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There are places I remember
All my life, though some have changed

Some forever not for better
Some have gone and some remain
All these places have their moments

With lovers and friends, I still can recall
Some are dead and some are living

In my life, I've loved them all

Lennon�McCartney, 1965

Swing and a ground ball, stabbed by Foulke.
He has it. He underhands to �rst,

and the Boston Red Sox are the world champions!
For the �rst time in 86 years,

the Red Sox have won baseball's world championship!
Can YOU believe it?

Castiglione, 2004
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CHAPTER I

Introduction

The objective of this dissertation is to improve the tools available to simulate

hypersonic, nonequilibrium �ows by increasing the physical accuracy and computa-

tional capabilities of a multi-scale, numerical method. Accurate prediction of these

hypersonic �ows must include models that describe important physical phenomena,

some of which are microscopic in nature. Ideally, all processes are entirely described

with a microscopic description. However, due to the large discrepancies in charac-

teristic time- and length-scales, this would make even the simplest �ow prediction

unnecessarily computationally intensive. To increase the computational e�ciency,

it is required to describe each �ow phenomenon using the simplest possible model,

which typically occurs at the largest possible time- and length-scales, while still

maintaining the required physical accuracy. However, for many �ows, the range of

scales that occur about the vehicle is large enough that some regions require a micro-

scopic description of the �ow, while a macroscopic description is su�ciently accurate

enough for the rest of the �ow �eld.

This is the case over a signi�cant portion of a hypersonic vehicle's �ight trajectory,

where most of the �ow can be considered continuum and a macroscopic description

is valid, but some localized regions require a microscopic description. In addition,

1



2

description of the important physical processes such as rotational and vibrational

excitation must be modeled across the entire �ow �eld regardless of the �ow descrip-

tion. Furthermore, the numerical method must run e�ciently on parallel computers

to solve very large problems with a high level of numerical accuracy over arbitrary

three-dimensional bodies. This dissertation expands a multi-scale method to extend

its capabilities by increasing the physical accuracy and computational capabilities to

simulate the aerothermodynamic nature of �ow over hypersonic vehicles.

1.1 Motivation

Development of new hypersonic �ight vehicles is a current topic of interest for

scienti�c, military, and commercial applications. As the aged Space Shuttle program

nears retirement, signi�cant research and development towards new spacecraft are

being performed to ensure reliable and cost-e�ective means to ferry cargo and humans

to space and back. These new vehicles will leverage technological advancements to

increase safety and reliability standards over the previous generation of vehicles.

The design of hypersonic vehicles requires accurate prediction of near �eld and

surface properties, such as heat �ux, shear stress, and pressure, along the entire vehi-

cle surface and throughout all possible �ight trajectories. These quantities determine

both the aerodynamic performance of each vehicle which is necessary for guidance,

navigation, and control, and the thermodynamic performance which determines the

type and sizing of the thermal protection system (TPS) that is required to guarantee

that the vehicle survives the intense heat transfer from the surrounding �ow.

Many of these new mission pro�les require accurate and precise land recovery

of the vehicle. For example, precise lunar reentry landings during the entire lunar

month require downrange capabilities of the vehicle to be at least 10, 000 km [1].
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Direct entry trajectories can not achieve such large downrange capabilities, but by

using a lifting body with a skip trajectory, the downrange requirement is possible.

An example of a direct entry and skip trajectory is shown in Fig. 1.1. In contrast

to the direct entry trajectory, where the vehicle falls directly to the planet surface,

the skip trajectory includes one or more �skips� where the vehicle increases altitude

after the initial entry. This has the e�ect of dissipating more of the energy of the

vehicle in the low density, upper atmosphere which decreases the peak heat �ux to

the vehicle. It also increases the total time spent in the atmosphere, the total heat

load to the vehicle, and its downrange capabilities. However, with the use of a skip

trajectory, the amount of time spent at high altitude, where the e�ects of rarefaction

and thermochemical nonequilibrium are important, has increased signi�cantly. For

example, Fig. 1.2 shows the variation of Knudsen number, which is one measure of the

degree of nonequilibrium in the �ow that may require a microscopic description and

will be described in the proceeding subsection, throughout the atmosphere for Apollo

and Orion capsules. Typically, it is accepted that the macroscopic gas dynamics

formulation, using the Navier-Stokes equations, is only valid for Knudsen numbers

less than 10−2, while portions of the �ow may require a microscopic description for

Knudsen numbers as low as 10−4 [5, 2, 6]. As seen in Fig. 1.1, the change from

direct entry to skip trajectory has increased the time spent in the nonequilibrium

regime (when the altitude exceeds ∼ 70 km) from less than 10% to over 50% of the

total trajectory time. This has the e�ect of increasing the contribution to the total

heat load from the nonequilibrium �ow regime and requires increased accuracy in

the prediction tools for hypersonic �ow at these high altitudes to reduce vehicle cost

and increase vehicle reliability.

The AS-202 test �ight from the Apollo program is one of the few �ight tests that
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Figure 1.1: Comparison of typical skip and direct entry trajectories for lunar return
[1]

Figure 1.2: Variation of Knudsen number throughout the Earth's atmosphere for
Orion and Apollo capsules
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used a skip trajectory. Recently, Wright et al. [2] performed detailed simulations

of the entire AS-202 �ight trajectory using a macroscopic description of the �ow.

In general, they found that agreement between available experimental heat transfer

measurements and current numerical predictions was good over most of the trajec-

tory. However, at the top of the skip portion of the trajectory, the simulation results

over-predicted the measured data across most of the lee side of the aft-body. For

example, Fig. 1.3 compares heat transfer prediction and �ight measurements from

a calorimeter located on the top of the lee side. During the skip portion, the CFD

simulation method over-predicts the measured data by over a factor of two. Based

on the reconstructed data shown in Fig. 1.4 and the corresponding Knudsen number

at this altitude shown in Fig. 1.2, it is clear that the vehicle has transitioned from

being fully continuum to partially rare�ed as it passes from the trough to the crest

of the skip portion of the trajectory. Because of this, Wright et al. concluded that

the over-prediction of heat transfer may be due to the inability to capture the im-

portant microscopic e�ects in the macroscopic methods used in that work. However,

for this particular �ow, application of a microscopic method to the entire �ow would

be computationally expensive. Instead, a multi-scale approach that only uses the

expensive, microscopic description in required regions, while using the macroscopic

description throughout the rest of the �ow �eld, is more suitable to examine any

rare�ed �ow e�ects.

Simulation of other multi-scale, hypersonic �ows are of particular importance for

developing technologies that will enable potential high-mass, Mars missions. Com-

pared to the Earth's atmosphere, Mars' relatively thin atmosphere causes entry ve-

hicles to decelerate at much lower altitudes. Depending on the mass, size, and shape

of a vehicle, it may never reach a subsonic terminal velocity. This necessitates ad-



6

Figure 1.3: Heat transfer predictions made by macroscopic methods (CFD) on the
after-body of the AS-202 �ight capsule with experimental �ight data [2]

Figure 1.4: Reconstruction of the AS-202 �ight trajectory [2]
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ditional technology to slow the vehicle so that it can reach subsonic speeds with

su�cient time to prepare for landing. Many of these new technologies require suc-

cessful prediction of multi-scale interaction �ows to ensure reliability. In order to

increase the frontal area of the vehicle, an in�atable aerodynamic decelerator, often

called a ballute, may be used to slow the vehicle down at higher altitudes [7]. The

dynamic �uid structure interaction at deployment will most certainly occur in the

rare�ed regime [8] and will involve a detailed �uid structure interaction requiring ac-

curate prediction of surface properties throughout the entire trajectory. In addition,

the �ow �eld around the deployed ballute in the upper atmosphere will include both

large regions of continuum �ow, due to the very large body, and small nonequilib-

rium interactions around tethers, connections, and the low density wake which may

require a microscopic analysis. Another possible option that will enable high-mass,

Mars missions is supersonic retro-propulsion [9], where a jet is expelled out the front

of the aeroshell displacing the shock and increasing the total axial force on the vehi-

cle. At high altitudes, these �ows may include a very dense, continuum region within

the core of the jet, while much of the �ow may be rare�ed. Multi-scale methods that

can accurately simulate these �ow �elds will be a vital tool in development of these

new technologies that enable future scienti�c and exploration missions [7].

1.2 Hypersonic Nonequilibrium Flows

Due to the high free stream enthalpies and abrupt changes in �ow quantities,

hypersonic �ows demonstrate many forms of nonequilibrium processes. The selection

of a model description for each these nonequilibrium e�ects typically depends on two

quantities: the characteristic energy, εCHAR, and the characteristic time scale, τCHAR.

The characteristic energy of a �ow process determines whether the �ow phe-
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nomenon is su�ciently activated in the �ow. The Arrhenius number, Ar, shown in

Eq. 1.1 where εCHAR and θCHAR are the characteristic energy and temperature of the

process, respectively, k is the Boltzmann constant, and T is the temperature, can be

used to compare the required activation energy to a measure of the available energy

content in the �ow.

Ar =
εCHAR

kT
=
θCHAR

T
(1.1)

As Ar → 0, the energy of each particle collision is much higher than the activation

energy of the physical process, and the process will occur. In contrast, as Ar → ∞

the energy in each particle collision is much smaller than the activation energy, the

process is not activated and can be neglected with little loss of physical accuracy.

The characteristic time scale of a �ow process determines the time scale needed

for the process to return to thermodynamic equilibrium after an abrupt change.

The abrupt change may be due to a strong shock, strong expansion, or large heat or

momentum transfer. The characteristic time can be compared to a characteristic �uid

time-scale, τFLUID, to construct the Dahmköhler number, Da, as shown in Eq. 1.2.

Da =
τFLUID

τCHAR

(1.2)

As Da → ∞, the physical process can react very quickly compared to the �ow

transient time, and the process can be considered in equilibrium. If the Dahmköhler

number for all physical processes approach in�nity, the �ow can be considered in local

thermodynamic equilibrium everywhere around the hypersonic vehicle. In contrast,

asDa→ 0, the physical process time scale is much larger than the �ow transient time

and the process can be considered frozen and remains the same everywhere in the

�ow �eld of interest. Often, when the Dahmköhler number is small, the Arrhenius

number is also small. For �ows with Da on the order of unity, detailed description of
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the nonequilibrium process may be required to achieve su�cient physical accuracy.

1.2.1 Translational Nonequilibrium

Translational (or collisional) nonequilibrium occurs in any region of the �ow where

a gradient exists. For this process, the Arrhenius number is always on the order of

unity, such that translational processes are always activated in a gas. The molecular

collisions in the gas ultimately change the macroscopic quantities such as velocity,

temperature, or chemical composition and push the �ow toward local equilibrium. If

many collisions occur over a change of macroscopic �ow variables, then the degree of

collisional nonequilibrium is quite small. However, if very few collisions occur over

this change, the translational nonequilibrium can be signi�cant such that the �ow

is rare�ed and must be modeled in a microscopic manner. The characteristic time

scale for this process is the mean free time, τCOL, which is the average time between

each collision that a particle experiences. Instead of directly using the Dahmköhler

number, the Knudsen number, shown in Eq. 1.3, is typically used to determine the

degree of collisional nonequilibrium. This parameter is inversely proportional to the

product of the Dahmköhler number and the Mach number, M , which is the ratio of

the bulk velocity to the speed of sound. Here, λ is the average distance a gas particle

travels between collisions, or mean free path, and L is a characteristic length scale

of a �ow feature or a vehicle.

Kn =
λ

L
∼ 1

DaM
(1.3)

AsKn→ 0, many molecular collisions occur around the vehicle that can maintain

local translational equilibrium such that the velocity and energy probability density

functions remain very near normal, or Gaussian, throughout the perturbation (due

to the vehicle) of the �ow. For these �ows, a description using mean values and
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lower order moments of the velocity and energy distribution functions is acceptable

for su�cient physical accuracy. In contrast, as Kn → ∞, the number of collisions

that occur around the vehicle is very small, and the gas particles that are perturbed

by the presence of the vehicle experience very few collisions such that local equilib-

rium is not maintained. Now, the distribution functions of particle velocities and

energies are very far from normal and description of these �ows with only low or-

der moments is insu�cient. Instead, a microscopic approach must be employed to

describe a rare�ed �ow, where the collisional nonequilibrium e�ects are important.

The direct simulation Monte Carlo (DSMC) method, that was �rst developed by

Bird [10] and is described in Sec. 2.3.2, is the most popular numerical method for

simulating hypersonic, rare�ed �ows.

1.2.2 Internal Energy and Chemical Nonequilibrium

When a vehicle is traveling at a hypersonic speed through the atmosphere, a

strong shock is formed over the front of the vehicle and converts much of the free

stream kinetic energy to thermal energy. Figure 1.5 shows translational temperature

contours in the fore-body region for �ow over a typical re-entry capsule. The temper-

ature in the shock layer, which is de�ned as the �ow region between the strong shock

and the vehicle surface, has increased to over 5 × 104 K. In addition to excitation

of rotational energy (θCHAR−ROT ∼ 101 K and whose Arrhenius number is much less

than unity for nearly all gas �ows), this high thermal energy content can cause the

Arrhenius numbers for vibration excitation (θCHAR−VIB ∼ 103 K), electronic excitation

(θCHAR−EL ∼ 104 K), and chemical reactions (θCHAR−CHEM ∼ 105 K) to be on the order

of or less than unity.

Since each of these �ow processes progress through molecular collisions, the char-
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Figure 1.5: Hypersonic �ow over a blunt body

acteristic time for each process can be formulated as a multiple of the mean collision

time and are typically ordered as shown in Eq. 1.4.

τCOL ∼ τTRA < τROT << τVIB ∼ τEL ∼ τCHEM (1.4)

Therefore in a rare�ed �ow, that contains translational nonequilibrium, the Dahm-

köhler number of any activated process may be on the order of or less than unity and

these nonequilibrium e�ects should be considered. For example, the internal energies

are in equilibrium with the translational energy mode in the free stream throughout

an entry trajectory. After particles pass through the bow shock, the random trans-

lational energy of the particle reaches near equilibrium, such that the translational

energy distribution function is near normal, after �ve to ten collisions. However,

the rotational energy does not reach equilibrium with the translational energy mode

until after an additional ten collisions, while the vibrational energy mode requires
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about one thousand collisions. In higher energy �ows, electronic energy excitation

and chemical reaction processes will relax at about the same time as the vibrational

energy mode. All of these will be on the order of or larger than the �ow transit

time in rare�ed �ows, so accurate prediction of the evolution of these nonequilibrium

processes is vital to achieve su�cient physical accuracy in the simulation methods.

1.3 Scope of Dissertation

The purpose of this dissertation is to improve the predictive capabilities of simula-

tion tools applied to hypersonic aerothermodynamic �ows that include small regions

of �ow that are in collisional nonequilibrium. The work performed by Schwartzentru-

ber [11] began this e�ort by developing a serial implementation of a hybrid particle-

continuum method that couples existing microscopic and macroscopic solvers in a

modular fashion and applied the method to one- and two-dimensional �ows that

contained translational nonequilibrium, but accounted for only rotational nonequilib-

rium in the microscopic solver. The �rst part of this study extends the previous work

by including rotational nonequilibrium modeling capabilities in both �ow solvers and

outlining the changes required to the hybrid framework that takes into account these

added capabilities. Next, this study will outline the extension of the method to in-

clude the models required to take into account vibrational nonequilibrium in each

module of the hybrid method and any changes required in the hybrid framework.

Then, the study outlines the parallelization of the method for distributed memory

systems to decrease the processor memory requirements and wall clock time for the

simulation of complex �ows that require many numerical grid points and simulator

particles. The parallelization method described in this dissertation will enable future

expansions of the hybrid method to simulate three-dimensional �ows.
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1.3.1 Dissertation Outline

This chapter has introduced the nature of low density, hypersonic �ows and shown

that a microscopic description may be necessary to maintain the physical accuracy of

predictive simulations. Description of these hypersonic �ows also requires additional

models to take into account various thermochemical nonequilibrium e�ects. These

simulation capabilities are vital to the success of future missions by providing an

accurate description of the environment around a hypersonic vehicle.

Chapter II details the various mathematical descriptions available for gas �ows,

which range from fully kinetic to entirely continuum. These descriptions start with

the fundamental Boltzmann equation. Simpli�cation of the �ow description is in-

troduced to develop the continuum Navier-Stokes and Euler equations. The validity

of each simplifying assumption is discussed. The chapter also describes numerical

procedures used for each description of the �ow. An outline of the direct simula-

tion Monte Carlo method, which is a particle method that statistically simulates

the Boltzmann equation [10], is provided. Particle movement and collision routines

are described and numerical limitations of the simulation method are outlined. Fi-

nally, an outline of previous hybrid numerical techniques that have been developed

to described mixed continuum and rare�ed �ows is presented.

Chapter III details the hybrid, Modular Particle-Continuum (MPC) method that

is used in this work. First, descriptions of the numerical continuum, LeMANS,

and rare�ed, MONACO, �ow modules are provided. Next, the existing capabilities

of the MPC method, which include calculation of the interface location, geometric

mesh construction, and the transfer of information between each �ow module, are

outlined. Then, overviews of each extension of the MPC method are provided, which

consist of inclusion of rotational and vibrational nonequilibrium models in each �ow
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module and parallelization of the numerical method.

Chapter IV provides a detailed description of inclusion of rotational nonequi-

librium models in the MPC method. The chapter begins with a summary of the

mathematical description of rotational relaxation processes and the implementation

of these descriptions in each �ow module. Next, an outline of the changes required

in the MPC method for inclusion of rotational relaxation is described. Finally, ver-

i�cation and validation of the method are performed through the comparison of

predictions made by the MPC method to those made with full DSMC and full CFD

simulations and all three predictions are compared to available experimental measure-

ments. Computational performance of the MPC method, compared to full DSMC,

is discussed for each simulation.

Chapter V outlines the necessary changes in the MPC method for inclusion of vi-

brational nonequilibrium models. First, the mathematical description of vibrational

relaxation processes is outlined. Then the chapter describes the implementation of

vibrational nonequilibrium models in the two �ow modules. Next, a detailed descrip-

tion is provided of the required changes to the MPC routines to take into account

the transfer of vibrational energy. Finally, veri�cation of the implementation of vi-

brational nonequilibrium models is performed through comparison with fully kinetic

and continuum simulation methods.

Chapter VI outlines the extension of the MPC simulation capabilities to dis-

tributed memory systems that are required to simulate three-dimensional and com-

plex two-dimensional �ows. First, modi�cations to the MPC method are outlined

and characterization of computational load parameters required for e�cient distri-

bution of the numerical domain across processors in a distributed memory system

are described. A complete description of the algorithms necessary to parallelize
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the MPC method within the provided modular framework are provided. Then, the

parallel performance of the MPC method is described and compared with similar

simulation techniques. In addition, veri�cation of the implementation of the parallel

routines is performed.

Finally, chapter VII summarizes all conclusions drawn from each chapter and

highlights the major contributions of this dissertation to the simulation of hyper-

sonic, nonequilibrium gas �ows. The chapter concludes with discussion and recom-

mendation of future directions of this topic of research.



CHAPTER II

Mathematical and Numerical Modeling of Dilute

Gases

This chapter provides details of the basic governing equations that are utilized

to simulate gas �ows that may require descriptions ranging from entirely kinetic to

fully continuum. Starting with the Boltzmann equation, a description of assumptions

needed to develop lower order models that are su�cient for near equilibrium �ows are

outlined. Analytic solutions to the mathematical models are di�cult to obtain and

often require many assumptions. In contrast, the mathematical models can be solved

numerically on current computer architectures. An outline is provided of numerical

methods used to solve gas �ows of interest that are fully rare�ed, fully continuum,

or mixed rare�ed-continuum.

2.1 Kinetic Description

Ideally, given the particular nature of gas dynamics, computer simulation of

molecular �ows would be entirely deterministic and depend directly on �rst principle

physics. This would require modeling each and every particle and the molecular in-

teractions between them. This can be done using molecular dynamics, but is limited

to simulation of a very small number of real particles on the order of tens to hundreds

16
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of thousand. At standard temperature and pressure, a cubic meter of air contains

over 1 × 1025 particles which makes a full deterministic simulation with molecular

dynamics infeasible for all but the smallest scale or lowest density problems.

2.1.1 Boltzmann Equation

Although there are a large number of molecules in a typical volume, for all but

very high density gas dynamic �ows, the gas can still be considered dilute and col-

lisions can be limited to binary interactions between two molecules. Along with the

assumption of molecular chaos, the integro-di�erential Boltzmann equation, which is

shown in Eq. 2.1, is applicable. The Boltzmann equation follows the evolution of the

probability density function, f (x,C, t), through the 6 total combination dimensions

of physical and velocity, or phase, space. Here, n is the number density and F is the

force vector. For all �ows considered in this work, the force �eld is considered to be

zero everywhere in phase space.

∂

∂t
[nf ] + ci

∂

∂xi
[nf ] +

∂

∂ci
[Finf ] =

{
∂

∂t
[nf ]

}
col

(2.1)

The right hand side of the Boltzmann equation tracks the change of the proba-

bility density function due to molecular collisions. Limiting consideration to binary

collisions, the collision integral for a monatomic gas can be modeled using the form

shown in Eq. 2.2 where g is the relative velocity between the colliding particles, σ is

the collision cross section between the particles, fj is the probability density function

of the collision partner with f , and the post collision probability density functions

are given by f ′j and f ′. Using the conservation of momentum, the post collision

velocities, C′ and C′j, can be directly related to the original velocities, C and Cj.{
∂

∂t
[nf ]

}
col

=

ˆ ∞
−∞

ˆ 4π

0

(
n′jf

′
jn
′f ′ − njfjnf

)
gσdΩdCj (2.2)
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Due to the highly complex, integro-di�erential form of the Boltzmann equation,

analytic solutions are possible only for very simple �ows with many assumptions. In

addition, a detailed form of the collision cross section which is a function of many

quantities may be necessary and this further complicates any analysis.

At the cost of a high level of mathematical complexity associated with an integro-

di�erential equation, the Boltzmann equation can be applied to almost any gas �ow

system due to the very small number of assumptions (molecular chaos, monatomic,

and binary collisions) to arrive at the form of the equation and collision integral

shown here. Modeling of molecular gases with the Boltzmann equation is possible

with the addition of more dimensions for internal energy states and will be extended

in Chapters IV and V.

The collision integral also tells us something about the form of the velocity distri-

bution function at equilibrium conditions. Regardless of the initial velocity distribu-

tion function, after a su�cient number of collisions, the velocity distribution function

will approach an equilibrium form and additional collisions will not further change it.

Therefore, the form of the equilibrium velocity distribution function is determined

by �nding f such that the collision integral is zero. The equilibrium form, which is

known as the Maxwell-Boltzmann velocity distribution function, is given by Eq. 2.3

where k is the Boltzmann constant, TTRA is the translational temperature, m is the

particle mass, c is the particle velocity vector, and 〈c〉 is the average particle velocity

vector.

fMB(c) dc =

(
m

2πkTTRA

)3/2

exp

(
−m (c− 〈c〉)2

2kTTRA

)
dc (2.3)
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2.1.2 Simpli�ed Collision Integrals

Much of the complexity of �nding solutions to the Boltzmann equation lies in eval-

uating the collision integral. Because of this, many simpli�ed models for the collision

integral have been proposed. An algebraic expression utilizing the Bhatnagar-Gross-

Krook (BGK) method [12] is shown in Eq. 2.4, where n is the number density, fMB is

the Maxwell-Boltzmann velocity distribution function, and τBGK is a relaxation time.{
∂

∂t
[nf ]

}
col

=
n(fMB − f)

τBGK

(2.4)

This allows the governing equation to continue to describe the evolution through

six-dimensional space, but linearizes the collision integral which greatly reduces the

number of computations required for evaluation at the expense of ignoring most of

the physics that occurs between colliding particles. One physical inconsistency that

arises from this greatly simpli�ed collision model is the evaluation of the Prandtl

number as unity. Holway [13] proposed the ellipsoidal statistical BGK (ES-BGK)

method to obtain better agreement with the Boltzmann equation. Now the collision

integral becomes Eq. 2.5 where the equilibrium distribution function is replaced with

fG, an anisotropic Gaussian distribution function.{
∂

∂t
[nf ]

}
col

=
n(fG − f)

τES−BGK

(2.5)

This model allows for a correction of the unphysical constraint of having a Prandtl

number of unity by allowing an added degree of freedom in the equilibrium distribu-

tion function.

Although both BGK models greatly simplify the evaluation of the collision in-

tegral, they still require modeling the evolution of the probability density function

through a minimum of 6 dimensions for a monatomic gas with an additional di-
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mension added for each additional internal energy mode of interest for molecular

gases.

2.2 Continuum Description

One way to reduce the mathematical complexity of the Boltzmann equation is to

track macroscopic properties, such as density, velocity, and temperature, rather than

each entire probability density function. This can be done through approximating

the evolution of the probability density function by the evolution of a select number

of moments. Though this increases the number of assumptions made about a gas

�ow, it still allows accurate evaluation of many �ows of interest with a signi�cant

reduction of the mathematical complexity.

2.2.1 Moments of the Boltzmann Equation

In order to reduce the dimensionality of the governing equation, the evolution of

velocity-averaged quantities can be tracked instead. The goal is to track quantities

that reduce the mathematical complexity, but maintain su�cient physical accuracy

to model realistic gas �ows. An average quantity is found by evaluating Eq. 2.6

where Q is some quantity of interest, f is the probability density function, and c is

the particle velocity vector.

〈Q〉 =

˚ ∞

−∞
Q(c)f(c)dc (2.6)

If Q is of the form cn, this is known as taking the nth moment of the velocity

distribution function. Equation 2.7 shows Maxwell's equation of change which is

found by taking a moment of the Boltzmann equation.

∂

∂t
[n 〈Q〉] + cm

∂

∂x
[n 〈cQ〉] = ∆ [Q]

COL
(2.7)
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The collision term, ∆ [Q]
COL

, is zero when Q (c) is equal to a linear combination

of the collision invariants Q(c) = {m,mc,mc2/2 + εint} where εint is the total particle

internal energy [14]. These �ve collision invariants represent the conservation of

mass, linear momentum, and energy within the collision process.

Using these collision invariant particle properties in Maxwell's equation of change

allows us to write the conservation of mass, linear momentum, and energy as Eqs. 2.8,

2.9, and 2.10, respectively where the speci�c internal energy is eint = εint/m.

∂ρ

∂t
+

∂

∂xk
(ρ 〈ck〉) = 0 (2.8)

∂

∂t
(ρ 〈ck〉) +

∂

∂xk
(ρ 〈ckci〉) = 0 (2.9)

∂

∂t
(ρ 〈c2/2 + eint〉) +

∂

∂xk
(ρ 〈ck (c2/2 + eint)〉) = 0 (2.10)

Using the Maxwell-Boltzmann velocity distribution function to evaluate the mo-

ments, these conservation equations become the well known Euler equations. The

Euler equations are valid for equilibrium �ow simulations at the limit that the Knud-

sen number approaches zero. For �ows where the molecular collisions are too infre-

quent for the velocity distribution function to be at equilibrium, a set of equations

that includes more detail about the degree of nonequilibrium must be used to provide

su�cient physical accuracy.

2.2.2 Chapman-Enskog Expansion and Navier-Stokes Equations

Instead of modeling the velocity distribution as remaining everywhere in local

thermodynamic equilibrium, a higher order perturbation can be used to evaluate the

average quantities in Maxwell's equation of change. A perturbation of the veloc-

ity distribution function can be written as Eq. 2.11 where fMB(c) is the Maxwell-

Boltzmann velocity distribution function, ξ is the perturbation variable and ϕ are

the coe�cients.
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f(c) dc = fMB(c)
[
1 + ξϕ1(c) + ξ2ϕ2(c) + . . .

]
dc (2.11)

By ignoring any perturbation, the velocity distribution function remains Maxwellian

and we arrive at the Euler equations as explained in the previous subsection. Keeping

only the �rst two terms and requiring that the evaluation of the collision integrals

remain identically zero for the collision invariant terms results in the unique ex-

pansion coe�cient shown in Eq. 2.12 where TTOT is the temperature averaged over

translational and internal modes, and ATOT,i and Bi,j are coe�cients [15, 14].

ϕ1 = − 1

n

[√
2kTTOT

m
ATOT,i

∂ lnTTOT

∂xi
−Bi,j

∂ci
∂xj

]
(2.12)

Using the method of Sonine Polynomial Expansion [14], the coe�cients, ATOT,i

and Bi,j can be rewritten in terms of transport coe�cients allowing the �rst per-

turbation coe�cient, shown in Eq. 2.13 [16], to be written in terms of molecular

transport quantities, assuming a Newtonian Fluid and Fourier's Law for heat con-

duction, where Ci is the normalized random velocity given by Eq. 2.14, q∗i is the

normalized heat stress vector given by Eq. 2.15, and τ ∗i,j is the normalized shear

stress tensor given by Eq. 2.16.

ϕ1 = ϕ1q
∗
i Ci
(

2

5
CiCi − 1

)
− τ ∗i,j

(
CiCj −

1

3
CiCjδi,j

)
(2.13)

Ci = ci

√
m

2kTTOT

(2.14)

q∗i = −κTOT

p

√
2m

kTTOT

∂TTOT

∂xi
=
qi
p

√
2m

kTTOT

(2.15)

τ ∗i,j =
µ

p

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δi,j

)
=
τi,j
p

(2.16)

The molecular transport quantities, τi,j and qi, are directly related to higher order

moments of the velocity distribution function which are shown in Eqs. 2.17 and 2.18,
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respectively, where c is a particle velocity, ρ is the mass density, n is the number

density, and εm is the energy contained in the energy mode of interest. For the

transport of translational energy, εm can be replaced by (mc2)/2.

τi,j = ρ 〈cicj〉 −
ρ

3
〈ckck〉 δi,j (2.17)

qi,m = n 〈ciεm〉 (2.18)

As the Maxwellian velocity distribution function is completely de�ned by the bulk

velocity and temperature, the Chapman-Enskog velocity distribution requires higher

order moments related to the shear stress and heat �ux which can be estimated from

gradients of macroscopic quantities. Now by using the Chapman-Enskog expansion

of the equilibrium velocity distribution function in Maxwell's equation of change, the

Navier-Stokes equations are found for three-dimensional Cartesian �ows where the

internal energy modes are described as being in equilibrium with the translational

energy mode, shown in Eq. 2.19. Here the conservative vector is given by U =

[ρ, ρu, ρv, ρw,Etot]
T and E, F, and G are given by Eqs. 2.20 - 2.22, respectively

while Etot is de�ned by Eq. 2.23. The speci�c energy of the mth energy mode, em,

can be written as Eq. 2.24 where ζ is the number of degrees of freedom, R is the gas

constant, and Tm is the temperature associated with the energy mode.

∂

∂t
U +

∂

∂x
E +

∂

∂y
F +

∂

∂x
G = 0 (2.19)
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E =



ρu

ρu2 + p− τxx

ρuv − τxy

ρuw − τxz

(Etot + p)u− τxxu− τxyv − τxzw + qtr,x + qint,x



(2.20)

F =



ρv

ρuv − τxy

ρv2 + p− τyy

ρvw − τyz

(Etot + p) v − τxyu− τyyv − τyzw + qtr,y + qint,y



(2.21)

G =



ρw

ρuw − τxz

ρvw − τyz

ρw2 + p− τzz

(Etot + p)w − τxzu− τyzv − τzzw + qtr,z + qint,z



(2.22)

Etot = ρeTRA +
1

2
ρ
(
u2 + v2 + w2

)
+ ρeint (2.23)

em =
ζm
2
RTm (2.24)

Assuming a Newtonian �uid and Stokes' hypothesis, the shear stress matrix, τi,j

is given by Eq. 2.25 where µ is the coe�cient of viscosity.

τij = µ

(
∂uj
∂xi

+
∂ui
∂xj

)
− µ2

3

∂uk
∂xk

δij (2.25)
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The heat �ux terms, shown in Eq. 2.26, are modeled using Fourier's law where

κm is the coe�cient of heat �ux for the mth energy mode and Tm is the temperature

of the mth energy mode.

qm,i = −κm
∂Tm
∂xi

(2.26)

With the addition of an equation of state, such as Eq. 2.27, the Navier-Stokes

equations form a closed set of mathematical equations to describe gas �ow.

p = ρRgasT (2.27)

With the two separate coe�cients in the �rst perturbation term, the Chapman-

Enskog expansion can avoid the unphysical Prandtl number value of unity su�ered

by the original form of the BGK approximation. However, the Chapman-Enskog

expansion does assume that the velocity distribution function can be su�ciently

described by just lower order moments and the expansion is only valid when the

expansion parameter, ξ, is small. This expansion parameter is often written in terms

of a local Knudsen number of the �ow [17, 16], since the Boltzmann H-Theorem states

that molecular collisions drive a velocity distribution towards equilibrium and the

inverse Knudsen number is a measure of the number of collisions an average molecule

experiences over a given length scale. Therefore, the Chapman-Enskog expansion is

valid for highly collisional �ows (where the Knudsen number is small). In addition,

linear relations are used to describe the molecular transport of momentum and energy

through the gas �ow. Again, these are only valid for velocity distributions that are

slightly perturbed from equilibrium, which also coincides with highly collisional �ows.

In general, a globally-averaged Knudsen number is often used to determine the

physical validity of the Navier-Stokes equations [14]. However, many gas �ows with
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global Knudsen numbers signifying fully continuum �ow may include localized regions

that are far from continuum [2, 18] and the Navier-Stokes equations do not have the

su�cient physical accuracy to describe the entire gas �ow. Because of this, care must

be taken in using the Navier-Stokes equations to describe gas �ows that are at the

edge of the continuum approximation.

2.2.3 Higher Moment Equations

More terms of the Chapman-Enskog expansion can be kept to derive other trans-

port equations from the Boltzmann transport equation to increase the physical range

of validity. The Burnett equations [19, 20] can be derived if the �rst two perturbation

terms (ϕ1 and ϕ2) are kept, while the super-Burnett equations [19, 20] are derived

if the �rst three perturbation terms are kept. This may give a more accurate de-

scription of the �ow �eld, but there is research [21] that suggests that the Burnett

equations can not be used anywhere that the Navier-Stokes equations are invalid, so

the added mathematical and numerical complexity of these higher order terms do not

guarantee an increased range of applicable �ows. This is due to the velocity distribu-

tion often being bimodal in many regions where the Navier-Stokes equations fail and

the distribution function can not be accurately described with a single perturbation.

Instead of assuming a Newtonian �uid and Stokes hypothesis to model shear

stress and using Fourier's law to model heat transfer, separate transport equations

for each transport quantity can also be derived using Maxwell's equation of change

(Eq. 2.7). For example, Grad's 13 moment approximation assumes a symmetric

shear stress tensor and tracks each unique component of τi,j and qi for a total of

13 transport equations. Now the closure due to linear transport is unneeded, but

additional closure of higher order terms are still (and will always) be needed for
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an increase in the number of transport equations. As with keeping higher terms of

the Chapman-Enskog expansion, modeling of higher order moments signi�cantly in-

creases the mathematical complexity of the problem with an often unknown increase

in physical accuracy over the Navier-Stokes equations.

2.3 Numerical Methods

This subsection will outline some numerical methods required to solve the math-

ematical descriptions of gas �ow previously outlined in the chapter. In addition,

current hybrid methods that combine di�erent numerical methods are outlined.

2.3.1 Deterministic Numerical Methods of Rare�ed Flows

Ideally, if the Boltzmann equation is the governing equation for all possible �ows,

an e�cient and accurate numerical scheme that produces a solution to this equation

would be preferable over any solution to the mathematical approximations. Unfor-

tunately, due to the evolution in time of a �ow variable across the six-dimensional

phase space, the solution of the Boltzmann equation requires large computational

resources. Grid spacing in velocity space becomes acutely di�cult for hypersonic,

�ow over blunt bodies where the �ow transitions from a velocity distribution domi-

nated by a very sharp peak in the free stream to a very di�use velocity distribution

in the high temperature, low Mach number shock layer, and back to a sharp peak in

the high Mach number wake. In order to accurately and e�ciently solve this type

of problem, variable grid spacing throughout velocity space at each point in physical

space is required and is still an ongoing area of research [22]. Furthermore, the ad-

dition of each separate mode for internal energy increases the number of dimensions

which further increases the size of the computational grid necessary and restricts

the current simulation of �ows to normal shock waves or very simple fore-body �ow
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�elds [23, 24]. Though promising, an increase in maturity must be obtained be-

fore the ability to solve the Boltzmann equation over generic hypersonic vehicles is

possible.

2.3.2 The Direct Simulation Monte Carlo Method

Instead of deterministically �nding a solution to the Boltzmann equation which

is mathematically complex and requires numerically intensive solution methods, a

probabilistic particle method can be used to simulate the physical processes described

by the Boltzmann equation without requiring a fully resolved mesh in velocity space.

The direct simulation Monte Carlo (DSMC) [10] is one such particle method that

simulates representative particles, or simulators, that move and collide with other

particles and the vehicle surface. In general, a DSMC simulator maintains its own

velocity, internal energy, and speci�c location and represents a very large number

(for example over 1 × 108) of real particles. A mathematical proof has shown that

the DSMC method converges to the Boltzmann equation as the number of particles

increases [25].

In the DSMC technique, collisions are treated in a probabilistic manner within

each cell using phenomenological collision models that match macroscopic collision

rates and are fully decoupled from the movement of particles. This approach places

numerical restrictions required to maintain a physically accurate simulation. Because

of decoupling of the movement and collide steps, the time-step in each cell should be

much less than the mean collision time of particles. In addition, since collision pairs

are probabilistically chosen within a cell, these collision cells should be less than the

local mean free path to maintain the physical accuracy of the di�usion process in

the DSMC method. Collision rates within a cell are computed using a history of
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the number of simulators in the cell and the current number of simulators in the

cell. The use of these values introduces inherent statistical scatter from the physical

and numerical �uctuations. To minimize the numerical �uctuations in each cell, in

general, the average number of simulators in a cell should be around or above 20

particles per cell.

A typical DSMC simulation of steady-state gas �ows proceeds as follows. The

DSMC simulators are initialized throughout a computational grid. Particles are

moved throughout the domain ignoring inter-particle collisions. Particles that col-

lide with solid boundaries are processed using a collision procedure consistent with

the boundary type. Particles pairs are selected and collisions between pairs that are

probabilistically selected are performed. The move and collide routines are repeated

until the �ow has reached steady-state. After reaching steady state, macroscopic

quantities of interest, such as density, velocity, and temperature in each computa-

tional cell are sampled at the end of each collide routine and the �ux of energy and

momentum at each boundary face of interest are sampled for every particle colliding

with the boundary. These sampling procedures are repeated for many iterations until

the statistical scatter in the macroscopic quantities is acceptably small.

Physically, the probability, P , of a collision between two simulated particles over

a time-step, ∆t, is equal to the ratio of the volume of the total cross-section, σT ,

moving at a relative speed, g, to the total volume of the cell as shown in Eq. 2.28

where W is the ratio of the number of real particles in the cell with volume Vcell to

the number of simulator particles [10].

P =
WσTg∆t

Vcell

(2.28)

Bird's no time counter (NTC) scheme uses this probability to determine the
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number of collisions simulated in each cell per time step.

The approximations used to formulate the DSMC method only place restrictions

on the cell size and time-step. As long as these are satis�ed, there are no physical

approximations that invalidate the DSMC method from simulating dilute gas �ows

at any degree of collisional nonequilibrium. However, the cell size and time-step

restrictions place a numerical constraint on the degree of equilibrium �ow that can

be accurately simulated with the DSMC method. In general, both the mean free

path and mean collision time are proportional to the global Knudsen number. For

three-dimensional �ows, this results in a cubic increase in the number of cells required

to resolve a given volume while the number of time-steps increases linearly with the

inverse of the Knudsen number. The computational time required can be estimated

as the number of cells required multiplied by the number of time-steps which results in

the computational time of the DSMCmethod varying with the inverse of the Knudsen

number to the fourth power. For very low Knudsen number �ows, the computational

requirements necessary to perform an accurately resolved DSMC computation may

become prohibitively high.

2.3.3 Computational Fluid Dynamics

For �ow �elds with very low global Knudsen numbers, the use of fully kinetic

schemes, such as a deterministic Boltzmann solver or DSMC, requires a large amount

of computational resources (both time and memory). However, numerical solution of

continuum equations, such as the Navier-Stokes equations, can signi�cantly reduce

the required computational resources, while maintaining su�cient physical accuracy

in description of the gas �ow. With continuum methods, cell size restrictions are

dependent on reducing the numerical error associated with discretization, instead
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of physical restriction of cell size due to the computational method. In addition,

discretization is only required in physical space, rather than throughout the full

phase space that is required by a deterministic numerical solution of the Boltzmann

transport equation.

Historically, computational �uid dynamics (CFD) methods have used �nite-volume

methods [26], but there is a growing interest in using �nite element methods, such

as the discontinuous Galerkin method [27]. Both �nite volume and �nite element

methods allow for implicit formulations which reduce the number of required time-

steps needed to reach steady state [28]. In addition, both allow for use of structured

or unstructured grids, though additional research is required for use of unstructured

grids in regions that contain strong shocks [29, 28]. Both methods provide numer-

ical solutions to the Navier-Stokes equations (shown in Sec. 2.2.2) by the use of a

grid that discretizes the space in each physical direction and solves a discretized ver-

sion of the Navier-Stokes equations. For continuum �ows, where the Navier-Stokes

equations are valid, CFD methods can provide a su�ciently accurate solution at a

much lower computational cost in comparison to kinetic schemes such as the DSMC

method [30].

2.3.4 Hybrid Numerical Methods for Partially-Rare�ed Flow

For mixed �ows that contain some regions that are considered fully continuum

while other regions are rare�ed, neither fully kinetic nor continuum schemes can pro-

vide the combination of numerical e�ciency and physical accuracy. For hypersonic

�ow about a vehicle, regions with very small length scales, such as strong shocks,

boundary layers, or sharp edges, and very low density regions, such as the near wake

region, can be rare�ed, while the rest of the �ow �eld can be considered continuum.
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Although some modi�cations, such as slip models, can be made to model some of the

rare�ed phenomena in a CFD method, these are only found to work well in speci�c

�ow types that they were designed for, speci�cally attached �ow with a well de�ned

boundary layer [30, 31]. Because of this, many hybrid methods that couple kinetic

and continuum numerical schemes have been developed. This subsection will outline

some hybrid methods that have been developed for simulation of partially-rare�ed,

hypersonic �ows.

Uni�ed Methods

Some research has been performed in developing hybrid methods that combine

deterministic Boltzmann solvers, used in the rare�ed regions, while using a contin-

uum, Navier-Stokes solver in the continuum region. One such method has been

proposed by Kolobov et al. as the Uni�ed Flow Solver (UFS) [32, 33]. This method

uses adaptively re�ned Cartesian cells in physical space and uses the same simulation

technique throughout the �ow, but using di�erent assumptions depending on the na-

ture of the �ow. For example, similarly to the DSMC method, it splits the solution

methodology into convection and collision steps. Regardless of the degree of nonequi-

librium, the convection (which corresponds to the left hand side of the Boltzmann

equation shown in Eq. 2.1) is computed in the same manner throughout the physical

domain. Then the calculation of the collision integral is performed depending on an

empirical continuum breakdown parameter. In nonequilibrium regions, options for

full Monte Carlo integration of the collision integral or simpli�ed BGK approxima-

tions are available. In the continuum regions, the calculation of the collision integral

is simpli�ed using approximations of the probability distribution function, f , based

on local �ow quantities and gradients. This simpli�cation of the collision integral
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is reported to be over a factor of 100 faster than the full Monte Carlo integration,

making simulation of the continuum region insigni�cant compared to the rare�ed

region [32]. However, recently reported results have found that the full Monte Carlo

integration of the collision integral within the Boltzmann solver may be nearly 1000

times more expensive compared to a similar DSMC calculation [34]. Extension of

a Boltzmann solver to include internal relaxation and chemical reactions is still a

research topic of interest. Currently only simpli�ed collision models using the BGK

approximation have the capabilities of modeling thermal nonequilibrium relaxation

[33]. Inclusion of these models will signi�cantly increase the dimensionality of the

collision integral, which can amplify the already high computational requirements.

Le Tallec and Mallinger have proposed another approach that couples a Boltz-

mann solver with a Navier-Stokes solver by matching consistent half-�uxes at the

interface location [35]. The method has been applied to �ow of monatomic gas over

two-dimensional objects, such as a �at plate or ellipse. Again, this method is unable

to simulate the necessary physical phenomena, such as internal energy excitation,

that regularly occur in hypersonic �ows.

All particle methods

As an alternative to uni�ed methods that use a deterministic Boltzmann solver for

the rare�ed regions, modi�cations to the DSMC method can be made that increase

the numerical e�ciency in regions that can be considered fully continuum. These

are attractive because they require very small modi�cations to existing DSMC codes

and may allow the direct use of DSMC phenomenological models to account for the

physical processes important in hypersonic �ows. Historically, many of these equilib-

rium particle methods have either allowed multiple collisions to occur at the end of
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each time-step [36, 37, 38] or replaced the collision routine with a new method that

re-sampled the particle velocities from a Maxwellian velocity distribution function

at the end of each time-step to conserve total linear momentum and energy [39, 40].

All of these methods su�er from introducing numerical dissipation that scales with

the cell size which still puts strong restrictions on the cell size.

More recently, Burt and Boyd [41] have proposed a low-di�usion (LD) particle

method where particles are forced to move along stream lines and introduces far

less numerical di�usion than other methods. The random thermal motion in the

LD method is suppressed and tracked using a temperature, much like a continuum

method. Current research has been focused on implementing physical models [42, 43]

within the LD method and fully coupling the LD method within a DSMC code [44].

One major bene�t of an LD-DSMC hybrid method is the transfer of information

between each method can be naturally performed as particles move from rare�ed

to continuum regions or vice versa. However, it has only been tested using smooth

mesh density requirements throughout the simulation domain. This has an e�ect

of either decreasing the accuracy of the DSMC method (by using too coarse of a

mesh in DSMC regions) or severely increasing the cost of the LD method (by using

needlessly re�ned mesh in LD regions). Research towards improving the e�ciency

of the LD method such that the computational time required for the LD method

is much less than the DSMC method is still required to make an LD-DSMC hybrid

method viable for hypersonic �ows [45, 46].

Coupled particle-continuum methods

Typically, dilute �ows that display collisional nonequilibrium e�ects are simulated

with the direct simulation Monte Carlo (DSMC) method, while fully continuum �ows
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Figure 2.1: Schematic of typical hybrid coupling procedures

are simulated using modern CFD techniques to �nd solutions to the Navier-Stokes

equations. Because of this, a signi�cant amount of research has been performed

towards coupling these two preferred methods. This type of hybrid method requires

estimation of the interface location by use of a continuum breakdown parameter and

formulation of coupling routines into a hybrid framework that remains consistent

and numerically e�cient. References [47] and [48] provide a discussion of the major

considerations involved in coupling particle and continuum methods and a summary

of previously published work on these types of coupled schemes.

The method of information transfer between particle and continuum methods

can typically be split into two categories: coupling by maintaining consistent �uxes

or coupling by maintaining consistent state properties in reservoir cells. Figure 2.1

provides a visual comparison of the two coupling methods. A �ux-based, coupling

method, which is depicted in Fig. 2.1(a), involves calculating �uxes of conserved

variables at the interface location according to each simulation method. The par-

ticle �ux can be directly calculated by tracking the number of particles that cross
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the interface, but the continuum �ux must be extrapolated using macroscopic cell-

averaged state quantities and their gradients. In general, the estimated �uxes are

not the same and are often modi�ed to ensure that mass, momentum, and energy

are conserved within the simulation. This modi�ed �ux is applied as a boundary

condition to both simulation techniques and used to update the continuum solution

and to estimate the probability density functions that are sampled to assign DSMC

particle information.

With state-based coupling, shown in Fig. 2.1(b), transfer of information between

simulation methods is performed by one method providing a Dirichlet boundary con-

dition to the other simulation technique. For the coupling from particle to continuum

methods, these values are calculated by performing an averaging procedure to sample

state quantities of interest, such as average density, velocity, and energy in DSMC

cells along the edge of the interface location. These values are assigned to contin-

uum ghost cells which are used to calculate inviscid and viscous �uxes to update

the solution within the continuum domain. For coupling from continuum to particle

methods, average state and gradient information is used to estimate the probability

density functions of velocities and internal energies in DSMC boundary cells. Before

each particle iteration, all simulators in these boundary cells are deleted and new

particles are generated consistent with the estimated probability density functions

constructed from the continuum data.

Often, an overlap region between the continuum and particle boundary cells is

also used, where the particle region is extended into the continuum domain and both

simulation methods calculate the solution. These overlap cells can be used to �lter

the physical inaccuracies from an incorrect initial solution or to compare simulation

predictions to ensure that the interface location is located in a near continuum region,
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where the Navier-Stokes equations are appropriate.

Wadsworth and Erwin developed a strongly coupled, �ux-based hybrid DSMC-

CFD scheme and applied it both to one-dimensional shocks [49] and a two-dimensional

rare�ed slit �ow [50]. In these studies, a Maxwellian distribution was used to gen-

erate simulation particles at the interface location, which was consistent with the

governing Euler equations in the continuum region while the domain boundaries re-

mained �xed. Although the �ow was unsteady, the scheme used cumulative averages

to calculate the particle to continuum �ux to reduce the inherent statistical scat-

ter, while the continuum to particle �ux was time accurate based on the current

continuum solution.

Hash and Hassan also coupled particle and continuum codes using a �ux-based

procedure to simulate Couette �ow [51] and near equilibrium, hypersonic �ow over

a sting-mounted blunted sphere-cone [52, 53]. Bird's DSMC method that took into

account internal excitation and �nite rate chemistry was used as the DSMC module

while the modi�ed Navier-Stokes equations were solved on a structured grid in the

continuum module. Both the Marshak condition and property interpolation tech-

nique were employed to transfer information at the interface. Along much of the

rare�ed-continuum interface location for the hypersonic �ow case, the normal Mach

number was small which greatly increased the statistical scatter associated with par-

ticle �uxes at the boundary. The statistical scatter was reduced using a smoothing

operator over highly sampled data for the property extrapolation before imposing the

�ux boundary condition. Although these smoothing procedures reduced the scatter

for bulk properties, oscillations of properties with large gradients along the bound-

ary could produce unphysical, negative values. In addition, the statistical scatter of

gradients were still appreciable with low order smoothing operators so a fourth-order
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smoothing procedure with a 7-point stencil had to be used in certain regions. To

maintain consistency at the interface, the researchers also found that sampling par-

ticle velocities from the Chapman-Enskog velocity probability density function was

necessary in regions that displayed signi�cant momentum or energy transfer [51].

Garcia et al. proposed an adaptive mesh and algorithm re�nement (AMAR)

method [54, 55] that introduces the DSMC methodology at the highest level of re-

�nement of an adaptive mesh scheme. During each time-step, the continuum method

is applied to the entire �ow. Then, regions that are labeled as rare�ed are resolved

with a �ner mesh that meets DSMC requirements and multiple DSMC time-steps are

taken to match the larger, continuum time-step. Particles are generated in reservoir

cells around DSMC regions consistent with the time-interpolated continuum data,

while particle �uxes across each continuum face are recorded. After the DSMC sim-

ulation procedure has reached the current continuum time, DSMC samples are used

to update the applicable continuum cells and conserved �uxes are calculated based

on the sampled particle simulator �uxes. This method has been successfully applied

to one- and two-dimensional gas �ows.

Roveda et al. proposed a hybrid particle-continuum method that used a state-

based coupling procedure to simulate moving planar shock waves [56] and two-

dimensional unsteady �ow [57]. The continuum module solved the Euler equations

using Nadiga's adaptive discrete velocity (ADV) method [58], while Bird's DSMC

method was used in the particle module. Although the state-based procedure had

less statistical scatter at the boundary when compared to �ux-based coupling pro-

cedures, the method was time-accurate which reduced the number of statistically

independent samples to the current number of DSMC simulator particles in each

cell. In order to reduce the statistical scatter in boundary cells, their method used a
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novel algorithm to clone particles in a bu�er around the rare�ed region to increase

the number of nearly statistically independent DSMC samples. This had an e�ect of

reducing the statistical scatter by over a factor of two. Two layers of DSMC reservoir

cells were constructed along the DSMC boundary and particles were assigned veloc-

ities from the Maxwell-Boltzmann velocity distribution function which is consistent

with the continuum solver used in this work.

Wang and Boyd constructed a hybrid framework that coupled a Navier-Stokes

solver with the DSMC-Information Preservation (DSMC-IP) scheme [59]. Compared

to DSMC, the IP scheme reduces the statistical scatter of macroscopic variables by

tracking both microscopic and macroscopic information for each simulator. Although

this method was successful for some two-dimensional �ows [60, 61], the DSMC-IP

scheme was found to produce the incorrect shock jump and thickness for simulation

of planar shock waves. A partial remedy was found by reformulating the IP energy

�ux, but came at the cost of a large computational expense [62].

Wu et al. [63, 64, 65] have developed a loosely-coupled approach, similar to the

method which is used in this dissertation, to simulate hypersonic �ow over a wedge

and expansion of nitrogen gas through a three-dimensional nozzle into near vacuum

conditions. This hybrid cycle is employed with shell script routines that couple ex-

isting DSMC and CFD codes. However, the interfaces are not allowed to completely

move to near continuum locations before updating the continuum region in their

proposed algorithm, unlike other methods that �rst ensure that the interface loca-

tion is in near continuum regions. Schwartzentruber et al. [66, 11] have shown that

this subtle di�erence can lead to creation of unphysical errors that accumulate in

the post-shock region for hypersonic �ows that involve strong shocks. In addition,

this hybrid technique used the simpli�ed, Maxwell-Boltzmann equilibrium probabil-



40

ity density function to assign velocities to DSMC simulator particles and a single

temperature description of the �uid in the continuum region to reduce the compu-

tational cost of the hybrid algorithms. However, this requires the region simulated

by DSMC to be expanded into regions where the velocity distribution function is

near equilibrium. Results in Chapter IV of this dissertation show that the increase

in expense of the continuum solver by the increase in the number of conservation

equations is far out-weighed by the decrease in the computational expense to simu-

late the smaller DSMC region to reduce the overall computational cost of the hybrid

method.

Schwartzentruber and Boyd [67] have proposed a Modular Particle-Continuum

(MPC) method to simulate partially rare�ed, steady-state �ow over hypersonic ve-

hicles. This method couples existing DSMC and CFD modules that remain nearly

unmodi�ed. State-based coupling is performed with particle velocities assigned with

the Chapman-Enskog velocity distribution function using the algorithm of Garcia

and Alder [68], and the statistical scatter of particle samples is reduced by use of

a novel subrelaxation scheme of Sun and Boyd [69]. The method has been suc-

cessfully applied to reproduce full DSMC predictions for planar shock waves [70],

two-dimensional blunt body �ows [67, 66], axi-symmetric blunt body �ows [5], and

interaction �ows [71]. The following chapter provides further details of the MPC

method as the work of this dissertation extends the capabilities of this speci�c hy-

brid method.



CHAPTER III

A Modular Particle-Continuum Method

Many �ows of interest contain a wide range of �ow length scales and/or mean free

path such that neither kinetic nor continuum methods can be applied to the entire

�ow �eld in a physically accurate and numerically e�cient manner. Because of this,

multiple hybrid methods have been proposed to simulate partially rare�ed �ows. A

hybrid method that couples the simulation methods of choice in both continuum and

rare�ed regimes has the advantage of leveraging the experience and advancements in

each area to allow the focus of development on the topics applicable to mixed �ow

simulations, such as the information transfer procedure, demarcation of the rare�ed

and continuum regions, and the overall hybrid algorithm. For rare�ed, hypersonic

�ows, the prevalent simulation method of choice is the DSMC method, while a nu-

merical solution of the Navier-Stokes equations with modern Computational Fluid

Dynamics (CFD) is the most popular simulation method for continuum �ows. This

work extends the Modular Particle-Continuum (MPC) method [67, 4] for simulating

partially rare�ed, hypersonic �ows. This chapter will provide an overview of the

hybrid method, including details about each �ow module, the serial structure of the

MPC method, and the organization of the memory structures. Finally, the chapter

summarizes the new features and capabilities that are added to the �ow solver as

41
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a result of this dissertation to extend its capacity to simulate hypersonic, partially

rare�ed �ows.

3.1 Flow Modules

3.1.1 DSMC Module

Noncontinuum regions are simulated using MONACO [72], a parallel, general

cell-based implementation of the DSMC method that statistically simulates the

Boltzmann equation. It is capable of simulating axi-symmetric, two- and three-

dimensional �ows using body-�tted, unstructured grids. The implementation can

run both on serial processors or on distributed memory computing systems using dy-

namic domain decomposition and the Message Passing Interface (MPI). MONACO

can use either Variable Hard Sphere (VHS) or Variable Soft Sphere (VSS) models

to simulate the collision process. All results shown in this work are simulated using

the VHS model. Various internal relaxation models are available for both rotational

[73] and vibrational [74, 75] energy modes and are described in sections 4.2 and 5.1,

respectively. The ability to simulate multiple species and chemical nonequilibrium

are also available, but are not used in this study. Bird's NTC algorithm, which was

described in subsection 2.3.2, is used to compute the collision probabilities. Complete

details of MONACO can be found in Ref. [72].

3.1.2 CFD Module

Continuum regions are simulated using LeMANS [28, 76], a laminar, hypersonic

code that uses state of the art CFD methods to �nd a numerical solution to the

Navier-Stokes equations that are modi�ed to account for rotational and/or vibra-

tional nonequilibrium for axi-symmetric, two-, or three-dimensional �ows. Multiple

viscosity models are available; this work uses the VHS viscosity model, as seen in
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Eqs. 3.1 and 3.2, to be consistent with the DSMC module. For all simulations pre-

sented in this dissertation, diatomic nitrogen is used with a reference diameter, dref ,

of 4.17× 10−10 m at the reference temperature, Tref , of 273 K. The power law expo-

nent used in this work is ω = 0.75 while m is the molecular mass, k is the Boltzmann

constant, and TTRA is the local translational temperature.

µ = µref

(
Ttra
Tref

)ω
(3.1)

µref =
15
√
πmkTref

2πd2
ref (5− 2ω) (7− 2ω)

(3.2)

The inviscid �uxes are evaluated in LeMANS using a modi�ed version of the Steger-

Warming �ux vector splitting method. This method is less dissipative outside of the

shock which is required to resolve the boundary layer, but switches back to the origi-

nal form of the Steger-Warming �uxes within the shock. Additional details concern-

ing the inviscid �uxes that are used in this work can be found in Refs. [77, 78, 79, 28].

Viscous �uxes are calculated using both values at the cell centers and nodes. For

this work, the MPC method uses a point-implicit time-integration method, however,

the line implicit formulation is used for full CFD simulations to speed convergence.

More details about the numerical implementation can be seen in Refs. [28, 76].

3.2 Overview of Existing Modular Particle-ContinuumMethod

3.2.1 Interface Location and Continuum Breakdown

An MPC simulation is initialized with a CFD solution over the entire �ow �eld.

In regions where the �ow is in collisional nonequilibrium, this initial solution will

be incorrect. The MPC method must be able to predict which regions are incorrect

and apply the DSMC module to these regions of the �ow to arrive at the physically
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accurate solution. Therefore, the physical accuracy of the MPC method depends on

the DSMC region being su�ciently large to contain all regions of the �ow that are

locally rare�ed. In contrast, the numerical e�ciency of the MPC method depends on

the DSMC method to only be applied to regions where the Navier-Stokes equations

can not provide the physical accuracy needed to properly describe the �ow. There-

fore, accurate prediction of continuum breakdown is vital to ensure that a hybrid

method maintains su�cient physical accuracy and numerical e�ciency.

The MPC method uses the gradient-length, local Knudsen number, shown in

Eq. 3.3, where Q is some macroscopic quantity of interest and λ is the local mean

free path, to predict the regions of the �ow that are in collisional nonequilibrium.

KnGL−Q = λ

∣∣∣∣∇QQ
∣∣∣∣ (3.3)

In this work, the gradient-length Knudsen numbers based on mass density, ρ; the

local speed, |V| =
√
u2 + v2 + w2; and translational temperature, TTRA, are used.

Physically, the gradient-length Knudsen number estimates a �ow length scale with

the gradient of macroscopic properties and compares this to the mean free path.

These terms are directly related to the Chapman-Enskog expansion terms, which

were described in Sec. 2.2.2, that describe the molecular di�usion of mass, momentum

and energy. As with the global Knudsen number, if a �ow length scale is on the order

of the collision length scale, insu�cient collisions occur for the transport properties

to be modeled with linear relations. Instead, a more detailed, kinetic description

of the �ow �eld should be used. Previous research [80, 81] has found that regions

that have a gradient-length Knudsen number less than 0.05 display a continuum

prediction that di�ers from the DSMC prediction by less than 5%. Therefore regions

that exhibit a gradient-length Knudsen number less than 0.05 can be simulated with
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the continuum module while introducing little physical error.

The local mean free path used in the gradient-length Knudsen number is calcu-

lated using Eq. 3.4 where n is the local number density, TTRA is the translational

temperature, ω is the macroscopic viscosity temperature exponent that appeared in

Eq. 3.1, and Tref is the temperature that the reference cross section, σref , is calcu-

lated at, which is consistent with the variable hard sphere collision model used in the

DSMC simulation and the corresponding temperature viscosity relation used within

the CFD module. The reference cross section can be calculated using Eq. 3.5 where

k is the Boltzmann constant and µref is the coe�cient of viscosity at Tref .

λ =
1√

2nσref

(
TTRA

Tref

)ω−1/2

(3.4)

σref =
15
√
πmkTref

2 (5− 2ω) (7− 2ω)µref
(3.5)

Gradients of each quantity, Q, are calculated in an MPC simulation using the

discretized version of the Green-Gauss method [82], which for cell-centered data, can

be written as Eq. 3.6 where Ω is the volume of cell I, 1/2 (QI −QF ) is an estimate of

the average value along the face between cell I and its neighbor cell, F , −→nIF is the

unit outward normal of the face between cells I and F , and ∆SIF is the face area of

the face between cells I and F .

∇QI =
1

Ω

NF∑
F=1

1

2
(QI −QF )−→nIF∆SIF (3.6)

At �rst, the MPC method estimates regions that are in collisional nonequilibrium

using the initial full CFD solution to compute the breakdown parameter, so the

application of the gradient-length Knudsen number to a fully continuum prediction

must label all regions that contain nonequilibrium �ows. It is not necessary that this

estimation label the correct size of the rare�ed regions, since the MPC algorithm
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will adaptively move the interface to the correct location as the �ow evolves from the

initial full continuum solution to the physically accurate �nal solution. Figures 3.1

and 3.2 show the maximum gradient-length Knudsen number applied to CFD and

DSMC simulation results for �ow over a cylinder with a free stream Mach number

of 12 and global Knudsen numbers based on the cylinder diameter of 0.01 and 0.002,

respectively. For both �ow conditions, the breakdown parameter applied to the

full CFD prediction is able to e�ectively label the bow shock, thin boundary layer

and near wake region as rare�ed regions, while the rest of the �ow is identi�ed as

continuum.

When comparing rare�ed regions (where KnGL−MAX > 0.05), the size of the region

that is in collision nonequilibrium decreases as the global Knudsen number decreases

since the mean free path for the lower Knudsen number case is a factor of �ve lower in

much of the �ow region. However, it is interesting to note that, very near the surface

of the after body, near the local maximum of KnGL−MAX, the decrease in magnitude

is only about a factor of 2.5 as Kn∞ decreases by a factor of �ve. This is because the

�ow can maintain higher gradients in the higher density (smaller mean free path)

�ow and has been seen by other researchers as well. For example, Figs. 3.3 and 3.4

show the degree of nonequilibrium predicted by DSMC for Mach 10 �ow of N2 over

a sphere with global Knudsen numbers of 0.01 and 0.002, respectively [76]. Again,

despite the factor of �ve increase in free stream density, the peak gradient-length

Knudsen number, which occurs along the aft-body, only decreases by a factor of 2.

Hence, even for �ows where the global Knudsen number is much less than unity and

signi�es �ow well within the continuum regime, small regions along the after body

may still be in collisional nonequilibrium. This has been seen by other researchers [2]

where the degree of nonequilibrium along the after-body surface of hypersonic blunt
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Figure 3.1: Degree of breakdown of collisional equilibrium predicted using KnGL−MAX

based on the CFD and DSMC simulation results for Mach 12 �ow over
a cylinder with a global Knudsen of 0.01

bodies has been proposed to be the cause of the over prediction of heat transfer made

by continuum methods when compared to available �ight measurements.

Figure 3.4 also demonstrates a possible problem of using slip boundary conditions

to extend continuum �ow techniques. In the wake region, where the �ow is separated,

the CFD simulation with slip boundary conditions provides very little or adverse

improvement in agreement with the DSMC prediction compared to the corresponding

CFD simulation results with no slip boundary conditions.

In addition to collisional nonequilibrium, the MPC method must ensure that

DSMC is used in other regions of the �ow where certain physical processes, such

as rotational relaxation, are important but are ignored in the continuum module.

For example, if the continuum module assumes that translational and rotational

energy modes are in equilibrium, the MPC should ensure that regions that can be
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Figure 3.2: Degree of breakdown of collisional equilibrium predicted using KnGL−MAX

based on the CFD and DSMC simulation results for Mach 12 �ow over
a cylinder with a global Knudsen of 0.002

Figure 3.3: Degree of breakdown of collisional equilibrium, using KnGL−MAX, and
heat transfer to the surface predicted by DSMC and CFD methods for
�ow over a sphere with a free stream Mach number of 10 and a global
Knudsen number of 0.01 [3]
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Figure 3.4: Degree of breakdown of collisional equilibrium, using KnGL−MAX, and
heat transfer to the surface predicted by DSMC and CFD methods for
�ow over a sphere with a free stream Mach number of 10 and a global
Knudsen number of 0.002 [3]

considered in collisional equilibrium, such that the velocity distribution function can

be described by a Chapman-Enskog velocity distribution function, but where the

rotational energy modes are not in equilibrium with the translational energy modes,

also be assigned to the DSMC module. For near equilibrium �ows over blunt bodies,

which are of interest for the MPC method, almost the entire region behind the strong

expansion displays signi�cant nonequilibrium between rotational and translational

modes. This would greatly increase the size of the region simulated with the DSMC

module in an application of the MPC method and would have a serious adverse e�ect

on the numerical e�ciency. However, Schwartzentruber et al. [66, 5, 83] found that

only the strong thermal relaxation in the shock layer has a detrimental e�ect on

the physical accuracy of the MPC method and proposed an additional breakdown

parameter shown in Eq. 3.7 which labels any cell where the translational temperature
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exceeds the rotational temperature by more than 1% as a DSMC cell.

KnROT−NEQ = 5× (TTRA − TROT)

TROT

(3.7)

In addition to the strong bow shock, this supplementary breakdown parameter has

been found to increase the size of the DSMC region behind the recompression wave

in the wake of blunt body �ows [84]. Results in Chapter IV show that this has

an adverse e�ect on the e�ciency of the MPC method, but is required to maintain

su�cient physical accuracy in the MPC method with a single equilibrium energy

mode modeled in the continuum module. By inclusion of a separate equation to

describe the progression of rotational energy in the continuum module, the regions

that display rotational nonequilibrium, while the �ow is near collisional equilibrium,

such that the velocity distribution function can be accurately described with the

Chapman-Enskog perturbation of the equilibrium velocity distribution function, can

instead be simulated with the continuum module with little physical error.

The MPC method uses a �nal breakdown parameter given by Eq. 3.8 where the

DSMC module is used in cells with Br > Brcutoff and the CFD module is used

elsewhere.

Br = max
(
KnGL−ρ, KnGL−TTRA

, KnGL−|V |, KnROT−NEQ

)
(3.8)

Periodically, the MPC method recalculates the breakdown parameter using the

most physically accurate information available in each cell. Then, a simple smoothing

operator, shown in Eq. 3.9 where BrI is the breakdown parameter in the current

cell, BrF is the breakdown parameter in a neighboring cell, and NF is the number of

neighbors, is used to reduce the e�ect of statistical scatter in regions that use DSMC

data.

BrI =
1

NF + 1

(
BrI +

NF∑
F=1

BrF

)
(3.9)
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Figure 3.5: Final interface location and breakdown parameter, as de�ned by Eq. 3.8,
for Mach 12 �ow over a cylinder with a global Knudsen number of 0.01.

This smoothing operator is applied repeatedly a user speci�ed number of times (typ-

ically between zero and �ve) and the �nal, smooth breakdown parameter is used

to set the boundary between continuum and rare�ed �ow modules. It is important

to note that since the cuto� parameter has been determined empirically, any slight

change due to a smoothing algorithm is acceptable.

An example of contours of the breakdown parameter and the �nal interface lo-

cation used by the MPC method for Mach 12 �ow over a cylinder with a global

Knudsen number of 0.01 using a cuto� value of Brcutoff = 0.05 is shown in Fig. 3.5.

Here, the MPC method has successfully started with the interface location based on

the continuum data (shown in Fig. 3.1) and adaptively moved the interface so that

the DSMC module is applied to all rare�ed regions. This is clearly visible where the

MPC method has adaptively widened the nonequilibrium region to simulate the full

shock structure, as it is well known that continuum methods underpredict the shock

thickness.
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3.2.2 Mesh Re�nement

As outlined in Sec. 2.3.2, the mesh required by the DSMC method must be

su�ciently small to ensure that the distance between colliding particles is less than

the local mean free path, λ. Since DSMC cells are used to sort and collide particles,

these cells should be less than or on the order of the mean free path to maintain the

physical accuracy of the method. Implementation of dynamic sub-cells within the

DSMC method allows the cell-size restriction to be slightly relaxed, but cells still

should not exceed more than 2− 3λ in each direction to maintain physical accuracy

of the simulation. These cell-size requirements are very di�erent than those required

by CFD techniques to �nd numerical solutions to the Navier-Stokes equations, where

the cell size should be small enough that the error associated with the discretization

of the partial di�erential equations is su�ciently small.

In addition, current solutions of the Navier-Stokes equations that contain strong

bow shocks and/or thin boundary layers require quadrilateral cells in two dimen-

sions (or hexahedral cells in three dimensions). Use of unstructured triangular (or

tetrahedral) meshes to resolve these �ow features is still an ongoing research topic

[29, 85, 86]. This requirement necessitates the MPC simulation method be initialized

with a full CFD solution on a quadrilateral (or hexahedral) mesh.

Typically, the DSMC sizing requirements necessitate a �ner mesh than the con-

tinuum cell size requirements. For example, Fig. 3.6 shows contours of the mean

free path for Mach 12 �ow over a cylinder with a global Knudsen number of 0.002.

The variation in collision length scales about this geometry exceeds two orders of

magnitude and corresponds to the local spatial resolution required by the DSMC

method. Across the bow shock, the mean free path has decreased by about a factor

of three. There is an additional reduction by a factor of eight as the �ow traverses
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Figure 3.6: Variation of mean free path for Mach 12. �ow over a cylinder with a
global Knudsen number of 0.002.

from the rear of the bow shock, through the thermal boundary layer, to the cool

surface. Figure 3.7 shows the typical meshes used in each simulation method for this

same �ow condition. Here the DSMC mesh is re�ned to about 2λ in each direction

and requires a signi�cantly �ner mesh throughout the entire shock layer.

Though DSMC cells should be less than the mean free path in all directions, it

is especially important in the direction of the �ow gradient, as this is the direction

that the probability density function of particle properties changes most. To reduce

complications associated with coupling the two �ow modules, the DSMC mesh is

created as a re�nement of the continuum mesh in the MPC method. First, an

estimate of the local mean free path is calculated everywhere in the �ow �eld using

the initial full CFD solution. Next, the MPC method creates a quadrilateral DSMC

mesh that meets its cell size restrictions by re�ning the provided continuum mesh in

the following way. Re�nement in each direction is calculated using Eq. 3.10, where

Q is the �ow variable with the maximum �ow gradient. The dot product between
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Figure 3.7: Comparison of DSMC and CFD mesh densities in the shock layer for
Mach 12. �ow over a two-dimensional cylinder with a global Knudsen
number of 0.002

the face unit vector, n̂f , and the maximum gradient direction, ∇Q|∇Q| , determines the

alignment of the cell face with the direction. For example, if the cell is perfectly

aligned with the maximum �ow gradient (where n̂f is perpendicular to
∇Q
|∇Q|), this dot

product is zero and the cell is re�ned by a factor of Fλ in that direction. Conversely,

the re�nement for the other direction is relaxed to Fλ (g + 1). Typically, the value

of g is selected to be between zero and nine which corresponds to cell aspect ratios

between unity and ten. Higher aspect ratio cells in DSMC are typically employed

along the axis of rotation in axi-symmetric �ows, where the �ow gradients are in the

direction of this rotation axis, to increase the number of simulator particles in these

cells.

rf =
lf

Fλ
(
g
∣∣∣n̂f · ∇Q|∇Q|∣∣∣+ 1

) (3.10)

A schematic of the mesh re�nement procedure is shown in Fig. 3.8 where the
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Figure 3.8: Schematic of mesh re�nement calculation on continuum cell [4]

outer solid cell is the continuum cell with face normal vectors and the direction of

maximum gradient. Here, the coarse, continuum cell has the dimensions of 8λ× 4λ,

while the gradient is very near normal to the n̂2 face vector. Taking F = 1 and g = 3

results in the DSMC cells, shown with dashed lines, where the cell is re�ned to one

mean free path (λ) in the direction of maximum gradient and to 4λ in the direction

of smallest gradient.

The DSMC module used in this work requires the mesh re�nement to be consis-

tent across each neighbor face to eliminate any hanging nodes. Therefore, a simple

algorithm is employed to ensure that all cells are re�ned consistently and that the

largest re�nement factor is still maintained. This can lead to an over re�ned mesh

in some regions if there is a very large variation in re�nement factors along a line

of neighbors. For an MPC simulation of very near equilibrium �ows, this may oc-

cur along the surface due to the enormous variation in mean free path between the

front and aft stagnation points. For very low Knudsen number �ows, much of the

region that requires the largest re�nement factors experiences highly collisional �ow,

which are simulated (on a di�erent coarse mesh) by the continuum module. There-
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Figure 3.9: Schematic of the re�nement limiter as a function of the local breakdown
parameter

fore, the MPC method only re�nes cells that are rare�ed, or nearly rare�ed. This is

implemented by limiting the re�nement factor in each cell using Eq. 3.11.

rf,lim =
max

(
1, rf

(
1− 2A

ABrcutoff−2Br

))
if Br <

Brcutoff

2

rf if Br >
Brcutoff

2

(3.11)

Here, the re�nement is unchanged for cells that have an initial breakdown parameter

greater than half of the cuto� parameter. Then the re�nement is multiplied by

a factor that decreases linearly from unity at Br = 1
2
Brcutoff to zero at Br =

1
A
Brcutoff . The factor A must be greater than two and is typically set to values

between two and eight. For cells with the initial breakdown parameter less than

Brcutoff/A, no re�nement is used. A plot of this limiting procedure is shown in Fig. 3.9

which shows that cells that exhibit a high level of collisional nonequilibrium maintain

DSMC re�nement levels, while regions that are initially predicted to be very near

equilibrium (and should remain very near equilibrium) are not re�ned since these cells

are always simulated with the continuum �ow module. It should be noted that even

though the re�nement factor is set to unity in cells where the breakdown parameter is
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less than Brcutoff/A, the algorithm that eliminates hanging nodes will set a re�nement

factor based on neighbor (or neighbor of neighbor, etc.) cells that display larger

collisional nonequilibrium e�ects. Once the re�nement in each continuum cell is set

to be consistent through all face neighbors, the node indices and mesh connectivity

for the re�ned DSMC mesh are computed and the full DSMC mesh structure is

created.

3.2.3 Information Transfer

The modular implementation of the MPC method allows both DSMC and CFD

modules to maintain their own mesh and data structure. Information is transferred

between each �ow module using a state-based coupling procedure which has been

successfully demonstrated by other researchers [56, 57, 87, 61, 64]. The state-based

coupling procedure assigns boundary cells on the edge of each module domain and

transfers �ow information, such as density, velocity components, and temperatures to

these cells from corresponding cells of the other module. Rare�ed boundary cells act

as reservoir cells, while the continuum boundary cells are used in the same manner

as ghost cells. Figure 3.10 shows a schematic of how data is transferred between the

two modules at an interface location. After calculation of the breakdown parameter

(shown in Eq. 3.8), regions are assigned to continuum or rare�ed �ow modules using

the procedures described in Sec. 3.2.1. Next, DSMC overlap cells are extended to

create a bu�er region. This bu�er region is used throughout the unsteady portion of

the simulation as the MPC method relaxes the initial CFD solution to reproduce the

full DSMC result. In order to obtain an accurate DSMC prediction in rare�ed regions,

the bu�er region must be large enough to eliminate any error caused by the possibly

inaccurate DSMC boundary conditions provided by the initial CFD prediction. The
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Figure 3.10: Hybrid particle-continuum coupling procedure [4]

number of overlap cells is a user de�ned input variable, and typical simulations use

between six and twenty overlap cells. Then, boundary cells are added along the edge

of both particle and continuum regions. The numbers of boundary cells for each

�ow module are also user input variables. Typically, two DSMC boundary cells are

employed, while one or two CFD boundary cells are used in an MPC simulation.

Two DSMC boundary cells are used to ensure that high velocity particles, that are

associated with the tail of the velocity distribution function and may move across

more than one cell in a time-step, are accurately captured in the DSMC region.

Use of only one DSMC boundary cell may cause the �rst DSMC cell of the rare�ed

region to receive a noticeably reduced �ux. The probability of particles traversing

three full DSMC cells in one time-step is much less likely and the inability to capture

this portion of particle �ux in the �rst layer of DSMC cells creates an insigni�cant

error. It should be also noted that the number of boundary cells is applied at the

continuum level cell, so the user input is the minimum number of DSMC boundary

cells. Therefore, the number of DSMC boundary cells is typically higher due to

the mesh re�nement that exists between continuum and rare�ed meshes. The CFD

module requires two layers of boundary layer cells to calculate the correct gradients

when higher order, MUSCL schemes are used to compute the inviscid �ux at each
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face, while one layer of CFD boundary cells is adequate for �rst order simulations.

Once the rare�ed and continuum regions are established, information transfer

across the interface can be performed by updating the boundary cells with data from

the other �ow module. Then, �ux calculations are handled internally within each

�ow module using existing procedures.

For information transfer from the continuum solver to the rare�ed module, the

state-based coupling consists of creating particles and assigning velocities and inter-

nal energies consistent with the data contained within the cell-averaged Navier-Stokes

data. At the beginning of each DSMC time-step, all particles remaining in DSMC

boundary cells (and pure continuum regions) are deleted. Then, particles are cre-

ated in each DSMC boundary cell consistent with the density of the corresponding

continuum cell, ρcc; the numerical particle weight of the cell, Wrc; and the DSMC

cell volume, Vrc. The random molecular velocities of each particle are assigned by

sampling from the Chapman-Enskog probability density function, which is consistent

with the description of the velocity distribution function in the continuum module

and is shown in Eq. 3.12 where f0 is the Maxwell-Boltzmann velocity distribution

function and ϕ1 is the �rst expansion term de�ned by macroscopic variables and

gradients in Eq. 2.13.

fCE (C) = f0 (C) [1 + ϕ1] (3.12)

This velocity probability density function is sampled using an acceptance-rejection

scheme outlined by Garcia and Alder [68]. These thermal velocities are superimposed

on the averaged, bulk velocities to assign the velocity to each particle. Initial particle

locations are assigned randomly within the cell. The rotational energy of each particle

is sampled from the equilibrium, Boltzmann probability density function by method

of inverse transform sampling based on the description of rotational temperature
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within the continuum module. This particle generation procedure is performed before

all particles are moved in DSMC and also when new cells are added to the DSMC

module which occurs at the initialization of the simulation and when the rare�ed-

continuum interface has adapted towards regions of near equilibrium.

For information transfer from the rare�ed module to the continuum module,

bulk properties are sampled at each iteration within each continuum level cell. Bulk

properties in each continuum cell can be easily calculated using Eqs. 3.13-3.17, where

Nreal is the number of real particles in the cell, Nrc is the number of rare�ed cells in

the corresponding continuum cell, NPrc is the number of simulators in the rare�ed

cell, and Wrc is the numerical particle weight factor of the rare�ed cell. The sample

of bulk density in the continuum cell over one iteration can be calculated using

Eq. 3.14 where ρ is the density and m is the mass of each particle. Bulk velocity

components are calculated using Eq. 3.15 where ci,Prc is the velocity component of a

simulator in a rare�ed cell. The translational temperature can be estimated at each

time-step using Eq. 3.16 where k is the Boltzmann constant and 〈c2
i 〉 is de�ned by

Eq. 3.17. In addition, a correction factor, proposed by other researchers [56, 57], is

used to increase the consistent depression of translational temperature by use of a

small number of samples, where s =
Nrc∑
rc=1

NPrc is the total number of samples (and

particles) over one time-step in the continuum cell.

Nreal =
Nrc∑
rc=1

NPrc∑
Prc

Wrc (3.13)

ρ =
mNreal

Vcc
(3.14)

ui = 〈ci〉 =
1

Nreal

Nrc∑
rc=1

NPrc∑
Prc=1

ci,PrcWrc (3.15)

TTRA =
s

s− 1

m

3k

[〈
c2
i

〉
− u2

i

]
(3.16)
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〈
c2
i

〉
=

1

Nreal

Nrc∑
rc=1

NPrc∑
Prc=1

c2
i,Prc

Wrc (3.17)

Although the statistical scatter associated with the sample of bulk properties

at the continuum cell level is smaller than the scatter of sampled properties at the

rare�ed cell level or sampled �uxes at faces, the scatter of properties at each time-

step is still too large to apply directly to continuum boundary cells. This level of

scatter applied to boundary cells for the continuum module would create numerical

instabilities. Instead, a subrelaxation technique, proposed by Sun and Boyd [69],

is employed which uses an exponential moving average of a quantity, Q, shown in

Eq. 3.18, where 〈Q〉j is the average of a quantity, Q, at step j, 〈Q〉j−1 is the average of

quantity Q at the previous time-step, Qj is the current sampled quantity at time-step

j, and Φ is the subrelaxation coe�cient.

〈Q〉j = (1− Φ) 〈Q〉j−1 + ΦQj (3.18)

This subrelaxation procedure is applied to all quantities, Q = ρ, ui, TTRA, to pro-

vide continuum cells with boundary data with a reduction in the statistical scatter.

Typically, a subrelaxation parameter value of Φ = 0.001 is used which contains a

su�ciently low level of scatter that is associated with 1/Φ = 1, 000 samples. Though

this technique introduces a time lag, it is appropriate to use for steady-state �ows

and has an overall e�ect of reducing the computational expense by decreasing the

number of time-steps required between coupling procedures of each �ow module. The

subrelaxation average is used for boundary cells and throughout the entire rare�ed

portion of the domain during the unsteady portion of the MPC cycle to recalculate

the breakdown parameter. In addition, a correction factor, proposed by Sun and

Boyd [69], is applied to e�ectively remove the old time history using Eq. 3.19 where

j is the current time-step, i is a previous time-step where the corrected average, 〈Q〉′i,
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was calculated.

〈Q〉′j = 〈Q〉j +
(1− Φ)j−i

1− (1− Φ)j−i

(
〈Q〉j − 〈Q〉

′
i

)
(3.19)

Sun and Boyd [69] have shown that this correction should only be performed when

the correction coe�cient is between zero and unity, which is satis�ed when j = 1/Φ+i.

3.2.4 Hybrid Data and Algorithm Structure

Both CFD and DSMC modules within the MPC method maintain their own data

structures and mesh for the entire �ow �eld. However, as described in the preceding

subsection, the DSMC mesh is created by re�ning the continuum mesh to meet

DSMC cell size restrictions. This simpli�es the modular hybrid structure so that each

continuum cell contains exactly r1×r2 DSMC cells, where r1 and r2 are the re�nement

levels in each direction for the continuum cell. The MPC method utilizes a modular

data structure that leaves each �ow module's data structure intact. Additional data

required by the MPC method, to demarcate regions to each �ow module and update

or transfer information, is kept in a separate data structure. Figure 3.11 shows a

schematic of the organization between CFD, DSMC, and hybrid data structures.

The hybrid array of structures is created to be consistent with the index notation of

the continuum data structure. The hybrid element contains information pertinent

to the MPC method, such as if the cell is considered (p)article or (c)continuum,

data required for information transfer between �ow modules, and a list of pointers to

the corresponding DSMC cells that are contained in the continuum cell. Therefore,

given a continuum cell index, the corresponding hybrid element can be immediately

accessed and used to access the corresponding DSMC cells. An additional hybrid data

structure is maintained that, given a DSMC cell index, provides the corresponding

continuum cell index. With these two hybrid data structures, given an index from
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Figure 3.11: Organization of the data structures used by the �ow modules and MPC
method [4]

one module, any hybrid function can �nd the cell index corresponding to the other

�ow module quickly and e�ciently.

An outline of the MPC method cycle is as follows:

1. Load a grid-independent, full Navier-Stokes solution on a structured mesh.

Use the continuum breakdown parameter (Eq. 3.8) to set up initial interface

locations. Create overlap regions into the initial continuum domain. Create a

DSMC grid by re�ning the CFD grid to meet local cell size restrictions using

the initial continuum result and Eq. 3.11. Generate particles inside the DSMC
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domain and overlap regions.

2. In particle boundary cells, destroy all old particles and create new DSMC parti-

cles based on Navier-Stokes information in corresponding cells. Sample particle

thermal velocities from the Chapman-Enskog velocity distribution function and

particle internal energies from Boltzmann energy distribution functions. Cy-

cle through the DSMC solver for one time-step. Update hybrid macroscopic

quantities using the subrelaxation approach (Eq. 3.18). Repeat a prescribed

number of times (typically 1/Φ + 10 iterations).

3. Re-evaluate the breakdown parameter; if needed, move interfaces, create parti-

cles in new DSMC cells, and destroy particles in newly labeled pure continuum

cells.

IF Interfaces have signi�cantly changed (number of DSMC cells increases by

more than a user speci�ed percentage), save and output the solution, and go

to step 2.

ELSE Save and output the solution and update the Navier-Stokes boundary

cells with the subrelaxation averages and continue.

4. Cycle through the Navier-Stokes solver. Repeat until converged to a user spec-

i�ed tolerance.

5. Re-evaluate the breakdown parameter; if needed, move interfaces, create parti-

cles in new DSMC cells, and destroy particles in newly labeled pure continuum

cells.

IF Interfaces have signi�cantly changed or steady-state has not been reached,

save and output the solution and go to step 2.

ELSE Continue.
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Figure 3.12: Schematic of CFD and DSMC meshes with overlap regions around a
nonequilibrium shock

6. Remove overlap regions, delete particles in these regions, and save and output

the solution.

7. In particle boundary cells, destroy all old particles and create new DSMC

particles based on Navier-Stokes information in the cells. Cycle through the

DSMC solver. Repeat for a prescribed number of iterations and collect samples.

8. Update the Navier-Stokes boundary cells and further converge continuum re-

gion.

IF DSMC statistical scatter and Navier-Stokes residual are below user speci�-

cations, end.

ELSE Save and output the solution and return to step 7.

Figure 3.12 shows the layout of the DSMC and CFD meshes with overlap regions

around a nonequilibrium bow shock during the unsteady portion of an MPC sim-
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ulation. For this simulation, �ve overlap cells were used and are shown where the

CFD and DSMC meshes coincide in space. Although a mesh that covers the entire

�ow �eld is maintained by each �ow module, only cells that are simulated are shown.

If, after application of the DSMC module, any of the overlap region displays trans-

lational nonequilibrium (predicted with the breakdown parameter calculated using

the DSMC information on the continuum level mesh), the DSMC region will be ex-

panded and the bu�er region is expanded further until the interfaces have stopped

moving.

3.3 Extension of a Modular Particle-Continuum Method

This section summarizes the new capabilities added to the MPC method as part

of this dissertation. These improvements are developed to extend the usefulness and

range of applicability to simulate �ow �elds with a higher level of physical accuracy.

Inclusion of rotational nonequilibrium and vibrational excitation increases the range

of applicability or increases the physical accuracy and predictive capability of �ows

to which the MPC method has been previously applied. Other routines, such as

parallelization enables the future development of other capabilities, such as the full

three-dimensional implementation.

3.3.1 Rotational Nonequilibrium

The extension of the continuum module to simulate nonequilibrium between

translational and rotational energy modes includes solving an additional partial dif-

ferential equation. Consistent physical models across the �ow solvers are used to

ensure that full DSMC simulations can continue to be used as a veri�cation tool.

With the added physical accuracy of the continuum module, the size of the region

of �ow that uses DSMC can be decreased, which increases the overall e�ciency of
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the MPC method. However, careful formulation of the breakdown parameter must

be performed to ensure that the �ow simulated with the continuum module is in-

deed both near collisional equilibrium, such that the velocity distribution function

can be described with the Chapman-Enskog expansion, and the rotational energy

distribution function is near equilibrium, such that the rotational energy distribution

function can be described by a Boltzmann energy probability density function, with

little additional error. A detailed explanation of the changes required to implement

rotational nonequilibrium across the entire MPC method and veri�cation and vali-

dation of the implementation with three di�erent hypersonic �ow cases is described

in Chapter IV.

3.3.2 Vibrational Nonequilibrium

For almost all atmospheric hypersonic �ows of interest, the amount of kinetic

energy available in the post-shock region of the �ow �eld is su�ciently high that

inclusion of vibrational excitation in any simulation is required to maintain an ac-

ceptably high level of physical accuracy. Even a small degree of energy that the

vibrational mode may remove from the translational modes has an e�ect on the �ow

�eld. First, vibrational energy transfer to the surface is much lower than the fully

activated energy modes, so energy transferred to vibrational modes often reduces

the heat transfer. In addition, vibrational excitation serves to reduce the post-shock

pressure, which reduces the shock stand-o� distance. Finally, accurate prediction

of the vibrational excitation process is vital to future inclusion in the MPC method

of chemical reactions and �nite rate chemical processes that are also important for

many hypersonic �ows of interest. The implementation of vibrational excitation
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in the MPC method is described in Chapter V. Consistent vibrational relaxation

models are outlined, along with changes to the information transfer algorithms to

maintain a combination of physical accuracy and e�ciency within the MPC method.

Finally, the new implementation is veri�ed with comparison of �ow results to full

DSMC predictions.

3.3.3 Parallelization

The computational requirements of each separate �ow module, even for two-

dimensional �ows, often become too demanding to maintain an acceptable level of

physical and numerical accuracy while obtaining a solution in a reasonable amount

of time on a serial processor. Although processor speeds have improved, much of

the recent increase in computing capability in recent years comes in large clusters

of processors performing smaller portions of the computation in parallel. A par-

allel implementation of the MPC method enables simulation of three-dimensional

hypersonic �ows that contain regions of thermal nonequilibrium. However, due to

the large memory and CPU time requirements, careful consideration must be taken

to ensure that the MPC method maintains both a high level of physical accuracy

and e�ciency. In addition to reducing the necessary wall clock time, these parallel

operations also signi�cantly reduce the required amount of memory for each single

processor since only a small portion of the computational mesh and solution is stored

on each processor.

With a modular implementation, such as the MPC method, where a DSMC, a

CFD, and an MPC data structure are maintained to reduce the number of modi�-

cations performed to the �ow modules, parallelization becomes an enabling feature

for �ow simulations that require large computational grids and expensive physical
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models. The MPC method is parallelized using dynamic domain decomposition

with emphasis on maintaining e�cient and consistent computational load balance

procedures to the heterogeneous data with �uctuations in �ows that change as the

continuum-rare�ed interface changes. The full implementation of the parallel MPC

method is outlined in Chapter VI. In addition, the chapter outlines the veri�ca-

tion of the parallel implementation with comparison of serial �ow predictions of the

MPC method, and an estimate of the overhead of the parallel processes for a typical

application of the MPC method.

3.4 Summary

This chapter has outlined the characteristics of the MPC method which are used

throughout this dissertation. An outline of both the continuum �ow module, Le-

MANS, and the rare�ed �ow module, MONACO, are provided. The hybrid routines

necessary for simulation of nonequilibrium �ow with the MPC method, with empha-

sis on portions of the code that are important for the future modi�cations to extend

the applicability of �ows simulated with the MPC method, have been reviewed. A

summary of new extensions to the MPC method that are further detailed later in the

dissertation, including rotational nonequilibrium, vibrational excitation, and paral-

lelization of the MPC method which enables the extension to full three-dimensional

simulations have been outlined.



CHAPTER IV

E�ects of Rotational Energy Nonequilibrium

For many hypersonic �ows, local thermodynamic equilibrium between transla-

tional and rotational modes can often be assumed with little physical error. However,

for �ows that contain regions of collisional nonequilibrium, that the MPC method is

designed to simulate, the assumption of local thermodynamic equilibrium between

translational and rotational modes is inappropriate, even if the collision number,

ZROT, is quite small for gas species of interest. If insu�cient collisions occur to

maintain collisional (or translational) equilibrium and the number of rotationally

inelastic collisions is a fraction of the total number of collisions, rotational nonequi-

librium will exist. Often at the edge of a rare�ed region, there exists a portion of the

�ow �eld that can be considered near collisional equilibrium (such that the velocity

distribution function can be described by the Chapman-Enskog expansion), but still

exhibits thermal nonequilibrium between translational and rotational energy modes.

In order to extend the applicability of the continuum solver, and therefore decrease

the computational cost of the MPC method, the capability of modeling rotational

relaxation within the CFD solver is included within the MPC method. This chapter

describes and compares the models used in both solvers to simulate a separate rota-

tional energy mode which may not be in equilibrium with the translational energy

70
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mode and the relaxation models used to describe the transfer of energy between the

translational and rotational energy modes. In order to continue the use of full DSMC

simulations as a veri�cation tool, rotational relaxation models must agree between

CFD and DSMC modules in near equilibrium regions. This is assessed by compar-

ing zero-dimensional relaxation processes predicted by each �ow simulation method.

Modi�cations to the algorithms used to calculate the interface location and transfer

information are outlined. The hybrid particle-continuum method is then applied to

hypersonic �ow over a two-dimensional cylinder at two �ow conditions with nominal

free stream Knudsen numbers of 0.01 and 0.002, and to axi-symmetric �ow over a

sting-mounted, planetary probe with a free stream Knudsen number of 0.01. For all

three �ow conditions, the MPC method is compared with full CFD results and is

veri�ed with full DSMC simulations. In addition, limited experimental data avail-

able for �ow over the planetary probe is used to assess the accuracy of the numerical

methods.

4.1 Extension of Physical Models

Extension of the mathematical and numerical models required to include rota-

tional nonequilibrium within the MPC method is �rst discussed. Extension of the

Boltzmann equation, its relevance to the development of rotational collision models in

DSMC, and an added conservation equation to the single temperature Navier-Stokes

equations are outlined.

4.1.1 Extension of the Boltzmann Equation

Instead of modeling a single velocity distribution function for the gas, the gen-

eral Boltzmann equation (as seen in Eq. 2.1) can be extended to include internal,

quantized energy by modeling the rate of change of the probability density function,
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fi(x, c, t, Ei), for each quantum state i as shown in Eq. 4.1.

∂

∂t
[nifi] + cm

∂

∂xm
[nifi] =

{
∂

∂t
[nifi]

}
col

(4.1)

Now the collision integral, shown in Eq. 4.2, must include a collision cross section,

σi
′,j′

i,j , that is not only dependent on the velocity, but the initial (i, j) and �nal (i′, j′)

rotational quantum states of the two particles.{
∂

∂t
[nifi]

}
col

= Σj,i′,j′

ˆ ∞
−∞

ˆ 4π

0

(nj′fj′ni′fi′ − njfjnifi) gi,jσi
′,j′

i,j dΩdVj (4.2)

As the two particles collide, either one can move through the four-dimensional ve-

locity and internal energy space, assuming one internal energy mode. This collision

cross section determines the rate at which internally elastic and inelastic collisions

occur within the �ow. Since the quantum step sizes between rotational energy states

increase as the quantum number increases [88], pure rotation-rotation energy trans-

fer, where the translational energy remains constant through the collision process, is

statistically infrequent, which results in the rotationally inelastic cross section always

being modeled with translational energy exchange.

If all collisions are assumed to be internally inelastic, which corresponds to a

rotational collision number of unity, and the velocity distribution function can be

considered Maxwellian, the �ow is in local thermodynamic equilibrium and both

translational and internal states can be described with one temperature. Although

the exact form of the di�erential cross section is not known, experimental measure-

ments at typical conditions signify that most collisions can be considered elastic with

about 20% of collisions being rotationally inelastic [89].

For most �ows of interest, the rotational quantum energy levels are much smaller

than the mean rotational energy and the rotational energy can be assumed to be

continuous and fully activated with very little loss of physical accuracy. This allows
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the triple summation in the collision integral shown in Eq. 4.2 over partner and

post-collision rotational states located in the collision term to be converted to a

triple integral over the continuous internal energy states which is shown in Eq. 4.3.{
∂

∂t
[nifi]

}
col

=

ˆ ∞
0

ˆ ∞
0

ˆ ∞
0

ˆ ∞
−∞

ˆ 4π

0

(nj′fj′ni′fi′ − njfjnifi) gi,jσi
′,j′

i,j dΩdVjdEjdEi′dEj′

(4.3)

Even if the exact form of the di�erential cross section was known, adding rotational

nonequilibrium physics to the Boltzmann equation increases the dimensionality of

numerically �nding a steady-state, deterministic solution from 6D to 7D for diatomic,

symmetric molecules. This signi�cantly increases the cost of obtaining deterministic

numerical solutions to the Boltzmann equation.

4.1.2 Rotational Relaxation in DSMC Methods

In a similar manner to how DSMC directly simulates rotationally elastic collisions

as described in Section 2.3.2, the DSMCmethod can also include rotationally inelastic

collisions. Physically, the probability of a collision being rotationally inelastic is

a ratio of the rotational inelastic cross section to the total collision cross section.

Although the exact form of the inelastic cross section is unknown, MONACO assumes

that the total cross section, given by the variable hard sphere (VHS) model, is

independent of the internal energy content and uses a phenomenological form of the

probability of a rotationally inelastic collision that only depends on total collision

energy between collision pairs, �rst proposed by Boyd [73] and shown in Eq. 4.4,

which is derived from the rotational collision number of Parker [89].

φROT (εc) =

[
1 + π

3/2Γ(ζ+2−ω)
2Γ(ζ+3/2−ω)

√
kT ∗s
εc

+ Γ(ζ+2−ω)
Γ(ζ+1−ω)

kT ∗s
εc

(
π2

4
+ π
)]

Z∞ROT,s

(4.4)

εc =
1

2
µg2 + εROT (4.5)



74

Here, T ∗s and Z
∞
ROT,s correspond to the constants in Parker's macroscopic model, ζ

is the number of internal degrees of freedom, ω is the viscosity temperature exponent,

k is the Boltzmann constant, and εc is the collision energy de�ned by Eq. 4.5. Here,

g is the relative velocity between collision partners, µ is the reduced mass of the

partners, and εROT is the available rotational energy in the collision. This form of the

inelastic probability is phenomenological and chosen for mathematical convenience

to match Parker's continuum model by satisfying Eq. 4.6.

〈PROT,s〉 =
1

ZROT,s

=
1

νsτROT,s

=

ˆ ∞
0

φROT,s (εc) f (εc) dεc (4.6)

This ensures that the variable probability of rotational energy relaxation can match

the macroscopic form of the rotational relaxation given by Parker and shown in

Eq. 4.7 when the energy distribution of colliding particles can be considered equilib-

rium.

ZROT,s =
Z∞ROT,s

1 + π3/2

2

(
T ∗s
TTRA

)1/2

+
(
π2

4
+ π
) ( T ∗s

TTRA

) (4.7)

Lumpkin et al. [90] found that the de�nitions of continuum and particle collision rates

di�er by a factor given by Eq. 4.8 where ζint,TRA is the number of internal degrees

of freedom based on the translational temperature and ω is the VHS temperature

exponent.

τ
DSMC

int =
τ

CFD

int

1 +
ζint,tra

4−2ω

(4.8)

In order to maintain consistency between microscopic and macroscopic models, the

suggested factor is used giving the �nal variable probability shown in Eq. 4.9.

φROT,FIN (εc) =[
1 +

ζint,tra

4−2ω

Z∞ROT,s

][
1 +

π3/2Γ (ζ + 2− ω)

2Γ (ζ + 3/2− ω)

√
kT ∗s
εc

+
Γ (ζ + 2− ω)

Γ (ζ + 1− ω)

kT ∗s
εc

(
π2

4
+ π

)]
(4.9)
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This probability is used in an acceptance-rejection algorithm for each DSMC

collision pair to determine if the pair undergoes rotation-translation relaxation. If

a collision pair is selected, the Larsen-Borgnakke [91] method is used to distribute

energy between available translational and rotational energy modes.

4.1.3 Rotational Relaxation in Continuum Methods

Derivation of a separate rotational energy equation follows the procedure of

Chang and Uhlenbeck which is listed in Ref. [15]. The local Maxwell-Boltzmann

probability density function, shown in Eq. 4.10, is now a function of both a trans-

lational temperature, TTRA, and a rotational temperature, TROT, which may or may

not be the same.

f 0 =

(
1

2πkTTRA

)3/2
1

kTROT

exp

(
−mc2

2kTTRA

− εROT

kTROT

)
(4.10)

ϕ1 = − 1

n

[√
2kTTRA

m
ATRA,i

∂ lnTTRA

∂xi
−
√

2kTTRA

m
AROT,i

∂ lnTROT

∂xi
−Bi,j

∂ci
∂xj

]
(4.11)

f(c, εROT)dcdεROT = f 0(c, εROT) [1 + ϕ1] dcdεROT

Now, six macroscopic variables de�ne the state of the gas at near collisional

equilibrium conditions, but there are only �ve (m, mc, and mc2/2 + εINT) collision

invariant terms. Therefore, the additional equation needed to represent the state

of the gas requires a model of the collision integral term in the Maxwell-Boltzmann

equation. An additional equation can be derived by setting the quantity of interest in

Maxwell's equation of change to the rotational energy, εROT, which results in Eq. 4.12

with the collision term now only signifying rotationally inelastic collisions.

∂

∂t
[nεROT] +

∂

∂xj
[ncjεROT] = ∆ [εROT]

Inel
(4.12)

Here, the spatial derivative results in a mean �ow term and a �uctuation term

that can be modeled with an internal heat �ux term and de�ning a speci�c internal
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energy as eROT = εROT/m results in Eq. 4.13.

∂

∂t
[ρeROT] +

∂

∂xj
[ρujeROT + qROT,j] = ∆ [εROT]

Inel
(4.13)

Physically, the rotationally inelastic collisions involve two forms of energy trans-

fer: transfer between rotational energies and transfer between translational and ro-

tational energy modes. As previously stated, pure rotation-rotation energy transfer

is very rare due to the rotational energy di�erence between levels varying as the

rotational energy of the particle increases. Assuming small departures from thermal

equilibrium, the rate of transfer of energy between translational and rotational modes

due to collisions can be modeled as Eq. 4.14 [15] where the rotational relaxation time,

τROT, is dependent on the inelastic cross section and macroscopic parameters.

∆ [εROT]
Inel
≈ ρ

e∗ROT − eROT

τROT

(4.14)

Again using Parker's model [89] for the rotational collision number, ZROT, the

rotational relaxation time can be evaluated using Eq. 4.15 where τcol is the mean

time between collisions.

τROT = ZROTτcol (4.15)

The mean collision time is the inverse of the mean collision frequency, ν, which

is straight forward to compute for a gas modeled using the VHS cross section

and macroscopic variables such as translational temperature and number density

as shown in Eq. 4.16. Here i ranges through the number of species, s is the species

of interest, dref is the reference diameter, n is the number density, µ∗ is the viscosity

at the reference temperature, Tref , and ω is the viscosity temperature exponent.

νs =
1

τcoll,s
=
∑
i

(
nid

2
ref,s,i

(
8πkTref,i
µ∗s,i

) 1
2
(
TTRA

Tref,i

)1−ωi

)
(4.16)
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This results in a �nal equation for the rate of change of rotational energy shown

in Eq. 4.17 which, coupled with the time rate of change of density, linear momentum,

total energy, and an equation of state, provides a su�cient number of equations to

describe the gas state within each control volume.

∂ρeROT

∂t
+∇ · (ρeROT

−→u ) = −∇ · (−→q rot) + ρ
e∗ROT − eROT

τROT

(4.17)

4.1.4 Comparison of Rotational Relaxation Models

In order to use full DSMC as a veri�cation tool of the MPC method, speci�cally

for the information transfer between the two methods and placement of the interface

locations between continuum and rare�ed �ow modules, models used to approximate

the physical processes in each �ow module must agree at the continuum limit. In

other words, if both CFD and DSMC �ow modules simulate a physical process in a

region of the �ow that is entirely continuum, they must remain consistent. If this

does not happen, di�erences in the prediction of the continuum region of the �ow

�eld could be attributed to either inconsistencies between the two models or discrep-

ancies in the implementation of the MPC method, but the exact cause can not be

determined. In order to ensure that the models used to approximate rotational re-

laxation in each �ow module are consistent, adiabatic rotational relaxation processes

are simulated using both MONACO and LeMANS.

Figure 4.1 compares one such case of the evolution of rotational and translational

temperatures as they approach equilibrium after being initialized to di�erent tem-

peratures. Despite di�erences in how relaxation is modeled, the two models remain

consistent at the continuum limit which results in excellent agreement of macroscopic

quantities.
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Figure 4.1: Comparison of an adiabatic rotational-translational relaxation process
predicted by DSMC and CFD

4.2 Modi�cations to the MPC Method

This subsection outlines the required changes to the MPC method to ensure con-

sistent and physically accurate simulation of �ows that can be in rotational nonequi-

librium in parts or all of the �ow �eld.

4.2.1 Continuum Breakdown and Interface Location

As mentioned in Sec. 3.2.1, previous work with simulation of perfect gas physics

indicates that the gradient length, local Knudsen number based on density, speed,

and translational temperature with a cuto� value of 0.05 adequately predicts the

onset of continuum breakdown and regions of the �ow where DSMC should be used

[80, 81, 66]. Since rotational temperature is also now a quantity of interest, the

gradient length Knudsen number based on rotational temperature with the same

breakdown parameter value is included as well.
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Now, in addition to ensuring that the velocity distribution function is near equi-

librium at the interface, the rotational energy distribution must also be near equi-

librium. This is required so that the distribution of internal energies assigned to

particles in DSMC boundary cells and relaxation rates calculated in both �ow solvers

remain consistent. In some regions of the �ow, the velocity distribution functions

may be very near equilibrium, while the rotational energy distribution function re-

quires more collisions to reach equilibrium. To ensure that the rotational energy

distribution function is near equilibrium, an additional breakdown parameter must

be applied that characterizes the degree that the rotational energy distribution func-

tion departs from equilibrium. The primary cause of the departure of the rotational

energy distribution function from Boltzmann is in regions where the �ow is highly

collisional and strong thermal relaxation takes place, such as the �ow directly be-

hind the bow shock in hypersonic �ow, where the density and translational energy

are large, but rotational relaxation is still signi�cant. To characterize this process,

the magnitude of the energy transferred by rotation-translation relaxation processes

is compared to the total amount of energy stored in the rotational energy mode which

results in a thermal breakdown parameter seen in Eq. 4.18. This added breakdown

parameter is of the same form suggested by Schwartzentruber et al. as described in

Ref. [66] and has been used in MPC simulations with a single temperature contin-

uum module. However, it is further relaxed to take into account the capability of

calculating rotational relaxation processes in the continuum solver and an absolute

value is employed to label both heating and cooling of the rotational energy mode.

KnROT−NEQ =
|TTRA − TROT|

2TROT

(4.18)

Figure 4.2 compares translational temperature predictions of the MPC method
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with (top) and without (bottom) the rotational nonequilibrium switch activated

along with full DSMC results.

Without the nonequilibrium switch, the interface location between CFD and

DSMC modules is located very near the shock. Since CFD does not contain the

physical accuracy required to model this portion of the rotational relaxation process

as the rotational energy distribution function is highly non-Boltzmann in this region,

the post shock temperatures are over predicted compared to full DSMC. With an

added rotational nonequilibrium breakdown parameter, the portion of the �ow �eld

modeled with the continuum solver is slightly decreased to only regions where the

continuum solver is physically valid and agreement between MPC and full DSMC

results is greatly improved. Velocity and rotational energy distribution functions are

sampled from the full DSMC solution at locations denoted as A and B in Fig. 4.2

along the edge of the interface location predicted by each MPC simulation. Figures

4.3(a) and 4.3(b), respectively, compare the velocity distribution functions and rota-

tional energy distribution function sampled from DSMC with equilibrium theory at

point A. The procedures used to generate these probability density functions are de-

scribed in Appendix B. Here, the equilibrium velocity distribution function is given

by Eq. 2.3, while the equilibrium rotational energy probability density function, as-

suming a continuous energy distribution that is fully excited, is given by Eq. 4.19

where εROT is the particle rotational energy, TROT is the rotational temperature which

is calculated using Eq. 4.20, and k is the Boltzmann constant.

f (εROT) dεROT =
1

kTROT

exp

(
−εROT

kTROT

)
dεROT (4.19)

TROT =
〈εROT〉
k

(4.20)
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Figure 4.2: Comparison of translational temperatures predicted by the MPC method
with (top) and without (bottom) the rotational nonequilibrium break-
down parameter compared with full DSMC computation of Mach 12 �ow
over a cylinder with a global Knudsen number of 0.01
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(a) Velocity

(b) Rotational Energy

Figure 4.3: Comparison of probability density functions predicted by DSMC and
equilibrium theory at point A shown in Figure 4.2.
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Although the predicted velocity probability density functions are in excellent

agreement with equilibrium theory, the rotational energy distribution function sig-

ni�cantly di�ers from equilibrium. In contrast, Figs. 4.4(a) and 4.4(b) compare the

velocity and rotational energy distribution functions, respectively, at the continuum

interface location computed with the added breakdown parameter at point B. At this

point in the �ow, both the velocity and rotational energy probability density func-

tions are in much better agreement with the equilibrium description and the models

used in the continuum solver are valid. Since the equilibrium rotational energy dis-

tribution function is calculated based on the average rotational energy, comparison

of higher order moments, such as the variance, calculated from sampled data and the

equilibrium distribution can be used as a measure of degree of rotational nonequi-

librium. For rotational energy, the variance of the Boltzmann energy probability

density function is shown in Eq. 4.21.

s2 = (kTROT)2 (4.21)

At pointA, the sampled variance of the rotational energy probability density function

di�ers by nearly 25% from equilibrium, while the sampled variance di�ers by less than

10% from the equilibrium value at point B.

By applying a breakdown parameter that ensures that the rotational energy dis-

tribution function is near equilibrium, internal energies assigned to particles in DSMC

boundary cells are in excellent agreement with the rotational energies predicted in a

full DSMC simulation method. This ensures that the energies assigned to particles

generated in the MPC method along the rare�ed-continuum interface are consistent

with the full DSMC simulation. This results in a �nal breakdown parameter shown
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(a) Velocity

(b) Rotational Energy

Figure 4.4: Comparison of probability density functions predicted by DSMC and
equilibrium theory at point B shown in Figure 4.2.
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in Eq. 4.22.

Br = max
(
KnGL−ρ, KnGL−TTRA

, KnGL−TROT
, KnGL−|V |, KnROT−NEQ

)
(4.22)

4.2.2 Information Transfer

As with the other primitive values of ρ, u, and TTRA, state-based coupling is

used to transfer the evolution of rotational temperature between CFD and DSMC

�ow modules. Now instead of using the combined translational-rotational tempera-

ture from the continuum solver to assign rotational energies, the separate rotational

temperature is used, along with the inverse transform sampling of the Boltzmann

rotational energy probability density function which is shown in Eq. 4.19 to assign

the rotational energies to DSMC particles. Rotational temperatures are calculated

at each time step from the DSMC particle rotational energy using Eq. 4.23 and

the subrelaxation average which is shown in Eq. 3.18 is applied to the rotational

temperature.

TROT =
1

kNreal

Nrc∑
rc=1

NPrc∑
Prc=1

WrcεROT,Prc (4.23)

4.3 Veri�cation and Validation of the MPC Method

The goal of the MPC method is to be able to reproduce full DSMC results to

within 5% at a fraction of the computational cost. In order to verify the imple-

mentation of modeling a separate rotational energy mode within the MPC method,

simulation of Mach 12 �ow over a cylinder with free stream global Knudsen num-

bers of 0.01 and 0.002 are performed with the MPC method. The MPC results are

compared with full CFD predictions and veri�ed with full DSMC predictions. In

addition, simulations of Mach 20 �ow over a planetary probe with a global Knudsen

number of 0.01 are performed with DSMC, CFD, and the MPC method. Again, the
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MPC method is veri�ed with full DSMC simulation results, and all three methods

are compared to available experimental measurements.

4.3.1 Flows Over a 2D Cylinder

Flow Conditions

The implementation of rotational relaxation in the MPC method is evaluated

with simulation of hypersonic �ow of molecular nitrogen about a cylinder with a free

stream Mach number of 12 at two Knudsen numbers. The free stream temperature

is TTRA,∞ = TROT,∞ = 217.5K at a free stream velocity of U∞ = 3, 608ms−1. The

cylinder wall temperature is set to TW = 1, 000K with full di�use re�ection in DSMC

simulations and a no-slip, isothermal condition in CFD simulations. The free stream

density is set to two di�erent values of ρ∞ = 7.48 × 10−5 kgm−3 and ρ∞ = 3.74 ×

10−4 kgm−3 which correspond to global Knudsen numbers based on cylinder diameter

of Kn∞ = 0.01 and Kn∞ = 0.002 and are also referred as case CM12K01 and

CM12K002, respectively. The diameter of the cylinder simulated is d = 8 cm. A

constant time-step of 1.5 × 10−8 s and 4.0 × 10−9 s are used in the DSMC method

at global Knudsen numbers of Kn∞ = 0.01 and Kn∞ = 0.002, respectively, while a

maximum CFL number of 25 is used in all CFD simulations.

Figure 4.5 shows the �nal interface locations between rare�ed and continuum

solvers for the two cylinder �ow conditions used to verify the implementation of the

rotational relaxation models in the MPC method. For �ow with a global Knudsen

number of 0.01, a large portion of the �ow �eld, such as the thick bow shock, bound-

ary layer, and wake region, is rare�ed. In contrast, only the near wake and thin

boundary layer are rare�ed at the lower Knudsen number. Even though the interior

of the bow shock is highly nonequilibrium at any density, previous work [66] has

shown that using DSMC in this region is not required for accurate prediction of �ow
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Figure 4.5: Comparison of the �nal continuum-rare�ed interface locations for Mach
12 �ow over a cylinder at global Knudsen numbers of 0.002 and 0.01.

�eld properties behind the shock if the nonequilibrium region due to the shock is

completely disconnected from the rare�ed region due to the boundary layer, so the

MPC simulation does not label this region as a DSMC region. This is performed in

the code by using the gradient length Knudsen number based on pressure, shown in

Eq. 4.24, as a shock detector where λ is the local mean free path and p is the local

pressure.

KnGL−P = λ
∇p
p

(4.24)

Flow Field Properties

Figure 4.6 qualitatively compares the translational temperature contours calcu-

lated using full DSMC, full CFD, and the MPC method along with the interface

location between the DSMC and CFD modules for �ow over a cylinder with a global

Knudsen number of 0.01. Overall, the MPC method is able to reproduce full DSMC

results while limiting the DSMC computation to areas that are rare�ed, such as the
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Figure 4.6: Comparison of translational temperature contours predicted by DSMC,
CFD, and the MPC method for case CM12K01

di�use shock, boundary layer, and near wake region. Even in regions of the �ow

where the continuum-based CFD module is used, the MPC method has improved

the agreement with full DSMC over full CFD. This is because the DSMC module has

shifted the solution and provides an improved boundary condition to the CFD mod-

ule. The largest discrepancy between full DSMC and the MPC results, which occurs

far away from the body, lies below 4%. Figure 4.7 compares the rotational temper-

ature contours predicted by DSMC, CFD, and the MPC method. Again, agreement

is very good with the largest di�erence of less than 3%, occurring far away from the

body.

Figures 4.8 and 4.9, respectively, compare the translational and rotational tem-

perature contours predicted by DSMC, CFD, and the MPC method for the near

continuum case with a global Knudsen number of 0.002. The largest discrepancy of
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Figure 4.7: Comparison of rotational temperature contours predicted by DSMC,
CFD, and the MPC method for case CM12K01

14% is located in the shock interior, where the CFD module is used despite the �ow

being highly nonequilibrium. Di�erences between MPC and DSMC results in the far

wake region, which are located entirely downstream of the body in supersonic �ow,

remain within 8% for translational temperature and 5% for rotational temperature.

Previous studies [66, 5] and the proceeding subsection show that these di�erences in

the shock structure and far wake have very little e�ect on the prediction of surface

quantities. In addition, the MPC results remain within 2% of full DSMC results

throughout the rest of the shock layer and near wake region, which directly improves

agreement of surface predictions made by the MPC method with full DSMC over

full CFD.

Macroscopic quantities are extracted along two lines (shown in Fig. 4.5) located

at 45◦ and 135◦ from the stagnation streamline. Figure 4.10 shows the predictions
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of translational temperature, rotational temperature, and mass density along a 45◦

extraction line for �ow with a global Knudsen number of 0.01. There is very good

agreement between full DSMC and the MPC method along the entire extraction line.

Especially in highly nonequilibrium regions where large disagreement between full

CFD and full DSMC is observed, the di�erence between MPC and DSMC results

is nearly indistinguishable. Even in regions where the CFD module is used, the

MPC method has improved agreement with full DSMC compared to the initial full

CFD solution. Figure 4.11 shows the comparison of �ow variables along the 135◦

extraction line labeled in Fig. 4.5. In general, full DSMC and CFD are in close

agreement along most of the extraction line and the MPC method maintains this

same level of agreement. However, near the body, full DSMC and CFD are not

in good agreement, while the MPC solution remains in excellent agreement with

the full DSMC solution. This improvement near the body has a direct e�ect on

predicted surface property agreement with full DSMC which will be shown in the

proceeding subsection. Figure 4.12 compares the variation of macroscopic quantities

predicted by DSMC, CFD, and the MPC method along a 45◦ extraction line for

the Kn∞ = 0.002 �ow condition. At this �ow condition, the shock was simulated

using CFD in the MPC simulation. Although there are some disagreements in shock

structure with the full DSMC solution, all three methods are in very good agreement

from the post shock condition to midway through the thermal boundary layer. Since

the CFD module does not accurately model the natural slip at this condition, full

DSMC and CFD are not in agreement in the near wall region. However, the cells

very near to the surface are automatically labeled as DSMC cells with the breakdown

parameter and the MPC results are able to reproduce full DSMC throughout the

entire boundary layer. Figure 4.13 shows the comparison of macroscopic quantities
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Figure 4.8: Comparison of translational temperature contours predicted by DSMC,
CFD, and the MPC for case CM12K002

along the 135◦ extraction line. As in the higher Knudsen number case, both CFD and

DSMC are in very good agreement far away from the body, and the MPC method

maintains this level of agreement. However, near the wall, where the �ow is highly

nonequilibrium, full DSMC and CFD are in poor agreement while the MPC method

maintains excellent agreement with the full DSMC results.

Surface Properties

For many hypersonic �ow problems of interest, accurate prediction of surface

properties has a strong impact on vehicle design. Predictions of heat transfer, shear

stress, and pressure from full DSMC, full CFD, and the MPC method are compared.

Equations 4.25, 4.26, and 4.27, respectively, show the de�nitions of the surface pres-

sure, shear stress, and heat transfer coe�cient used to compare the surface properties

predicted by the simulation methods where p is the pressure at the wall, p∞ is the
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Figure 4.9: Comparison of rotational temperature contours predicted by DSMC,
CFD, and the MPC for case CM12K002

Figure 4.10: Comparison of temperatures and density along a 45◦ extraction line for
case CM12K01
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Figure 4.11: Comparison of temperatures and density along a 135◦ extraction line
for case CM12K01

Figure 4.12: Comparison of temperatures and density along a 45◦ extraction line for
case CM12K002
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Figure 4.13: Comparison of temperatures and density along a 135◦ extraction line
for case CM12K002

free stream pressure, τ is the shear stress at the wall, q is the heat transfer to the

wall, ρ∞ is the free stream density, and u∞ is the free stream velocity.

Cp =
p− p∞
1
2
ρ∞u2

∞
(4.25)

Cτ =
τ

1
2
ρ∞u2

∞
(4.26)

Ch =
q

1
2
ρ∞u3

∞
(4.27)

Figure 4.14 compares the surface pressure and heat transfer coe�cient on the cylinder

surface predicted by DSMC, CFD, and the MPC method for case CM12K01. All

three methods remain within 5% of each other in the fore body region while the full

CFD solution deviates from the full DSMC and MPC results as the �ow expands

around the cylinder. The largest di�erence between DSMC and CFD is located in

the after body of the cylinder where CFD over predicts the surface pressure and
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Figure 4.14: Comparison of surface quantities about the cylinder predicted by
DSMC, CFD, and the MPC method for case CM12K01

heat transfer by over 200%. In contrast, the MPC method remains in very good

agreement with DSMC along the entire cylinder body. Figure 4.15 compares the

shear stress at the surface of the cylinder predicted by DSMC, CFD, and the MPC

method for case CM12K01. Again, all three methods are in very good agreement

along the fore body, but full DSMC and CFD begin to di�er as the �ow expands

around the cylinder and nonequilibrium e�ects become signi�cant. In addition, the

points where the shear stress goes to zero can be used to compare the relative size of

the recirculation zone in the near wake region. Full CFD over predicts the size of the

recirculation zone by 32% relative to full DSMC, while the MPC method predicts a

recirculation zone that di�ers from full DSMC by only 0.7%.

Figure 4.16 shows the surface pressure and heat transfer coe�cient predicted by

DSMC, CFD, and the MPC method for case CM12K002. For this higher density

�ow, full CFD remains in agreement with both DSMC and the MPC results along a
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Figure 4.15: Comparison of surface quantities about the cylinder predicted by
DSMC, CFD, and the MPC method for case CM12K01

Figure 4.16: Comparison of surface quantities about the cylinder predicted by
DSMC, CFD, and the MPC method for case CM12K002
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Figure 4.17: Comparison of surface quantities about the cylinder predicted by
DSMC, CFD, and the MPC method for case CM12K002

larger portion of the cylinder, but still has large disagreement in the rare�ed wake.

Full CFD over predicts the DSMC heat �ux by up to 40% while it under predicts

full DSMC surface pressure by up to 70%. Interestingly, full CFD slightly under

predicts the surface heat �ux along the edge of the recirculation zone which occurs

at angles greater than 150◦. This could be due to the under prediction in the size of

the recirculation zone predicted by full CFD relative to the full DSMC result. Again,

the MPC method remains in excellent agreement with full DSMC predictions along

the entire surface with di�erences of less than 1.5% for both surface pressure and

heat transfer. Figure 4.17 compares the surface shear stress predicted by DSMC,

CFD and the MPC method for case CM12K002. Although the di�erence between

full CFD and DSMC has decreased with the increase in free stream density, there

is still some disagreement in the magnitude in the wake region. Interestingly, now

full CFD under predicts the size of the recirculation zone by over 7% relative to full
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Table 4.1: Computational performance and memory requirements for the MPC
method

Case
Computational

Cost(Speedup)
Ideal Speedup Memory Usage

CM12K01 34.% (2.94×) 2.66 28%

CM12K002 3.56% (28.1×) 17.6 75%

DSMC, while the MPC method is within 1.5% of full DSMC.

Computational Performance

The MPC method reproduces full DSMC results by using DSMC in rare�ed re-

gions while decreasing the computational cost by limiting DSMC to only regions that

are in collisional nonequilibrium. Continuum regions are computed using an implicit

Navier-Stokes solver. By loosely coupling the methods and studying steady-state

�ows, the time-step used by CFD can be over 100 times larger than the time-step

required by DSMC for the corresponding �ow. In addition, decoupling of the mesh

densities allows CFD to be unrestricted by DSMC cell size requirements, and can

use cells that are up to 18 times larger in area. This signi�cantly decreases the com-

putational time and memory usage required by the MPC method to reproduce full

DSMC results. The decreases in computational cost of the MPC method compared

to full DSMC are summarized in Table 4.1. To make a fair comparison, the number

of sample time-steps after reaching steady-state are the same for both full DSMC and

the MPC DSMC module. In addition, all simulations are performed in parallel with

the number of processors selected such that the average number of particles on each

processor remains the same for each simulation method. Here, the actual speedup is

de�ned as the ratio of the CPU time required for the full DSMC calculation to the

CPU time required for the MPC method calculation. The ideal speedup is de�ned
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as the ratio of particles used in a full DSMC simulation compared to the number

in the corresponding MPC simulation. Since the computational cost of a DSMC

simulation nearly scales linearly with the number of particles in the simulation, this

should be the upper limit for computational speedup for that problem. The MPC

method actually outperforms the ideal speedup ratio. This is because the unsteady

portion of the MPC computation is much less than that of the corresponding DSMC

simulation since MPC simulations begin from a fully converged CFD solution. The

memory usage is de�ned as the ratio of the memory used by an MPC simulation to

the memory used by the corresponding DSMC simulation. Here, the MPC method

requires signi�cantly less memory compared to full DSMC for the higher Knudsen

number case, and moderately less for the lower Knudsen number case.

The computational requirements for the low Knudsen case can be directly com-

pared to published requirements [4] for the serial implementation of the MPC method

with a single temperature describing translational and rotational energy modes in

the continuum model. That work found that the MPC method without rotational

nonequilibrium modeled in the continuum module achieved a speedup factor of 10.6

relative to full DSMC. For this case, the additional capability of modeling rotational

nonequilibrium within the continuum module has reduced the cost of the MPC sim-

ulation by nearly a factor of three. There are two factors that reduce the cost of the

MPCmethod despite the new overhead of simulating an additional conservative equa-

tion throughout the entire continuum region. First, the initial full continuum result

contains a higher level of physical accuracy which reduces the number of iterations

for an MPC simulation to reach the fully nonequilibrium simulation result. Secondly,

with the relaxation of the breakdown parameter associated with the simulation of

rotational nonequilibrium in the continuum solver, the size of the DSMC region is
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reduced. In particular, the recompression wave in the far wake region changes from

being labeled rare�ed to continuum. This has the net result of decreasing the number

of DSMC simulators in the MPC simulation by nearly 40%.

4.3.2 Flow Over an Axi-Symmetric Planetary-Probe

Flow Conditions

Comparison of predictions of �ow over a sting-mounted, 70-degree blunted sphere

cone with full DSMC, full CFD, and the MPC method is performed. The geometry

and �ow conditions correspond to the moderate Knudsen number experimental test

case performed in the SR3 wind tunnel in Meudon, France, with a probe diameter

of 5 cm [92]. The free stream gas is N2 with a velocity of 1502 m s−1 and equilibrium

temperature of 13.6 K which corresponds to a Mach number of 20. The wall tem-

perature is assumed to remain constant at 300 K, while the free stream density is

5.19 × 10−5 kg m−3 which corresponds to a global Knudsen number of 0.01. Figure

4.18 shows the continuum-rare�ed interface location predicted and the variation in

mean free path over the planetary probe. Due to the overlap region, the interface lo-

cation correctly moves to the true continuum-rare�ed boundary as the MPC method

progresses towards the �nal rare�ed �ow result. The large variation in �ow length

scales about the probe shows that this test case is well suited for use to verify and

validate the hybrid method.

Flow Field Properties

Figures 4.19 and 4.20, respectively, compare translational and rotational tem-

perature contours predicted by full DSMC, full CFD, and the MPC method. In

general, the MPC method has improved agreement with full DSMC results from the

initial CFD result across the entire �ow �eld. Even in regions where the CFD mod-
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Figure 4.18: Interface location and variation of mean free path for Mach 20 �ow
around a sting-mounted, planetary probe with a global Knudsen number
of 0.01

ule is used, the MPC method has obtained improved boundary conditions from the

DSMC solver which has allowed the CFD solver to shift its result to achieve excellent

agreement with full DSMC.

Figures 4.21 and 4.22 illustrate the prediction of �ow �eld properties made by full

DSMC, full CFD, and the MPC method along the extraction lines shown in Fig. 4.18.

In addition to current MPC results, previous temperature results obtained with the

MPC method using a single temperature model within the CFD solver are included

[5]. To compensate for the inability to model rotational nonequilibrium within the

continuum solver, this previous MPC simulation used a more restrictive rotational

nonequilibrium parameter in compression regions shown in Eq. 3.7 [5, 67]. Vertical

lines denote the interface location for the corresponding MPC result. In general,

both MPC results remain in excellent agreement with the full DSMC predictions
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Figure 4.19: Comparison of translational temperature by DSMC, CFD, and the MPC
method

Figure 4.20: Comparison of translational temperature by DSMC, CFD, and the MPC
method
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along C1, while the MPC simulation with rotational nonequilibrium included in

CFD can simulate a larger region of the �ow with CFD which directly decreases the

number of DSMC particles required and increases the computational e�ciency of the

MPC method relative to full DSMC. Although both MPC results remain in excellent

agreement with DSMC very near the surface along C2, the MPC results with a single

temperature describing translational and rotational energy modes within the CFD

module can not accurately model the strong thermal nonequilibrium that exists along

nearly the entire extraction line. In contrast, the MPC prediction with the ability

of modeling a separate rotational temperature within the CFD solver remains in

excellent agreement with full DSMC along the entire extraction line. Again, the

DSMC region simulated using the MPC method with the ability to model rotational

nonequilibrium within the CFD solver is smaller due to the less restrictive breakdown

parameter.

Figure 4.21: Temperature and density predicted by DSMC, CFD, MPC (Rot. Neq.),
and the MPC method (Rot. Eq.) along C1
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Figure 4.22: Temperature and density predicted by DSMC, CFD, MPC (Rot. Neq.),
and the MPC method (Rot. Eq.) along C2

Probability Density Functions

Figures 4.23 and 4.24, respectively, compare velocity and rotational energy prob-

ability density functions predicted by full DSMC, full CFD, and the MPC method

at point A shown in Fig. 4.19. Due to the high degree of collisional nonequilibrium

within the shock, the CFD velocity distribution function, which is generated from

gradients and the �rst order Chapman-Enskog expansion, does not contain su�cient

information to correctly generate the velocity distribution function predicted by full

DSMC. In contrast, the MPC method is able to remain in very good agreement

with DSMC throughout the entire velocity space. Despite the macroscopic rota-

tional temperature predicted by CFD being within 5% of the full DSMC result, the

rotational energy distribution function predicted by full CFD is in poor agreement

with the DSMC result throughout the entire rotational energy space. Similarly to
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Figure 4.23: Comparison of velocity distribution functions predicted by DSMC,
CFD, and the MPC method within the bow shock

the velocity distribution function, the MPC method remains in excellent agreement

with full DSMC results for the rotational energy probability density function.

Surface Properties

Figure 4.25 compares the surface coe�cient of heat �ux, de�ned in Eq. 4.27,

predicted by full DSMC, full CFD, and the MPC method with available experimental

measurements. Along the fore body where the �ow is highly collisional, all three

methods are in good agreement with each other and the experimental measurements.

Despite this highly collisional �ow, CFD still slightly over predicts DSMC and MPC

results. This is due to the inability to correctly model the Knudsen layer within

the CFD solver. As the �ow expands around the corner, full CFD over predicts

both DSMC and experimental measurements by over an order of magnitude. In

contrast, the MPC method remains in good agreement with both the experimental
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Figure 4.24: Comparison of rotational energy distribution functions predicted by
DSMC, CFD, and the MPC method within the bow shock

measurements and the full DSMC results. Similarly, the MPC method remains in

excellent agreement with full DSMC and experimental measurements along the sting

mount, while full CFD over predicts full DSMC along the entire sting mount.

Computational Performance

The MPC method reproduces full DSMC results by using DSMC in rare�ed re-

gions while decreasing the computational cost by limiting DSMC to only regions that

are in collisional nonequilibrium. Continuum regions are computed using an implicit

Navier-Stokes solver that can consistently model moderate rotational nonequilibrium.

Table 4.2 summarizes the computational performance and memory requirements of

the MPC method relative to full DSMC at this �ow condition. Again, the number of

DSMC samples are kept constant between MPC and full DSMC simulations, while

parallel e�ciency was similar by setting the �nal number of particles on each pro-
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Figure 4.25: Surface heat transfer along planetary probe

Table 4.2: Computational performance and memory requirements for the MPC
method.

Kn
Computational

Cost (Speedup)
Ideal Speedup Memory Usage Initial CFD

0.01 60.% (1.67x) 1.65 130% 3.71%

cessor to be the same for both simulations. Despite the CFD module requiring a

non-negligible amount of time within the MPC method for this test case, the ideal

speedup was still exceeded due to the reduction in the number of DSMC iterations

required to reach steady-state. In addition, this speedup can be compared to previ-

ous results obtained with the MPC method that used a single temperature model in

the CFD module and a correspondingly more restrictive rotational nonequilibrium

breakdown parameter within compression regions. Schwartzentruber et al. [5] found

a relative speedup of 1.52× using a single temperature within the CFD module,
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while this work �nds a relative speedup of 1.67x using the same mesh and DSMC

parameters. In addition, it should be noted that the MPC simulation with a sin-

gle temperature modeled in the continuum solver was performed in serial and did

not include the corresponding parallel overhead. Despite this extra overhead, the

current simulation still outperforms the previous results. This improved e�ciency

is directly due to the reduction in the number of DSMC particles required by the

MPC method due to the ability to model moderate rotational nonequilibrium within

the CFD solver. The overhead of solving an extra conserved equation in each CFD

cell is outweighed by the decrease in computational cost of simulating fewer DSMC

particles. The modest speedup factor achieved for this test case is a result of the fact

that the �ow is highly rare�ed and only a small region of the �ow can be simulated

with the continuum module. Due to both CFD and DSMC solvers using the same

mesh density, the MPC method required moderately more memory compared to full

DSMC.

4.4 Summary and Conclusions from E�ects of Rotational En-

ergy Nonequilibrium

The MPC method has been extended to simulate partially rare�ed, hypersonic

�ows that exhibit thermal nonequilibrium between translational and rotational en-

ergy modes. An overview of the mathematical models used to describe �ows that

contain such physical phenomena has been provided. Comparison of physical re-

laxation models in each simulation module has been performed and changes to the

MPC method to accommodate the inclusion of rotational energy nonequilibrium

have been performed. Veri�cation of the implementation has been performed by

comparing MPC simulation results to those from full DSMC simulations. Where
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available, MPC simulation results have also been compared to limited experimental

measurements.

Three important conclusions can be drawn from the implementation and study

of the e�ects of rotational energy nonequilibrium in the MPC method.

1. An implementation of a separate rotational energy equation within the con-

tinuum module can be coupled to a DSMC module within the MPC method

provided the following considerations are made. First, the physical models de-

scribing relaxation processes in each simulation method should agree at the

continuum limit. This allows full DSMC simulation results to be used as a

veri�cation tool where the uncertainty due to physical models is minimized.

Next, the breakdown parameter associated with rotational nonequilibrium can

be relaxed compared to the previous MPC simulation technique. However, it

is important to continue to analyze very strong rotational energy relaxation

processes with the DSMC module in order to avoid introducing physical in-

consistencies in the description of the rotational energy probability density

function.

2. The inclusion of modeling of rotational energy nonequilibrium within the con-

tinuum module has overall increased the agreement between predictions made

by full DSMC and the MPC method. This is directly due to an increase in

the physical accuracy of the continuum solver that can model the rotational

relaxation processes associated with the strong expansion around hypersonic,

blunt bodies with a high level of physical accuracy.

3. Despite the overhead of solving an additional conservation equation through-

out the entire continuum region, the inclusion of rotational relaxation within
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the continuum module has resulted in a net decrease in computational cost

relative to MPC simulation requirements with a single temperature describing

translational and rotational energy modes in the continuum solver. This is due

to two factors. First, the increased physical accuracy of the initial continuum

prediction has decreased the total number of iterations required by the MPC

method to reach the nonequilibrium, steady-state solution. In addition, the

increased physical accuracy has reduced the size of the �ow domain that must

be simulated with the DSMC module.



CHAPTER V

E�ects of Vibrational Energy Nonequilibrium

As �rst outlined in Sec. 1.2, for �ow over the majority of hypersonic vehicles

�ying through the atmosphere, the enthalpy of the free stream is su�ciently high

that excitation of vibrational modes occurs in the heated shock layer. Accurate de-

scription of this �ow process is important to maintain high predictive capabilities

of the vehicle surface properties with the MPC method. For cases that include re-

gions of the �ow that are rare�ed, the Dahmköhler number for vibrational relaxation

processes is less than or on the order of unity, such that an accurate description of

the entire vibrational relaxation process (as opposed to the vibrational energy mode

being excited to maintain equilibrium with translational and/or rotational energy

modes) is necessary. This chapter will outline the extension of the MPC method to

include vibrational energy excitation that may or may not be in equilibrium with

other energy modes. First, an overview of the extension of mathematical models

and numerical methods required to describe vibrational energy nonequilibrium is

provided, speci�cally the selection of vibrational relaxation models used in each sim-

ulation method that remain consistent at the continuum limit. Next, a description of

the changes to the MPC method necessary to include vibrational energy excitation is

given, including important changes to the information transfer procedure to reduce

111
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the e�ect of high statistical scatter in regions where the vibrational temperature is

much less than the characteristic temperature for vibration (θVIB). Then, the MPC

method is applied to hypersonic �ow over a two-dimensional cylinder, compared to

full CFD predictions, and veri�ed with full DSMC simulation results. Finally, a sum-

mary of the important conclusions from the study of inclusion of vibrational energy

excitation in the MPC method to simulate partially-rare�ed, hypersonic �ows are

reviewed.

5.1 Extension of Physical Models

Extension of the mathematical and numerical models required to include vibra-

tional energy excitation and nonequilibrium within an MPC method are �rst dis-

cussed. Extension of the Boltzmann equation, its relevance to the development of

vibrational collision models in DSMC, and an added conservation equation to model

vibrational energy nonequilibrium within the Navier-Stokes equations are outlined.

Comparison of the vibrational energy relaxation models is performed to verify that

the continuum and rare�ed relaxation models remain consistent at the continuum

limit, and an example of one such simulation is shown.

5.1.1 Extension of the Boltzmann Equation

In the same manner outlined in Sec. 4.1.1, the general Boltzmann equation (as

seen in Eq. 2.1) can be extended to include internal, quantized energy by modeling

the rate of change of the probability density function, fi(x, c, t, Ei), for each quantum

state i, as �rst shown in Eq. 4.1 and repeated below.

∂

∂t
[nifi] + cm

∂

∂xm
[nifi] =

{
∂

∂t
[nifi]

}
col

(4.1)



113

Now the collision integral, shown in Eq. 4.2, must include a collision cross section,

σi
′,j′

i,j , that is not only dependent on the velocity, but the initial (i, j) and �nal (i′, j′)

vibrational quantum states of the two particles.{
∂

∂t
[nifi]

}
col

= Σj,i′,j′

ˆ ∞
−∞

ˆ 4π

0

(nj′fj′ni′fi′ − njfjnifi) gi,jσi
′,j′

i,j dΩdVj (4.2)

Identical to the modeling of an excited rotational energy mode with the Boltz-

mann equation, as the two particles collide, either one can move through the four-

dimensional velocity and internal energy space, assuming one internal energy mode

and the collision cross section determines the rate at which internally elastic and

inelastic collisions occur within the �ow. Unlike the rotational energy mode, the

internal quantum energy jump between levels associated with vibrational energy is

usually not small compared to the energy content of the �ow. Therefore, assuming

a fully excited state and a continuous energy distribution function would be inap-

propriate and introduces signi�cant physical error. Therefore, the probability den-

sity function remains quantized to maintain the physical accuracy of the vibrational

energy model and no further simpli�cation of the collision integral within a kinetic

method is appropriate. It is important to note that the addition of a quantized inter-

nal energy, such as vibrational energy, does not directly increase the dimensionality

of the Boltzmann equation. Instead, it introduces complexity of the mathematical

model by requiring a solution of Nv coupled six-dimensional equations where Nv is

the number of vibrational energy levels. For typical diatomic species in air, there

are about 30-40 vibrational levels before the energy available in the vibrational en-

ergy mode is su�cient to spontaneously dissociate the molecule. Therefore, inclusion

of vibrational excitation increases the computational expense of obtaining a deter-

ministic numerical solution to the Boltzmann equation by a factor between 30 and
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40.

Vibrational energy is typically modeled with the simple harmonic oscillator ap-

proximation, so that the energy jump between vibrational levels remains constant at

all vibrational levels. This is consistent with using the Born-Oppenheimer approxi-

mation for internal energy states where vibrational energy states are considered to be

decoupled from the rotational and electronic energy states of the molecule [88]. This

assumption allows vibration-translation, vibration-rotation, and vibration-vibration

energy transfer to occur; however in this work, vibration-translation relaxation is

assumed to be the dominant energy transfer method and the other two transfer

processes are ignored.

5.1.2 Vibrational Relaxation in the DSMC Method

Similar to rotational relaxation, modeling of vibrational relaxation in the DSMC

method assumes that the total collision cross section is independent of vibrational

energy, and the vibrationally inelastic cross section is a fraction of this total cross

section. Therefore, vibration-translation relaxation modeling processes are applied

probabilistically to the collision partners within the DSMC collision routine to di-

rectly simulate the physics of the collision integral that is shown in Eq. 4.2.

The DSMC module used in this work has two di�erent models available to sim-

ulate the vibration-translation relaxation process. The �rst is a phenomenological

model based on the method described by Boyd [93] that calculates a variable prob-

ability of a vibrationally inelastic collision occurring based on the relative velocity

between two colliding particles. First, separate phenomenological variable probabil-

ities that are based on continuum relaxation times, that are described in Sec. 5.1.3

and have been proposed by Millikan and White [94] and Park [95], are computed.
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The form of the Millikan and White variable probability is given by Eq. 5.1 where

Zo, α and g∗ are found from VHS parameters and by evaluating Eq. 5.2 such that

the relaxation process reproduces the established macroscopic relaxation times under

continuum conditions.

φ
MW

(g) =
1

Zo
gα exp

(
−g∗

g

)
(5.1)

1

τ
MW

νs
=

ˆ ∞
0

φ
MW

(g) f (g) dg (5.2)

Again, the collision rate, νs, can be calculated from the VHS collision model using

Eq. 4.16 and is repeated below.

νs =
1

τcoll,s
=
∑
i

(
nid

2
ref,s,i

(
8πkTref,i
µ∗s,i

) 1
2
(
TTRA

Tref,i

)1−ωi

)
(4.16)

However, the analytical evaluation of the integral can only be found approximately

using the method of steepest descent. This approximation can result in errors in the

e�ective relaxation rate in the DSMC method that may not agree with continuum

rates at the continuum limit. Further details of these errors are shown later in this

chapter. In a similar manner, an instantaneous probability can be formulated for

Park's high temperature correction such that it satis�es Eq. 5.3.

1

τ
P
νs

=

ˆ ∞
0

φ
P

(g) f (g) dg (5.3)

The total probability for a vibrationally inelastic collision can be formulated from

the two variable probabilities as shown in Eq. 5.4.

φtot =
φ

MW
φ

P

φ
MW

+ φ
P

(5.4)

Similar to a correction proposed by Lumpkin et al. [90] for rotational relaxation pro-

cesses, the Gimelshein [96] correction factor, shown in Eq. 5.5, is applied to all DSMC

vibrational relaxation times to account for di�erences in the de�nition of relaxation
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time used by continuum and kinetic methods and to minimize inconsistency between

the two modules in the MPC method at the continuum limit.

τ
DSMC

TRA−VIB = τ
CFD

TRA−VIB

ηTRA

ηTRA + 1
2
η2

VIB,TRA exp (θVIB/TVIB)
(5.5)

This results in the �nal probability of a particle collision pair experiencing a vibra-

tional relaxation process given by Eq. 5.6 that is used within the DSMC �ow module.

Full details of the implementation of the variable probability vibration-translation

relaxation model can be found in Ref. [74].

φtot,fin =

(
φ

MW
φ

P

φ
MW

+ φ
P

)(
ηTRA

ηTRA + 1
2
η2

VIB,TRA exp (θVIB/TVIB)

)
(5.6)

Approximations to evaluation of the integral in Eq. 5.2 can cause discrepancy in

relaxation times predicted by CFD and DSMC in regions of the �ow that can be

considered continuum [97, 98, 3]. Although correction factors have been proposed

and used by other researchers, they are empirical in nature and currently can only

be applied on average over the entire �ow �eld.

To resolve these discrepancies, an additional vibrational energy relaxation model

is implemented within the DSMC module that calculates the probability of vibra-

tionally inelastic collisions in each cell based on cell-averaged quantities and applies

the same probability to every collision pair in the cell. This method uses the macro-

scopic translational temperature to calculate the continuum relaxation time using

Eq. 5.15, which is explained in the proceeding subsection, and applies the Gimelshein

correction factor to �nd the DSMC relaxation time. The average probability, 〈P 〉
VIB

,

within the cell is then calculated using Eq. 5.7 and applied to all collisions in the

cell. The macroscopic cell translational temperature that is used to compute the

relaxation times is tracked in each DSMC cell using the subrelaxation procedure in
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the DSMC module that has been described in Sec. 3.2.3.

〈P 〉
VIB

=
1

τDSMC

VIB,s
νs

(5.7)

For the simulation of either vibration-translation relaxation model, an acceptance-

rejection routine is used to probabilistically simulate the relaxation process. Then,

energy is distributed among available translational and vibrational energy modes

using a modi�ed version of the Larsen-Borgnakke [91] procedure that accounts for

quantized vibrational levels.

5.1.3 Vibrational Relaxation in Continuum Methods

Despite similar �nal results, the derivation of a continuum description of a sepa-

rate vibrational energy mode is unlike the derivation of the rotational energy equation

used in continuum methods, where a moment over the entire four-dimensional veloc-

ity/rotational energy space is taken. Now a moment over each Boltzmann equation

with respect to the vibrational energy associated with a quantum level, εVIB,i is per-

formed. Then, a summation of all moment equations is calculated which results in

Eq. 5.8.

∑
i

ˆ ∞
−∞

εVIB,i
∂

∂t
[nifi] dcm,i +

∑
i

ˆ ∞
−∞

εVIB,icm
∂

∂xm
[nifi] dcm,i (5.8)

=
∑
i

ˆ ∞
−∞

εVIB,i

{
∂

∂t
[nifi]

}
col

dcm,i

Assuming that the particle velocity and vibrational energy level are statistically

independent and that the probability density function is near equilibrium, the initial

term can be simpli�ed to Eq. 5.9 where EVIB is the vibrational energy per unit volume

given by Eq. 5.10 and ni is the number density of particles in the ith vibrational level.∑
i

ˆ ∞
−∞

εVIB,i
∂

∂t
[nifi] dcm,i =

∂

∂t
[EVIB] (5.9)
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EVIB = ρeVIB =
∑
i

niεVIB,i (5.10)

The convection term can be simpli�ed to Eq. 5.11 where −→u is the bulk velocity vector

and −→q VIB is the vibrational heat �ux vector.

∑
i

ˆ ∞
−∞

εVIB,icm
∂

∂xm
[nifi] dcm,i = ∇ · (EVIB

−→u +−→q VIB) (5.11)

By only taking into account vibration-translation energy exchange, the sum of the

moment of the collision integral is the total measure of gain or loss of total vibrational

energy due to collision processes which results in the �nal continuum description of

the time rate of change of vibrational energy per unit volume shown in Eq. 5.12

where ẇVIB is the vibrational source term that is used to model the moment of the

collision integral.

∂EVIB

∂t
+∇ · (EVIB

−→u ) = −∇ · (−→q VIB) + ẇVIB (5.12)

The vibrational source term can be split into two parts: a vibrational-translational

relaxation portion and a source term due to the gain and loss of vibrational energy

through chemical reactions as shown in Eq. 5.13.

ẇVIB =
∑
s

(
STRA−VIB

VIB,s + ẇseVIB,s

)
(5.13)

In this dissertation, chemical reactions are ignored and the chemistry source term,

ω̇s, is always zero. An expression for the vibration-translation relaxation source term,

STRA−VIB
VIB,s , which was originally derived by Landau and Teller [99], can be written as

Eq. 5.14 where e∗VIB,s is the equilibrium speci�c vibrational energy and τVIB,s is the

species vibration-translation relaxation time.

STRA−VIB

VIB,s = ρs
e∗VIB,s − eVIB,s

τVIB,s

(5.14)
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Typically, e∗VIB,s is estimated by evaluation of Eq. 5.18 at the temperature associated

with the translational energy mode. The vibrational relaxation time can be calcu-

lated using the summation of the Millikan and White correlation [94] and Park's

high-temperature correction [95], shown in Eq. 5.15.

τ
CFD

VIB,s = τ
MW,s

+ τ
P,s

(5.15)

Equations 5.16 and 5.17 show the relaxation times using the Millikan and White

correlation and Park's high temperature correction, respectively, where p is the pres-

sure, σs is the vibrational cross section, n is the total number density, and ms is the

species mass.

τ
MW,s

=
1

p
exp

[
As

(
T
− 1

3
TRA −Bs

)
− 18.42

]
(5.16)

τ
P,s

=

√
πms

8kTTRA

σsn
(5.17)

In this dissertation, a constant vibrational cross section of 5.81×10−21 m2 is used. As

previously stated, these relaxation times are also used to evaluate the phenomeno-

logical probability of a vibrationally inelastic collision used in the DSMC module.

Coupled with the Navier-Stokes equations shown in Sec. 2.2.2, additional rota-

tional energy equation shown in Sec. 4.1.3, and equation of state shown in Eq. 2.27,

the vibrational energy equation provides su�cient information to simulate gas �ows

with vibrational and/or rotational energy nonequilibrium at the macroscopic level.

Consistent with the simple harmonic oscillator model to describe the vibrational en-

ergy spacing, a vibrational temperature, TVIB, can be computed for a single species

using Eq. 5.18 where θVIB is the characteristic temperature of vibration, EVIB is the

vibrational energy per unit volume, ρ is the mass density, eVIB is the vibrational
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energy per unit mass, and R is the species gas constant.

EVIB

ρ
= eVIB =

RθVIB

exp (θVIB/TVIB)− 1
(5.18)

5.1.4 Comparison of Vibrational Relaxation Models

In order to continue the use of full DSMC simulation results as a veri�cation

tool of the MPC method, the physical models used within the DSMC and CFD

modules must agree at the continuum limit. If they do not agree, it would be

unclear if any discrepancies between full DSMC and MPC results were caused by

an incorrect implementation of the MPC method or due to inherent di�erences in

modeling between the two simulation methods. In addition, maintaining consistent

physical models that agree at the continuum limit has a supplementary bene�t for

application of the MPC method to analyze continuum breakdown. If the DSMC and

CFD module maintain consistent results in regions that can be considered continuum

and the MPC method has been thoroughly veri�ed to produce full DSMC results, the

MPC method can then be used to determine the e�ect of continuum breakdown by

comparing with full CFD results for �ows that are prohibitively expensive to predict

by applying the DSMC method over the entire �ow �eld.

Figure 5.1 shows an example of an adiabatic vibration-translation relaxation pro-

cess simulated using the two DSMC models and the continuum method that are

outlined in this section. The cell based vibrational relaxation rate is in much better

agreement with the continuum calculation than the variable vibrational relaxation

probability. This is because of errors resulting from the approximate techniques

used to evaluate the integral in Eq. 5.2. The e�ect of the improved agreement in

prediction of vibrational relaxation between DSMC and CFD methods in continuum

regions will be tested within a hybrid DSMC-CFD code in the proceeding section.
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Figure 5.1: Comparison of adiabatic vibrational-translational relaxation process pre-
dicted by DSMC and CFD

5.2 Modi�cations to the MPC Method

This subsection outlines the changes to the MPC method required to maintain

consistent, physically accurate simulation of gas �ows with vibrationally excited en-

ergy modes that are in thermal nonequilibrium with other energy modes in parts of

the �ow �eld.

5.2.1 Continuum Breakdown and Interface Location

Unlike rotation-translation energy relaxation, which was described in Chapter IV

and occurs at nearly the same rate as translational relaxation, vibration-translation

relaxation occurs at a much slower rate. For most air species of interest, vibrational

relaxation requires about a hundred times more collisions than rotational relaxation.

Because of this, vibrational energy can remain far from equilibrium with the transla-

tional mode for even highly collisional �ows, where the Navier-Stokes equations are
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valid. Unlike rotational energy, where it is important to correctly resolve the prob-

ability density function, the slow relaxation between vibrational and translational

energy modes allows for slight discrepancies in the probability density function while

maintaining an acceptable level of physical accuracy. This allows the MPC to use

the unmodi�ed breakdown parameter that was shown in Eq. 4.22. Though the re-

laxation of vibrational energy is typically quite slow which results in much smaller

gradients compared to translational or rotational energy modes, the gradient-length

Knudsen number based on vibrational energy is also included in calculation of the

�nal breakdown parameter (shown in Eq. 5.19) to ensure that the MPC method is

readily applicable to other gas species, such as diatomic iodine, that exhibit faster

vibrational relaxation times.

Br = max
(
KnGL−ρ, KnGL−TTRA

, KnGL−TROT
, KnGL−eVIB

, KnGL−|V |, KnROT−NEQ

)
(5.19)

To maintain consistency with the model of molecular di�usion of vibrational energy

(vibrational heat transfer), the gradient-length Knudsen number is calculated based

on the speci�c vibrational energy, rather than the vibrational temperature.

5.2.2 Information Transfer

As outlined in Sec. 3.2.3, the MPC method uses state-based coupling to trans-

fer information between rare�ed and continuum �ow modules. The subrelaxation

average, which was shown in Eq. 3.18 and is repeated below, is used to reduce the

statistical scatter inherent in DSMC macroscopic information sampled over a small

interval.

〈Q〉j = (1− Φ) 〈Q〉j−1 + ΦQj (3.18)
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Figure 5.2: Probability of a particle with any vibrationally excited state as a function
of macroscopic vibrational temperature

A Φ value of 0.001 is used in typical MPC simulations so that the statistical scat-

ter associated with 〈Q〉 is at the same level as the quantity sampled over 1, 000

(1/Φ = 1/0.001) iterations. For almost all �ow variables of interest, the statistical scat-

ter associated with a sample over 1, 000 iterations is su�ciently small. However,

this is not the case for vibrational energy since a discrete probability density func-

tion must be used to maintain a physically accurate description and the number of

iterations required to resolve low vibrational temperatures becomes enormous. For

example, Fig. 5.2 compares the probability of a particle being excited above the

ground vibrational state as a function of vibrational temperature. In front of the

bow shock, where free stream temperatures of less than 0.1θVIB (339.5 K for N2) are

commonly experienced, the probability of �nding a vibrationally excited particle is

less than 1× 10−6 and accurately resolving the vibrational temperature in these re-
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gions would require greater than 1, 000, 000 (20 × 50, 000) samples. Decreasing the

subrelaxation parameter, Φ, could decrease the statistical scatter of the subrelax-

ation averaged vibrational temperature at the expense of e�ciency, but typical high

altitude free stream temperatures would require Φ to be many orders of magnitude

smaller than what is currently used. This would make any coupled hybrid method

using this technique slower than full DSMC.

Instead of assigning vibrational energies consistent with the discrete Boltzmann

energy probability density function, the average vibrational energy is assigned to

all particles in the boundary cells. Equation 5.20 shows the �nal calculation of

the vibrational energy where Nmax is the level at which the discrete Boltzmann

distribution is truncated, R is the universal gas constant, and Pi is the probability

of a particle having the ith level of vibrational energy.

E
VIB

=
Nmax∑
i=0

PiiθVIB
R (5.20)

Assuming vibrational energy is modeled as a simple harmonic oscillator, the proba-

bility of a particle being in a vibrational level can be calculated using Eq. 5.21 where

ς is the ratio of vibrational temperature to characteristic vibrational temperature

shown in Eq. 5.22.

Pi = exp [−i/ς] (1− exp [−1/ς]) (5.21)

ς =
TVIB

θVIB

(5.22)

The maximum level, Nmax, is chosen such that the probability of a particle having a

vibrational energy greater than that level is less than 1× 10−8.

At higher vibrational temperatures, such that ς > 0.2, vibrational energies can be

sampled from the discrete Boltzmann probability density function without adversely

a�ecting the e�ciency of the MPC method and may be necessary for physical pro-
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cesses that directly depend on the vibrational energy distribution function such as

chemistry. Based on the results shown in Fig. 5.3(a), a switching parameter, ς, may

be used to change from assigning average energies to all particles generated in a

cell at low temperatures to sampling energies directly from the discrete Boltzmann

energy probability density function at higher temperatures. The results shown in

Fig. 5.3(a) suggest that a switching value of 0.2 may be su�cient, such that the

average value is assigned when ς < 0.2 and particle vibrational energies are sampled

from the Boltzmann probability density function when ς > 0.2. However in this dis-

sertation, the cell average vibrational energy (calculated using Eq. 5.20), is applied

to all regions to evaluate the e�ect of the limiting case of setting the switching value

to in�nity. Regardless of the method used to assign vibrational energies, discrete

vibrational levels are selected after vibrationally inelastic collisions.

In addition to the statistical scatter associated with assigning vibrational energies

in low temperature regions, it is also important to note the e�ect of the order of op-

erations between calculating the vibrational temperature and applying the subrelax-

ation average. Application of the subrelaxation procedure on conserved or primitive

variables has an important e�ect on the accuracy of the subrelaxation process when

a strong nonlinear relationship exists between average energy and temperature. For

all other variables, the primitive variables (ρ, ui, TTRA, TROT) are �rst computed in

each cell and the subrelaxation average applied to these quantities. However, di-

rect application of this procedure enhances the e�ect of statistical scatter associated

with low vibrational temperatures and can lead to random walk errors. The e�ect

of scatter at low energies is simulated here by directly sampling vibrational ener-

gies from the discrete version of the Boltzmann energy probability density function

consistent with the simple harmonic oscillator description with twenty particles in
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each cell. Then, the average vibrational energy is calculated and the subrelaxation

procedure is applied to the energy. Finally, a vibrational temperature is calculated

using Eq. 5.18 and the smoothed average vibrational energy. Figure 5.3(a) shows

the results of this test at various equilibrium vibrational temperatures. Although

the statistical scatter noticeably increases as the vibrational temperature decreases,

the sampled results remain, on average, near the equilibrium value. A similar simu-

lation is performed by �rst computing a vibrational temperature from the sampled

data at each time-step, and then applying the subrelaxation procedure to the vi-

brational temperature. Figure 5.3(b) shows the results from such a simulation at

varying vibrational temperatures. Now, the results are consistent with the previous

algorithm at the highest temperature (ζ = 0.5), but diverge to incorrect values for

very low vibrational temperatures. This e�ect is directly due to the highly nonlinear

relation between vibrational energy and temperature. Figure 5.4 shows the relation

of vibrational temperature as a function of vibrational energy which is computed

by solving for the vibrational temperature in Eq. 5.18. The relation approaches a

vertical asymptote as the average vibrational energy approaches zero. This has the

e�ect of amplifying the statistical scatter that is already high due to the large energy

spacing associated with discrete vibrational energies and causes the random walk

shown in Fig. 5.3(b). Therefore, unlike the random translational and rotational en-

ergy modes, the subrelaxation procedure is applied directly to the vibrational energy,

eVIB, which is calculated using Eq. 5.23, rather than to the vibrational temperature,

in the MPC method to avoid the nonlinear ampli�cation of the statistical scatter

experienced in cells that have low vibrational energies.

eVIB =
1

Nreal

Nrc∑
rc=1

NPrc∑
Prc=1

Wrc

mPrc

εVIB,Prc (5.23)
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(a) Subrelaxation applied to Q = EVIB

(b) Subrelaxation applied to Q = TVIB

Figure 5.3: Comparison of the level of statistical scatter of subrelaxation averages of
internal temperatures at various levels
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Figure 5.4: Vibrational temperature as a function of speci�c vibrational energy

Finally, an estimate of the vibrational temperature is computed using Eq. 5.18 and

the subrelaxed value of average vibrational energy.

5.3 Veri�cation of the MPC Method

The goal of the MPC method is to be able to reproduce full DSMC results to

within 5% using a fraction of the computation cost. In order to verify the implemen-

tation of modeling the excitation of a vibrational energy mode that may or may not

be in equilibrium with the other energy modes, the MPC method is applied to Mach

15 �ow over a cylinder with a global Knudsen number of 0.01. The MPC results are

compared with full CFD predictions and assessed with full DSMC simulation results.

In addition, the e�ect of the vibration-translation relaxation model used in the

DSMC method is studied by running separate cases with each relaxation model.

Case CM15K01VP corresponds to the approach where vibrational relaxation in
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the DSMC module is simulated using the variable probability method based on

the relative velocity between collision partners which is shown in Eq. 5.4. Case

CM15K01CB corresponds to the approach where vibrational relaxation in the DSMC

module is simulated using the cell-based constant probability which is shown in

Eq. 5.7.

In addition to macroscopic quantities, the heat �ux to the cylinder surface pre-

dicted by each simulation technique are compared for each case, and the computa-

tional requirements of each MPC simulation are compared to the requirements for

corresponding full DSMC simulations.

5.3.1 Flow Over a 2D Cylinder

Flow Conditions

Hypersonic �ow about a cylinder with a free stream Mach number of 15 is simu-

lated. The free stream gas is N2 with a number density of n∞ = 1.61× 1021 m−3 and

equilibrium temperature of TTRA,∞ = TROT,∞ = TVIB,∞ = 217.5 K. This corresponds

to a free stream density of ρ∞ = 7.48× 10−5 kg m−3 and a pressure of p∞ = 4.22 Pa.

The diameter of the cylinder simulated is d = 8 cm which results in a global Knudsen

number of Kn∞ = 0.01. The cylinder wall temperature is set to Tw = 1, 000 K with

full di�use re�ection in DSMC simulations and a no-slip, isothermal condition in

CFD simulations. The vibrational characteristic temperature used for all vibration

temperature calculations is θVIB = 3395.K. A constant time-step of 1.5 × 10−8 s is

used in the DSMC module for all simulations, while a maximum CFL number of 50

is used in the CFD module. The full DSMC simulation requires about 26 million

particles, while the full CFD calculation is performed on a mesh of 30, 000 cells.

Figure 5.5 shows the �nal and initial interface locations for theCM15K01CB case

along with extraction lines that are used to compare macroscopic quantities predicted
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Figure 5.5: Comparison of initial and �nal rare�ed-continuum interface locations
used by the MPC method for the CM15K01CB case

by full DSMC, full CFD, and the MPC method. The interface locations for case

CM15K01VP are very similar and are not shown for clarity. The DSMC module is

used in the di�use bow shock and also in the high gradient boundary layer and low

density wake, while the CFD module is applied to the remainder of the �ow.

Flow Field Properties

Figures 5.6 and 5.7 compare the translational and vibrational temperature con-

tours, respectively, predicted by full DSMC, full CFD, and the MPC method for the

CM15K01VP case. For the translational temperature contours, the MPC method

predictions are in much better agreement with the DSMC results than the full CFD

predictions are with the DSMC results. The largest discrepancy observed between

the MPC and the DSMC results for any �ow variable other than the vibrational

temperature remains below 4%. When comparing vibrational temperature contours,

the MPC method greatly improves agreement with the full DSMC results over the

full CFD predictions. The worst agreement occurs in the expansion region where the

vibrational temperatures predicted by the DSMC and the MPC simulations deviate
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Figure 5.6: Comparison of temperature contours predicted by full DSMC, full CFD,
and the MPC method for the CM15K01VP case

up to about 8%. This discrepancy can be partially attributed to the di�erences in the

computation of the e�ective vibration-translation relaxation rates at near continuum

conditions used in rare�ed and continuum modules for this case.

Figure 5.8 shows a comparison of translational temperature contours predicted

by full DSMC, full CFD, and the MPC method for the CM15K01CB case. Again,

the agreement between the DSMC and the MPC predictions is excellent while the

full CFD simulation results fail to accurately predict the �ow in regions that are

in collisional nonequilibrium. The largest discrepancy found between DSMC and

the MPC results remains below 5% for all �ow variables. Figure 5.9 compares the

vibrational temperature contours predicted by full DSMC, full CFD, and the MPC

method. The MPC method can nearly reproduce the full DSMC solution even in

areas where the full DSMC and the full CFD predictions are in very poor agreement.
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Figure 5.7: Comparison of temperature contours predicted by full DSMC, full CFD,
and the MPC method for the CM15K01VP case

Still, there is a discrepancy between the MPC method and the full DSMC results

in the expansion region, but the agreement between the DSMC and the MPC pre-

dictions has improved. Now, the maximum di�erence between the DSMC and the

MPC results remains below 4%. The improved agreement between the MPC and the

full DSMC predictions can be attributed to the improved agreement of the e�ective

vibration-translation relaxation rates at near continuum conditions between CFD

and the DSMC cell-based model.

Figure 5.10 compares the temperature predictions along a 45◦ extraction line by

the DSMC, the CFD, and the MPC method with each vibrational relaxation model.

In general, the MPC method has signi�cantly improved agreement with the DSMC

results compared to the CFD predictions regardless of the relaxation model. Even

in regions that are considered continuum, and the CFD module is used, the MPC
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Figure 5.8: Comparison of temperature contours predicted by full DSMC, full CFD,
and the MPC method for the CM15K01CB case

Figure 5.9: Comparison of temperature contours predicted by the DSMC, the CFD,
and the MPC method for the CM15K01CB case
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Figure 5.10: Comparison of temperatures predictions by full DSMC, full CFD, and
the MPC method along the 45◦ extraction line for the CM15K01VP

and CM15K01CB cases.

method can improve agreement with the full DSMC simulation results due to the

improved boundary conditions provided to the continuum module. Though the cell

based relaxation model provides slightly improved agreement with full DSMC for

vibrational temperature at around x = 0.04 m, the di�erence in the two relaxation

models is negligible along this extraction line.

Figures 5.11(a) and 5.11(b) show the vibrational temperature predicted by DSMC,

CFD, and the MPC method along the 135◦ extraction line for the CM15K01VP and

CM15K01CB cases, respectively. Similar to the vibrational temperature contour

plots, the MPC method greatly improves agreement with the full DSMC results
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compared to the full CFD predictions for both cases. Despite the improved agree-

ment, the e�ect of di�erent relaxation rates in the CM15K01VP case is evident

at the interface location between the continuum and rare�ed �ow modules. Here,

there is a distinct change in vibrational temperature gradient. This is caused by the

di�erence in the e�ective vibration-translation relaxation rates used in each module.

When compatible relaxation rates are used in the two modules, as is done for the

CM15K01CB case, the solution is smooth with no abrupt change in gradient at

the interface. Though small for this test case, the di�erence in e�ective vibration-

translation relaxation rates could have a larger e�ect on agreement between full

DSMC results and the MPC predictions for �ows where the continuum region ex-

hibits faster relaxation rates which can occur in higher enthalpy or higher density

�ows.

Surface Properties

For many hypersonic problems of interest, accurate prediction of surface prop-

erties has a strong impact on vehicle design. Predictions of heat transfer from full

DSMC, full CFD, and the MPC method are compared using the de�nition of the

coe�cient of heat transfer that was previously shown in Eq. 4.27. Figures 5.12 and

5.13 show the heat transfer coe�cient predicted by full DSMC, full CFD, and the

MPC method for the CM15K01VP and CM15K01CB cases, respectively. Despite

the slightly improved agreement in the prediction of vibrational temperature in the

�ow �eld between the full DSMC and the MPC results for the CM15K01CB, both

cases have the same level of agreement between the MPC and the DSMC results for

predicted heat transfer to the body. This is due to both MPC results maintaining

excellent agreement with the full DSMC predictions near the body. Similar to heat
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(a) Case CM15K01VP

(b) Case CM15K01CB

Figure 5.11: Comparison of vibrational temperature predicted by full DSMC, full
CFD, and the MPC method along the 135◦ extraction line using di�er-
ent vibration-translation relaxation models in the DSMC method
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Figure 5.12: Comparison of heat transfer to the cylinder surface predicted by full
DSMC, full CFD, and the MPC method for the CM15K01VP case.

transfer predictions shown in Chapter IV, the MPC method is able to reproduce

the full DSMC results, especially in the wake region where the full CFD results over

predict the heat transfer to the body by a factor of three compared to full DSMC

predictions. It is interesting to note that the contribution of heat �ux directly from

vibrational energy is negligible compared to the total surface heat �ux. This is due

to the relatively small gradients of the partially activated vibrational energy mode

at the surface and the small coe�cient of conductivity. However, inclusion of vi-

brational excitation acts to signi�cantly decrease the heat transfer associated with

translational and rotational energy modes by a reduction in the post shock temper-

ature and temperature gradients near the fore-body vehicle surface.
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Figure 5.13: Comparison heat transfer to the cylinder surface predicted by full
DSMC, full CFD, and the MPC method for the CM15K01CB case.

Computational Performance

The MPC method reproduces full DSMC results by employing the DSMC mod-

ule in rare�ed regions and decreases the computational cost by limiting the DSMC

method to only regions that are in collisional nonequilibrium, while continuum re-

gions are computed using an implicit Navier-Stokes solver. By loosely coupling the

simulation methods and studying steady-state �ows, the time-step used by CFD can

be over 100 times larger than the time-step required by the DSMC module to sim-

ulate Mach 15 �ow over a two-dimensional cylinder. In addition, decoupling of the

mesh densities allows the CFD mesh to be unconstrained by DSMC cell size restric-

tions, and the CFD module uses mesh densities that are up to 18 times larger in area

than the DSMC cells for the two cases. This signi�cantly decreases the computa-

tional time and memory usage required by the MPC method to reproduce full DSMC
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results. The decreases in computational cost of the MPC method compared to full

DSMC for the two cases are summarized in Table 5.1. To make a fair comparison,

the number of sample time-steps after reaching steady-state are the same for both

the full DSMC simulation and the corresponding MPC simulation. Here, the actual

speedup is de�ned as the ratio of the time required to obtain the full DSMC results

to the time required for the corresponding MPC simulation. The ideal speedup is

de�ned as the ratio of the number of particles used in a full DSMC simulation to the

number of particles in the corresponding MPC simulation. Since the computational

cost of a DSMC simulation nearly scales linearly with the number of particles in

the simulation, this should be the upper limit for computational speedup for that

problem. Again, the MPC method actually outperforms the ideal speedup ratio be-

cause the unsteady portion of the MPC simulation is much less than that of the

corresponding DSMC simulation. Similar to the computational requirements shown

in Chapter IV, this is because the MPC method initializes its simulation with a full

CFD prediction. The memory usage is de�ned as the ratio of the memory used by an

MPC simulation to the memory used by the corresponding DSMC simulation. Here,

the MPC method requires signi�cantly less memory compared to the corresponding

full DSMC simulation. In addition, the actual speedup for the cell based relaxation

case signi�cantly outperforms the variable probability case. This is, in part, due to

a slight reduction in the size of the DSMC region, but mostly can be attributed to a

decrease in the number of iterations required to reach steady state since the initial

CFD solution that the MPC method starts with is in better agreement with the �nal

MPC and full DSMC predictions.
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Table 5.1: Computational performance and memory requirements for the MPC
method.

Case Actual Speedup Ideal Speedup Memory Usage

CM15K01VP 3.37 3.07 22%

CM15K01CB 3.96 3.16 27%

5.4 Summary and Conclusions from E�ects of Vibrational

Nonequilibrium

The MPC method has been extended to simulate partially rare�ed, hypersonic

�ows that exhibit vibrationally excited energy modes that may not be in equilibrium

with the other energy modes. An overview of the mathematical and numerical models

necessary to describe the physical processes associated with a vibrationally excited

gas have been provided. Comparison of physical relaxation models in each simula-

tion module has been performed and changes to the MPC method to accommodate

the inclusion of vibrational energy nonequilibrium have been implemented. The im-

plementation of vibrational nonequilibrium models has been veri�ed by comparing

MPC simulation results to predictions from full DSMC simulations. In addition, the

study of the e�ect of the consistency of vibrational relaxation models used in rare�ed

and continuum models on the agreement between full DSMC and the MPC method

has been performed.

Three important conclusions can be drawn from the implementation and study

of the e�ects of vibrational nonequilibrium in the MPC method.

1. An implementation of a separate vibrational energy equation within the con-

tinuum module can be coupled to a DSMC module within the MPC method.

For the case studied, the use of vibration-translation relaxation models in each

module that remain consistent at the continuum limit provide a small improve-



141

ment between predictions made by the full DSMC and the MPC simulations.

In addition, the MPC simulation with the cell-based vibration-translation re-

laxation model provides a larger speedup over the corresponding full DSMC

simulation. In part, this is due to a slight decrease in the size of the region

to which the DSMC module is applied, but mostly has been attributed to a

decrease in the number of iterations that the MPC simulation requires to reach

steady state.

2. Care must be taken to minimize the e�ect of the statistical scatter of sampling

the discrete Boltzmann probability density function for vibrational energy at

low temperatures on the physical accuracy and numerical e�ciency of the MPC

method. In regions of �ow where the vibrational temperature is much less

than the characteristic temperature of vibration, such as in the free stream,

the probability of a particle having an excited vibrational state is very low and

a prohibitive number of samples are required to resolve the correct vibrational

temperature. Instead of assigning particle vibrational energies by sampling the

discrete Boltzmann vibrational energy probability density function, average

vibrational energies are assigned to each particle in the computational cell. The

e�ect of this simpli�cation is tested through comparison of MPC predictions

with full DSMC results and has no noticeable e�ect on the agreement between

simulation predictions.

3. The order of operations used in the scatter reduction techniques of the MPC

method has a strong impact on the computation of boundary conditions pro-

vided by the DSMC module to the continuum module. Unlike the temperature

associated with other energy modes, the relation between vibrational energy
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and temperature is highly nonlinear and can amplify the statistical scatter

associated with moderate to low vibrational temperatures to produce a ran-

dom walk error. In order to reduce this e�ect, the subrelaxation procedure is

applied to the average vibrational energies, rather than the computed vibra-

tional temperature. Then, a vibrational temperature is computed using the

subrelaxation-averaged vibrational energy.



CHAPTER VI

Extension of Computational Capabilities

The computational requirements of each separate �ow module, even for two-

dimensional �ows, often become too demanding to maintain an acceptable level of

physical and numerical accuracy while obtaining a solution in a reasonable amount

of time on a serial processor. In addition, many partially rare�ed, hypersonic �ows

of interest contain three dimensional e�ects that are important. Although most

aeroshells are axi-symmetric, they often �y at an angle of attack to induce a positive

lift-to-drag ratio which decreases the peak heat �ux and acceleration. In addition,

reaction control system (RCS) jets used to control aero-shells during re-entry are

often located o� axis, and accurate simulation of the jet interactions with the nearby

�ow are of interest to predict the correct heating on the adjacent vehicle surfaces.

Other three-dimensional �ows of interest occur around hypersonic cruise vehicles and

high density jets expanding around space vehicles with complex three-dimensional

geometries at near-vacuum conditions. An e�cient parallel algorithm enables simula-

tion of these �ows that can not be computed using serial algorithms with reasonable

processor memory requirements and/or wall clock times. Careful consideration must

be taken to ensure that a parallel implementation of the MPC method maintains

both a high level of physical accuracy and e�ciency. In addition to reducing the

143
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necessary wall clock time, these parallel operations also signi�cantly reduce the re-

quired amount of memory for each single processor since only a small portion of the

computational mesh and solution is stored on each processor.

With a modular implementation of a coupled hybrid method, such as the MPC

method, where both DSMC and CFD separate data structures are maintained and

an MPC data structure is used to minimize the number of modi�cations of each �ow

module, parallelization becomes an enabling feature for �ow simulations that require

large computational grids and expensive physical models. This chapter outlines the

extension of the MPC method to simulate partially rare�ed, hypersonic �ows for use

on distributed memory parallel computing clusters. First, an outline of the changes to

the MPC method is described that ensures that the parallel implementation achieves

a high level of numerical e�ciency within the modular framework. This includes

changes to the hybrid data structure and routines that take into account the existing

parallel implementations in each �ow module, minimize the number of code changes

in each �ow module, and maintain an acceptably low level for processor memory

requirements. The parallel implementation is veri�ed by applying the parallel MPC

method to simulate a selection of �ow cases that have been studied in Chapters IV

and V. In addition, parallel performance measurements are shown and are compared

to the parallel performance of the stand alone DSMC and CFD �ow modules.

6.1 Modi�cations to the MPC Method

Both MONACO and LeMANS are parallelized as separate codes using the mes-

sage passing interface (MPI). Due to the modular nature of the MPC method, all

parallelized routines that apply to each module's data structure can be used without

modi�cation. Instead, separate functions are provided to perform dynamic domain
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decomposition using load balance information consistent with the hybrid framework.

First the graph, which is a generic representation of the geometrical mesh connec-

tivity used by partitioning library, is split between parallel processors, Then, hybrid

functions provide each module with this information so that each simulation method

can perform its normal partitioning routine internal to each code and renumber its

local data on each node to be consistent with its existing parallel routines. This pro-

cedure maintains the modular nature of the MPC method by reducing the number of

modi�cations in each �ow module while still achieving high levels of inter-processor

computational load balance of the inhomogeneous simulation that is inherent within

a hybrid DSMC-CFD method. Instead, new hybrid functions are developed to re-

order the local hybrid data structure to be consistent with the local MONACO and

LeMANS data structures and facilitate the dynamic domain decomposition required

as the �ow evolves and the sizes of the regions simulated with each �ow module

change.

As described in Chapter III, hybrid functions must access data from both the

DSMC and CFD data structures at each time-step and are linked with a hybrid data

structure. Algorithm 1 displays the information contained in this hybrid data struc-

ture for each cell. As described in Sec. 3.2.4, the cell index for each hybrid structure

exactly coincides with the corresponding continuum cell. In addition, the hybrid

data structure contains two particle indices, labeled as the integers PiB and PiE,

which correspond to the beginning and ending particle indices for the corresponding

DSMC cells, respectively. The particle cells that are contained within the continuum

cell are always kept consecutively within the DSMC data structure to simplify the

data structure and as a result of the procedures that perform the mesh re�nement

and DSMC mesh creation. Since the hybrid data structure requires many accesses
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Algorithm 1 HybridDataStructure

structure HCdata
B HCdata goes 0 to NScells
B 1 to NScells contains data

B HCdata[0] is used as a bu�er
5: bool DSMC

bool CFD
bool BC

int PiB B First (Beginning) Particle index)
10: int PiE B Last (Ending) Particle index)

int re�ne[2] B re�nement in each direction
B (PiE-PiB=re�ne[1]*re�ne[2])

double Pmacro[NS+ND+NE][3]
15: B subrelaxation average of macroscopic variables

B at current and previous time-step and previous correction
end structure

to both corresponding continuum and particle data structures at each iteration, it

is ideal to keep all information corresponding to a given cell on the same processor

to reduce the hybrid inter-processor communication and complexity of the parallel

implementation. Therefore, the hybrid partitioning procedures and parallel routines

ensure that all information corresponding to a physical location in space is kept on

the same processor. Schematically, this partitioning method will result in partition

cuts along horizontal lines in the schematic of the serial (total) data structure which

was shown in Fig. 3.11. Since the hybrid data structure and cells correspond one to

one with the continuum data structure, many of the routines used to perform domain

decomposition within the continuum module can be reused. However, the compu-

tational load for each cell in the MPC method is very di�erent from the continuum

computational load. Due to the loosely-coupled nature of the MPC method, switches

between each �ow module are performed relatively infrequently (~ once every 103

iterations). In addition, the switch between �ow modules often coincides with a
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re-application of the breakdown parameter which results in a change in the sizes of

the regions that are simulated with each �ow module. Therefore, dynamic domain

decomposition is performed before each module switch, and the mesh is partitioned

to optimize the performance for the proceeding module simulation.

An outline of the cycle employed in the parallel implementation of the MPC

method is as follows with additions from the serial routine in bold:

1. Load a grid-independent, full Navier-Stokes solution on a structured mesh.

Use the continuum breakdown parameter (Eq. 3.8) to set up initial interface

locations. Create overlap regions into the initial continuum domain. Create a

DSMC grid by re�ning the CFD grid to meet local cell size restrictions using

the initial continuum result and Eq. 3.11. Generate particles inside the DSMC

domain and overlap regions. Save and output the solution.

2. Repartition the computational mesh using DSMC computational

load information

3. In particle boundary cells, destroy all old particles and create new DSMC parti-

cles based on Navier-Stokes information in corresponding cells. Sample particle

thermal velocities from the Chapman-Enskog velocity distribution function and

particle internal energies from Boltzmann energy distribution functions. Cy-

cle through the DSMC solver for one time-step. Update hybrid macroscopic

quantities using the subrelaxation approach (Eq. 3.18). Repeat a prescribed

number of times (typically 1/Φ + 10 iterations).

4. Re-evaluate the breakdown parameter; if needed, move interfaces, create parti-

cles in new DSMC cells, and destroy particles in newly labeled pure continuum

cells.
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IF Interfaces have signi�cantly changed (number of DSMC cells increases by

more than a user speci�ed percentage), save and output the solution, repar-

tition the computational mesh using DSMC computational load in-

formation and go to step 2.

ELSE Save and output the solution, repartition the computational mesh

using CFD computational load information and update the Navier-Stokes

boundary cells with the subrelaxation averages and continue.

5. Cycle through the Navier-Stokes solver. Repeat until converged to a user spec-

i�ed tolerance.

6. Re-evaluate the breakdown parameter; if needed, move interfaces, create parti-

cles in new DSMC cells, and destroy particles in newly labeled pure continuum

cells.

IF Interfaces have signi�cantly changed or steady-state has not been reached,

save and output the solution, repartition the computational mesh using

DSMC computational load information and go to step 2.

ELSE Continue.

7. Remove overlap regions, delete particles in these regions, save and output the

solution, and repartition the computational mesh using DSMC com-

putational load information.

8. In particle boundary cells, destroy all old particles and create new DSMC

particles based on Navier-Stokes information in the cells. Cycle through the

DSMC solver. Repeat for a prescribed number of iterations and collect samples.

9. Save and output the solution and repartition the computational mesh
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using CFD computational load information

10. Update the Navier-Stokes boundary cells and further converge continuum re-

gions.

IF DSMC statistical scatter and Navier-Stokes residual are below user speci�-

cations, end.

ELSE Save and output the solution, repartition the computational mesh

using DSMC computational load information and return to step 8.

Algorithm 2 MPC Parallel Pre-processor
Initialize MONACO variables
Initialize LeMANS variables
Initialize MPC variables
Read and Process CFD Mesh

5: Load CFD solution
AllocateHybridData() B see Algorithm 4 in Ref. [11]

if (!Restart) then perform serially
SetupHybridDomains() B see Algorithm 5-7 in Ref. [11]

10: DetermineMeshRefinement() B see Algorithm 8 in Ref. [11]
CreateDSMCMesh() B see Algorithm 9 in Ref. [11]

GenerateParticles() B see Algorithm 10, 12 in Ref. [11]
WriteCompLoadFile() B see Algorithm 6

15: WriteGraphFile()

Write DSMC and hybrid restart �les

end simulation
else (Restart) then perform in parallel

20: PartHybMesh() B see Algorithm 4
LoadHybridRestart() B see Algorithm 5
Load DSMC mesh and particles

end if
Begin main loop B see Algorithm 2, line 17 in Ref. [11]

Identical to the serial implementation, Step 1 is performed in serial as a pre-processing

routine and is shown in Algorithm 2. In addition to the serial hybrid routines, hybrid
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routines that compute and write a graph �le necessary for the partitioning library,

METIS, and the computational load estimates for the DSMC module are called. Af-

ter the pre-processor is run in serial, the parallel implementation of the MPC method

begins at Step 2 which is shown in the else statement of Algorithm 2. In addition, Al-

gorithm 5 details the portion of the code that is called during each dynamic domain

decomposition procedure.

Algorithm 3 Dynamic Domain Decomposition
.
.
.
saveNS() B save NSdata

5: saveDSMC() B save DSMCdata
saveHyb() B save HCdata
WriteCompLoadFile() B see Algorithm 6

Free All NS, DSMC, HC data
10:

Read and Process CFD Mesh

PartMeshHyb() B see Algorithm 4
LoadHybridRestart() B see Algorithm 5

15: Load DSMC mesh and particles necessary for each processor
.
.
.

Algorithm 4 details the implementation of the function, PartMeshHyb(), that uses

the cell computational load information that is generated using WriteCompLoadFile()

and the full graph of the continuum mesh as required by the METIS [100] partition-

ing library. The METIS library provides an array for domain decomposition that

maintains uniform computational load across all processors while minimizing the

amount of information (cell cuts) between inter processor boundaries. After this

data structure is obtained, standard LeMANS routines are used to renumber cells

local to each processor and establish the data structures necessary to perform inter
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Algorithm 4 PartMeshHyb()

function PartMeshHyb(NSdata)

p=NSdata.p
weight[NSCells]

5:

if (p==0) then
for all (Lines of �le hybweight.dat) do

sscanf(hybweight.dat,"cellid cellload"
weight[cellid]=cellload

10: end for

Load Metis Graph File
Call Metis
Broadcast Information to all Processors

15: end if
Renumber NSdata on Each Processor using LeMANS routines

end function

processor communication within the continuum routines. Included in these LeMANS

routines is the creation of a continuum data structure, NSdata.whereis[], that cross

references cell global indices to local cell indices if a cell is located on the current

processor, or the processor that contains the cell with the global index. For example

on processor proc, NSdata.whereis[gi]=i while NSdata.whereis[gi]=−proc on all

other processors other than processor proc. A nearly identical data structure exists

within the DSMC data structure to cross reference a global DSMC cell index with

the corresponding local cell index. These data structures are utilized within the hy-

brid routines to eliminate much of the renumbering of particle cell indices within the

hybrid data structure during dynamic domain decomposition procedures.

After PartMeshHyb(), the MPC method calls on each processor the new hybrid

function, LoadHybRestart(), which is detailed in Algorithm 5. First, the local hy-

brid data structure is populated from a restart �le. Each line of the hybrid restart

�le corresponds to the entire hybrid data structure for a single cell with a global
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index that is consistent with the continuum global indices, which is described in

Algorithm 1. If the hybrid cell exists on that processor, the hybrid data is assigned

to the index corresponding to the local continuum cell. If the hybrid cell does not

exist on that processor, it is assigned to an empty bu�er location and kept tem-

porarily only to calculate the correct total number of DSMC cells. After the hybrid

data is loaded on each processor, the data structure, DSMCdata.whereis[], is ini-

tialized. To maintain consistency with MONACO's internal cell loading routines,

DSMCdata.whereis[gi]=-proc where proc is the processor on which the cell with

global index gi is located. This cross reference list is used to correctly load the

DSMC mesh structure on each processor and then routines internal to MONACO

will renumber DSMCdata.whereis[] to match the de�nition of the corresponding

continuum array described above. Since the variables PiB and PiE are not renum-

bered in the hybrid data structure at each dynamic domain decomposition and always

correspond to the global cell index (which is the local cell index for a serial process),

the DSMCdata.whereis[] array along with the hybrid data structure allows proper

links between local continuum and local particle cells.

Since the domain decomposition routine is performed between each module switch,

the computational load of each cell only requires comparison to the computational

load of other cells using the current �ow module and cross-module computational

comparisons are unnecessary. In other words, the computational load of a continuum

calculation of a cell does not have to be accurately modeled relative to the computa-

tional cost of the DSMC routines within the corresponding particle cells. Algorithm

6 details the implementation of the hybrid function, WriteCompLoadFile(), that

estimates the computational load of each continuum (hybrid) level cell to be opti-

mized for the proceeding simulation method. Schematics of the computational load
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(a) DSMC

(b) CFD

Figure 6.1: Schematic of cell load estimation supplied to METIS depending on the
proceeding module call

estimates based on the proceeding module routine are shown in Fig. 6.1. Figure

6.1(a) shows how computational load estimates are computed when MONACO is

the proceeding module call. Here, red cells have a computational load estimate pro-

portional to the average number of particles in each continuum sized cell (sum of

average number of particles in all DSMC cells), while blue cells are set to have zero

computational load. In contrast, Fig. 6.1(b) shows a schematic of the computational

load estimates when LeMANS is the proceeding module call in the MPC method.

Now, red cells are located throughout the continuum and overlap region with a com-

putational load estimate of unity, while blue cells (in pure DSMC regions) have a
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computational load of zero.
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Algorithm 5 LoadHybRestart()

function LoadHybRestart(NSdata, HCdata, DSMCdata, totalDSMCcells)

totalDSMCcells=0
proc=NSdata.p B Current processor

5:

for all (Lines of �le hybridrestart.dat) do
fscanf(hybridrestart.dat,"globalid ")
if (NSdata.whereis[globalid]>0) then

B Check if cell is on current processor
10: i=NSdata.whereis[globalid] B Set local cell index

else
i=0 B Cell does not reside on partition

B use bu�er to calculate correct number of DSMC cells
end if

15: Load HCdata[i] B Entire HCdata as described in Algorithm 1
totalDSMCcells+=HCdata[i].re�ne[0]*HCdata[i].re�ne[1]

end for

B Now set whereis so that DSMC data is properly loaded
20: DSMCdata.whereis[totalDSMCcells] B Initialization

for all (Lines of �le hybridrestart.dat) do
fscanf(hybridrestart.dat,"globalid ")
i=0

25: Load HCdata[i] B Entire HCdata as described in Algorithm 1
for all p = HCdata[i].PiB to HCdata[i].PiE do

B cell is on another processor
if NSdata.whereis[globalid]<=0 then

DSMCdata.whereis[p]=NSdata.whereis[globalid]
30: else B cell is on this processor

DSMCdata.whereis[p]=-proc
end if

end for
end for

35: end function
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Algorithm 6 WriteCompLoadFile

function WriteCompLoadFile(NSdata, HCdata, DSMCdata, DSMCNext)

CellLoad[NScells]
p=NSData.p

5:

for all (NScells, i) do
DSMC=HCdata[i].dsmc
CFD=HCdata[i].cfd
BC=HCdata[i].bc

10:

if (DSMCNext) then
LoadPerCell=0
for all p = HCdata[i].PiB to HCdata[i].PiE do

plocal=whereis[p]-1
15: for all (Species, s) do

ObjPerCell=(int)(DSMCdata[plocal].avenobj+0.5)
LoadFactor=(int)(MIN(DSMC+BC,1))
LoadPerCell+=ObjPerCell*LoadFactor

end for
20: end for

else (!DSMCNext)
LoadPerCell=CFD+MAX(BC-CFD,0)

end if
gi=NSData[i].globalid

25: fprintf(hybweight.p.dat,"gi LoadPerCell")
end for
call MPIWall
if (p==0) then

Concatenate multiple hybweight �les to one
30: end if

end function
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6.2 Veri�cation

Figure 6.2 illustrates that the parallel implementation of the MPC method is

performed correctly. Here, the parallel MPC method is applied to case M12K002,

which was described in Sec. 4.3, using 32 processors during the DSMC portion of

the simulation. Both inter processor edges and the CFD-DSMC interface are shown.

All partitions are clustered in the near wake region where the DSMC particles are

located while the entire continuum region is appended to one partition. In addition,

translational temperature contours are displayed and no jumps are visible across pro-

cessor or rare�ed-continuum interface locations for all macroscopic quantities which

demonstrates that the correct information transfer routines in both �ow libraries are

still working as intended.

Figure 6.3 shows an example of the instantaneous number of particles located on

each processor normalized by the average number of particles on each processor. The

number of particles in a cell is approximately linearly related to the computational

time required to apply the DSMC method to each cell. The partitioning routines

maintain a high level of computational load balance, with less than a 2.5% variation

between extrema and mean values.

6.3 Parallel Performance

Parallel performance studies are conducted using cases M12K002 and

M15K01CB that were described in Sec. 4.3 and 5.3, respectively. These two test

cases are chosen to cover the wide range of applicable �ow conditions relevant to

the MPC method. Approximately 8 and 6.25 million particles are simulated in the

DSMC regions at steady-state and the total continuum meshes consisted of 30, 000

and 45, 000 for cases M15K01CB and M12K002, respectively.
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Figure 6.2: Temperature contours and processor domain boundaries for a DSMC
module call during steady state
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Figure 6.3: Normalized number of DSMC particles per processor for parallel imple-
mentation of the MPC method on 16 processors

Figure 6.4(a) shows a plot of the parallel speed up, Snp, for the two cases ex-

amined for both the unsteady portion and the steady state portion of the MPC

simulations. For reference, the parallel speedup for the full DSMC and CFD simu-

lation methods are shown in Fig. 6.4(b). These parallel performance test cases are

performed on the RTJones cluster of the NASA Supercomputing (NAS) Division.

One node corresponds to 2 quad-core Xeon (Harpertown) processors with a total of

8GB of memory available on each node. The nodes are connected with an In�niBand

interconnect and data storage is maintained on a Lustre �le system. The parallel

speedup is de�ned as the ratio of the estimated wall time for a serial simulation to

the wall time of a simulation on np processors and is shown in Eq. 6.1 where Ts is

the wall time for a serial calculation and Tnp is the wall time for a simulation on np
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(a) MPC

(b) MONACO, LeMANS

Figure 6.4: Parallel speedup (�xed problem size)
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processors.

Snp =
Ts
Tnp

(6.1)

Both cases show a higher speedup during the steady portion compared to the un-

steady portion. This is due to increased variation in the total number of simulation

particles during the unsteady portion of the computation which necessitates the over-

head of a larger number of dynamic domain decomposition calls. At steady state, the

total number of particles on each processor remains nearly constant. The speedup

for all cases begins to deviate from the ideal speedup as the number of processors

increase. Despite this deviation, near linear speedup is still experienced. In addi-

tion, the higher Knudsen number case achieves a higher speedup in nearly all tests

due to the larger rare�ed region which increases the total number of particles, and

therefore total computational requirements to simulate the �ow. When compared to

the full CFD and full DSMC parallel speedups for the M15K01CB case, it is clear

that the parallel implementation of the MPC method does not signi�cantly increase

the overhead of the existing parallel routines and similar speedups are obtained.

It should be noted that the two cases used for this study do not require a large

computational expense and the time used for inter-processor communication begins

to dominate when using very few processors. Approximately 8 and 6.25 million par-

ticles are simulated in the DSMC regions at steady-state and the total continuum

meshes consisted of 30, 000 and 45, 000 for cases M15K01CB and M12K002, re-

spectively. In addition, the main goal of the parallelization of the code is to simulate

larger problems in about the same amount of time. Simulations that require larger

computational requirements, such as three-dimensional simulations, will display a

speedup curve that stays closer to the ideal curve longer and may not even be fea-

sible to perform on one processor due to memory constraints. This e�ect can be
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seen in Fig. 6.5 where the computational expense of case M12K002 is expanded by

increasing the number of DSMC simulation particles which is performed by decreas-

ing the numerical weight of each DSMC simulator. Using this information, a scaled

e�ciency can be estimated which is de�ned in Eq. 6.2 where ηS (pn, p) is the scaled

e�ciency of doing pn computational work on p processors and tpn is the wall time

required to perform pn computational work on p processors.

ηS (n, p) =
qtqn
ptpn

(6.2)

For these cases, the wall times are normalized with the wall time required for an 8

processor (1 full node) computational case, such that q = 8. Doubling and quadru-

pling the computational load of the DSMC module and the available computational

resources require less than 7% and 17% more wall time, respectively. This parallel

scaling is a more relevant metric quantity and the results show that future exten-

sion of the MPC method for simulation of complicated three-dimensional �ows that

require large computational resources can take advantage of this parallel implemen-

tation.

Additional parallel simulations are performed to test the scaling over a larger

number of processors (greater than 100). As demonstrated in Fig. 6.5, e�cient

simulation over at larger number of processors requires test cases that involve a

large total computational cost. This is necessary to ensure that the time needed for

inter-processor communication remains small compared to the time required for each

processor to perform its calculations. Simulation of a planar shock wave is chosen

to test the parallel scaling over a large number of processors. A baseline simulation

is constructed with 1.2 million (1, 200× 1, 000) continuum cells with a constant cell

size of half of the free stream mean free path. The DSMC mesh used within the
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Figure 6.5: Scaled e�ciency of the MPC method (problem size scaled with number
of processors)
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MPC method is created by constantly re�ning the continuum mesh by a factor of

two in each direction which results in 4.8 million DSMC cells. The DSMC region

within the shock interior is su�ciently large to require nearly 190 million particles.

The pre-shock �ow conditions were set to match those of case CM12K01 described

in Sec. 4.3.1. Although still two-dimensional, the computational cost of this test

case is comparable to the estimated computational cost of an MPC simulation of a

simple three-dimensional case. The parallel performance is measured on the Pleiades

supercomputer within the NAS Division. A single node contains two hexa-core Xeon

(Westmere) processors with a total of 24GB of RAM available on each node. Identical

interconnect and �le storage systems to the RTJones system described above are

used.

The parallel speedup, where the size of the problem remains constant as the

number of processors change and is de�ned in Eq. 6.1, of the MPC method is shown

in Fig. 6.6. Here, the serial wall time is estimated from the simulation on the smallest

number of processors (np = 60). It is clear that the MPC method can slightly exceed

the ideal speedup when the number of processors is increased from 60 to 120, however

the speedup remains less than ideal as the number of processors is further increased.

As with the previous test case, this is because the time required for inter-processor

communication begins to dominate the total simulation time when the simulation

is applied to too many processors. The scaled e�ciency, as de�ned by Eq. 6.2,

is also measured where the computational size of the problem is scaled with the

number of processors and is shown in Fig. 6.6. Here, the total number of continuum

and rare�ed cells and the number of DSMC simulators is scaled from the baseline

simulation procedure with the number of processors (halved, doubled, and tripled for

60, 240, and 360 processors, respectively). Now, the scaled e�ciency is normalized
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Figure 6.6: Parallel speedup and scaled e�ciency of the MPC method when applied
to a problem with comparable computational cost of a three-dimensional
simulation

by the wall time required by a 60 processor (5 nodes) simulation and maintains near

ideal scaled e�ciency up to 360 processors (greater than 500 million simulators).

6.4 Three-Dimensional Implementation

Although the MPC method has not yet been fully implemented to simulate three-

dimensional �ows, the parallelization techniques and the modular implementation are

expected to be advantageous for this future extension. The algorithms adopted in

this parallel implementation have been selected to minimize each processor's mem-

ory requirement by eliminating the need to load the entire DSMC mesh on each

processor. Instead, only the portion that is applicable to that processor is loaded. In

addition, the measurement of the parallel scaling parameters shown in this chapter



166

demonstrate that application of more processors to larger computational problems,

which is necessary for simulation of three-dimensional �ows, can be performed in an

e�cient manner to maintain an acceptable level of wall clock time.

In addition, many of the hybrid routines naturally loop over all available dimen-

sions for the necessary sampling of dimensional quantities such as velocity compo-

nents, shear stress tensor, and heat �ux vector so that very few modi�cations of the

hybrid routines will be necessary. One major consideration is how MONACO treats

three-dimensional �ows which is not in a modular fashion and requires large changes

to the DSMC data structures. These changes either have to be taken into account in

the hybrid data structure, or changes to the DSMC data structure must be made to

increase its modularity as the number of simulation dimensions increases from two

to three.

Thus, although the MPC method is only presently capable of simulating two-

dimensional or axi-symmetric �ows, the parallel implementation adopted in this dis-

sertation and the modular nature of the hybrid method will be highly bene�cial to

extend the MPC method for simulation of full three-dimensional �ows. The paral-

lel implementation described in this dissertation will enable the next extension by

reducing the computational size of problems applied to each processor.

6.5 Summary and Conclusions from Extension of Computa-

tional Capabilities

The computational capabilities of the MPC code have been extended by paral-

lelizing the method to be capable of simulation of �ows using distributed memory

computing clusters. An overview of the parallel implementation of the MPC method

has been described including the addition of hybrid routines and modi�cations to
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the hybrid data structures that take advantage of and maintain the high level of

modularity that exists in the MPC method. The parallel implementation has been

veri�ed to produce simulation results that are independent of the parallel partition

lines and maintain uniform load balance of the inhomogeneous data structure and

simulation requirements. Parallel scaling parameters for two simple cases have been

examined. Although ideal scaling is only achieved at small numbers of processors,

the parallel speedup remains linear and is comparable to parallel scaling performance

experienced by each separate �ow module applied to a similar �ow. Scaled e�ciency

measurements to test application of larger computational resources to larger com-

putational problems maintained high levels of e�ciency. The parallel scaling of the

MPC method is tested over a large number (∼ 100) processors. These scaling mea-

surements demonstrate that for cases that have su�cient computational cost, which

is the case for three-dimensional simulations, the MPC method can maintain high

levels of parallel e�ciency up to 360 processors. The results demonstrate that the

parallel implementation presented in this dissertation is ideally suited for future ex-

tension of the MPC method to simulate full three-dimensional �ows.



CHAPTER VII

Conclusion

This chapter contains a summary of the dissertation and a list of the contributions

made to the �eld. The chapter is concluded with recommendations for future research

that will further extend the capabilities of hybrid particle-continuum simulation of

nonequilibrium, hypersonic �ows.

7.1 Summary

This work presents an extension of the Modular Particle-Continuum (MPC)

method for simulation of partially-rare�ed, hypersonic �ows. The overall goal in

the development of the MPC method is to reproduce full DSMC results to within

5% at a reduced computational cost for hypersonic �ows of interest. These �ows

require mathematical models to describe important physical processes that readily

occur throughout the �ow and have an e�ect on the output quantities of interest.

This dissertation has expanded on the work of Schwartzentruber to extend the MPC

method to simulate hypersonic �ows that exhibit small regions of collisional nonequi-

librium and may exhibit thermal nonequilibrium between internal (rotational and/or

vibrational) energy modes and the translational mode on distributed memory com-

puting architectures.

168
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Chapter I introduced the thermo-chemical nature of partially rare�ed �ows over

hypersonic vehicles. The chapter cited many sources that provided examples of �ows

that may require a hybrid particle-continuum method to simulate �ow. This is be-

cause these �ows can be su�ciently described with a macroscopic, or continuum,

method over most of the �ow, but require a microscopic, or kinetic, description

in localized regions. Hybrid methods that achieve the physical accuracy of kinetic

methods in rare�ed regions, while maintaining the numerical e�ciency of contin-

uum methods elsewhere, will become vital tools to analyze future advancements in

technology for entry �ows. An overview of some causes of collisional, or transla-

tional, nonequilibrium was described. In addition to translational nonequilibrium,

which occurs when �ow length scales are small and/or the mean free path is large,

nonequilibrium e�ects may be present for separate internal energy modes and/or the

chemical composition of the �ow.

Chapter II detailed the various overall mathematical descriptions available for

gas �ows, which range from fully kinetic to entirely continuum. These descriptions

started with the fundamental Boltzmann equation. Simpli�cation of the �ow descrip-

tion was introduced to develop the continuum Navier-Stokes and Euler equations.

The validity of each simplifying assumption has been discussed. The chapter also

described numerical procedures used for each description of the �ow. An outline of

the direct simulation Monte Carlo (DSMC) method was provided. Particle move-

ment and collision routines were described and numerical limitations of the simula-

tion method were outlined. Although the DSMC method is physically accurate for

any degree of rarefaction, its computational expense signi�cantly increases as the

Knudsen number decreases. In contrast, numerical solutions of the Navier-Stokes

equations with modern CFD techniques are numerically e�cient, but the continuum
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approximation to fully de�ne the mathematical description breaks down when the

Knudsen number is large. Finally, a review of previous hybrid numerical techniques

that have been developed over the past two decades was presented. These vari-

ous hybrid methods have coupled di�erent descriptions for each �ow (deterministic

Boltzmann vs DSMC, Euler vs Navier-Stokes) using �ux- or state-based coupling

procedures to describe various �ows of interest that contain a mixture of rare�ed

and continuum regions.

Chapter III detailed the hybrid, Modular Particle-Continuum (MPC) method

that is used in this dissertation. First, descriptions of the numerical continuum,

LeMANS, and rare�ed, MONACO, �ow modules were provided. Next, the existing

capabilities of the MPC method, which include calculation of the interface loca-

tion, geometric mesh construction, and the transfer of information between each

�ow module, have been outlined. Then, an overview of each extension of the MPC

method that are a result of this dissertation were provided, which consisted of in-

clusion of rotational and vibrational nonequilibrium models in each �ow module and

parallelization of the numerical method to enable future extension of the method to

simulate full three-dimensional �ows.

Chapter IV provided a detailed description of inclusion of rotational nonequi-

librium models in the MPC method. The chapter began with a summary of the

mathematical description of rotational relaxation processes and the implementation

of these descriptions in each �ow module. Next, an outline of the changes required in

the MPC method for inclusion of rotational relaxation were described. These include

a study of an additional breakdown parameter to ensure that the continuum module

is only applied to regions where the �ow is near both collisional equilibrium and the

rotational energy probability density function can be described with the Boltzmann
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probability density function. Finally, the accuracy of the method was assessed by

comparison of predictions made by the MPC method to those made with full DSMC

and full CFD simulations and all three predictions were compared to available exper-

imental measurements. The MPC predictions maintained excellent agreement with

full DSMC simulation results for macroscopic quantities and velocity and rotational

energy distribution functions. This excellent agreement has demonstrated that the

MPC method can reproduce full DSMC simulation results throughout the entire �ow

�eld. Computational performance of the MPC method, compared to full DSMC, was

discussed for each simulation. It was shown that the speedup relative to full DSMC

simulation time ranged from 1.67 for rare�ed �ows to over 28 for near continuum

�ows. In addition, comparison with previous simulation requirements of the MPC

method without rotational nonequilibrium capabilities in the continuum �ow module

demonstrated that inclusion of the capability resulted in an overall speedup of the

MPC method.

Chapter V outlined the necessary changes in the MPC method for inclusion of vi-

brational nonequilibrium models. First, the mathematical description of vibrational

relaxation processes was outlined. Then, the chapter described the implementation

of vibrational nonequilibrium models in the two �ow modules. Available vibration-

translational energy relaxation models were compared for a zero dimensional relax-

ation case. Next, a detailed description of the required changes to the MPC routines

to take into account the transfer of vibrational energy was provided. These changes

include careful consideration of the information transfer procedure to reduce the ef-

fect of statistical scatter associated with the large quantum size of vibrational energy

relative to the mean �ow energy on the physical accuracy and numerical e�ciency

of the MPC algorithm. Finally, veri�cation of the implementation of vibrational
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nonequilibrium models was performed through comparison with fully kinetic and

continuum simulation methods. It was shown that maintaining consistent relaxation

models in both �ow modules slightly increased the agreement between MPC and full

DSMC simulation results with a small reduction in the numerical cost.

Chapter VI outlined the extension of the MPC simulation capabilities to take

advantage of available distributed memory systems. This capability is necessary to

simulate three-dimensional �ows due to the large computational resources require-

ments. First, modi�cations to the MPC method were outlined and characterization

of computational load parameters required for e�cient distribution of the �ow do-

main across parallel processors have been described. A complete description of the

algorithms necessary to parallelize the MPC method within the provided modular

framework have been provided. The parallel implementation made use of existing

routines to avoid modi�cations to the separate �ow module libraries to maintain the

highly modular structure of the hybrid method. In addition, veri�cation of the im-

plementation of the parallel routines was performed. The results demonstrated that

the routines maintain e�ective distribution of the computational load for parallel

computation on distributed memory computing architectures. The parallel perfor-

mance of the MPC method was described and compared with the performance of

each separate �ow module. Although far from ideal for the small test cases, the par-

allel implementation maintained linear speedup scaling even as the computational

load per processor became negligible compared to the inter-processor communication

and displayed similar parallel speedup characteristics as each separate �ow module.

Scaled e�ciency measurements, where the problem size scales with the number of

processors, demonstrated that the parallel implementation of the MPC method is

well suited to simulate larger computational problems, which is necessary for future



173

simulation of three-dimensional �ows over complex vehicle geometries that are in full

thermo-chemical nonequilibrium.

7.2 Contributions

Over the past two decades, many researchers have proposed hybrid particle-

continuum methods with two way coupling to simulate partially rare�ed, hypersonic

�ows. However, almost all previous studies have used the simpli�ed, perfect gas

physics models within the continuum module. This dissertation uses the Modu-

lar Particle-Continuum, �rst developed by Schwartzentruber [11], and extends this

method to include physical models that are important for hypersonic, nonequilibrium

�ows, such as rotational and/or vibrational energy nonequilibrium, and increases

its computational capabilities to perform numerically expensive simulations on dis-

tributed memory computing systems. This dissertation adds several distinct contri-

butions to extend the state of the art capabilities of hybrid particle-continuum simula-

tion methods. These contributions are described in Refs. [101, 75, 6, 102, 103, 84, 48]

and summarized in this section.

1. Increase of the physical accuracy of the MPC method

(a) This dissertation clearly demonstrates that inclusion of a separate ro-

tational energy equation within the continuum module is possible and

enables all macroscopic results predicted by the MPC method to be in

agreement with DSMC results over the entire �ow �eld. Previously, dis-

crepancies in predicted rotational temperature contours existed between

the MPC method and full DSMC in expansion regions of the �ow. This

is because the continuum module did not contain su�cient accuracy to
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describe the thermal nonequilibrium associated with a nearly frozen rota-

tional energy mode. In addition, this dissertation has introduced a new

rotational nonequilibrium cut o� parameter to ensure that strong rota-

tional energy relaxation processes are simulated with the DSMC module

in order to avoid introducing physical inconsistencies.

(b) For the �rst time, this dissertation provides detailed comparison of velocity

and rotational energy probability density functions predicted by the MPC

method, full DSMC, and full CFD. The excellent agreement between MPC

and full DSMC predictions demonstrates that the form of the breakdown

parameter and the breakdown cuto� value used in this dissertation are

su�cient to ensure that only regions where the continuum approximation

is valid are simulated with the CFD module. In addition, the agreement

veri�es that the coupling procedures used to assign particle velocities and

rotational energy are e�ective.

(c) This dissertation demonstrates that inclusion of a separate vibrational

energy equation within the continuum module and excited vibrational

energy levels in the particle module allows the MPC method to simu-

late a vibrational energy mode that may not be in equilibrium with the

translational energy mode. Care must be taken to minimize the e�ect

of the statistical scatter associated with low vibrational temperatures on

the physical accuracy and numerical e�ciency of the MPC method. This

dissertation has provided modi�ed coupling routines to assign vibrational

energies to DSMC simulation particles that allow predictions made by

the MPC method to maintain high levels of agreement with full DSMC

simulation results.
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(d) Unique to this dissertation, a comparison of the e�ect of vibrational re-

laxation rates used in the DSMC module on agreement between MPC

and full DSMC predictions has been made. For the cases studied, the

use of vibrational relaxation rates in each module that remain consistent

at the continuum limit provided a small improvement in agreement of

predictions made by the full DSMC and the MPC simulations. In addi-

tion, the MPC simulation with more consistent relaxation rates provided

a larger speedup over the corresponding full DSMC simulation. In part,

this is due to a slight decrease in the size of the DSMC region, but is

mostly attributed to a decrease in the number of iterations that the MPC

simulation requires to reach steady state.

2. Increase of the computational capabilities of the MPC method

(a) With the inclusion of rotational nonequilibrium modeling capabilities, the

computational cost of the MPC method has been reduced. The compu-

tational savings from reduction in the size of the DSMC region and the

number of iterations required to reach steady-state has outweighed the

overhead of solving an additional conservation equation in the contin-

uum method that has resulted in a reduction of computational resources

required by the MPC method of 5% for rare�ed �ows to 62% for near

continuum blunt body �ows.

(b) This dissertation presents a novel way to perform the parallel implementa-

tion within the modular framework that allows each �ow solver to use its

existing, unmodi�ed parallel routines. In addition, new hybrid routines

maintain a high level of computational load balance across all processors
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as the size of each region (and the computational load of each �ow mod-

ule) changes signi�cantly. Although far from ideal, this dissertation has

demonstrated that the parallel implementation presented herein main-

tains linear scaling even when the size of computational work performed

by each processor becomes very small. In addition, application of the

parallel implementation to larger problems that scale with the available

resources results in less than a 5% increase in wall clock time for up to

240 processors. This parallel implementation will enable future extension

of the MPC method to simulate full three-dimensional �ows.

7.3 Future Work

Extensions of the MPC method that are a result of this dissertation provide a

solid foundation on which to further investigate partially rare�ed, hypersonic �ows

and extend the computational and physical capabilities of the MPC method. These

include additional extensions of the physical models within the MPC method, such

as extension to simulate three-dimensional �ows and inclusion of multi-species with

�nite rate chemistry. Extensions of the numerical capabilities include additional gen-

eralization of the mesh structures used in each of the �ow modules and further study

of the prediction of continuum breakdown to demarcate the regions simulated with

each �ow module. As demonstrated in previous works and this dissertation, applica-

tion of the MPC method is ideal to study the e�ect of highly localized nonequilibrium

regions in �ows for which the application of the DSMC method would be computa-

tionally prohibitive.
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7.3.1 Extension for Simulation of Three-Dimensional Flows

Many partially rare�ed, hypersonic �ows that are of interest are inherently three-

dimensional in nature. Even for vehicles, such as capsules, that are geometrically

axi-symmetric, they often �y at an angle of attack or use o� axis thrusters that cre-

ate three-dimensional �ows. Furthermore, the local �ow conditions around these jets

can create a local maximum in surface heat transfer to the vehicle that drives the

design decision of material selection for the thermal protection system. In addition,

the computational cost of three-dimensional DSMC simulations may require a pro-

hibitive number of cells and enormous computational resources to maintain su�cient

resolution of the collision length scales (cells re�ned to the mean free path, λ, in each

direction) especially for �ows that involve large variations of λ across one �ow �eld.

Because of this, these �ows may demonstrate the largest savings of numerical cost

for a hybrid particle-continuum method over full DSMC simulations. The modular

nature of the parallel implementation of the MPC method that was described in

Chapter VI will enable future extension of the MPC method to be capable of full

three-dimensional simulations.

7.3.2 Chemistry

As seen with the inclusion of rotational and vibrational energy nonequilibrium

within the MPC method, the use of additional physical models within a hybrid

particle-continuum code may require extra considerations to maintain a high level

of physical accuracy. Although both �ow modules already contain numerical rou-

tines to model the �nite-rate chemical reaction processes, they may or may not agree

at the continuum limit. In addition, very few studies of the e�ect of dissociation

[76, 104] and ionization on continuum breakdown have been performed. Among
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other unknown di�culties, the mitigation of the statistical scatter associated with

trace species may be necessary. The use of separate numerical particle weights for

trace species may reduce the e�ect of statistical scatter. In addition, many of the

chemistry models available in either simulation method are phenomenological and

were developed by extrapolating experimental measurements that contained large

uncertainty. Further development of new thermo-chemistry models in each simula-

tion technique that provide a better description of the important physical process will

also increase the physical accuracy and predictive capabilities of the MPC method.

7.3.3 Mesh Type and Re�nement

The mesh re�nement procedure used within the MPC method has been successful

at coupling continuum and particle simulations where the highest re�nement level

is required within the DSMC module. However, for some �ows, the re�nement level

required to resolve the viscous thermal boundary level is higher than the correspond-

ing DSMC requirements. Currently, this leads to an over re�nement of the DSMC

mesh in these regions. Though this does not a�ect the physical accuracy of the

simulation, it increases the numerical cost of the DSMC module in these regions,

which directly increases the numerical cost of the entire MPC simulation. Instead,

if both simulation methods are allowed to use computational meshes that are com-

pletely optimized for their respective needs, the numerical cost of each simulation

module will be minimized. These changes will result in slightly more complicated

hybrid data structures and routines with more sophisticated averaging and particle

generation algorithms since cells may not occupy the same physical space. However,

results from previous work and those contained in this dissertation demonstrate that

the overall numerical cost of the hybrid procedures are small compared to the cost
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associated with each �ow module, so the changes are expected to result in an overall

reduction of numerical cost of many hybrid particle-continuum simulations.

7.3.4 Continuum Breakdown Parameter

Many of the di�erent switching parameter values that are used to predict the on-

set of continuum breakdown, including the gradient-length Knudsen number used in

the MPC method, have been found by comparison of predictions of fully continuum

and kinetic simulation techniques. However, in all �ows of interest for application of

hybrid particle-continuum methods, the continuum regions are dependent on accu-

rate prediction of nearby rare�ed regions. Therefore, full simulations of these �ows

with a continuum method can shift the results in regions that are truly continuum.

Results shown in Sec. 4.3.2 have demonstrated that a relaxed cuto� parameter can

allow MPC simulations to maintain excellent agreement with full DSMC results. Ad-

ditional study of the rare�ed-continuum breakdown and switching parameter using

a hybrid particle-continuum simulation technique may result in a more appropriate

switching parameter that reduces the computational cost of hybrid techniques while

maintaining the same level of physical accuracy.

7.3.5 Investigation of Rare�ed E�ects in Near-Equilibrium Hypersonic
Flows

As �rst stated in Chapter I, many �ows of interest only contain extremely small

localized regions of �ow that are in collisional nonequilibrium. Accurate simulation of

these �ows with full DSMC is often prohibitively expensive due to the large numerical

cost associated with simulation of the highly continuum regions. However, based on

the success of reproducing full DSMC simulations with the MPC method that has

been demonstrated by previous work and this dissertation, the MPC method can
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be used as a tool to explore the e�ect of these highly localized regions that exhibit

collisional nonequilibrium without a large increase in the numerical complexity and

cost. One example of these types of �ows is a high density propulsive decelerator

jet expanding in a near equilibrium �ow [105]. The collision length scales within the

jet can be over six orders of magnitude smaller than the length scales of the outer

�ow. This large variation in collision length scales coupled with a large transient

time would require an enormous computational expense to study just a single �ow

condition with the DSMC method. Rather, the MPC method can signi�cantly reduce

the computational expense to enable a full study of various �ow con�gurations.



APPENDICES

181



182

APPENDIX A

Species Data

A.1 Variable Hard Sphere Coe�cients

Table A.1 lists the coe�cients used in the Variable Hard Sphere (VHS) collision

models. These coe�cients are used to calculate collision probabilities in Bird's No

Time Counter (NTC) [10] along with the temperature viscosity relation, shown in

Eq. 3.1.

Table A.1: Species data for VHS collision model

Species ω dref [m2] Tref [K]

N2 0.75 4.17× 10−10 273.

O2 0.75 4.07× 10−10 273.

A.2 Rotational Relaxation Coe�cients

Table A.2 lists the coe�cients used in the rotational relaxation models for each

species for the rotational collision number, shown in Eq. 4.7, and derived by Parker

[89].
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Table A.2: Species data for rotational relaxation model

Species Z∞s T ∗s [K]

N2 18.1 91.5

O2 14.4 90.0

A.3 Vibrational Relaxation Coe�cients

Table A.3 lists the coe�cients used in the vibrational relaxation models. Equa-

tions A.1 and A.2 list the correlations proposed by Millikan and White [94] to cal-

culate the coe�cients needed for the Landau-Teller form [99] of the vibrational re-

laxation time that is shown in this dissertation as Eq. 5.16.

AMW = 1.16× 10−3µ
1/2θ

4/3
VIB (A.1)

BMW = 0.015µ
1/2AMW (A.2)

Figure A.1 shows the variation of vibrational relaxation time and average proba-

bility as a function of temperature for diatomic nitrogen using the provided con-

stants. Park's high temperature correction has successfully increased the vibration-

translation relaxation time to ensure that the average probability of a vibrationally

inelastic collision remains below unity.

Table A.3: Species data for vibrational relaxation models

Species θVIB [K] AMW BMW σPARK [m2]

N2 3395. 221. 12.3 5.81× 10−21

O2 2239. 136. 8.1 5.81× 10−21
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Figure A.1: Variation in vibrational relaxation time for N2
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APPENDIX B

Estimation of a Probability Density Function

This appendix contains a detailed description of the procedure used to estimate

the probability density function from data sampled in DSMC simulations. The tech-

nique used to produce probability density functions in this dissertation is an extension

of the typically used histogram method that has constant bin sizes.

An estimation, f̂ , of the probability density function, f , using the histogram

technique with constant bin widths can be found using Eq. B.1 where n is the total

number of samples, and h is the bin width.

f̂(x)dx =
1

nh
(Number of Xi in same bin asx) dx (B.1)

However, a constant bin size must be speci�ed across the entire range of interest of the

probability density function. This poses di�culties for probability density functions

that have a large range in probabilities and resolution of high probability peaks and

low probability tails of the probability density function are equally important. For

example, if a small bin size is selected in order to resolve the high probability peaks for

the probability density function, the estimation of the tails requires a large number

of samples to reduce the statistical scatter associated with the limited number of

samples in this region. Conversely, if large bins are utilized in order to reduce the
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statistical scatter of the low probability tails of the probability density function, the

important peaks may be undersolved.

Instead, this work uses variable bin sizes using Eq. B.2 where now the width of

the bin, hi varies throughout the parameter space.

f̂(x)dx =
1

nhi
(Number of Xi in same bin asx) dx (B.2)

Now a selection of the bin sizes must be speci�ed. This is performed using an

automated process through use of the sampled data that the probability density

function is being estimated from. Here, the bin width size is selected such that an

equal number of samples exist in each bin which is a way of maintaining nearly

constant statistical scatter associated with a �nal sample size in each bin across the

entire range of interest. The width of the ith bin is calculated using Eq. B.3 where

Xk is the kth sample from the ordered data and Nh is the user speci�ed number of

samples in each bin.

hi =

(
Xi×Nh

−Xi×Nh−1

2
−
X(i−1)×Nh

−X(i−1)×Nh−1

2

)
(B.3)

An example of an estimation of a sampled probability density function for rotational

energy using the extended histogram technique with variable bin widths described

above is shown in Fig. B.1. Each symbol is the average probability of the bin that

is centered at that location in rotational energy space. The probability density

function varies by over three orders of magnitude over the range of interest. Here,

the bin widths successfully adaptively shrink to resolve the peak of the probability

density function, and also grow to maintain a constant number of samples in the

low probability tail to reduce the e�ect of statistical scatter associated with a �nite

number of samples.
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Figure B.1: Example of the variable bin width histogram technique to construct a
rotational energy probability density function from data sampled in the
shock interior from the DSMC method
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ABSTRACT

EXTENSION OF A MODULAR PARTICLE-CONTINUUM METHOD FOR

NONEQUILIBRIUM, HYPERSONIC FLOWS

by

Timothy R. Deschenes

Chairperson: Iain D. Boyd

As a hypersonic vehicle travels through the atmosphere, it crosses many �ow

regimes, from rare�ed to continuum. Even in mostly continuum �ow, there may be

local �ow features, such as shocks, boundary layers, or wakes, that display collisional

nonequilibrium e�ects. In these regions, the molecular nature of the gas must be

taken into account to accurately simulate the �ow. While numerically e�cient, ap-

plication of continuum methods to simulate the entire �ow �eld introduces physical

inaccuracies throughout the simulation domain. Conversely, while physically accu-

rate, simulation of the entire �ow �eld with a kinetic method, such as the direct

simulation Monte Carlo (DSMC), is computationally expensive. Instead, a hybrid

method may be used that uses the DSMC method only in regions that exhibit rar-

e�ed e�ects, while employing the continuum description to simulate the rest of the

�ow �eld.
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This dissertation extends a modular particle-continuum (MPC), hybrid method

to include consistent physical models for internal energy relaxation in both �ow

modules. The MPC method uses a breakdown parameter to determine the interface

location between �ow modules, while state-based coupling procedures are used to

transfer information between each module. The capabilities of the MPC method are

expanded by parallelizing the method for distributed memory systems in order to

decrease processor memory and wall clock time requirements. Comparison with full

DSMC simulations are performed to verify each extension of the MPC method and

compare computational requirements over full DSMC.

The MPC method is tested for hypersonic �ow of nitrogen over various blunt

body con�gurations and Knudsen numbers and is shown to reproduce full DSMC

results with a high degree of accuracy for macroscopic �ow quantities, surface prop-

erties, velocity, and energy probability density functions. Careful consideration of

the changes to the evaluation of the breakdown parameter and coupling procedures

due to the inclusion of internal energy relaxation models is described. Dynamic do-

main decomposition routines that take into account the inhomogeneous nature of

the MPC method are developed and tested. The computational speedup achieved

by the MPC method over full DSMC ranges from 1.67 to over 28 and varies with the

reduction in number of simulation particles.


