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Demographic stochasticity describes the random fluctuations in population size that occur 

because the birth and death of each individual is a discrete and probabilistic event. That 

is, even if all individuals in the population are identical and thus have the same 

probabilities associated with birth and death, the precise timing and other details of birth 

and death will vary randomly between individuals causing the size of the population to 

fluctuate randomly. Demographic stochasticity is particularly important for small 

populations because it increases the probability of extinction. 

 

I. Probabilistic births and deaths 

Demographic stochasticity arises because the birth and death of an individual is 

probabilistic. As an illustration of the concept of probabilistic births and deaths, imagine 

a small founding population of an asexually reproducing organism. This population is 

made up of identical individuals, each of which has the same probability of dying and the 

same probability of giving rise to a new individual within some unit of time. In a 

deterministic setting these conditions would give rise to exponential growth but 
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probabilistic births and deaths give rise to a wider range of dynamical behavior. 

Probabilistic births and deaths means that if one were to repeat an experiment starting 

with the same number of individuals, a plot of the number of individuals through time 

would be different for each replicate of the experiment. Indeed, the dynamical outcomes 

of the stochastic process would include populations that go extinct and populations that 

experience a long lag period of low population size before exponential growth occurs 

(Fig. 1). 

 

[Place figure 1 near here] 

 

A key feature of biological systems that contributes to demographic stochasticity is that 

individuals are discrete units. The probability of birth or death applies to the individuals. 

An important consequence is that biological outcomes are discrete: an individual is either 

born or it is not, or an individual dies or it does not. There can be no partial events, such 

as the birth or death of a fraction of an individual. When these discrete events are 

probabilistic they lead to random fluctuations in population size, such as those illustrated 

in Fig. 1. These discrete, probabilistic events are particularly important when the 

population is small because then the number of events is small and these events can 

combine with high probability in such a way as to drive the population size away from 

the expected value. The expected value of population size is the number of individuals 

averaged over an infinitely large number of realizations of the stochastic process. In 

larger populations, the large number of discrete events tend to average each other out and 
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the dynamics of population size tends toward the expected value and is often well 

approximated by an equivalent deterministic model. 

 

II. Demographic variance 

Demographic stochasticity causes variance in population size around the expected value. 

This variance comes about because each individual within the population contributes a 

deviation from the expected value of the per capita growth rate of the population. The 

variance in these individual deviations from the per capita growth rate is called the 

demographic variance. Sometimes the expected value can be calculated using a 

deterministic model, so one can think of demographic stochasticity as adding variance to 

the deterministic component of the dynamics. For all models, the variance of the change 

in population size due to demographic variance scales with population size such that 

Var(N) = Var(d)N, or alternatively on a per capita basis 
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where N/N is the per capita change in population size N, and Var(d) - the demographic 

variance - is the variance in the individual deviations, d, from the expected growth rate. 

Synonymously, d may be thought of as the deviations in the fitness contributions of the 

individuals from the expected fitness. Eq. 1 shows an important property of demographic 

variance: the contribution of demographic variance to fluctuations in population size 

diminishes as population size increases because the demographic variance is divided by 

population size (see also Fig. 2 (b)). This contrasts with the effects of environmental 

stochasticity for which the contribution to population fluctuations does not diminish with 

increasing population size. This diminishing contribution of the demographic variance 
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means that its effect can be largely ignored compared to the environmental variance when 

the population size is sufficiently large. Precisely how large depends on the ratio of 

demographic to environmental variance for a particular population but empirical studies 

suggest that this is often around a population size of 100, although it ranges over several 

orders of magnitude. 

 

III. Sources of demographic variance 

There are several sources of demographic variance that combine together to cause 

variance in population size (Fig. 2). These can be divided into contributions from the 

within-individual scale and the between-individual scale. The classic notion of 

demographic stochasticity is the contributions from the within-individual scale - the 

probabilistic births and deaths that occur even if all of the individuals within a population 

are identical. However, variation between individuals also contributes to the demographic 

variance, perhaps more so than within-individual variance, although empirical studies of 

the relative contributions in natural populations are lacking. Variation between 

individuals can have both stochastic and deterministic components, so it is sometimes 

called demographic heterogeneity. Examples of demographic heterogeneity include 

variation in fecundity or survival between individuals due to genotype, body size, life 

stage, or age. In the case of sessile organisms, such as plants, the immediate environment 

of the individual can also contribute to between-individual variation. 

 

[Place figure 2 near here] 
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Sexually reproducing species provide an important example of demographic 

heterogeneity because there are two types of individuals, males and females, whereas 

only females can give birth to new individuals. The sex of offspring is probabilistic in 

most species giving rise to stochastic variation in the sex ratio of the population (Fig. 3). 

As for probabilistic births and deaths, variation in the sex ratio is enhanced when the 

population is small. One strategy often used to avoid this complication is to model only 

females and to assume that the abundance of males is sufficient for normal reproduction. 

If the assumption holds, this can be a good strategy, while recognizing that the 

demographic variance of the total population is necessarily greater than that of the female 

population alone. For example, when male and female offspring are equally likely, the 

demographic variance of the total population is often twice as high. 

 

However, variance in the sex ratio can increase the demographic variance beyond this 

simple numerical contribution of males to the population size. There are at least two 

reasons for this. First, if males contribute to density-dependent regulation, fluctuations in 

the sex ratio will have a more dramatic effect on female fecundity or survival. For 

example, if availability of food is a key determinant of female reproductive success, the 

sex ratio is important because males will reduce fecundity by competing with females for 

food. Second, a stochastic sex ratio can mean that there are times when male abundance 

is low enough to reduce the mating success of females. The effect of the sex ratio on 

mating success is sensitive to the mating system. For example, a high female to male sex 

ratio will result in more unmated females in a monogamous population compared to a 

polygamous population. 
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[Place figure 3 near here] 

 

IV. Modeling and analyzing demographic stochasticity 

There are several ways to model the stochastic behavior of a population and to 

incorporate demographic stochasticity. Monte Carlo simulation is the most 

straightforward approach and can be used with any stochastic model regardless of the 

complexity of the model. Monte Carlo simulation uses computational algorithms to 

generate random numbers that simulate the probabilistic events in the stochastic model. 

In continuous-time the Gillespie algorithm can be used to model demographic 

stochasticity. In the Gillespie algorithm a random time interval is generated between the 

individual birth or death events. This random time interval is assumed to have an 

exponential distribution to model demographic stochasticity. An example is shown in 

Fig. 1. In discrete-time models of demographic stochasticity random numbers of births 

and deaths are generated from probability distributions. Common choices to model 

demographic stochasticity are the Poisson distribution for births and the binomial 

distribution for deaths. An example is shown in Fig. 3. These approaches for continuous 

and discrete time explicitly account for the discrete nature of individuals yet do not track 

each individual. Individual based models track the state of each individual in the 

population and may be necessary to model between-individual variation (demographic 

heterogeneity) or other detailed phenomena such as dispersal behavior. Individual based 

models require much greater computation time. 
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A disadvantage of simulation is that it is difficult to draw generalizations beyond the 

particular parameter combinations studied because the results are in a numerical format. 

For a few simple models of demographic stochasticity, exact analytical results can be 

calculated for some quantities of interest, such as the probability distribution of 

abundance at a particular time or the mean time to extinction. However, this is not 

practical or possible for most models. A more general approach uses approximations of 

the master equation. The master equation is important in the theory of stochastic 

processes. It describes the evolution in time of the probability distribution of abundance 

and can be written down for both continuous time and discrete time models. Many classic 

results for stochastic ecological models have been obtained using the Fokker-Planck 

approximation of the master equation, also called the diffusion approximation. The 

Fokker-Planck approximation is most accurate for fluctuations around the carrying 

capacity and for small growth rates but is often inaccurate otherwise. 

 

V. Field measurement of demographic stochasticity 

There are two general approaches to field measurement of demographic stochasticity: 

observation of individual reproduction and survival, and inference from the dynamics of 

population size. Key concerns are distinguishing demographic stochasticity from effects 

of observation uncertainty, density dependence and environmental stochasticity. 

Individual observations are the most efficient and precise but are often not possible. A 

random sample of individuals are observed and the birth of surviving offspring and death 

of the individual are recorded. Typically these observations are made within a single year 

or other period appropriate to the organism's reproductive biology. The demographic 
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variance is then estimated as the sample variance of individual fitness. The demographic 

variance can be density dependent; meaning the variance in individual fitness is a 

function of population density. Observations from multiple years together with records of 

population density are required to measure the effect of density on the demographic 

variance, as well as to measure environmental stochasticity. Environmental stochasticity 

is fluctuation in the mean growth rate between years and so is easily distinguished from 

the demographic variance (e.g. by analysis of variance), although care is needed to 

separate environmental stochasticity from fluctuations due to density dependence. 

 

A second approach estimates the demographic variance from a time series of population 

size. In this approach, different probability distributions are used to represent 

demographic and environmental stochasticity. These probability distributions are fitted to 

the data. For example, the Poisson distribution might be used to represent purely 

demographic stochasticity, whereas the negative binomial distribution might be used to 

represent the combined variation from demographic and environmental stochasticity. In 

the latter case, the variance parameter of the negative binomial distribution measures the 

independent contribution of environmental stochasticity, whereas the remaining (Poisson) 

variation is assumed to be due to demographic stochasticity. To correctly separate 

environmental and demographic variance, sources of demographic heterogeneity also 

need to be represented by probability distributions in the statistical model. An obvious 

drawback of this approach is that a long time series is needed, typically twenty or more 

time points. However, a long time series is also required to measure density dependence 

in the demographic variance when only individual fitness is observed. Because of these 
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constraints, it is common to measure demographic variance at only one time point using 

observations from individuals, even though the demographic variance is unlikely to be 

constant or density independent. 

 

VI. Extinction 

The most important consequence of demographic stochasticity is an increased probability 

of extinction in small populations. This is not only important for the extinction risk of 

populations of conservation concern but is fundamental to a wide range of ecological 

processes. For example, colonization and biological invasion first require small 

populations to persist, which they do with probability equal to one minus the probability 

of extinction. Similarly, for a disease epidemic to occur, the disease must first avoid 

extinction when few hosts are infected. Extinction is fundamental also to community 

processes such as the coexistence of competitors, or predator and prey. To coexist with 

each other in the long term, species must be able to recover from low population density, 

at which time the probability of extinction is increased by demographic stochasticity. 

Finally, extinction of small populations is also important for spatial dynamics, such as in 

metapopulations because demographic stochasticity contributes to the extinction of 

smaller local populations. 

 

For most stochastic models that are ecologically realistic, extinction is ultimately certain 

(the probability of extinction equals 1) because population size is bounded above by the 

carrying capacity. This ensures that population size fluctuates between zero and an upper 

bound, and will eventually hit zero at some time because of demographic and 
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environmental stochasticity. On the other hand, even when extinction is certain, the 

expected time to extinction due to demographic stochasticity alone is often extremely 

long. For these reasons the ultimate probability of extinction is often a meaningless 

measure for assessing extinction risk or comparing models of demographic stochasticity. 

 

There is debate about the best measure to assess extinction in models. One approach, 

often used to assess the viability of threatened populations, is to calculate the probability 

of extinction over a defined time interval, say 100 generations. However, a standard time 

interval has not been agreed upon and studies cannot be easily compared if they use 

different time intervals. An alternative measure of extinction is the arithmetic mean time 

to extinction, MTE. This allows models and studies to be compared on the same scale. A 

related measure is the intrinsic mean time to extinction, Tm, equal to MTE when the 

population dynamics have passed any transient dynamics and reached an established 

phase. This established phase is called the quasi-stationary distribution in stochastic 

process theory. The probability of extinction over any time interval can be calculated 

from Tm together with an additional parameter, c, that describes transient effects or 

dependence on initial conditions (Box 1). 

 

[Place Box 1 near here] 

 

For a wide range of models, the mean time to extinction under demographic stochasticity 

scales exponentially with carrying capacity, K, 

 bKaeMTE  , 
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where a and b are positive constants and their values are determined by the particular 

model being considered. Thus, as carrying capacity (and hence population size) increases, 

the mean time to extinction increases exponentially (Fig. 4). The rate of exponential 

increase depends on the factors contributing to the demographic variance. In particular, 

between-individual variance keeps the extinction risk high despite an increase in carrying 

capacity (Fig. 4). The exponential relationship for demographic stochasticity contrasts 

with environmental stochasticity in which there is a power law relationship between MTE 

and K. Thus, under environmental stochasticity the mean time to extinction increases 

more slowly with carrying capacity, and hence extinction risk remains high. 

 

[Place figure 4 near here] 

 

VI. Calculating extinction measures 

There are several ways to calculate extinction measures for a given model, including 

simulation, deriving exact results, or approximating the master equation. Monte Carlo 

simulation is the most straightforward approach. For example, to calculate extinction risk 

over a defined time horizon, simulate the stochastic model for that time period and record 

whether the population goes extinct in the simulation. Repeat the simulation many times, 

each time generating new random numbers. The proportion of simulations that become 

extinct is an estimate of the extinction risk over that time horizon. For example, for the 

exponential growth model in Fig. 1, 62 out of 1000 simulated populations went extinct 

within a total period of 60 time units. The calculated probability of extinction due to 

demographic stochasticity for that time horizon is therefore 0.062 (about 6 percent). 
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Simulation can be used similarly to estimate the mean time to extinction, MTE. However, 

this brute force approach to estimate the MTE is often not practical for demographic 

stochasticity since the time to extinction in an individual simulation can be extremely 

long. Instead, a method called the ln(1-P0) plot can be used to estimate the intrinsic mean 

time to extinction, Tm, without needing to wait for all runs to go extinct (Box 1). 

 

VII. Origins of the concept 

One of the earliest questions about demographic stochasticity was posed toward the end 

of the 19th century by the English scientist and statistician Francis Galton. The Victorians 

were worried that the aristocracy was dying out. Lineages of important families were 

becoming extinct. It was popular to muse that the comforts enjoyed by the upper classes 

were leading to the biological decline of the aristocracy. Galton himself entertained this 

idea but challenged it with an alternative hypothesis (perhaps proposed to him by the 

French-Swiss botanist Alphonse de Candolle) that the extinction of aristocratic lineages 

could instead be due to probabilistic births and deaths. Galton and the mathematician 

Rev. Henry Watson offered a mathematical solution for surname extinction in the Journal 

of the Anthropological Institute of Great Britain in 1874 but it wasn't until 1930 that it 

was correctly and independently solved by the Danish mathematician Johan Steffensen. 

A year later in 1931, the American mathematical biologist Alfred Lotka applied 

Steffensen's solution to US census data - perhaps the first time a model of demographic 

stochasticity was confronted with data. Lotka determined that the probability of 

extinction of a male line of descent was 0.88. Demographic stochasticity became a hot 

topic for about the next 30 years as part of the emerging field of stochastic processes. 
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Fundamental contributions to the idea of demographic stochasticity were made during 

this period by such luminaries as the English statistician Ronald Fisher, the Croatian-

American mathematician William Feller, and the Russian mathematician Andrey 

Kolmogorov. The English statisticians Maurice Bartlett and David Kendall in particular 

made many important contributions. Considerations about demographic stochasticity 

developed during this period include density dependence, disease epidemics, age 

structured populations, interspecific competition, predator-prey dynamics, spatially 

structured populations, maximum likelihood estimation, and analytical derivations for the 

mean time to extinction. The term "demographic stochasticity" appears to have been 

coined by the Australian theoretical ecologist Robert May in 1973. 

 

 

Glossary 

 

demographic heterogeneity random or deterministic variation in intrinsic vital rates 

between individuals that contributes to the demographic variance. 

 

demographic stochasticity the random fluctuations in population size that occur because 

the birth and death of each individual is a discrete and probabilistic event. 

 

demographic variance variance in the deviations of individuals from the expected 

fitness of the population. The demographic variance can have components contributed by 

both within and between-individual variation. 
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expected value the average over an infinitely large number of realizations of a stochastic 

process. 

 

Monte Carlo simulation to simulate the probabilistic events in a stochastic model, 

random numbers are generated using a computational algorithm. 

 

MTE the arithmetic mean time to extinction, or expected time to extinction. 

 

Tm intrinsic mean time to extinction. Equal to MTE when the population dynamics have 

passed any transient dynamics due to initial conditions and reached an established phase 

called the quasi-stationary distribution. 

 

Gillespie algorithm a Monte Carlo algorithm used to simulate probabilistic births and 

deaths in continuous time. A random time interval between the individual birth or death 

events is generated from an exponential distribution. 
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Figure 1. Demographic stochasticity caused by probabilistic births and deaths of discrete 

individuals. Variation from demographic stochasticity is illustrated here by ten 

representative realizations of population growth from 1000 Monte Carlo simulations of 

the same stochastic model. Dynamical outcomes included populations that experienced 

exponential growth (some fast, some slow), populations that experienced a long period of 

low population size before exponential growth occurred, populations that did not grow at 

all during the period, and 62 populations that went extinct. This contrasts with the 

equivalent deterministic model of exponential growth (dashed black line). Of simulations 

that did not go extinct, shown are the simulations with the highest and lowest number of 

individuals at the end of the simulation, as well as the 2.5th, 25th, 50th, 75th, and 97.5th 

percentiles. Of simulations that went extinct, shown are the shortest, median, and longest 

extinction times. Triangles show the time of extinction. Model details: individuals were 

identical and reproduced asexually; births and deaths were density independent with rates 
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0.2 and 0.1 respectively; initial population size was 4 individuals. The Gillespie 

algorithm was used to simulate the continuous time stochastic process. 
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Figure 2. How sources of demographic variance combine together to cause variance in 

population size illustrated with a stochastic Ricker model. In this example, sources of 

demographic variance can be divided into contributions from probabilistic births and 

deaths at the within-individual scale (W), probabilistic sex determination (S), and 

differences in female fecundity at the between-individual scale (B). (a) Stochastic 
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fluctuations in population size measured by Var(N). The Ricker model is a discrete time 

model, so the change in population size is N = Nt+1 - Nt. Compared to probabilistic 

births and deaths alone (W), the stochastic fluctuations are increased by probabilistic sex 

determination (WS). Stochastic fluctuations are further increased when fecundity differs 

between females (WSB). (b) As in (a) but with stochastic fluctuations measured on a per 

capita basis to show the declining importance of demographic stochasticity with 

population size. Model details: births for individual females were Poisson; variation in 

intrinsic birth rate between females was gamma with mean 20 and variance 55; density 

independent mortality was Bernoulli with probability 0.5; density dependent mortality 

was Bernoulli with probability Ne 1 , where N is the size of the population and  = 

0.05; probability of female offspring was 0.5. 
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Figure 3. One Monte Carlo simulation of a stochastic Ricker model with several sources 

of demographic variance, including stochastic sex determination. The population went 

extinct after 74 generations. (a) Fluctuations in total population size. (b) Fluctuations in 

the proportion of females. The model is the WSB model in Fig. 2 with the same details. 
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Figure 4. The mean time to extinction increases exponentially with carrying capacity due 

to demographic stochasticity. Populations go extinct more rapidly when the carrying 

capacity is low. The example is a stochastic Ricker model as in Fig. 2. Compared to 

probabilistic births and deaths alone (W), extinction risk is increased by probabilistic sex 

determination (WS) and when fecundity differs between females (WB, WSB). Model 

details were the same as in Fig. 2 except: variation in intrinsic birth rate between females 

was gamma with mean 10 and variance 10; density independent mortality was Bernoulli 

with probability 0.6. 
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Box 1. Estimating the mean time to extinction. 

An approach called the ln(1-P0) plot can be used to estimate the intrinsic mean time to 

extinction, Tm, for a stochastic population model by simulation (Grimm and Wissel 2004, 

Oikos 105: 501-511). In most stochastic population models the probability distribution 

function of extinction times is well approximated by an exponential structure or is exactly 

exponential. The ln(1-P0) plot takes advantage of this exponential structure. The 

approach has four steps: 

1) Simulate the model a moderate number of times (e.g. 1000-5000) over a defined time 

interval (e.g. 1000 years). 

2) Calculate P0(t), the probability of becoming extinct by time t, from the empirical 

cumulative distribution function for the simulated extinction times. 

3) Plot -ln(1-P0) against t. This should show a linear relationship as in panel (a). If the 

relationship is not linear, the ln(1-P0) plot should not be used to estimate Tm. 

4) Fit a linear regression to estimate the parameters of this linear relationship (panel a). 

The inverse of the slope gives the intrinsic mean time to extinction, Tm, while the 

intercept, c, gives the probability of reaching the established phase. 

This approach relies on extrapolating the distribution function to long extinction times 

that are beyond the simulation time. That is, simulations that went extinct within say the 

first 1000 years are used to estimate the parameters of the exponential distribution for all 

possible extinction times (panel b). The approach can also be used when all simulations 

are allowed to go extinct. Sources of error in the estimation of Tm include Monte Carlo 

error and extrapolation error. Monte Carlo error can be reduced by increasing the number 

of replicate simulations. 
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The example given here is for a stochastic Ricker model with two sources of 

demographic variance: within-individual variance (probabilistic births and deaths) and 

between-individual variance generated because the sex of individuals is stochastically 

determined. (a) The ln(1-P0) plot showing the expected linear relationship and the fitted 

linear regression. The estimated slope was 1.3x10-4. The inverse of the slope is the 

estimated intrinsic mean time to extinction Tm = 7719 generations. The estimated 

intercept was c = 0.9982, which is very close to 1.0 and indicates that transient effects 

were minimal. The model was simulated 5000 times for 1000 generations starting from 

near the carrying capacity of the population (35 individuals). (b) Comparison of the 

extrapolated distribution of extinction times from the ln(1-P0) plot with the known 

distribution, showing that the ln(1-P0) plot accurately extrapolates to the full distribution. 

The known distribution is represented by a histogram of extinction times from about 67 

000 simulations of the model, each time allowing the simulation to run to extinction. The 

lines show the fitted distribution of extinction times from the ln(1-P0) plot. Red indicates 

the area where the distribution was fitted by the ln(1-P0) plot while the dashed line shows 
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the extrapolated distribution. The estimated mean time to extinction from the full 

simulation was 7705 with standard error 30, so the mean time to extinction of 7719 

estimated by the ln(1-P0) plot was within the error bounds and within 0.2% of this more 

precise estimate. Model details: births for individual females were Poisson with mean 10; 

density independent mortality was Bernoulli with probability 0.6; density dependent 

mortality was Bernoulli with probability Ne 1 , where N is the size of the population 

and  = 0.02; probability of female offspring was 0.5. 

 


