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ABSTRACT

On the Accuracy and Efficiency of the Direct Simulation Monte Carlo Method

by

Cyril Galitzine

Chair: Iain D. Boyd

Rarefied gas flows can be found in many areas of science and engineering, such as

around spacecraft reentering the earth’s atmosphere or inside micro-electro-mechanical-

systems (MEMS) devices. Such flows, which are either characterized by low densities

or very small scales, are governed by the Boltzmann equation. The direct simulation

Monte Carlo (DSMC) method is today by far the most popular simulation technique

to solve the Boltzmann equation for rarefied flows. It is based on the use of com-

putational particles that each represent a large number of physical particles. That

number represents the weight of each individual particle. The computational parti-

cles are allowed to move and collide, much like gas particles. The simulation is then

averaged over time to extract flow properties such as concentrations or velocities.

Because of the physical basis of the DSMC procedure, its accuracy has received

relatively little attention compared to other simulation techniques. The first part

of the thesis thus aims to characterize both the convergence and the accuracy of

the DSMC method. The particular test case used for this investigation consists of

an axisymmetric argon jet. Sampled flow quantities are found to be highly time-

correlated, but the rate of convergence of their sampled averages is found to be well-

xxi



predicted by a Central Limit Theorem taking that correlation into account. The

influence of the number of particles and the time step on the accuracy of the simulation

is then assessed. Their influence on the convergence and time correlation of sampled

flow quantities is also studied.

The second part of the thesis addresses one of the major shortcomings inherent

to the DSMC method, the fact that the number of computational particles in any

one cell is directly proportional to its density. For flows with large density disparities

or multiple species, this often results in some cells containing excessive numbers of

particles and others too few. A possible solution is thus to use both cell weights

and species weights that vary in space. As each particular flow is different, optimum

weight fields also differ between simulations. In this thesis, a novel adaptive proce-

dure for the weights and time step is proposed. Both are automatically varied as the

simulation progresses to steady state. The performance of the adaptive procedure is

then assessed for a test case consisting of two counterflowing jets. Significant perfor-

mance improvements are observed. These are mostly due to an improved distribution

of computational particles throughout the domain for each individual species.

In the last part of this thesis, a hybrid DSMC/Fluid method is applied to the

simulation of a weakly ionized rarefied flow. Electrons are modeled via the use of an

electron fluid model while DSMC is used to model the dynamics of all non-electron

particles. The fluid model provides a partial differential equation for the plasma

potential. The latter is in turn used to accelerate the heavy charged particles of the

flow. Satisfactory results are obtained for both plasma parameters and gas properties.
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CHAPTER I

Introduction

1.1 Flow regimes

All gas flows are characterized by the value of a non-dimensional parameter, the

Knudsen number, denoted as Kn. It is defined as the ratio of the gas mean free

path, λ, to a characteristic length scale of the flow L, i.e., Kn = λ/L. The mean

free path is, by definition, the average distance that each particle of the gas travels

between collisions, while a basic geometric dimension of the system under consider-

ation can be used as a characteristic length (e.g., the radius of a reentry capsule or

the length of an aircraft). The value of Kn for a particular gas flow dictates the set

of governing equations that can accurately be used to describe it. All dilute gases,

i.e. gases where three-particle collisions and higher can be neglected, can be described

by the Boltzmann equation. This encompasses all flows typically encountered within

an aerospace context. The numerical solution of the Boltzmann equation, the subject

of the present thesis, is, however, particularly challenging, so that, one seeks, when

possible, to solve alternate equations. The different flow regimes and the correspond-

ing equations that can be used to study them are shown in Fig.1.1. The continuum

regime, described by the Navier-Stokes equation, is by far the most common gas flow

regime due to its ubiquity in many important applications such as flows around air-

craft [129] or inside jet engines [121]. In this flow regime, collisions between particles
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Figure 1.1: Flow regimes and governing equations

are so prevalent that particles only travel very short distances between collisions so

that λ ≪ L. Under those conditions, the distribution of the velocities of particles lo-

cated in any small control volume is naturally a normal distribution, which is referred

to as a Maxwellian distribution, centered about the mean velocity and with a vari-

ance related to the temperature of the flow. This Maxwellian characteristic for the

velocity distribution functions becomes increasingly marked as the Knudsen number

is reduced. The Navier-Stokes equations are obtained by taking statistical moments

of the Boltzmann equation. This, however, results in a system of equations with more

variables than equations that thus cannot be solved. The system is closed, i.e. made

solvable, by using the fact that particles follow Chapman-Enskog distribution func-

tions. This makes the system of equation substantially easier to solve, although a

substantial amount of modeling is required whenever they are applied to turbulent

flows [42]. Due to the Maxwellian assumption used to derive such equations, they,

however, become increasingly inaccurate as the Knudsen number is increased. At the

opposite end of the Knudsen number spectrum, when Kn ⪆ 10, collisions between

particles are relatively rare, so that λ
L

≫ 1. This implies that the effect of collisions

in the Boltzmann equation can be neglected, so that its collision term can be omit-

ted, which renders it substantially easier to solve. Free molecular flow regimes are

commonly encountered around satellites [47] as well as in many industrial processes

[34]. The subject of the present thesis is the transitional regime characterized by
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0.1 ⪅ Kn ⪅ 10, in which collisions are prevalent enough, so that the free molecular

assumption is not valid, while still not frequent enough, so as to force particles to

adopt Maxwellian velocity distribution functions. As previously remarked, this makes

the Navier-Stokes system of equations that was derived under that Chapman-Enskog

assumption inaccurate, so that the Boltzmann equation has to be solved to obtain

physical results.

This transition regime is commonly found in very different areas of science and

engineering involving low densities and/or small scales. It occurs around spacecraft

reentering earth between altitudes of approximately 80 and 130 Km due to the rar-

efied atmosphere [88] [84]. Below that zone, where the density of the atmosphere is

greater, the flow around a vehicle can be considered in the continuum regime while

above it, it can be assumed free molecular. This application field has, by far, received

the greatest attention to date. The subject of this thesis, the direct simulation Monte

Carlo technique, was initially developed [12] with that particular application in mind.

Because of the large amount of research conducted in that area during the 1970s and

1980s and reduced interest in space exploration [32], this particular application is now

receiving less research attention than in prior years. Another important category of

flows in the transition regime is that encountered inside and in the plume of electric

propulsion engines for satellites [69] [25]. They are noteworthy in that charged par-

ticles (ions and electrons) are present, albeit with small relative number densities, as

the degree of ionization is at most a few percent, so that they are said to be weakly

ionized. The presence of non-zero charge in the flow induces an electric and magnetic

field, which in turn affects the motion of individual particles through the Lorentz

force. Outside of the aerospace sector, weakly ionized flows in the transition regime

are commonly encountered in materials processing [52] [130]. An increasingly impor-

tant application of the transition regime is microscale flows [131] [93] such as those

encountered in Micro-Electro-Mechanical-Systems (MEMS) which operate at rela-
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tively high Knudsen numbers because of their small length scales L ≪ 10−3 m. Less

commonly studied flows in the transition regime for instance include that of many

industrial processes such as freeze drying [4], astrophysical flows around comets [46]

or in divertors of fusion devices [68].

The optimum engineering of any device, such as a capsule, a plasma etch reactor,

or a micro-pump, requires that its behavior or performance be known during its de-

sign process. Before the advent of digital computers, this was accomplished through

the building and testing of prototypes and by simplified analytical models. The con-

duct of such experiments is, however, costly and detailed non-intrusive measurements

are difficult to obtain. Operating conditions are often impossible to replicate in an

experimental setting, such as in the case of reentry flows, for which wind tunnels are

limited to scaled models and short duration tests [11]. Simplified models are fur-

thermore difficult to apply to complex geometries and/or to multiphysics problems

and thus often lead to inaccurate results. The advent of digital computers combined

with the development of numerical discretization or simulation techniques for the

equations governing such flows and their effectiveness [102] [53] has led to an ever

increasing use of numerical simulations during the design process. Simulations can

be used to improve the design, as a large number of design iterations can be tested

[86], be utilized to better understand the physics and to replace and/or aid in the

design of experiments. This importance of simulations in the design process creates

the need for accurate numerical methods, i.e. numerical schemes which introduce as

few numerical artifacts as possible in the solution that they yield so that the latter

may actually be the “true” solution of the physical equations being solved. Efficient

numerical methods are also required, so that an accurate solution might be obtained

with the least computational effort possible. This is because, despite increased com-

puting power, many simulations still remain impossible to conduct today. Multiple

simulations are also often required, especially as part of a design process, which cre-
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ates an additional need for efficient simulation methods.

The most popular simulation technique for transition flows is the direct simulation

Monte Carlo (DSMC) technique, which is the subject of this thesis. Since its inven-

tion in 1963 [12] it has been applied, amongst others, to the many different types of

flows that were previously cited. Despite being widely used, many challenges remain

to be addressed [16]. This thesis proposes to focus on two in particular. The first

is that the accuracy of DSMC and its convergence are very dependent on the values

of its numerical parameters. The effect of these parameters on the solution can only

be quantified with great effort, which makes it difficult to determine whether results

obtained with a particular simulation are accurate. The second major issue that is

addressed is that, because of its formulation, DSMC is inefficient for flows with large

density variations or large density differences between species. Those two specific

issues are discussed in more specific terms in the following section.

1.2 Objectives of present work

The DSMC technique is built on the idea of using a relatively small number of

computational particles Np ∼ 106 − 109, also called macro-particles, to represent all

the actual physical particles that are present in a particular flow. The geometry of

the flow that is simulated is divided into cells, with characteristic length ∆x, while

time is discretized with a time step ∆t. At each time step, every computational

particle of the domain, thus representing Wp ∼ 105 − 1010 actual particles, is first

moved according to Newton’s equation of motion and then allowed to collide with

other particles that are located in the same cell in a manner consistent with the

Boltzmann equation. The result of particles colliding and moving between cells is that

the macroscopic properties, such as the number density or average particle velocity,

evaluated in any single cell, fluctuate with time. The number density and velocity (or

any other statistical property of the flow) averaged over many steps, can be shown
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to converge to that predicted by the steady state Boltzmann equation [148]. This

averaging is accomplished by sampling their respective values at each time step. As

relatively small time step values are usually employed, the values of macroscopic

properties at consecutive time steps of each individual cell are correlated, i.e. they

are not statistically independent. This has the consequence that the convergence rate

of sampled averages with the number of time steps is relatively slow. The required

number of time steps necessary to achieve the desired level of convergence for sampled

quantities can only be determined a posteriori, i.e. by stopping the simulation when

the sampled mean remains within a prescribed tolerance for a sustained period of time.

That number of steps is, however, not known a priori, i.e. before the simulation, or

during most of it when the sampled value changes slowly before only really converging

for very large (∼ 106) numbers of samples. The first objective of this thesis is thus to

quantify the level of correlation between sampled quantities and to determine what

affects the rate of convergence of sampled quantities in a DSMC simulation. This is

a rather fundamental question that has not previously been addressed. The aim of

such an investigation is to find possible strategies to increase the efficiency of DSMC

by decreasing the correlation between sampled quantities. The second goal is to

determine whether the time correlation of sampled quantities can be used, either a

priori, or during the early stages of the simulation, to determine how many steps

are required to achieve a prescribed level of convergence. The sampled quantities of

a DSMC simulation “converge” to those obtainable from the exact solution of the

Boltzmann equation in the limit of an infinite number of particles Ntot → ∞ ⇐⇒

Wp → 0 and infinitesimally small time step ∆t → 0 [148]. The DSMC method

will later be shown, in its collision phase, to solve a Boltzmann-like equation, the

Kac equation, as opposed to the Boltzmann equation itself (this issue is discussed

in Section 2.3.4). Throughout this thesis, the DSMC method will be considered to

provide a solution of the Boltzmann equation, as this constitutes the stated intent of
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the method although that is born out by its formulation. The use of a finite number

of particles and a non-zero time step in turn introduce an error, which will later be

called numerical error, and denoted by ε, in sampled quantities. Although this issue

is well known by users of DSMC, it has received relatively little attention because

typical error values are either fairly small when enough particles are present (although

“enough” has yet to be quantified) or very large for cells with an insufficient number of

particles. This is typically evidenced by jagged or non-physical contour plots. Many

users of the method, however, content themselves with such results, knowing that

better results could be obtained with more particles at greater computational expense.

The second thrust of the thesis is thus to quantify the influence of the numerical

parameters of the DSMC procedure on the accuracy of the solution, particularly the

number of particles (or equivalently the particle weight 1
Wp

) and the time step ∆t.

This quantification of the error will consist, if possible, in establishing the order of

the leading error term as a function of the number of particles and time step, i.e. to

determine α and β in ε = C
(

1
Wp

)α
∆tβ. The first two objectives of the thesis, which

consist in respectively studying the convergence of samples in a DSMC simulation

and the accuracy of those samples in a converged state, are reflected in its title.

The third goal of the thesis is to try to accelerate the convergence of samples and

to improve their accuracy for the same computational cost, i.e. the same total number

of particles. This is accomplished by varying both the value of the particle weight Wp

and that of the time step ∆t throughout the domain. Because each computational

particle represents Wp actual particles, the number of particles N in a cell of volume

V of number density n is given by N = nV
Wp

. In a flow with large number density

differences, this results in a few cells containing many particles while others very few,

thereby resulting in a waste of computational resources. This issue can be addressed

by letting the weight field Wp (x⃗) conform to the number density of the flow such that

Wp (x⃗) = n(x⃗)V (x⃗)
N0

so as to obtain approximately the same number of particles, N0, in
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all cells of the domain for all species. The value of the time step ∆t in a particular cell,

because of the formulation of DSMC, has to be less than the average time between

collisions, called the mean collision time, τmct, in the physical gas. As τmct ∼ n−1, the

densest regions of the flow dictate an inordinately small time step to the rest of the

flow. The time step furthermore has to be small enough so that particles do not cross

more than one cell on average without being allowed to collide. The time step can

thus be maximized by tailoring it to each region of the flow, while ensuring that all

requirements are met, by letting it vary through space by defining it as ∆t (x⃗). The

fourth and last objective of this work is the development and application of a hybrid

DSMC/fluid method to partially ionized rarefied flows in the transition regime. These

flows are “standard” rarefied flows where electrons and ions (although, here, only one

type, i.e., Ar+ will be considered) are present. The simulation method is then applied

to the computation of a partially ionized rarefied flow between two counter flowing

jets. In that simulation formalism, the movement and collision of particles are handled

via the DSMC method with the added presence of an electric field. The electric field

E⃗ accelerates charged particles via the Lorentz Force, while its value is determined

by solving electron fluid equations. The fluid equations, which govern the motion of

the electrons in the flow, are obtained by assuming that electrons are in equilibrium,

i.e. that they follow a Maxwellian distribution.

1.3 Outline of thesis

In Chapter II, a rigorous derivation of the Boltzmann equation, the governing

equation of all gas flow studied in this thesis, is presented with particular empha-

sis on all assumptions that have to be made. A brief overview of the formulation of

the numerical method used to solve the Boltzmann equation, direct simulation Monte

Carlo, is then presented. Finally, a derivation of the collision phase of the DSMC pro-

cedure from a master Boltzmann equation is detailed. This will provide a justification
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as to the form of the DSMC procedure. In Chapter III, a rigorous analysis framework

for the study of the convergence of DSMC simulations is presented. This framework

is then used to analyze the convergence of the sampled number density and velocity

values for a test case consisting of a single axisymmetric jet. In Chapter IV, following

the convergence analysis of the previous chapter, a formalism to study the accuracy

of DSMC simulations is introduced. This formalism is then used to investigate the

effect of the number of particles and time step for the same test case that was previ-

ously considered. Following the numerical studies of the two previous chapters, which

used a standard DSMC implementation, in Chapter V, a new DSMC procedure to

improve simulation efficiency is introduced. It is based on the use of an automated

formula, which determines the optimum spatial distribution of cell weights, species

relative weights and time step. The procedure is presented in detail and applied to

the simulation of the flow between two counter flowing jets that contains multiple

species. Finally, in Chapter VI, a hybrid fluid electron/DSMC approach is presented.

All the additional steps in the DSMC algorithm made necessary by the presence of

charged particles are presented, while the electron fluid equations are rigorously de-

rived from the Boltzmann equation. The adaptive procedure of Chapter V is then

used in conjunction with the hybrid method for the simulation of a flow between a

weakly ionized plasma jet and a jet of neutrals. Finally in Chapter VII, key findings

as well as the notable contributions of the present thesis are summarized.
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CHAPTER II

The Boltzmann equation and its numerical

solution

In this chapter, the Boltzmann equation is introduced. It is rigorously derived

from the Liouville equation for a system of N particles and all underlying assumptions

are clearly stated. The DSMC method is then introduced and its basic formulation

detailed. The collision part of the DSMC technique is then rigorously derived from

the Boltzmann equation and interpreted as a Markov process.

2.1 The Boltzmann equation

2.1.1 A derivation of the Boltzmann equation

The Boltzmann equation can be derived following many different approaches. A

rigorous derivation, based on the BBGKY1 equation hierarchy will be outlined in this

section following the presentation given in [49] and [79]. Historically, however, the

Boltzmann equation was derived following a more physical approach [22] which is well

summarized in [103]. The starting point of the derivation is the Liouville equation
1Born-Bogoliubov-Gren-Kirkwood-Yvon
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for the density probability2

FN (x⃗1, x⃗2, ..., x⃗N , v⃗1, v⃗2, ..., v⃗N , t)

of a system of N different particles of mass m located at {x⃗j}Nj=1 with velocities {v⃗j}Nj=1

∂FN

∂t
+

N∑
j=1

v⃗j
∂FN

∂x⃗j
+

N∑
j=1

Fj +∑N
k ̸=j F⃗jk

m
· ∂F

N

∂v⃗j
= 0 (2.1)

where F⃗j + ∑N
k ̸=j F⃗jk is the total force exerted on particle j by an external field as

well as all other N − 1 particles. Equation (2.1) can in turn be used to derive the

following evolution equation for the single particle distribution function f1:

∂f1 (x⃗1, v⃗1, t)
∂t

+ v⃗1 · ∂f1

∂x⃗1
+ F⃗1

m
· ∂f1

∂v⃗1
+
∫∫

R3 R3

F⃗12

m
· ∂f12 (x⃗1, x⃗2, v⃗1, v⃗2, t)

∂v⃗1
dx⃗2 dv⃗2 = 0. (2.2)

This leads to an expression for the probable number ⟨dN1⟩ of particles inside both

volume dx⃗1 of physical space and volume dv⃗1 of velocity space:

⟨dN1⟩ = f1 (x⃗1, v⃗1, t) dv⃗1dx⃗1. (2.3)

The equation for f1, however, depends on the two particle distribution functions f12

which gives the probability ⟨dN12⟩ of simultaneously finding particle 1 inside volume

dx⃗1 about x⃗1 of physical space with velocity vector inside volume dv⃗1 about v⃗1 of

velocity space and particle 2 inside dx⃗2, dv⃗2 about x⃗2, v⃗2 respectively:

⟨dN12⟩ = f12 (x⃗1, x⃗2, v⃗1, v⃗2, t) dv⃗1dx⃗1dv⃗2dx⃗2. (2.4)
2By definition, F N (x⃗1, x⃗2, ..., x⃗N , v⃗1, v⃗2, ..., v⃗N , t) dx⃗1 dx⃗2 ... dx⃗N dv⃗1 dv⃗2 ... dv⃗N is the simulta-

neous probability that particle 1 is located in volume dx⃗1 about x⃗1 of physical space and volume dv⃗1
about v⃗1 of velocity space and that particle 2 is in dx⃗2 about x⃗2 and in dv⃗2 about v⃗2 and so on...
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In the particular case of an absence of correlation between particles, their statistical

properties are independent so that:

f12 (x⃗1, x⃗2, v⃗1, v⃗2, t) = f1 (x⃗1, v⃗1, t) f2 (x⃗2, v⃗2, t) , (2.5)

a result which will later be used in the derivation of the Boltzmann equation. The

evolution equation for f12 can be shown to take the following form

∂

∂t
f12 (x⃗1, x⃗2, v⃗1, v⃗2, t) + v⃗1 · ∂f12

∂x⃗1
+ v⃗2 · ∂f12

∂x⃗2
+ F⃗1 + F⃗12

m
· ∂f12

∂v⃗1
+ F⃗2 + F⃗21

m
· ∂f12

∂v⃗2
+

∫∫
R3 R3

F⃗13

m
· ∂f123

∂v⃗1
dx⃗3 dv⃗3 +

∫∫
R3 R3

F⃗23

m
· ∂f123

∂v⃗2
dx⃗3 dv⃗3 = 0 (2.6)

which depends on f123, the three particle distribution function. An evolution equation

for f123 in turn depends on f1234, etc. . The system of N equations that is generated

by considering evolution equation for fs with 1 ≤ s ≤ N is referred to as the BBGKY

system of equations (or hierarchy). In order to be of any practical use, the system

has to be truncated at a low order such as at s = 2 which only leaves an evolution

equation for f1, Eq. (2.2) which is, however, open, i.e. not solvable as is, because of the

f12 term. The equation is closed, i.e. made solvable, by invoking a series of simplifying

assumptions which in turn dictate the range of applicability of any equation derived

from such a system. We follow the rigorous approach presented in [152] [49] where

greater detail can be found.

In order to obtain the Boltzmann equation, a number of assumptions are made.

Hypothesis A: The density is assumed to be low enough so that triple body inter-

actions can be neglected. This was referred to as the dilute gas assumption in the

Introduction. This has the consequence that all terms involving f123 can be neglected
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in Eq. (2.6) which thus becomes:

∂

∂t
f12 (x⃗1, x⃗1, v⃗1, v⃗2, t)+ v⃗1 · ∂f12

∂x⃗1
+ v⃗2 · ∂f12

∂x⃗2
+ F⃗1 + F⃗12

m
· ∂f12

∂v⃗1
+ F⃗2 + F⃗21

m
· ∂f12

∂v⃗2
= 0

(2.7)

Equations (2.2) and (2.7) thus form a fully determined equation system for f1 and

f12 which will further be simplified.

Hypothesis B: Forces between particles are assumed to have a short range of inter-

action and to be negligible for distances greater than the radius of interaction R. So

that with r⃗ ≜ x⃗2 − x⃗1, X⃗12 (r⃗) = 0⃗ ∀ ∥r⃗∥ < R. Rewriting Eq. (2.7), in terms of r⃗,

the following is obtained

∂

∂t
f12 (x⃗1, x⃗1, v⃗1, v⃗2, t)+v⃗1·

∂f12

∂x⃗1
+(v⃗2 − v⃗1)·

∂f12

∂r⃗
+ F⃗1 + F⃗12

m
·∂f12

∂v⃗1
+ F⃗2 + F⃗21

m
·∂f12

∂v⃗2
= 0

(2.8)

It will later be useful to consider this equation in terms of relative coordinates, i.e.

r⃗m ≜ x⃗1 + x⃗2

2
, r⃗ = x⃗1 − x⃗2, v⃗m ≜ v⃗1 + v⃗2

2
, v⃗r ≜ v⃗1 − v⃗2

where r⃗m and v⃗m designate the position and velocity of the center of mass of the two

particles, respectively, while v⃗r is the relative velocity between the two particles. In

those new coordinates, Eq. (2.8) becomes:

∂

∂t
f12 (r⃗m, r⃗, v⃗m, v⃗r, t) + v⃗m · f12

∂r⃗m
+ v⃗r · f12

∂r⃗
+

F⃗1 + F⃗12

m
·
(

1
2
∂f12

∂v⃗m
− ∂f12

∂v⃗r

)
+ F⃗2 + F⃗21

m
·
(

1
2
∂f12

∂v⃗m
+ ∂f12

∂v⃗r

)
= 0 (2.9)

Momentarily putting the last equation aside, we proceed to integrate Eq. (2.8) over

the sphere of interaction, S, S = {r⃗ ∈ R3 | ∥r⃗∥ ≤ R} and over all possible v⃗2 velocities,
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i.e. v⃗ ∈ R3 which yields

∫∫
R3 S

∂f12

∂t
dr⃗ dv⃗2

︸ ︷︷ ︸
(I)

+
∫∫

R3 S

v⃗1 · ∂f12

∂x⃗1
dr⃗ dv⃗2

︸ ︷︷ ︸
(II)

+
∫∫

R3 S

(v⃗2 − v⃗1) · ∂f12

∂r⃗
dr⃗ dv⃗2

︸ ︷︷ ︸
(III)

+

∫∫
R3 S

F⃗1 + F⃗12

m
· ∂f12

∂v⃗1
dr⃗ dv⃗2

︸ ︷︷ ︸
(IV)

+
∫∫

R3 S

F⃗2 + F⃗21

m
· ∂f12

∂v⃗2
dr⃗ dv⃗2

︸ ︷︷ ︸
(V)

= 0. (2.10)

The (V) term can be shown to be null if F⃗2 and F⃗21 satisfy Eq. (6.9), which is indeed

the case if F⃗2 is the Lorentz force and if F⃗21 is independent of velocity.

Hypothesis C: Inside the sphere of interaction, field effects are assumed to be negli-

gible compared to interaction forces between particles.

This hypothesis is indeed physically realistic, as, during a collision, particles are sub-

jected to very intense forces far in excess of those produced by the strongest electric

or magnetic field. F⃗1 can thus be assumed to be negligible compared to F⃗12, i.e.

F1 ≪ F12 (2.11)

so that

(IV) ≈
∫∫

R3 S

F⃗12

m
· ∂f12

∂v⃗1
dr⃗ dv⃗2 (2.12)

which thus allows the term to be neglected by the same argument as that used for

(V).

Hypothesis D: The spatial variation of f12 over the length scale of the interaction is

assumed to be small compared to f12.

As f12 essentially depends on r, and if x⃗1 and x⃗2 are inside the sphere of interaction,

|∂f12
∂r

| ∼ f12
R

this means that

|∂f12

∂r
|R ≪ f12 (2.13)
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so that term (II) is negligible compared to term (III)

Hypothesis E: The temporal variation of f12 during the course of binary interaction

is assumed to be small so that term (I) can be neglected in Eq. (2.10).

Denoting the characteristic time of a binary interaction by τ with τ ∼ R
|v⃗2−v⃗1| (by a

dimensional argument), this amounts to

|∂f12

∂t
|τ ≪ f12, (2.14)

so that term (I) can be neglected compared to (III). Following hypotheses C, D and

E, Eq. (2.10) can thus be rewritten as

∫∫
R3 S

(v⃗2 − v⃗1) · ∂f12

∂r⃗
dr⃗ dv⃗2 +

∫∫
R3 S

F⃗12

m
· ∂f12

∂v⃗1
dr⃗ dv⃗2 = 0, (2.15)

so that substituting for the F12 term in Eq. (2.2) using Eq. (2.15) yields

∂f1

∂t
+ v⃗1 · ∂f1

∂x⃗1
+ F⃗1

m
· ∂f1

∂v⃗1
= B (f12) (2.16)

with

B (f12) ≜
∫∫

R3 S

(v⃗2 − v⃗1) · ∂f12

∂r⃗
dr⃗ dv⃗2. (2.17)

We now proceed to simplify this integral by assuming that all collisions are micro-

reversible (Hypothesis F). This means that collisions are deterministic and time re-

versible. Using the divergence theorem, Eq. (2.17) becomes

B (f12) =
∫∫

R3 Σ

(v⃗2 − v⃗1) · n⃗ f12 dΣ dv⃗2 (2.18)

where dΣ designates the surface element of the sphere of radius R, denoted Σ, n⃗ being

the outward pointing normal of that same sphere. We now proceed to divide sphere Σ

into two separate hemi-spheres A and B according to the plane that is perpendicular

15



to v⃗2 − v⃗1. This allows the following splitting of the integral in Eq. (2.17):

∫∫
R3 Σ

f12 (x⃗1, x⃗2, v⃗1, v⃗2) (v⃗2 − v⃗1) · n⃗ dΣ dv⃗2 =

∫∫
R3 ΣA

f12 (v⃗2 − v⃗1) · n⃗ dΣ dv⃗2 +
∫∫

R3 ΣB

f12 (v⃗2 − v⃗1) · n⃗ dΣ dv⃗2 (2.19)

Aout

v2 − v1

R

1

2

v2 − v1
n

n

v2 − v1

x1

x2

ΣA

ΣB

Figure 2.1: Geometrical framework for the calculation of the integrals in Eq. (2.19)

The surface of hemi-sphere A, ΣA, is characterized by (v⃗2 − v⃗1) · n⃗ < 0, while that

of B, ΣB, is characterized by (v⃗2 − v⃗1) · n⃗ > 0. Both are shown in Fig. 2.1. We can

interpret this integral in terms of the relative motion of two particles during their

collision as shown in Fig 2.1. Particle 1 is assumed fixed, while particle 2 penetrates

into the interaction sphere at point Ain before leaving at point Aout. The first integral

over hemi-sphere A, can be interpreted as the integral over all possible pre-collision

states between the two particles. We now make the following hypothesis:
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Hypothesis G: There is no correlation between every two particles that participate

in a collision. This assumption, originally called Stosszahlansatz by Boltzmann in

[22] (See [31] for an English translation) is often referred to as the “molecular chaos

assumption”.

At point Ain, the particles have yet to undergo the collision, so that from the hypoth-

esis and following Eq. (2.5),

f12 (x⃗1, x⃗2, v⃗1, v⃗2) = f1 (x⃗1, v⃗1) f1 (x⃗2, v⃗2) ∀x⃗2 ∈ ΣA. (2.20)

This allows the first integral in Eq. (2.19), using hypothesis C to neglect spatial

variations between x⃗1 and x⃗2, to be rewritten as:

∫∫
R3 ΣA

f12 (v⃗2 − v⃗1) · n⃗ dΣ dv⃗2 =
∫∫

R3 ΣA

(v⃗2 − v⃗1) f1 (x⃗, v⃗1) f1 (x⃗, v⃗2) dΣ dv⃗2 (2.21)

We note in passing that the assumption of molecular chaos is not valid after the

collision, since the latter causes the velocities of the two particles to become correlated.

The value of f12 after the collision thus has to be related to f1 in some other manner.

This can be accomplished by considering the trajectory of the two particles during

their interaction. We notice that the evolution equation for f12, Eq. (2.9), can be

considered as a Liouville equation for the two particle system under consideration

composed of particles 1 and 2. Placing ourselves in the center of mass reference

frame, so that ∂
∂r⃗m

(·) = 0⃗, and ∂
∂v⃗m

(·) = 0⃗ and using hypothesis C:

∂

∂t
f12 (r⃗m, r⃗, v⃗m, v⃗r, t) + v⃗r · f12

∂r⃗
− F⃗12

m
· ∂f12

∂v⃗r
+ F⃗21

m
· ∂f12

∂v⃗r
= 0 (2.22)

In order to satisfy hypothesis F, we further assume that the force F⃗ acting between

particles is a central force (aligned with r⃗) and that it is derived from a potential Φ,
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i.e that

F⃗ij = − ∂Φ (r⃗)
∂ (x⃗i − x⃗j)

(2.23)

which, dropping the time derivative following hypothesis E, allows Eq. (2.22) to be

rewritten as

v⃗r · f12

∂r⃗
− 2
m

∂Φ (r⃗)
∂r⃗

· ∂f12

∂v⃗r
= 0 (2.24)

We recognize that f12 is constant along phase space trajectories that are defined as

follows: 

dr⃗(t)
dt

= v⃗ (t)

dv⃗r(t)
dt

= − 1
m
∂Φ
∂r⃗

(r⃗ (t))

r⃗ (t = 0) = r⃗0, v⃗r (t = 0) = v⃗0

(2.25)

which corresponds exactly to the equations of motion of the particles during the

collision in the center of mass reference frame. This means that the value of f12 is

constant along the trajectories of particle 2 during a collision with particle 1 in the

center of mass reference frame which is depicted in Fig. 2.1. Thus, to find the value

of f12 at a given Aout point on hemi-sphere ΣB, we only need to find the value of

f12 at the corresponding Ain point. From hypothesis D, the variation of f2 on the

surface of spheres ΣA and ΣB is neglected, which means that we only need to find

the initial value of v⃗r that yields the specified v⃗r at point Aout. We first examine

some symmetry properties of trajectories, as described by Eq. (2.25). We designate

a solution of system Eq. (2.25) as follows:

r⃗ (t) = Γ⃗ (r⃗0, v⃗r,0, t) (2.26)

where Γ⃗ describes a particular trajectory with initial conditions (r⃗0, v⃗r,0). In the

frame of reference depicted in Fig. 2.1, the P parity transformation is considered
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P : (r⃗, v⃗r) →
(
⃗̃r, ⃗̃vr

)
which is defined as

⃗̃r = −r⃗ (2.27)

⃗̃vr = −v⃗r (2.28)

Rewriting Eqs. (2.25) in terms of the new variables, the following is obtained:



d⃗̃r
dt

= ⃗̃vr (t)

d⃗̃vr
dt

= − 1
m
∂Φ
∂⃗̃r

(
⃗̃r
)

⃗̃r (0) = −r⃗0 ⃗̃vr (0) = −v⃗r,0

(2.29)

which, by comparison with the original system, Eq. (2.25), and using Eq. (2.26),

admits the following trajectories:

⃗̃r (t) = Γ⃗ (−r⃗0,−v⃗r,0, t) (2.30)

This signifies that the transformation of any trajectory by parity is also a trajectory

(characterized by opposite values for the initial position and velocity vectors). We now

examine the symmetry of trajectories with respect to time. The time at which particle

2 leaves the interaction sphere is denoted by te. The time reversal transformation

T : t → t̃ is next considered which defines t̃ as follows

t̃ = te − t. (2.31)

By a property of the time reversal symmetry, ⃗̃v = −v⃗r while position is unaffected,

i.e. ⃗̃r = r⃗, and d
dt̃

(·) = − d
dt

(·). Equations (2.25), expressed in terms of these new
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variables thus becomes:



d⃗̃r(t̃)
dt̃

= ⃗̃vr
(
t̃
)

d⃗̃vr(t̃)
dt̃

= 1
m
∂Φ
∂⃗̃r

(
⃗̃r
)

⃗̃r
(
t̃ = 0

)
= r⃗ (t = te) = r⃗∗

0 v⃗r
(
t̃ = 0

)
= −v⃗r (t = te) = −v⃗∗

r,0

(2.32)

where r⃗∗
r,0 and v⃗∗

0 denote the post-collision position and velocity (i.e. at t = te

when particle 2 leaves the interaction sphere) for Eqs. (2.25). By comparison with

Eqs. (2.25) and using Eq. (2.26), the new equation system, Eqs. (2.32), admits the

following trajectories

⃗̃r (t) = Γ⃗
(
r⃗∗

0,−v⃗∗
r,0, t

)
(2.33)

parametrized by time t. This shows that Γ⃗
(
r⃗∗

0,−v⃗∗
r,0, t

)
, which is nothing more than

the original trajectory Γ⃗ (r⃗0, v⃗r,0, t) in the reverse direction, is also a trajectory. This

in turn means that any trajectory in the center of mass reference frame with initial

position x⃗0 and velocity v⃗r,0 in the reverse direction is also a trajectory (with initial

position r⃗∗
0 and velocity −v⃗∗

r,0). We now proceed to use the two symmetry properties

of trajectories that were just derived to obtain the value of f12 at point Aout by using

the fact that f12 is constant along trajectories.

We first consider trajectory (A), shown in Fig. 2.2(a) during which the relative

velocity between particles is transformed from its pre-collision value v⃗r = v⃗2 − v⃗1 to its

post-collision value v⃗ ′
r = v⃗

′
2 − v⃗

′
1

3. By transforming it using a parity transformation

following Eq. (2.28), another acceptable trajectory (shown in Fig. 2.2(b)) is obtained.

The new trajectory is then transformed, using the time reversal transformation of

Eq. (2.31) into the acceptable trajectory shown in Fig. 2.2(c). This final trajectory

describes a collision in which the two particles have a final relative velocity of v⃗2 − v⃗1,

which is the situation that occurs at point Aout in Fig. 2.1. The pre-collision relative
3Throughout this thesis ′ denote post-collisional variables.
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Aout

v2 − v1

v2 − v1

1
2

Ain

x y

z

(a) Trajectory A: Original trajectory

Aout

v2 − v1

v2 − v1

1

2

Ain

x y

z

(b) Trajectory B: Trajectory A after parity
transformation

v2 − v1

v2 − v1

1

2

Aout

x y

z

Ain

(c) Trajectory C: Trajectory B after time re-
versal

Figure 2.2: Effect of transformation P and T on trajectories

velocity of such a trajectory is v⃗ ′
r = v⃗ ′

2 − v⃗ ′
1 which means that

v⃗1|Ain = v⃗ ′
1 and v⃗2|Ain = v⃗ ′

2. (2.34)

Within the framework of Fig 2.1, this means that the relative velocity at point Ain is

v⃗ r = v⃗ ′
2 − v⃗ ′

1. Because of the conservation of f12 along trajectories

f12 (v⃗1|Ain , v⃗2|Ain) = f12 (v⃗1|Aout , v⃗2|Aout) (2.35)

21



The molecular chaos hypothesis (hypothesis G) is valid at point Ain as particles have

not yet collided so that

f12 (v⃗1|Ain , v⃗2|Ain) = f1 (v⃗1|Ain) f1 (v⃗2|Ain) = f1 (v⃗ ′
1) f1 (v⃗ ′

2) (2.36)

and so from Eqs. (2.34) and (2.36),

f12|Aout = f1 (v⃗ ′
1) f1 (v⃗ ′

2) (2.37)

Returning to the second integral of Eq. (2.19), since point Aout belongs to ΣB:

∫∫
R3 ΣB

f12 (v⃗2 − v⃗1) · n⃗ dΣ dv⃗2 =
∫∫

R3 ΣB

f1 (x⃗, v⃗ ′
1) f1 (x⃗, v⃗ ′

2) (v⃗2 − v⃗1) · n⃗ dΣ dv⃗2 (2.38)

where, because of hypothesis D, spatial variations between x⃗1 and x⃗2 are neglected.

Using the results of Eqs. (2.21) and (2.38), Eq. (2.19) finally becomes

B (f12) =
∫∫

R3 Σ

f12 (x⃗1, x⃗2, v⃗1, v⃗2) (v⃗2 − v⃗1) · n⃗ dΣ dv⃗2

=
∫∫

R3 ΣA

f1 (x⃗, v⃗1) f1 (x⃗, v⃗2) (v⃗2 − v⃗1) · n⃗ dΣ dv⃗2 +

∫∫
R3 ΣB

f1 (x⃗, v⃗ ′
1) f1 (x⃗, v⃗ ′

2) (v⃗2 − v⃗1) · n⃗ dΣ dv⃗2

=
∫∫

R3 ΣA

[f1 (x⃗, v⃗ ′
1) f1 (x⃗, v⃗ ′

2) − f1 (x⃗, v⃗1) f1 (x⃗, v⃗2)] (v⃗2 − v⃗1) · n⃗ dΣ dv⃗2 (2.39)

since (v⃗2 − v⃗1)·n⃗|ΣB = − (v⃗2 − v⃗1)·n⃗|ΣA . Using the geometrical framework of Fig. 2.3,

the collision term can be rewritten as:

B (f12) =
∫
R3

∫
R

∫
R+

2π∫
0

∥v⃗2 − v⃗1∥ [f ′
1f

′
2 − f1f2] b dε db dz dv⃗2. (2.40)
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Figure 2.3: View of the interaction sphere during a collision.

b is often referred to as the impact parameter [15], it is the distance of closest approach

if the two particles did not interact. In the following, the relative velocity v⃗2 − v⃗1, will

be systematically designated by v⃗r and its norm by vr = ∥v⃗2 − v⃗1∥. The differential

surface element dΣ0 ≜ b db dε can also equivalently be written in terms of solid angle

dΩ [71], using the differential cross section σ:

dΣ0 = b db dε = σ (χ, ε) dΩ, (2.41)

where χ designates the deflection angle. Using Eqs. (2.40) and (2.41), with f ≜ f1

and replacing (v⃗1, v⃗2) by (v⃗, v⃗1), respectively, Eq. (2.16) can be rewritten as:

∂f

∂t
+ v⃗ · ∂f

∂x⃗
+ F⃗

m
· ∂f
∂v⃗

=
∫∫

R3 4π

σvr
(
f
(
x⃗, v⃗

′

1, t
)
f
(
x⃗, v⃗

′
, t
)

− f (x⃗, v⃗1, t) f (x⃗, v⃗, t)
)
dΩ dv⃗1,

(2.42)
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which is the Boltzmann equation for a one-species, chemically inert gas where indi-

vidual particles are subjected to force F⃗ and undergo elastic collisions described by

differential cross section σ. It was derived from the Liouville equation by using a

number of assumptions which we restate here:

A) The density is assumed to be low enough so that triple body interactions can

be neglected.

B) Forces between particles are assumed to have a short range of interaction and

to be negligible for distances greater than R.

C) Inside the sphere of interaction, field effects are assumed to be negligible com-

pared to interaction forces between particles.

D) The spatial variation of f12 over the length scale of the interaction is assumed

to be small.

E) The temporal variation of f12 during the course of binary interactions is assumed

to be small.

F) All collisions are microreversible.

G) There is no correlation between every two particles that participate in a collision.

For simplicity, in the rest of this chapter, Eq. (2.42) will be considered without

external forces F⃗ = 0⃗, so that it can be rewritten

∂f

∂t
+ v⃗ · ∂f

∂x⃗
= Q (f, f) (2.43)

where the collision operator Q is abbreviated as:

Q (f, f) =
∫∫

R3 4π

σvr (f ′f ′
1 − ff1) dΩ dv⃗1 =

∫∫
R3 4π

B (f ′f ′
1 − ff1) dΩ dv⃗1 (2.44)
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where

B (vr, χ) ≜ σ (vr, χ) vr (2.45)

is called the Boltzmann collision kernel. Because of the microreversibility hypothesis

that was used in the derivation of the Boltzmann equation, the probability of the

collision (v⃗ , v⃗ 1) → (v⃗ ′, v⃗ ′
1) has to be identical to that consisting of (v⃗ ′, v⃗ ′

1) → (v⃗ , v⃗ 1)

(which was shown by using symmetry arguments), so that the cross section (and thus

the collision kernel) can only depend on vr and the deflection angle χ. The effects

of the previous assumptions on the form of the collision operator can clearly be seen

upon closer inspection. The fact that Q is quadratic in f is a consequence of A),

while the fact that variables x⃗ and t only appear as parameters (not, for example, in

a differential operator) is a consequence of D) and E), respectively, which correspond

to the fact that collisions are localized in time and space. The appearance of the

products f ′f ′
1 and ff1 is a consequence of G) while F) is reflected in the particular

form of the collision kernel (only a function of vr and χ) and in the expression of

(v⃗ ′, v⃗ ′
1) as a function of (v⃗ , v⃗ 1) which will be discussed in the next section. Further

details about the properties of the collision operator and the Boltzmann equation,

more generally, can be found in [38], [39] or [146].

2.1.2 Binary elastic collisions

The Boltzmann equation, Eq. (2.43), requires some knowledge about the collision

dynamics between particles through the cross section σ that appears in the collision

term. The differential cross section σ can take a variety of forms depending on

the variable of integration chosen for the collision term. When the internal energy

of particles is not considered, the most general expression for the cross section is

σ (v⃗r, v⃗ ′
r), where v⃗ ′

r designates the post-collision relative velocity between the two
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particles. By definition, the post-collision distribution function of v⃗ ′
r will be given by

fpost,coll (v⃗ ′
r|v⃗r) = σ (v⃗r, v⃗ ′

r)∫
R3 σ (v⃗r, v⃗ ′

r) dv⃗ ′
r

, (2.46)

Following the arguments presented in Chapter 3 of [87], the single particle collision

rate is given by

kcoll (v⃗r) = ∥v⃗r∥
∫
R3

σ (v⃗r, v⃗ ′
r) dv⃗ ′

r, (2.47)

so that the probability of a collision can readily be seen to scale as follows:

Pcoll (v⃗r) ∝ ∥v⃗r∥
∫
R3

σ (v⃗r, v⃗ ′
r) dv⃗ ′

r. (2.48)

Because of the requirement that collisions be microreversible that was previously

mentioned, the collision cross section can, however, only be a function of vr and χ,

i.e. only 2 independent variables, instead of the 6 of v⃗r and v⃗ ′
r. The integral in the

collision operator of Eq. (2.44), can thus be viewed as an integral over all possible

collisions between the two particles when one of the particles has velocity v⃗ and

the other v⃗1. In the following, we will be using an alternate representation for the

collision term, called the σ representation [146], which is more natural to consider

when performing particle simulations. As each collision preserves momentum and

energy: 
v⃗ + v⃗1 = v⃗ ′ + v⃗ ′

∥v⃗∥2 + ∥v⃗1∥2 = ∥v⃗ ′∥2 + ∥v⃗ ′
1∥2

(2.49)

which provides 3+1=4 constraints for the post collision velocities v⃗ ′ and v⃗ ′, which

have a total of 6 degrees of freedom (as each belongs to R3). This means that all

possible post-collision velocities can be parametrized by 2 degrees of freedom. In the

σ representation those two degrees of freedom are provided by vector e⃗ which belongs
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to the unit sphere S2. Using e⃗, the post-collision velocities can be rewritten as:


v⃗ ′ = v⃗+v⃗1

2 + ∥v⃗−v⃗1∥
2 e⃗

v⃗ ′
1 = v⃗+v⃗1

2 − ∥v⃗−v⃗1∥
2 e⃗

(2.50)

so that the collision term of Eq. (2.44) can be rewritten as:

Q (f, f) =
∫∫

S2 R3

σ (vr, e⃗) vr (f ′f ′
1 − ff1) dv⃗1 de⃗. (2.51)

noting the fact that, as a consequence of the microreversibility hypothesis, B and σ

can only depend on vr and v⃗r
∥v⃗r∥ · e⃗. We remark that in the previous expression of

Eq. (2.44), the two degrees of freedom were provided by angles χ and ε which both

combine to form the solid angle dΩ = sinχ dχ dε. As the post-collision velocity is

parametrized by e⃗ instead of v⃗ ′
r, its distribution function, by analogy with Eq. (2.46)

is given by:

fpost,coll (e⃗ |vr) = σ (vr, e⃗)∫
S2 σ (vr, e⃗) de⃗

. (2.52)

In the following, we will make use of the total cross section which is defined as

σT (vr) ≜
∫
S2

σ (vr, e⃗) de⃗ =
2π∫
0

π/2∫
0

σ (vr, χ) sinχ dχ dε (2.53)

and the viscosity cross section, σµ, defined by

σµ (vr) ≜
2π∫
0

π/2∫
0

σ (vr, χ) sin3χ dχ dε. (2.54)
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2.2 The direct simulation Monte Carlo technique (DSMC)

2.2.1 Numerical methods for the transition regime

Before turning to numerical methods for the Boltzmann equation, we briefly dis-

cuss some alternative fluid models, summarized in Fig. 2.4, that can be used to

avoid having to solve the Boltzmann equation in the transition regime. Although not

directly based on the Boltzmann equation, they are nonetheless able to capture non-

equilibrium effects at low Knudsen numbers. Currently, the two most popular such

methods are those based on the Burnett equation or on moments of the Boltzmann

equation. The Burnett equations are derived from a Chapman-Enskog expansion [40]

of the Boltzmann equation in terms of the Knudsen number Kn. To zeroth order, the

Euler equations are obtained, to first order the Navier-Stokes equations, to second

order and third order the Burnett and super-Burnett equations, respectively. Un-

fortunately, these last equations are particularly difficult to solve because they are

linearly unstable so that additional stabilizing terms have to be included to stabilize

them [1]. Moments equations are based on the solution of transport equations for the

moments of the Boltzmann equations. The most widely used model, Grad’s 13 mo-

ment equations, consists of a set of transport equations for n, u⃗, p⃗, τ , q⃗ (for a total of

(1+3+1+5+3 = 13) independent unknowns) which are obtained [136] by expanding

the distribution function of the Boltzmann equation in terms of Hermite polynomials.

In its original form, the 13 moment equation system is hyperbolic and cannot account

for the transport of the heat flux or stress tensor [72], which explains its relatively

poor performance. A regularized 13 moment equation system has more recently been

proposed [137] which has shown good agreement with DSMC for Couette flow [75].

Burnett and moment based equations are, however, seldom used today because of the

challenges that were described. They can only represent a viable alternative to DSMC

in the lower Kn part of the transition regime (where DSMC is very computationaly
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expensive) if these are mitigated.

2.2.2 Numerical methods for the Boltzmann equation

The Boltzmann equation, Eq. (2.43), is particularly difficult to solve because of

the collision term which is local with respect to x⃗ but non-local with respect to v⃗

because of the integral over all v⃗1 velocities. The most natural approach, due to the

fact that the Boltzmann equation is a partial differential equation, is to attempt to

discretize both physical space and velocity space with a grid and to apply any of the

methods traditionally used to solve partial differential equations [123]. This approach

is often referred to as a deterministic simulation approach, in opposition to Monte

Carlo based simulation techniques, that will be later introduced. A fairly complete

overview of the subject can be found in [6]. Most deterministic simulation methods

are based on the discrete velocity method [109] and either use the original collision

term or an approximation of it such as the BGK model [3]. Those methods are, how-

ever, very expensive due to the need to discretize velocity space (particularly for three

dimensional simulations). The problem is exacerbated for flows containing particles

with very disparate velocities such as high speed reentry flows. In such flows, both

very high speed particles (in the free steam) and low speed particles (behind the shock

wave) are present such that adequate resolution in physical space can only be accom-

plished by employing many grid points. This problem can, however, be somewhat

alleviated by using an adaptive grid in velocity space [8]. Deterministic methods have

increased in popularity in recent years, both as a result of ever increasing computa-

tional resources, and as a response to the complete dominance of Monte-Carlo based

simulation techniques for the Boltzmann equation. They are, however, attractive for

very low speed flows, which are very difficult to simulate via Monte-Carlo methods

due to their inherent noise and are easier to couple to continuum solvers than DSMC,

which makes them attractive for hybrid fluid/kinetic simulation approaches [95].

29



Continuum Slip �ow Transition Free molecular

Kn 0.1 100 0.001 ∞

 Regime

DSMC

Boltzmann solver Vlasov solver

Fluid
 Model

Moments Eq.

Burnett

Navier Stokes (no slip B.C)

Euler

(slip B.C.)

Lattice Boltzmann

Figure 2.4: Flow Regimes and commonly used fluid models.

The most popular simulation techniques for the Boltzmann equation are those

belonging to the class of Monte Carlo methods. They are based on the use of compu-

tational particles (also called macroparticles) that each represent a large number of

physical particles. The former are in turn moved throughout the simulation domain

and allowed to collide. The system of particles is allowed to evolve through time

and flow quantities are sampled. The sampled flow quantities are in turn observed

to converge to those obtainable by taking moments of the exact velocity distribution

function solution of the Boltzmann equation, if it were available. The most popular

Monte Carlo simulation method for the Boltzmann equation, today, is the DSMC

method. It was originally introduced by Bird in 1963 [12]. It clearly draws its inspi-

ration from the molecular dynamics method that was introduced by Alder in 1957

[2]. The advent of the DSMC method in the early 1960s is really due to the advent

of digital computers as the basic principle of the method is fairly obvious. A de-

tailed account of the evolution of DSMC through the years was written by Bird [17]

which also recounts the challenges of developing such a method on the computers of

that time. DSMC is not the only Monte Carlo simulation method for the Boltzmann

equation, others include Nanbu’s method [111] which is, however, seldom used today.

The DSMC method will be presented in the following within the framework of the
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simulation of a single species gas governed by Eq. (2.43), i.e., a gas which particles

only undergo binary elastic collisions in the absence of any external forces. To not

overwhelm the reader, it will furthermore be presented in this chapter in its simplest

formulation, that is, for a spatially constant time step ∆t and particle weight Wp.

The various modifications that have to be brought to the basic method presented

below, e.g. in the presence of multiple species with different relative weights or with

an electric field, are detailed as needed in each subsequent chapter of this thesis.

2.2.3 Overview of DSMC

The DSMC method aims to solve the Boltzmann Equation, i.e. Eq. (2.43) :

∂f

∂t
+ v⃗ · ∂f

∂x⃗
= Q (f, f) . (2.55)

over the physical domain Ω ∈ R3, for t > 0 with suitable boundary conditions on ∂Ω

and given initial conditions f (x⃗, v⃗, t = 0) = f0 (x⃗, v⃗). We are not concerned in this

thesis with the existence or uniqueness of such solutions (See [146] for an overview of

the subject). The basic idea of the method is to discretize physical space Ω using Nc

cells Ωi, such that ∪Nc
i=1Ωi = Ω and to perform a splitting of Eq. (2.55) by either only

considering its advection or collision term. A general outline of the DSMC procedure

is shown in pseudo-code 2.1 which will be discussed in the following. More specifically,

it consists in sequentially solving the following homogeneous Boltzmann equation for

each individual Ωi cell of the domain

∂f

∂t
(x⃗, v⃗, t) =

∫∫
R3 S2

σvr
[
f
(
x⃗, v⃗

′

1, t
)
f
(
x⃗, v⃗

′
, t
)

− f (x⃗, v⃗1, t) f (x⃗, v⃗, t)
]
de⃗ dv⃗1. (2.56)

and the collisionless Boltzmann (i.e. Vlasov) equation for all cells of the domain:

∂f

∂t
(x⃗, v⃗, t) + v⃗ · ∂f

∂x⃗
= 0 (2.57)
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This splitting is accomplished by populating the domain with computational particles

that each represent Wp actual particles. They are injected at the open boundaries of

∂Ω at step iii) of pseudo code 2.1 according to known velocity distribution functions

(which are part of the specified boundary conditions). All j particles are moved inside

the domain at each time step ∆t according to their velocities following:

x⃗j (t+ ∆t) = x⃗j (t) +
t+∆t∫
t

v⃗j (s) ds. (2.58)

Eq. (2.58) aims to solve the collisionless Boltzmann equation, i.e. Eq. (2.57). In

keeping with the idea of separating the collision of particles from their ballistic motion,

the velocity of particles is assumed constant during their movement and is only altered

during the collision phase. Using a first order Euler explicit scheme, this allows the

following temporal discretization of Eq. (2.58):

x⃗k+1
j = x⃗kj + ∆t v⃗ kj , v⃗ k+1

j = v⃗ kj . (2.59)

This movement of particles occurs at step ii) of pseudo code 2.1. While the use of

higher order schemes with respect to time is possible, they are not commonly used for

DSMC, due to the very small time step values usually employed. This basic particle

movement scheme must, however, be altered for axisymmetric geometries (discussed

in [15] p. 371) and in the presence of an external force field which alters the velocity

of particles between collisions (presented in Chapter VI). At each time step, either

before or after the move procedure of Eq. (2.59), and in each cell, particles are allowed

to collide between one another according to the DSMC collision process. This part of

the algorithm aims to “solve” the homogeneous Boltzmann equation, i.e. Eq. (2.56)

in all cells of the domain and occurs at step i) of pseudo code 2.1.
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Algorithm 2.1: Pseudo code of a DSMC procedure

For time steps, k = 0, ..., Nstep, do:
For all cells, i = 1, ..., Nc, do:

i) PerformCollisions()

ii) MoveParticles

iii) ApplyBCs()

endFor all cells
endFor all time step

Although, a rigorous derivation of the DSMC collision procedure, such as will be

presented in Section 2.3, is fairly involved, its basic premise is to exactly mimic the

collisional behavior of the physical gas by suitably rescaling the number of collisions

that each particle has to undergo by it weighting factor, Wp. Following the arguments

presented in Chapt. 3 of [87], the single particle collision frequency4 in the physical

gas is given by

ν(1) = n⟨σTvr⟩ (2.60)

where the averaging operator ⟨·⟩ is defined as

⟨σT vr⟩ =
∫
R3

σT (vr) vr dvr, (2.61)

where the total cross section σT is defined by Eq. (2.53). As each computational

particle represents Wp actual physical particles, it is natural that the single particle

collision frequency ν̃(1) in the computational gas be given by:

ν̃(1) = n

Wp

⟨σTvr⟩, (2.62)

4the number of collisions that each particle in a gas with number density n undergoes per unit
time.
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while an intuitive measure of the probability of a collision for each particle in a cell

of volume V during ∆t is given ([15] p. 8) by

Pcoll = ⟨σTvr⟩∆t
V

(2.63)

As various versions of the DSMC collision process exist, to keep things simple,

we will present in this introductory section about DSMC, the version known as the

“no time counter scheme” [15] which is the one used throughout this thesis. A few

other collision pair selection schemes will, however, be later discussed in Section 2.4.2

to motivate the use of the present scheme. They will all be shown to be particular

variants of a general Markov process, which will be discussed in Section 2.3. As the

no time counter scheme is essentially a computational procedure, it is presented in

the form of a pseudo-code in Algorithm 2.2.
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Algorithm 2.2: Pseudo code of the no time counter collision scheme at

time tk

for all cells, i = 1, ..., Nc, do:

I) Index all Np,i particles in cell i between j = 1 and j = Np,i.

II) Calculate the number of collisions that occur during time ∆t following:

Nk
coll,i = ∆tWp

2Ωi
Nk

i

(
Nk

i − 1
)

(∥v⃗r∥σ)i,max (2.64)

III) Randomly select Nk
coll,i pairs of molecules for collisions

IV) Test potential collisions

For all potential collisions, l = 1, ..., Nk
coll,i, do:

i) Randomly select particles l1 ∼ U {1, Np,i} and l2 ∼ U {1, Np,i}

ii) Calculate probability of occurrence of collision

Pcoll =
∫
S2 ∥v⃗l1 − v⃗l2∥σ (∥v⃗l1 − v⃗l2∥, e⃗) de⃗

(∥v⃗r∥σ)i,max
(2.65)

iii) if(rand() < Pcoll) collision is fictitious goto (i)

else

Collide particles l1 and l2

1) Generate e⃗ ∼ fpost,coll (e⃗ |vr) = σ(vr,e⃗)∫
S2 σ(vr,e⃗)de⃗

.

2) Update velocities

v⃗ ′
l1

= v⃗l1 + v⃗l2

2
+ ∥v⃗l1 − v⃗l2∥

2
e⃗

v⃗ ′
l2

= v⃗l1 + v⃗l2

2
− ∥v⃗l1 − v⃗l2∥

2
e⃗

3) If Pcoll > 1

(∥v⃗r∥σ)i,max =
∫
S2

∥v⃗l1 − v⃗l2∥ σ (v⃗l1 , v⃗l2 , e⃗) de⃗ (2.66)

endif (rand() < Pcoll)

endfor all potential collisions

endfor all cells
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The no time counter (NTC) method calculates at each time step, in a deterministic

way, following Eq. (2.64), the number of collisions that have to occur in each cell of

the domain, where Nk
i designates the number of particles in cell i at time step tk, Wp

is the particle weight (i.e. the number of physical particles that each actual particle

represents) and Ωi is the volume of cell i. (∥v⃗r∥σ)i,max designates the maximum value

of the product of the relative velocity and the cross section amongst all velocity pairs in

the cell during all time steps of the simulation. This quantity is recorded throughout

all the simulation and suitably updated following Eq. (2.66). The collision model

provides a value for the cross section σ (vr, e⃗) and is described following the present

discussion of the collision pair selection scheme. Having determined the number of

particles pairs to consider for collision, the NTC scheme proceeds to form the required

number of particles by randomly selecting particles from the cell in step IV)i). They

are in turn tested following Eq. (2.65), to determine if they give rise to a fictitious

or real collision which does satisfy the basic scaling of Eq. (2.48). The choice of the

proportionality constant 1
(∥v⃗r∥σ)i,max

in Eq. (2.65) is a consequence of the number of

pairs selected for collision through Eq. (2.64) and the need to reproduce the correct

single particle collision rate of Eq. (2.62). A fictitious collision is a collision where

the velocity of the two colliding particles are left unaltered. This issue is further

discussed in Section 2.4.2.2. In the case where a collision is slated to occur, a new

scattering direction for the relative velocity e⃗ is chosen at step IV)iii)1) following the

distribution function for e⃗ given by Eq. (2.52). The post-collision velocities v⃗ ′
l1 and

v⃗
′
l2 of the two particles are in turn calculated following Eqs. (2.50) at step IV)iii)2).

Independently of the pair selection scheme, the collision model provides a value

for the differential cross section σ (∥v⃗l1 − v⃗l2∥, e⃗). The “variable hard sphere” (VHS)

collision model is used throughout this thesis, first introduced in [14]. It assumes that
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the differential cross section σ is of the following form:

σ (v⃗l1 , v⃗l2 , e⃗) = CVHS

∥v⃗l1 − v⃗l2∥ωVHS
, ωVHS ≥ 0 (2.67)

where constants CVHS and the exponent ωVHS are chosen so as to reproduce both

a specified viscosity µref when the gas is in equilibrium at temperature Tref and a

power law for viscosity, i.e. µ (T ) = µref
(
T
Tref

)ωµ , when the gas is in equilibrium at

temperature T . The values of CVHS and ωVHS as a function of Tref, µref and ωµ
5 can

be obtained analytically [15] by using the definition of viscosity6 and the expression

for the distribution7 of relative velocity v⃗r = v⃗l1 − v⃗l2 ̸=l1 in an equilibrium gas:

CVHS = 15
64

√
π

m

µref

(
4kBTref

m

)ωµ
(2.68)

and

ωVHS = 2 ωµ − 1 (2.69)

The differential cross section of Eq. (2.67) is independent of e⃗. This means that,

whenever this model is used, the direction vector e⃗ at step IV)iii)1) of Algorithm 2.2

should be generated following

fpost,coll (e⃗ |vr) = σ (vr, e⃗)∫
S2 σ (vr, e⃗) de⃗

= 1
4π

which is the uniform distribution on the unit sphere S2.

Having presented the basic formulation of the DSMC procedure using the collision-

pair selection scheme (“no-time counter” scheme) and the collision model (“variable
5The following was employed throughout the thesis: for argon, [40] µref = 2.117 × 10−5 [Pas] at

Tref = 273K and ωµ = 0.81.
6The viscosity of a gas in equilibrium can be shown to be given by µ =

5/8 (πmkBT )1/2(
m

4kB T

)4 ∫ +∞

0
v7

rσµ(vr) exp(−mv2
r/4kBT )dvr

p. 404 of [147], where the viscosity cross section σµ is de-

fined by Eq. (2.54).
7f (vr = ∥v⃗r∥) =

√
2 m3/2v2

r

π1/2(2kBT )3/2 exp
(
−mv2

r/ (4kBT )
)

[15].
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hard sphere” model) that are used throughout the thesis, we now present DSMC from

a more general and mathematical viewpoint.

2.3 DSMC as a Markov process

2.3.1 Motivation

The no time counter scheme that was previously presented actually corresponds

the implementation of a much more general Markov process. Viewing DSMC as

a Markov process has many advantages as it allows i) a rigorous presentation and

greater understanding of the DSMC procedure, ii) the development of new DSMC

schemes and iii) a convergence proof. In this section, the Markov process correspond-

ing to the DSMC procedure will be used to formulate a general DSMC procedure that

is independent of the collision pair selection or collision scheme. A derivation of the no

time counter DSMC procedure (introduced in the previous section, and used through-

out this work) will be presented and it will be contrasted with the less efficient but

more natural ”direct simulation scheme”. The proof of [148] will only be very briefly

discussed at the end.

The DSMC procedure was first developed [12] largely based on physical reasoning

by using fairly simple probability concepts. Most of the subsequent improvements

brought to the method, such as, for instance, new collision pair selection schemes

[14] or species weighting [13], were all based on mostly physical arguments or as the

result of numerical experimentation. In parallel to those developments in the West

(including Japan), a number of stochastic methods based on stochastic differential

equations were introduced in the Soviet Union such as e.g. [7] (See [132] for a good

overview) that were similar to Bird’s but much more rigorously derived from the

Boltzmann equation and with a convergence proof in the case of [133]. Wagner’s

convergence proof [148] for the “time counter” scheme is partially based on the latter.
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That scheme has been mostly superseded by the no time counter scheme which is used

in this work and that was introduced in the previous section. A formal definition of

the no time counter scheme in terms of a Markov process is given in [125], while the

convergence proof is almost identical to that presented in [148]. The presentation and

notation employed follow in large part from that introduced in [125] and [126].

2.3.2 A Boltzmann equation for collisions

By decoupling the movement of particles from their collision, the DSMC method

de facto assumes that the particles inside each cell cannot be distinguished by their

positions during the collision process. This means that the DSMC procedure should

thus aim to locally approximate the homogeneous Boltzmann equation in each cell of

the domain. We rewrite Eq. (2.56) as follows:


∂f
∂t

(v⃗, t) =
∫∫

R3 S2

σvr
[
f
(
v⃗

′

1, t
)
f
(
v⃗

′
, t
)

− f (v⃗1, t) f (v⃗, t)
]
de⃗ dv⃗1.

f (v⃗, 0) = f 0 (v⃗)

(2.70)

and define the normalized distribution f̂ as:

f̂ (v⃗, t) = f (v⃗, t)∫
R3

f (v⃗, t) dv⃗
(2.71)

A discussion of the conditions that the initial solution f 0 (v⃗) must satisfy for the

existence of a solution can be found, amongst others in [51] [73].

2.3.3 Collisions as Markov jump process

We first start by considering a generalized version of the DSMC collision simula-

tion procedure that was presented in the previous section for the particular case of

the no time counter scheme. This general scheme can be used to obtain all current
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variants of the DSMC procedure and could even be used to define it.

Algorithm 2.3: Pseudo code of a general DSMC collision scheme at time tk

For all cells, i = 1, ..., Nc, do:

I) Index all Np,i particles in cell i between j = 1 and j = Np,i.

II) Reset time counter tc,i = 0

III) While tc,i ≤ ∆t

i) Calculate time to next collision ∆tcoll

ii) Increment the counter tc,i = tc,i + ∆tcoll

iii) Select indices l1, l2 of two colliding particles from fsel, coll (l1, l2)

iv) Calculate collision probability Pcoll

v) if(rand() < Pcoll) collision is fictitious goto (i)

else

Collide particles l1 and l2:

1) Generate e⃗ ∼ fpost,coll (e⃗ |vr) = σ(vr,e⃗)∫
S2 σ(vr,e⃗)de⃗

.

2) Update velocities

v⃗ ′
l1

= v⃗l1 + v⃗l2

2
+ ∥v⃗l1 − v⃗l2∥

2
e⃗

v⃗ ′
l2

= v⃗l1 + v⃗l2

2
− ∥v⃗l1 − v⃗l2∥

2
e⃗

endif (rand() < Pcoll)

EndWhile tc,i ≤ ∆t

EndFor all cells

An obvious difference between the general procedure and the no time counter scheme

that was previously presented is the use of a time counter to determine the number of

collisions to perform. The basic physical idea behind the use of such a procedure is to

reproduce the correct number of collisions during time step ∆t by incrementing the

value of a time counter by an estimate ∆tcoll of the mean collision time (average time

between collision) of the cell every time a collision, real or fictitious, is performed.
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Such an estimate furthermore need not be deterministic and can be obtained by sam-

pling. We will later show that an implicit time counter is actually present in the no

time counter scheme so than it can indeed be rewritten under the form of the general

DSMC collision scheme given in algorithm 2.3. A DSMC collision model is needed to

obtain an expression for the time counter increment ∆tcoll, the distribution function of

the particles to consider for collision fsel, coll (l1, l2) and the collision probability Pcoll.

The algorithm described by Algorithm 2.3 can be interpreted as a Markov process.

A Markov process is a random process in which the future is independent of the

past, given the present. A random process is characterized at time t by a random

variable v (t), which is called the state of the system. A Markov process has the

particular property of memorylessness, i.e. that the value of {v (t) , t > t0} only de-

pends of v (t0), not on {v (t) , t < t0}. A more formal definition and a few important

properties of such processes, that will later be used, are described in Appendix A.

The Markov process that we consider is characterized by the velocity of all particles

in cell Ωi which thus constitute its state variable v (t):

v (t) = (v⃗1 (t) , v⃗2 (t) , ...., , v⃗Ni (t)) (2.72)

which belongs to state space V = (R3)Ni . The system changes state every time a

collision occurs, at which point it undergoes an instantaneous transition, called a

jump transformation, and denoted by J , from v to its next state v′. The system

remains in the same state between transitions. Transitions occur at random times

T 0, T 1, ..., T k, T k+1, ... etc. and the time between transitions, i.e. ∆T k ≜ T k+1 − T k,

follows an exponential distribution because of the Markov property, as shown in

Appendix A. The parameter8 λ of the exponential distribution is independent of the
8An exponential distribution has probability distribution function f (x) = λ exp (−λx) which is

fully characterized by parameter λ.
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time step of the simulation ∆t and is related to the mean collision time in the cell.

Its value will be derived in Section 2.4.1. When two particles with respective indices

l1 and l2 collide at time t = T k, the state variable is changed from

v (t) = (v⃗1, v⃗2, ..., v⃗l1 , ..., v⃗l2 , ..., v⃗Ni) , t < T k

to

v′ = v (t) =
(
v⃗1, v⃗2, ..., v⃗

′
l1 , ..., v⃗

′
l2 , ..., v⃗Ni

)
, t ≥ T k

where the post-collision velocities v⃗ ′
l1 and v⃗ ′

l2 are obtained by Eqs. (2.50) which we

restate below: 
v⃗ ′
l1 = v⃗l1 +v⃗l2

2 + ∥v⃗l2 −v⃗l1 ∥
2 e⃗

v⃗ ′
l2 = v⃗l1 +v⃗l2

2 − ∥v⃗l2 −v⃗l1 ∥
2 e⃗

while the position x⃗ of particles is never altered by collisions. Using the jump trans-

formation J : V × N × N × S2 → V , such a transition can be formalized as:

v
′ ≜ v

(
t ≥ T k

)
= J (v, l1, l2, e⃗) . (2.73)

where the arguments of J are, respectively, the old state variable v ≜ v
(
t < T k

)
, the

indices of the two colliding particles l1 and l2 and the post-collision relative velocity

direction e⃗ that is obtained from the collision model. In the following, the present

state of the system will often be referred to as v, and v′ will be used to designate the

state after the transition.

2.3.4 A Boltzmann master equation

Equation (2.70), the homogeneous Boltzmann equation, despite being simpler

than the full Boltzmann equation, is still very challenging to solve numerically, par-

ticularly because of the non-linearity of f in the collision term. For that reason, the
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DSMC method seeks to solve an equivalent equation, a particular form of the Kac

master equation, based on the fact that N computational particles are present in the

cell. This equation aims to mimic the Boltzmann equation while being in a simpler

form. To this end, the normalized9 probability density function FNi of the Ni par-

ticles in cell i is considered, i.e. FNi (v⃗1, ..., v⃗Ni , t) = FNi (v, t) using the definition of

Eq. (2.72). By definition, FNi (w⃗1, w⃗2, ..., w⃗Ni , t) dw⃗1 dw⃗2 ... dw⃗Ni is the simultaneous

probability (or equivalently the fraction of total particles), at time t, that the velocity

of particle 1, v⃗1 is inside volume dw⃗1 about w⃗1 of velocity space, v⃗2 is inside volume

dw⃗2 about w⃗2 etc. The master equation is given by



∂FNi (v,t)
∂t

= Wp

2Ωi

∑
1≤a ̸=b≤Ni

∫
S2

σab∥v⃗a − v⃗b∥
[
FNi (J (v, a, b, e⃗) , t) − FNi (v, t)

]
de⃗.

FNi (v, 0) =
Ni∏
j=1

f̂ (0, v⃗j)

(2.74)

where J is defined by Eq. (2.73), f̂ by Eq. (2.71). This master equation is very

similar to those proposed in [89] and [107]. Eq. (2.74) constitutes a Fokker-Planck

equation [48] for the density p (v, t) ≜ FNi (v, t) of the Markov process v (t) describing

the collision between particles. We will make use of that fact in the next section to

derive its infinitesimal generator. The realization that the DSMC procedure actually

consists in solving the Master equation given by Eq. (2.74) was first advanced in

1975 in [10]. The DSMC method was, however, developed using phenomenological

arguments without any recourse to such master equation. Further details about the

connection between the Kac master equation and DSMC can be found in [83] [82].

Similar master equations are also commonly used to describe the evolution of physical

systems that evolve between a countable set of states as discussed in [143] or [79].

9
∫

V =(R3)Ni

F Ni (v) dv = 1
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2.4 A derivation of the DSMC procedure

2.4.1 Derivation of a general DSMC algorithm

We now aim to derive specific expressions for i) the waiting time ∆coll at step III)i),

ii) the distribution function of particle indices to consider for collision fsel, coll (l1, l2)

at step III)iii), and iii) the collision probability Pcoll at step III)iv) in the general

DSMC procedure that was presented above. This will be accomplished from basic

mathematical considerations following [125]. This will provide a very strong motiva-

tion for the formulation of the DSMC algorithm, as the DSMC algorithm will be seen

to be obtainable from the Kac Master equation (Eq. 2.74).

Before relating the DSMC procedure to the master equation, we first briefly high-

light an important result that will later explain the fact that the DSMC procedure

uses fictitious collisions. As the Markov process describing the collision between par-

ticles belongs to the class of Markov jump processes, its infinitesimal generator10 A

can be shown to be of the following form:

Aϕ (v) = λ (v)
∫
V

[ϕ (v′) − ϕ (v)]µ (v, dv′). (2.75)

where µ is the Markov transition function and λ is the waiting time. The transition

function µ gives the probability of occurrence of a transition (jump) from state v to v′,

while λ corresponds to the parameter of the exponential distribution that describes

the time during which the process stays in state v (the waiting time), which only

depends on the current state of the process, v. More details about the transition

function and waiting times can be found in Appendix A. We now assume that the
10An infinitesimal generator describes in terms of differential operators the evolution of a test

function ϕ which evolution is governed by a Markov Process (see Appendix A for a more rigorous
definition)
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waiting time is bounded, that is

0 < λ (v) < λmax, ∀ v ∈ V. (2.76)

which will later be shown to be a valid assumption for a DSMC cell. Following,

[54] p. 163, and using the fact that
∫
V [ϕ (v′) − ϕ (v)] δv (dv′) = 0, Eq. (2.75) can

equivalently be written as

Aϕ (v) = λmax

∫
V

[ϕ (v′) − ϕ (v)]
[
λ (v)
λmax

µ (v, dv′) +
(

1 − λ (v)
λmax

)
δv (dv′)

]
. (2.77)

which, by comparison with Eq. (2.75), is seen to correspond to a Markov process with

a waiting time that follows an exponential distribution of λmax (independent of the

present state v). The second term of the integral in Eq. (2.77) corresponds to the

infinitesimal generator of a Markov process whereby a jump occurs with a probability

of λ(v)
λmax

while no jump (i.e. v′ ≡ v) occurs with a probability of 1 − λ(v)
λmax

. The result

of Eq. (2.77), which is valid for any Markov jump process, will later be use to derive

the DSMC algorithm.

The infinitesimal generator of the stochastic process described by the master equa-

tion, Eq. (2.74), can be directly obtained from the fact that it constitutes a Fokker-

Planck equation. By definition, a Fokker-Planck equation gives an evolution equation

for the probability density function p (v, t) of a stochastic process v (t) [48] [98]. It

furthermore can be written as:


∂p(v,t)
∂t

= A∗
Bp (v, t)

p (v, 0) = p0 (v)
(2.78)

where A∗
B is the adjoint of the infinitesimal generator of the stochastic process. A “B”
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subscript is used for this operator to highlight its connection with the Boltzmann/Kac

master equation. By comparison with Eq. (2.74), with ϕ = FNi and dropping the

time dependency for conciseness:

A∗
Bϕ (v) = Wp

2Ωi

∑
1≤a ̸=b≤Ni

∫
S2

σab∥v⃗a − v⃗b∥ [ϕ (J (v, a, b, e⃗)) − ϕ (v)] de⃗. (2.79)

which shows that A∗
B = AB. The infinitesimal generator AB can be rewritten as

ABϕ (v) =
∫
V

[ϕ (v′) − ϕ (v)] Q (v, dv′). (2.80)

where

Q (v, dv′) = 1
2

∑
1≤a ̸=b≤Ni

∫
S2

δJ(v,a,b,e) (dv′) q (v, a, b, e) de⃗. (2.81)

Eq. (2.80) gives an expression of the evolution of test function ϕ in a cell due to

collisions. It is obtained by summing the product of the intensity function q (v, a, b, e)

and the collision operator δJ(v,a,b,e), corresponding to each collision for all particle

pairs in the cells. The intensity function is a quantitative measure of the probability

of collision (jump) during a small time interval so that from Eq. (2.63):

q (v, a, b, e) = Wp

V

∫
S2

B (∥v⃗a − v⃗b∥, e⃗) de. (2.82)

where from Eq. (2.45), B = σab∥v⃗a−v⃗b∥. To simplify the presentation in the following,

we will assume that the collision kernel B (v⃗i, v⃗j, e⃗) is independent of the scattering

angle χ so that B (v⃗i, v⃗j, e⃗) = B (v⃗i, v⃗j) which is true (cf. Eq. (2.67)) in the case of

the variable hard sphere model that is employed throughout this thesis so that

∫
S2

B (∥v⃗a − v⃗b∥, e⃗) de = 4π B (∥v⃗a − v⃗b∥) (2.83)

46



and ∫
S2

q (v, a, b, e) de = 4π q (v, a, b) (2.84)

which allows Eq. (2.81) to be rewritten as:

Q (v, dv′) = 2π
∑

1≤a̸=b≤Ni
δJ(v,a,b,e) (dv′) q (v, a, b, e) . (2.85)

so that inserting the new expression into Eq. (2.80),

ABϕ (v) =
∫
V

[ϕ (v′) − ϕ (v)] 2π
∑

1≤a ̸=b≤Ni
δJ(v,a,b,e) (dv′) q (v, a, b, e) =

2π
∑

1≤a ̸=b≤Ni

∫
V

[ϕ (v′) − ϕ (v)] δv,a,b (dv′) q (v, a, b). (2.86)

We designate by q̂ 11 any function such that

q̂ (v, a, b) ≥
∫
S2

q (v, a, b) de = 4πq (v, a, b) ∀ v, a, b (2.87)

and using Eq. (2.77) with λ (v) = q (v, a, b), λmax = q̂ (v, a, b) and µ (v, dv′) =

δv,a,b (dv′) for all a, b pairs, the infinitesimal generator of Eq. (2.86) can be equiv-

alently written as:

ABϕ (v) = 1
2

∑
1≤a ̸=b≤Ni

∫
V

[ϕ (v′) − ϕ (v)]

[
4π δJ(v,a,b,e) (dv′) q (v, a, b) + δv (dv′) (q̂ (v, a, b) − 4π q (v, a, b))

]
. (2.88)

By defining bilinear form Q̂ as

Q̂ (v, dv′) = 1
2

[4π δv,a,b (dv′) q (v, a, b) + δv (dv′) (q̂ (v, a, b) − 4π q (v, a, b))] , (2.89)

11The choice of this function represents a crucial part of the DSMC method. It will later be
discussed in Section 2.4.2.
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Eq. (2.88) can rewritten as

ABϕ (v) =
∑

1≤a ̸=b≤Ni

∫
V

[ϕ (v′) − ϕ (v)] Q̂ (v, dv′) . (2.90)

We now seek to recast the differential generator of Eq. (2.90) under the form of a

jump process with a waiting time and transition function following Eq. (2.75). This

can be done in a variety of ways, but the most natural choice is to define the waiting

λ̂ (v) as:

λ̂ (v) =
∫
V

Q̂ (v, dv′) = 1
2

∑
1≤a ̸=b≤Ni

q̂ (v, a, b) (2.91)

such that Eq. (2.90) may be equivalently rewritten as

ABϕ (v) = λ̂ (v)
∑

1≤a ̸=b≤Ni

∫
V

[ϕ (v′) − ϕ (v)] Q̂ (v, dv′)
λ̂ (v)

. (2.92)

By analogy with Eq. (2.75), the jump process described by Eq. (2.92), has a waiting

time of λ̂ (v) and a transition function given by 2πQ̂(v,dv′)
λ̂(v) . Using the definition of Q̂

given by Eq. (2.89), the complete form of the infinitesimal generator is given by:

ABϕ (v) = λ̂ (v)
∑

1≤a ̸=b≤Ni

∫
V

[ϕ (v′) − ϕ (v)]

(
q̂ (v, a, b)

2λ̂ (v)

)[
δJ(v,a,b) (dv′) 4π q (v, a, b)

q̂ (v, a, b)
+ δv (dv′)

(
1 − 4π q (v, a, b)

q̂ (v, a, b)

)]
. (2.93)

Eq. (2.93) is seen to have an identical form to that of Eq. (2.77) so it can be inter-

preted in the same manner with the only difference that the jumps will be referred

to as collisions. That is, the infinitesimal generator describes a jump Markov process

whereby a collision occurs with a probability Pcoll:

Pcoll = 4π q (v, a, b)
q̂ (v, a, b)

(2.94)
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while its state is unchanged with a probability of (1 − Pcoll) =
(
1 − 4πq(v,a,b)

q̂(v,a,b)

)
. The

case when the system does not change state is referred to as a fictitious jump. Waiting

times, i.e. the amount of times between potential jumps (real and fictitious), follow

an exponential distribution and, by construction, its parameter is given by Eq. (2.91).

The extra factor
(
q̂(v,a,b)

2λ̂

)
which is not present in Eq. (2.77) governs the overall col-

lision probability as any factor less than 1 and independent of dv′ in the integral

of an infinitesimal generator simply reduces the value of the transition probability.

The probability of a collision (real or fictitious) for a particular a, b pair is thus given

by
(
q̂(v,a,b)

2λ̂

)
. It can be seen that the Markov process that was just described corre-

sponds to point III)iii) of Algorithm 2.3. As collision probabilities are proportional

to
(
q̂(v,a,b)

2λ̂

)
, this last term provides an expression for the distribution of indices of

colliding particles. From the standpoint of implementing the Markov process, this

means that l1 and l2 (the indices of colliding particles) should be selected according

to that distribution, i.e.,

fsel, coll (l1, l2) = q̂ (v, a, b)
2λ̂ (v)

. (2.95)

which does satisfy the distribution normalization condition because of the definition

of λ̂ (v) following Eq. (2.91):

N∑
l2=1
l2 ̸=l1

N∑
l1=1

fsel, coll (l1, l2) = 1.

Eq. (2.95) thus gives the distribution function of particle indices to consider for

collision fsel, coll (l1, l2) at step III)iii) of Algorithm 2.3. The waiting time ∆tcoll, which

is needed at step III)i) of the pseudo code, is obtained by sampling from an exponential

distribution, i.e.

∆tcoll ∼ Exp
(
λ̂ (v)

)
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where the parameter λ̂ (v), defined through Eq. (2.91) is given by

λ̂ (v) = 1
2

∑
1≤a̸=b≤Ni

q̂ (v, a, b)

It was also shown (cf. Eq (2.94)) that collisions should be performed with a probability

of Pcoll = 4πq(v,a,b)
q̂(v,a,b) which thus specifies the probability of a fictitious or real collision

in points III)iv) of the pseudo code.

We have thus shown that the collision part of a general DSMC procedure can be

rigorously derived from a Markov process that seeks to model a Boltzmann master

equation for each cell of the computational domain. At this point, the only thing left

to do to obtain the full DSMC procedure is to specify function q̂ (v, a, b), which will

be done in the next section and will in turn allow a rigorous derivation of all possible

DSMC pair selection schemes.

2.4.2 Pair selection schemes for DSMC

2.4.2.1 Direct simulation scheme

We will first derive the most basic DSMC scheme possible, the direct simulation

scheme which will in turn motivate the use of the scheme that is used throughout

this thesis, the no time counter scheme. As previously mentioned, the only remaining

step to fully characterize, and thus to simulate, the Markov process described by

Eq. (2.93) is function q̂ (v, a, b) for which the only constraint is (cf. Eq. (2.87))

4πq (v, a, b) ≤ q̂ (v, a, b) ∀ v, a, b (2.96)

By the definition of Eq. (2.82) and using Eqs. (2.84) and (2.83),

q (v, a, b) = Wp

V
B (v⃗a, v⃗b) .
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and limiting ourselves to a VHS collision kernel, where from Eq. (2.67):

B (v⃗i, v⃗j) = ∥v⃗a − v⃗b∥ σVHS (v⃗i, v⃗j) = CVHS

∥v⃗a − v⃗b∥ωVHS−1 , (2.97)

and hence

q (v, a, b) = Wp

V

CVHS

∥v⃗a − v⃗b∥ωVHS−1 . (2.98)

the most natural choice is to pick the smallest possible bound, which according to

Eq. (2.96) is

q̂ (v, a, b) = 4πq (v, a, b) = 4πWp CVHS

V ∥v⃗a − v⃗b∥ωVHS−1 . (2.99)

Following Eq. (2.91), this leads to the following parameter for the exponential distri-

bution of the waiting time:

λ̂ (v) = 1
2

∑
1≤a ̸=b≤Ni

q̂ (v, a, b) = 2πWpCVHS

V

∑
1≤a ̸=b≤Ni

∥v⃗a − v⃗b∥1−ωVHS , (2.100)

while the distribution of indices of colliding particles, following Eq. (2.95), has to

occur according to the following distribution:

fsel, coll (l1, l2) = q̂ (v, l1, l2)
2λ̂ (v)

=
4π CVHS

Wp V ∥v⃗a−v⃗b∥ωVHS−1

4πCVHS
WpV

∑
1≤a ̸=b≤Ni ∥v⃗a − v⃗b∥1−ωVHS

= ∥v⃗a − v⃗b∥1−ωVHS∑
1≤a̸=b≤Ni ∥v⃗a − v⃗b∥1−ωVHS

(2.101)

where λ̂ (v) and q (v, a, b) are, respectively, obtained with Eqs. (2.100) and (2.99).

The probability of a real collision, given with Eq. (2.94) and using the definition of

q̂ (v, a, b) is found to be Pcoll = 1. This means that within the framework of the

direct simulation scheme, no fictitious collisions take place. The large drawback of

the present scheme lies in the computational effort required for the calculation of the

parameter of the exponential distribution of the waiting time and in the calculation of

the distribution used to select the indices of colliding particles which both sum over all
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particle pairs of the cell, i.e.∑1≤a ̸=b≤Ni (·). This represent a substantial computational

effort, as these have to be calculated multiple times during every time step ∆t, that is,

until the time counter, tc, exceeds ∆t. This has led to the development of a number

of more efficient pair selection schemes for DSMC such as the no time counter which

is presented in the next section.

2.4.2.2 No time counter scheme

The no time counter scheme can be obtained by using the following bound for

q̂ (v, a, b):

q̂ (v, a, b) = 4πWpCVHS

V ∥v⃗r,max∥ωVHS−1 , (2.102)

where ∥v⃗r,max∥ = max
a,b

∥v⃗a − v⃗b∥, which is suitably updated for each individual cell of

the simulation whenever a particle pair with greater relative velocity is encountered.

Using this expression for q̂ (v, a, b), the parameter of the exponential distribution for

the waiting time is found to be using Eq. (2.91)

λ̂ (v) = 1
2

∑
1≤a ̸=b≤Ni

q̂ (v, a, b) = 2πWp

V
CVHS∥v⃗r,max∥1−ωVHSN (N − 1) , (2.103)

while, from Eq. (2.95), the two indices l1 and l2 of the particles to select for potential

collisions follow a uniform distribution fsel, coll (l1, l2), i.e.

fsel, coll (l1, l2) = 1
N2 (2.104)

so that both particles to consider for a potential collision are randomly selected

amongst all those present in the cell. Finally, the collision probability is found using

Eq. (2.94)

Pcoll = 4πq (v, a, b)
q̂ (v, a, b)

= ∥v⃗a − v⃗b∥ωVHS−1

∥v⃗r,max∥ωVHS−1 (2.105)
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This formulation of the scheme at this point can be further simplified which in turn

allows the full recovery of the formulation of Algorithm 2.2, where it was initially

introduced. The waiting time τ (v) need not be obtained through the sampling of the

exponential distribution if its value is small. As it is obtained from an exponential

distribution with parameter λ, E [τ (v)] = λ−1 (v) and Var [τ (v)] = λ−2 (v), so that if

λ−1 (v) ≪ 1, τ (v) ≈ λ−1 (v). This means that the value of the waiting time can be

obtained deterministically from Eq. (2.103) without any sampling. As the expression

furthermore only depends on the number of particles in the cell, N , and ∥v⃗r,max∥

which is constant (except for a few time steps in the ramp up to steady state state),

it only has to be evaluated once per time step ∆t. The number of collisions (real or

fictitious) that occur in a cell Ncoll during time step ∆t is thus known at the onset of

the time step. It is obtained by equating the time step ∆t to the fixed waiting time

between each collision multiplied by the number of collisions, so that

Ncoll = ∆t
τ (v)

= ∆t λ (v) (2.106)

so that using the expression of Eq. (2.103) for λ (v) and specializing the result to a

cell with index i:

Ncoll,i = ∆t
τ (v)

= ∆tWp

2Ωi

4π CVHS∥v⃗r,i,max∥1−ωVHSNi (Ni − 1) (2.107)

By definition of the total collision cross section (cf. Eq. (2.53)) σT = 4πCVHS∥v⃗r∥−ωVHS ,

so that Eq. 2.107 can be rewritten as

Ncoll,i = ∆tWp

2Ωi

Ni (Ni − 1) (∥v⃗r∥σT )i,max (2.108)

which is the exact same expression for the number of pairs to select for potential

collision as that of Eq. (2.64) in Algorithm 2.2. The collision probability given by
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Eq. (2.105) is furthermore identical to that of the pseudo-code, i.e. (Eq. 2.65). We

have thus rigorously derived the no time counter scheme from the master equation

that is solved during the collision part of the DSMC procedure. The computational

advantages of the present scheme compared to the direct simulation scheme that was

previously presented are obvious, as the number of particle pairs to test for collision

(or equivalently the waiting time) can be determined without the need to loop over all

pairs in the cell as in Eq. (2.103). The absence of a time counter further contributes

to the computational efficiency of the scheme.

2.4.3 DSMC and the Boltzmann equation

As previously mentioned in Section 2.3.4, the homogeneous part of the DSMC

algorithm consists in simulating the evolution of Ni particles in each individual cell of

the domain following a Boltzmann master equation (Eq. 2.74). By construction of the

collision algorithm, it is exactly simulated by the DSMC procedure. It, however, of

course differs from the homogeneous Boltzmann equation (Eq. 2.70). The Boltzmann

and master equations are reproduced below to highlight differences, keeping in mind

that the distribution function in the master equation is normalized.


∂f
∂t

(v⃗, t) =
∫∫

R3 S2

σvr
[
f
(
v⃗

′

1, t
)
f
(
v⃗

′
, t
)

− f (v⃗1, t) f (v⃗, t)
]
de⃗ dv⃗1

f (v⃗, 0) = f 0 (v⃗)

(2.109)



∂FNi (v,t)
∂t

= Wp

2Ωi

∑
1≤a̸=b≤Ni

∫
S2

σab∥v⃗a − v⃗b∥
[
FNi (J (v, a, b, e⃗) , t) − FNi (v, t)

]
de⃗

FNi (v, 0) =
Ni∏
j=1

f̂ (0, vj)

(2.110)
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Despite the lack of non-linearity in the distribution function in Eq. (2.110), this

equation can be shown, in the limit Ni → ∞, to produce the same measure. For each

variable v, the following empirical measure µvNi is defined

µ
v
Ni
t

= 1
Ni

Ni∑
j=1

δv⃗j(t), (2.111)

which, when Ni → ∞, has the property that

E
(

|⟨µ
v
Ni
t

− f̂ (t)⟩|
)

→ 0. (2.112)

The proof for the DSMC no time counter scheme was first given in [148] where

Eq. 2.112 corresponds to part of Theorem 4.4 therein. It is also discussed at length

in [125]. As it is fairly technical and builds on previous work in the area, it is not

discussed further here.
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CHAPTER III

On the convergence of the direct simulation Monte

Carlo method

3.1 Introduction

Error in DSMC simulations can be defined in the broadest possible sense as the

difference between the statistical properties of the computational particles and the

corresponding moments of the exact solution of the Boltzmann equation. This error

originates from multiple sources which either mitigate or reinforce one another. It

can come from the use of finite numerical parameters in the application of the DSMC

method which introduces error due to the numerical scaling (as each computational

particle represents Wp physical particles, and both time and space are discretized).

This error is most commonly due to the use of a too small number of particles Np, a

too large time step ∆t, or too large cells. This type of error will be termed numerical

error in the following. Error can also be due to the inability of DSMC, in the absence

of numerical error, to reproduce the moments of the Boltzmann equation. This issue

will not be addressed in the present work noting that DSMC has been shown to consis-

tently model the homogeneous Boltzmann equation [148]. Finally, error is introduced

by the use of a finite number of samples k to estimate the statistical properties of

the particles in the simulation. It will be referred to as the convergence error in this
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thesis. Numerical error, under a variety of names, has been previously studied among

others in [55], [41], [124] or [134]. Convergence error is referred to as the statistical

error in [77] and was found in [55] to vary as A (N × k)−1/2. The same result was

later obtained in [41]. The error was related in [77] to the physical fluctuations in

the gas and closed form expressions were obtained in terms of non-dimensional flow

numbers for A. This thesis will first present a rigorous definition of both types of

error before discussing in detail the convergence error. The issue of numerical error

will be addressed in Chapter IV.

From an error perspective, the role of sampling in a DSMC simulation is to reduce

the convergence error affecting the quantities being sampled for. Despite the previous

investigations of the convergence error cited above, there are no clear requirements

within the DSMC community as to the number of sampling steps required to obtain

accurate or converged results for those sampled properties. Often an arbitrarily large

number of samples, e.g. 105 as in [24] is used without further considerations or the

sampling period is extended [149] “until the statistical error is small enough”. This

situation is in no small part due to the correlation between samples which prevents

the use of the central limit theorem. For instance, the predictions of the statistical

error due to finite sampling presented in [77] only hold in the absence of correlation

between samples which leads its authors to sample only every 250 time steps in the

DSMC simulations conducted to validate them. A large number of authors also try

to reduce the correlation between successive samples by only sampling every few time

steps such as [151] or [106] to obtain more independent samples. This shows that the

time correlation between samples in DSMC simulations is a well known issue although

it has not been accounted for in any existing work about the convergence error except

recently in [119]. That latter work was however only concerned in obtaining upper

bounds (which were subsequently used in [120]) for the convergence error and did not

examine in detail the correlation between samples (in particular the autocorrelation
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function), which we propose to do in the following.

The present work thus aims to derive expressions for the convergence error that

take the correlation of samples into account.

In this chapter, a rigorous formal definition of both the convergence and numerical

error in DSMC simulations is first presented. Building on that formulation, the

behavior of the convergence error is then investigated while that of the numerical

error is addressed in Chapter IV. The specific goal of the present chapter is to provide

an expression for the value of the convergence error that can be used for its a priori

determination during the course of the simulation. As previously mentioned, the

convergence error is greatly affected by the time correlation between samples. This

makes it necessary to quantify the correlation between samples which is performed

in Section 3.5.1. A central limit theorem that takes correlation into account is then

introduced. It provides an expression for the aforedefined convergence error in terms

of the autocorrelation function of samples. This expression can readily be used ”on

the fly” during the simulation to assess the convergence of cellwise sampled quantities.

Convergence error predictions are then assessed within the framework of a test case

that consists of an axisymmetric jet. Such a relatively complex test case is chosen

because it is more representative of the type of complex flows that DSMC practitioners

are likely to encounter in practice than, for instance, channel flow, which is often

studied, as in e.g. [77] or [139]. The cellwise value of the convergence error will

be examined in this work as opposed to a global error value such as was done for

instance in [55] of [41]. This is because, as it will later be seen, the pointwise value of

the error varies greatly throughout the domain so that a global error measure gives

little information on the state of convergence of sampled quantities in discrete cells.
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3.2 Framework for error analysis

3.2.1 Implementation of the DSMC procedure

A simple argon gas in axisymmetric domain Ω = {(x, y) | 0 ≤ x ≤ x1, 0 ≤ y ≤ y1} ⊂

R2 rotated about y = 0 with velocities in E ⊂ R3 is considered. Ω is decomposed

into Nc quadrangular cells {Ωi}Nci=1 of respective volume {Vi}Nci=1 via quadrangulation

Ωh:

Ω =
∪

Ωi∈Ωh
Ωi (3.1)

such that Vi ≤ h, 1 ≤ i ≤ Nc. The number density n in a cell containing N particles

is obtained with

n = WpN

V
, (3.2)

each computational particle representing Wp physical particles so that the entire

domain contains Np particles. A constant time step ∆t and scaling factor Wp are

used throughout the domain. The axisymmetric move procedure detailed in [15]

p. 371 is employed. The standard NTC (No Time Counter) collision scheme [15] is

used to calculate the number of potential collisions in each cell:

Ncoll = 1
2V

Wp∆tNN (σg)max , (3.3)

where N , the average number of particles in the cell, is obtained by an exponential

moving average with a relaxation factor of 0.001. Binary elastic collisions are modeled

via the variable hard sphere model [15] with a reference diameter of 4.17 × 10−10 m

at 273 K and a temperature exponent of 0.81. Further details concerning the parallel

implementation of the DSMC procedure can be found in [50].
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3.2.2 Cell and particle based variables

Any variable characterizing particle j at time tk is denoted by ykj with 1 ≤ j ≤ Np

which can for instance represent its instantaneous position x⃗kj or velocity v⃗kj . Cell-

based quantities are denoted by yki with 1 ≤ i ≤ Nc which designates any variable

specific to cell i at time tk such as the number of particles contained in the cell,

Nk
i . When all particles or all cells of the simulations are simultaneously considered,

particle and cell-based quantities can both be represented by a series of vectors,

namely y⃗k =
(
yk1, ...,ykNp

)
and y⃗k =

(
yk1 , ..., y

k
Nc

)
. The average value of y in cell Ωi at

time step k is naturally defined as:

yki = ⟨y⟩kΩi =
∑Nk

i
j=1 ykj
Nk
i

. (3.4)

The transformation of particle-based quantities to cell-based ones can more formally

be seen as a linear transformation. To formalize the transformation, an indicator

function 1Ωi : R2 → {0, 1} is defined as

1Ωi(p) :=


1 if p ∈ Ωi

0 if p /∈ Ωi ,

(3.5)

which determines whether or not a given particle located at position p belongs to Ωi.

This function can be used to give a more rigorous definition of number density than

that of Eq. (3.2):

nki =
Wp

∑Np
j=1 1Ωi(x⃗kj )

Vi

. (3.6)

This clearly indicates that the number density in cell i only depends on the location{
x⃗kj
}Np
j=1

of all the particles in the simulation. Thus, errors for the statistical properties

of the number density in a simulation can only arise from errors for the location of

particles in the simulation, i.e.
{
x⃗kj
}Np
j=1

. The indicator function can also be used to
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rewrite Eq. (3.4) more rigorously as:

yki = ⟨y⟩kΩi =
∑Np
j=1 ykj 1Ωi(x⃗kj )∑Np
j=1 1Ωi(x⃗kj )

. (3.7)

which shows that the projection of a particle-based variable on the mesh depends

on both the position of all particles
{
x⃗kj
}Np
j=1

and the value of the particular variable{
yk

j

}Np
j=1

. This in turn means that the sampled value of velocity in a cell will be affected

by errors in both the location
{
x⃗kj
}Np
j=1

and velocities
{
v⃗kj
}Np
j=1

of all the particles of

the domain.

3.2.3 Statistical estimators

The stochastic particle system engendered by the DSMC procedure is related in

practice to the Boltzmann equation by averaging quantities over multiple realizations

(i.e., time steps). This is due to the statistical fluctuations inherent to the DSMC

formulation which make individual realizations usually too noisy for practical use.

The statistical fluctuations of quantities of the DSMC particle system are themselves

tied to those of the actual physical system. For instance, the statistical properties of

DSMC particles in a given computational cell are identical to those that are present

in the same physical cell. One can, in a sense, view DSMC or other particle methods

as numerical experiments where measurements are made and collected to estimate

statistical properties. Due to the finite number of samples, the estimation of the true

statistical properties of the system is imperfect and leads to what is later termed the

convergence error. It is thus appropriate to distinguish between the true statistical

properties of the DSMC gas and their estimation obtained through sampling. Let Yi

be any cell-based variable, e.g. Ni, and let yki designate an observed output of that

random variable at time step k. θ (Yi) refers to any statistical property of random

variable Yi such as for example its first order moment µ. The estimator of θ (Yi) at time

step k is denoted by θ̂k (yi). Because all the statistical estimators used are consistent
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i.e., limk→∞ θ̂k (yi) = θ (Yi), in the following the limit of θ̂k (yi) when k → ∞ will

be abbreviated as θ (Yi). θ̂k (yi) typically depends on all previously observed samples(
y1
i , ..., y

k
i

)
if sampling occurs at every time step as is the case in the present work.

For instance, the estimator for µ (Yi) = E [Yi] (often referred to as the sampled value

of y) at time step k is defined by:

µ̂k1,i (y) =
∑k
k′=1 y

k′
i

k
, (3.8)

whereas the following estimator is used for σ2 (Yi) = Var (Yi):

σ̂2 k
i (y) = µ̂k1,i

(
y2
)

−
(
µ̂k1,i (y)

)2
= 1
k

k∑
k′=1

(
yk

′

i

)2
−
(
µ̂k1,i (y)

)2
. (3.9)

In the case of particle-based variables such as velocities, a different statistical

estimator is used. Although the transformation of Eq. (3.4) followed by the estimator

defined by Eq. (3.8) could be used, greater variance reduction can be achieved by

using estimator µ̌ki defined as:

µ̌ki (y) =
∑k
k′=1

∑Nk′
i

j=1 yk′
j∑k

k′=1 N
k′
i

. (3.10)

The use of this estimator amounts to considering each particle at each time step as a

sampled value of the velocity distribution (in the case of velocity). This is indeed con-

sistent with the DSMC formulation that considers particles as indistinguishable and

the steady state assumption which considers time steps indistinguishable. Because of

the time correlation between time steps, which will be studied in section 3.5.1, the

samples are, however, not independent which, as will later be seen, reduces the rate

of convergence of statistical estimators. The variance of y is obtained similarly to

that of y with σ̌2 (y) = µ̌ki (y2) − µ̌ki (y)2. To simplify notations in the following, µ̌

will be denoted by µ̂ with the understanding that µ̌ defined by Eq. (3.10) is used for
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all particle-based variables instead of the estimator defined by Eq. (3.8).

The variance of number density can be calculated from Eq. (3.2):

Var (ni) =
(
Wp

Vi

)2
Var (Ni) . (3.11)

Because Ni follows a Poisson distribution for cells with Ni ≫ 1 [64], Var (Ni) = E [Ni],

so that

Var (ni) =
(
Wp

Vi

)
E [ni] . (3.12)

Thus, for a given cell, when Wp is varied Var (ni) ∼ Wp. This means that the variance

of number density is a quantity that directly depends on the number of particles used

in the simulation. Its variance will decrease when the value of Wp is reduced (or

equivalently when the number of particles is increased). In contrast to that, the

variance of a particle-based variable does not depend on the numerical parameters

of the simulation. Taking one velocity component as an example, e.g. y = Vx, its

variance obtained with Eq. (3.9) is equal to the translational temperature of the

particles, both computational and physical, in the cell.

3.2.4 Error types

Multiple sources of error are present in a DSMC simulation. They can be broadly

placed into two categories. The first comes from the inadequacy of the DSMC proce-

dure to properly model the Boltzmann equation in the absence of any scaling that is

in the limit of N → ∞,∆t → 0, k → ∞ and h → 0. This can for instance be caused

by an inadequate pair selection scheme or erroneous boundary conditions. This type

of error will not be further considered in noting that DSMC has been proven [148] in

the homogeneous case and in the limit of N → ∞ to “converge” to the Boltzmann

equation. The present chapter is concerned with the second type of error inherent to
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DSMC simulations, those introduced by the use of finite values for Wp, ∆t and k. As

previously mentioned, the effect of the cell size, h, on the error will not be considered

in the present work. The total error for statistical estimator θ (Yi) of variable Yi at

step tk of a simulation conducted with Wp and ∆t is defined as being the difference

between statistical estimator θ̂k (Wp,∆t) and θ obtained in the limit of Wp → 1 and

∆t → 0. This total error is itself the result of two distinct inexactitudes which either

reinforce or mitigate one another. The first is due to the inability to estimate the true

value of an estimator with a finite number of samples and is called the convergence

error. It is so named because it decreases, as long as the properties being sampled

are stationary, with increasing k as estimators converge to actual values of the pa-

rameter being estimated. The second, called numerical error, is caused by the use of

finite Wp and ∆t values. Precise mathematical definitions are now given for the two

aforementioned errors.

3.2.4.1 Convergence Error

The most natural definition of convergence error ε̃ki for estimator θ̂k for cell i at

time step k is:

ε̃ki = |θ̂ki (Wp,∆t) − lim
k→∞

θ̂ki (Wp,∆t)|. (3.13)

Because of the stochastic nature of DSMC, the convergence of statistical property

estimators is jagged and non-monotonic with the final value being both overshot

and undershot multiple times during convergence. Thus, if only a single simulation

is considered, the convergence error, as previously defined, does not monotonically

decrease with time which makes its study difficult. This in turn suggests that a more

probabilistic definition of the convergence error is needed. A natural choice is to define

the convergence error ε̃ki of estimator θ̂ki at time step k as the standard deviation of θ̂ki

between multiple simulations conducted with the same set of numerical parameters

but different sequences of random numbers. Assuming that Nsim simulations are
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conducted, each will produce a different value for θ̂k which is denoted by θ̂k,l with

1 ≤ l ≤ Nsim. An ensemble average operator ⟨·⟩ between simulations is defined as:

⟨z⟩k ≜ 1
Nsim

Nsim∑
l=1

zk,l (3.14)

for every time and simulation dependent quantity zk,l. Applying the ensemble average

operator to estimators θ̂k,li , its ensemble average at time step k is obtained:

⟨θi⟩k ≜
1

Nsim

Nsim∑
l=1

θ̂k,li . (3.15)

This in turn is used to calculate the variance of ⟨θi⟩k, Var
(
⟨θi⟩k

)
as:

Var
(
⟨θi⟩k

)
= ⟨θ2⟩k −

(
⟨θi⟩k

)2
, (3.16)

which is used to define the convergence error:

ε̃ki =
√

Var (⟨θi⟩k) . (3.17)

In order to more accurately calculate statistical properties of ⟨θi⟩k and to obtain its

distribution function, a statistical bootstrap method [100] is used with Nb bootstrap

samples. This amounts to randomly selecting Nb times, allowing for repetitions, Nsim

simulations out of the Nsim that were actually run. The value of Nb is chosen large

enough so as to yield statistical results for ⟨θki ⟩ that are independent of Nb.

3.2.4.2 Numerical Error

Numerical error ε̄i for estimator θi is defined for a given simulation conducted with

∆t and Wp as the difference between θi (Wp,∆t) and that obtained in the absence of
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any scaling:

εi = θi (Wp,∆t) − lim
Wp→1,∆t→0

θi (Wp,∆t) . (3.18)

The estimator value in the absence of scaling cannot be obtained in practice so that

it must be approximated by the value obtained with a simulation conducted with

parameters Wp,0 and ∆t0 such that Wp,0 ≪ Wp and ∆t0 ≪ ∆t so that:

|θi (Wp,0,∆t0) − lim
Wp→1,∆t→0

θi (Wp,∆t)| ≪ |θi (Wp,∆t) − θi (Wp,0,∆t0)|. (3.19)

Using this approximation of the exact solution, Eq. (4.3) can be rewritten as:

εi ≈ θi (Wp,∆t) − θi (Wp,0,∆t0) . (3.20)

3.3 Analysis and consequences of the correlation between

samples

3.3.1 The Central Limit Theorem

Following the definition of Eq. (3.17), the convergence error for the sampled mean

µ̂k1 (y) is due to the variance of µ̂k1 (y) over multiple simulations. In the case where{
yk

′
}k
k′=1

are independent and identically distributed (iid), the central limit theorem

(CLT) [58] states that

√
k
(
µ̂k1 (y) − µ (Y )

) L−→ N
(
0, σ2 (Y )

)
(3.21)

which implies that for k ≫ 1

⟨µ̂k1 (y)⟩ ∼ N
(
µ1 (Y ) , σ

2 (Y )
k

)
(3.22)
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so that by definition for k ≫ 1:

ε̃k =

√
σ2 (Y )
k1/2 ≈

√
σ̂2 (y)
k1/2 . (3.23)

Eq. (3.23) gives an expression for the evolution of the convergence error that is valid

if Y is an iid variable. This is, however, not generally true for most quantities in a

DSMC simulation. Nk+1
i is for instance not independent of Nk

i but rather correlated

with it as the movement of particles in and out of cell i is quite limited between time

steps. This correlation furthermore extends to previous time steps i.e. Nk−1, Nk−2, ...

etc. Instantaneous quantities in each cell of the simulation Y k
i can thus be viewed as

discrete correlated time series.

3.3.2 Correlation measure

3.3.2.1 Time correlation of cell-based quantities

The central limit theorem outlined above is derived under the assumption that

random variable Y is independent and identically distributed. It thus cannot be

applied in its strongest form to a time-correlated time series. This is turn means that

the time correlation of sampled quantities needs to be quantified. The autocovariance

function γY of Yi at time k0 is defined as:

γY (k0 + k, k0) ≜ Cov
(
Y k0 , Y k0+k

)
(3.24)

(dropping the i subscript for conciseness) with:

Cov
(
Y k0 , Y k0+k

)
= E

[(
Y k0+k − E

[
Y k0+k

]) (
Y k0 − E

[
Y k0

])]
(3.25)

For stationary processes (such as instantaneous simulation quantities in the steady

state regime), the autocovariance function is independent of time k0 and only a func-
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tion of the time difference k:

γY (k) = γY (k, 0) . (3.26)

The autocorrelation function (ACF) of Y k is defined as:

ρY (k) = γY (k)
γY (0)

. (3.27)

Its calculation is quite straightforward in practice and only requires the storage of y

for the previous k steps.

3.3.2.2 Correlation of particle-based quantities

The calculation of the time correlation of particle-based variables (such as ve-

locities) inside a cell is more complicated. This is because, at any time step, a cell

contains multiple particles. These in turn can be correlated with one another. This

occurs for instance in cells which contain few particles on average, i.e. when N ∼ 1

where repeated collisions between the same two particles [134] can lead to their veloc-

ities being correlated. This type of correlation will not be apparent when the measure

defined in the previous section is used. For this reason, we distinguish between the

intra-step and the inter-step correlation for the cell average of a particle-based vari-

able. The analysis in the following will be presented for one velocity component V

but is general enough to be readily applicable to any particle-based variable such as

kinetic energy or internal energy by simple variable substitution. The sampled mean

of velocity component V is defined at time k by:

µ̂k (V ) = 1
Nk

tot

k∑
k′=1

Nk′∑
j=1

V k′

j , (3.28)
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where V k′
j is the velocity of particle i at step k′ and Nk

tot = ∑k
k′=1 N

k′ is the total

number of particles that the cell has contained up until time step k. The variance of

the ∑k
i=1

∑Nk

j=1 V
k
i sum of Eq. (3.28) can be calculated as follows:
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Var
(∑k

k′=1
∑Nk′

j=1 V
k′
j

)
=

Var
(
V 1

1

)
+ ... +Var

(
V 1
N1

)
+

...

Var
(
V k

1

)
+ ... +Var

(
V k
Nk

)
+

2 Cov
(
V 1

1 , V
1

2

)
+ 2 Cov

(
V 1

1 , V
1

3

)
+ ...+ 2 Cov

(
V 1

1 , V
1
N1−1

)
+2 Cov

(
V 1

1 , V
1
N1

)
+

2 Cov
(
V 1

2 , V
1

3

)
+ ...+ 2 Cov

(
V 1

2 , V
1
N1−1

)
+ 2 Cov

(
V 1

2 , V
1
N1

)
+

...

+ ... +2 Cov
(
V 1
N1−1, V

1
N1

)
+

...

2 Cov
(
V k

1 , V
k

2

)
+ 2 Cov

(
V k
k , V

k
3

)
+ ...+ 2 Cov

(
V k

1 , V
k
Nk−1

)
+2 Cov

(
V k

1 , V
k
Nk

)
+

2 Cov
(
V k

2 , V
k

3

)
+ ...+ 2 Cov

(
V k

2 , V
k
Nk−1

)
+2 Cov

(
V k

2 , V
k
Nk

)
+

...

+ ... +2 Cov
(
V k
Nk−1, V

k
Nk

)
+

Cov

V 1
1 ,

N2∑
j=1

V 2
j

+ ... +Cov

V 1
1 ,

Nk∑
j=1

V k
j

+

...

Cov

V 1
N1 ,

N2∑
j=1

V 2
j

+ ... +Cov

V 1
N1 ,

Nk∑
j=1

V k
j

+

Cov

V 2
1 ,

N1∑
j=1

V 1
j

+ ... +Cov

V 2
1 ,

Nk∑
j=1

V k
j

+

...

Cov

V k
Nk ,

N1∑
j=1

V 1
j

+ ... +Cov

V k
Nk ,

Nk−1∑
j=1

V k−1
j


The intra-step correlation is represented in the preceding equation by the sum of
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particle covariances at the same time step and can be written as:

γintra,k
V =

Nk∑
p=1

Nk∑
q=1
q ̸=p

Cov
(
V k
p , V

k
q

)
=

Nk∑
q=1

Nk∑
p=i+1

2 Cov
(
V k
p , V

k
q

)
. (3.29)

It involves calculating the correlation between Nk
pairs = Nk

2

(
Nk − 1

)
pairs of particles

at each time step. If the DSMC simulation is statistically stationary, each time step

has the same statistical properties and an average intra-step correlation coefficient

γkV can be defined:

γintra,k
V =

∑k
k′=1 γ

intra,k′

V∑k
k′=1 N

k′
pairs

(3.30)

which can be used to sample for γintra,k
V .

The correlation between time steps is represented by the Cov (V,∑ ) terms. For con-

ciseness, in the following the sum of all particle velocities at time step k′ will be

abbreviated as Σk′ ≡ ∑Nk′

j=1 V
k′
j . Using the bilinear property of the covariance opera-

tor, neglecting the covariance between particles inside a cell for time step differences

greater than m (an assumption which will be later checked) and assuming station-

ary statistical properties, it can be simplified as follows to give an expression for the

inter-step correlation of velocity in a cell:

γinter,k
V =

m∑
j=1

2 Cov
(
Σk,Σ1∨k−j

)
(3.31)

with 1 ∨ i − j ≜ Min (1, k − j). As previously, an average inter-step correlation

coefficient γinter,k
V can be derived:

γinter,k
V =

∑k
k′=1 γ

inter,k′

V

k′ (3.32)

which allows the sampling of a mean value.
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3.3.3 A modified version of the central limit theorem

The estimator for µ1 (y) at time step k, µ̂k1 (y) is defined as:

µ̂k1 (y) = 1
k

k∑
k′=1

yk
′
. (3.33)

A central limit theorem for µ̂k1 (y) that takes into account the time correlation of yk

can be derived [135] [59] by taking the variance of Eq. (3.33):

Var
(
µ̂k1 (y)

)
= 1
k2

k∑
k′=1

k∑
k′′=1

Cov
(
yk

′
, yk

′′)
. (3.34)

From Eq. (3.26), γY (k′′ − k′) = Cov
(
yk

′
, yk

′′
)

and using the symmetry of the (k × k)

covariance matrix to simplify the double sum:

Var
(
µ̂k1 (y)

)
= 1
k2

(
k γY (0) + 2

k−1∑
k′′′=1

(k − k′′′) γY (k′′′)
)
. (3.35)

The variance Var
(
µ̂k1 (y)

)
will be referred to in the following by σ̃2,k

y . The effect of

the time correlation of
{
yk
}

is to increase the variance of µ̂k1 (y), as σ̃2,k
y is greater

than the value of the variance expected in the case of independent samples, i.e. γ(0)
k

.

It can further be proven [135] that when
{
yk
}

is a Gaussian time series:

µ̂k1 (y) ∼ N
(
µk1 (y) ,

σ̃2,k
y

k

)
(3.36)

which constitutes a modified central limit theorem law applicable to a correlated

normally distributed time series. The convergence result does hold when
{
yk
}

is non-

Gaussian while the convergence in distribution to a normal law is subject to other

conditions beyond the scope of the present work. The most important result for the

following is the value of the variance provided by Eq. (3.35), not the distribution

of µ̂k1 (y). Within the framework of the present study µ̂k1 (y) ∼ N
(
µk1 (y) , σ̃

2,k
y

k

)
has
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systematically been observed. A non-normal distribution limit can, however, not be

excluded in all generality. Eq. (3.35) thus allows the calculation of the convergence

error, defined by Eq. (3.17), for µ̂k1 (y) so long as its autocorrelation function γY is

known.

3.3.4 Variance of sampled velocity

In this section, an expression for the variance of µ̂k1 (y) is derived where y is a cell-

based variable that has been obtained via Eq. (3.4) from a particle-based variable.

To distinguish results in this section from those in the previous, y will denoted by

V which could for instance designate a velocity component such as Vx. Following

Eq. (3.10), the estimator µ̂k1 (V ) of the mean µk1 (V ) of V is obtained with:

µ̂k1 (V ) =
∑k
k′=1

∑Nk′

j=1 V
k′
j∑k

k′=1 N
k′ = µ̂k1 (ΣV )

µ̂k1 (N)
, (3.37)

which is the ratio of two mean estimators where random variable ΣV is defined as

ΣV k ≜ ∑Nk

j=1 V
k
j . It cannot be put into the form of a single sum of a random variable

so as to make it amenable to the central limit theorem. That is, there exists no readily

obtainable random variable Ξ in the simulation such that

µ̂k1 (V ) ≡ 1
k

k∑
k′=1

ξk
′
. (3.38)

As previously discussed, µ̂k1 (ΣV ) ∼ N
(
µk1 (ΣV ) , σ̃

2,k
ΣV
k

)
and µ̂k1 (N) ∼ N

(
µk1 (N) , σ̃

2,k
N

k

)
so that Eq. (3.37) indicates that µ̂k1 (V ) is equal to the ratio of two normal distribu-

tions. Random variables ΣV and N are, however, correlated with one another much

like each is time-correlated with itself. This time-dependent cross-correlation can be
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estimated as follows:

Cov
(
µ̂k1 (ΣV ) , µ̂k1 (N)

)
= 1
k2

k∑
k′=1

k∑
k′′=1

Cov
(
ΣV k′

, Nk′′)
, (3.39)

where, following the same approach as for Eq. (3.35), the double sum can be simplified

so as to yield:

Cov
(
µ̂k1 (ΣV ) , µ̂k1 (N)

)
≈ γΣV,N (0)

k
+ 2
k

K∑
k′′′=−K
k′′′ ̸=0

γΣV,N (k′′′)

= σ2 (ΣV,N)
k

+ 2
k

K∑
k′′′=−K
k′′′ ̸=0

γΣV,N (k′′′) ≜ σ̃2 (ΣV,N)
k

, (3.40)

where

γΣV,N (k′′′) ≜ Cov
(
ΣV k′

, Nk′+k′′′)
, ∀k′ (3.41)

as
{
ΣV k

}
and

{
Nk
}

are stationary processes. Normalized correlations ρΣV,N (k) and

ρ
(
µ̂k1 (ΣV ) , µ̂k1 (N)

)
are defined as:

ρΣV,N (k) ≜
Cov

(
ΣV k′

, Nk′+k
)

σΣV σN
∀k′ (3.42)

and

ρ
(
µ̂k1 (ΣV ) , µ̂k1 (N)

)
≜

Cov
(
µ̂k1 (ΣV ) , µ̂k1 (N)

)
σ̃kΣV σ̃kN

. (3.43)

Eq. (3.40) shows that when k ≫ 1, Cov
(
µ̂k1 (ΣV ) , µ̂k1 (N)

)
O (1/k). The two esti-

mators thus become increasingly uncorrelated as k → ∞. Having determined the

correlation ρ
(
µ̂k1 (ΣV ) , µ̂k1 (N)

)
and the normal distribution functions of µ̂k1 (ΣV )

and µ̂k1 (N) being known, the exact distribution function of their ratio as defined

by Eq. (3.37) can be determined following the approach presented in [37]. The ex-

act distribution function of the ratio could then in principle be used to calculate its

variance. The analytical expression of the distribution function presented in [37] is,
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however, so complicated that the calculation of its variance, even numerically, is dif-

ficult. An approximation of the variance of the ratio can, however, be obtained with

the delta method [36] as follows:

Var
[
µ̂k1 (ΣV )
µ̂k1 (N)

]
≈ µ̂2

1 (ΣV )
µ̂4

1 (N)
σ̃2,k
N + 1

µ̂2
1 (N)

σ̃2,k
ΣV − 2 µ̂1 (ΣV )

µ̂3
1 (N)

ρ
(
µ̂k1 (ΣV ) , µ̂k1 (N)

)
σ̃kN σ̃

k
ΣV .

(3.44)

Eq. (3.44) thus provides an expression for the variance of the sampled mean ve-

locity µ̂k1 (V ) which, by the definition of Eq. (3.17), is also the convergence error

ε̃k (V ). In Eq. (3.44), σ̃2,k
N and σ̃2,k

ΣV are both evaluated with Eq. (3.35) which is re-

spectively applied to N and ΣV . ρ
(
µ̂k1 (ΣV ) , µ̂k1 (N)

)
is calculated with Eq. (3.43)

where Cov
(
µ̂k1 (ΣV ) , µ̂k1 (N)

)
is obtained from Eq. (3.40). The determination of the

convergence error for V thus requires the calculation of the autocorrelation function

of N , ΣV and the correlation function of N and ΣV .

3.4 Testcase

3.4.1 Geometry and flow conditions

The domain used in the simulation is shown in Fig. 3.1. A jet with an inlet of

radius 0.001 m is located at x = 01. The inlet injects argon with number density

8.85 × 1022m−3 in equilibrium at a temperature of 750 K with a bulk velocity in the

x direction of 510 m s−1. This corresponds to Mach number M = 1 and Knudsen

number Kn = 0.01 (based on the inlet radius). A supersonic outflow boundary

condition is used for the top and right sides of the domain while a de facto symmetry

condition along the centerline is enforced by the axisymmetric move procedure [15].
1The entire mesh is offset by ∆x = 10−6 m to avoid errors near x = 0 when running simulations.
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A B

DC

Figure 3.1: View of the computational domain and mesh. A, B: domain views, C:
closeup view of the inlet and D: overall domain view

3.4.2 Computational Parameters

Details concerning the implementation of the DSMC procedure can be found in

section 3.2.1. The different test cases that are run during the course of this study

are summarized in Tables 3.1 which indicates the corresponding ∆t and Wp values

that are used. The time step does satisfy the DSMC requirement that it be less than

the mean collision time for all test cases as
(

∆t
τmct

)
max

= 0.159 for ∆t = 5.0 × 10−9 [s]

in the highest density zone located in front of the inlet. The DSMC mean free

path requirement is also satisfied as
(

∆x
λ

)
max

= 0.67 in the cells around (x, y) =

(0.008, 0.0015). A view of the average number of particles obtained for all cells for

test case C64 is shown in Fig. 3.2. The test cases will be referred to by the name

indicated in the table in the following. Samples are always taken at every time step

once the simulation was considered to have reached steady state. Steady state was

assumed to occur after 100,000 time steps. Based on the bulk x-velocity of particles,

76



Figure 3.2: Average number of particles in each cell for test case C64. The cell with
the smallest average number of particles is located at the corner of the
centerline and the inlet and contains 0.3.

this corresponds to about 5 times the mean residence time of particles in the domain.

For the baseline time step, the total number of particles in the domain is observed

to remain approximately constant after 40,000 time steps while the total number of

collisions per time step does so after 10,000. In order to gain greater insight into the

simulation, instantaneous DSMC fields are examined in detail by outputting them at

every time step for a few selected cells of the domain shown in Fig. 3.3.

Test Case Number of particles (M) Wp ∆t [s]
C256 134.0 1.4 × 108 5.0 × 10−9

C128 67.0 2.8 × 108 5.0 × 10−9

C64200 33.5 5.6 × 108 1.0 × 10−8

C64 33.5 5.6 × 108 5.0 × 10−9

C64050 33.5 5.6 × 108 2.5 × 10−9

C32 16.7 11.2 × 108 5.0 × 10−9

C16 8.4 22.4 × 108 5.0 × 10−9

Table 3.1: Numerical parameters of test cases
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Figure 3.3: Location and numbering of cells studied in detail.

3.5 Convergence and correlation of sampled quantities

In this section, the time correlation of sampled quantities is studied within the

framework of test case C64. The prediction of convergence error obtained is then

checked against numerical observations for a selected number of cells. A general

procedure for the a priori prediction of convergence error is then outlined.

3.5.1 Time correlation between samples

The time correlation between sampled Nk, ΣV k and V
k ≜ ΣV k

Nk can be quantified

by evaluating their autocorrelation function as outlined in section 3.3.2.1. Figures

3.4(a) to 3.4(d) show ρN (k), ρΣVx (k), ρV x (k) and ρΣV,N (k) for a few cells of the

domain. For all the individual cells that are studied, N , ΣVx and V are observed

to have very similar (auto)correlation functions that are very well described with

an exponential law i.e. ρ (k) = 1 − exp
(
−k
τ

)
with a characteristic time τ that is a

measure of the extent of the time correlation. Relatively small differences between
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autocorrelation functions are visible for cells close to the origin characterized by τ ∼

10 whereas the functions are virtually identical further out in the domain for cells

with τ ∼ 100. Large spatial variations in the extent of the time correlation of N are

observed throughout the domain. This is visible in Figs. 3.5, 3.6 and 3.7 that display

respectively ρn(k = 1), ρn(k = 10) and ρn(k = 30). The large correlation increase in

the downstream portion of the jet is caused by the use of an inappropriately small step

in that portion of the domain. This is due to the use of a uniform time step for the

entire domain that is dictated by the condition that it be less than the mean collision

time in the densest part of the domain located in the cells adjacent to the inlet.

The inadequacy of the time step value is further compounded by the acceleration

of particles caused by the expansion of the jet and the decrease in the number of

collisions in the downstream direction.
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Figure 3.4: Autocorrelation and correlation functions for the instantaneous velocity
and number density as a function of the time step
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Figure 3.5: Spatial view of ρN(k = 1) for test case C64

Figure 3.6: Spatial view of ρN(k = 10) for test case C64
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Figure 3.7: Spatial view of ρN(k = 30) for test case C64
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3.5.2 Convergence study for ε̃0
[
µk1 (n)

]
To obtain results for the convergence of the sampled mean for number density, the

convergence error defined by Eq. (3.17) is calculated by running Nsim = 22 distinct

simulations for the C64 test case. 40 × 103 bootstrap samples are then used to

calculate the standard deviation of the ensemble average of sampled number density.

The standard deviation of the ensemble average is then normalized by the standard

deviation of the number density σn in the same cell and plotted in black against

the number of time steps in a log-log plot. The plots are shown in Fig. 3.8 for 4

representative cells shown in Fig. 3.3. For each cell, the autocorrelation functions for

N that were previously shown are used to calculate the predicted normalized standard

deviation with Eq. (3.35). The prediction is plotted in red in Fig. 3.8. If the central

limit theorem were to hold perfectly, the ensemble average of the standard deviation

would be σn × k−0.5 (for k ≫ 1). This is because the central limit theorem states

that µ̂k1 (n) ∼ N (µn, σ2
n/k) if samples are independent and identically distributed. In

this case the ensemble average would of course have a standard deviation of σn
k1/2 so

that the normalized standard deviation of the ensemble average would be k−1/2. The

increase in standard deviation predicted by Eq. (3.35) seems to describe very well

that observed in practice for all cells as shown in Fig 3.8.
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Figure 3.8: Observed convergence error for sampled number density (black) and the-
oretical prediction (red).
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3.5.3 Convergence study for ε̃0
[
µk1 (Vx)

]
The same procedure is applied to the study of the convergence of the sampled

mean of Vx and results are shown in Fig. 3.9. The predicted normalized variance

of Eq. (3.44) is plotted in red in the same plots for each individual cell. Very good

agreement between the predicted and observed variance is observed for all cells.

3.5.4 Implementation considerations of the a priori determination of con-

vergence error

The use of a limited number of samples to evaluate statistical properties in a

DSMC simulation naturally introduces uncertainty in their estimated value. That

uncertainty takes the form of the convergence error defined by Eq. (3.17) that, as

previously seen, can be determined by Eq. (3.35) or (3.44) so long as the autocorre-

lation function of the variable being sampled for is known (in addition to the cross

correlation with N in the case of Eq. (3.44)). By the definition of Eq. (3.25), de-

termining the autocorrelation function up to order k, i.e. ρ (k), in turn requires the

storage of the value of the variable at the k preceding time steps as well as the storage

of the sampled autocorrelation function itself. Thus the calculation of the autocor-

relation function for a variable up until order k requires the storage of 2 × k values

per cell. The cost of the calculation is furthermore negligible compared to that of

the simulation. For zones with a high level of correlation, where the decay of the

autocorrelation with k is slow such as for instance in Fig. 3.4(d), the value of the au-

tocorrelation function for large k values can be interpolated so that only the value of

the autocorrelation for low k values (up until 20 perhaps) needs to be calculated and

stored. The difference between the value of the apparent standard deviation obtained

with the full and interpolated spectrum is expected to be minimal. Because of the

great similarities between the autocorrelation of the number of particles, the total

velocity, the mean velocity and the cross correlation, only one correlation function
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must furthermore be calculated and stored instead of four. More practical implemen-

tation considerations are, however, outside the scope of the present work except to

add that the computational and storage requirement of the implementation of an a

priori determination of the value of the convergence error via Eq. (3.35) are small

compared to those of the underlying simulation.

3.5.5 Velocity correlation between particles

The time correlation between sampled quantities does not affect the ultimate

(converged) value of statistical estimators. It only acts to slow down convergence

compared to an idealized situation where no time correlation exists. In contrast to

that, consistent correlation between the velocities of particles inside a cell, for instance

caused by repeated collisions, is a well known source of numerical error in DSMC

simulations [134]. This is because it does not allow collisions to be properly modeled

in cells where such a phenomenon is present. Figure 3.10 shows the normalized intra

step correlation of Vx, which is defined as:

γintra
Vx,0 =

γintra
Vx

σ2 (Vx)
, (3.45)

where γintra
Vx = limk→∞ γintra,k

Vx which is given by Eq. (3.30). The value of the absolute

value of the intrastep correlation is very close to 0 for most cells of the domain except

for those located close to the inlet of the jet and for those along the centerline near

the inlet. The relatively large level of correlation present close to the centerline can

directly be attributed to repeated collisions and/or the use of very few particles as

those very cells are characterized by a low average number of particles as seen in

Fig. 3.2. The high levels of correlation alongside the exit plane of the jet might be

attributable to the formulation of inlet boundary conditions.
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3.6 Effect of numerical parameters on the convergence error

Having previously determined the general behavior of the convergence error for a

baseline simulation, i.e. test case C64, the aim of the present section is to determine

the influence of the number of particles and time step.

3.6.1 Influence of the number of particles on correlation and convergence

The impact of the number of particles in the simulation on the autocorrelation

function is evaluated by calculating the autocorrelation function for test cases C16,

C32, C64 and C128 for all cells of the simulation. Results obtained for selected cells

are shown in Fig. 3.11 which shows that the autocorrelation function is unaffected by

changes in the particle count. Identical results are obtained for all other cells that

are examined. This indicates that the time correlation of samples, normalized by

their variance, is independent of particle count. That is to say that, although the

variance of N scales as Wp as shown by Eq. (3.12), the shape of its time correlation

is maintained across particle counts.

To investigate the effect of the number of particles in the simulation on the rate

of convergence of the convergence error, 10 simulations are run for each of the C16

and C256 cases in addition to the 20 simulations for C64. For each particle count,

an ensemble average of the convergence error is calculated and is plotted in Fig. 3.12.

For all particle counts, the same convergence rate for the error is observed. The

discrepancies between the convergence paths are attributable to the relatively low

number of simulations used to calculate the ensemble average of the convergence error.

The fact that convergence is independent of particle count is a direct consequence of

the invariance of the autocorrelation function.
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3.6.2 Influence of the time step on correlation and convergence

The effect of varying the time step on the correlation of samples and rate of

convergence is now investigated. This is accomplished by running three simulations

referred to in Table 3.1 by C64050, C64 and C64200 corresponding, respectively, to
∆t0

2 , ∆t0 and 2 ∆t0. The autocorrelation function for N that is obtained for each test

case is shown in Fig 3.13 as a function of k̃ = k ∆t
∆t0 . The autocorrelation functions are

observed to collapse to the same curve under this change of variable. This indicates

that ρN (k,∆t) = ρ0,N (k ∆t) where ρ0,N is independent of both k and ∆t. The

invariance of the correlation function under this scaling quantifies the reduced or

increased time correlation observed between samples when the time step is raised

or lowered. The effect of the time step on the evolution of the convergence error

is investigated by calculating its ensemble average for the three aforementioned test

cases. The ensemble average is calculated with 10 simulations for both C64050 and

C64200 while 20 simulations are used for C64. The evolution of the ensemble average

as well as the prediction obtained from Eq. (3.35) by using the spectrum shown in

Fig. 3.13 is shown for selected cells in Fig. 3.14. These plots clearly demonstrate the

reduction in convergence error brought about by a decrease in the time correlation of

samples caused by an increased time step value.
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Figure 3.9: Observed convergence error for sampled Vx (black) and theoretical pre-
diction (red).
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Figure 3.10: Normalized intrastep correlation coefficient for test case C64
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Figure 3.11: Influence of the particle count on the autocorrelation function for N .
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Figure 3.12: Convergence error for sampled n as a function of the number of samples
for multiple particle counts.

92



3.7 Conclusions

A framework for the analysis of the convergence and accuracy of a DSMC simula-

tion was presented and two corresponding error types, the convergence and numerical

error introduced.

The convergence error, the subject of this past chapter, was studied by taking en-

semble averages of sampled means during their convergence. It was found to vary as

σ̃k−1/2 for the sampled mean of the number density and velocity. Time correlation

between samples is such that the standard central limit theorem cannot be applied

for sampled means. The autocorrelation function of sampled quantities was used to

quantify the time correlation between samples. Particularly large time correlation

was observed in zones where a small time step, relative to the mean collision time,

was used. The autocorrelation function ρ (k) was observed to be of very similar shape

for N and V and very close to the correlation function between N and V . It was

furthermore found to be invariant under particle count change and under k∆t scaling.

A modified version of the central limit theorem that takes correlation into account

for both particle and cell-based variables (e.g; respectively n and V ) was introduced.

It was then used to formulate a numerical method to a priori predict the value of

the convergence error during the course of the simulation. It was found to accurately

predict the observed standard deviation σ̃ for all cells of the domain that were exam-

ined.

Such a method may be a useful tool to implement in a DSMC code to reduce the

uncertainty associated with the lack of convergence of statistical properties. It would

also reduce the burden of ensuring that sampled statistical properties have indeed

converged for all cells in a simulation. A less storage intensive convergence error

prediction scheme following the ideas that were previously outlined may have to be

implemented if memory availability is an issue. We also note that the error analysis

method and formulation can readily be applied to other particle methods, such as,

93



e.g. PIC [78] where both convergence and numerical error are present.
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Figure 3.13: Influence of the time step on the autocorrelation function for N .
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Figure 3.14: Convergence error for sampled n as a function of the time step

96



CHAPTER IV

On the accuracy of the direct simulation Monte

Carlo method

4.1 Introduction

The direct simulation Monte Carlo method has been successfully applied to a

wide variety of high speed rarefied flows [116] during the course of the past forty

years. This is both the result of its superiority to most other numerical methods

that presently exist for this flow regime and of its numerical efficacy. For most flows

of practical interest, “satisfactory” simulation results are often obtained with as few

as 20 particles per cell on average, a number which is often quoted in the literature

as in e.g. [124], [63] or [90]. The accuracy of the DSMC method has thus been the

subject of relatively few studies compared to other numerical techniques such as for

instance finite volume schemes for the Euler equation [101]. This situation is also

the consequence of both the relatively limited interest in and applicability of DSMC

[116] compared to other numerical schemes (e.g. finite volume solution methods [101])

and of its formulation which is more physical in nature [15] than that of most other

numerical methods. This situation makes traditional numerical error investigation

tools commonly used for partial differential equations, such as Taylor series based

analysises, difficult to apply. For a simple gas and for given boundary conditions,
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the numerical accuracy of the DSMC procedure, for the same pair selection scheme,

collision procedure and boundary condition implementation is determined by the

number of particles in the simulation Np (or their weight Wp ∼ N−1
p ), the time step

∆t, and the spatial discretization of the domain into cells. For a fixed mesh, the error

has been identified in previous studies as stemming from two sources. The first source

of the error is the use of a finite number of samples S to estimate statistical properties

of fluctuating quantities in the simulation. This error is termed the convergence error

in the present work and was the subject of Chapter III. The second source of error,

called numerical error is the subject of the present chapter. It is caused by the

fact that the statistical properties of the stochastic process generated by the DSMC

procedure, even when properly rescaled, depends on its numerical parameters. In

previous work, this error is referred to by a variety of names. It is the discretization

error of the thermal conductivity in [124], the bias in [41] or the deterministic error

in [142]. It is often attributed, in cells with few particles, to the existence of repeated

collisions between the same particles [134]. By analogy to other stochastic processes,

it was argued in [41], that the numerical error was proportional to N−1 which was

indeed observed to a certain extent in simulations. The same scaling was also observed

in [124] for the numerical error of the heat flux for a Fourier flow. The influence of

the mesh, which was for instance investigated in [139], on the solution will, however,

not be studied in this work and all simulations will be conducted with the same mesh.

The aim of this chapter is to study the effect on the numerical error of the number

of particles and time step in a DSMC simulation while keeping everything else fixed.

The effect of the mesh size, collision schemes or the issue of non-convergence to the

Boltzmann equation will not be investigated. The error in a DSMC simulation, as far

as this work is concerned, is defined as the difference, in the limit of an infinite number

of samples (so that convergence error cf. Chapter III is negligible), between simulation

results for a given set of number of particles and time step and that obtained in the
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limit of both a much greater number of particles and much smaller time step. Both

the number of particles and the time step of the reference solution are suitably chosen

so that the value of the error for the given test case is reasonably insensitive to their

values. The objective of this chapter is furthermore to present an investigation of the

DSMC method within the framework of a test case that is sufficiently complex so as

to highlight features or phenomena that users of the method are likely to encounter in

practice. To accomplish this, instead of using a relatively simple canonical test case

such as channel flow [77] [62], an axisymmetric jet flow is chosen. Axisymmetric jets

are of great practical interest to the rarefied gas dynamics community [110] but are

yet known to be difficult to simulate via DSMC which often produces sampled velocity

or number density contours with spurious structures close to the centerline [61]. The

source of these difficulties is the axisymmetric geometry whereby the volume of cells

varies proportionally to the distance to the centerline far away from the axis (and

quadratically close to it) that creates cells with a small volume close to the centerline

which naturally tend to contain few particles. Problems in a jet flow geometry are

further compounded by the decrease in number density in the streamwise direction

and the propensity of particles to move away from the centerline.

One further aim of the current work is to investigate the spatial variation of the

cellwise error (i.e. that of sampled quantities in each DSMC cell) throughout the

domain instead of only focusing on a global measure of the error as was done in [55]

or [41] although the latter will also be examined. The cellwise error, which, as will

later be shown, exhibits great spatial variation throughout the flow, is that which is of

most interest to practitioners. This is because most DSMC simulations are conducted

so as to determine the value of moments of the velocity distribution function in a few

cells of the simulation domain (such as the number density at a specific point) and

not for the calculation of domain averaged quantities. A global error measure is more

useful within the context of weighted residual methods [30] for partial differential
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equations for which an a priori expression for the error norm can actually be derived.

The error framework previously introduced in Chapter III is first briefly presented.

The effect of the number of particles on the numerical error is then assessed for a few

cells of the domain. It is then examined for the entire domain with contour plots and

the effect of the number of particles on global error norms is evaluated. The second

part of the chapter focuses on the effect of the time step on the numerical error. Its

influence on the cellwise error and global error norms is then studied. Finally, the

findings of this study regarding the effect of the number of particles and time step on

the error are summarized.

4.2 Analysis of the numerical error

4.2.1 Cell and particle based variables

Following the approach presented in Chapter III, the instantaneous number den-

sity of cell i can be written in terms of the indicator functions 1Ωi as follows:

nki =
Wp

∑Np
j=1 1Ωi(x⃗kj )

Vi

. (4.1)

This clearly indicates that the number density in cell i only depends on the location

{x⃗}Npj=1 of all the Np particles in the simulation. This means that the numerical error

for sampled number density is directly caused by inaccuracies for the location of the

particles {x⃗}Npj=1. In case of variables that are carried by particles such as for instance

the x velocity component Vx, the instantaneous velocity in the cell V k
x,i can be written

as :

V k
x,i =

∑Np
j=1 Vk

x,j 1Ωi(x⃗kj )∑Np
j=1 1Ωi(x⃗kj )

. (4.2)
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which shows that the projection of a particle-based variable on the mesh depends on

both the position of all particles {x⃗}Npj=1 and their velocities {Vx,j}Npj=1. This signifies

that the numerical error of µi (Vx) will be affected by errors in the location and

velocities of the particles.

4.2.2 Error types

Placing ourselves in the framework of Chapter III, the error in DSMC simulations

is assumed to come from only two sources each corresponding to a specific error type.

The first error, the convergence error is studied in Chapter III. It is caused by the use

of a finite number of samples to estimate the statistical properties of computational

DSMC particles. The second type of error, called numerical error, caused by the use

of finite Wp and ∆t values is the subject of the present part of this chapter.

4.2.3 Numerical Error

Let Yi be any cell-based variable, e.g. Ni, and let yki designate an observed output

of that random variable at time step k. θ (Yi) refers to any statistical property of

random variable Yi such as for example its first order moment µ. The estimator of

θ (Yi) at time step k is denoted by θ̂k (yi). Because all the statistical estimators used

are consistent i.e., limk→∞ θ̂k (yi) = θ (Yi), in the following the limit of θ̂k (yi) when

k → ∞ will be abbreviated as θ (Yi). Numerical error ε̄i for estimator θi is defined for

a given simulation characterized by ∆t and Wp as the difference between θi (Wp,∆t)

and that obtained in the absence of any scaling:

εi = θi (Wp,∆t) − lim
Wp→1,∆t→0

θi (Wp,∆t) . (4.3)

The value of the estimator in the limit is of course inaccessible in practice and must

therefore be approximated by that obtained with a reference simulation with finite
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parameters Wp,0 ≪ Wp and ∆t0 ≪ ∆t. The reference parameters have to be chosen

so that the numerical error calculated for the test case at hand with the reference

simulation is much larger than the true numerical error of the reference simulation,

i.e.

|θi (Wp,0,∆t0) − lim
Wp→1,∆t→0

θi (Wp,∆t)| ≪ |θi (Wp,∆t) − θi (Wp,0,∆t0)|. (4.4)

This allows Eq. (4.3) to be approximated as:

εi ≈ θi (Wp,∆t) − θi (Wp,0,∆t0) . (4.5)

4.2.4 Global error measure

The overall accuracy of the simulation can be assessed by considering εi for all Nc

cells of the domain simultaneously by defining the following vector in RNc :

ε ≜ (ε1, ε2 · · · , εNc) . (4.6)

The ℓ∞, and normalized ℓ1 or ℓ2 norms of ε are, respectively, defined as:

∥ε∥∞ ≜ max
i

|εi|, (4.7)

∥ε∥1 ≜ 1
Nc

Nc∑
i

|εi|, (4.8)

and

∥ε∥2 ≜ 1
Nc

(
Nc∑
i

|εi|2
)1/2

. (4.9)

The influence of numerical parameters Wp and ∆t on the values of these norms will

be addressed in sections 4.4.4 and 4.5.3, respectively.

102



4.3 Testcase

The exact same DSMC procedure implementation is used in this chapter as is

used in Chapter III where further details are given. Collisions are modeled via the

NTC (No Time Counter) collision scheme [15]:

Ncoll = 1
2V

Wp∆tNN (σg)max , (4.10)

where N , the average number of particles in the cell, is obtained by an exponential

moving average.

4.3.1 Geometry and flow conditions

Identical flow conditions as those employed in Chapter III are used to study the

numerical error. They are, however, briefly summarized here for convenience. The

test case consists of an axisymmetric jet with initial radius R = 0.001 m of simple

argon gas at Kn = 0.01 and M = 1 . The computational mesh and domain are shown

in Fig. 4.1. Supersonic outflow conditions are used for the top and downstream parts

of the domain. The upper portion of the domain is truncated to minimize undue

computational expense as the region of interest is located close to the centerline. The

effect of the domain size or shape on the solution is not investigated. Any effect of the

domain size or shape on the solution is expected to have impacted equally as much

all test cases of the study.

4.3.2 Computational Parameters

The different test cases that are run during the course of this study are summarized

in Tables 4.1 and 4.2 which indicate the corresponding ∆t and Wp values that are

used for each test case. The time step does satisfy the DSMC requirement that it be

less than the mean collision time for all test cases as discussed in section 4.5. The
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A B

DC

Figure 4.1: View of the computational domain and mesh. A, B: domain views, C:
closeup view of the inlet and D: overall domain view

average number of particles obtained for test case C1024 is shown in Fig. 4.3 which

is identical up to a multiplicative constant to that obtained for all other test cases of

Table 4.1. As a constant cell weight and time step are used throughout the domain,

its spatial variation is dictated both by the number density of the solution and the

volume of the cells of the domain (which scales as ∼ y near the axis and ∼ y2 far

away from the axis). The various test cases will be designated by the name indicated

in these tables. Following the approach of Chapter III, the value of the numerical

error is examined in greater detail in the following for the 12 cells shown in Fig. 4.2.
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Figure 4.2: Location and numbering of cells studied in detail.

Test Case Number of particles (M) Wp ∆t [s]
C1024 536.0 0.35 × 108 5.0 × 10−9

C512 268.0 0.7 × 108 5.0 × 10−9

C256 134.0 1.4 × 108 5.0 × 10−9

C128 67.0 2.8 × 108 5.0 × 10−9

C64 33.5 5.6 × 108 5.0 × 10−9

C32 16.7 11.2 × 108 5.0 × 10−9

C16 8.4 22.4 × 108 5.0 × 10−9

C8 4.2 44.8 × 108 5.0 × 10−9

C4 2.1 89.6 × 108 5.0 × 10−9

C2 1.0 179.2 × 108 5.0 × 10−9

Table 4.1: Test cases to investigate the effect of the particle count on the numerical
error.
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Test Case Number of particles (M) Wp ∆t [s]
C16 8.4 22.4 × 108 5.0 × 10−9

C16200 33.5 22.4 × 108 1.0 × 10−8

C16400 33.5 22.4 × 108 2.0 × 10−8

C64 33.5 5.6 × 108 5.0 × 10−9

C64125 33.5 5.6 × 108 6.25 × 10−9

C64150 33.5 5.6 × 108 7.5 × 10−9

C64200 33.5 5.6 × 108 1.0 × 10−8

C64400 33.5 5.6 × 108 2.0 × 10−8

C256 134.0 1.4 × 108 5.0 × 10−9

C256200 134.0 1.4 × 108 1.0 × 10−8

C256400 134.0 1.4 × 108 2.0 × 10−8

C512 268.0 0.7 × 108 5.0 × 10−9

C512200 268.0 0.7 × 108 1.0 × 10−8

C512300 268.0 0.7 × 108 1.5 × 10−8

C512400 268.0 0.7 × 108 2.0 × 10−8

Table 4.2: Test cases for the study of the influence of the time step on the numerical
error.

Figure 4.3: Average number of particles in each cell for test case C1024. The cell with
the smallest average number of particles is located at the corner of the
centerline and the inlet and contains 4.19.
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4.4 Effect of the number of particles on the numerical error

The goal of this section is to try to establish a link between the value of the

numerical error for a given cell and the total number of particles in the simulation or

particular cell. The numerical error for µ1 (n) and µ1 (Vx) are examined both globally

and in detail for a few selected cells. The numerical error εi is calculated following

Eq. (4.5) using case C1024 (outlined in Table 4.1) as the reference solution by hence

using Wp,0 = 0.35 × 108 and ∆t0 = 5.0 × 10−9s. To aid in the analysis, a normalized

value of the error is defined as:

εi,0 [θ] = |εi [θ] |
|θi (Wp,0,∆t0) |

. (4.11)

4.4.1 Numerical error for mean of number density ε̄ [µ1 (n)]

4.4.1.1 Cellwise Analysis

For 8 of the cells displayed in Fig. 4.2, a plot of the error as a function of the

average number of particles in that cell is plotted in Figs. 4.4 and 4.5. The 9

data points shown for each cell correspond to the 9 test cases outlined in Table 4.1.

For each cell, the point with the lowest particle count corresponds to C1 while the

largest is obtained with C512 (C1024 being the reference solution). There is not a

direct relation between the average number of particles in the cell and the value of

the numerical error. The value of the numerical error does furthermore not seem

to correlate with any local cell variable such as, e.g., the local collision frequency.

Identical average numbers of particles lead to different values of the numerical error

for distinct cells. General conclusions are furthermore difficult to draw regarding the

asymptotic behavior of the error with N . For most cells, the error is observed to vary

as N−α with α ≈ 1 although clear distinct behavior is observed for cells 2, 9 and 12

for which α ≈ 0.5. The N -dependency of the numerical error is thus observed to vary
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spatially through the domain. The spatial variation of the error is discussed in the

next section.

4.4.1.2 Global Analysis

We now investigate the spatial distribution of the error for multiple particle counts.

The goal is to determine for the present test case the zones that are most prone

to numerical error and, if possible, to determine if they share any characteristics

that could potentially be used to identify them a priori. The absolute value of the

normalized numerical error for µ1 (n) is plotted for three representative particle counts

of Table 4.1 in Figs. 4.6, 4.8 and 4.10. What is apparent in these plots is that,

as previously noted in the one-dimensional plots, the error magnitude varies widely

throughout the domain for a given test case. For a given particle count, low numerical

error zones are not characterized by larger numbers of particles per cell. This is

apparent by comparing Fig. 4.3 which displays the average number of particles per

cell (N) for test case C1024 and Fig. 4.6 which shows error contour lines. When Wp

changes for the entire domain, the average number of particles in each cell of the

domain will only see its value change by a factor of 1/Wp. Thus the general shape

of N will be preserved across all particle counts and never correlates with the spatial

variations of ε̄0 (µ1 (n)). Greater insight into the spatial behavior of the numerical

error can be gained by plotting its signed value as opposed to its absolute value as

done in Figs. 4.7, 4.9 and 4.11. In these figures, it can be seen that the number

density is either underestimated (εi > 0) or overestimated (εi < 0) in distinct spatial

regions separated by the border where εi ≈ 0. The magnitude of the overestimation

(or underestimation) decreases within each zone as a border is approached leading

to a smooth spatial variation of the error. This particular spatial behavior of the

error explains the low error regions separated by high error regions (similar to valleys

surrounded by peaks) that are observed when its absolute value is plotted in Figs.
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Figure 4.4: Normalized numerical error ε̄0 for µ1 (n) (+) and µ1 (Vx) (◦).
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4.6, 4.8 and 4.10.

The effect of the particle count on the observed spatial patterns can be seen by

comparing the numerical error along some specified lines of the domain. This allows a

more quantitative comparison between particle counts of the results presented in Figs.

4.6, 4.8 and 4.10. The numerical error for y = 0.0005 m is shown in Figs. 4.13 and 4.15

and for y = 0.001 m in Figs. 4.14 and 4.16. Figures 4.13 and 4.14 clearly indicate the

presence in the simulation domain of distinct zones where the error has a constant sign

for all particle counts. For instance at y = 0.001 m, the error is consistently positive

for x < 0.00035 m and negative otherwise. This corresponds to the same regions that

are visible in Figs. 4.6 to 4.11. Although only two one-dimensional traces are shown

in the present work for the sake of conciseness, identical observations and trends are

obtained in 10 additional traces taken throughout the domain. The error is also seen

to exhibit increasingly greater noise (i.e greater spatial oscillations) for smaller values,

as for instance demonstrated by the behavior of the black compared to that of the

blue line in Fig. 4.16. This is caused by the much greater convergence (i.e. small

convergence error) that is required to calculate lower error values. We now seek to

relate some of the results observed in the one dimensional traces to those previously

obtained in this section. Point 2 was seen to have a slope of −0.32 for log (ε̄0) vs N

in Fig. 4.5(a) which notably differs from the approximate −1 value observed for most

points. It is located at x = 0.001 m in Figs. 4.13 where a sharp drop for all particle

counts in the value of the error is observed. That same drop is visible in field plots

such as e.g., in Fig. 4.6. In contrast to Point 2, Point 3 is located at x = 0.001 m

in Fig. 4.14 where no precipitous drop in the error is observed. It is furthermore

found in Fig. 4.5(b) to have a slope of −0.92 ∼ −1, similar to that obtained for most

other points in the domain. The difference between Points 2 and 3 thus suggests

the occurrence of two types of error dependencies with N. In the first, illustrated by

Point 2, the absolute value of the numerical error has a low value compared to the
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rest of the domain and convergences as N−α with α ≪ 1. In the second, exemplified

by Point 3, which is followed by most points of the domain, the absolute value of

the numerical error is close to that of most cells in the domain and converges as

N−α with α ≥ 1. It thus seems like the convergence behavior of the error can be

tied to its value relative to other cells. To further study the spatial variation of the

convergence rate of the numerical error with N , a curve fit identical to that made to

produce Figs. 4.4(a) to 4.5(d) is performed for each individual cell of the simulation

domain by only using results from simulations C512, C256, C128 and C64, C1024

being the reference simulation. The value of the slope obtained for each individual

cell is plotted in Fig. 4.12. Although the field plot is relatively non-smooth, zones in

red with a low value of the numerical error slope with N clearly correspond to zones

with a low absolute value of the numerical error that are shown in Figs. 4.6, 4.8 and

4.10. This can be further seen in Fig. 4.13 where both the value of the slope and the

numerical error are plotted and a clear correlation is apparent between low numerical

error and a less than 1 exponent value.

4.4.1.3 Error propagation

Information in a DSMC simulation consists in the location {x⃗j}Npj=1 and velocity

{v⃗j}Npj=1 of all particles of the computational domain. Correspondingly, each parti-

cle of the simulation can be considered as subject to errors ε⃗x⃗ and ε⃗v⃗. As number

density is defined by Eq. (4.1), the numerical error for the statistical properties of

number density throughout the simulation domain only depends on ε⃗x⃗ whereas the

numerical error for the statistical properties of cell-averaged velocities, because of

their definition via Eq. (4.2) , depend on both ε⃗x⃗ and ε⃗v⃗. Given all the results of the

current study, the generation and propagation of numerical error inside the domain

can be thought of as occurring according to the somewhat simplified series of steps

outlined below. Particles are injected at the inlet and then enter the first cell of the
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domain, designated by subscript i, that has its left edge at x = 0 with ε⃗x⃗ = 0⃗ and

ε⃗v⃗ = 0⃗. In the first cell that the particles enter, the collision rate given by Eq. (4.10)

is inaccurately calculated due to the finite number of particles in the cell and subject

to error εcoll. The first cell is furthermore subject to a back flow of particles from

inside the computational domain which are each subject to numerical error. The end

result of the inaccurate modeling of the collision rate inside cell i and the inflow of

error from other cells into cell i is that particles inside the cell i end up being affected

by errors ε⃗x⃗,i and ε⃗v⃗,i. Futhermore, particles that move out of cell i into neighboring

j cells are subject to errors ε⃗x⃗,i→j and ε⃗v⃗,i→j which are themselves different from ε⃗x⃗,i

and ε⃗v⃗,i as they are biased by the velocity of particles and depend on the geometry

of the interface between cells i and j. The two error types furthermore compound

each other as the particles are advected inside the domain. That is because, dx⃗
dt

= v⃗

so that an error introduced for the velocity of a particle is translated into an error for

its position which magnitude increases with time. Conversely, systematic error for

the location of particles in the domain will lead to systematic error in the calculation

of collisions that will in turn lead to numerical error for the velocity of particles. The

only way to fully explain the propagation of the error is to obtain the velocity distri-

bution functions of the error for all cells. This is, however, exceedingly difficult to do

because of the amount of data generated and the resolution required to compare the

distribution function between test cases. We thus limit ourselves to a rather qualita-

tive discussion of the propagation of the numerical error in the domain is necessarily

limited by the data at our disposal.

i) The improper modeling of collisions introduces error in the simulation which man-

ifests itself here by certain cells containing on average too many or too few particles.

The number density error propagates to adjacent cells due to the movement of parti-

cles whilst simultaneously increased or decreased by the velocity error. Cells, however,

receive particles from multiple cells each of which contain on average too many or too
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few particles so the error may end up increasing, decreasing or being cancelled out.

It is the relative smoothness of particle trajectories, when averaged over many time

steps, that causes the smooth patterns that are observed for the number density error.

ii) When collisions cease being important, a negligible amount of error is generated

due to an inaccurate modeling of collisions and the spatial distribution of the error

is determined by the mixing of particles that occurs in the flow. This phenomenon is

particularly visible for all test cases past x ≈ 0.005 m where the flow is almost free

molecular. In that zone, numerical error contours are observed to diverge becoming

nearly parallel to the streamlines of the flow which indicates that no new error is

generated in that zone and that its patterns in that region are only dictated by its

diffusion via the movement of particles. The increasing width of the zone of εi ≈ 0

with x is a manifestation of the cancellation of the error by the mixing of particles.

iii) An unfortunate consequence of the geometry adopted for this study is that the

cell with the smallest average number of particles is located right next to the inlet at

x = 0, as shown in Fig. 4.3. Because it contains only 4.19 particles on average in the

reference simulation, it is likely subject to substantial numerical error. This error in

turn propagates to the rest of the domain. This should not however overly impact

the trends such as the power laws that were found in this study, as the proportion of

particles that have traversed this zone is small in most cells downstream. Very few

collisions also take place in the cells next to the centerline (less than 1 per time step

in the C1024 case) because of their small volume, which further limit the impact of

an insufficient average number of particles.

4.4.2 Numerical error for mean of velocity ε̄ [µ1 (Vx)]

The convergence of the numerical error of µ1 (Vx) with N is studied in Figs. 4.4

and 4.5 for 8 distinct cells of the domain. A convergence rate rate of N−α with α ∼ 1

is found for most cells albeit with some variations between cells. The normalized
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numerical error for µ1 (Vx) can be seen to be systematically an order of magnitude

lower than that for µ1 (n). The spatial variation of the convergence rate is shown

in Fig. 4.19. Part of the pattern appears similar to that observed for the number

density in Fig. 4.12 in particular far from the inlet in the middle of the domain.

That similarity can also be seen in the peak observed in both Figs 4.14 and 4.20

at x = 0.00035 m. The two rates, however, differ closer to the inlet. The same

phenomena that were previously discussed for ε̄ [µ1 (n)] are also visible for ε̄ [µ1 (Vx)]

such as the diffusion of error by particle mixing far from the inlet where few collisions

are present. Another manifestation of this mixing phenomenon is visible close to the

inlet in Fig. 4.17 where a narrow low error zone extends from y = 0.0001 m at the

inlet exit to the centerline. In that zone, Vy ∼ 0+, so that it is traversed roughly

equally as much by particles coming from below as by particles coming from above

characterized by εvx > 0 and below characterized by εvx < 0 as shown in Fig. 4.18.

This results in a sustained zone with a low error value in the x direction due to the

two error fluxes counterbalancing each other.

The spatial distribution of the error, only shown for one test case in Figs. 4.17 and

4.18, also differs from that observed for velocity although some common features are

present (most notably further removed from the inlet). Zones with a low error value

are also characterized by a low convergence of the error with N similarly to what

is previously observed for the number density. This is apparent in Fig. 4.20 which

similarly to Fig. 4.14 possesses a peak for the slope that occurs at the minimum error

location. This phenomenon is also observed in other one-dimensional traces that are

not shown here.

4.4.3 Discussion of results

The preceeding two sections have thus highlighted the fact that no universal scal-

ing exists for the dependency of cellwise numerical error on particle count (save for the
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existence of power-law behavior). These results are not unexpected given the strong

influence of the flow geometry on the numerical error as demonstrated by the exis-

tence and shape of the error patterns discussed in sections 4.4.1.2 and 4.4.2. It seems

very likely that a universal scaling of the cellwise value of the numerical error with

N can only be exhibited in cases with relatively mild spatial inhomogeneities. This

would explain the N−1 scaling found in [124] for one dimensional channel and Fourier

flow. A full exposition of an a priori determination procedure for the numerical error

due to the time step is outside the scope of the present chapter. Taking advantage of

the near-universal power law behavior that was highlighted, (i.e. εi = CiN
−αi), one

might imagine the following procedure to a priori determine the value of the numeri-

cal error due to N . As such, three (or more) different simulations are conducted for

three distinct N values so as to determine the value of the exponent of the power

law αi and constant Ci. These can in turn be used to estimate the value of the error

obtained for any N value.
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(d) Cell 11

Figure 4.5: Normalized numerical error ε̄0 for µ1 (n) (+) and µ1 (Vx) (◦).
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Figure 4.6: Normalized numerical error ε̄0 for µ1 (n) for C64.

Figure 4.7: Signed normalized numerical error ε̄0 for µ1 (n) for C64.
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Figure 4.8: Normalized numerical error ε̄0 for µ1 (n) for C16.
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Figure 4.9: Signed normalized numerical error ε̄0 for µ1 (n) for C16.
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Figure 4.10: Normalized numerical error ε̄0 for µ1 (n) for C4.

Figure 4.11: Signed normalized numerical error ε̄0 for µ1 (n) for C4.
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Figure 4.12: Value of the power of N for the slope of numerical error ε̄0 for µ1 (n).
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Figure 4.13: Normalized value of the numerical error of µ1 (n) at y = 0.0005 m.
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Figure 4.14: Normalized value of the numerical error of µ1 (n) at y = 0.001 m.
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Figure 4.17: Normalized absolute value of the numerical error ε̄0 for µ1 (Vx) for C64.
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Figure 4.18: Normalized numerical error ε̄0 for µ1 (Vx) for C64.
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Figure 4.19: Value of the power of N for the slope of numerical error ε̄0 for µ1 (Vx)
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Figure 4.20: Numerical error for µ1 (Vx) at y = 0.001 m
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4.4.4 Global error norms of the numerical error

The impact of spatial inhomogeneities or test case peculiarities on the numerical

error can be lessened by considering its average value over all cells of the domain as

was for instance done in [41]. This furthermore makes a universal scaling of the error

with N more likely to emerge. To this effect, the values of ∥ε0∥∞, ∥ε0∥1 and ∥ε0∥2,

respectively, defined by Eqs. (4.7) , (4.8) and (4.9) are plotted as a function of particle

count in Fig. 4.21. The symbols correspond to error values that are obtained from

actual simulations while the lines are linear curve fits to those results. The value of

the slopes of the different lines are indicated in the same figure. The ℓ1 and ℓ2 norms

are observed to behave fairly similarly for both n and Vx approximately scaling as

N−1. The infinity norm is observed to follow a power law N−α with α ∼ 0.5. From

a simulation accuracy standpoint, the infinity norm of the error is more useful as it

provides an upper bound for the value of the error. The ℓ1 and ℓ2 norms are, however,

more representative of the overall level of accuracy as they involve an averaging of

the value of the error over multiple cells. The ℓ1 norm of the numerical error has

been shown to be of order N−1 in [35] under a series of assumptions for a stationary

regularized form of the Boltzmann equation. This theoretical result has, however,

still not been proven to be valid in the presence of inflow and outflow boundary

conditions [126] as are used for the present simulation where the total number of

particles fluctuates. There is, however, no reason why this scaling would not hold

with such boundary conditions. The fact that this scaling was indeed observed in

[124] in turn suggests that the N−1 observed in Fig. 4.21 for ℓ1 and ℓ2 might not be

coincidental.
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Figure 4.21: ℓ∞ (black), ℓ1 (red) and ℓ2 (blue) norms of the normalized numerical
error for µ1 (n) (dashed lines and + symbols) and µ1 (Vx) (solid lines
and ◦ symbols) as a function of particle count.

4.5 Effect of the time step on the numerical error

4.5.1 Results for ε̄ [µ1 (n)] and ε̄ [µ1 (Vx)]

The effect of the time step on numerical error is investigated by running the

simulations outlined in Table 4.2, where, for four distinct particle counts, the time

step is varied. The numerical error εi is calculated following Eq. (4.5) using case C1024

(outlined in Table 4.1) as the reference solution by hence using Wp,0 = 0.35 × 108

and ∆t0 = 5.0 × 10−9 s. The normalized value of the numerical error is defined by

Eq. (4.11). Due to the formulation of the DSMC technique [15], ∆t has to be less
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than τmct, the mean collision time, which is the average time between collisions for

a particle in a cell. This requirement is well satisfied for the baseline time step of

5.0 × 10−9 s as shown in Fig. 4.22. This requirement is furthermore satisfied for all

the cases in Table 4.2.
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Figure 4.22: ∆t
τmct

for ∆t = 5.0 × 10−9 [s],
(

∆t
τmct

)
max

= 0.159 in front of the inlet.

The numerical error for both µ1 (n) and µ1 (Vx) is plotted as a function of ∆t for

four particle counts C16, C64, C256 and C512 in Fig. 4.23 for 4 different cells of the

domain. A linear regression is fit to the numerical error obtained for µ1 (Vx) in the

C512 case and the value of the slope is indicated on the plots. No clear mathematical

relation for the value of the error as a function of
(

∆t
∆t0

)
is apparent in these plots

for all particle counts for these cells or any others (not shown here). For the lower

particle counts C16 and C64, the error actually drops for µ1 (n) with increasing ∆t

but rises for µ1 (V x) or vice versa. As the particle count is increased, the rise of the

numerical error with ∆t becomes more systematic and monotonic for both µ1 (n) and

µ1 (Vx). In particular, a power law seems to adequately describe the ∆t dependency

of the error of µ1 (Vx) for the C512 case but not that of µ1 (n). In order to gain further

insight into the spatial variation of the error when ∆t is increased, the ratio of the
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numerical error for µ1 (Vx) at 2 × ∆t0 over that obtained at ∆t0 is plotted in Figs.

4.24 and 4.25 for C16 and C256. In the near inlet region, x ≤ 0.0001 m, increasing

the particle count seems to produce a more uniform increase of the error. That is to

say that the error is less likely to decrease with increasing ∆t and that the ratio of

the increase is more uniform. This can be seen in Fig. 4.26 where the error for C256

almost monotonically increases with ∆t for x < 0.002 m as opposed to for the C64

cases where the error decreases for ∆t ≤ 2×∆t0 before increasing when ∆t = 4×∆t0.

4.5.2 Discussion of results

Within the framework of this test case, no clear scaling of the cellwise error in-

troduced by the time step in terms of ∆t is found. Previous studies looking into

the truncation error conducted for the homogeneous Boltzmann equation [114] and

within the context of a one-dimensional Couette flow for wall quantities [65], how-

ever, found that the error scaled as O (∆t)2 in the limit of ∆t → 0. This scaling is

likely not observed in the current study because of the relatively large value used for

∆t and the spatial non homogeneities. For test cases of practical interest, however, a

relatively large time step is used to maximize computational efficiency and spatial ho-

mogeneities are almost always present. Given these two conditions, the present results

are much more representative of the types of conditions that the DSMC user is likely

to encounter in practice. No clear a priori determination of the cellwise numerical

error scaling with respect to ∆t seems to be possible for reasonably complex DSMC

flows such as this jet although a power law type dependency, i.e. ε ∼ N−α with α > 0,

seems to be almost universally observed. The same procedure as that outlined in sec-

tion 4.4.3 for N could therefore be used to determine error a priori for an arbitrary

∆t value.
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4.5.3 Global error norms of the numerical error

Having focused our attention on the cellwise error in the preceeding section, we

now investigate the effect of the time step on the global norms of the numerical error,

much like is done in section 4.4.4 for particle count. To this end, the ℓ2 norms of the

numerical error are plotted in Fig. 4.27 as a function of the time step for three different

particles counts. Only the ℓ2 norm is shown as the ℓ1 demonstrates almost identical

behavior. For the lowest particle count C64, the global error actually decreases as

the time step is increased as opposed to the two larger particle counts where the

global error monotonically increases with ∆t. Such behavior was also previously

observed for the cellwise value of the error and highlights the need for the simulation

to contain enough particles if the expected increase in numerical error with ∆t is to be

observed. The numerical error for µ1 (Vx) in particular seems to exhibit a quadratic

scaling with respect to ∆t. This O (∆t)2 scaling for the global error norm is in line

with that obtained in [114] for the homogeneous Boltzmann equation or [65]. This

scaling or the relative monotonicity of the global error norms with ∆t is in marked

contrast to what is observed for cellwise error in section 4.5.1. It thus appears that the

behavior of the numerical error in a fairly homogeneously complex DSMC simulation,

such as the present, can only be related to analytical scaling results with respect to

∆t through its global norm.

4.6 Conclusions

In this chapter, the effect of the number of particles and the time step on the

numerical error ε of DSMC was investigated within the framework of an axisymmet-

ric jet that was previously used to study the convergence error in Chapter III. The

cellwise numerical error was found to vary for both number density and velocity fol-

lowing a power law that is, as C × N−α with 0 < α < 1.5, where C and α are cell
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dependent and vary between n and V . The normalized cellwise numerical error of V

is observed to be consistently an order of magnitude smaller than that of n. Large

spatial variations are observed for the value of the numerical error throughout the

domain, with low error zones having consistently smaller α values. The rather com-

plicated spatial patterns of the error can be explained by the trajectory of particles

in the simulation domain and the location of highly collisional zones. The average

number of particles in a local cell gives no indication as to the value of the error in the

cell although increasing it by raising the total number of particles in the simulation

systematically reduces it. No direct correspondence is observed between the value

of the cellwise normalized numerical error and the average number of particles in a

particular cell. Accuracy for sampled quantities in a particular cell should not be

tied to the average number of particles (e.g. 20) that it contains but rather to the

total number of particles employed in the simulation, i.e. Wp. In practical terms, this

means that the accuracy of a simulation should be gauged by comparing the results

obtained for multiple particle counts. As was noted, advantage can be taken of the

general power law scaling that was observed for the error to a priori determine the

number of particles required for a desired level of accuracy. The ℓ1 and ℓ2 norms of

the numerical error for the entire domain were found to scale as N−1 for both µ1 (n)

and µ1 (V ). This scaling is, however, only marginally useful with regard to ensuring

simulation accuracy.

For relatively small particle counts, an increase in the time step value results in an

increase or decrease of the cellwise numerical error depending on the location in the

flow. The effect of an increase in the time step value is observed to result in a

more monotonic increase of the value of the numerical error as the particle count is

increased. No general scaling of the cellwise numerical error with ∆t could be con-

sistently observed although a power law type dependency is usually admissible for

µ1 (V ) at relatively high particle counts. The global ℓ1 and ℓ2 norms of the numerical
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error for both µ1 (n) and µ1 (V ) are, however, observed to scale as ∆t2.
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(c) Cell 9
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(d) Cell 10

Figure 4.23: Normalized numerical error ε̄0 for µ1 (n) (+) and µ1 (Vx) (◦) with C512
in black, C256 in red, C64 in blue and C16 in magenta. The value of
the slope indicated corresponds to that of linear curve fit of the error of
µ1 (Vx) for C512.
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Figure 4.24: Ratio of the numerical error for µ1 (Vx) obtained with ∆t = 2×∆t0 with
that obtained with ∆t = ∆t0 for test case C16.

Figure 4.25: Ratio of the numerical error for µ1 (Vx) obtained with ∆t = 2×∆t0 with
that obtained with ∆t = ∆t0 for test case C256.
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Figure 4.26: Influence of the time step on the normalized numerical error ε̄0 for µ1 (n).
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Figure 4.27: ℓ2 norms of µ1 (n) (dashed lines and + symbols) and µ1 (Vx) (solid lines
and ◦ symbols) as a function of the time step for test case C64 (black),
C256 (red) and C512 (blue). The curve in light blue is a linear regression
for the velocity error of case C512.
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CHAPTER V

An adaptive procedure for the time step, cell and

species weights for DSMC

5.1 Introduction

The DSMC (direct simulation Monte Carlo) method is today the most widely used

simulation method for high speed rarefied flow [27]. Its accuracy and convergence is

mainly determined by the number of particles employed in the simulation, the mesh

size and the time step employed. Because of the formulation of DSMC [15], the

number of particles in a cell is directly proportional to its number density while the

time step of the simulation can be no more than the mean collision time so that the

movement and collisions of particles can be decoupled. Similarly, collisions are only

performed for particles located in the same cell, so that its characteristic length has

to be less than the mean free path for this local assumption to be valid. This in

turn signifies that the constraints which the numerical parameters of DSMC have to

satisfy are inherently tied to the physics, particularly the number density field, of

the test case being simulated. This however makes the efficient simulation of flows

containing large variations in number density or large disparities between species

number densities difficult. These drawbacks inherent to the DSMC method have led

to a number of modifications to the basic DSMC algorithm that are in ubiquitous use
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today. The first is the use of spatially varying weights, particularly for axisymmetric

simulations such as in (amongst many others) [91] [96] where the cell volume scales

with the distance to the centerline, that allows enough particles to be present close

to the centerline while reducing their number further away from it. The second

improvement is the use of a spatially varying time step, and an adaptive procedure

to calculate the optimum time step field as in, e.g., [115] [99] [19]. For multi-species

flow, the use of relative weights, also called species weight, is widespread, such as in

[23] [9] [5]. They allow to increase the number of particles simulating species with low

number densities relative to others thereby allowing the use of fewer overall particles

in the simulation. Spatially varying time steps, cell weights and relative weights are

however almost never used simultaneously and whereas an adaptive procedure for

the time step has been proposed before [115] [99], one for the cell weights and species

relative weights has not. Relative weights are furthermore most often assumed to be

spatially uniform thereby forfeiting some of the efficiency gains obtainable by having

them vary through the computational domain. The aim of this chapter is to detail a

formulation of an all-encompassing adaptive procedure for the time step, cell weights

and relative weights where all are allowed to vary throughout space. Such a procedure

greatly facilitates the conduct of efficient DSMC simulations by lessening the need for

human inputs, such as e.g. running multiple simulations to determine optimum weight

fields. The first part of the chapter describes the additional considerations that must

be taken into account when using spatially varying weights or time steps in terms of

particle movement and collisions including the potential deleterious effects of particle

cloning. The adaptive procedure for the time step, cell weight and species relative

weights is then detailed and its integration into existing DSMC codes discussed. A

test case consisting of two counter-flowing axisymmetric jets at a Knudsen number

of 0.015 is introduced which is used to illustrate the increased accuracy obtainable

with the adaptive method compared to when only a spatially varying time step and
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weight are used.

5.2 DSMC Framework

5.2.1 DSMC with spatially varying time step and weights

5.2.1.1 Definitions

In the canonical version of DSMC, uniform values Wp,0 and ∆t0 for the cell weight

and the time step are used throughout the simulation while all species are assigned

the same relative weight of 1. In the following, a spatially variable time step ∆t (x⃗),

cell weights Wp (x⃗) and species relative weights Wrel,j (x⃗) are considered. A non-

dimensional time step ∆̃t (x⃗) and cell weight W̃p (x⃗) are in turn respectively defined

as

∆t (x⃗) = ∆t0 ∆̃t (x⃗) (5.1)
Wp (x⃗) = Wp,0 W̃p (x⃗) ∆̃t (x⃗) (5.2)

The non-dimensionalized weight W̃p (x⃗) is defined as such because it will later be

more useful to consider the value of the normalized value of the weight divided by

the non-dimensionalized time step, i.e. Wp(x⃗)
Wp,0 ∆̃t(x⃗)

instead of Ŵp (x⃗) ≜ Wp(x⃗)
Wp,0

. Cell-

wise constant weights and time step are used, while a total of Nspec distinct species

are present in the simulation, so that each cell i is characterized by ∆̃ti, W̃p,i and

{Wrel,j,i}Nspec
j=1 . As an example, using the previously defined terminology, the number

density nj,i of species j inside cell i of volume Vi, when it contains Nj,i particles of

species j, is given by:

nj,i = Wp,0 Wrel,j,i W̃p,i ∆̃ti Nj,i

Vi
. (5.3)

5.2.1.2 Particle Movement

When a computational particle of species j moves from one cell i, characterized

W̃p,i,Wrel,j,i, ∆̃ti to cell i + 1 with different weights W̃p,i+1,Wrel,j,i+1 and a different
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timestep ∆̃ti+1, care must be taken to preserve the flux of particles between the two

cells. The number density flux (i.e. the number of physical particles per unit area

and time) from cell i to cell i+ 1 through their common face of area Si+1/2 from the

standpoint of cell i is given by:

Φk
i→i+1|i (nj) = Wrel,j,i Wp,i

∆ti Si+1/2
Nk
j,i→i+1|i = Wp,0

∆t0 Si+1/2
Wrel,j,i W̃p,i N

k
j,i→i+1|i , (5.4)

where Nk
j,i→i+1|i designates the number of computational particles moving from cell i

to cell i+ 1. Similarly, the number density flux of incoming particles from cell i into

cell i+ 1 from the standpoint of cell i+ 1 is

Φi→i+1|i+1 (nj) = Wrel,j,i+1 Wp,i+1

∆ti+1 Si+1/2
Nk
j,i→i+1|i+1 = Wp,0

∆t0 Si+1/2
Wrel,j,i+1 W̃p,i+1 N

k
j,i→i+1|i+1 .

(5.5)

As the number density flux from cell i to cell i + 1 is a physical quantity, its value

cannot dependent on the value of the numerical parameters used to express it or their

spatial distribution, that is

Φk
i→i+1|i (nj) = Φk

i→i+1|i+1 (nj) ∀ {Wp,i′}i′ , {Wrel,j,i′}i′ , {∆ti′}i′ , (5.6)

so that:

Wp,0

∆t0 Si+1/2
Wrel,j,i W̃p,i N

k
j,i→i+1|i = Wp,0

∆t0 Si+1/2
Wrel,j,i+1 W̃p,i+1 N

k
j,i→i+1|i+1 . (5.7)

Eq. (5.7) can be satisfied for all weights and time step distributions if we allow the

number of particles moving into cell i+ 1 from the standpoint of cell i+ 1 to depend

on them, that is:

Nk
j,i→i+1|i+1 = W̃p,i Wrel,j,i

W̃p,i+1 Wrel,j,i+1
Nk
j,i→i+1|i . (5.8)
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In terms of particles, this in turn signifies, that one particle (corresponding toNk
j,i→i+1|i =

1) entering cell i + 1 from cell i, needs to give rise to Rj,i→i+1 ≜ W̃p,i Wrel,j,i

W̃p,i+1 Wrel,j,i+1
par-

ticles immediately upon entry into cell i + 1. When Rj,i→i+1 < 1, the particle is

discarded upon reaching the interface between the two cells with a probability of

Rj,i→i+1. When Rj,i→i+1 > 1, the original particle moves to cell i + 1 and an addi-

tional cNk
j,i→i+1 particles are generated at the interface following a uniform distribu-

tion U (Rj,i→i+1 − 1, Rj,i→i+1). The simplest approach and that adopted in this work

is to give properties (i.e. position and velocity) that are identical to those of the

original particle to all newly generated particles. When that scheme is used, the new

particles are then referred to as clones and the particle creation process as cloning.

The number of particles that are either generated or destroyed due to the spatial dis-

tribution of the weights and the time step is thus controlled by the spatial distribution

of W̃p,i, instead of that of Wp,i. To be able to more closely control the distribution of

W̃p,i, the adaptive procedure presented in Section 5.3 is thus formulated to adapt the

values of W̃p,i (instead of ∆̃t and Ŵp,i as might have been expected).

5.2.2 Cloning issues

The generation of clone particles at the interface between cells where Rj,i→i+1 < 1

does lead to several issues with consequences that will later become apparent in

simulations.

5.2.2.1 Accuracy

It is no better in terms of accuracy for a particular cell to contain two identical

particles on average than for it to contain only one. This is because, absent any

collisions, cloning does not increase the flow of information traveling from the rest

of the computational domain to a particular cell. It only amplifies information by

creating more vectors to carry it (i.e. particles). This is the broad reason why increas-
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ing the average particle count in a cell through cloning, while striving to maintain

the same average number of particles in all cells of the domain, never produces as

accurate results as are obtained by increasing the overall total number of particles

in the simulation so as to obtain the exact same average particle count in that cell.

The situation does change when collisions occur as the collision of cloned particles

with other particles does generate new information (i.e. new velocities for some of

the cloned particles). This is the reason why the present adaptive procedure will tend

to produce the greatest relative accuracy gains compared to a simulation employing

uniform weights for the same computational cost for flows that are relatively colli-

sional. Such collisions, however, have to occur between non-clone particles, as two

identical particles have the same velocity and thus can never collide. In the limiting

case of a fully free molecular flow, it will by its definition produce identical results to

those obtained with uniform weights and time steps. In extremely collisional flows,

the time between the creation of a cloned particle and its first collision is expected to

be so short that the deleterious effects of introducing cloned particles should be very

small.

5.2.2.2 Avalanche phenomenon

The relative absence of collisions and the use of decreasing weights to counterbal-

ance a decrease in number density along one direction can both combine to create

what we refer to as a particle avalanche phenomenon. It occurs when an ever in-

creasing number of cloned particles are created as an increasingly large group of

identical particles travels along a direction with decreasing weights. It can best

be understood by considering a simplified one-dimensional cold gas flowing with a

bulk velocity of Vx with a number density that decreases in the x direction. As a

Gedankenexperiment, we consider a one-dimensional perfectly cold gas flow in which

the number density drops as ∼ x−1 so that its velocity distribution function is given
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by f (Vx) = n0
(
x0
x

)
δ (Vx − V0), where δ is Dirac’s delta function and V0 > 0. The

gas flow is discretized with a one dimensional mesh from x = 0 to x = L with

uniform spacing ∆x = L
Nc

using Nc cells each of volume V and constant time step

∆t0 is used (so that Ŵp = W̃p). The weights of the cells are “naively” chosen so

as to maintain a constant average number of particles N0 in all cells of the do-

main despite the drop in number density in the x direction. As ni = Wp,i N i

V
, the

weights are given by Wp,i = niV
N0

with the cell-averaged number density defined as

ni ≜ 1
∆x

∫ xi+1/2
xi−1/2

n0
(
x0
x

)
dx = n0x0

∆x log
(
xi+1/2
xi−1/2

)
. As was previously explained, due to

the spatial variation of the cell weights, when a particle travels from cell i to cell

i + 1, W̃p,i

W̃p,i+1
particles are created on the i + 1 side of the interface between the

two cells. Thus if a single particle happens to make its way from cell 1 to cell i,
W̃p,1

W̃p,2
× W̃p,2

W̃p,3
× ...× W̃p,i−1

W̃p,i
= W̃p,1

W̃p,i
identical particles are in turn obtained in cell i. Be-

cause cell i has a lower density than cell 1, such a large number of particles will only

seldom be observed in cell i which will contain no particles for most time steps. The

frequency of occurrence of such a packet of particles in cell i, can be obtained by basic

probability considerations. We designate the event “particle p is in cell i+1 in at least

some time step k ” by ωp∈i and the event “particle p is in cell i + 1 in at least some

time step k” by ωp∈i+1. Due to the simple nature of the flow considered, p has to pass

through cell i to reach cell i + 1 so that P (ωp∈i ∩ ωp∈i+1) = P (ωp∈i+1) and further-

more, by definition P (ωp∈i+1|ωp∈i) = P (ωp∈i∩ωp∈i+1)
P (ωp∈i+1) so that P (ωp∈i+1|ωp∈i) = P (ωp∈i+1)

P (ωp∈i) .

It can readily be seen that P (ωp∈i+1|ωp∈i) = ni+1
ni so that P (ωp∈i) = P (ωp∈i|ωp∈i−1)×

P (ωp∈i−1|ωp∈i−2) × ...× P (ωp∈2|ωp∈1) = nini−1
× ni−1

ni−2
× ...× n1n2

= nin1
. Hence a packet

of W̃p,1

W̃p,i
particles will occur with a probability of nin1

, i.e. once every n1ni steps in cell

i. Thus, cell i will indeed contain an average of N0 × ni
n1

× W̃p,1

W̃p,i
= N0 over the course

of the simulation as the process described above will be repeated N0 times for all the

particles initially in cell 1. The occurrence of a large number of identical particles, all

traveling together in the form of a packet which grows larger and larger with time as
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it travels down a path with decreasing weights as an attempt to increase the average

particle count to balance a decrease in average number density will be referred to

as a avalanching phenomenon in the following. If collisions with other non-identical

particles of the same species or with other species are not prevalent enough to break

up the packet of particles, the avalanching phenomenon will occur. This undesirable

phenomenon will later be seen to limit the useful range of applicability of the adaptive

procedure.

5.2.3 Average quantities

The adaptive procedure presented in this chapter aims to vary the value of the

weights so that all cells contain the same approximate number of particles on average

as the instantaneous number of particles fluctuates. The average value needs to be

reasonably responsive to changes in particle counts that are caused by the application

of the adaptive procedure so that an exponential moving average [138] is used for its

calculation:

N
k
j,i = R Nk

j,i + (1 −R)Nk−1
j,i , (5.9)

where Nk
j,i and Nk

j,i are, respectively, the number and the average number of particles

of species j in cell i at time step k. A value of 0.001 for the relaxation factor R is used

for this present work. The average number of collisions N coll (a, b), i.e. the average

number of collisions where a particle of species a sees the value of its velocity changed

as a result of a collision with a particle of species b, occurring in the cell at each time

step for each (a, b) species pair is also similarly calculated. It is used to calculate the

average mean collision time in each cell as follows:

τm (a, b) = ∆t Nb

(1 + δab)N coll (a, b)
, (5.10)
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which designates the average time elapsed between two collisions for a particle of

species a with one of species b where the velocity of the former is indeed changed. As

will later be seen, we are most interested in the minimum value of τm (a, b) over all

pairs that corresponds to the two species that collide with the greatest frequency:

τm = min
a,b

τm (a, b) . (5.11)

5.2.4 Collision rates

The expression for the number of potential collision pairs to consider between

different species with distinct relative weights is given without derivation in [23] (Eq.

(5) therein which has a typographic error). Because the derivation is not straightfor-

ward, it is repeated here by distinguishing between the cross section of the physical

particles and that of the computational particles [118]. This allows a much more rig-

orous derivation and presentation of all DSMC quantities related to collisions. The

DSMC procedure can be viewed and examined from many different viewpoints, e.g.

as a stochastic process that mimics the Boltzmann equation [126] or by adopting a

more physical viewpoint, as we choose to do here, as a computational gas composed of

computational particles. The properties of the computational gas such as its average

number density over a specified region of space differ from those of the actual gas.

That is, all quantities related to the computational gas have to be suitably rescaled

to obtain those of the physical gas that is being modeled. Following the arguments

presented in p. 7-8 of [15], the collision frequency of a single particle of the physical

gas a with particles of gas b at a number density of nb is given by:

ν
(1)
ab = nbσabcr, (5.12)
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where cr is the relative velocity between particles and σab is the cross section for

elastic collisions between species a and b. The bar over a quantity designates its

average value amongst all particles of the sample. The properties of the DSMC gas

differ from those of the physical gas and are denoted with a tilde. In the simulation,

species b has a number density of

ñb = nb
WpWrel,b

, (5.13)

as each macro or computational particle represents Wp ×Wrel,b actual particles. Sim-

ilarly, the single particle collision rate of the numerical gas is denoted by ν̃
(1)
ab . The

particles of the numerical gas have a collisional cross section that is different than

those of the actual physical particles. It is denoted by σ̃ab to distinguish from σab.

Equation (5.12) correspondingly yields the single numerical particle collision rate:

ν̃
(1)
ab = ñbσ̃abc̃r. (5.14)

The DSMC procedure is based on the fundamental assumption that all particle-

carried quantities (e.g. velocity, position, internal energy) are identical between the

physical and computational gases. They thus share the same velocity, i.e. c̃r = cr as

well as the same collision rate. Thus, equaling Eqs. (5.12) and (5.14):

nbσabcr = nb
Wrel,b Wp

, σ̃abcr, (5.15)

the computational cross section σ̃ is found to be given by:

σ̃ab = Wrel,b Wp σab. (5.16)

The probability of a collision between a moving particle a′ and a target particle

b′ belonging respectively to species a and b, both located inside the same cell of
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volume V can be interpreted as being given by the ratio of the volume of the cylinder

engendered by the collision cross section through the relative motion of both particles

during ∆t to the volume of the cell:

Pcoll (a′, b′) = σ̃ab (a′, b′) cr (a′, b′) ∆t
V

. (5.17)

Collisions between particle pairs in a cell at a given time step are independent events,

that is the probability of a collision occurring for a given {a′, b′} pair is independent

of those of all other pairs in the cell. Thus, the number of collisions that occurs

at a given time step is obtained by summing the probability of occurrence of each

potential collision:

Ncoll (a, b) = 1
1 + δab

Na∑
a′=1

Nb∑
b′=1

Pcoll (a′, b′) = 1
1 + δab

Na∑
a′=1

Nb∑
b′=1

σ̃ab (a′, b′) cr (a′, b′) ∆t
V

.

(5.18)

Defining the average value of the cross section times the velocity amongst the Na×Nb

pairs as:

σ̃abcr ≜
1

NaNb

Na∑
a′=1

Nb∑
b′=1

σ̃ab (a′, b′) cr (a′, b′) , (5.19)

by using Eq. (5.16), Eq. (5.18), can be rewritten as:

Ncoll (a, b) = 1
1 + δab

σ̃abcr∆t
V

NaNb = Na nb
1 + δab

σabcr ∆t. (5.20)

This gives an expression for the number of collisions that has to occur during ∆t

amongst the particles of the numerical gas so that Eq. (5.15) is satisfied. To increase

computational efficiency, the DSMC procedure only considers potential collisions

amongst a fraction of those collision pairs, i.e. Npairs (a, b) = (σabcr)max
σ̃abcr

×Ncoll (a, b):

Npairs (a, b) = Na nb
1 + δab

(σabcr)max ∆t. (5.21)
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while suitably increasing the collision probability by defining it as Pcoll = (σcr)
(σcr)max

so

that Eq. (5.20) is indeed obtained on average. In the case where Wrel,a ̸= Wrel,b,

the number of pairs to consider for collision, i.e. Eq. (5.21), has to be altered

as the velocity of both particles cannot simultaneously change to conserve average

momentum during the collision. This issue is addressed in the next two sections that

culminate in the derivation of a form of Eq. (5.20), i.e. Eq. (5.36), that takes into

account the collision dynamics of particles with different relative weights.

5.2.5 Collision Mechanics with relative weights

In the absence of species relative weights and in the actual physical gas, the

properties of both participating particles change after a collision. In the numerical

gas, however, when particles with different relative weights participate in a collision,

their properties cannot both equally be affected by it. If they were, the overall

translational energy of particles and momentum would not be conserved on average

in the gas and the effect of collisions on the species with the largest weight from

that with the lowest would be systematically overestimated. In the following, we

present the collision scheme that is most commonly used to handle collisions between

particles with different relative weights which was first introduced in [13] p. 171.

Because the scheme does not conserve energy, an energy-conserving collision scheme

was subsequently proposed in [23]. The latter was for instance later used in [150]

where a detailed description of the impact of relative weights on the modeling of

chemical reactions via DSMC is given. An energy conserving scheme is however

of limited utility for the test case that will later be studied as the residence time

of particles inside the domain is relatively short with very few undergoing multiple

collisions and is therefore not implemented. Non energy-conservation is however much

more important for closed systems, as discussed in [23], such as homogeneous heat

baths where boundary conditions are not constantly resupplying new particles (and
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thus energy). Considering a collision between a particle of species a with weight Wrel,a

and one of species b with weight Wrel,b, the pre-collision velocities of both particles

are designated by v⃗a and v⃗b and their post-collision velocities are designated by v⃗′
a

and v⃗′
b. In the case where Wrel,a = Wrel,b, the post-collision velocities are denoted

respectively by v⃗∗
a and v⃗∗

b and are obtained by the application of the DSMC collision

operator Ccoll (i.e. the variable hard sphere model in present study) that is:

(v⃗∗
a, v⃗

∗
b ) = Ccoll (v⃗a, v⃗b) (5.22)

with 
v⃗

′
a = v⃗m + mb

ma+mb
v⃗∗
r

v⃗
′
b = v⃗m − ma

ma+mb
v⃗∗
r

(5.23)

where the center of mass velocity v⃗m is given by mav⃗a+mbv⃗b
ma+mb

while the expression for

the post-collision relative velocity v⃗∗
r ≜ v⃗∗

a − v⃗∗
b as a function of v⃗a and v⃗b for the VHS

model is given in [15]. In order for the gas to conserve overall momentum during the

collision, the following has to be satisfied:

maWrel,av⃗a +mbWrel,bv⃗b = maWrel,av⃗
′

a +mbWrel,bv⃗
′

b. (5.24)

As Ccoll conserves momentum, mav⃗a + mbv⃗b = mav⃗
∗
a + mbv⃗

∗
b , Eq. (5.24) can be

rewritten as:

Wrel,b (mav⃗
∗
b +mbv⃗

∗
b ) + (Wrel,a −Wrel,b)mav⃗a = maWrel,av⃗

′

a +mbWrel,bv⃗
′

b (5.25)

Because, we do not require conservation of energy this equation is the only one that

must be satisfied by the post collision velocities v⃗′
a and v⃗

′
b. They can thus be defined

with a certain latitude. The most natural choice is to let the particle with the lowest
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relative weight be fully influenced by the collision, that is to assign it v⃗∗ as its post-

collisional velocities. Using that assumption, Eq. (5.25) can readily be shown to

admit the following two solutions:


v⃗

′
a =

(
1 − Wrel,b

Wrel,a

)
v⃗a + Wrel,b

Wrel,a
v⃗∗
a

v⃗
′
b = v⃗∗

b

(5.26)


v⃗

′
a = v⃗∗

a

v⃗
′
b =

(
1 − Wrel,a

Wrel,b

)
v⃗b + Wrel,a

Wrel,b
v⃗∗
b

(5.27)

The solution of either Eq. (5.26) or Eq. (5.27) are acceptable to conserve momentum

during the collision. However, in order to properly simulate the effect of collisions,

particles from the entire range of the velocity distribution function must be potentially

allowed to exist in the flow. In particular, specifying velocities after each collision

following Eq. (5.26) or (5.27), especially when Wrel,b
Wrel,a

≪ 1 only produces a v⃗
′
a or v⃗′

b

that are very similar to their pre-collision values so that almost no “real” collision

actually takes place in the flow. Hence, a solution to this, is to only satisfy Eq. (5.27)

or (5.26) on average, that is in a probabilistic sense by allowing a collision to occur

for the particles with the greatest relative weight with a probability given by the ratio

of the weights, i.e.:

If Wrel,a < Wrel,b v⃗
′

a = v⃗∗
a v⃗

′

b =


v⃗∗
b with P = Wrel,a

Wrel,b

v⃗b otherwise
(5.28)

and

If Wrel,a > Wrel,b v⃗
′

a =


v⃗∗
a with P = Wrel,b

Wrel,a

v⃗a otherwise
v⃗

′

b = v⃗∗
b . (5.29)

excluding the case where Wrel,b > Wrel,a for Eq. (5.26) and the reverse for Eq. (5.27)

to avoid generating large unphysical velocities after collision. As shown by Eqs. (5.28)

and (5.29), a collision does not always result in a change of velocity for both particles
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when these have different relative weights. One must therefore define a real collision

for a given particle as a collision in which its velocity is changed. The probability of

such an event occurring during a collision of a particle from species a with one from

species b is denoted by Pab, while Pba refers to the probability that the particles from

the b species sees its velocity change in an encounter with one of a. Eqs. (5.28) and

(5.29) respectively yield:

Wrel,a < Wrel,b Pab = 1 Pba = Wrel,a

Wrel,b
(5.30)

and

Wrel,a < Wrel,b Pab = Wrel,b

Wrel,a
Pba = 1. (5.31)

so that one can remark that the identity Pab = Wrel,b
Wrel,a

Pba is always satisfied.

5.2.6 Collision rates with relative weights

When the mechanism detailed in the last section is used, a collision between two

particles results in a real collision for one or both particles (as opposed to the case

where both particles have the same relative weight, where a collision between two

particles always results in a real collision for both). One must therefore distinguish

between the real collision cross section that was previously introduced, denoted σ̃ab,

and the virtual collision cross section σ̂ab. The real collision cross section, σ̃ab, is the

cross section of the process “{Particle a collides with particle b AND its velocity is

changed}” as opposed to σ̂ab which is that of “{Particle a collides with particle b}”.

Both are numerical cross sections and identical in the absence of relative weights.

Because a collision of a particle of species a with one of b has a probability Pab of

leading to a real collision:

σ̃ab = Pabσ̂ab. (5.32)
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Hence using σ̂, the single particle collision rate of Eq. (5.14) can be rewritten, using

Eq. (5.16) as:

ν̃
(1)
ab = ñbσ̃abcr = Pabñbσ̂abcr = nbσabcr (5.33)

so that using Eq. (5.13), the virtual collision cross section σ̂ab is found to be:

σ̂ab = WpWrel,b

Pab
σab. (5.34)

By analogy with Eq. (5.20), which gives an expression for the number of real collisions

that has to take place in a cell, the number of virtual numerical collisions in a cell is

given by:

N̂coll (a, b) = σ̂abcr ∆t
V (1 + δab)

NaNb. (5.35)

which can be rewritten using Eq. (5.34) as:

N̂coll (a, b) = WpWrel,b σabcr ∆t
(1 + δab)PabV

NaNb. (5.36)

This only gives an expression for the number of collision pairs between species a and

b to consider from the standpoint of species a, so that the total number of collision

pairs to consider between species a and b is given by:

N̂coll {a, b} = 1
1 + δab

[
N̂coll (a, b) + N̂coll (b, a)

]
, (5.37)

with N̂coll being defined by Eq. (5.36). Equation (5.36) corresponds to the “so-

phisticated DSMC” pair selection scheme introduced in [18] (with Nb = N b − 1 if

a = b), while the “no time counter” pair selection scheme [15] is obtained by let-

ting Nb = N b. Our implementation of the DSMC method with relative weights thus

amounts to selecting the number of particle pairs indicated by Eqs. (5.37) and (5.36)

with σabcr = (σabcr)max for all species pairs. Amongst those selected particle pairs,
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(virtual) collisions are assumed to occur with a probability of P̂coll = (σabcr)
(σabcr)max

, in

which case they lead to the application of the collision mechanics described by Eq.

(5.28) or (5.29). The latter always results in a real collision, i.e. a velocity change,

for the particle with the lowest relative weight while a real collision only occurs with

a probability given by the ratio of the relative weights for the other particle.

5.3 Formulation of the adaptive procedure

5.3.1 Calculation of the time step

5.3.1.1 DSMC requirements

The DSMC procedure is based on the decoupling of the two main mechanisms

governing the dynamics of a rarefied gas: the ballistic motion of particles through

physical space and their collisions. This basic assumption is an approximation as

both are coupled in reality which in turn introduces a splitting error. In terms of

the modeling, this means that collisions should really impact the “move” part of the

procedure as they cannot be fully assumed to take place instantaneously at a fixed

spatial location. An often cited guideline to mitigate this error is to ensure that the

time step is less than the mean collision time. Because this error most likely follows

a power law, i.e. (∆t)η with η > 0 as discussed in Chapter IV it can never be fully

eliminated and it is already significant for values of ∆t below τmct as no distinct

threshold phenomenon occurs when ∆t = τmct. In the adaptive procedure, the value

of the time step is thus set equal to a fraction of the mean collision time Ξτm < 1:

∆t = Ξτmτm, (5.38)

where τm is defined according to Eq. (5.11). Particles should furthermore avoid

crossing multiple cells during their movement. That is, they should not overfly a cell

without having had a chance to collide with the particles occupying it. When this
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undesirable situation occurs, the move procedure prevents the proper modeling of

collisions by spatially biasing the collision partner population of the particles being

moved. An approximate measure of the average number of neighboring cells traversed

by the particles contained inside cell i during ∆t can be given by:

Ki = ⟨v⟩i ∆ti
⟨∆x⟩i

, (5.39)

where ⟨v⟩ designates the average velocity magnitude of the particles of cell i and

⟨∆x⟩i designates a characteristic length of the cell which can be taken as the value

of its minimum edge length. We can prevent particles from crossing more than one

cell on average during ∆t by imposing:

Ki ≤ βK,max with βK,max < 1 . (5.40)

Whereas the two previous constraints provide upper bounds for the time step

value, the latter should however also not be too small. This is because the autocorre-

lation spectrum ρ (k′,∆t) of sampled quantities as a function of the number of time

steps k′, for a given time step ∆t is such that ρ (k′,∆t) = ρ0 (k′ ∆t0) (c.f. Chapter

III), so that reducing the time step increases the correlation between sampled quan-

tities. This is turn reduces the rate of convergence of sampled quantities thereby

requiring more sampling steps and hence making the simulation less computationally

efficient. Without calculating the correlation between samples, this can for instance

be accomplished by specifying a minimum bound for Ki:

βK,min ≤ Ki with βK,min > 0. (5.41)
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The two previous conditions, i.e. Eqs. (5.40) and (5.41) can thus be summarized as:

βK,min <
⟨v⟩i ∆ti

∆xi
< βK,max , (5.42)

which has to be satisfied for all cells of the domain. The exact values of the βK,min

and βK,max bounds must ultimately be determined by trial and error. Good results

have been obtained for a variety of flows with βK,min = 0.05 and βK,max = 0.1 which

are the values that are used in the following.

5.3.1.2 Implementation considerations

Applying the adaptive procedure essentially amounts to calculating
{
∆tk+1

i

}Nc
i=1

at

time step tk so that Eqs. (5.38) and (5.42) are satisfied and updating the simulation

to account for the new time step. Because the adaptive procedures for the time step

(and the weights) are applied during the march to steady state of the flow during

which the latter greatly changes, it must carefully be applied so as not to excessively

interfere with it. For that the reason, as will be discussed in Section 5.3.4, the weights

and time step are only updated every few thousands time steps to allow the flow to

sufficiently develop between updates. The range of the time step is further restricted

to prevent too low or high values from being used that would hinder the development

of the flow:

∆tmin < ∆tk+1
i < ∆tmax . (5.43)

The value of these two bounds obviously depends on that of ∆t0, They should be

respectively small and large enough so that constraints of Eqs. (5.38) and (5.42) can

be enforced. The magnitude of the increase or decrease of the time step is further

restricted for each cell by imposing:

1
Ξ∆t,max

≤ ∆tk+1
i

∆tki
≤ Ξ∆t,max with Ξ∆t,max > 1, (5.44)
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which prevents possible oscillations in the overall number of particles due to a too

tight coupling of the adaptive procedure with the flow. A moderate value should thus

be used for Ξ∆t,max such as e.g. 2.

We further desire a time step field that is relatively smooth, that is without abrupt

increases or decreases between adjacent cells. This is particularly necessary during the

development period of the flow where large disparities between time steps are observed

between zones with and without particles. Too sudden time step variations along the

trajectory of particles furthermore degrades accuracy. A smooth time step field is

obtained by performing a Laplacian smoothing, denoted by L (·), of the time step field

∆tk+1. After sequentially applying Eqs. (5.38), (5.42), (5.44) and (5.43) to obtain

∆tk+1, the smoothed time step field
{

∆̂t
k+1
i

}Nc
i=1

= L
({

∆tk+1
i

}Nc
i=1

)
is determined

according to the following:



∆̌t0i = ∆tk+1
i

∆̌tli = 1
Nb,i+1

(
∆̌tl−1

i +∑Nb,i
j=1 ∆̌tl−1

Ji,j

)
with 1 ≤ l ≤ NL

∆̂t
k+1
i = ∆̌tNLi

(5.45)

The new average at step l of the smoothing is obtained by averaging the value of the

time step over the Nb,i neighbors of cell i, Ji,j designating the index of the cell that

is the jth neighbor of cell i. The averaging is repeated multiple times so that a total

of NL smoothing iterations are performed.

The final step of the procedure is to suitably update the number of particles and the

properties of the flow so that all flow quantities when rescaled with the new time

step value are not altered. Because of the definition of number density following Eq.

(5.3), the number of particles in cell i of all j species needs to be altered to keep the

number density of the cell constant:

Nk+1
j,i = Nk

j,i

∆tki
∆tk+1

i

∀j . (5.46)
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When, ∆tki
∆tk+1

i

> 1, the additional particles required are obtained by cloning the parti-

cles that are already present in the cell. The average number of particles in the cell

is similarly updated while no change is required for the average number of collisions.

All the steps outlined above are briefly summarized below and the numerical values

of all the parameters such that were used in the test case of Section 5.4 are specified.

The integration of the time step procedure within a DSMC code and its frequency of

application is discussed in Section 5.3.4.

Pseudo code of the time step update

For all cells, i = 1, ..., Nc, do:

i) Calculate τm,i with Eqs. (5.10) and (5.11) and enforce Eq. (5.38) with

Ξτm = 0.2.

ii) Calculate Ki with Eq. (5.39) and enforce Eq. (5.42) with βK,min = 0.05

and βK,max = 0.1.

iii) Limit variation of ∆tk+1
i with Eq. (5.44) using Ξ∆t,max = 2.

iv) Check that ∆tk+1
i is within the prescribed bounds of [∆tmin,∆tmax]a

iv) Smooth ∆tk+1
i as in Eq. (5.45), using NL = 20 smoothing steps.

v) Clone/destroy particles as dictated by Eq. (5.46) and update running

averages.

end
aRespectively small and large enough so that i) and ii) can be enforced

5.3.2 Calculation of cell weight

5.3.2.1 Motivation

The accuracy of sampled quantities in a cell of a DSMC simulation depends on

both the total number of particles in the simulation and the average number of par-
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ticles in the cell. For fairly homogeneous test cases, such as channel flow, there is a

direct connection between the average number of particles in a cell and the accuracy

of sampled quantities so that the “20 particles per cell” [15] typical guideline may be

used to guarantee accurate results. For more complex flow, such as axisymmetric jets,

there is no direct relationship between the average number of particles per cell and

the accuracy of sampled quantities as discussed in Chapter IV, although an increase

in the average number of particles in a cell is always associated with an increase in

accuracy. Accurate results can, however, never be obtained in a cell with too few, e.g.

< 5 particles, so that one may ideally desire a minimum average number of particles

in all cells of the domain as a necessary condition for accuracy.

Due to large number density gradients in the flow being simulated and/or large cell

volume disparities in the mesh employed, DSMC users often employ spatially varying

weights in their simulations to increase computational efficiency. This is in particular

necessary for axisymmetric flows to obtain accurate results close to the centerline

while avoiding too many particles in cells with greater volume further away from

the centerline. Except for simple situations, such as single axisymmetric jets, the

optimum shape of the distribution of weights to adopt is not obvious. Very often,

users have to resort to a trial and error approach by running multiple simulations

to determine a “good” weight distribution often with the implicit goal of trying to

obtain a constant average number of particles in all cells.

Building on the two previous ideas, the goal of the procedure presented in this section

is thus to obtain a user-defined constant N tot
p,want particles per cell on average for all the

cells of the domain. When Nspec species are present in the flow and the adaptive proce-

dure for the relative weights is used, such as in the following, N tot
p,want = Nspec ×Np,want

is chosen so as to obtain Np,want particles per species per cell on average.

Having tested various implementations of the adaptive procedure, the best results

have been obtained when the procedure for the relative weights is separated from
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that for the cell weight. This furthermore has the advantage of allowing the use

of the procedure without relative weights. It is, however, possible to combine the

procedures for the cell weight and the relative weights into a single one.

5.3.2.2 Implementation

The update equation for the value of the weight W̃p is obtained by noting that

the total average number of particles in cell i, N tot,k
i ≜ ∑Nspec

j=1 N
k
j,i is proportional to

W̃ k
p,i, so that to have N tot,k+1

i = N tot
p,want, we must impose:

W̃ k+1
p,i = N

tot,k
i

N tot
p,want

W̃ k
p,i . (5.47)

Similar conditions as for the time step are imposed, preventing too large increases or

decreases while enforcing a lower and an upper bound with

1
Ξ
W̃p,max

≤
W̃ k+1
p,i

W̃ k
p,i

≤ Ξ
W̃p,max with Ξ

W̃p,max > 1 (5.48)

and

W̃p,min < W̃ k+1
p,i < W̃p,max . (5.49)

As opposed to for the time step, it is imperative that the weight field be smooth

in space and its variation gradual. This is to distribute the generation of cloned

particles as equally as possible throughout space so as to promote the collisions of

newly generated cloned particles with other particles. The aim of this is to i) Prevent

the occurrence of the avalanche phenomenon which was discussed in Section 5.2.2.2

by breaking up packets of particles through collisions before they have the occasion to

form ii) Improve the contribution of newly generated cloned particles to the accuracy

of the simulation by having them collide so as make them carry new information into

the rest of the flow.
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The new weight field is thus also smoothed with a Laplacian smoothing operator.

The smoothing, however, has to take the axisymmetric geometry into account. This

is because axisymmetric flows present very strong variations in the radial direction in

which the cell volume varies as ∼ y. Furthermore, because particles move parallel to

the axis of symmetry in most axisymmetric flows, it is more important for the weight

field to be smooth in the longitudinal direction than in the radial direction. The

banded weight structures commonly used for axisymmetric jets, as in [15] p. 374, are

for instance not smooth in the radial direction. In order to obtain accurate simulation

results close to the centerline, enough particles have to be present in that region which

necessitates, as the volume scales ∼ y, that very low weights be employed for that

region. Using centerline weights for the entire domain, however, leads to an excessive

number of particles in the cells at greater radial distances, as N ∼ V ∼ y, which is

the reason the weights of such cells are increased. Because the region requiring low

weights close to the centerline is relatively limited in extent (i.e. it consists of only a

few cells) compared to the zone requiring higher weights, the result of the application

of the smoothing procedure described by Eq. (5.45) would be for it to increase the

weights of the centerline region so as to make weight variations smoother in the radial

direction. This would in turn systematically lead to an insufficient number of particles

in the cells close to the centerline. Possible solutions to the issue include using radial

weights in the smoothing, so that
{
wi W̃p,i

}Nc
i=1

is smoothed with for instance wi = 1
yc,i

or the solution that is adopted in this work, which consists in excluding centerline

cells from the smoothing thus forcing other neighboring cells to conform to their low

values. Such a smoothing operator, which produces ̂̃W p, the smoothed weight field,
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is defined as follows:



ˇ̃
W

0

p,i = W̃ k+1
p,i

ˇ̃
W

l

p,i =


ˇ̃
W

l−1

p,i if i on the centerline

1
Nb,i+1

(
ˇ̃
W

l−1

p,i +∑Nb,i
j=1

ˇ̃
W

l−1

p,Ji,j

)
otherwise

with 1 ≤ l ≤ NL

̂̃
W

k+1

p,i = ˇ̃
W

NL

p,i

(5.50)

This smoothing operator increases the average number of particles in cells that are not

on the centerline but in close proximity to it past Np,want which, however, represents

a small computational penalty (in view of the increased accuracy afforded by the

scheme). The adaptive weight procedure concludes by an update of the number of

particles in each cell so that each maintains the same number density that it had with

the old weight value:

Nk+1
j,i = Nk

j,i

W̃ k
p,i

W̃ k+1
p,i

∀j , (5.51)

while the average numbers of particles and collisions are suitably updated. All the

different steps of the weight algorithm are summarized in the pseudo code below.
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Pseudo code of the W̃p update procedure

For all cells, i = 1, ..., Nc, do:

i) Calculate the new weight value W̃ k+1
p,i with Eq. (5.47)

iii) Limit variation of W̃ k+1
p,i with Eq. (5.48) using Ξ

W̃p,max = 2.

iv) Check that W̃ k+1
p,i is within the prescribed bounds of

[
W̃p,min, W̃p,max

]
a

iv) Smooth W̃ k+1
p,i as in Eq. (5.50), using NL = 20 smoothing steps.

v) Clone/destroy particles as dictated by Eq. (5.51) and update averages.

end
aThe value of the bounds depend on that of Wp,0 so are not specified here.

5.3.3 Calculation of relative weights

The aim of the adaptive procedure for the relative weights is to determine Nspec

different relative weight fields, {Wrel,j,i}Nspec
j=1 , such that all cells of the flow contain

Np,want,j particles of species j. It essentially consists in applying the procedure that

was previously presented for the weight to each individual j species. Due to the sim-

ilarity of this procedure with that for the cell weights, it will only be presented in the

form of the pseudo-code shown below.
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Pseudo code of the update procedure for the relative weights

For all cells, i = 1, ..., Nc, do:

For all species, j = 1, ..., Nspec, do

i) Calculate the new relative weight value:

W k+1
rel,j,i =

N
k
j,i

Np,want,j
W k

rel,j,i. (5.52)

ii) Limit variation of W k+1
rel,j,i with Eq. (5.48) using Ξ

W̃p,max = 2.

iii) Check that W k+1
rel,j,i is within the prescribed bounds of [Wrel,j,min, 1] a

iv) Check that W̃p × W k+1
rel,j,i is within the prescribed bounds of[(

W̃p Wrel,j
)

min
, W̃p,max

]
b

v) Smooth W k+1
rel,j,i as in Eq. (5.45), using NL = 20 smoothing steps.

vi) Clone/destroy particles following

Nk+1
j,i = Nk

j,i

W k
rel,j,i

W k+1
rel,j,i

. (5.53)

vii) Update the average numbers of particles and collisions.

end

end
aThe bounds are test case dependent although we always require that relative weights be less

than 1 so that Wrel,j,max = 1.
bibid.

5.3.4 Integration in a DSMC code

The time step and weights have to be updated multiple times as the flow develops

from its initial conditions at time step k = 0 to its steady state. This is because

of the coupling mechanism that exists between the weight and time step values and
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the flow. The particle properties and locations depend on the time step and weight

values while these both depend on all the particles. The flow must further be allowed

to sufficiently develop between each time step or weight change so that these in turn

do not excessively impact the flow. Following these considerations, the solution that

is retained is thus to alternatively apply every Nadapt steps either simultaneously the

adaptive procedure for the time step and cell weight or the procedure for the relative

weights. The adaptive procedure is applied until the flow reaches steady state, i.e.

k = Nstop at which point the sampling of flow quantities commences. The context

and location of the adaptive procedures within a standard DSMC implementation is

shown in the following pseudo-code:
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Integration of the adaptive procedure within a DSMC code

For time steps, k = 0, ..., Nstep, do:

Every Nadapt steps and if k <

Nstop do:

Update∆t() and

UpdateWp()

or

UpdateWrel()

end



Adaptive procedure

For all cells, i = 1, ..., Nc, do:

i) CalculateCollisionPairs()

ii) PerformCollisions()

iii) MoveParticles

iii) ApplyBCs()

end



“Standard” DSMC implementation

end

The application of the procedure creates a sharp rise or drop in the total number

of particles in the domain as particles are either created or destroyed to conform to

the new time step and weight fields following Eqs. (5.46), (5.51) and (5.53). The

magnitude of these discontinuities in the number of particles gradually decays as the

flow and its weight and time fields approach steady state. A typical evolution of the

number of particles produced by the adaptive procedure is shown in Fig. 5.1 for the

test cases summarized in Table 5.2. The {weight+time step} procedure is applied

every odd thousand of steps while that for the relative weights is applied every even
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thousand of steps, thus corresponding to Nadapt = 1, 000 in the pseudo code above.

For the following test case, the application of the adaptive procedure is stopped at

Nstop = 100, 000 at which point the sampling of flow quantities begins. Sampled

quantities can, however, also be suitably rescaled so as to allow for sampling during

the application of the adaptive procedure which we have chosen not to do in the

following. As the adaptive procedure is relatively independent of the main DSMC

algorithm, as shown by the pseudo code above, it is fairly easy to implement in an

existing DSMC code or in a stand-alone code that would processes DSMC simulation

result files. The computational cost of the procedure compared to that of the DSMC

simulation is negligible as it is seldom applied, e.g. every 1,000 steps here, and only

O (Nparticles) at its worst (if every particle is cloned).

5.4 Application of the adaptive method

In order to illustrate the increased computational efficiency brought about by the

use of the adaptive method, it is applied to a test case consisting of 3 species which

is presented in the next section. Results of the application of the method are shown

and the efficiency of the method is then evaluated by comparing it against a reference

solution.

5.4.1 Test Case

The test case depicted in Fig. 5.2 consists of two jets of the same D = 0.002 m

diameter separated by distance ∆L = 0.25 m. Jet 1 emits species 1 and 3 while jet 2

emits species 2 for which respective boundary conditions are summarized in Table 5.1.

This test case was chosen due to the difficulties that a traditional DSMC approach

has to solve such flows. Because of spatial diffusion and the effects of collisions, it

is indeed challenging to obtain accurate sampled quantities for a species in front of

the jet opposite that from which it is emitted. Good resolution in such a zone is for
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Figure 5.1: Evolution of the number of particles in the simulations from an empty
domain at step 0 to steady state with Nadapt = 1, 000 for the test cases
summarized in Table 5.2.

instance required in the case of chemically reacting flows such as that presented in

[60]. All species are assumed to be in equilibrium with no bulk velocity in the y or z

directions when emitted. The Knudsen number of the two jets, based on their radius

and VHS equilibrium results is 0.015 and all species are emitted at Mach number of

1. All species are assumed to consist of argon and no chemical reactions take place

so that the tag, i.e. the species number of a particle, remains constant. Supersonic

outflow conditions are used for the left, top and right boundaries while a de facto

axisymmetric boundary condition is enforced by the axisymmetric move procedure

at the centerline (see [15] p. 370). Specular reflection wall boundary conditions are
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imposed at the wall between jet 2 and the outflow of the domain. Collisions between

particles are modeled via the variable hard sphere (VHS) model [15] with a reference

diameter of 4.17 × 10−10 m at 273 K and a temperature exponent of 0.81. The

sophisticated DSMC pair selection scheme of Eq. (5.37) is used while further details

concerning our implementation of the DSMC method can be found in [50]. The mesh

consists of 60,200 triangular cells with a maximum value for λ
⟨∆x⟩ of 0.40 close to the

inlet of the two jets.

Number density m−3 x-Bulk velocity m/s Temperature [K]
Jet 1
1 1.2574 × 1023 589 1,000
3 1.2701 × 1021 589 1,000
Jet 2
2 1.2701 × 1023 -589 1,000

Table 5.1: Jet boundary conditions.

Supersonic out�ow

Wall (specular re�ection)

Axisymmetric centerlineJet 1

Species 1
n1   =  1.25 × 1023 m-3

Vx,1 =  589 m s-1

T1   =  1000 K

Species 2
n2   =  1.27 × 1023 m-3

Vx,2 =  -589 m s-1

T2   = 1000 K

Species 3
n3   =  1.25 × 1021 m-3

Vx,3 =  589 m s-1

T3   = 1000 K

0.25 m

0.75 m

1 m

Ø 0.002 m

Jet 2
Ø 0.002 m

x
y

Figure 5.2: Schematic of test case with boundary conditions and dimensions.
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5.4.2 Results

The results presented in the following are obtained by using the numerical param-

eters indicated in Tables 5.2 and 5.3. The value of the bounds used in the application

of the adaptive procedure are reported between brackets along with the values at-

tained by the corresponding variable in the actual simulation (between parenthesis).

For instance in the case of simulation A400, the minimum allowable value for the

relative weight of all species is set at 10−8, while the minimum relative weight value

obtained by the adaptive procedure for species 1 is 30 × 108, i.e. greater than the

minimum bound. Test case A400 represents an attempt with a relatively moderate

particle count to resolve the flow at hand with the help of the adaptive method for

which detailed results will be presented in the following. More accurate results can

be obtained by increasing the main governing parameter of the method, i.e. Np,want,

which will later be accomplished with test case A4800 to obtain a reference “exact”

solution. Conversely, the computational cost of the simulation can be lessened, at

the cost of reduced accuracy, by decreasing Np,want as done with test case A100. The

adaptive procedure is applied from time 0 (where the computational domains con-

tains no particles) up until time step 100, 000 at which point the sampling of flow

quantities begins. The evolution of the total number of particles in the domain for

the period of time during which the adaptive procedure is applied is shown in Fig.

5.1. The normalized weight Ŵp = W̃p ∆̃t and time step ∆̃t obtained with the method

for test case A400 are shown in Fig. 5.4. A relatively low time step value is obtained

close to the inlets of the two jets where the large number density translates into a

low mean collision time which is shown in the bottom part of Fig. 5.5. This in turn

constrains the value of the time step following Eq. (5.38). To combat an excessive

increase in the number of particles in the radial direction due to the radial growth

of cell volumes, visible in Fig. 5.5, the radially increasing weight field shown in Fig.

5.4 is obtained. It is somewhat similar to the banded patterns, i.e. W̃p ∼ y, com-
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monly used to simulate axisymmetric flow. Figure 5.6 displays the relative weight

fields obtained for species 1 and 2. As expected, the relative weight of a given species

gradually decreases away from the jet from which it is emitted, ultimately reaching

its minimum value in front of the opposing jet. The time step and weight fields gener-

ated by the procedure are indeed seen to produce an almost constant Np,want average

number of particles throughout the domain as shown in Fig. 5.7 which shows that

N1 ∼ N2 ∼ 400, as would be expected, in the A400 case.

Figure 5.3: Sampled number density of species 1 (top) and 2 (bottom).
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Figure 5.4: Normalized cell weight Ŵp = W̃p∆̃t and time step ∆̃t (bottom) for A400.

5.4.3 Conditions of use and limitations of the scheme

The explicitly stated goal of the adaptive procedure, i.e. to obtain Np,want par-

ticles per species in all cells of the domain, c.f. Eqs. (5.47) and (5.52), although

certainly possible from a purely numerical standpoint, reveals itself to be somewhat

shortsighted as far as accuracy is considered once the scheme is actually implemented.

This is in large part due to the occurrence of the avalanching phenomenon that was

described in detail in Section 5.2.2.2, i.e. the fact that one cannot decrease weights

ad infinitum in a certain direction to offset the natural decrease in particle count

brought about by a negative number density gradient if the flow is not collisional

enough. The avalanching phenomenon is only a very obvious manifestation of a

broader phenomenon, i.e. the fact that cloning particles at a weight interface does

not introduce new information in the simulation. This explains why the expected
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Figure 5.5: Cell volume V of the mesh employed (top) and mean collision time τm.

level of accuracy that one should expect of a given cell in a simulation with spatially

varying weights that contains N particles on average is inferior to what is obtained

when such a cell contains the same average number of particles in a simulation where

uniform weights are employed. The decrease in the quality of the information con-

tent of a particle in a simulation with spatially varying weights is, however, extremely

difficult to quantify a priori, that is before actually conducting a simulation. During

the course of the development and testing of the adaptive procedure, two important

best practices have been identified. 1) The average number of particles per cell that

one is aiming for, i.e. Np,want, should be relatively high bearing in mind that the

commonly cited guideline of “20 particles per cell for accuracy” does not apply when

cloned particles are present. This is the reason why the results that were previously

shown, i.e. A400 and A100 are obtained with respectively 400 and 100 particles, far
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Figure 5.6: Relative weight for species 1, Wrel,1 (top) and 2, Wrel,2 (bottom) for A400.

in excess of what one traditionally aims for in a DSMC simulation. 2) One should

not use minimum weight bounds that are too low in the hope of really having Np,want

particles in absolutely all cells of the domain. The value of the bounds should be

commensurate with that of Np,want so that the avalanching phenomenon does not be-

come too manifest. When the occurrence of such a phenomenon becomes apparent, it

is the sign that sampled quantities will be negatively impacted by the phenomenon in

zones where they occur and that at least equally good results are obtainable without

the use of such low weights for the same Np,want value. This is the reason behind the

use of relatively high minimum weights bounds, i.e. 10−8 in Table 5.2, for test cases

A100 and A400. Looking at the sampled value of the number density in Fig. 5.3,

there is an approximate 12 order of magnitude drop (from ∼ 1023 to ∼ 1011 [m−3])

between the value of the number density at the outlet of jet and that of jet 2, al-
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Figure 5.7: Average number of particles for species 1, N1 (top) and 2, N2 (bottom)
for A400.

though the latter cannot be properly resolved, even with the adaptive procedure. As

the mesh geometry is identical close to the two inlets so that cells have the same

volume in front of the two jets (Fig 5.5), this would in turn entail that a relative

weight of at most 1
1012 = 10−12 is needed to properly populate that region with the

species emitted by the opposite jet. This is far below the specified weight of 10−8,

which explains the very low average number of particles of species 1 observed close

to jet 2 in Fig. 5.7. One can, for instance, try to populate the region next to jet 2

with more particles of species 1 by lowering the minimum allowable Wrel,1 from the

10−8 value that is used for test case A100, to 10−10, as done in test case A100-1em10

(outlined in Table 5.3). The results of the latter test case are presented in Figs. 5.8

and 5.9 where the hallmarks of the avalanching phenomenon described in Section

5.2.2.2 are clearly visible. One sees in Fig. 5.8 groups of large numbers (∼ 105) of
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particles of species 1 approaching jet 2 with Vx,1 > 0, as shown in Fig. 5.9. Particles

of species 1 are seen emanating from that packet of particles with Vx,1 < 0 velocities

due to collisions with particles of species 2 which become increasingly prevalent as

it approaches the outlet of jet 2. Those particles form the tail of the packet of par-

ticle that is clearly visible in light blue in Fig. 5.8 and dark blue in Fig. 5.9. The

infrequent occurrence of groups containing large numbers of particles of species 1 is

the main mechanism populating the region close to the inlet of jet 2 with particles of

species 1. The collisions of these particles with those of species 2 is what gives rise

to the negative value of the sampled Vx,1 in that region which is shown in Fig. 5.9.

In fluid dynamics terms, this corresponds to the occurrence of a recirculation region

which is clearly visible if streamlines are plotted (not shown here). The deleterious

effects of the avalanching phenomenon on sampled quantities is clearly shown in Fig.

5.9 where streaks are visible in the sampled Vx,1 contours. One further computational

consequence of the avalanching phenomenon, visible in Fig. 5.8, is that some cells are

seen to contain very large numbers of particles, i.e. in excess of 200,000 in the present

case. Because they only seldom do, this only translates into a moderate increase in

the average number of particles, calculated with Eq. (5.9), as seen in the lower part

of Fig. 5.8 which in turn does not lead to the adaptive procedure increasing the value

of the weights in that region. Most DSMC codes, such as these authors, can however

not contain an arbitrarily large number of particles without ultimately running out

of memory, so that the minimum bound value employed has to be limited. If for

instance, as previously described, one uses Wrel,1 = 10−12 in the zone in front of jet

2, whenever a particle of species 1 ultimately makes its way unhindered (i.e. without

collisions) from jet 1 to jet 2, and is cloned from W̃pWrel,1 ∼ 1 to 10−12 , one ulti-

mately obtains at some time step ∼ 1012 particles of species 1 in some cell in front

of jet 2. This potential memory issue is one further reason that cautions against the

use of excessively low weights.
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Figure 5.8: Number of particles per cell, N1, (top) and average number of particles
per cell, N1, (bottom) for species 1 at a given time step obtained with
test case A100-1em10.

5.4.4 Accuracy and Efficiency

As previously stated, most DSMC simulations of axisymmetric flows are at least

conducted with radially varying weights [15] [96] [115] with values that increase with

the distance to the centerline. This is performed to increase particle counts close to the

centerline while preventing an excessive number of particles in cells further removed

from it as their volume scales with y. Whenever such capability exists [99] [19], a

spatially varying time step is also used in DSMC simulations where large number

density (and thus mean collision time) gradients exist. This prevents the value of

the overall time step of the simulation from being dictated by the usually small low

Knudsen number zone thus accelerating the march to steady state of the simulation

while increasing the convergence of sampled quantities in zones where the time step
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Figure 5.9: Average velocity of particles of species 1 in each individual cell V x,1, with
V x,1 = 0 in the absence of particles (top) and sampled Vx,1 velocity (bot-
tom) in m/s obtained with test case A100-1em10.

is increased. The value of the weight and the time step is often determined a priori

which often requires that the simulation be run at least twice to determine optimum

time step and weight fields. The adaptive procedure presented in this work removes

this need thus allowing simulations to be conducted with less human intervention.

This is in particular useful for parametric studies where a large number of simulations

are run on the same mesh with different boundary conditions or to allow non-expert

DSMC users to run efficient simulations. In order to obtain a fair assessment of the

efficiency gain of the adaptive method within the framework of this test case, the

results of the adaptive method should be compared to those obtained with spatially

varying time step and weights, as would almost certainly be used with most DSMC

codes to simulate the present test case. The most natural time step and weight fields
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to use in the comparison are those that are themselves obtained by the adaptive

method when applied to the test case. However, using these without relative weights

(such as those produced by the adaptive method) results in a drop in the total number

particles in the simulation as relative weights naturally increase particle count in the

cells for which they are less than 1. To compensate for this drop in the number of

particles, Wp,0 is reduced in the simulation so as to match the particle count produced

by the adaptive method. The simulations conducted without relative weight, using

the time step and weight field produced by the adaptive technique and with a suitably

chosen Wp,0, are designated as standard simulations in the following. The reference

simulations corresponding to simulation A400 and A100 respectively are designated

by S400 and S100 in Table 5.2 where their numerical parameters are summarized. A

comparison of the numerical costs between the standard and adaptive simulations is

shown in Table 5.4. The reduced computational cost of the adaptive method is due

to the use of a smaller number of particles (visible in Fig. 5.1) in the run up to steady

state (which is assumed to occur at k = 100, 000) as well as a slightly smaller number

of collisions.

A comparison of the value of the sampled number density and velocity for species

1 obtained with the standard (S100, S400) and adaptive methods (A100, A400) is

presented in Figs. 5.10 and 5.11. The adaptive method is seen to produce a much

smoother and more realistic sampled number density field than the standard method

for both particle counts while an even greater improvement is visible for the sampled

velocity. The adaptive method is thus seen to provide a large improvement over the

standard method for the same particle count. This large qualitative improvement can

be quantified by studying the numerical error of the various solutions plotted in Figs.

5.10 and 5.11.

We designate any cell-based quantity, such as number density or velocity of cell i, by
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xi. The sampled value of xi is referred to by µi (x), while numerical error εi [µ (x)]

for a given simulation is defined by:

εi [µ (x)] ≜ µi (x) − µEi (x) , (5.54)

where µEi (x) designates the exact solution, i.e. that obtainable in the limit of an

infinite number of particles and an infinitesimally small time step. This definition of

numerical error can in turn be used to define a normalized numerical error:

ε0,i [µ (x)] = |εi [µ (x)]|
|µEi (x)|

. (5.55)

The exact solution for such a complex case is of course inaccessible in practice and

must be approximated by that obtained with a much larger number of particles than

the simulation for which the error is calculated. In the present study, the exact

solution is thus assumed to be furnished by test case A4800 which is detailed in

Table 5.3. Although one would ideally not want to use a solution obtained with the

adaptive method to gauge its accuracy, we are forced to do so as obtaining a solution of

comparable quality without relative weights is prohibitively expensive. This, however,

seems justified given the seemingly good results obtained with the adaptive method

at lower Np,want values which are shown in Fig. 5.10. The normalized numerical error

along the centerline for µ (n) and µ (Vx) obtained with both the adaptive and standard

methods are plotted for species 1 in Fig. 5.12 and species 2 in Fig. 5.13. The log scale

and the scaling of the x axis are chosen for each particular species so as to highlight

the behavior of the error close to the jet opposite that from which it is emitted, where

the error is highest. The adaptive method is observed to systematically produce a

solution with a smaller numerical error than the standard method. An order of

magnitude reduction in the value of the error for sampled number density and velocity

is observed for both species for most of the centerline. The adaptive procedure for the
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two Np,want examined is, however, still not able to obtain accurate sampled quantities

in the remaining ∆L ∼ 0.005 m. Proper resolution of the zone requires a further

increase in Np,want such as that used to calculate the “exact” solution. The default

value of the sampled number density and velocity in a cell is 0, and both remain

unchanged until at least one particle enters it. This explains the value of 1 for the

normalized error that is observed at some points close to the opposing jet with the

standard method which sometimes proves to be smaller than that obtained with the

adaptive method. Similar improvements (not shown here) are obtained with the

adaptive procedure for species 3 along the centerline as well as for sampled collision

rates between species.

The large improvement observed for sampled quantities with the adaptive method

for the same particle count can be explained by the improved spatial distribution of

particles amongst the cells of the domain. Figure 5.14 illustrates this point, showing

that in the case S400, a few cells close to the inlet contain a large average number

of particles of species 1 while that number rapidly decreases in the x direction. In

contrast to that, the average number of particles for test case A400 is much more

uniform with no cell containing large, e.g. ∼ 1000, average numbers of particles,

and only drops in close proximity to jet 2. The situation can be summarized by the

histogram presented in Fig. 5.15 which shows the distribution of all the cells of the

domain according to their N1 value for both A400 and S400. In test case S400, the

mean value of N1 is greater than that observed for S400, reflecting the fact that the

simulation actually contains more particles of species 1 than A400 (18.6 vs 12.9 M

as indicated in Table 5.2). Whereas the distribution of N1 for A400, rapidly falls off

for large N1 values, that for S400 displays a non-negligible tail (i.e. ∼ 14, 000 cells

having N1 ∈ (800, 1800] ). That tail corresponds to the cells located close to the inlet

of jet 1 in Fig. 5.14, shown in dark red. The presence of a large number of particles

in those cells amounts to a waste of computational effort as these particles do little to
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increase the accuracy of the simulation further downstream, in particular close to the

second jet, since they quickly move away from the centerline. In the case of species

1, the adaptive procedure thus both prevents cells close to jet 1 from containing

an excessive number of particles while ensuring that the number of particles remains

constant in the downstream direction which, in the present case, can be accomplished

with fewer particles than with test case S400. The exact same phenomenon occurs for

species 2 while the adaptive procedure, in the case of A400, because of the choice of

Np,want,3 = 400, creates many more particles of species 3 (12.3 vs 0.19 M as indicated

in Table 5.2) than are present in the S400 simulation. This in turn suggests that

the adaptive method will of greatest benefit for DSMC simulations with a U-shaped

distribution of the number of particles between cells such that of S400 in Fig. 5.15.

Figure 5.10: Sampled number density (top) and Vx,1 velocity (bottom) obtained with
the adaptive (solid) and standard method (dashed) with A or S400
(black) and A or S100 (red).
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Figure 5.11: Sampled number density (top) and Vx,1 velocity (bottom) obtained with
the adaptive (solid) and standard method (dashed) with A or S400
(black) and A or S100 (red).

5.5 Conclusions

An adaptive method for the DSMC time step, cell weight and species relative

weights was introduced in this chapter. The aim of the procedure presented is to

automatically update the time step, weight and relative weights of all cells as the

simulation progresses to steady state. The value of the time step is maximized while

still requiring it to satisfy DSMC requirements for all cells. The value of the weights

and relative weights are chosen so as to obtain a specified average number of particles

for all species in all cells. The formulation of the adaptive method makes its imple-

mentation in existing DSMC codes straightforward while its computational overhead,

compared to that of the simulation is negligible. It furthermore reduces the need for

user input by determining the optimum time step and weight fields automatically
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Figure 5.12: Numerical error for sampled n1 and Vx,1 on the centerline computed with
A4800 as an exact solution.

thereby eliminating the need to run multiple simulations so as to determine them.

The potential computational savings allowed by method were illustrated by simulat-

ing the flow between two counterflowing jets at a Knudsen number of 0.015 with the

new method on one hand and with a spatially varying time step and cell weight field

on the other. For the same total number of particles, the use of the adaptive method

allows a substantial reduction, i.e. an order of magnitude between the two jets, in the

value of the error for the sampled number density and velocity. The increased com-

putational efficiency is achieved by more uniformly distributing particles throughout

the domain thereby preventing cells from containing an excessive or an insufficient

number of particles. The adaptive method is thus expected to be of most benefit for

multi-species flows with uneven distributions of the number of particles between cells

and species. A deleterious consequence of the effect of particle cloning in the relative
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Figure 5.13: Numerical error for sampled n2 and Vx,2 on the centerline computed with
A4800 as an exact solution.

absence of collisions, the avalanching phenomenon, was examined and found to be

mitigated by reducing the range of weights in the simulation while increasing the

required average number of particles per cell. This work has furthermore highlighted

the potential harmful effects introduced by the cloning of particles at weight inter-

faces. Alleviating those could clearly improve the accuracy of the present method

and allow the use of even fewer particles.
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Figure 5.14: Comparison of the average number of particles for species 1, N1, ob-
tained for test case S400 (top) and for test case A400 (bottom).
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Designation A4800 A100-1em10
Wp,0 5.6 × 1012 5.6 × 1012

∆t0 [s] 5.0 × 10−8 5.0 × 10−8

Adaptive ∆̃t YES YES
Adaptive W̃p YES YES
Adaptive Wrel YES YES
Np,want,1,2,3 4800 100

Realized number
of particles (M) 487 × (Not run to steady state)

Realized number
of particles for
species (1,2,3) (M)

(161,174,153) ×[
∆̃t,min, ∆̃t,max

] [
10−12, 1012] (8.8 10−4, 105.4

) [
10−12, 1012] (11.1 10−4, 126.5

)[
W̃p,min, W̃p,max

] [
2−10, 250] (1.9 10−3, 1

) [
2−10, 250] (1.9 10−3, 1

)
Wrel,min,1,2,3

[
10−10] , (23.3, 1.01, 1.09) 10−10 [

10−10] , (1.19, 1.19, 1.19) 10−7

Wrel,max,1,2,3 [1] , (0.089, 0.087, 0.0009) [1] , (1, 1, 1){
W̃p Wrel

}
min,1,2,3

[
10−11] , (2.61, 2.39, 1.66) 10−11 [

10−10] , (2.33, 2.33, 2.33) 10−10

Table 5.3: Parameters of different test cases presented (Continued). The set values
of the bounds are shown between brackets while actually observed values
are reported between parenthesis.

Designation S100 A100 S400 A400
Total number
of particles (M) 10.5 10.5 38.6 38.6

Average number of collisions
per time step (K) 114.5 107.6 396.8 348.4

Relative CPU time† 100 0.90 3.28 2.96

Table 5.4: Computational cost comparison between
simulations.

† required to reach time step 400,000 (depicted in Fig. 5.1)
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CHAPTER VI

Simulation of rarefied ionized flows via DSMC

6.1 Introduction

6.1.1 Motivation

Whereas the work presented in the thesis up until this point only dealt with

rarefied gas flows that only contained neutral particles, the focus of the remainder

will be the simulation of weakly ionized rarefied gas flows. In this flow regime, three

notable types of particles are present. The first two are heavy neutral and charged

particles, which, as the flow is in the rarefied regime, are respectively governed by

the Boltzmann equation without and with an electric force term. The third type of

particles is the electrons for which motion is also governed by the Boltzmann equation

with an electric field. Their dynamics are, however, very different than those of heavy

particles due to their very light mass, an electron being 1836 times lighter than a

proton [80]. In order to assess more quantitatively the various length and time scales

at play, we consider as an example the flow conditions at the outlet of the plasma

source that will be later simulated in Section 6.5 which are briefly summarized in

Table 6.1.

The various time and length scales of the plasma at these conditions are reported in

Tables 6.2 and 6.3 along with the respective methods/equations used for their cal-
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Species density
[
m−3] Temperature Mean x thermal velocity [m/s] Bulk x velocity [m/s]

Ar 2.5 × 1021 300 K 399[1] 322
Ar+ 2.5 × 1019 300 K 399[1] 620
e− 2.5 × 1019 2 eV 5.9 × 105[2] 620

1 |v⃗′
x| =

√
kBT
mAr

[147]
2 |v⃗′

x| = 4.19 × 105 (Te [eV])1/2 [m/s] [80]

Table 6.1: Plasma source flow conditions.

culations. Following the convention previously adopted in Chapter V, τij designates

the mean collision time of a particle of species i with all of those of species j, while

λij designates the average distance between two such events (i.e. the mean free path).

In the following, the consequences that these plasma conditions entail in terms of

computational method and cost will be examined.

Species Ar e

Ar τArAr = 1.3 × 10−6[1] τAre = 5.7 × 10−7 [2]

e τeAr = 5.7 × 10−9 [3] τee = 3.9 × 10−9[4]

1 Obtained with the VHS model (see Chapter II).
2 ke−Ar = exp

(
−31.3879 + 1.609 log(Te) + 0.0618 log(Te)2 − 0.1171 log(Te)3)

[76] and τAre = 1
ke,Arne

3 ibid with τe,Ar = 1
ke,ArnAr

4 νee = 2.91 × 10−12 ne

[
m−3] log Λ (Te [eV])−3/2, with

log Λ = 10 [80]

Table 6.2: Mean collision time between the species of the plasma source described in
Table 6.1.

Species Ar e

Ar λArAr = 5.3 × 10−4 [1] λAre = 2.26 × 10−4 [2]

e λeAr = 3.4 × 10−3 [2] λee = 2.3 × 10−3 [2] λD = 2.1 × 10−6 [3]

1 Obtained with the VHS model (see Chapter II).
2 λij = vth,i

νij
with i, j = e or Ar.

3 λD = 7.43 × 103 (Te [eV])1/2 (
ne

[
m−3])−1/2 [80].

Table 6.3: Mean free paths of collisions between the species of the plasma source
described in Table 6.1.

In order to obtain the most realistic results, one would ideally want to simulate

the motion of electrons via a particle in cell method, a simulation method that will
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be discussed at greater length in Section 6.3.1. In this hypothetical ideal simulation,

collisions between electrons, i.e. e − e collisions (which collision rate is reported in

Table 6.2), would be modeled via DSMC. The latter would also be used to model

collisions between electrons and heavy species, i.e. e − Ar and e − Ar+ collisions.

Due to the requirement of DSMC that the time step be less than the mean collision

time (See Section 5.3.1) ∆t < min
ij
τij = τee = 3.9 × 10−9 [s] as can be seen in Table

6.2. In a PIC simulation, the cell characteristic length scale ⟨∆x⟩ has to be less than

the Debye length λD [78] while the simulation of collisions via DSMC requires that

⟨∆x⟩ be less than their mean free paths. Using the data reported in Table 6.3, the

condition on the mesh size thus becomes ⟨∆x⟩ < min
ij

(τij, λD) = 2.1 × 10−6 [m] due

to the Debye length requirement. Furthermore, because of the CFL condition of both

the PIC and DSMC method, already mentioned in Section 5.3.1, the time step ∆t

and characteristic length of each cell of the domain have to be chosen so as to satisfy

Ki = ⟨v⟩ ∆t
⟨∆x⟩

< 1, (6.1)

which is most restrictive for the species with the greatest thermal or bulk veloc-

ity, i.e., here, the electrons with vth,e = 5.9 × 10−5 [m/s] as indicated in Table 6.1.

With ⟨v⟩ ≈ vth,e
1, Eq. (6.1) respectively yields vth,e × τee = 2.3 × 10−4 < ⟨∆x⟩ or

∆t < 3.55 × 10−12 = λD
vth,e

when ∆t = τee or ⟨∆x⟩ = λD are used. The CFL condition

thus furthers lower the permissible time step from τee to λD
vth,e

= 3.55 × 10−12 [s]. The

time step and cell size requirement of this ideal simulation are reported in Table 6.4

along with that of alternative simulation methods discussed in the following for com-

parison purposes. An alternative to the preceding approach, which was for instance

adopted in [56], is to omit the simulation of electron-electron collisions. This can be

justified by considering that, due to their high collision rates, i.e. τee = 3.9 × 10−9 [s],
1which, however, fails to account for highly energetic electrons in the tail of the velocity distri-

bution function.
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ee collisions only serve to thermalize the electron energy distribution function which

is already near Maxwellian due to the high collision rate of electrons with heavy par-

ticles (τeAr = 5.7 × 10−9 [s]). Within that simulation framework, only collisions with

heavy particles, e.g. e − Ar and e − Ar+ here, are considered for the electrons. If

the previous exercise is repeated without considering ee collisions, the exact same

time step and cell size constraints as previously are obtained. The substantial com-

putational cost reduction associated with that approach comes from not having to

perform all the electron Coulomb collisions. As τee
τeAr

∼ 1
100 , the same reduction in

the total number of collisions to perform can be expected. The time step and mesh

size requirement, however, make such an approach prohibitively expensive to apply

to two or three dimensional flows of practical interest as detailed in [56] which has

led to a number of computational strategies to reduce the simulation costs. One can,

for instance, increase the mass of the electron particles in the simulations [26] so as

to reduce their thermal velocity which helps alleviates the constraint of Eq. (6.1)

while also reducing the number of electron collisions that have to be considered. The

use of the PIC approach and the associated ⟨∆x⟩ < λD requirement (cf. Table 6.4

with electron mass increased 1000 folds), however, still make such approach currently

computationally intractable for the test case that will later be considered by requir-

ing a very refined mesh and thus a great number of particles to have an adequate

resolution. This need to reduce computational cost is the primary motivation behind

the use of the present hybrid method. In a hybrid DSMC/fluid approach, electrons

are not simulated as particles and their behavior is instead modeled by means of

fluid equations. Because of the near Maxwellian character of the electrons that was

previously discussed, the fluid equations provide a physically accurate description of

the electrons in terms of only 3 variables (number density, momentum and kinetic

energy). The equilibrium assumption also greatly facilitates the closure of the fluid

equations system while removing the need for higher moments to be simulated. The
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cost of such a DSMC/PIC approach is that of the basic DSMC simulation with the

added expense of solving the partial different equations of the fluid equation system.

For the plasma condition of Table 6.1, the use of a hybrid approach allows a three

order of magnitude reduction in the number of collisions that have to be performed

as e − Ar collisions are not performed (c.f. Table 6.2) and only Ar − Ar and Ar+ − Ar

collisions are considered. The size of the mesh is furthermore not dictated by the

Debye length but by the mean free path of heavy species, which allows the use of

a much coarser (two orders of magnitude in each spatial direction) mesh along with

a larger time step. A summary and comparison of the numerical parameters of the

hybrid approach is presented in Table 6.4. The hybrid formulation that is used in

this thesis was first introduced in [29] and subsequently used in [33], [44] and [81] to

study the plasma plume produced by electric propulsion devices [25]. It represents an

improvement over an earlier simplified fluid approach that relied on the Boltzmann

relation to obtain the plasma potential that was initially introduced in [112] [113]

and later used in [144] [67] [66]. Most weakly ionized rarefied flows are characterized

by both large number density disparities between species in each individual cell of

the domain as well as by large spatial variations throughout the domain. This is due

to multiple factors, such as the occurrence of multiple chemical reactions that con-

tribute to create trace species, or the low degree of ionization which de facto means

that charged species have a low relative number density. Weakly ionized rarefied

flows thus stand to gain from the use of the adaptive procedure presented in Chapter

V. Its use for such flows would represent a good illustration of the application of

the adaptive procedure within the framework of a complex DSMC flow. The main

goal of this Chapter is thus to demonstrate the use of the adaptive procedure within

the framework of a hybrid fluid electron/DSMC code. Anothe aim is to detail and

formalize the coupling procedure between the fluid electron and DSMC models as it

differs from the one presented in [33], [44] or [81].
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6.1.2 Outline

In the following, the fluid model that will be used for the electrons is presented

in detail and the three governing equations (mass, momentum and energy) are de-

rived from the Boltzmann equation. The particle in cell formulation that is used to

calculate the charge on the computational grid and to move charged particles is then

presented along with details about the implementation of the hybrid method. The

computational test case used to investigate the hybrid method is then presented. It

is fairly similar to the one used to showcase the adaptive method in Chapter V as it

consists of two counterflowing jets and only three species. The geometry is, however,

different as the spacing between the two jets is reduced, their diameter increased

while the flow Knudsen number (based on the jet radii) is increased from 0.015 to

0.17 so as to place ourselves in the Knudsen number range where the hybrid method

has previously been shown to produce “acceptable” simulation results [33], [44]. This

particular flow, like most weakly ionized rarefied flows, is characterized by both large

number density disparities between species in each individual cell of the domain as

well as by large spatial variations throughout the domain. Because such type of flow

stands most to gain from the use of the adaptive procedure presented in Chapter V,

the latter is employed in the simulation. Finally, results obtained with the combined

hybrid/adaptive methods (without energy equation) are presented.

6.2 Electron Fluid Model

In this section, fluid equations will be derived for a “simplified” electron fluid with

the following characteristics:

1. No ionization and no other inelastic collisions with heavy species.

2. Undergoes elastic collisions with only one ion species, Ar+, and one neutral

species, Ar.
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3. No magnetic field B⃗ = 0⃗.

4. In steady state.

5. In equilibrium at temperature Te (x⃗).

6.2.1 Fluid equations

In this section, we derive transport equations for the number density, momentum

and energy of a generic gas that is governed by the Boltzmann equation which was

previously introduced in Chapter II. The system of three equations that is in turn

obtained is then specifically written for the electrons for the plasma regime under

consideration and closed by a series of physical considerations. We consider the

Boltzmann equation, Eq. (2.42), in ∇-notation where particles are subjected to an

external force field F⃗ (x⃗, t)

∂f

∂t
+ v⃗ · ∇f + F⃗

m
· ∇v⃗f = Q (f, f) (6.2)

We first seek to obtain transport equations for any general function A (x⃗, v⃗, t) which

only depends on time t, space x⃗ and velocity v⃗ from the Boltzmann equation. Mul-

tiplying Eq. (6.2) by A, and integrating over velocity space the following equation is

obtained:

(I)︷ ︸︸ ︷∫
R3

A
∂f

∂t
dv⃗+

(II)︷ ︸︸ ︷∫
R3

A v⃗ · ∇fdv⃗+

(III)︷ ︸︸ ︷∫
R3

A
F⃗

m
· ∇v⃗fdv⃗ =

(IV)︷ ︸︸ ︷∫
R3

A Q (f, f) dv⃗ (6.3)

Defining the velocity space averaging operator ⟨·⟩ as follows:

⟨A⟩ (x⃗, t) ≜
∫
R3

A (x⃗, v⃗, t) dv⃗, (6.4)
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and using the fact that

n ≜ ⟨1⟩ =
∫
R3

fdv⃗, (6.5)

the various terms of Eq. (6.3) can be rewritten as:

(I) =
∫
R3

A
∂f

∂t
dv⃗ = ∂

∂t
[n ⟨A⟩] − n

⟨
∂A

∂t

⟩
, (6.6)

(II) =
∫
R3

A v⃗ · ∇fdv⃗ = ∇ · [n ⟨v⃗A⟩] − n ⟨v⃗ · ∇A⟩ , (6.7)

and

(III) =
∫
R3

A
F⃗

m
· ∇v⃗fdv⃗ = −n

⟨
F⃗

m
· ∇v⃗A

⟩
, (6.8)

which can be found using an integration by parts if

∂Fx
∂vx

= ∂Fy
∂vy

= ∂Fz
∂vz

(6.9)

which is indeed true for any force due to an electric field, which is independent of

velocity, or perpendicular to it, such as a magnetic field (v⃗×B⃗). Inserting the results of

Eqs. (6.6), (6.7) and (6.8) into Eq. (6.3), the general transport equation for A (x⃗, v⃗, t)

is obtained:

∂

∂t
(n ⟨A⟩) − n

⟨
∂A

∂t

⟩
+ ∇ · [n ⟨v⃗A⟩] − n ⟨v⃗ · ∇A⟩ − n

⟨
F⃗

m
· ∇v⃗A

⟩
=
∫
R3

A Q (f, f) dv⃗

(6.10)

which will allow three equations (continuity, momentum and energy) to be derived

for a function A (v⃗) that is respectively a zero, first or second order function of v⃗.
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6.2.1.1 Continuity equation

This equation is derived by assuming that A (v⃗) = 1 so that Eq. (6.10) yields

∂

∂t
(n) + ∇ · (nu⃗) =

∫
R3

Q (f, f) dv⃗ (6.11)

where bulk velocity u⃗ is defined as

u⃗ ≜ ⟨v⃗⟩ =
∫
R3

v⃗fdv⃗. (6.12)

If no chemical reactions occur such as in previous chapters of this thesis, the number

of particles over velocity space considered as a whole does not change so that the

collision term of Eq. (6.13) is null. To present the most general result possible,

we momentarily assume that ionization and recombination are present in the flow

before applying the equation to the present electron fluid where both are absent. The

frequency of ionization of species j is denoted by νion,j while the volumetric frequency

of electron destruction by collision with species j is denoted by νr,j so that

∫
R3

Q (f, f) dv⃗ =
Nspec∑
j=1

(νion,j − νr,j)n (6.13)

where the summation is made over all species for conciseness and rates are set to 0

when the reaction considered does not occur so that Eq. (6.13) becomes:

∂

∂t
(ne) + ∇ · (neu⃗e) =

Nspec∑
j=1

(νion,j − νr,j)ne (6.14)

We now apply this general equation for the electron fluid of the plasma under con-

sideration, assuming steady state and neglecting both ionization and recombination

so that Eq. (6.14) becomes

∇ · (neu⃗e) = 0. (6.15)
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6.2.1.2 Momentum equation

The transport equation for the particle momentum of a generic gas governed by

the Boltzmann equation is obtained by setting A to mv⃗ in Eq. (6.10)2:

∂

∂t
(mn ⟨v⃗⟩) + ∇ ·mn ⟨v⃗v⃗⟩ − n

⟨
F⃗
⟩

=
∫
R3

mv⃗ Q (f, f) dv⃗ (6.16)

The (total) velocity v⃗ is decomposed into its bulk u⃗ and peculiar u⃗ ′ parts

v⃗ = u⃗+ u⃗ ′, (6.17)

where

u⃗′ ≜ ⟨v⃗ − ⟨v⃗⟩⟩ . (6.18)

The tensor product v⃗v⃗ can itself be decomposed as follows:

mn ⟨v⃗v⃗⟩ = mn u⃗u⃗+ Ψ, (6.19)

where Ψ is the kinetic part of the pressure tensor which only depends on thermal

motion

Ψ ≜ mn ⟨(v⃗ − ⟨v⃗⟩ ) (v⃗ − ⟨v⃗⟩)⟩ = mn ⟨u⃗′u⃗′⟩ , (6.20)

so that using the continuity equation Eq. (6.16) can be rewritten as

mn

(
∂

∂t
+ u⃗ · ∇

)
u⃗ = −∇ · Ψ + n

⟨
F⃗
⟩

+
∫
R3

mv⃗ Q (f, f) dv⃗. (6.21)

This equation is now specialized to the simplified electron fluid under consideration,

i.e., a fluid that follows a Maxwellian distribution, with bulk velocity u⃗e and tem-

perature Te, that undergoes elastic and inelastic collisions with heavy atomic species
2The dyadic product ⊗ will be omitted for conciseness in the following so that v⃗v⃗ ≡ v⃗ ⊗ v⃗.
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and which is subjected to an electric field E⃗ without magnetic field B⃗. Under such

conditions, each particle of charge qe is subjected to an external Lorentz force F⃗ :

F⃗ = qeE⃗ (6.22)

This allows the simplification of Eq. (6.21) thus contributing to the closure of the

system of equations. As the fluid is isotropic and in equilibrium,
⟨
u

′
x

⟩
=
⟨
u

′
y

⟩
=⟨

u
′
z

⟩
= kBTe

me
, so that the pressure tensor can be rewritten as follows:

Ψ = nekBTe I = pe I (6.23)

where pressure pe is thus defined as

pe = nekBTe. (6.24)

The collision term on the right for elastic collisions can be rigorously shown by inte-

gration to be given [70] by:

∫
R3

mv⃗ Qelas (f, f) dv⃗ = Pej =
Nspec∑
j=1

neµejνej (u⃗j − u⃗e) (6.25)

where νej designates the collision frequency between the electrons and species j and

as me ≪ mj, the reduced mass µej will be approximated by me in the following.

This approximation of the collision rate can also be derived following a more physical

approach as is done in [108] [140] [128] by interpreting it as a friction term. The term

for inelastic collisions can further be shown to be identical to that for elastic collisions

[70]. Thus using Eqs. (6.23) and (6.25), the momentum equation can be rewritten as

neme

(
∂

∂t
+ u⃗e · ∇

)
u⃗e = −∇pe + qeneE⃗ +

Nspec∑
j=1

nemeνej (u⃗j − u⃗e) (6.26)
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which we proceed to further simplify by applying it to the plasma system at hand.

As only 3 species are present (neutrals, ions and electrons), we only consider elastic

collisions between electrons and neutrals and electrons and ions that is Pen and Pei.

Steady state is assumed, so that the time derivative terms drop out of the equation.

The convective term v⃗e ·∇v⃗e is further assumed to be negligible compared to the other

terms of the equations, so that Eq. (6.26) becomes

0 = −∇pe + qeneE⃗ + neµenνen (u⃗n − u⃗e) + nemeνei (u⃗i − u⃗e) . (6.27)

We further neglect the bulk velocity of heavy particles ui and un compared to that of

the electrons u⃗e and obtain the final form of the momentum equation that will later

be considered:

−∇ (nekBTe) + qeneE⃗ − neme (νen + νei) u⃗e = 0 (6.28)

The derivation of the equilibrium collision rates νei and νen is rather involved and

beyond the scope of this presentation. The interested reader is referred to [43] for

a complete overview of the subject. The electron-ion collision rate νei can be found,

from basic scattering and plasma physics considerations, to be well approximated by

the following [108] p. 58:

νei = ni
4
√

2π
3

(
me

kBTe

)3/2
(

e2

4πε0me

)2

log

12π
(
T 3
e

ne

)1/2 (
ε0kB
q2
e

)1/2
 , (6.29)

whereas the electron-neutral collision rate can be obtained [108] p. 45 by approximat-

ing νen = nnσencr as

νen = 4 nn
3

(
8kBTe
πmen

)1/2

σen (Te) (6.30)

where σen denotes the electron neutral elastic cross section. The electron-argon σeAr

elastic cross section used in this work is that compiled in [117].
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6.2.1.3 Energy equation

The final equation of the system is obtained by writing a transport equation for

particle kinetic energy by letting A = 1
2Mv⃗2 in Eq. (6.10) which in turn yields

∂

∂t

(1
2
nm

⟨
v⃗2
⟩)

+ ∇ ·
[1
2
nm

⟨
v⃗2v⃗

⟩]
− n

⟨
F⃗

m
· v⃗
⟩

=
∫
R3

1
2
mv⃗2 Q (f, f) dv⃗. (6.31)

The total kinetic energy flux vector ∇·
[

1
2nm ⟨v⃗v⃗2⟩

]
can be decomposed, c.f. [49] p. 46,

by splitting velocity v⃗ into its bulk u⃗ and peculiar u⃗′ parts as done in Eq. (6.17):

1
2
nm

⟨
v⃗v⃗2

⟩
=
(1

2
nmu⃗2 + 1

2
Tr Ψ

)
u⃗+ u⃗ · Ψ + q⃗, (6.32)

where the heat flux q⃗ is defined as

q⃗ = 1
2
nm

⟨
v⃗′v⃗′2

⟩
(6.33)

and obtained via Fourier’s law

q⃗ = −κ∇T, (6.34)

with κ being the thermal conductivity of the fluid. We now proceed to specialize

Eq. (6.31) to the case of the present electron fluid. Similarly as for the momentum

equation, the elastic collision term can be explicitly calculated [70] by assuming all j

species of the flow to be isotropic and in equilibrium with respective bulk velocity v⃗j

and temperature Tj and if the collision frequency νej is assumed to be independent

of particle velocity:

∫
R3

1
2
mv⃗2 Celas (f) dv⃗ = 2 νej nj

µej
me +mj

[
3kB
2

(Tj − Te) +
mv2

j

2
− mv2

e

2
+

+ (me −mj)
2

(v⃗e · v⃗j)
]
, (6.35)
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which is valid for any species heavy species j of the flow. This expression may be

further simplified [108] p. 51, if one assumes that, for all species, the ratio of diffusion

to thermal speed is small, i.e. |u⃗′ |
|u⃗| ≪ 1, so that the temperature term dominates

all the others on the right hand side of Eq. (6.35), so that the latter can thus be

approximated as follows

Relas
ej ≈ 2me

mj

njνej

[
3kB
2

(Tj − Te)
]
, (6.36)

using me ≪ mj. The part of the collision integral dealing with inelastic collisions can

be greatly simplified by assuming that particle kinetic energy is negligible compared

to the energy lost or gained during the inelastic collision. The energy gained, viz. lost,

can thus be approximated by the threshold energy of the inelastic collisions under

consideration εin,th, i.e.

∫
R3

1
2
mv⃗2 Cinel (f) dv⃗ ≈ Rinel

ei = −ne νej εin,th (6.37)

This assumption will certainly prove to be true for the ionization reaction (the only

inelastic collision considered) in the flow that will later be simulated where Te ∼ 2eV

and εin,th = 15.6 eV. Thus inserting the expressions of Eqs. (6.32), (6.34), (6.35) and

(6.37) into Eq. (6.31) written for a electron fluid, the following energy equation is

obtained:

∂

∂t

bulk KE︷ ︸︸ ︷(1
2
nemeu⃗

2
e

)
+ ∂

∂t

thermal KE︷ ︸︸ ︷(3
2
mekBTe

)
= −∇ ·

bulk KE flux︷ ︸︸ ︷[1
2
nemeu⃗

2
eu⃗e

]
−∇ ·

thermal KE flux︷ ︸︸ ︷[3
2
nekBTeu⃗e

]
+ ∇ · (κe∇Te)︸ ︷︷ ︸

heat flux

− pe∇ · u⃗e︸ ︷︷ ︸
pressure work

+ qe ne
(
E⃗ · u⃗e

)
︸ ︷︷ ︸

Ohmic heating

+

∑
j

me

mj

njνej [3kB (Tj − Te)]︸ ︷︷ ︸
Relas
ej (elastic collisions)

+
∑
j

ne νej εion,th.︸ ︷︷ ︸
Rinel
ej (inelastic collisions)

(6.38)
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The equation is further simplified by applying it to the electron fluid at hand where

no inelastic collisions occur and only collisions with one ion and one neutral species

at respective temperatures Ti and Tn are considered. Assuming steady state so that

the time derivatives drop out of Eq. (6.38), neglecting bulk kinetic energy flux, using

the continuity equation for ne, and the definition of pressure of Eq. (6.24) the final

form of the energy equation is obtained

∇ ·
[3
2
nekBTeu⃗e

]
= ∇ · (κe∇Te) − kBTe

me

∇ · u⃗e + qe ne
(
E⃗ · u⃗e

)
+
(3me

mi

)
niνei [kB (Ti − Te)] +

(3me

mn

)
nnνen [kB (Tn − Te)] (6.39)

The electron thermal conductivity κe for the present three species partially ionized

gas can be obtained by a mean free path type analysis [108], p. 94:

κe = 2.4
1 + νei√

2νe

k2
BneTe
meνe

, (6.40)

where

νe = νei + νen (6.41)

is the total electron heavy particle collision frequency, νei and νen being respectively

obtained with Eqs. (6.29) and (6.30).

6.2.2 Simplified fluid equation system

Three conservation equations were previously obtained for mass, Eq. (6.15) mo-

mentum, Eq. (6.28) and energy, Eq. (6.39):

∇ · (neu⃗e) = 0 (6.42)

− 1
ne

∇ (nekBTe) + qeE⃗ − neme (νen + νei) u⃗e = 0 (6.43)
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∇ ·
[3
2
nekBTeu⃗e

]
= ∇ · (κe∇Te) − kBTe

me

∇ · u⃗e + qe ne
(
E⃗ · u⃗e

)
+
(3me

mi

)
niνei [kB (Ti − Te)] +

(3me

mn

)
nnνen [kB (Tn − Te)] (6.44)

which form a closed system of equations with three unknowns (ne, u⃗e, Te). Because

the system of equation is coupled and non-linear, its solution is non-trivial. Following

the approach suggested in [108] and subsequently adopted by Boyd et al [29] [45], it

can be recast in a different form to make its solution easier. This is done by assuming

that the electron fluid follows potential flow and can thus be described by a potential

function ψ such that

neu⃗e = ∇ψ, (6.45)

and as ∂B⃗
∂t

= 0⃗, by considering the electric potential ϕ instead of the electric field E⃗

E⃗ = −∇ϕ. (6.46)

This allows Eqs. (6.42), (6.43) and (6.44) to be recast into three (easier to solve)

Poisson equations. The first directly follows from the definition of ψ thru Eq. (6.45)

whereby inserting it into Eq. (6.42) yields

∇2ψ = 0. (6.47)

The second equation is obtained by taking the divergence of Eq. (6.43) and using

(6.42) so as to obtain an equation for the potential ϕ defined by Eq. (6.46):

∇·(σ∇ϕ) = kB
qe

[
σ∇2Te + σTe (log ne)

]
+σ∇ (log ne) ∇Te+Te∇σ ·∇ (log ne)+∇σ∇Te

(6.48)

where coefficient σ is defined as

σ = q2
ene
meνe

(6.49)
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which corresponds to the plasma conductivity [108] where νe is given by Eq. (6.41) The

third and final equation of the system is obtained by simply rearranging Eq. (6.44)

putting the Laplacian operator on the left hand side:

∇ · (κe∇Te) = −∇ ·
[3
2
nekBTeu⃗e

]
− kBTe

me

∇ · u⃗e + qe ne (∇ϕ · u⃗e)

+
(3me

mi

)
niνei [kB (Ti − Te)] +

(3me

mn

)
nnνen [kB (Tn − Te)] . (6.50)

The newly obtained system of equations thus consists of Eqs. (6.47), (6.48) and (6.50)

which can be summarized as

∇ ·


∇ψ

σ∇ϕ

∇Te

 =


0

F (Te, ne)

G (Te, ne, ψ, ϕ)

 , (6.51)

where the two functions F and G on the right hand side are detailed in Eqs. (6.48) and

(6.50). This completes the exposition of the governing equations of the full detailed

fluid model such as was used in [29] and [45]. In the work presented in this thesis, the

energy equation was, however, omitted and a constant electron temperature was used

for the electron fluid. The energy equation was omitted because the finite element

solver use to solve the system of equations cannot accurately deal with strong source

terms with large spatial variations. The following system of equations is thus solved

∇ ·

 ∇ψ

σ∇ϕ

 =

 0

F (Te, ne)

 . (6.52)
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6.2.3 Solution method

6.2.3.1 Finite element solver

The calculation of the plasma potential using Eq. (6.52) requires the solution of

two partial differential equations, i.e.

∇2ψ = 0 (6.53)

and

∇ · [ σ (ne [x, y] , nn [x, y]) ∇ϕ ] = F (Te, ne [x, y]) . (6.54)

In axisymmetric geometries, where variables are independent of the polar angle and

where y is the radial direction, the divergence operator is defined, for an arbitrary

A⃗ = Axx̂+ Ayŷ vector field, as

∇ · A⃗ = 1
y

∂

∂y
(y Ay) + ∂Ax

∂x
, (6.55)

while no changes are required for the gradient operator compared to Cartesian ge-

ometries and the Laplacian operator of a scalar f (x, y) is given by

f ≡ ∇2f = 1
y

∂

∂y

(
∂f

∂y

)
+ ∂2f

∂x2 . (6.56)

Using Eqs. (6.55) and (6.56), Eqs. (6.53) and (6.54) can respectively be written as

∂ (yψ)
∂x2 + ∂ (yψ)

∂y2 = ∇2
cartψ = 0 (6.57)

and
∂2 (yσϕ)
∂x2 + ∂2 (yσϕ)

∂y2 = ∇cart · (yσ∇cartϕ) = yF (6.58)
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where ∇cart,∇cart· and cart are all the usual Cartesian differential operators. Eqs. (6.57)

and (6.58) are both examples of a generalized Poisson equation, in that they can both

be written as
∂

∂x

[
a (x, y) ∂u

∂x

]
+ ∂

∂y

[
a (x, y) ∂u

∂y

]
= b (x, y) (6.59)

with u = yψ, a = 1, b = 0 for Eq. (6.57) or u = ϕ, a (x, y) = yσ (x, y) , b = yF in

the case of Eq. (6.58). Eq. (6.59) is a fairly easy to solve elliptical partial differential

equation [123] particularly amenable to the use of the finite element method. They

were thus solved by using the generalized Poisson finite element solver detailed in

[145] that was implemented by Cai [33]. It is first order (linear finite elements) for

axisymmetric geometries which resultant linear system is solved via a biconjugate

gradient method [122].

6.2.3.2 Differentiation operator

The application of the detailed fluid model requires the calculation of derivatives

such as, for instance, to calculate the electric field E⃗ from the potential ϕ with

E⃗ = −∇ϕ after solving Eq. (6.52) for the potential, or to calculate the various

derivatives terms such as ∇σ or ∇ log (ne) on the right hand side of that same system.

The value of the derivatives of variable {al}Nll=1, defined at each node {x⃗l}Nll=1 are

calculated for each of the three nodes of each cell x⃗l = (xl, yl) by assuming that

a (x, y) = a (x⃗l) + ∂a

∂x
(x− xl) + ∂a

∂y
(y − yl) (6.60)

so that the value of a at the two other nodes of cell i, a (x⃗l+1) and a (x⃗l+2) being

known, the following system may be formed

xl+1 − xl yl+1 − yl

xl+2 − xl yl+2 − yl



(
∂a
∂x

)
l,i(

∂a
∂y

)
l,i

 =

a (x⃗l+1) − a (x⃗l)

a (x⃗l+2) − a (x⃗l)

 , (6.61)
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which solution provides the value of the derivatives of a at node l for cell i. The

procedure is repeated for the two other nodes of the cell, nodes l + 1 and node l + 2

so that the values of ∂a
∂x

and ∂a
∂y

are known for the three nodes of the cell. As each

node is shared between Nb,l different cells, a total of Nb,l different derivative values

are thus obtained for a given node. The final value of the derivative is determined by

taking the average value among the Nb,l different cells to which node l belongs:

(
∂a

∂x

)
l

= 1
Nb,l

Nb,l∑
i′=1

(
∂a

∂x

)
l,i′

and
(
∂a

∂y

)
l

= 1
Nb,l

Nb,l∑
i′=1

(
∂a

∂y

)
l,i′
. (6.62)

6.3 DSMC/“PIC” model

Although the exact details of the formulation and the implementation of the de-

tailed fluid model differs from that of the particle in cell method, both share many

common features and challenges. For that reason, the PIC method is briefly in-

troduced below and presented for a simple one-dimensional plasma. Following that

presentation, the charge projection and force weighting schemes used for the detailed

fluid model are presented in parallel with the corresponding PIC formulation. Finally,

the integration of the fluid model within a standard DSMC code is presented.

6.3.1 The particle in cell method

The most commonly used particle simulation technique for ionized gas flows is the

particle in cell method [78] [21]. A concise introduction to the method that inspired

the presentation below can be found in [20], whereas a contemporary review of PIC

can be found in [74] or [105]. In its purest form, PIC refers to the simulation of a gas

for which motion is governed by the Boltzmann equation with the Lorentz force. The

value of the electric and magnetic fields throughout the domain is obtained by solving

field equations, usually one or several of Maxwell’s equation, such as for instance the

Poisson equation. PIC is fairly similar to DSMC in its formulation in that it relies on
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the use of macroparticles to simulate a large number of actual physical particles and

uses single particle motion to simulate the transport part of the Vlasov (Boltzmann in

the case of DSMC) equation. The main difference from DSMC lies in the use of field

equations and the use of the resultant fields to move particles and the treatment of

collisions (or lack thereof in the case of PIC). The most simple example of the particle

in cell method, and one that is often given to illustrate the technique, is to simulate

a one-dimensional, uniform and unmagnetized plasma that only consists of electrons

and ions each with an average number density of n0. As ions are much heavier than

electrons, they are assumed to be at rest providing a neutralizing background to

the light fast moving electrons. The non-zero charge resulting from the motion of

the electrons in the positively charged ion background results in the creation of an

electric field E⃗ = −∇ϕ via the Poisson equation:

∇ · E⃗ = ρ

ε0

1D⇒ d2ϕ

dx2 = − qe
n0

[n0 − n (x)] (6.63)

which in turn accelerates each individual electron with position x⃗j and velocity v⃗j

according to:

me
d2x⃗j
dt2

= qeE⃗ [x⃗j (t)] (6.64)

which in turn changes the charge distribution of the plasma by affecting the position

of each individual particle in the domain and so on ad infinitum. Equivalently, one

might also say that the velocity distribution function of the electrons f (x, vx, t) is

governed by the Vlasov equation

∂f

∂t
+ v⃗ · ∇f + qeE⃗

me

· ∇v⃗f = 0 ⇒ ∂f

∂t
+ v⃗x

∂f

∂x
+ qeEx (x)

me

∂f

∂vx
= 0 (6.65)
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where E⃗ is obtained by solving Eq. (6.63) and n, by definition is

n (x) =
∫
R3

f (x⃗, v⃗, t) dv⃗ =
+∞∫

−∞

f (x, vx, t) dvx. (6.66)

The combined used of particles and field equations poses two main challenges which

are at the heart of the formulation of the PIC method. The first is the matter

of calculating the charge on the right hand side of the Poisson equation, i.e. ρ (x⃗)

in Eq. (6.63). This must evidently be done by using the position of the electrons

inside the domain to reconstruct a continuous function ρ (x⃗). The issue of calculating

the continuous charge function from the position of (inherently discrete) particles is

referred to in the literature as charge weighting or charge interpolation. Conversely,

after the electric field charge is calculated by solving Eq. (6.63), it has to be applied

to each individual particle of the domain. This step is often referred to as force

projection or force interpolation in the literature. The difficulty lies in the fact that

the electric field cannot be resolved at the exact location of each individual particle

in the domain and is instead resolved on a discrete mesh so that the value of the

electric field has to be interpolated to the location of each individual cell. Having

briefly introduced the matter of charge and force interpolation, the two will now be

discussed in detail within the context of the hybrid fluid/DSMC method.

6.3.2 Charge interpolation

We assume that the flow is quasi-neutral [104], i.e that the electron number density

is at all times equal to the ion number density, so that all cells have no net charge

at all time steps. As no electron particles are present in the simulation, the electron

number density, a required input of the detailed fluid model, is directly obtain from

the ion number density

ne = ni = n
(
Ar+

)
. (6.67)
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In the following, the charge will always refer to the ion number density, bearing in

mind that the net charge of all particles in a cell is always null. The problem of charge

interpolation will thus consist in interpolating the ion number density to the grid. The

problem of charge interpolation was previously introduced within the framework of

the simple 1-D plasma example and will now be examined in greater detail. The

unstructured triangular mesh is assumed to be composed of Nc cells with subscript

1 ≤ i ≤ Nc and Nl total cell vertices with subscript 1 ≤ l ≤ Nl located at {x⃗l}Nll=1.

In the following, as triangular cells are used, each cell contains 3 vertices which are

shared with other neighboring cells. We further assume that the simulation contains

Ntot particles with subscript 1 ≤ j ≤ Ntot with positions x⃗kj and velocities v⃗kj at time

step k. Because the charge density that is naturally obtained with discrete particle

is too noisy:

ρN (x⃗, t) = qe

∫
R3

fN (x⃗, v⃗, t) dv⃗ = q
N∑
j=1

wj δ (x⃗− x⃗j) , (6.68)

shape factors Sl (x⃗) with compact support in R2, defined for each l node are used to

calculate the interpolated charge ρh (x⃗l, t):

ρh (x⃗l, t) =
∫
R2

ρN (x⃗, t)Sl (x⃗) dx⃗ = q

V (x⃗l)

Np∑
j=1

Sl (x⃗j (t)) . (6.69)

Commonly used shape factors for PIC include the 0th degree spline S2D,0 : R2 → R

which, in the case of a two-dimensional cartesian mesh with uniform grid spacing ∆x

and ∆y in the x and y directions, is given by:

S2D,0
l (x, y) = 1

∆x
S1D,0

(
x− xl

∆x

)
× 1

∆y
S1D,0

(
y − yl

∆y

)
(6.70)

with

S1D,0 (ξ) =


1 if |ξ| ≤ 1

2

0 otherwise
, (6.71)
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or the first order spline S2D,1
l (x, y) which is similarly defined using

S1D,1 (ξ) =


1 − |ξ| if |ξ| ≤ 1

0 otherwise
. (6.72)

S1D,0
l and S2D,1 are often referred to as nearest grid point (NGP) or cloud-in-cell

(CIC) weighting, respectively. Details on other commonly used shape factors can be

found in e.g. [141] or [21]. However, as our simulations are conducted with a triangu-

lar unstructured mesh, those commonly used shape factors cannot be utilized. Charge

interpolation schemes for unstructured meshes are still an area of active research as

evidenced by [85]. Because DSMC, by formulation, always employs a nearest grid

point scheme to calculate any cell-based quantities, we have to resort to an original

charge calculation scheme, which consists in two successive interpolation steps that

are detailed below. In the first, the charge is calculated at the center of each DSMC

cell while in the second that charge is interpolated to the vertices between DSMC

cells.

In the first step, the charge is calculated at the center of each cell from the position of

all charged particles. This formally corresponds to a particles → cell centers interpo-

lation. This is done by adopting an NGP scheme on an unstructured mesh whereby

each cell Ωi is associated with the following shape factor:

Si (x⃗) = 1Ωi (x⃗) , (6.73)

where 1Ωi is the indicator function 1Ωi : R2 → {0, 1} which is defined as follows for

each cell Ωi as

1Ωi(x⃗) :=


1 if x⃗ ∈ Ωi

0 if x⃗ /∈ Ωi

. (6.74)
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Following the definition of the charge interpolation of Eq. (6.69), the cell-centered

charge function, denoted by ρc (x⃗, t) is obtained by

ρc (x⃗, t) = Wp (x⃗)
V (x⃗)

Np∑
j=1

qj 1Ωi (x⃗j (t)) (6.75)

where Wp (x⃗) is the cellwise constant field of cell weights

Wp (x⃗) =
Nc∑
i=1

Wp,i 1Ωi (x⃗) (6.76)

while the cellwise constant volume function V (x⃗) is similarly defined by using the

volume of each individual cell, Vi, in Eq. (6.76) instead. A graphical depiction of

the operator is shown in Fig. 6.1. One furthermore always requires that a charge

interpolation scheme conserve total charge, i.e.

Nc∑
i

Vi ρh (x⃗i, t) = q
Np∑
j

Wp (x⃗j) (6.77)

which, in the general case, by the definition of the charge of Eq. (6.69) can be accom-

plished by requiring that
Nc∑
i

Si (x⃗) = 1 ∀ x⃗ ∈ R2 (6.78)

which is indeed satisfied by the NGP and CIC schemes of Eqs. (6.71) and (6.72).

Conservation of charge is, however, more difficult to achieve for axisymmetric ge-

ometries, even when cartesian grids are used, as the volume of cells scales linearly in

the radial direction. For that reason, modifications have to be brought to standard

interpolation schemes in the radial direction which are discussed for instance in [127].

This is, however, not a concern for the charge interpolation scheme used in present

work as the shape function Sl (x⃗) of Eq. (6.73) does indeed satisfy Eq. (6.78).

In the second step of the charge interpolation procedures, the charge is interpo-

lated from the cell centers to their vertices which are also designated as nodes in the
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Figure 6.1: Schematic of the first step of the charge interpolation

following. It formally consists in applying interpolation operator Pn : cell centers ↪→ nodes

which is defined as

Pn : ρc (x⃗) → ρn (x⃗) (6.79)

where

ρn (x⃗l) =
∑Nc
i=1 ρc (x⃗c) 1Ωi (x⃗l)∑Nc

i=1 1Ωi (x⃗l)
. (6.80)

The value of the charge at a single node is thus obtained by averaging the value of

the cell center charges of all the cells to which the node belongs as shown by the

graphical depiction of Fig. 6.2. The overall charge interpolation operator, denoted by

Ph, consists in the successive application of Pc and Pn:

Ph = Pn ◦ Pc : {x⃗}Nj=1 → ρh (x⃗) (6.81)

which, by using their respective definitions given by Eqs. (6.75) and (6.80), can be

explicitly written as:

ρh (x⃗l, t) =
∑Nc
i=1

[
Wp(x⃗i)
V(x⃗i)

∑
j qj1Ωi (x⃗j (t))

]
1Ωi (x⃗l)∑Nc

i=1 1Ωi (x⃗l)
. (6.82)
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Figure 6.2: View of the second step of the charge interpolation

The instantaneous charge produced by the application of Eq. (6.82) is, however,

inherently noisy due to the natural fluctuations of the number of particles in each

individual cell of the DSMC simulation. This inherent noise makes it impossible to

calculate the various quantities required for the application of the detailed fluid model,

i.e. ne,∇ne and ∆ne. The problem is further compounded by the need to calculate

multiple derivatives of the charge, which further aggravates noise. The detailed fluid

model was, however, derived with a steady state assumption (i.e. no time derivative),

so that all quantities used in the model, such as the charge ne should be independent

of time. There is furthermore no physical basis for any unsteadiness in contract to

PIC simulations, where the unsteadiness of the charge and fields are dictated by the

governing equations so that it can for instance be used to simulate Landau damping

[20], an inherently unsteady phenomenon. In order to reduce the unsteadiness of the

charge, an exponential moving average is thus used [138]. It consists in calculating
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the time averaged charge ρh (x⃗l, t) as follows

ρh
(
x⃗l, t

k+1
)

= R ρh
(
x⃗l, t

k+1
)

+ (1 −R) ρh
(
x⃗l, t

k
)
. (6.83)

where R is a relaxation factor such that R ≪ 1. The relaxation factor should be

chosen small enough so as to minimize noise but also large enough so as to allow

the flow to develop reasonably fast from its initial conditions to steady state. The

time-averaged charge ρh (x⃗l, t) is in turn used to calculate the plasma potential ac-

cording to Eq. (6.52). The detailed fluid model also requires that the number density

of all neutrals be interpolated to the grid so as to calculate the plasma conductivity

σ following Eq. (6.49). The exact same interpolation and averaging procedures, re-

spectively given by Eqs. (6.82) and (6.83) as for the charge are used for the neutral

number density.

Various charge interpolation schemes have been tested and all have been observed

to fare no better than that of (6.82) which is admittedly fairly crude when com-

pared to traditionally used charge interpolation schemes such as CIC or higher order

schemes [21]. This situation is no doubt due to the fact that the charge interpo-

lation/force interpolation presented here is not a “real” PIC procedure because of

the time averaging of the charge and the use of fluid equations instead of Maxwell’s

equations.

6.3.3 Force Interpolation

Solving the system of fluid equations of Eq. (6.52) yields the plasma potential ϕ

at all the nodes of the computational domain {x⃗l}Nll=1, from which the electric field is

obtained with

E⃗ (x⃗l) = −∇ϕ. (6.84)
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using the discrete differentiation operator of Eqs. (6.61) and (6.62). This electric

field in turn accelerates all the ions of the domain. As it varies through space, it

has to be interpolated to the location of each individual ion of the simulation in a

process analogous to the charge interpolation discussed previously. In an actual PIC

simulation, this would be accomplished by using the same shape factor as used for

the charge interpolation, so as to prevent the occurrence of non-physical self-forces

on particles [78], with:

E⃗ (x⃗j, t) =
Nl∑
l

E⃗ (x⃗l, t)Sl (x⃗j (t)) . (6.85)

If we were to use the exact same charge interpolation scheme that was previously

presented in reverse,
{
E⃗ (x⃗l)

}Nl
l=1

would first have to be interpolated from the nodes

to the cell centers to obtain
{
E⃗ (x⃗i)

}Nc
i=i

. E⃗ (x⃗i) would then be used to accelerate all

particles inside cell Ωi regardless of their position inside the cell which corresponds to

the use of an NGP scheme in Eq. (6.85). In order to increase the accuracy of the force

interpolation scheme, a different interpolation scheme than for the charge is utilized.

It consists in weighting the value of the electric field of each cell node by the area

described by the triangle obtained by joining the position of the particle to the two

opposite nodes. Following the notations of the graphical depiction of the scheme in

Fig. 6.3, the value of the electric field E⃗ at particle position x⃗j is obtained by

E⃗ (x⃗j, t) = 1
Ωi

(
Ωi,j,l1 E⃗ (x⃗l1 , t) + Ωi,j,l2 E⃗ (x⃗l2 , t) + Ωi,j,l3 E⃗ (x⃗l3 , t)

)
(6.86)

The choice of such a scheme is a posteriori justifiable by the better results that it

is seen to produce compared to the two-step interpolation process described above,

bearing in mind the occurrence of any self force is not an issue due to the time

averaging of the charge of Eq. (6.83). Once the value of the electric field at the

location of the particle has been determined, it is first accelerated at its initial location
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Figure 6.3: Graphical view of the force interpolation procedure

x⃗kj using a first order Euler-explicit scheme to obtain its post-acceleration velocity

v⃗
k+1/2
j ,

v⃗
k+1/2
j = v⃗ kj + qe∆t

mj

E⃗
(
x⃗ kj
)

(6.87)

while its position remains unchanged and then moved following the standard DSMC

particle move procedure for axisymmetric geometries described in [15] p. 370, again

with a time step of ∆t.

6.4 DSMC/Fluid model coupling

6.4.1 Coupling strategy

As previously mentioned, because of its derivation, the fluid model is not intended

to capture any time dynamics of the coupling between the electron/ion motion and

the electric field. To reduce possible effects of the inherent unsteadiness of DSMC on

the value of the charge, the charge is averaged via a relaxation factor as indicated by

Eq. (6.83). The same averaging procedure is also employed for the plasma potential
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which is calculated by solving the following equation (discussed in section 6.2.2)

∇ · (σϕ) = F. (6.88)

Every time this equation is solved at time step k, it provides a new value
{
ϕk+1
l

}Nl
l=1

for the plasma potential for all nodes which is in turn used to update the value of the

average potential
{
ϕ
k+1
l

}Nl
l=1

by using:

ϕ
k+1
l = R ϕk+1

l + (1 −R) ϕ
k

l (6.89)

The average potential thus obtained is then used to calculate the electric field via

Eq. (6.84) which is itself used to move the ions following the force interpolation

procedure discussed in Section 6.3.3.

6.4.2 Implementation

The overall implementation of the DSMC/fluid model is summarized in the fol-

lowing pseudo-code:
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For time steps, k = 0, ..., Nstep, do:

Every Nupdate steps do:

i) Solve fluid equations of Eq. (6.52) using

method of section 6.2.3.1 to calculate ϕk

ii) Update average plasma potential ϕk with

Eq. (6.89)

end



Fluid Model

For all cells, i = 1, ..., Nc, do:

i) Interpolate charge and neutral density

with Eq. (6.82)

ii) Update average charge and neutral den-

sity with Eq. (6.83)

iii) CountParticles()

iv) CalculateCollisionPairs()

v) PerformCollisions()

vi) Accelerate ions with Eq. (6.87)

vii) MoveParticles()

viii) ApplyBCs()

end



DSMC

end

All the steps related to the fluid model are indicated in bold fonts. “DSMC” refers

to the standard DSMC implementation time step loop that was already mentioned
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in Section II. Following initial design choices [33], the fluid model and the DSMC

procedure are relatively independent of one another. The computational overhead

introduced by the used of the fluid model varies greatly depending on the value of

Nupdate. This issue will be discussed when results are presented.

6.5 Test Case

6.5.1 Geometry and boundary conditions

The test case used to investigate the adaptive method is shown in Fig. (6.4). It

consists of plasma source, jet 1, which emits neutral argon Ar, 1 (i.e. argon with a

species tag of 1), argon ions and electrons. Assuming quasi-neutrality, the electrons

and ions have the same number density and bulk velocity at the outlet of the plasma

source. Opposite the plasma source, jet 2, emits neutral argon Ar, 2 (i.e. argon with

a species tag of 2). The flow conditions for the two jets are reported in Table 6.5.

All species are in equilibrium (Maxwellian VDF) with no bulk velocity in the y or

z directions when emitted. The Knudsen numbers of the two jets based on their

diameters and using the VHS model is 0.17. Species Ar, 1 and Ar, 2 are both emitted

at M = 1, while ions (and electrons) are emitted with M = 1.92. A greater velocity in

the part of the ions is fairly typical of what is observed at the outlet of plasma emitting

devices such as hollow cathodes. Very often neutral gases are emitted by a nozzle-like

geometry functioning in the choked regime so that the gas is at sonic conditions, as

was chosen here. Charged particles, such as ions or electrons, can be accelerated

before their emission with an electric field such as in hollow cathode devices [28] [69]

and their speeds not limited by their gas dynamics behavior as is the case for neutral

particles. Supersonic outflow boundary conditions are used for particles at the left,

top and right of the computational domain which would correspond to the wall of

the vacuum chamber if an experiment of this test case were conducted. Axisymmetry
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in the DSMC simulation is enforced by the particle move procedure (see [15] p. 370)

while specular reflection boundary conditions are enforced for particles at the wall.

Boundary conditions used for the fluid model are summarized in Table 6.6. The

plasma potential at the source is set to 5 V while that of all other boundaries is

set to 2V (except the centerline where ∂ϕ
∂y

(x, y = 0) = 0 to enforce axisymmetry).

The positive plasma potential at the exit of the plasma source corresponds to what

is typically observed at the exit of many low temperature plasma sources, such as,

e.g. hollow cathodes [69]. The drop in plasma potential between the plasma source

exit and other boundaries combines with the gas expansion to further accelerate the

ions inside the domain. From the quasi-neutrality assumption ne = ni = nAr+ =

2.5 × 1019 m−3 at the exit of the plasma source while previous measurements and

simulations [94] have shown the ratio of electron bulk to thermal velocities to be

about 0.5-0.8 at the exit of a hollow cathode, so that assuming ue,x
u′
e

= 0.5 with

Te = 2eV, yields ue,x = 4.7 × 105 [m/s]. By definition of the electron stream function,
∂Ψ
∂x

= neue,x so that using the previously mentioned values for ne and ue,x, a value of

1.175 m−1s−1 is obtained at the exit of the plasma source which is reported in table

6.6. The jet centerline and wall are assumed to correspond to an electron streamline

with ue,y = 0 so that ∂Ψ
∂y

= 0 is used along those boundaries. The same zero normal

velocity boundary condition is used for the left and top outflow boundaries and jet B

while the value of Ψ at the right is outflow boundary chosen so as to obtain streamlines

that are parallel to the x direction.

Number density
[
m−3] x-Bulk velocity [m/s] Temperature [K]

Jet 1
Ar, 1 2.5 × 1021 322 300
Ar+ 2.5 × 1019 620 300
Jet 2
Ar, 2 2.5 × 1021 -322 300

Table 6.5: Jet 1 and 2 inflow conditions.
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Figure 6.4: Schematic of test case with boundary conditions and dimensions.

Boundary DSMC boundary condition Potential Stream function Ψ
Jet A See Table 6.5 ϕ = 5V ∂ψ

∂x
= −1.175 × 1025

[
m−2s−1

]
Outflow left Supersonic outflow ϕ = 2V ∂ψ

∂x = 0
Outflow top Supersonic outflow ϕ = 2V ∂ψ

∂y = 0
Outflow right Supersonic outflow ϕ = 2V ψ = −1.175 × 1020

[
m−1s−1

]
Wall Specular reflection ϕ = 2V ∂ψ

∂y = 0
Jet B See Table 6.5 ϕ = 2V ∂ψ

∂x = 0
Centerline Axisymmetric symmetry ∂ϕ

∂y = 0 ∂ψ
∂y = 0

Table 6.6: Simulation boundary conditions.

6.5.2 Numerical method and parameters

The flow was simulated using both the detailed fluid model that was detailed in

Section 6.2 and the adaptive procedure for the time step, cell weights and species

relative weights that is the subject of Chapter V. The various numerical parameters

of the fluid models are summarized in Table 6.7 while those of the adaptive technique
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are given in Table 6.8. The mesh consists of 5,028 triangular cells while the total

number of particles for each species is reported in Table 6.8. Collisions between all

particles, including the Ar+ ions, are modeled via the variable hard sphere (VHS)

model [15] for argon with a reference diameter of 4.17 × 10−10 m at 273 K and a

temperature exponent of 0.81. The sophisticated DSMC pair selection scheme of

Eq. (5.37) is used while further details concerning the implementation of the DSMC

method can be found in [91].

Designation
Relaxation factor R (Eq. (6.83)) 10−4

Frequency of update of electric field, Nupdate 5
Constant electron temperature, Te 2 eV

Table 6.7: Parameters of detailed fluid model.

Designation A800ION
Wp,0 4, 884, 125

∆t0 [s] 5.0 × 10−9

Adaptive ∆̃t YES
Adaptive W̃p YES
Adaptive Wrel YES
Np,want,1,2,3 800

Total realized number
of particles (M) 16.5

Realized number
of particles for
species (1,2,3) (M)

(4.5,4.5,6.9)[
∆̃t,min, ∆̃t,max

] [
10−12, 1012] (8.8 10−4, 105.4

)[
W̃p,min, W̃p,max

] [
2−10, 250] (1, 32)

Wrel,min,1,2,3
[
10−4, 10−4, 10−7] ,

(
0.017, 0.004, 5.310−5)

Wrel,max,1,2,3 [1, 1, 0.0001] , (1, 1, 0.0001)

Table 6.8: Parameters of adaptive technique parameters used. The set values of the
bounds are shown between brackets while actually observed values are
reported between parenthesis.
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6.6 Simulation results

The sampled results presented in this section were obtained with 5 × 105 samples

and their state of convergence checked by plotting their time evolution. Figure 6.5

presents the sampled charge and plasma potential that were obtained for the entire

domain, while Fig. 6.11 presents their values on the centerline. The plasma potential

is observed to monotonically decrease between the two jets dropping from 5 V to 2

V. Because of the choice of axis scaling, it can be clearly seen on that plot that a

Boltzmann-type relation:

ϕ = ϕ0 +K log
(
ρ

ρ0

)
(6.90)

does not describe well the relationship between the charge and the plasma potential

between the two jets. The resultant electric field in the x-direction Ex = −∂ϕ
∂x

is

plotted in the top part of Fig. 6.7 which provides a positive, albeit non-uniform

acceleration to particles in the x direction. The effects of that acceleration are visible

in the bottom part of Fig. 6.7 which shows the increase of ion velocity in the x

direction. As Ey = −∂ϕ
∂y
> 0, it drives ions away from the centerline which explains

the shape of the charge number density isocontours in Fig. 6.5 which are much more

spread out in the radial direction than those of neutral particles shown in Fig. 6.6.

Two important intermediate quantities of the fluid model are plotted in Fig. 6.6, the

neutral number density and the plasma conductivity. The neutral density corresponds

to the sum of the number densities of species Ar,1 and Ar,2. The neutral particles

demonstrate less spread in the radial direction compared to the ions as they are

unaffected by the electric field. The electron streamline function Ψ is shown in Fig. 6.8

along with the electron velocity x-component which is obtained with ue,x = 1
ne

∂Ψ
∂x

following Eq. (6.45). Due to the formulation of the detailed fluid model, the electron

velocity is different, and greater than that of the ions that is shown in Fig. 6.7 although

both have the same number density from the quasi-neutrality assumption.
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Figure 6.5: Sampled charge number density (top) and sampled plasma potential (bot-
tom).

6.7 Conclusions

In this chapter, a thorough exposition of a hybrid DSMC/fluid electron model

was presented. A detailed derivation of the electron fluid equations was given. It was

followed by a discussion of the charge/force interpolation problem within a DSMC

framework which is introduced by the need to both calculate a global, spatially de-

pendent charge and to move charged particles following a spatially varying field.

The implementation of the coupling between the fluid model and DSMC was finally

presented. The DSMC/fluid model was then applied to the simulation of the flow be-

tween a plasma and a neutral jet. The particular flow that is studied in this Chapter

was chosen because of its technological application and to allow the demonstration

of the adaptive technique within the framework of a complex rarefied flow. Very
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Figure 6.6: Sampled neutral number density (top) and plasma conductivity (bottom).

satisfactory results were obtained with the adaptive method within the framework of

a complex flow which today cannot be simulated without a priori specifying relative

weights, and cell weights. This further reinforces the case for the use of the adaptive

procedure that was already made in Chapter V using a simpler rarefied flow. The

results obtained in this chapter suggest that the hybrid electron fluid/DSMC frame-

work presented in this Chapter benefits from the use of such a procedure. The latter

should furthermore clearly be used if and when the energy equation is incorporated

into the model.
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Figure 6.7: Sampled Ex field (top) and sampled Vx of Ar+ ions (bottom).
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Figure 6.8: Electron streamline function Ψ (top) and electron x-velocity (bottom).
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Figure 6.9: Weight (top) and time step (bottom) fields, as obtained with the adaptive
procedure.
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Figure 6.10: Relative weight of Ar+ and species 2, as obtained with the adaptive
procedure
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CHAPTER VII

Conclusion

7.1 Summary

Chapter II introduced the Boltzmann equation by presenting its derivation from

the Liouville equation. The formulation of the direct simulation Monte Carlo method

was then introduced accompanied by a derivation of the collision step from a model

homogeneous Boltzmann equation.

In Chapter III, A framework for the analysis of the convergence and accuracy of a

DSMC simulation was presented and two corresponding error types, the convergence

and numerical error introduced. The convergence error was studied by taking en-

semble averages of sampled means during their convergence. It was found to vary as

σ̃k−1/2 for the sampled mean of the number density and velocity (k being the num-

ber of sampling steps). Time correlation between samples is such that the standard

central limit theorem cannot be applied for sampled means. The autocorrelation

function of sampled quantities was used to quantify the time correlation between

samples. Particularly large time correlation was observed in zones where a small time

step, relative to the mean collision time, was used. The autocorrelation function ρ (k)

was observed to be of very similar shape for N , V and very close to the correlation

function between N and V . It was furthermore found to be invariant under particle
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count change and under k∆t scaling.

A modified version of the central limit theorem that takes correlation into account

for both particle and cell-based variables (e.g; respectively n and V ) was introduced.

It is then used to formulate a numerical method to a priori predict the value of the

convergence error during the course of the simulation. It is found to accurately pre-

dict the observed standard deviation σ̃ for all cells of the domain that are examined.

In Chapter IV, the effect of the number of particles and the time step on the nu-

merical error ε of DSMC was investigated within the framework of an axisymmetric

jet that was previously used to study the convergence error in Chapter III. The cell-

wise numerical error was found to vary for both number density and velocity following

a power law that is, as C ×N−α with 0 < α < 1.5, where C and α are cell dependent

and vary between n and V . The normalized cellwise numerical error of V is observed

to be consistently an order of magnitude smaller than that of n. Large spatial varia-

tions are observed for the value of the numerical error throughout the domain, with

low error zones having consistently smaller α values. The rather complicated spatial

patterns of the error can be explained by the trajectory of particles in the simulation

domain and the location of highly collisional zones. The average number of particles

in a local cell gives no indication as to the value of the error in the cell although

increasing it by raising the total number of particles in the simulation systematically

reduces it. No direct correspondence is observed between the value of the cellwise

normalized numerical error and the average number of particles in a particular cell.

Accuracy for sampled quantities in a particular cell should not be tied to the aver-

age number of particles (e.g. 20) that it contains but rather to the total number of

particles employed in the simulation, i.e. Wp. In practical terms, this means that

the accuracy of a simulation should be gauged by comparing the results obtained for

multiple particle counts. As was noted, advantage can be taken of the general power
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law scaling that was observed for the error to a priori determine the number of par-

ticles required for a desired level of accuracy. For relatively small particle counts, an

increase in the time step results in an increase or decrease of the cellwise numerical

error depending on the location in the flow. The effect of an increase in the time

step is observed to result in a more monotonic increase of the value of the numerical

error as the particle count is increased. No general scaling of the cellwise numerical

error with ∆t could be consistently observed although a power law type dependency

is usually admissible for µ1 (V ) at relatively high particle counts.

In Chapter V, an adaptive method for the DSMC time step, cell weight and species

relative weights was introduced. The aim of the procedure presented is to automati-

cally update the time step, weight and relative weights of all cells, as the simulation

progresses to steady state. The value of the time step is maximized while still re-

quiring it to satisfy DSMC requirements for all cells. The value of the weights and

relative weights are chosen so as to obtain a specified average number of particles

for all species in all cells. The formulation of the adaptive method makes its imple-

mentation in existing DSMC codes straightforward while its computational overhead,

compared to that of the simulation, is negligible. It furthermore reduces the need

for user input by calculating the optimum time step and weight fields automatically

thereby eliminating the need to run multiple simulations so as to determine them.

The potential computational savings allowed by method were illustrated by simulat-

ing the flow between two counterflowing jets at a Knudsen number of 0.015 with the

new method on one hand and with a spatially varying time step and cell weight field

on the other. For the same total number of particles, the use of the adaptive method

allows a substantial reduction, i.e. an order of magnitude, in the value of the error

for the sampled number density and velocity. The increased computational efficiency

is achieved by more uniformly distributing particles throughout the domain, thereby

preventing cells from containing an excessive or an insufficient number of particles.
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The adaptive method is thus expected to be of most benefit for multi-species flows

with uneven distributions of the number of particles between cells and species.

In Chapter VI, a thorough exposition of a hybrid DSMC/fluid electron model was

presented. It includes a detailed derivation of the electron fluid equations as well as

the charge/force interpolation procedures The DSMC/fluid model, without the en-

ergy equation, and using the adaptive technique presented in Chapter V, was then

applied to the simulation of the flow between a plasma and a neutral jet. Satisfactory

results were obtained for the plasma potential and charge.

7.2 Contributions

To this author’s best knowledge and review of the literature, the work contained

in this thesis has permitted the following contributions:

1. Chapter III presents the first study of the correlation between samples in a

DSMC simulation.

2. Chapter III contains one of the first use of the central limit theorem to study

the convergence of sampled quantities in a DSMC simulation.

3. Chapter IV presents the first study of the cellwise numerical error in a spatially

non-homogeneous DSMC simulation. In particular, it is the first work that

suggests a power law behavior (with a spatially varying slope) for the cellwise

numerical error in a DSMC simulation.

4. Chapter IV clearly indicates that the often quoted guideline of needing “20

particles per cell” for accurate DSMC simulation results, does not hold for a

spatially inhomogeneous simulation.

5. Chapter IV highlights for the first time, the absence of any scaling for the

cellwise numerical error with the time step contrary to what is observed for the
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global error.

6. Chapter V contains the first published exposition of an adaptive procedure for

the DSMC cell weights and/or relative weights.

7. Chapters V and VI detail the first published use of spatially varying relative

weights to maximize DSMC simulation efficiency.

7.3 Future Work

Convergence Study

The a priori convergence determination method in Chapter III should be incorpo-

rated into an automated procedure that halts the simulation whenever a specified level

of convergence has been reached which implementation should be rather straightfor-

ward. It is also this author’s opinion that the time series provided by instantaneous

cell quantities, e.g. the instantaneous number of particles in a cell as a function of

time, is an area that should receive greater attention in the spirit of [92]. It is very

likely that some properties of those time series might provide a way to determine a

priori the accuracy of the simulation in a particular cell.

Accuracy Study

More detailed accuracy studies of DSMC such as was performed here should be

undertaken to gain a greater understanding of the accuracy of method. Not having

any a priori method to quantify the value of the numerical error may ultimately make

DSMC less viable than exact methods [95] as the availability of computational re-

sources increases with time. Future work concerning the numerical error may include

performing the detailed analysis conducted in the present work for other flows, such

as two dimensional jets, to see whether similar trends or error patterns are observed

with the ultimate goal of being able to a priori predict them. Alongside this proposed
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“numerical experiment” route which is necessarily limited by the specificities of each

particular test case, an alternative path might be a more theoretical study based on

the interpretation of DSMC as a Markov jump process. Any possible insights thus

obtained might first be checked in a homogeneous DSMC simulation with only one

cell and then extrapolated to one or two dimensions.

In parallel to that, the accuracy of the particle move procedure and the possible

effect of boundary conditions could be investigated by repeating similar numerical

experiments without collisions. It might also be interesting to study the propagation

of the error by, for instance, perturbing the flow, thereby introducing error in selected

cells and investigating their effect on the rest of the flow.

It would also be interesting to repeat the numerical error analysis for a two-

dimensional jet to isolate the contribution of the axisymmetric geometry on the ob-

served error patterns.

Adaptive Procedure

The effect of spatially varying weights and time step on accuracy should clearly be

investigated using the error analysis framework introduced in Chapter IV. This would

help quantify and maybe explain what was remarked when spatially varying weights

are present, i.e. that having N0 particles on average when the simulation contains

spatially varying weights is not identical to having the same number in their absence.

The performance of the adaptive procedure is limited by the deleterious effects of

particle cloning at weight interface which are essentially caused by the creation of

multiple identical particles. One strategy, proposed in [15] to specifically address

this issue is to store cloned particles at weight interfaces so as to then reuse them in

subsequent time steps. Implementing such a scheme could allow the use of even fewer

particles when using the adaptive technique.
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Hybrid Fluid/DSMC technique

Having proven the basic viability of the hybrid scheme for this test case and

flow conditions for a constant electron temperature, the remaining energy equation

should next be incorporated into the model. A natural next step would the solution of

the complete set of fluid equations without any simplifying assumptions (i.e. potential

flow, no time derivatives, no convective terms) using a finite volume solver. This would

allow a true time-dependent coupling between the electron fluid and the particles

which is really necessary due to the inherent unsteadiness of all cell averaged quantities

such as the charge (i.e. the ion number density under the quasineutrality assumption)

in a DSMC simulation.
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APPENDIX A

Markov Processes

In this appendix, rigorous definitions of a few concepts related to Markov processes

that are used in Chapter II are given. A much more thorough presentation can be

found, amongst many others, in [97] [98] [54].

Definition A.1. Considering a probability space (Ω,A, P ), with sample space Ω,

σ-algebra A and probability measure P , a continuous time stochastic process is a

family of random variables {Z (t) ; t ≥ 0} with values in a measurable state space

(S,S), i.e. Z (t) : Ω → S.

Z (t) designates the state of the system at time t, while for a given outcome ω ∈ Ω,

{t ≥ 0}, is called a trajectory or realization of the stochastic process Z associated with

ω. The state space (S,S) comprises both the space in which Z takes its values S and

an associated σ-algebra S. In this thesis, only S = Rd with d = N is considered, as

it is used to describe the velocity of all N particles in a cell. In that case, S is the

Borel σ-algebra for Rd. By abuse of language in Chapter II, S is, however, referred

to as state space.

Definition A.2. A continuous time stochastic process process {Z (t) ; t ≥ 0} with

values in state space (S,S) is said to have the Markov property (and is thereby
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referred to as a Markov process) if and only if for all 0 < s < t and for

t0 = 0 < t1 < ... < tn < s and z0, z1, ..., zn, z ∈ S,

P [Z (t) ∈ B | Z (ts) = z, Z (tn) = zn, ..., Z (t1) = z1, Z (0) = z0] =

P [Z (t) ∈ B|Z (ts) = z] ∀B ∈ S (A.1)

Only homogeneous Markov processes are considered, i.e. processes such that

P [Z (t) ∈ B|Z (ts) = z] only depends on t and s through their difference t− s.

Definition A.3. A Markov process with jumps is a Markov process {Z (t) , t ≥ 0} for

which trajectories are constant and right continuous between jumps which occur at

random jump times T 1 (ω) ≤ T 2 (ω) ≤ ... ≤ T k (ω) ≤ .... It can be expressed as:

Z (t) =
∑

k≥0;Tk<∞
zk1[Tk,Tk+1[ (t) (A.2)

where zk ∈ S is the state of the system for tk ≤ t < tk+1, and where the indicator

function 1E (·) is defined as

1E(t) :=


1 if t ∈ E

0 if t /∈ E

. (A.3)

Definition A.4. A Markov transition function (or transition kernel) is a function

µ : S × S → R+ such that i) ∀B ∈ S, µ (x,B) is S-measurable, ii) For any x ∈ S,

µ (x, y) is a probability measure on (S,S) such that P
(
Zk+1 ∈ B|Zk = x

)
= µ (x,B),

∀B ∈ S and ∀x ∈ S.
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An integral of a function f : S → R with respect to measure µ can be written as∫
S
f (y)µ (x, dy) which is a notation frequently utilized in chapter II. It, for instance,

allows the concise writing of expressions such as

E
[
f
(
Zk+1

)
|Zk = x

]
=
∫
S

µ (x, dy) f (y) . (A.4)

Proposition A.5. Conditionally, at each step k ̸= 0, zk+1 and T k+1 are independent.

By definition A.4, given zk, zk+1 ∼ µ
(
zk, ·

)
. The waiting time at time step k, ∆T k =

T k+1 − T k follows an exponential distribution with parameter λ
(
zk
)
, i.e. ∆T k ∼

Exp
[
λ
(
zk
)]

.

Proof. A Markov jump process is continuously memoryless between jumps. From the

definition of Eq. (A.2) this means that for all 0 < s < t

P (∆T > t+ s|∆T > s) = P (∆T > t) (A.5)

P (∆T > t+ s) = P (∆T > t+ s ∩ ∆T > s) = P (∆T > t+ s|∆T > s)P (∆T > s)

= P (∆T > s)P (∆T > t)

from Eq. (A.5). Defining P (∆T > ζ) =
∫∞
ζ f∆T (η) dη where f∆T is the distribution

function of ∆t

P (∆T > t+ s) = P (∆T > s)P (∆T > t) ⇒ f∆T (t+ s) = f∆T (t) + f∆T (s) (A.6)

which can only be satisfied if f∆T (η) = C exp(η) with C ∈ R, which means that f∆T

can only be the exponential distribution.

Definition A.6. For all homogeneous Markov Processes {Z (t) , t ≥ 0}, we can define
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a transition semi-group, {Qt, t ≥ 0}, Qt : S×S → [0, 1], such that ∀z ∈ S and ∀B ∈ S

Qt(z, B) = P (Z (t) ∈ B|Z (0) = z) (A.7)

Qt(z, B) is clearly a probability measure for ∀z ∈ S

A semi-group Qt defines a linear operator Qt such that

Qtf (z) = E [f (Z (t)) |Z (0) = z] (A.8)

for all functions f : S → R, which, following the notation of Eq. (A.4), is usually

written

Qtf (z) =
∫
S

f (z′)Qt (z; dz′) (A.9)

Definition A.7. The infinitesimal generator A of semi-group Q (and of the associ-

ated Markov process), is the operator that is the derivative at the origin of Qt, that

is

Af (z) = lim
h→0

1
h

[Qhf (z) −Q0f (z)] = lim
h→0

1
h

(E [f (Z (h)) |Z (0) = z] − f (z)) .

(A.10)
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