EMI+ monomer is on the order of 7.6 Å [4]. The diameter of a [EMI-

BF4]EMI+ dimer is approximated as a combination of two EMI+ monomers and a single

BF4 monomer, where the latter is on the order of 5.2 Å. These values result in dimer-dimer

and dimer-monomer collision cross sections of approximately 1.3×10−19 m2 and 0.6 ×10−19
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m2, respectively. Using mass values of mdim = 309 g/mol and mmon = 111 g/mol and the

1845 V injection number densities of ndim = 1.7× 1022 m−3 and nmon = 1.0× 1022 m−3, the

dimer mean free path at the injection site is λdim ∼ 10−6 m. In comparison, the characteristic

emission radius, r∗, is on the order of r∗ ∼ 10−7 m. Thus, at its minimum point across each

case, the collision mean free path is approximately an order of magnitude larger than the

length scale at the site of emission, indicating that inter-particle collisions are not a governing

factor within the plume dynamics. This scale differential is likely an underestimation as

the influence of Coulombic repulsion is not accounted for in the collisional cross section

calculations.

4.5 Plume Characteristics

4.5.1 Emission Current

Figure 4.4 illustrates the electric field streamlines and potential contours between the

emitter and extractor grid for the 1562 V case, obtained by the EHD solver. Note the

potentials are negative as the emitter is operating in a positive emission mode. Between the

electrodes, the potential is unexpectedly monotonic while the field strength increases about

the emitter tip due to its morphology and surface charge density at the emission site. From

this solution, the normal component of the electric field across the meniscus is extracted and

used as input for the emission model to approximate the total emission current. Figure 4.5

presents the resulting field distributions across the interface for all simulated voltages. A

log scale is utilized on the y-axis to better differentiate between electric field distributions.

Each extraction voltage exhibits a similar radial distribution until they converge towards the

centerline, where they align to the same order as demonstrated in the inset.

To compare simulated emission currents with experimental measurements from the

AFET-2 thruster, the simulated single-emitter currents are linearly scaled by the total

number of emitters (576) employed in the experimental configuration. Fig. 4.6 presents a
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Figure 4.4: Potential contour and electric field streamlines within the extraction
region for the 1562 V simulation case.

Figure 4.5: Vacuum electric field distribution normal to the meniscus across
simulated extractor voltages. The inset provides a detailed view of the field
distributions near the meniscus apex.
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Figure 4.6: Linearly extrapolated emitter source currents calculated by the ionic
emission model versus AFET-2 measurements [99] as a function of extractor
voltage. In (a), the emission model is calculated at various calibration factors Cf

at a fixed activation energy for evaporation ∆G and (b) showcases the model at
various values of ∆G at a fixed Cf .

comparison between measured emission currents and various calculations from the emission

model, illustrating the sensitivity of the model outputs to both numerical and physical factors.

Specifically, numerical sensitivity is demonstrated in Fig. 4.6a through variation in the scaling

parameter Cf at a fixed activation energy for evaporation ∆G, and physical sensitivity is

illustrated in Fig. 4.6a by varying ∆G at a fixed value of Cf . The best agreement with

experimental measurements were found at Cf ≈ 2.05. It should be noted from Fig. 4.6a

that increasing the numerical scaling parameter does not result in exponential growth in

emission current; rather, at Cf = 2.15, the total emission current begins to plateau with

increasing extraction voltage. This plateau behavior aligns with previous observations [30, 47]

suggesting that, in this meniscus size regime relative to the contact radius, the current initially

varies linearly with the electric field but eventually curtailed by the finite conductivity of
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the propellant. Deviations observed between model predictions and experimental data at

higher voltages in Fig. 4.6a may also be attributed to physical effects such as the emergence

of multiple emission sites per emitter, which have been experimentally observed in arrays

operated at elevated voltages [23, 39, 55].

In Fig. 4.6b, the emission model sensitivity to perturbations in the activation energy

for evaporation ∆G is presented. From the scaling law analysis in Section 4.2, it can be

shown that I∗ ∼ (∆G)6, illustrating that even minor variations of the activation energy

can significantly influence emission characteristics. The value of ∆G was chosen using the

critical electric field strength E∗ that follows E∗ ≈ 4πε0(∆G)
2/q3 [65]. Significant emission

for the AFET-2 was observed beginning at approximately 1300-1400 V, which from Fig. 4.5

corresponds to an estimated field strength of slightly above 108 V/m for EMI-BF4. This

results in a value of ∆G ≈ 1.1 eV used in emission calculations that were later employed in

the initialization of the downstream plume model.

4.5.2 Thrust

Consideration of the plume begins with the number density contours of the monomer,

dimer, and neutral species from the 1562 V operational case, presented in Fig. 4.7. The

monomer and dimer contours exhibit comparable particle distributions near the emitter, as

expected by the fixed species ratio set at initialization. In contrast, a significant neutral

population is not introduced into the plume until further downstream in the field-free

region. This observation aligns with the mean lifetime value calculated by Ref. [105], as

the fragmentation model does not assume a specific location for dissociation events. The

distinction between the neutral and non-neutral densities can also be attributed to the fact

that the neutral trajectories are set at the site of fragmentation, where they are subsequently

unaltered as the plume is noncollisional and they are field-agnostic.

Emission thrust is calculated for each extractor voltage at several downstream axial

distances spaced 50 microns apart, with the maximum distance considered being 900 microns,
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Figure 4.7: Number density contours of the (a) monomer, (b) dimer, and (c)
neutral species for the 1562 V simulation case.
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Figure 4.8: Linearly extrapolated emission thrusts calculated at select axial
distances versus AFET-2 measurements [99] as a function of extractor voltage.

chosen to mitigate the influence of boundary-induced numerical effects. Similar to the

emission current comparisons, single emitter thrust calculations are linearly extrapolated by

the array size used for the AFET-2 and compared against experimental thrust measurements

in Fig. 4.8, where the calibration factor used is Cf = 2.05. The axial distances of the exit

planes used to calculate thrust are less than the centimeter-scale distances at which AFET-2

thrust measurements were experimentally made due to limitations in computational domain

sizing arising from computational cost. Despite these differences, a general agreement in

the trend is observed between simulated thrust calculations and measurements. Increasing

the axial plane distance generally results in higher calculated thrust values, as thrust is

proportional to the square of species velocity, and at these distances, the emitted species

are still accelerating due to their initial momentum from the evaporation process. Once
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significantly far from this acceleration region, emitted and fragmented species velocities are

expected to plateau and possibly decrease depending on the background pressure. At lower

extraction voltages, the underestimation of thrust by the model can be partially attributed

to the corresponding under-prediction of emission current observed in Fig. 4.6. Conversely, at

higher extraction voltages, plume simulations are found to overestimate thrust values at axial

distances greater than 700 microns. Outside of the discrepancy associated with the different

distances at which the thrust is compared, one possible reason that the model overestimates

measurements at higher voltages may be due to inaccuracies in the assumed current fractions

of monomers and dimers. Specifically, deviations from equal current fractions, especially at

higher potential gradients, could result in an incorrect mass distribution within the plume

that acts to overestimate the thrust.

4.5.3 Beam Divergence

Spatial characterization of the plume is also considered. Beam intensity and current

density distributions are calculated at a radial distance of 250 microns from the emitter tip.

The beam intensity, defined as the number of particles crossing the radial boundary per

unit area and time, is normalized and plotted against the divergence angle for all simulation

cases, presented in Fig. 4.9. The beam intensity distributions are normalized such that the

total integral of the intensity over all divergence angles is equal to one, ensuring that each

curve represents the relative intensity distribution as a function of divergence angle. For each

distribution, values are sampled during the final 0.5 µs of simulation when the plume has

reached steady-state and an angular discretization of 1◦ is used. To quantify an effective

divergence angle, the ion count is integrated along the radial boundary and solved for the

angle at which 80% and 99% of all species have crossed, presented in Table 4.3. The resulting

plume divergences exhibit a negligible dependence on the extractor voltage, aligning with

simulations conducted by Petro et al. [105].

Experimentally, plume distributions in electrosprays are known to exhibit super-
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Figure 4.9: Divergence angle versus normalized beam intensity across extractor
voltages 250 µm from the emitter.

Gaussian distributions. Following the model of Thuppul et al. [124], the current density and

intensity distributions are parameterized using a super-Gaussian profile,

Table 4.3: Divergence angles for the two confidence intervals at 250 µm from the
emitter.

Voltage [V] 80% 99%
1426 6.0◦ 11◦

1562 6.0◦ 11◦

1639 6.0◦ 11◦

1703 6.0◦ 11◦

1748 6.0◦ 11◦

1845 6.0◦ 11◦
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Figure 4.10: Divergence angle versus current density across extractor voltages at
250 µm from the emitter.

f(θ) = α exp
[
−
(
(θ − θt)

2

θ20

)η]
, (4.32)

where α is the plume magnitude, θt is the degree at which the angle is tilted away from the

central axis, θ0 is the plume width, and η is the plume sharpness. At η = 1 the distribution

is a perfect Gaussian, where as values greater than one correspond to flatter profiles near the

central axis and values less than one correspond to sharper profiles. Values for α, θ0, and η for

a given extractor voltage are curve-fit to the numerical data via Nelder-Mead optimization,

with θt = 0 due to the axisymmetry of the simulations. The current density distribution

as a function of the divergence angle for each extractor voltage, alongside their respective

super-Gaussian fits, are presented in Fig. 4.10.
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Figure 4.11: Super-Gaussian plume (a) sharpness and (b) width parameters of
250 µm current density and intensity distributions calculated across extraction
voltages.

Parameterization of the radial distributions enables direct comparison of plume char-

acteristics across simulation cases. In Fig. 4.11, the sharpness and width parameters are

presented for the current density and intensity distributions calculated at a radial distance

of 250 microns across each simulated voltage. Figure 4.11a shows the sharpness parameter

remains relatively constant across all voltages at approximately 1.6. Figure 4.11b illustrates

a decreasing trend in plume width with increasing extractor voltage, exhibiting the largest

decrease between the 1426 V and 1845 V simulations. This reduction in plume width is

consistent with increased focusing of ions at higher extraction voltages. However, as discussed

in Subsection 4.5.3, this reduction is not significant enough to meaningfully alter the overall

beam divergence angle. Furthermore, no discernible difference in sharpness and width is

observed between the current density and intensity distributions, suggesting that neutral

species do not significantly influence the macroscopic spatial characteristics of the plume in

this operational and geometric regime.
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4.6 Conclusions

In this chapter, a novel multiscale model was presented for a single-emitter ionic

electrospray source. The model integrates high-fidelity EHD meniscus simulations with a

semi-empirical emission model and a particle-in-cell-based plume model that incorporates

field-free fragmentation of dimers. After calibration against experimental measurements from

the AFET-2 thruster, the model demonstrated qualitative agreement with both spatially-

averaged emission currents and thrust values. Spatial characteristics of the beam were

calculated using a super-Gaussian parameterization, quantifying how attributes such as the

plume sharpness, width, and amplitude evolve across a range of applied voltages.

Single-emitter simulations using operational conditions similar to those used by the

AFET-2 demonstrated that the emission current and thrust follow expected trends with

increasing extraction voltage, validating the hybrid modeling approach. The plume analysis

revealed that beam divergence remains relatively constant across operational voltages, with

80% of species confined within a 6◦ angle and 99% within 11◦ from the central axis. The

super-Gaussian parameterization showed a consistent sharpness parameter across all voltages,

while the plume width decreased with increasing voltage due to enhanced ion focusing. It

was found that neutral species generated through fragmentation did not significantly alter

the macroscopic spatial characteristics of the plume in the operational and geometric regimes

studied. The observed deviations between model predictions and experimental measurements

at higher extraction voltages highlight potential effects of inter-emitter coupling and multiple

emission sites per emitter that warrant further investigation.

The flexibility of the semi-empirical emission model suggests that it could be adapted

to model other electrospray configurations, capturing empirical influences not explicitly rep-

resented in more detailed EHD meniscus models. Additionally, the end-to-end computational

framework developed in this study provides a robust platform for parameter-space explo-

rations and sensitivity analyses. Explored further in the subsequent chapter, this framework
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serves as a valuable tool for subsequent investigations into life-limiting mechanisms such as

electrode overspray and off-axis emission, supporting enhanced reliability and performance

predictions for next-generation ionic electrospray propulsion systems.



Chapter 5

Surrogate-Based Design Space Exploration

In the previous chapter, a coupled emission and kinetic model was developed and

implemented to simulate the end-to-end behavior of a single-emitter ionic electrospray thruster.

This framework integrated detailed phenomena such as fragmentation, inlet conditions, and

spatial plume characteristics to provide a comprehensive representation of ionic emission

and downstream dynamics. The results from these simulations emphasized the sensitivity of

plume characteristics to upstream conditions, providing a foundation for further studies on

mitigating failure modes in electrospray thrusters.

Building on this framework, the current chapter explores the impact of operational and

geometric perturbations on plume characteristics to address critical challenges in thruster

design. Prior research has demonstrated that minor deviations in manufacturing tolerances

or operational parameters can significantly alter plume morphology, exacerbating life-limiting

mechanisms such as grid impingement [123, 124]. By leveraging the high-fidelity single-

emitter model developed in Chapter 4, this chapter seeks to quantify the sensitivity of plume

characteristics to these perturbations and identify tolerances that can enhance the reliability

and performance of electrospray thrusters.

The investigation begins in Section 5.1 with a detailed axisymmetric analysis of how

variations in extractor voltage and tip-to-extractor distance influence key plume characteristics,

such as plume width, sharpness, and tilt. Using the axisymmetric simulation framework

from Chapter 4, this study systematically maps the sensitivity of plume parameters across
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a defined design space. These insights are then extended into a three-dimensional domain

in Section 5.2, allowing for the exploration of non-axisymmetric geometric perturbations.

In particular, translational and rotational misalignments of the emitter with respect to the

extractor are considered, capturing the effects of manufacturing imperfections and assembly

variability.

5.1 Axisymmetric Study

The combined emission and plume model presented in Chapter 4 is used to simulate

the effects of varying the tip to extractor distance and extractor potential on downstream

spatial plume characteristics. These characteristics are obtained from the super-Gaussian

parameterization of radial plume cross section distributions of current density and beam

intensity.

To characterize the influence of these geometric and operational conditions on the plume

state, an axisymmetric parameter space is selected such that the plume is studied across

a range of potentials and distances. The potential range is the same as that explored in

Chapter 3, φ ∈ [1426 V − 1845 V], and tip to extractor distances ranging from flush with the

emitter to 100 microns, d ∈ [0 µm − 100 µm].

5.1.1 Surrogate Model Formulation

Understanding how the plume morphology evolves within this parameter space would

ideally be accomplished through a refined discretization of each input variable, where the

resultant grid of inputs is each evaluated as a unique simulation in the full end-to-end single

emitter model. However, evaluation of the numerical model across each permutation of initial

conditions would be prohibitive due to the computational cost. To mitigate this, a lower

fidelity surrogate model is implemented as an efficient means of approximating output from

the higher fidelity single emitter model.

Surrogate models, also known as response surface models, are nominally simple analytic
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models that represent the functional behavior of more complex systems [85]. These models

are built via regression training on underlying data of the original model at discrete sampling

points. Although surrogate model construction still necessitates sampling of the original

numerical model, the number of samples required to build a sufficiently accurate surrogate is

often less than what would be required to resolve the original model directly. The result is

a model that is significantly faster to sample than the original numerical model, while still

retaining a sufficient level of accuracy away from the discrete evaluation points that were

used to train it. Lastly, surrogate models are especially useful for design space exploration,

optimization, and sensitivity analyses as the construction of a continuous analytic function

over discrete data enables straightforward computation of their gradients.

To initialize each surrogate, the original single emitter model must be sampled across

the axisymmetric parameter space. A full factorial sampling method is implemented where

each input dimension is discretized and the numerical model is evaluated at all combinations

of the resulting sample grid. Although this sampling plan is inefficient as the evaluation

points required scale exponentially with the number of input parameters, it is sufficient for

this use case due to the low dimensionality of the input space. The tip-electrode distance is

discretized at every 20 microns, d ∈ [0 µm, 20 µm, 40 µm, 60 µm, 80 µm, 100 µm], and the

extractor voltages are discretized in accordance to the voltages used by Natisin et al. [99]

between 1426 V and 1845 V, V ∈ [1426 V, 1562 V, 1639 V, 1748 V, 1845 V]. The result is a

sampling grid that requires 30 evaluation points of the single emitter numerical model.

At each evaluation point, a full two-dimensional axisymmetric single emitter simulation

is conducted using the same computational domain and grid characteristics described in

Chapter 4. In each case, radial cross sections of the current density and beam intensity are

taken at a fixed distance 250 microns downstream from the emitter. Similar to Chapter 4,

current density and beam intensity are chosen to quantify various spatial characteristics of

the plume, where the latter incorporates the influence of neutral species while the former does

not. From each distribution, a super-Gaussian parameterization, Eqn. (4.32), is fit to obtain



112

the characteristics of interest: width θ0, sharpness η, and beam tilt θt. Unlike in Chapter 4,

beam tilt is not assumed zero as variations in the tip-extractor distance—especially at lower

values—is expected to alter the radial electric field component such that off-axis emission is

plausible. Within a two-dimensional axisymmetric domain, this off-axis emission would be

physically representative of an annular beam distribution.

After sampling the single emitter model at each evaluation point, the resultant data

used to construct the surrogate model can be expressed as

(
x(i), f(i)

)
, (5.1)

where x(i) is the input vector corresponding to a sampling point, x(i) ∈ (d̂(i), V̂ (i)), and f(i)

is the output vector of characteristics from each plume distribution. d̂(i) and V̂ (i) represent

the non-dimensional tip-extractor distance and extractor voltages, where each quantity is

normalized by their maximum values of 100 µm and 1845 V, respectively. To construct a

surrogate model from the dataset of Eqn. (5.1), a set of basis functions must be chosen that

dictate the form of the model. Once set, the coefficients of that model must be solved such

that the surrogate is sufficiently representative of the sampled data. For this study, a linear

regression model is selected and takes the form

f̂ = wTψ(x) =
∑
i

wiψi(x), (5.2)

where f̂ represents the approximating function of the single emitter model, w is the vector of

coefficients or weights, and ψ is the vector of basis functions. For the input vectors considered

in Eqn. (5.1), a two-dimensional, second-order polynomial is chosen as the set of basis functions,

ψ = [1, d̂, V̂ , d̂2, V̂ 2, V̂ d̂]. This set corresponds to a weight vector w = [c0, c1, c2, c3, c4, c5]

with a total of six coefficients. The resultant surrogate model to represent the functional

relationship between extractor voltages and tip-extractor distances (inputs) and each plume

characteristic of interest (outputs) is then
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f̂k
j (d̂, V̂ ) = c0 + c1d̂+ c2V̂ + c3d̂

2 + c4V̂
2 + c5V̂ d̂, (5.3)

where f̂k
j represents the model for the characteristic k for a given plume distribution j.

The coefficients of Eqn. (5.3) are determined such that the error between the approxi-

mated function values, f̂ , and the single emitter model values, f (i), are minimized. The form

of this minimization problem is,

minimize
w

∑
i

(
f̂
(
w;x(i)

)
− f (i)

)2
, (5.4)

where the solution is a well-established optimization problem known as the least squared

solution [85]. As such, a general analytical solution for the weights is also known,

w = (ΨTΨ)−1ΨTf, (5.5)

where the matrix Ψ is defined as

Ψ =



— ψ(x(1))T —

— ψ(x(2))T —
...

— ψ(x(ns))T —


(5.6)

and is of the size (ns × nw), where ns is the number of samples taken of the original model

and nw is the number of coefficients in w for the surrogate model. For the system to be well

determined, Eqn. (5.5) must satisfy the condition ns ≥ nw. In the case of Eqn. (5.5), ns = 30

and nw = 6, ensuring that enough data is sampled to properly fit the surrogate.

5.1.2 Geometric and Operational Space Exploration

The coefficients of the surrogate model in Eqn. (5.3) are solved using least squares

minimization and are presented in Table 5.1 for each plume characteristic across each
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distribution type. Using the coefficients of Table 5.1, the dependencies of each characteristic

on the tip-electrode distance and extractor voltages are shown for the current density in

Fig. 5.1 and for the beam intensity in Fig. 5.2.

From the surrogate model fitting, several observations can be made on the dependence

of how plume characteristics respond to variances of this particular design space. Generally,

regardless of the distribution type, it can be seen via Table 5.1 that each characteristic is

strongly dependent on both design variables. The data also suggests a stronger sensitivity to

the tip-extractor distance relative to the extractor voltages across characteristics. Sensitivities

of plume characteristics are further described in Subsection 5.1.3.

In Fig. 5.1a, one can observe an overall decrease in the plume width (and thus beam

divergence) with increasing extractor voltage. This beam narrowing occurs despite the fact

that higher extractor voltages result in increased emitter currents and thus a higher space

charge density, where one may expect an increase in beam spreading due to the higher

Coulombic forces between evaporated ions. Despite this larger Coulombic repulsion, the

inverse trend observed in the data is corroborated in the literature [105, 114], suggesting that

beam morphologies are largely determined by species inertia and the electric field streamlines.

In other terms, the inertial and applied forces acting largely axially on the emitted species

are dominant with respect to the radial forces applied by Coulombic repulsion. As the ratio

Table 5.1: Surrogate model parameter coefficients for each plume characteristic
across distribution types for the axisymmetric, two-dimensional case.

Current Density
Plume Characteristic, f̂k

cd(d̂, V̂ ) c0 c1 [d̂] c2 [V̂ ] c3 [d̂2] c4 [V̂ 2] c5 [d̂V̂ ]
Width, θ0 4.02 4.33 -0.61 -0.91 2.84e-3 -1.05
Sharpness, η 0.32 -0.50 1.22 1.13 -0.77 -0.03
Tilt, θt 6.13 4.16 -2.86 -10.11 0.56 2.53

Beam Intensity
Plume Characteristic, f̂k

bi(d̂, V̂ ) c0 c1 [d̂] c2 [V̂ ] c3 [d̂2] c4 [V̂ 2] c5 [d̂V̂ ]
Width, θ0 2.60 4.02 2.72 -0.58 -1.79 -1.11
Sharpness, η 0.37 -0.56 1.06 1.01 -0.67 0.10
Tilt, θt 7.79 4.10 -6.27 -10.51 2.37 2.89
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Figure 5.1: Sampled single-emitter model data and surrogate model fits for (a)
plume width, (b) plume sharpness, and (c) plume tilt of current density for the
axisymmetric study. Characterization parameters are calculated at a radial cross
section of 250 µm downstream from the emitter tip.
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of these axial and radial forces increase with larger extractor potentials, a smaller proportion

of the beam acts to increase its divergence.

The phenomena of beam tightening is apparent across tip-electrode distances as well,

with the extent at which this tightening occurs slightly decreasing with lower tip-extractor

distances. The decrease in sensitivity likely corresponds to how the radial field component

affects the beam spread at various axial distances (corresponding to the tip-electrode distances).

At larger tip-extractor distances, the radial field component has more influence (integrated

load) over the span of an ion’s trajectory, and is thus more prominent at higher extractor

potentials. This is in contrast to lower tip-electrode distances where the lesser component

of the ion trajectory is influenced by the radial field component as they are more-quickly

advected downstream away from the extractor’s influence in accordance to the inverse square

law.

In Fig. 5.1b, the plume sharpness is observed to have less of a dependency on the

extractor voltage with respect to the tip extractor distance. At lower tip-extractor distances,

the current density distributions share similar sharpness values and only slightly differ from

Gaussian distributions where η = 1. Further increasing the tip-extractor distance results in a

seemingly exponential increase in the plume sharpness as observed at the 80 and 100 micron

tip-extractor distances. As sharpness is a characteristic that quantifies the ’drop-off’ steepness

from the distribution apex (i.e., with increasing sharpness, more so does the distribution

qualitatively approaches a Heaviside step function), this is an indication that at smaller

tip-extractor distances, there is a more uniform distribution of current density near the plume

center axis, and a sharper drop-off of this density as one approaches higher divergence angles.

This result is in agreement with the phenomena observed in Fig. 5.1a for the plume width, as

this would suggest that at these higher tip-extractor distances a smaller proportional of the

field acts radially to the plume to spread the distribution outward and reduce the sharpness

as a result.

Similar to Figs. 5.1a and 5.1b, the plume tilt shown in Fig. 5.1c demonstrates a
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stronger dependence on the tip-extractor distance relative to the extractor voltage. At lower

tip-extractor distances, the data suggest a slight decrease in the tilt with increasing voltage,

an intuitive result as a larger field in the axial direction naturally would result in a smaller

deviance from the center axis. A decrease in tilt with increasing voltage is less apparent

at higher tip-extractor distances where the initial tilt is already relatively aligned with the

center axis. In alignment with Figs. 5.1a and 5.1b, increased tip-extractor distances act to

reduce the plume tilt and minimize off-axial contributions of the applied field.

Figure 5.2 presents the same plume characteristics across the parameter space for the

beam intensity. The inclusion of neutral species in the evaluation of beam intensity allows

the consideration of how additional particles within the plume act to influence it’s spatial

characteristics about this parameter space. Qualitatively, a significant variance of plume

characteristics is not observed over both design variables of interest when compared against

the data in Fig. 5.1. A greater distinction is observed when comparing the non-dimensionalized

parameter coefficients of the surrogate models in Table 5.1. Relative to the current density, the

beam intensity surrogate coefficients corresponding to tip-extractor distance are comparable

while a larger difference is observed for coefficients corresponding to the electrode potential.

This result is an indication that neutrals affect the plume characteristics more significantly

across voltage space. With increasing potential, the influence of neutral species on plume

characteristics become more apparent as their trajectories increasingly deviate away from

the trajectories of charged species. Since this trajectory deviation is directly a function

of the applied field strength, this is likely why the most significant difference between the

current density and beam intensity distributions is observed in the voltage coefficients. A

lesser difference is observed in the tip-extractor coefficients as, per the earlier discussion, this

quantity is more representative of the electric field streamline distribution rather than its

magnitude.
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Figure 5.2: Sampled single-emitter model data and surrogate model fits for (a)
plume width, (b) plume sharpness, and (c) plume tilt of beam intensity for the
axisymmetric study. Characterization parameters are calculated at a radial cross
section of 250 µm downstream from the emitter tip.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Sensitivity of current density plume to operational conditions for the
axisymmetric study. These include the sensitivity of (a) width to tip-extractor
distance, (b) width to voltage, (c) sharpness to tip-extractor distance, (d) sharp-
ness to voltage, (e) tilt to tip-extractor distance, and (f) tilt to voltage.
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5.1.3 Tip-Electrode Distance and Extractor Voltage Sensitivity

One of the advantages in utilizing a surrogate model with polynomial basis functions

is that their gradients can be easily found via canonical power rule differentiation. Using

this, the partial derivative of Eqn. (5.3) with respect to each independent variable can be

calculated,

∂f̂k
j

∂d̂
= c1 + 2c3d̂+ c5V̂ , (5.7)

∂f̂k
j

∂V̂
= c2 + 2c4V̂ + c5d̂, (5.8)

where ∂f̂k
j /∂d̂ and ∂f̂k

j /∂V̂ represent the gradients of the surrogate model with respect to

normalized tip-electrode distance and extractor voltage, respectively. Together, Eqn. (5.7)

and Eqn. (5.8) represent the sensitivity of the single emitter emission model with respect

to each operational parameter within the design space. It should be noted, analogous to

Eqn. (5.3) and the single emitter model, Eqn. (5.7) and Eqn. (5.8) are approximations of

the system sensitivity and are dependent on the basis function space chosen for the original

surrogate. For example, inclusion of the V̂ d̂ term in Eqn. (5.3) enables consideration of

cross-parameter influences in both the surrogate model and its corresponding gradients.

Omission of said term would result in one-dimensional gradients where functional sensitivities

to a given parameter are solely a function of that parameter.

Equations 5.7 and 5.8 are used to quantify, to first order, what extent perturbations of

operational variables within the design space influence downstream spatial characteristics

of the plume. The sensitivities of each plume characteristic (width, sharpness, and tilt)

with respect to both extractor voltage and tip-extractor distances for current density are

presented in Fig. 5.3. Across characteristics the system sensitivities are quasi-one-dimensional,

where the sensitivity primarily varies in one direction with minimal to no variability in the

cross-direction within the design space. With the exception of the voltage-sharpness response

in Fig. 5.3d, each characteristic is predominantly more responsive to perturbations in the
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tip-extractor distance relative to perturbations in extractor voltage. The sharpness-voltage

response is an outlier in this regard in part due it having both the smallest sensitivity range

and the smallest absolute sensitivities, where a voltage response becomes apparently dominant

in the absence of a tip-extractor dependency. Both plume width sensitivities as well as the tilt-

tip extractor sensitivity demonstrate an increased sensitivity with a reduction in tip-extractor

distance. An inverse relationship to the tip-extractor distance is observed for the sharpness-

tip extractor and tilt- extractor voltage responses.

The sensitivities of each plume characteristic with respect to both extractor voltage and

tip-extractor distances for beam intensity are presented in Fig. 5.4. Similarly to the above

discussion, the beam intensity sensitivities illustrate to what extent the inclusion of neutral

EMI-BF4 species affect the plume characteristic responses. This influence is largely observed

in the extractor voltage sensitivities and a minimal effect is observed for the tip-extraction

distance sensitivities. Within the extractor voltage sensitivities, relative to the current density

surface responses, the additional consideration of neutral species act to increase the sensitivity

variance in the extractor voltage, deviating away from the quasi-one-dimensional behavior

observed in Figs. 5.4b, 5.4d, and 5.4f.

The introduction of neutrals resulting in an increased sensitivity gradient with respect

to extraction voltage is in alignment with the results discussed in Subsection 5.1.2. Again,

when considering the current density, the relatively low ion number density coupled with

the minimal influence of Coulombic forces on a particle trajectory result in electric field

streamlines that are predominantly invariant to the applied potential. The result is, at

constant tip-electrode distances, plume characteristics of the current density share this same

invariance. When all plume constituents are considered within beam intensity, Fig. 5.4b

demonstrates an increased sensitivity of the plume width to the extractor voltage relative to

the beam current response surface. The exact reason for this is unclear, but it is postulated

that the electric field may have a stronger influence on slower moving ions that are more

likely to undergo fragmentation within the domain. The effects of this are then observed
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Figure 5.4: Sensitivity of beam intensity plume to operational conditions for the
axisymmetric study. These include the sensitivity of (a) width to tip-extractor
distance, (b) width to voltage, (c) sharpness to tip-extractor distance, (d) sharp-
ness to voltage, (e) tilt to tip-extractor distance, and (f) tilt to voltage.
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within the neutral species distribution captured by the beam intensity.

5.2 Three-Dimensional Study

In this section, the analysis conducted in Section 5.1 is repeated for an alternative

design space defined within a fully three dimensional computational domain. Increasing the

dimensionality of the grid enables exploration of geometric configurations that are not bound

by axisymmetry. These configurations are representative of many arrayed emitters, where

tolerances in the manufacturing process result in geometries that are perturbed from the

on-axis orientation of a single centerline shared between the emitter and extracting electrodes.

Results from Subsection 5.1.2 demonstrate that, for the parameter space explored,

spatial characteristics of the plume are more strongly dependent on variations in geometric

conditions relative to operational conditions. For this reason, the three dimensional analysis

explores solely a geometric parameter space. More specifically, geometric perturbations are

made to the emitter relative to the electrodes to mimic manufacturing tolerances that deviate

it from idealistic conditions. The goal of this study is to use a surrogate model trained on

this perturbation space to inform to what extent deviations from on-axis emission affect

spatial plume characteristics that directly contribute to known failure modes. It has been

demonstrated that misalignment can result in a 20–50% lifetime reduction [124]. By sampling

high-fidelity simulations of the plume across multiple dimensions of misalignment to train

a surrogate, this study seeks to better quantify how misalignment influences life-limiting

electrospray life-limiting mechanisms via spatial structures of the plume.

Subsection 5.2.1 describes how the three-dimensional case is initialized, including how

the computational grid differs from the axisymmetric case and how the geometric perturbations

are defined. In Subsection 5.2.2, the surrogate model is formulated for each beam distribution

and the parameter coefficients are presented. Subsection 5.2.3 discusses several observed

phenomena distinguishing plumes of misaligned emitters from those of aligned emitters.

Subsection 5.2.4 and Subsection 5.2.5 respectively present how these perturbations affect the
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plume morphology and their corresponding sensitivities.

5.2.1 Computational Domain

The computational domain of Section 5.1 is expanded into a fully three dimensional

space. However, simply expanding on the domain and mesh conditions described in Chapter 4

onto an additional dimension would be too computationally prohibitive. To help alleviate

this cost, several changes are made to the simulation conditions relative to the axisymmetric

study.

The simulation domain used is nearly identical to the three-dimensional equivalent of

that presented in Fig. 4.3, except the axial length of the domain, zdom, is truncated to a

length of 750 microns. The farthest cross sectional distribution of the plume is taken at an

axial distance of 600 microns, leaving the remaining 150 microns to the outflow boundary as

a buffer zone to mitigate potential boundary effects.

(a) (b)

Figure 5.5: Three-dimensional computational mesh of the single emitter domain.
The overall domain is presented in (a) where selects facets are hidden for clarity.
The emitter tip is presented in (b) with the area colored in red denoting the
injection cells at which species are initialized.
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The computational mesh utilized for the unperturbed case is presented in Fig. 5.5,

where Fig. 5.5a presents an overview of the entire grid (select facets are hidden for clarity)

and Fig. 5.5b presents the mesh at the emitter tip. In Fig. 5.5b, the cells at which species

are injected are highlighted in red and collectively are refined to the order of the emission

radius r∗ to ensure the correct boundary condition criteria for alignment with the upstream

ionic emission model. Unlike the axisymmetric study, the remaining grid cells are not also

refined to this length scale as it would be too computationally prohibitive. Instead a baseline

coarse mesh resolution is set throughout the domain, where a subdomain region is defined

immediately downstream from the emitter that refines the mesh as a function of distance to

the tip. The refining region is fixed across all simulations and takes the form of an inverted

truncated cone with an upstream base radius of 40 microns, downstream base radius of

400 microns, and a length of 400 microns. The upstream base is flush with the injection

cells at the tip and the radius is chosen such that regardless of the perturbation, the cells

that evaporating species are injected into are sufficiently refined to gradients of the ion

number density. The downstream base is flush with the outflow boundary and its radius is

determined heuristically such that the refining region encapsulates the plume across most

cases. Defining a refining region under these criteria allows for minimal changes to the mesh

across perturbation samples while ensuring that the mesh near the site of emission is resolved

regardless of where the tip is displaced.

5.2.2 Surrogate Model Formulation

The geometric perturbations are implemented as linear combinations of translational

and rotational displacements of the emitter with respect to the centerline axis, shown in

Fig. 5.6. Translational perturbations, demonstrated in Fig. 5.6b, are defined as translations

along the positive x-axis while rotational perturbations, demonstrated in Fig. 5.6c, are defined

as rotations of the z-y plane about the x-axis in the counterclockwise direction.

To construct the surrogate model, the bounds and discretization of the two-dimensional
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(a) (b) (c)

Figure 5.6: Schematic of the perturbation space explored in the three-dimensional
study, where (a) represents the unperturbed emitter configuration, (b) represents
a translational displacement of the emitter in the x-axis, and (c) represents a
rotational displacement of the emitter about the x-axis in the counterclockwise
direction.

perturbation space must be defined. The emitter is translationally displaced a maximum of

40 microns with a discretization of 10 microns starting from the unperturbed configuration,

shown in Fig. 5.6a. The rotational perturbation is applied at a maximum of 10◦ with a

discretization of 5 microns, also including the neutral position.

The influence of these perturbations on plume spatial characteristics is analyzed using

the same surrogate model formulated in Subsection 5.1.1,

ĝkj (x̂, ϕ̂) = a0 + a1x̂+ a2ϕ̂+ a3x̂
2 + a4ϕ̂

2 + a5x̂ϕ̂, (5.9)

where ĝkj is the model of the beam distribution j for plume characteristic k, x̂ is the normalized

translational displacement, ϕ̂ is the normalized rotational displacement, and ai are the fitting

coefficients. The displacements x̂ and ϕ̂ are respectively normalized by their maximum values

of 40 microns and 10◦. Similar to Eqn. (5.3), Eqn. (5.9) utilizes a two dimensional, second

order polynomial for the set of basis vectors, where each basis is scaled by its corresponding

weight. These weights are again solved using the least squares minimization process described
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in Subsection 5.1.1 and are presented in Table 5.2 for each plume characteristic of current

density and beam intensity.

What is immediately apparent from Table 5.2 are the nearly identical set of coefficients

between the distribution types regardless of the plume characteristic. In the axisymmetric

example of Table 5.1, the coefficients across distribution types are of comparable order but

still distinct, indicating that neutrals play a discernible (albeit minimal) role in determining

the plume morphology. In other words, the change in plume morphology attributed to

neutrals is significant with respect to the overall changes in morphology across the entire

parameter space. In Table 5.2, the lack of distinction across distribution types suggests that

the influence of neutrals is minimal relative to how the overall plume evolve in response to

the perturbations. This overall response, described further in the subsequent sections, is

significantly greater relative to the axisymmetric case and as a result effectively dampens the

smaller contribution that neutrals play in determining spatial plume characteristics relative to

ionic monomers and dimers. The influence of neutrals is likely be more apparent downstream

from the simulation boundary, where a clearer distinction would be made from charged

species whose trajectories are bounded to electric field streamlines. Nonetheless, given the

nearly identical response across distribution types, the remaining analysis of this chapter will

focus solely on the current density beam to avoid redundancy.

Table 5.2: Surrogate model parameter coefficients for each plume characteristic
across distribution types for the three-dimensional perturbation study.

Current Density
Plume Characteristic, ĝkcd(x̂, ϕ̂) a0 a1 [x̂] a2 [ϕ̂] a3 [x̂2] a4 [ϕ̂2] a5 [x̂ϕ̂]
Width, θ 4.63 0.51 -4.67 0.54 4.16 -0.49
Sharpness, η 0.72 -0.89 0.70 1.30 -0.54 -0.24
Tilt, θt 2.56 10.51 20.73 5.42 12.55 -6.29

Beam Intensity
Plume Characteristic, ĝkbi(x̂, ϕ̂) a0 a1 [x̂] a2 [ϕ̂] a3 [x̂2] a4 [ϕ̂2] a5 [x̂ϕ̂]
Width, θ 4.62 0.51 -4.67 0.54 4.16 -0.49
Sharpness, η 0.72 -0.89 0.70 1.30 -0.54 -0.24
Tilt, θt 2.55 10.51 20.72 5.42 12.56 -6.29
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(a) (b)

Figure 5.7: Logarithmic number density contours of EMI+ monomers across
the yz-plane for the three-dimensional (a) x=0 µm, ϕ=5◦ case and (b) x=0 µm,
ϕ=10◦ case.

5.2.3 General Effects of Off-Axis Emission

Before discussion of the overarching plume response across the parameter space, it

should be noted that several qualitative phenomena are observed that differentiate off-axis

emission in perturbed ILIS plumes relative to their unperturbed counterparts.

One of these phenomenon include the steady-state plume morphology response to

off-axis emission solely due to rotational perturbations, shown by number density contours

of EMI+ monomer species across the yz-plane in Fig. 5.7. Figures 5.7a and 5.7b present

the monomer number density cross-sections for the ϕ = 5◦ and ϕ = 10◦ cases, respectively.

In Fig. 5.7a, it can be seen that a slight emitter rotation of ϕ = 5◦ results in a monomer

plume whose morphology would be qualitatively comparable to a plume of an unperturbed

emitter under some rotational transformation. This is in contract to Fig. 5.7b, where it can

be seen that continued rotational displacement of the emitter results in a plume morphology
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(a) (b)

Figure 5.8: Logarithmic number density contours of EMI+ monomers in three-
dimensions (a) across the xz-plane for the x=40 µm, ϕ=0◦ case and (b) across
the yz-plane at x=40 µm for the x=40 µm, ϕ=10◦ case.

that is fundamentally discrete from the ϕ = 5◦ and unperturbed cases. The downstream

monomer distribution of Fig. 5.7b suggests the existence of a critical emitter rotation that,

once surpassed, results in a bifurcation of the beam into a dominant primary plume and a

secondary, lesser plume traveling in the orthogonal direction. In the ϕ = 5◦ case, the bulk

balance between Coulombic repulsion of monomers and their attraction to the electrodes is

still held, where the imposed asymmetry only acts to tilt the beam on the order of a few

degrees. This bulk balance is broken at ϕ = 10◦ as a significant portion of the beam partially

screens the electric field in the direction of the tilt, reducing its relative strength compared to

the field in the opposite direction. For an outermost component of the beam, this screening

effect is significant enough to generate a resultant field that acts orthogonal to the rotational

perturbation and is able to advect ionic species.

Similarly, the steady-state plume morphology during off-axis emission can be studied in

response to translational perturbations as well. This is presented in Fig. 5.8 where number
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density contours of EMI+ are shown across two cases with the same translational displacement

of 40 microns. Fig. 5.8a presents the case where no rotational displacement is considered

and is taken across the xz-plane in order to showcase the beam asymmetry. The monomer

distribution in this case shows similarities with both Fig. 5.7a and Fig. 5.7b. This is partially

expected as the aforementioned physics governing the beam response to solely rotational

displacements is generally applicable to perturbations of any type that result in off-axis

emission. However, each perturbation type results in a unique normal direction of the

injection facet relative to the centerline axis. Assuming identical emission site locations,

a rotational displacement contributes a higher proportion of off-axis beam emission than

the equivalent translational displacement. This behavior is observed in Fig. 5.8a, where the

emitter translation approximately coincides with the x = 0 µm, ϕ = 10◦ case yet demonstrates

a diminished beam bifurcation in comparison.

In Fig. 5.8b, monomer number density is presented for the x = 40 µm, ϕ = 10◦ case,

sliced at a cross section parallel to the yz-plane and displaced 40 microns such that it

intersects the emitter centerline. In this simulation, not only is the collective contribution

of both translation and rotation considered, but done so at their respective maximums

considered within the sampling space. Qualitatively, the beam takes a form that is similar

to Figs. 5.7b and 5.8a in that bifurcation is observed. However, unlike Figs. 5.7b and

5.8a, the superposition of both perturbation types acting in orthogonal directions yields a

plume with the largest displacement relative to the centerline axis. The perturbed emitter

position coupled with the electric field distribution results in evaporated ionic species with

comparatively large cross-flow velocity components that act to reduce the effective exhaust

velocity and specific impulse of the thruster.

The influence of off-axis emission on plume morphology can also be illustrated using

current density distributions as a function of divergence angle, defined in this geometry as the

angle between a species’ position vector and the z-axis. Figure 5.9 presents these distributions

for the two cases where solely a rotational perturbation is applied. Cross sections of the beam



131

°

µ

µ

µ

µ

µ

(a)

°

µ

µ

µ

µ

µ

(b)

Figure 5.9: Current density distributions versus divergence angle from the z-axis
across varying radial cross sections of the beam for (a) the x=0 µm, ϕ=5◦ case
and (b) the x=0 µm, ϕ=10◦ case.

are taken at fixed radial distances relative to the hypothetical location of an unperturbed

emitter tip—located at the Cartesian coordinate (0 µm, 0 µm, 300 µm)—ensuring that

distributions for a given radius are comparable across all cases. Figure 5.9a presents current

density distributions for the x = 0 µm, ϕ = 5◦ case, where a clear deviation from the

nominal super-Gaussian profiles is observed relative to plume cross-sections of unperturbed

emitters. At a radial distance of 100 µm, instead of continuously decaying, the density profile

remains consistent for several degrees beginning at approximately 25◦ before continuing to

decrease. With increased radial cross sections this phenomena continues, resulting in bimodal

distributions for the remaining profiles. The explanation for this behavior is partially seen in

the monomer number density contour of the same case in Fig. 5.7a. Since the divergence

angle is taken with respect to the z-axis, at higher angles for a given radius there is an

excess of ions that are displaced due to the field asymmetry. The ”bump” is manifested

as a result of the collective amount of tilted ions that are coplanar, where the plane is the
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curved surface that intersects the beam at a fixed radius. This phenomena is observed but

to a lesser extent in Fig. 5.9b. The diminishing effect can be attributed to a greater beam

spread as a result of the bifurcation, shown in Fig. 5.7b, resulting in a lower current density

amplitude that decays more slowly at higher divergence angles. Across both cases current

density amplitudes decrease with increasing radius as the same amount of current is being

swept over a larger surface area. Effective divergence is observed to decrease with increasing

radius as the evaporated species respond to the asymmetric radial and azimuthal components

of the field as it travels downstream.

Radial expansion of the plume as a result of a perturbed emitter also leads to direct

propellant flux to the extractor electrode, otherwise known as grid impingement. Impingement

is known to occur as a result of two mechanisms. The primary mechanism is through direct

overspray from the site of emission, where as the beam expands it comes into contact with

either the extractor or acceleration electrodes. The secondary mechanism is through cross-

flow expansion of the plume in response to Coulombic expansion and fragmentation of ionic

species. Within the three-dimensional perturbation space, the cases where impingement of

the extractor grid is observed at the final steady-state timestep are presented in Table 5.3.

In cases where impingement occurs (examples of which can be seen in Figs. 5.7b, 5.8a,

and 5.8b), the events can predominantly be attributed to direct overspray. While emitter

asymmetries due to the displacements do contribute to a larger radial expansion of the

plume, this additional expansion is a function of the geometric configuration rather than the

Table 5.3: Three-dimensional perturbation cases where propellant flux to the
extractor electrode was observed, resulting in grid impingement. Simulations
where impingement occurred during transient evolution of the plume but not at
the final steady-state timestep are not included.

Translational Displacement
Rotational Displacement 0 µm 10 µm 20 µm 30 µm 40 µm

0◦ ×
5◦ ×
10◦ × × × × ×
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underlying physics that govern the species dynamics. Radial plume expansion from Coulombic

repulsion and fragmentation is a transient process that scales with the axial distance from

the site of emission, and thus becomes more influential as the beam evolves downstream. As

a result, grid impingement from this secondary mechanism is more commonly observed on

acceleration electrodes, whose addition are omitted from this study due to the additional

computational cost.

From Table 5.3, extractor grid impingement is observed for all cases that included

the maximum rotational perturbation of ϕ = 10◦. Impingement at smaller rotations are

only observed in cases where the emitter is also translationally perturbed at the highest

displacement of x = 40 µm. These results suggest the existence of a perturbation subspace

that defines the bounds of which the emitter can still be displaced without impinging the

extractor grid. However, further analysis is required to quantify how perturbations within

this subspace may contribute to other life-limiting mechanisms, and to what extent these

bounds are influenced by changes to operational conditions. Despite these caveats, the

results of Table 5.3 can be utilized as an incipient consideration to inform manufacturing

tolerances during the production of electrospray thruster emitter arrays. Analysis of how the

perturbations considered influence spatial characteristics of the plume, regardless of whether

impingement is observed or not, is conducted in the subsequent sections.

5.2.4 Perturbation Space Exploration

Surrogate model fits—after solving for the coefficients in Eqn. (5.9)—and sampled

single-emitter model simulations for each plume characteristic across the perturbation space

are presented in Fig. 5.10. Across each characteristic, it is clear that the plume responds

distinctly to minor (0◦ ≤ ϕ ≤ 5◦) and major (5◦ < ϕ ≤ 10◦) rotations of the emitter,

regardless if any translations are applied. This is in alignment with the results discussed in

Subsection 5.2.3, where major rotations often contributed to significant, macroscopic changes

to the plume morphology that uniquely characterize them relative to plumes of emitters
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Figure 5.10: Sampled single-emitter model data and surrogate model fits for
(a) plume width, (b) plume sharpness, and (c) plume tilt of current density
for the three-dimensional perturbation study. Characterization parameters are
calculated at a radial cross section of 250 µm downstream from the location of
an unperturbed emitter tip.
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undergoing little to no perturbation.

In Fig. 5.10a, surrogate model fits and single emitter model samples are shown for the

plume width parameter. Minor increases of the emitter rotation have the effect of reducing

the width. This is demonstrated in Fig. 5.7a where, relative to an unperturbed emitter plume,

the field asymmetry experienced by ions at injection curtail radial expansion in the direction

orthogonal to the tilt. The comparative increase of radial expansion in the tilt direction is

not equal in magnitude, effectively compressing the beam and reducing the overall width.

This behavior does not continue with further rotational displacement. Contrarily, an overall

increase in the plume width is observed as an instability threshold is inevitably met and

the plume bifurcates into two beams acting orthogonal to one another. As can be seen in

Fig. 5.7b, this bifurcation drastically increases the radial influence of the beam and thus

increases the effective width relative to the stable state. In response to emitter translations,

the width is observed to increase with increased displacement. This behavior is expected,

as the magnitude of radial field component is greater the further the emitter is translated.

Emitted ionic species are then initialized at a greater potential energy upon injection that

subsequently converts to kinetic energy in the cross-flow direction. This increased radial

kinetic energy is then manifested as a wider plume with reduced exhaust velocity in the axial

direction.

In Fig. 5.10b, surrogate model fits and single emitter model samples are shown for the

plume sharpness. Sharpness is a parameter that arises from the super-Gaussian formulation

of Eqn. (4.32), and is what distinguishes it from a traditional Gaussian distribution via the

introduction of an exponential factor. It should be noted that its meaningfulness in this

context is unclear as a parameterization tool as it has been shown in Fig. 5.9 that radial cross

sections of perturbed plumes introduce elements of bimodality that may act to skew its value.

For example, a bimodal distribution with larger distances between peaks may artificially act

to increase its sharpness parameterization, as a super-Gaussian distribution with a ”flatter”

tip would result in an overall smaller numerical error when curve fitting than a ”sharper”
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tip that would better resolve the sharpness of the larger mode in the distribution. Despite

this, Fig. 5.10b still demonstrates general trends of how the sharpness parameter evolves in

response to certain perturbation types. For example, its response to emitter rotations is the

inverse to that observed for the plume width, in that minor rotations act to increase the

sharpness while major rotations act to decrease the sharpness. However, a trend is less clear

in response to emitter translations, where this can likely be attributed to the aforementioned

numerical issues.

In Fig. 5.10c, surrogate model fits and single emitter model samples are shown for the

plume tilt. As expected, increased rotational perturbations of the emitter contribute to a

more tilted beam relative to the centerline z-axis. The rate at which rotations affect tilt is

found to be larger for major displacements relative to minor ones, and discussed further in

the subsequent section on model sensitivities. A positive tilt correlation is also observed with

respect to emitter translations, where the rate of this behavior is again dependent on the

magnitude of displacement.

5.2.5 Translational and Rotational Displacement Sensitivity

The sensitivity of plume characteristics with respect to each perturbation type is found

by taking partial derivatives of the surrogate model in Eqn. (5.9), analogous to the procedure

demonstrated in Subsection 5.1.1. These equations take the form

∂ĝkj
∂x̂

= a1 + 2c3x̂+ a5ϕ̂, (5.10)

∂ĝkj
∂ϕ̂

= a2 + 2a4ϕ̂+ a5x̂, (5.11)

where ∂ĝkj /∂x̂ is the partial derivative of the model for beam distribution j and plume

characteristic k with respect to normalized emitter translation x̂ and ∂ĝkj /∂ϕ̂ is the partial

derivative of the model for beam distribution j and plume characteristic k with respect

to normalized emitter rotation ϕ̂. Due to the nearly identical responses across both beam
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Sensitivity of current density plume characteristics to each displace-
ment type for the three-dimensional study. These include the sensitivity of (a)
width to translations, (b) width to rotations, (c) sharpness to translations, (d)
sharpness to rotations, (e) tilt to translations, and (f) tilt to rotations.
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distributions shown in Table 5.2, only sensitivities of the current density are considered to

avoid redundancy.

Sensitivities of plume characteristics with respect to each perturbation type are plotted

as two-dimensional response contours and presented in Fig. 5.11. Plume width sensitivities

are shown in Figs. 5.11a and 5.11b for emitter translations and rotations, respectively. In

both cases, the rate at which the width responds to a given perturbation type increases

linearly with the magnitude of that same perturbation (i.e. sensitivity to rotations becomes

greater with further rotational displacement). In Fig. 5.11a, plume width is shown to be less

responsive to variations in emitter translations when additional rotational displacement is

introduced. This cross-perturbation influence is not observed in the width’s sensitivity to

emitter rotations, where variations in translation have seemingly little effect. These results

suggest that beam spread is overall more responsive to rotational perturbations, and that

minimizing manufacturing tolerances of this type would most efficiently mitigate variation in

plume divergence.

Sensitivity of plume sharpness with respect to each perturbation type is shown in Figs.

5.11c and 5.11d. Unlike the plume width, minimal cross-perturbation influence is observed

and sensitivity to a given perturbation is largely a function of that same perturbation. In

regards to the rotational sensitivity, unlike Fig. 5.11b, increasing the rotational displacement

acts to reduce its influence on the sharpness variation.

Sensitivity of plume tilt with respect to each perturbation type is shown in Figs. 5.11e

and 5.11f. Qualitatively, the tilt’s response to variations of each perturbation type is similar

to that observed for the beam width. Comparatively, the tilt’s rotational sensitivity has a

larger dependence to translational displacements. As a result, the tilt characteristic showcases

the greatest sensitivity across perturbation types, where varying one perturbation directly

influences how the tilt will respond to another perturbation. In addition, the magnitude of

the tilt’s sensitivity across perturbation types is approximately an order of magnitude larger

than those observed for plume width and sharpness.
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5.3 Conclusions

This chapter explored how plume characteristics in ionic electrospray thrusters are

influenced by operational and geometric perturbations, leveraging the coupled emission and

plume model developed in Chapter 4. By examining variations in key parameters such as

extractor voltage, tip-to-extractor distance, and emitter alignment, this chapter quantified

how these factors influence plume morphology, informing future design of multiplexed thruster

arrays.

To efficiently explore the vast design space and mitigate the computational expense of

high-fidelity simulations, a surrogate modeling approach was employed. Surrogate models

provided a computationally efficient means of approximating the behavior of the high-fidelity

single-emitter model, enabling the exploration of input-output relationships across a wide

range of design parameters that would otherwise be computationally infeasible.

The axisymmetric analysis revealed a strong dependence of the plume characteristics

considered—width, sharpness, and tilt—on both operational parameters and geometric

conditions. Characteristics were shown to be broadly more sensitive to perturbations in tip-

electrode distance relative to extractor potential. Results of the plume response demonstrated

that its morphology is not strongly dependent on inter-particular Coulombic repulsion, but

that ion trajectories are largely bound by electric field streamlines and species inertia, in

agreement with current literature.

Extending the analysis to three dimensions allowed for the investigation of non-

axisymmetric perturbations, including translational and rotational misalignments. Per-

turbations resulting in off-axis emission were shown to significantly alter plume morphology

relative to unperturbed emitters, such as exhibiting cross-sectional distributions that deviated

from the nominal super-Gaussian form and displayed elements of bimodality. This study

demonstrated that even minor geometric deviations can lead to substantial variations in

plume behavior, including phenomena such as beam bifurcation and increased risk of grid
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impingement. Sensitivity analysis highlighted that rotational misalignments have a more

pronounced effect on plume tilt and beam divergence compared to translational displacements,

suggesting that manufacturing tolerances for rotational alignment should be particularly

stringent.

Overall, the results of this chapter provided actionable insights for improving the

reliability and performance of ionic electrospray thrusters using a combination of both high

and lower fidelity models. These findings can inform manufacturing tolerances and operational

guidelines for single-emitter designs and potentially multiplexed arrays, helping to extend

the operational lifetime of these propulsion systems.



Chapter 6

Conclusions

This dissertation presented the formulation and implementation of an end-to-end single

emitter model of an electrospray system undergoing steady-state, pure ionic emission and

a parametric study demonstrating how such a model can be used in the mitigation of life-

limiting mechanisms for these propulsive devices. Given these developments, this concluding

chapter summarizes the research conducted, highlights the key contributions of the work, and

provides recommendations for future investigation.

6.1 Summary of Dissertation

Chapter 1 introduced the material and motivation underpinning the work of this

dissertation. The chapter began with a brief historical overview of electric propulsion, with

an emphasis on the background and evolution of electrostatic electrospray thrusters from

their incipience in the mid 20th century to their renaissance in the modern era, thanks in

part to advancements in MEMS and the miniaturization of spacecraft. The characteristics

of electrosprays thrusters were reviewed, including the various thruster technologies and

emitter architectures, as well as their life-limiting mechanisms precluding their widespread

implementation across missions that require a scalable propulsive device and/or fine attitude

control. An emphasis on ILIS thrusters was specified due to their efficiency enabled by purely

ionic emission, ease of implementation from their passively-fed operation, and straightforward

fabrication from MEMS manufacturing. The unique role that modeling plays in advancing ILIS



142

technology was also reviewed in this chapter, in addition to a literature review summarizing

the research efforts made thus far in simulating the governing physics of ILIS emission.

Chapter 2 laid the theoretical groundwork for understanding the physics underlying all

emission from electrospray thrusters, especially those where ionic liquids—room temperature

molten salts—are used as the working liquid. This began with the emergence of Taylor cones,

canonical structures that form when the meniscus of a conductive fluid is electrically stressed

beyond a critical threshold. How such a structure emerges from a spheroidal droplet was

mathematically derived, demonstrating that the phenomenon is largely due to the interfacial

balance between surface tension and electrostatic stresses from an applied potential gradient.

This analysis led to Taylor’s universal cone angle of approximately 49.29◦, a result that

fascinatingly does not depend on properties of the working liquid or the applied voltage.

From a Taylor cone, one of several emission modes are possible depending on the operational

configuration. In the steady cone-jet regime, a continuous liquid jet emanates from the

cone apex and subsequently breaks into charged droplets. Scaling laws were derived to link

characteristics of the jet—such as emission current and jet diameter–to key parameters such

as electric conductivity, surface tension, and flow rate. As the nondimensional flow rate is

reduced, the emitter transitions into a mixed mode where both droplets and ions contribute to

emission, before finally reaching a purely ionic regime. This mode is favored by ionic liquids

due to their high conductivity and large electrochemical windows that enable jet suppression

and emission solely from ion evaporation. The physics of ion evaporation were derived using

a modified Arrhenius model and the method of image charges, together yielding characteristic

scaling laws for quantities of interest such as the critical field strength for emission, emission

radius, and total current.

Chapter 3 introduced the electrohydrodynamic (EHD) meniscus model designed to

capture the multiscale two-phase physics of steady-state ionic emission from an ionic liquid.

The model coupled electrostatic phenomena using Laplace’s equation in both the liquid and

vacuum domains alongside low Reynolds number fluid dynamics using the Stokes approx-
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imation of the incompressible Navier-Stokes equations. Within the liquid, this framework

incorporated the Taylor-Melcher leaky dielectric model to handle the electrokinetics alongside

a phenomenological ion evaporation law, allowing the model to solve for the current density

distribution across the meniscus and thus the total emitted current. The chapter also pre-

sented the numerical implementation of the model and described a nonlinear global algorithm

that uses finite element methods to solve for the electric potential and liquid velocity fields

that enforced select boundary conditions at the interface for a given morphology. From this,

an interfacial residual was calculated and used to perturb the meniscus shape, where the

numerical procedure was repeated until convergence and a steady-state configuration was

found. Special consideration was given to the numerical challenges faced during this imple-

mentation, namely within the mesh deformation and ill-conditioning of the Stokes system.

Despite these challenges simulation results yielded select agreements with the literature, such

as a quasi-Taylor cone morphology with a closed apex and electric field strengths that agree

with known scaling laws.

In Chapter 4, an end-to-end single-emitter electrospray model was developed that

coupled upstream ionic emission from the meniscus apex with a downstream kinetic plume

solver that accounted for far-field ion dynamics. Due to the numerical challenges faced with

the high-fidelity EHD model, an alternative lower-fidelity semi-empirical emission model was

introduced to initialize the plume model. This secondary model used analytical scaling laws

to calculate a zero-order approximation of the total ion current as a function of the interfacial

electric field distribution, where the result was then fit onto experimental data to obtain a

higher order of accuracy. Once determined, the emitted current was converted into number

densities of monomer and dimer species that are weakly coupled into the plume model for

initialization. The plume itself was simulated using a hybrid Direct Simulation Monte Carlo

(DSMC) and Particle-in-Cell (PIC) method that respectively account for species collisions

and their dynamics in response to an applied potential gradient. Modifications were made

to the original in-house solver to account for the single-polarity nature of the ionic plume
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as well as incorporate a fragmentation submodel that captured the dissociation of dimer

species into monomers and neutrals. Simulation results included plume characteristics such as

beam divergence and thrust and were partially validated against experimental data from the

AFET-2 thruster developed at AFRL. The analysis demonstrated agreement near the onset

of significant ionic emission, while discrepancies at higher voltages highlighted the influence

of fragmentation and neutral species on thruster performance.

Chapter 5 showcased an example of how the end-to-end single-emitter emission and

plume models could be used to advance the current technology readiness level of electrospray

thrusters. Namely, the chapter explored how perturbations in both the operational and

geometric configuration influenced downstream plume characteristics, which could directly

contribute to select life-limiting mechanisms such as overspraying resulting in electrode

impingement. These perturbations were explored using lower-fidelity surrogate models that

enabled efficient exploration of the design space without the prohibitive computational cost

of conducting full sweeps of high-fidelity simulations. Surrogate models also map discrete

simulation samples onto a continuous function space with analytical gradients, reducing the

barrier to conduct sensitivity analysis studies as well. An axisymmetric, two-dimensional study

was conducted where extractor voltage and tip-to-extractor distances were varied and their

influence on spatial characteristics of the simulated plume were observed. The input parameter

space was discretized using a full-factorial sampling and the resulting dataset was used to

train a two-dimensional second-order polynomial surrogate model. A sensitivity analysis was

conducted by taking partial derivatives of the surrogate model, revealing that the plume

structure was more strongly influenced by variations in the tip-to-electrode distance relative to

the extractor voltage within the parameter space explored. An additional three-dimensional

study was conducted that investigated the influence of non-axisymmetric perturbations,

specifically translational and rotational misalignments of the emitter relative to the extractor

electrode that mimicked deviations in manufacturing processes. These perturbations were

shown to significantly influence plume behavior, such as introducing off-axis emission, beam
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bifurcation, and even grid impingement under severe misalignments. Sensitivity analyses for

this case indicated that rotational misalignments had a particularly pronounced effect on

plume characteristics such as tilt and beam divergence relative to translational misalignments,

suggesting that rotational alignment tolerances should be prioritized in electrospray thruster

designs.

6.2 Novel Contributions

The objective of the research described in this dissertation was to develop mathematical

models and numerical toolsets that resolve the physics governing ionic emission within single-

emitter electrospray thruster configurations, with the overarching goal of enhancing simulation

capabilities for mitigating life-limiting mechanisms. The novel research contributions of this

work toward achieving that objective included:

• Formulation of a steady-state electrohydrodynamic (EHD) meniscus model

Although other EHD meniscus models have been presented in the literature, this

work introduced a unique formulation that is distinct in the handling of several

phenomena. These include an Ohmic conduction model that is independent of

temperature and an emission model that is independent of space charge effects, both

due to their negligible influences. Depending on the operational configuration, the

resulting model was capable of retaining its fidelity while requiring comparatively

fewer computational resources to execute.

• Development and implementation of a finite element solver for the EHD

meniscus model

Simulation of the EHD meniscus model was accomplished through the development of

a ∼10,000 line C++ finite element code that discretized the weak formulation of the

Laplace and Stokes boundary value problems, employed numerical methods to solve

the linear system, and implemented a global algorithm that perturbed the meniscus



146

morphology as a function of the interfacial residual. Despite the numerical challenges

faced, the code laid the foundational groundwork for a comprehensive solver and was

developed in a modular fashion, enabling straightforward integration and replacement

of numerical methods. This framework not only facilitated detailed investigation of

EHD phenomena at the meniscus but also provided a scalable platform for future

enhancements to improve simulation accuracy and computational efficiency.

• Introduction of a novel semi-empirical single-emitter ionic emission model

By considering characteristic scaling laws and experimental data measured for the

AFET-2 thruster, this work introduced a novel one-dimensional semi-empirical model

that approximated the emission current across the meniscus as a function of the

normal electric field strength. It was shown that the model was valid in select

operational conditions where the meniscus morphology can be approximated as an

idealized Taylor cone. Input field strength distributions were obtained using the

multidomain Laplace equation module within the EHD meniscus solver.

• Expansion of in-house direct simulation Monte Carlo (DSMC)/particle-in-cell

(PIC) solver capability for single-polarity electrospray plumes

The in-house DSMC/PIC solver, originally designed to simulate plasma plumes of

traditional EP systems, was reformulated with a direct Poisson solver instead of

one derived from electron fluid models. This was required as the charged nature of

electrospray plumes does not originate from an active ionization process, resulting

in negligible electron number densities relative to ion and neutral number densities.

This work also introduced a field-free fragmentation model within the plume solver

that simulates the dissociation of solvated ion clusters, which is crucial for capturing

the polydispersity and performance-limiting dynamics of evaporated species.

• Development of the coupled emission-plume framework and its comparison

against experimental measurements from the AFET-2 thruster
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Given the emission current, this work presented injection boundary conditions that

weakly coupled the continuum EHD and kinetic plume models to formulate a cohesive

end-to-end framework to simulate a single emitter. As a result, the influence of

upstream inlet conditions, such as the emitter geometry, on downstream plume

characteristics can be directly studied. Although AFET-2 data were used to calibrate

the semi-empirical emission model, partial validation of the end-to-end framework

was still accomplished using thrust measurements, where agreement was found across

a range of extraction voltages.

• Conduction of sensitivity analyses using surrogate models to quantify the plume

response to perturbations in geometric and operational conditions

Surrogate models were shown to be a computationally efficient means of exploring the

configuration design space of coupled emission-plume simulations in two and three

dimensions. Gradients of these models enabled this work to quantify the sensitivity

of spatial plume characteristics to perturbations in select geometric and operational

configurations, offering insights and a framework for future design optimization

studies.

6.3 Recommendations for Future Work

The work described in this dissertation focused on building the foundational tools

required for high-fidelity end-to-end simulation of electrospray thrusters. Despite these

advances, many challenges remain to be addressed before the framework can be considered a

fully stable and robust solver.

Future researchers interested in simulation of EHD menisci and single-polarity ionic

plumes should consider pursuing alternative conceptual formulations and methodologies that

would be both more computationally amenable and more straightforward to implement thanks

in part to the ease-of-use and capability of modern numerical libraries. For example, the EHD
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model of Chapter 3 could be reformulated as a partial differential equation (PDE)-constrained

optimization problem [76], where the steady-state meniscus morphology is found by seeking

the minima or stationary points of certain functionals derived from the governing interfacial

physics. In the case of an EHD meniscus undergoing field evaporation, this functional would

account for the electrostatic energy, surface energy, and viscous dissipation within the ionic

liquid. The combined functional would be constrained by the interfacial boundary conditions

such as the phenomenological ion evaporation law and the PDEs describing both the liquid

fluid dynamics and the electric field potential across the liquid and vacuum domains. Once

the minimization problem is defined, the objective functional and corresponding conditions

are discretized such that the optimization variable becomes finitely dimensional. In this form,

the minimization problem would then be subject to one of several possible gradient-based

optimization methods that would ultimately solve for the steady-state morphology. In terms

of solver and software development, several tools and libraries are readily available that

provide high-level functionality of the implementation and discretization of optimization

algorithms. Assuming a finite-element discretization, the FEniCS computing platform [7]

is a popular open-source library for solving PDEs that enables the quick translation of a

variational formulation into an efficient FEM solver. Another resource includes the Toolkit for

Advanced Optimization (TAO), a package of optimization algorithms developed at Argonne

National Laboratory and is distributed with the Portable Extensible Toolkit for Scientific

Computing (PETSc) [6]. TAO was designed with scalability in mind on high-performance

architectures, allowing future researchers to more focus on the higher-level physics instead of

the lower-level implementation of numerical algorithms.

Several recommendations for areas of future research are also provided to improve

the fidelity and computational efficiency of the models and numerical methods that were

implemented in this work:
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• Implementation of alternative numerical routines within the EHD meniscus

code

Several numerical modifications and additions are recommended for the EHD meniscus

solver to address the challenges discussed in Chapter 3. Firstly, an alternative

numerical routine is suggested for solving the Stokes equations using Taylor-Hood

elements as implemented. It is suggested that the DUNE numerical solvers be

substituted with those made available by PETSc [6], an alternative library of parallel

and scalable routines for the solutions of partial differential equations. Within

PETSc, the Stokes problem can be efficiently solved using a block preconditioner

via their MatNest and VecNest data structures, resulting in a scheme that would

be both better conditioned and parallelized for increased computational efficiency.

Secondly, alternative routines are recommended for the internal mesh deformation

between interfacial perturbations. It is recommended that future research consider

the implementation of arbitrary Langrangian-Eulerian (ALE) methods that would

better evolve the mesh as it would be coupled within the problem weak formulation.

However, ALE methods may not be sufficient in cases where significant interfacial

deformation is required due to a large displacement between initial and final meniscus

morphologies. For these scenarios, it is recommended that future work consider

applying automatic remeshing routines or mesh-free implementations entirely.

• Strong coupling between emission and plume models

Currently, a weak coupling is applied between emission and plume domains that limits

communication among solvers to a single downstream direction. This is sufficient

in the conditions explored where space-charge effects around the emission regime

are considered negligible and thus would have a minimal effect on the meniscus

morphology and emission characteristics. However, in cases where significant ion

evaporation is expected, this assumption may no longer be valid. For this reason,
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it is recommended that future work consider implementation of a strong boundary

condition where the Poisson solvers within the EHD code and kinetic plume code

communicate with one another to check for discrepancies in the electric field distri-

bution across the meniscus. Significant emission could contribute to a space charge

distribution that may act to screen the field strength at the meniscus apex, breaking

the interfacial stress balance and requiring the EHD code to seek a new steady-state

configuration that would presumably reduce the total emitted current and in turn

provide different injection number densities into the plume code.

• Field-induced fragmentation model for solvated ions

The field-free fragmentation model implemented within the plume code accounts

for the spontaneous dissociation of dimers independent of an applied electric field

that has been experimentally observed to follow a constant-rate equation. Such a

model only partially captures the total fragmentation occurring within the plume as

it does not account for how the activated process is accelerated in the presence of

an applied potential gradient. Future work should consider increasing the fidelity of

the fragmentation model by adding an additional subroutine (which would likely be

empirically based or derived from molecular dynamics simulations) that considers

how the electric field influences the fragmentation rate of dimer and trimer species.

This is critical as considering the field would only act to increase the fragmentation

rate and the neutral number density within the plume, likely increasing the beam

divergence and thus the likelihood of grid impingement occurring.

• Expansion of design space and computational domain

Future studies should consider expanding the geometric and operational configurations

explored in this dissertation to better understand the range of conditions that result

in steady emission and minimize electrode impingement. For example, due to the

increased computational cost and dimensionality of the input parameter space, the
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simulations conducted did not explore the influence of an additional downstream

acceleration electrode on spatial plume characteristics. Given the prevalence of these

grids in passively-fed porous electrospray thruster designs that act to improve the

viability of these propulsive systems, it would be very beneficial to include their

relative influence in future end-to-end single-emitter simulations.

• Single-emitter validation data and improved emission diagnostics

Simulations were validated against emission and thrust measurements of the AFET-

2, a multiplexed electrospray thruster where hundreds of emitters are operating

in parallel. Single emitter data were calculated by assuming a linear relationship

with multiplexed data. However, measurements have demonstrated that emission

properties are not spatially uniform across arrays [55], demonstrating that inter-

emitter coupling effects are present. Thus, to properly validate the end-to-end model,

future work should be validated against single-emitter measurements, which were not

available at the time the EHD meniscus model was developed. In addition, future

computational research would benefit from improved current measuring capability as

field emission is a nano-scale phenomenon and present-day diagnostics are incapable

of resolving such small scales, partially due to the contribution of secondary emission

from external factors such as facility effects.

• Simulation of multiple emitters operating in parallel

As mentioned in the previous recommendation, emission characteristics of electrospray

thruster arrays operating in parallel display spatial nonuniformities. It has been

postulated that this is due to varying hydraulic transport experienced by each emitter

due to the passively-fed porous configuration and the onset of multiple emission

sites emerging from the single emitter [55]. The EHD meniscus model described in

this dissertation could be utilized as a basis to explore such phenomena in future

work. For example, an upstream model could be appended that simulates the flow of
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propellant through the porous substrate and initializes the inlet conditions of the

EHD meniscus model. Parallel simulations of the EHD model with perturbations

in the inlet model could quantity the effects that pore size variability may play on

emission characteristics. Additionally, future work could consider configuring the

EHD meniscus model to explore for potential operating conditions that result in

steady-state morphologies where more than one emission site may emerge.
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Appendix A

Weak Formulation of the Multidomain Laplace Problem

Laplace’s equation is used to model the electric potential within the two-dimensional

liquid and vacuum domains, Ωliq and Ωvac. The Laplace problem within each domain is

coupled by Dirichlet–Neumann conditions at their interface Γint, with Dirichlet conditions

enforced at the remaining boundaries. The electric potential φ : Ωvac ∪ Ωliq 7→ R solves the

boundary value problem

∇2φl = 0 in Ωliq,

∇2φv = 0 in Ωvac,

J∇φ · n̂K = f(φ) on Γint,

φl = φv on Γint,

φl = 0 on Γemi ∪ Γinl,

φv = V0 on Γext,

φv = f(V0) on Γsub,

The solution is defined on a Sobolev space H1(Ω), the space of all scalar square–

integrable L2 functions on Ω with weak derivatives in L2(Ω), where Ω = Ωliq ∪Ωvac. A space

is similarly defined for the set of test functions as well,

H1
g(Ω) := {θ ∈ H1(Ω,R) : tr(θ) = g},

L2,0(Ω) := {θ ∈ L2(Ωliq) : θ|Γ = 0},
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where

g :=



φv on Γint,

0 on Γemi ∪ Γinl,

V0 on Γext,

f(V0) on Γsub,

.

Laplace’s equation in the boundary value problem is multiplied by a test function θ from

its corresponding space and integrated over the boundary Ω. We can present the governing

weak formulation using the bilinear form and linear forms

a(φ, θ) :=

∫
Ω

∇φ · ∇θ dΩ

l(θ) :=

∫
Γ

jθ dΓ,

where j is the Neumann condition. Representing the weak formulation in this manner does

not allow for implementation of the Neumann condition jump across the interfacial boundary.

Instead of a traditional Galerkin discretization, a Discontinuous Galerkin discretization is

implemented at the interfacial boundary and the problem is reformulated to minimize a

discrete residual of the form

Find φ ∈ H1
g(Ω) : rSIPG(φ, θ) = 0 ∀θ ∈ L2,0(Ω),

where

rSIPG (φ, θ) =

∫
Ωliq

∇φ · ∇θ dΩliq +

∫
Ωvac

∇φ · ∇θ dΩvac

−
∫
Γint

{〈∇φ, n̂〉}JθK dΓint −
∫
Γint

{〈∇θ, n̂〉}JφK dΓint

+ κ
∑

Γ∈Γint

1

hΓ

∫
Γ

JφKJθK dΓint

−
∫
Γint

J〈∇φ, n̂〉KJθK dΓint,

is minimized. 〈·, ·〉 denotes the inner product, κ is a penalty term, and hΓ is the characteristic

length scale of an arbitrary intersection Γ. The first two terms on the right hand side of
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represent the volumetric residual within each subdomain, while the following two terms couple

the subdomains by penalizing the interfacial jump in potential and enforcing continuity. The

final term corresponds to a interfacial jump in the potential gradient.



Appendix B

Weak Formulation of the Stokes Problem

The Stokes equations are used to model a viscous, incompressible fluid in the two-

dimension domain Ωvac. The two unknowns in this problem are the fluid velocity field

u : Ωliq 7→ R2 and the fluid pressure p : Ωliq 7→ R, where together they solve the boundary

value problem

µ∇2u −∇p = 0 in Ωliq,

∇ · u = 0 in Ωliq,

t̂ · ∇u · n̂ = ut̂
int on Γint,

u · n̂ = un̂
int on Γint,

u = uinl on Γinl,

u = 0 on Γemi.

As the boundary value problem only solves the pressure p up to a constant function, it is

defined such that
∫
Ωliq

p dΩliq = 0. We define the spaces

H1
g(Ωliq) := {v ∈ H1(Ωliq,R2) : tr(v) = g},

L2,0(Ωliq) := {q ∈ L2(Ωliq) :

∫
Ωliq

q dΩliq = 0},
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where

g :=


un̂
int on Γint

uinl on Γinl

0 on Γemi

.

If g is sufficiently smooth, the variational problem has a unique solution. The Stokes equations

are known to be a saddle point problem, where Taylor-Hood elements are traditionally used

to find a stable finite element approximation solution. Taylor-Hood elements combine a

quadratic–order interpolation of velocity with a linear–order interpolation of pressure. We

also introduce the bilinear forms

a(u, v) :=
∫
Ωliq

µ∇u : ∇v dΩliq,

b(v, p) :=
∫
Ωliq

(∇ · v)p dΩliq,

b(u, q) :=
∫
Ωliq

(∇ · u)q dΩliq,

where the weak formulation of the Stokes problem is

Find (u, p) ∈ H1
g(Ωliq)× L2,0(Ωliq) such that

a(u, v) + b(v, p) = α

h

∫
Γint

(u · n̂ − un̂
int)(v · n̂) dΓint +

∫
Γint

ut̂
int(v · t̂) dΓint ∀v ∈ H1

0(Ωliq),

b(u, q) = 0 ∀q ∈ L2,0(Ωliq).

The first term on the right hand side of the equation corresponding to the velocity test

function is a weak enforcement of the Dirichlet condition normal to the interface, while the

second term corresponds to the Neumann condition enforced tangential to the interface. The

Dirichlet conditions at the inlet Γinl and emitter boundary Γemi are enforced strongly and

thus are not represented in the weak formulation.
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