Our group works in the broader field of Quantum Biology and Chemistry (QUBIC), developing out-of-the-box ideas for some of the most intriguing problems at the interface of chemistry, physics and biology. In the emerging field of Quantum Biology, we are developing molecular spectroscopy techniques and quantum-confined materials to provide transformative solutions for detection, diagnosis, and therapy. Our work in detection entails development of facile breath sensing, bioimaging, and optical DNA sequencing techniques. These methods utilize volatile biomarkers in human breath as a quick, inexpensive, and non-invasive detection of human health and wellness; use the window of nominal biological transparency I and II, which combined with photon upconversion, can provide a versatile optical bioimaging and detection system; and provide tools for block molecular identification for different biomolecules using optical molecular vibrational spectroscopy. Development of diagnostics techniques in our group comprises of single-molecule Quantum Molecular Sequencing and Quantum Point Contact Sequencing, based on nanoelectronic spectroscopy, towards a combined genomics, transcriptomics, and epigenomics method. In our efforts towards novel precision therapeutics, our group is developing highly-selective nanotherapies using quantum-confined semiconductor nanomaterials, and using precisely tailored molecular interactions in the cellular environment, to develop targeted therapeutics to eliminate multi-drug resistant pathogens and address the burgeoning problem of antimicrobial drug-resistance. This precision medicine model can also be directed towards molecular therapeutics for a range of targeted diseases. Our work in Quantum Chemistry is directed towards novel photon upconversion; developing transformative nanoscale catalysts for solar-fuel generation using selective quantum-confined states of nanomaterials, and other physical phenomenon like hot-carriers; and developing hybrid nano-bio photocatalysts which combine the selective photochemistry of nanoscale inorganic catalysts with selective fuel generation in biological systems.