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Chapter 6: Scale Transition Theory for 
Understanding Mechanisms in Metacommunities

Peter Chesson, Megan J. Donahue, Brett A. Melbourne, and Anna L. W. Sears

Introduction
Ecological findings on small spatial or temporal scales often do not extrapolate to larger scales
(Englund and Cooper 2003; Horne and Schneider 1995; Kareiva 1990; Weins 1989) .  This
empirical pattern has a parallel in ecological theory: In many model systems, the rules devised
for population dynamics on small spatial or temporal scales can be quite different from those that
emerge on large scales (Levin 1992). For example, in models of host-parasitoid systems, the
highly unstable Nicholson-Bailey model might describe local population dynamics, but
combined with spatial environmental variation, these local-scale instabilities may give rise to
dynamics on the larger spatial scale described by the potentially highly stable host-parasitoid
models of Bailey et al (1962) and May (1978).  Indeed, theoretical examples abound where the
rules assumed on a small scale lead to contrasting outcomes on a larger scale, including changes
in stability properties of single species models, conversion of competitive exclusion into
competitive coexistence, and more mundane cases involving simply changes in quantitative
features of models, such as mean densities (Chesson 2001).  

These results from theory are interesting for two reasons.  First, they may explain at least some
failure of small-scale experimental findings to translate to larger scales.  Second, they may
provide a means of extrapolating, or “scaling up,” findings for small scales to larger scales.  The
metacommunity concept itself naturally owes its importance primarily to these issues of changes
in rules with changes in scale, as exemplified by early metacommunity models (Caswell 1978;
Hastings 1977; Hastings 1980, see review in Chapter 4; Slatkin 1974). 

A complete ecological theory should explain community dynamics on all scales (Levin 1992). 
Critical interactions between individual organisms occur over a range of scales (Chesson 1998a;
Murrell and Law 2003), but these scales are mostly small.  Scaling up theoretical findings from
small scales is therefore essential. In classical (Hanski 1999), or equivalently, strict (Chesson
2001) metacommunity models, it is assumed that interactions between individuals take place
within local communities, but also that local communities do not persist. It follows that the
system as a whole cannot be understood without reference to the larger scale of many local
communities, which we refer to here as the regional scale, or metacommunity scale.  This strict
metacommunity scenario represents one extreme of spatial structure that pervades ecological
systems.  Interactions seen on a local scale have implications that are necessarily modified by
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dispersal from other localities in different states.

Scale transition theory (Chesson 1998a) is an attempt to systematize the study of how local-scale
dynamical rules become modified as larger scales are taken into account.  It unites analytical,
simulation, and empirical approaches to an ecological question through key explanatory
quantities accessible in all three approaches.  The broad outline of scale transition theory was
formulated many years ago (Chesson 1978; Chesson 1981), but rising theoretical and empirical
interest in scale-dependent phenomena imply broad potential for its use. In essence, scale
transition theory explains changes in dynamical rules with changes in scale in terms of
interactions between spatial or temporal variation and nonlinear dynamics on local spatial scales.
Many ecological processes lead to nonlinear dynamics including intra- and inter-specific
competition, predation, and mutualism. At the same time, spatial heterogeneity is a pervasive
feature of ecological systems.  It should not be surprising that their combined effects are
important. 

The scale transition approach describes local ecological interactions mathematically in order to
characterize their nonlinear nature.  It then scales-up by averaging the formulae describing local
interactions over space.  Regional dynamics are then described by the "mean field", i.e., regional
dynamics in the absence of spatial variation, plus the "scale transition", which quantifies how
spatial variances and covariances of population densities and environmental factors interact with
local nonlinearities to modify regional dynamics.  

Traditional approaches to metacommunities emphasize colonization and extinction dynamics of
local populations connected by dispersal, with limited attention to the details of local community
dynamics (Nee et al. 1997, Chapter 4).  Scale transition theory provides an alternative
framework to understanding metacommunities in which the details of local dynamics are central.
Scale transition theory can be applied to systems in which colonization and extinction are
important features of local communities, but also applies broadly to spatially structured systems
regardless of the importance of local extinction and recolonization.  Thus, scale transition theory
avoids the criticism of traditional metacommunity models that the basic model structure is too
limited to apply to many systems in nature (Harrison and Taylor 1997).

To introduce the basic concepts of scale transition theory, we open with a discussion of how
spatial variation in parasitism can stabilize host-parasitoid interactions.  This example illustrates
a fundamental formula for discrete-time models whereby average individual fitness over a spatial
region is expressed in terms of a mean-field component, interactions between nonlinear fitness
and spatial variance, and covariation between fitness and density. Next, we show how this
formula applies to patch models, which we illustrate using a model with local logistic dynamics,
and discuss the role of dispersal in generating the spatial variances and covariances critical to the
scale transition.  We then extend the discrete-time formulation to continuous time and use it to
understand coexistence of competitors in spatial Lotka-Volterra and related models. Our final
model development illustrates the full power of scale transition concepts in the study of
coexistence of annual plant species in a spatially varying environment.  In conclusion, we relate
the scale-transition approach to other developments of spatial dynamics as applied to
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metacommunities.  In Chapter 14, we apply the results presented here in three empirical systems.

General discrete-time formulation of the scale transition for variation in space
An individual at some location x in space has a fitness, 8x, which measures the average
contribution of an individual at x to the population after some defined interval of time. Space can
be continuous or discrete. Thus, x might represent a patch, a point in continuous space, or a point
on a discrete lattice. Time is assumed discrete – continuous-time formulations are discussed later
and replace 8x with a per capita growth rate.   

We use the example of host-parasitoid models, as presented in Box 1, to introduce the
fundamentals of scale transition theory.  Host-parasitoid models have had a key role in the many
decades of theoretical research that has attempted to explain the persistence of exploiter-victim
interactions (Hassell 2000; Murdoch et al. 2003). In host-parasitoid models, the primary factor
affecting host fitness is the spatially-varying parasitoid density, Px, and so 8x = f(Px).  Under
Nicholson-Bailey assumptions for local dynamics,  f  is an exponentially declining nonlinear
function, as illustrated by the solid line in figure 1. If the parasitoid were homogeneously
distributed in space, this exponential decline in host fitness with parasitoid density would lead to
violent fluctuations in regional-scale host and parasitoid densities, matching the local scale
dynamics. In contrast, with enough spatial variation in parasitoid density, these violent
fluctuations are replaced by convergence of the regional population densities on a stable
equilibrium point, as discussed in Box 1.  

The effects of spatial variation and nonlinearity on spatial average fitness
To understand how stability results from spatial variation in the host-parasitoid model, note that
the spatial averages, and , of host and parasitoid densities are the regional-scale densities. N P
We then ask how the spatial average, , of 8x depends on these regional-scale densities. λ
Particular formulae are given in Box 1, but Figure 1 gives a graphical illustration for the case
where Px varies between just two values equal to a fraction of  and a multiple of , whichP P
might occur if the system consisted of just two patches.  The relationship between andλ

traced out as varies is given by the dashed curve in the figure.  The diamonds illustrateP P
how this curve is calculated.  They lie at the midpoints of line segments connecting (Px, 8x)
points for pairs of low and high parasitoid localities. The midpoint of a line segment is
necessarily the simple average of the end points of the same line segment. Because the function
f(Px) curves up (is concave up–see Box 2), the midpoints of the line segments are necessarily
above the original curve.  Thus, , i.e. spatial average fitness ( , which equals( )f Pλ > λ

) exceeds that predicted by the local relationship between fitness and parasitoid density( )f P
( ).  Of most importance for regional stability, the decline in as a function of is much( )f P λ P
more moderate than the decline in 8x as a function of Px .

This effect of variation in parasitoid density on mean fitness is a particular illustration of the
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phenomenon of nonlinear averaging (Box 2) where a nonlinear function of some variable
quantity is averaged, and the result differs from the nonlinear function of the average of that
variable quantity.  Here 8x = f(Px), but .  When the nonlinear function f curves in a( )f Pλ ≠
consistent direction (i.e. is concave up or concave down), the direction of the deviation between
the average of the function, ,  and the function of the average, , is predictable and is( )f P ( )f P
known as Jensen’s inequality (Box 2). 

The importance of the fitness-density covariance and individual average fitness
Given the more moderate behavior of the spatial average fitness as a function of average
parasitoid density in the host-parasitoid model, it is not surprising that the regional-scale
dynamics are more stable in the presence of spatial variation.  To draw firm conclusions,
however, we must determine the extent to which determines regional scale populationλ
dynamics. If 8x is fitness for the period t to t + 1, the individuals at location x and time t,,x tN
give rise by reproduction and survival to  individuals at time t + 1.  If some of these,x x tNλ
disperse, then , but assuming dispersers do not leave the region, the total, 1 ,x t x x tN Nλ+ ≠
density in the system at time t + 1 is nevertheless

. (6.1), 1 ,x t x x tx x
N Nλ+ =∑ ∑

Dividing equation (6.1) by the number of local sites x in the system now shows that the
dynamics of the regional scale population density, , are given by the equationN

, (6.2)1t t tN N Nλ λ+ = =

where is the average of 8x over all individuals in the population, and is given by the formulaλ
= = .  Of most importance, average individual fitnessλ /t tN Nλ , ,/x t x t xx x

N Nλ∑ ∑
determines regional-scale population dynamics, because (6.2) says .  1t tN Nλ+ =

To relate average individual fitness, , to the spatial average fitness, , we define the relativeλ λ
density at location x as<x  = , i.e. the density at location x compared with the average/x tN N

density in the system. Then we see that can be expressed asλ
,  (6.3)λ λν=

i.e., the spatial average of 8x<x. Expression (6.3) is the average of a product, which is therefore
equal to the product of the average, , plus the covariance, , between them (Boxλ ν⋅ Cov( , )λ ν
2).  As is necessarily 1, this means thatν

, (6.4)Cov( , )vλ λ λ λ ν= = +
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(Chesson 2000a). Thus, we see that differs from by the spatial covariance, Cov(8,<),λ λ
between fitness of an individual at location x and the relative density there, which is called the
fitness-density covariance (“growth-density” covariance in Snyder and Chesson (2003)). 

For any system, equation (6.4) says that the spatial average fitness, , is equal to the averageλ
individual fitness, , when the fitness-density covariance is zero.  For the host-parasitoidλ
model, the fitness-density covariance is zero whenever host density is uncorrelated with the
incidence of parasitism, which is in fact not uncommon in nature (Pacala and Hassell 1991).  In
such cases, the conclusions above about are also conclusions about ; that is, sufficientλ λ
spatial variation in Px stabilizes the host-parasitoid interaction (Box 1).  In cases where the
fitness-density covariance is not zero, it is still possible for spatial variation to be stabilizing
(Box 1), but the relevant calculations have to include this covariance.

To generalize these ideas, fitness can be simply a nonlinear function of some factor Wx
determined by the point x in space:

8x = f(Wx). (6.5)
Ideally, Wx is some quantity whose spatial average is meaningful.  In the host-parasitoid
example, where Wx = Px, the spatial average is simply parasitoid density on the larger spatial
scale, which is both perfectly meaningful and useful.  Such utility need not apply to other fitness
factors; for example, choosing Wx = ln Px would not help, because the spatial average of ln Px is
not meaningful. 

General scale transition formulae
For general fitness factors, a simple and standard approximation to Jensen’s inequality allows us
to see just how the scale transition works (Chesson 1998b, Box 2). Here, equation (6.5) means
that 

. (6.6)1
2( ) ( ) ( )Var( )f W f W f W Wλ ′′= ≈ +

Thus, the relationship of average fitness to average W differs from the relationship that applies
locally in space by an amount that is approximately proportional to the variance, Var(W), of the
fitness factor W. The proportionality constant, , is a measure of the nonlinearity of the1

2 ( )f W′′
local-scale relationship between fitness and Wx at the mean of Wx.
To obtain the relationship between average individual fitness, , and we must add theλ W
fitness-density covariance to equation (6.6).  As explained in Box 2, this covariance can be
approximated as

. (6.7)Cov( ( ), ) ( )Cov( , )f W f W Wν ν′≈

Combining equations (6.6) and (6.7), we obtain a general purpose approximation to :λ
. (6.8)1

2( ) ( )Var( ) ( )Cov( , )f W f W W f W Wλ ν′′ ′≈ + +

The first term, , is simply the nonspatial formula for 8, and is commonly referred to in the( )f W
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literature as the “mean field.”  We define the “scale transition” to be the difference - ,λ ( )f W
which is expressed here as the effects of variance in local nonlinear dynamics,

, and fitness-density covariance, .1
2 ( )Var( )f N N′′ ( )Cov( , )f W W ν′

 
In Box 1, this formula is applied to the host-parasitoid model to give a simple understanding of
how is changed by various spatial relationships.  It applies generally, however, to spatialλ
models represented in discrete time, whether they are spatially explicit, spatially implicit, patch
models, lattice models or continuous space models. Moreover, it does not matter whether
population sizes, Nx, are represented as continuous variables, or are discrete.  In continuous-
space discrete-Nx models, for example, Nx is zero at most points in space, and takes the value 1 at
places where an individual is present. In continuous space models, and in many lattice models,
Wx is not simply a function of population densities and environmental factors at the point x, but
instead depends on conditions around x expressed as a summary of the densities and
environmental factors in a neighborhood centered at x (Neuhauser and Pacala 1999), or as
averages of these factors weighted inversely with distance from x (Pacala and Silander 1985),
using functions called competition kernels.   It should be noted, however, that approximations
like those above work best when spatial variation in Wx is small, and so should be regarded
primarily as giving the initial trends for the scale transition as spatial variation is increased from
small values (Box 2).

Patch models
In patch-model approaches to spatial dynamics, the location of an individual has the resolution
of a patch, and the dynamical equations are formulated in terms of the output of a patch, 8xNx. In
the simplest models this output is just a function of Nx:   

8xNx = F(Nx). (6.9)
Previous discussions of the scale transition have emphasized patch models pointing out that 

(6.10)1
1 2( ) ( )Var( )t t tN N F N F N Nλ+ ′′= ≈ +

(Chesson 1998a; Chesson 1998b), giving the mean field term , and scale transition term( )tF N
.  This result is just another instance of the approximation (6.B2.5) for1

2 ( )Var( )tF N N′′
Jensen’s inequality (Box 2).  Figure 2 shows how this works when Nx varies between just two
values, for example if the regional scale consists of just two local-scale patches.

The curve in Figure 2 is the logistic equation, i.e. F(N) = N[1 + r(1 - N/K)], for which
.  From (6.10), we obtain an equation for population dynamics in the form( ) 2 /F N r K′′ = −

, (6.11)1 1 1 Var( )t
t t

N rN N r N
K K+

  
= + − −  

  
which is exact because the logistic equation is quadratic and so approximation  (6.10) is exact. 

In Box 2 it is shown that these patch-model approximations for the scale transition are special
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cases of the previous approximations focusing on .  Note that here F(N) = f(N)N, W = N,λ
Var(W) = Var(N) = Cov(W, N) = , and so equation (6.8) for impliesCov( , )N W ν λ

, (6.12)( )1
1 2( ) ( )Var( ) ( )Vart t t t t t tN N f N N f N N N f N Nλ+ ′′ ′= ≈ + +

where the first term of equation (6.12) is the mean field, and the second two terms are scale
transition terms summing to but dividing this quantity into the effect of1

2 ( )Var( )F N N′′
variance in nonlinear fitness and the effect of fitness-density covariance.  

For the logistic, the fitness function  f is linear and so . Thus, in the logistic all the( ) 0f N′′ =
effects of the scale transition come from the fitness-density covariance.  Substituting the logistic
formula into expression (6.12) reproduces the previous patch-model formula( ) /f N r K′ = −
(6.11) exactly.  Alternatives to the logistic, such as the Ricker model (Chesson 1998a), and the
Ayala-Gilpin 2-logistic model (Chesson 1991b) have nonlinear fitness functions, i.e.

, and all terms of the regional equation (6.12) are nonzero with these models for( ) 0f N′′ ≠
local population dynamics.

Spatial variance, population dynamics and dispersal
The development above omits explicit consideration of dispersal.  By focusing on 8x , or the
output of a patch, 8xNx, the equations are correct for any mode of dispersal provided any
mortality that occurs during dispersal is factored into 8x (Chesson 1998a).  The effects of
dispersal are expressed by the relevant spatial variances and covariances, which we have left
unspecified. To allow population dynamics to be fully understood, the way these variances and
covariances change over time, and especially how they depend on mean population densities,
needs to be known.  Determining such relationships is the subject of moment closure
approximation techniques (Bolker and Pacala 1997), and can be difficult and highly complex
because these relationships depend not only on dispersal but also on local dynamics and
environmental variation.  However, in certain cases, these relationships are simply determined
(Chesson 1998a).  For example, if most individuals disperse, and dispersal is over long distances
with the physical environment determining where individuals concentrate, then Nx,t can be
modeled as 

, (6.13),x t x tN U N=
where Ux varies in space (and possibly in time also) encoding features of the physical
environment that influence dispersal to location x. Here the relative density,<x, is simply Ux. 
With this model Var(N) = Var(U) , i.e. the variance is proportional to the square of mean2

tN
density, and so the coefficient of variation of density in space is constant over time, and
determined by spatial variation in the physical environment.  In contrast, when patchiness in
space is determined by demographic stochasticity rather than environmental variation, long-
distance dispersal implies that Var(N) is proportional to (Chesson 1998a). tN
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Substituting the model (6.13) for the variance into the logistic formula (6.11), leads to regional-
scale dynamics that are logistic like the local-scale dynamics. Spatial variance has the effect of
strengthening the density dependence at the regional scale, which is revealed as a lowered
carrying capacity:  The new value of K equals the old value divided by (1 + Var(U)).  The
regional dynamics of the system are altered quantitatively by spatial variation, but the rules for
regional dynamics do not differ qualitatively from the rules applicable to inputs and outputs of a
patch at the local scale.  However, when the linear fitness function, f(N), of the logistic model is
replaced by the more realistic nonlinear f(N) of the Ricker model, regional-scale dynamics can
be changed qualitatively by environmentally-dependent dispersal (Chesson 1998a). Although
local scale dynamics may be chaotic, in the Ricker model, environmentally-dependent dispersal
can lead to highly stable regional dynamics.  Similar, though much weaker effects, are possible
from demographic stochasticity (Var(N) proportional to ), in both the logistic model (ChessontN
1998b) and the Ricker model (Chesson 1998a).

Continuous time
From the perspective of the scale transition, the distinction between discrete time and continuous
time is not large.  In continuous-time models, 8x is replaced by the local per capita growth rate rx

= (dNx/dt)/Nx as the fitness measure, with average individual fitness now denoted .  The growthr
of a population at the regional scale then takes the form

. (6.14) { }Cov( , )dN rN r N r r N
dt

ν= = ⋅ = +

In cases where rx has the representation rx = f(Wx), we have the general quadratic approximation

, (6.15){ }1
2( ) ( )Var( ) ( )Cov( , )dN f W N f W W f W W N

dt
ν′′ ′≈ + +

which specializes to forms analogous to (6.10) and (6.12) in the appropriate patch-model
circumstances.  Here is the mean field, and the remaining terms give the scale( )f W N
transition in terms of local nonlinearity and fitness-density covariance.

Lotka-Volterra competition models
A particular illustration of the formula (6.15) has been given by Bolker and Pacala (1999) for a
continuous space Lotka-Volterra competition model. In their model, Wx represents the total of
intraspecific and interspecific competition experienced by an individual at x, which is assumed to
be linearly related to the densities of competitors in neighborhoods centered on the point x. Their
model can be simplified to a patch model without loss of information for our purposes.  Then Wix
can be defined as "iiNix + "ijNjx, where the "s are competition coefficients in the form advocated
in Chesson (2000b), and rix = fi(Wix) = ri(1 - Wix), where ri is the intrinsic rate of increase for
species i. Thus, the local dynamical equation in the absence of dispersal is 

. (6.16)( ) { }1 1i
i i i i ii i ij j i

dN r W N r N N N
dt

α α= − = − −

When expressed in this form, the criteria for species coexistence on the local scale are simply
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, (6.17)/ 1,jj ij i jα α > ≠
i.e. local-scale intraspecific competition must exceed local-scale interspecific competition
Chesson (2000b).

As fi is linear here, expression (6.15) is exact and reduces to  

 . (6.18)
{ } { }

{ } { }
1 Cov( , )

1 Var( ) Cov( , )

i
i i i i i i i

i ii i ij j i i ii i ij i j

dN r W N r W N
dt

r N N N r N N N

ν

α α α α

= − −

= − − − +
(Lloyd and White (1980) produced a similar expression using the concept of “mean crowding,”
which is an important precursor to scale transition concepts, but applies only to linear fitness
functions.)  In equation (6.18), the mean field is , i.e., the local Lotka-{ }1i ii i ij j ir N N Nα α− −
Volterra equations (6.16) with regional variables subsituting for local variables.  The linearity of
fi means that the scale transition is simply the fitness-density covariance.  Bolker and Pacala
focus on spatial variation that arises from demographic stochasticity and spatially local dispersal,
and uncover a variety of situations where the fitness-density covariance is responsible for species
coexistence. For example, they note that a locally dispersing species with a high ri can coexist
with a superior competitor that lacks these traits even though the superior species excludes the
other in the nonspatial case.

The most difficult feature of the Bolker and Pacala analysis is derivation of dynamical equations
for the relevant spatial variances and covariances using moment closure approximation (see 
Spatial Variance, Population Dynamics and Dispersal, above).  For a much simpler illustration of
how coexistence may result from the fitness-density covariance terms in equation (6.18), assume
that dispersal is rapid, and influenced by the physical environment so that Nix is well
approximated by , as in the previous section.  Here the physical environmental effectsix iU N
encoded in Uix may differ between species.  

Defining Fii = Var(Uix) and Fij = Cov(Uix, Ujx) we have Var(Ni) = , and Cov(Ni, Nj) =
2

ii iNσ
.  Substituting into equation (6.18), we obtain ij i jN Nσ

, (6.19){ }1 (1 ) (1 )i
i ii ii i ij ij j i

dN r N N N
dt

α σ α σ= − + − +

i.e. the dynamics at the regional scale are again given by Lotka-Volterra equations, but the
competition coefficients differ from the local scale coefficients: "ii is replaced by "ii(1 + Fii) and
"ij is replaced by "ij(1 +Fij).  Applying standard Lotka-Volterra coexistence criteria from
Chesson (2000b), it follows that the species coexist if  

, i … j. (6.20)
(1 ) 1

1,  or equivalently 
(1 ) 1

jj jj jj ij

ij ij ij jj

α σ α σ
α σ α σ

+ +
> >

+ +
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The left hand inequality simply says that regional scale intraspecific competition must exceed
regional scale interspecific competition. Variation in space modifies the regional-scale
coefficients over the local coefficients necessarily increasing regional-scale intraspecific
competition, "jj(1 + Fjj), because Fjj is a variance and must be positive.  However, regional-scale
interspecific competition, "ij(1 +Fij), need not be increased because Fij can be negative or zero. 
Moreover, the covariance , where D is the correlation in space between equals ij ii jjσ ρ σ σ
Nix and Njx. 

A zero value of D means that the species use space independently, and the covariances are also
zero.  A D of 1, on the other hand, means identical use of space by the two species; and if the
variances are equal, the covariances are the same as the variances.  Then spatial variation terms
cancel out of criterion (6.20) indicating for that case an absence of any effect of spatial variation
on coexistence.  However, identical use of space is unlikely, meaning that correlations in space
are bound to be less than 1. Thus, whenever the variances are similar for the two species (i.e.jjσ
the species have similar coefficients of variation of density)  the ratio is less(1 ) /(1 )ij jjσ σ+ +
than 1, and the criterion (6.20) is more easily satisfied. In particular, coexistence can occur at the
region-scale even when local-scale interspecific competition exceeds local-scale intraspecific
competition.

This example is just one illustration of how differences between species in the use of space can
contribute to species coexistence.  This possibility was first elucidated in spatial Lotka-Volterra
models with rapid dispersal by Shigesada and Roughgarden (1982). Analogous to these spatial
Lotka-Volterra competition models are discrete-time spatial models of insects competing for
patchily distributed resources (Atkinson and Shorrocks 1981; Ives 1988). Coexistence is known
to result in these models when intraspecific spatial aggregration is stronger than interspecific
aggregation.  Such spatial aggregation can be measured by variances and covariances analogous
to Fii and Fij given here (Ives 1991).  With few exceptions (Heard and Remer 1997; Remer and
Heard 1998), the spatial coexistence mechanism in these models has been found to be equivalent
to spatial niche differences (Chesson 1991a; Green 1986; Hartley and Shorrocks 2002) or the
spatial storage effect (Chesson 2000a).  

Spatial variation need not always promote coexistence in these sorts of models, however.  For
example, the criteria (6.20) imply that coexistence might be converted into competitive exclusion
when species covary positively in space and have very different spatial variances. Moreover, in
other models for dispersal, such as slow short-distance dispersal, heavily influenced by
demographic stochasticity (Bolker and Pacala 1999), the Lotka-Volterra equations are not
recovered at the regional level, i.e. regional dynamics are qualitatively different from local
dynamics.  In particular, the regional-level competition coefficients are density-dependent, and
the regional-level coexistence criteria are far more complex than those above.

Coexistence mechanisms in a spatially variable environment 
Scale transition ideas have been developed most extensively in the formulation and analysis of
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mechanisms of competitive coexistence in a variable environment (Chesson 2000a; Snyder and
Chesson 2003). In variable-environment competition theory, particular biological processes
generate particular types of nonlinearity and define distinct classes of coexistence mechanism.
Aspects of this theory are illustrated here using the annual plant model defined in Table 1. 

As defined by equation (6.T1.1), the fitness of an individual seed involves two pathways in the
life cycle. First, in any given year a seed may remain dormant, and either survive to the next year
or perish. Second, it may germinate, then potentially survive as a seedling, grow, experience
competition, and produce seed, some of which may perish before the next year.  Each of these
events occurs with a probability or magnitude determined by the life-history parameters defined
in the table.

Each of the life-history parameters in the table could vary spatially with the environment in ways
that differ between species, defining species-specific responses to environmental conditions.
Competition is also spatially variable, and its magnitude at location x is expressed in the model
by the quantity Cx (the “competitive response”), which combines the effects of intraspecific and
interspecific competition for any species. However, we assume that Cx is the same for each
species, precluding the possibility of coexistence in the absence of variation in fitness in space or
time.  Although not varying with species, Cx varies in space because population densities vary in
space as a consequence of spatial variation in life-history parameters. In addition, and more
importantly for species coexistence, Cx may be spatially variable because it is directly a function
of two life-history parameters that may vary in space.  These life-history parameters are G, the
germination fraction, which affects the initial number of competing seedlings, and V, which
expresses seedling survival and growth, and hence demand for resources by an individual
seedling as a function of the local physical environmental conditions. Thus, variation in G and V,
due to spatial variation in the environment, of necessity leads to the phenomenon of covariance
between environment and competition (Chesson 2000a), which has a critical role in species
coexistence, as we shall see.

To illustrate the behavior of the model under a variety of contrasting circumstances, we consider
some simple extreme environmental scenarios (Chesson 1985).  The first, and simplest
environmental scenario is the case of pure spatio-temporal environmental variation where the
environment fluctuates independently in space and time, and, as a consequence, averages out to a
constant in space and in time.  Second is the case of pure spatial variation where the physical
environment varies only spatially.

Several simplifying assumptions are introduced to facilitate analysis. First we consider spatial
variation in just one parameter at a time, and we assume that the species have identical
parameters except for those varying with the environment, which we term “environmental
responses.”  Environmental responses are assumed here to differ between species in their means
but not in their variances.  Second, we assume that environmental responses vary independently
between species over space or space and time. Third, we assume a patch model where plants
interact with each other homogeneously within patches, but disperse between patches.  Fourth,
just two kinds of dispersal are considered: (a) widespread dispersal where all new seed is divided
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evenly between patches, and (b) widespread dispersal with local retention where a fixed fraction
p of the new seed is retained in the natal patch. The number of patches will be assumed to be
effectively infinite. Finally, we restrict attention to just two species. Much more general
treatments of species coexistence in spatially variable environments are possible (Chesson
2000a), but require more detailed analysis than can be given here. 

To analyze the model, we must first express the fitness of an individual in terms of spatially
varying factors. Thus, using the equation 6.T1.1 in Table 1, we write the fitness of an individual
of any species j as a function, f(Ejx, Cx), of the environmental response, which we denote
generically as Ejx, and the competitive response, Cx.  Then, to provide a unified treatment of
models with different spatially varying life-history parameters, and indeed different basic
models, these variables are transformed into the new variables, Ejx and Cx, defined in table 1.
These new variables are increasing functions respectively of Ejx and Cx, reflect the same
underlying biological processes, and contain the same information, but lead to a generic equation
for 8jx independently of which life-history parameter is being considered, and indeed
independently of many of the details of the model.  This generic equation is
 , (6.21)1jx jx x jx xλ γ= + − +E C E C
(Chesson 2000a) where the single parameter ( is negative and defines how strongly Ejx and Cx
(equivalently, Ejx and Cx) interact in their determination of 8jx. 

A product, such as EjxCx in (6.21), is the mathematically simplest form of an interaction between
two variables in their determination of a third variable.  An interaction between two variables is
also a special form of multidimensional nonlinearity. The particular interaction in equation
(6.21) stems directly from the product of Ejx and 1/Cx that occurs in 8jx when Ejx is any of the life-
history parameters U, V, Y or G in model.  This interaction occurs because the product UVYG
determines how much new seed an individual seed would return to the seedbank the following
year in the absence of competition, and this amount is assumed to be reduced by a given
proportion for a given magnitude of competition.  Thus, if two locations differ in the value of
UVYG, the same magnitude of competition would have a larger effect at the location with the
higher value of UVYG. 

To understand regional scale dynamics of this model we need , which of course splits into theλ
spatial average fitness and the fitness-density covariance: = + Cov(8,<) (equation (6.4)). λ λ
For , expression (6.21) must be averaged over space.  As discussed in Box 2, the productλ
nonlinearity EjxCx introduces a covariance term into so that λ

. (6.22)1 Cov( , )j j j jλ γ γ= + − + ⋅ +E C E C E C
Equation (6.22) simplifies if we assume that environmental fluctuations are small in magnitude
with small average differences between species, for then the term is small in comparisonj ⋅E C
with the other terms (Chesson 2000a), and can be neglected. Adding in the fitness-density
covariance, we obtain
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. (6.23)1 Cov( , ) Cov( , )j j j j jλ γ λ ν≈ + − + +E C E C
Expression (6.23) can now be used to study species coexistence by invasibility analysis (Chesson
2000a).  In an invasibility analysis, one of the species, “the invader” labeled i, is set to zero
density everywhere in space, and the other species, “the resident” labeled r, has dynamics that
are independent of the invader. We wish to see if the invader can increase and enter the system,
i.e. have a value of greater than 1. The species coexist according to the invasibility criterion ifλ
they can each increase as invaders.  

Differences between resident and invader in the two covariance terms of (6.23) are critical to
species coexistence. Table 2 gives the signs of these covariance terms for various scenarios
where the sign can be determined, without further information, by the methods of Chesson
(2000a).  Full details will be published elsewhere, but in many cases, as shown here, the entries
in the table can be determined quite simply and understood intuitively. Note that under the small
variation assumption invoked here, the signs of covariances involving the competitive and
environmental responses, Ejx and Cx, are the same as those involving the original responses, Ejx

and Cx. Thus, arguments relating to Ejx and Cx carry over to Ejx and Cx.

Resident covariance between environment and competition, Cov(Er,C) , is always positive when
the competitive response, Cx, is directly a function of the environmental response, Erx. However,
it can also be positive when Cov(Er,<r) is positive, i.e. when population density builds up in
locations that are favorable based on the response of the organisms to the physical environment.
The invader always has zero covariance between environment and competition because the
invader’s environmental response is never related to the cause of competition–when it has zero
density, Cx is not a function of the invader’s environmental response, and we have assumed that
its environmental response is not correlated with that of the resident.  However, covariance
between fitness and density can be positive for the invader in cases with pure spatial
environmental variation and either germination-fraction variation or local retention.  This
covariance reflects invader build up in favorable locations.  (Although absolute invader density
is zero for the invader, relative invader density is not: it is the limit of the ratio of two quantities
each approaching zero.)  In contrast to the case of pure spatial variation, under some conditions
of spatio-temporal variation, it is possible for the resident to have negative fitness-density
covariance because density can build up locally by chance runs of favorable local environments. 
Since the current density is determined by previous environments, which are uncorrelated with
the current environment, the component of the growth rate that is correlated with density is
simply competition; therefore fitness-density covariance is necessarily negative.

To see if is greater than 1 so that an invader can be successful, one notes that for a residentiλ λ

( ) must be equal to 1, assuming that the species comes to equilibrium in the region as a wholerλ
(but not necessarily locally in space).  Note also that and ( are the same for the invader andC
resident under the assumptions above, and so subtracting the resident from the invader leadsλ λ
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to the equation
 (6.24)1i E Iλ κ− = ∆ + ∆ + ∆

where
, (6.25)i rE∆ = −E E

is a comparison of mean responses to the environment, 
(6.26)( ) ( ){ }( ) Cov , Cov ,r iI γ∆ = − −E C E C

measures “the spatial storage effect,” and 
, (6.27)( ) ( )Cov , Cov ,i i r rκ λ ν λ ν∆ = −

compares the fitness-density covariance for the invader and resident. 

The three different terms in equation (6.24) have different effects on species coexistence,
representing different classes of mechanism.  The first term, )E, would yield competitive
exclusion in the absence of spatial variation.  It is an average fitness comparison between species
(Chesson 2000b) and is the mean-field component.  The second two terms, which are scale
transition terms, have the potential to be positive.  Indeed, from table 2 there are many instances
where )I is clearly positive and several where )6 is clearly positive.  These terms therefore have
the capability of negating the average fitness differences, i.e. counteracting the mean-field
component, leading to situations where - 1 is positive for both species permitting them toiλ
coexist by the invasibility criterion.  

The clearest situation applies to spatial variation in the vigor parameter V.  Spatial environmental
variation affecting the growing plant feeds into competition because bigger plants use more
resources.  Thus, for the resident species, there is always positive covariance between its
environmental response and competitive response. The assumption that the two species have
statistically independent responses to the environment means that the invader’s environmental
response is independent of its competitive response, which is determined by the density and
environmental response of the resident.  Thus, )I = (-()Cov(Er,C) which is positive.  With
widespread dispersal of seeds, the local environment leaves no signature on population density,
and so in that case Cov (8j,<j) is simply zero.  Thus, a positive spatial storage effect is found; if
this is large enough, it would overcome average differences in the seedling survival rate,
measured by )E, and permit the two species to coexist.

With local retention, some effects on Cov (8j,<j) are possible.  For example, with spatio-temporal
variation, the local resident density will reflect some past values of V, which will affect
competition. However, density will not be correlated with the environmental component of 8rx
because of the independence of the environment over time. The net result is negative fitness-
density covariance for the resident.  The invader’s relative density will be negatively related to
that of the resident, reflecting previous competition.  As a consequence, a weak positive Cov
(8i,<i) is expected. Thus, )6 will be positive, promoting coexistence.  
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Germination fraction variation is similar to variation in vigor in that it always leads to a positive
storage effect through its effects on covariance between environment.  However, its effects on
fitness-density covariance are more complicated because higher local values of G cause local
depletion of the seed bank. These cause changes in relative density regardless of local retention.
Thus, only in the case of spatio-temporal variation with widespread dispersal is a clear
conclusion possible.  In that case the positive storage effect ()I) combines with positive )6 to
give an overall fitness promoting effect of variation in the germination fraction. 

The final particular case of note is variation in the final yield parameter Y (given vigor) or
survival of seed predation, U. Variation in these parameters is assumed not to directly affect
competition. This means that covariance between environment and competition does not occur in
the case of spatio-temporal variation regardless of dispersal.  However, it does occur in the case
of pure spatial variation with local retention because local resident density increases with the
fixed favorability of the environment, increasing local competition, and causing covariance
between environment and competition.  However, covariance between fitness and density also
results. Although this is positive for both resident and invader, it is shown in Chesson (2000a)
that in the absence of a persistent seedbank (G = 1, or s = 0), )6 is approximately 2[p/(1 -
p)]{Cov(Er, C) - Cov(Ei, C)}, where p is the fraction of seed retained at the site. (Note that in
Chesson (2000a) the factor 2 was inadvertently omitted.)  Thus, )6 is positive, is proportional to
the storage effect, and reinforces, it promoting coexistence. 
 
Conclusions
Scale transition theory focuses on the mechanisms by which the rules for population dynamics
on local scales become modified to produce different rules for dynamics on larger spatial scales.  
Many of the specific issues discussed here as part of scale-transition theory pervade analyses of
spatial ecological models, including models formally identified as metacommunity models. The
difference here is the focus on the interaction between nonlinearity in local population dynamics
and spatial variation as the explanation of the important outcomes on larger spatial scales. In
essence, the material presented here implies a research program in which the interaction between
nonlinearities and spatial variation is explored for its mechanistic and biological content. 
Nonlinearities often arise from specific biological postulates such as the nature of interactions
within and between species (Chesson 2001).  The properties of these nonlinearities identify the
kinds of patterns of spatial variation that are important to outcomes at the scale of the whole
system.  

In the metacommunity context, interactions between species, and between species and their
environment, lead to particular kinds of nonlinearity. For example, in host-parasitoid systems,
we have seen how the relationship between percent parasitism and parasitoid density is a critical
nonlinearity arising from assumptions about parasitoid foraging (Hassell 2000) that implicates
the coefficient of variation of parasitoid density as a critical aspect of spatial variation for
predicting the dynamics of the metacommunity (Box 1).  In studies of competition in a spatially
variable environment, we have seen that a two-dimensional nonlinearity, expressing the
interaction between responses to the physical environment and responses to competition, arises
from life-history postulates, and implicates the covariance in space between the response to the
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environment and the response to competition as a critical aspect of spatial variation for
coexistence at the regional scale.  The interaction of this nonlinearity with spatial variation
defines the species coexistence mechanism called the spatial storage effect.  

We have seen here also an important distinction between average individual fitness, denoted by
, and the spatial average of fitness .  This distinction was first discussed in the scientificλ λ

literature by Lloyd (1967), who introduced the concept of mean crowding, applicable to the
logistic model. Fitness-density covariance discussed here generalizes Lloyd’s concept, and itself
reflects a two-dimensional nonlinearity, the product of fitness and local density.  This
nonlinearity is present in all spatially structured systems, and we have seen how the fitness-
density covariance arising from it modifies the stability conditions in host-parasitoid models,
supplements the spatial storage effect in spatial competition models, and introduces a
coexistence mechanism with properties very similar to the spatial storage effect in spatial Lotka-
Volterra and similar models.
   
The role of the interaction between nonlinearities and spatial variation is less apparent in the
approach to metacommunities that describes local densities simply in terms of presence and
absence of a species (Nee et al. 1997).  Nonlinearities in local population dynamics can only be
represented in these models in limited and somewhat extreme ways because of the limitations on
the state variables for local population densities.  Nevertheless, nonlinearities in these presence-
absence models have critical roles in the outcomes at the metacommunity scale (Chesson 2001). 

The full scale transition program involves linkages between analytical methods, simulation and
numerical methods, and experimental and observational approaches to understanding
metacommunities. Analytical theory, as presented here, identifies the key nonlinearities and
spatial variation associated with it. This stage is important especially in exploring the biological
origin of nonlinearities and their mechanistic role.  The nature of spatial variation has a critical
mechanistic role, as most strikingly illustrated by the discussion of competition in a variable
environment where the pattern of covariance between environment and competition arises from
the way species relate to each other and to the physical environment.  Techniques of moment
closure (Bolker and Pacala 1999), pair approximation (Ellner et al. 1998), and Fourier analysis
(Snyder and Chesson 2003) have the potential to expand understanding in this area by
approximate analytical and numerical techniques. 

In areas where approximations fail or need to be supplemented, simulation approaches can
provide knowledge of the relevant variances and covariances or other measures of spatial
variation applicable to the relevant nonlinearities.  When simulation must be used for this
purpose, it will generally be in association with analytical understanding of the nonlinearities
and the mechanisms, as presented here.  Thus, rather than simply use simulation to solve a
problem, such as whether the species coexist, one can ask instead which mechanisms are
involved.  These mechanisms are quantified by calculating the measures of these mechanisms,
such as the quantities )I and )6  in the assessment of species coexistence in a variable
environment. Thus, the relative importance of different mechanisms is assessed quantitatively,
and the comparison between different situations and different models is greatly facilitated.
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Of most importance, this program extends to the empirical level, as illustrated in Chapter 14.
Elements of models can be fitted to data to quantify the relevant nonlinearities.  Spatial variances
and covariances are found using variations on standard experimental and sampling designs.  The
same concepts and same quantities are used at all levels in the scale transition program, and so
the ability to measure and test mechanisms quantitatively is greatly enhanced. 
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Box 1: Spatial variation in host-parasitoid systems
The traditional discrete-time Nicholson-Bailey host-parasitoid model takes the form 

(6.B1.1)1
1

1 1

taP
t t

t t t

N Re N

P N R N

−
+

−
+ +

=

= −
where N and P are respectively host and parasitoid density, R is fitness of unparasitized hosts,
and a is the average rate at which individual parasitoids discover hosts (Hassell 2000).  The
negative exponential, exp(-aPt), in (6.B1.1) is the fraction of hosts escaping parasitism. The
second line of the equation simply says that the number of parasitoids in the next generation is
equal to the number of hosts killed by them in the current generation.  It is more commonly
written Pt+1 = [1 - exp(-aPt)]Nt, but our form is more general, and being linear in densities, does
not change with spatial scale.

This model is notoriously unstable and much theoretical research has been directed towards
modifications that predict stable coexistence of host and parasitoid. Of the many such
modifications (Hassell 2000), we are concerned here only with those relating to spatial variation
in the density of parasitoids. These modifications lead to changes in the first line of  (6.B1.1), but
not the more general second line.

The first line of equation (6.B1.1) implies that host fitness is 8t = Rexp(-aPt). We can modify this
equation by having the parasitoid density vary in space, denoting by Px the density of parasitoids
at location x. This density will change with time, but for simplicity of notation, a subscript
indicating time is omitted.  Host fitness as a function of local parasitoid density is then 

. (6.B1.2)xaP
x Reλ −=

Here R is the host fitness in the absence of parasitism, Px is the local parasitoid density, and a is
the average rate at which individual parasitoids discover hosts. 

Scale transition for independent host and parasitoid distributions
May (1978) pointed out that when Px is distributed in space according a gamma distribution, the
average of 8x over space takes the form

(6.B1.3)( )1 /
k

t tR aP kλ
−

= +

where is the average of Px over space in year t, and 1/k is equal to the square of the coefficienttP
of variation (CV) of the parasitoid distribution in space. When the hosts and parasitoids are
distributed independently of one another, then, as explained in the text, the first line of equation
(6.B1.1) can be validly replaced by

. (6.B1.4)1t t tN Nλ+ =
The model then predicts stable host and parasitoid coexistence provided the parasitoid CV is
greater than 1. 

For arbitrary spatial distributions of parasitiods, equation (6.B1.3) is replaced by
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, (6.B1.5)( )t tF aPλ ϕ=
(Chesson and Murdoch 1986) where n is a function dependent on the relative distribution of
parasitoids in space (the distribution of ) and is called the Laplace transform in statistical/xP P
theory.  (Figure 1 provides a geometrical construction of n for the simple case where parasitoid
densities take on only two values.) The chief finding for the general case given by (6.B1.5) is
that the CV criterion for stability applicable to gamma distributed hosts, remains approximately
applicable in this more general case (Hassell et al. 1991). 

Scale transition for correlated host and parasitoid distributions
Several implicit assumptions are involved in the above conclusions.  First, as explained in the
text, equation (6.B1.4) is only valid when the fraction of hosts parasitized is uncorrelated with
host density.  In other cases, the applicable equation for population dynamics is 

(6.B1.6)1t t tN Nλ+ =

where is host individual average fitness, rather than host spatial average fitness ( ).   Secondtλ λ
the distribution of is assumed constant over time, which might not be true depending on/xP P
the dispersal scenarios.  The conclusions above about stability, however, continue to apply to the
CV of the distribution of parasitoids per host, provided this CV does not vary importantly over
time (Hassell et al. 1991).  Equations (6.B1.3) and (6.B1.5) are valid for replacing when theλ λ
probability distribution of Px is the per host distribution (Chesson and Murdoch 1986), but if the
distribution of over hosts varies with time, then k and n must be given subscripts t to/xP P
indicate that variation.  How the distribution of might vary over time depends on the/xP P
nature of dispersal, which we have not addressed explicitly here.   

Scale transition approximations
We can use formulae (6.6) - (6.8) in the text to obtain approximations to .  As f(Px) = ,λ xPRe−

and .  Hence, is approximated as( ) aPf P Rae−′ = − 2( ) aPf P Ra e−′′ = λ

, (6.B1.7) 21
2 Var( )aP aPRe Ra e Pλ − −≈ +

and the fitness-density covariance is approximately,
. (6.B1.8)Cov( , ) Cov( , ) /aPRae P N Nλ ν −≈

These combine to give an overall value of equal to λ
. (6.B1.9){ }21

21 Var( ) Cov( , ) /aPRe a P a P N Nλ −≈ + −
These approximations serve to show the moderating effect of variation in parasitism on the
relationship between and , and how this relationship is affected by covariance betweenλ P
parasitiod and host density.  Approximations like these, coupled with the corresponding
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approximations for , allow the stability rule discussed here to be derived for cases/d dPλ
where R is near 1, i.e. when host fitness in the absence of parasitism is not too large (Hassell et
al. 1991).



6 . 21

Box 2: Properties of nonlinear averages
Basic to the scale transition is the idea of nonlinear averaging, i.e. taking an average of some
nonlinear function f(W) of a varying quantity W (Chesson 1998a).  Most introductions to
statistics give some appreciation of nonlinear averages from the two different formulae for the
variance (see, e.g. Ross 1997).  We know that the variance, Var(W), is defined as the average
squared deviation from the mean:

, (6.B2.1)2Var( ) ( )W W W= −
but it also obeys the formula

, (6.B2.2)2 2Var( )W W W= −
i.e. the variance of W is the difference between the mean of the square of W and the square of the
mean of W. This formula rearranges to show that the mean of the square of W exceeds the square
of the mean of W by an amount exactly equal to the variance: 

 . (6.B2.3)2 2 Var( )W W W= +

This finding is a particular case of the result that the mean, , of a nonlinear function,( )f W
generally differs from the function of the mean, ; here f(W) = W2.  ( )f W

Jensen’s inequality
Unfortunately, only in special cases such as f(W) = W2 do we know exactly how much the mean
of the function and the function of the mean differ from each other.  However, we can tell the
direction of the difference if the function is curves in a consistent direction, i.e. is concave, either
up or down. If f(W) is concave up, i.e. curves up as indicated by fO(W) > 0, Jensen’s inequality
(Ross 1997) says that 

   > , (6.B2.4) ( )f W ( )f W
i.e., the mean of the function is greater than the function of the mean. Naturally, for concave
down functions ( fO(W) < 0), the reverse inequality to (6.B2.4) applies.  For the particular case
where f(W) = W2 equation (6.B2.3) tells us that the amount by which  exceeds is( )f W ( )f W
simply the variance.  Another example of an exact formula for is given in Box 1 for the( )f W
host-parasitoid. Figures 1 and 2 give graphical illustrations of Jensen’s inequality, which are
available for the simple case where W (respectively P and N in these figures) vary over just two
values.

Quadratic approximations
Although the exact difference between  and is not often known, the following( )f W ( )f W
approximation

(6.B2.5)1
2( ) ( ) ( )Var( ),f W f W f W W′′≈ +

holds generally whenever f(W) can be satisfactorily approximated by its second order Taylor
expansion, and can be derived simply from the special case (6.B2.3) (Chesson 1998a).



6 . 22

Multidimensional nonlinearities
Ecological models often involve multiple quantities varying simultaneously.  With two varying
quantities, U and W, we need to understand averages, , of functions nonlinear jointly( , )f U W
in these varying quantities. The simplest two-variable nonlinear function with a joint
nonlinearity is the product f(U, W) = UW.  A simple extension of the variance formula (6.B2.3)
leads to the relationship

, (6.B2.6)Cov( , )UW U W U W= ⋅ +
i.e., the mean of the product differs from the product of the means by an amount equal to the
covariance of the two quantities (Ross 1997).  

Special nonlinear forms in spatial models
In spatial models, we encounter nonlinear functions of two variables of the form f(W)U, where
f(W) is a nonlinear function of W separately.  Application of formula (6.B2.6) shows that 

. (6.B2.7)( ) ( ) Cov( ( ), )f W U f W U f W U= ⋅ +
This covariance in this formula can be approximated by the formula

(6.B2.8)Cov( ( ), ) ( )Cov( , )f W U f W W U′≈
to the same order of accuracy as the approximation (6.B2.5), by linearly approximating f(W) as

, using standard statistical arguments (Rao 1973). Substituting the( ) ( )( )f W f W W W′+ −

approximation (6.B2.5)  for , we get the overall approximation( )f W

. (6.B2.9){ }1
2( ) ( ) ( )Var( ) ( )Cov( , )f W U f W f W W U f W W U′′ ′≈ + +

Nonlinearities in patch models
In the text, under the heading of patch models, we use expression (6.B2.9) in the special case
where N = W = U, and so Cov(W, U) = Var(N).  Thus, (6.B2.9) implies 

. (6.B2.10) 
{ }
{ }

1
2

1
2

( ) ( ) ( )Var( ) ( )Var( )

( ) ( )Var( ) ( )Var( ) /

f N N f N f N N N f N N

f N f N N f N N N N

′′ ′≈ + +

′′ ′= + +
But applying approximation (6.B2.5) to the function F(N) = f(N)N, we see also that

. (6.B2.11) 1
2( ) ( ) ( )Var( )F N F N F N N′′≈ +

However, as FO(N) =  f  O(N)N + 2f N(N), we see that the two expressions are in fact identical.

Checking approximations
The approximations given here, and used in the text work best when spatial variation is small in
magnitude.  Thus, they give the initial trends in the scale transition as spatial variation is
introduced to a system.  For any particular application with large spatial variation, it is necessary
to check the accuracy of these approximations by some means. It is not difficult to calculate
nonlinear averages numerically when the probability distributions for spatial variation are
known, and thus check these formulae.  When these distributions are not known, simulation or
other numerical methods are needed to determine them.  
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Table 1

Model of an Annual Plant Community

Njx(t) The number of seeds in the seed bank of species j in patch x at the beginning of
year t.

 The amount of new seed produced by seeds that germinate, plus( ) ( )jx jxt N tλ
the survivors of the seeds that do not germinate by the end of year
t.

 

, (6.T1.1)( ) (1 ) j j j j
jx j j

x

U V Y G
t s G

C
λ = − +

with the following notation:

8jx(t) The total output of seed of species j at site x during year t (survival plus new
production)

sj survival of ungerminated seed

1 - Gj fraction of seed not germinating

quantity of seed of at site x at the beginning of year t( )jxN t

Uj fraction of seed production of species j successfully incorporated into the seed
bank by the beginning of the next year (seed not lost to predation, pathogens or
other means before being mixed into the soil surface).

Vj Seedling survival and vigor (size).

Yj Seed production per surviving seedling of unit vigor in the absence of
competition.

Gj Fraction of seed of species j germinating.

aj Competitive effect of a one seedling of species j.

: Reduction in per capita seed output due to competition. 1 ( )x j j j jxj
C a V G N t= +∑

f(Ejx, Cx) = : example of f for the case where Ejx is Vj.(1 ) /jx xs G UYGE C− +
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E*, C* Reference values of Ejx and Cx chosen near their means (Chesson 2000a). 

Ejx = f(Ejx, C*) - 1 Standard environmental response
Cx = 1 - f(E*, Cx) Standard competitive response
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Table 2
Results of the annual plant competition model

Vari-
able
param-
eter

Type of
Environ-
mental
variation

Type of
dispersal

Covariance
between
Environment and
competition

Covariance between
fitness and density

resident invader resident invader

V spatio-
temporal

(st)

wide-
spread
(w)

+ 0 0 0

st local
retention
(l)

+ 0 - +

Pure
spatial

(ps)

w + 0 0 0

ps l + 0 + +

G st w + 0 - 0

l + 0 - ?

ps w + 0 - -

l + 0 ? ?

YU st w 0 0 0 0

l 0 0 - +

ps w 0 0 0 0

l + 0 + +
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Figure 1: Decline in host density as a function of parasitoid density, locally in space (solid line:

), and regionally (solid line: ) for the special case ofxaP
x Feλ −= ( )aPFe F aPλ ϕ−= =

variation in parasitoid density in space between just two values of Px, one 5% of the mean and
other 195% of the mean, i.e. Px = 0.05 and Px = 1.95 .  Note that the decline in host survivalP P
as parasitoid average density increases is much more moderate in the presence of spatial
heterogeneity (dashed line) than in its absence (solid line). The —s are at particular pairs( , )P λ
illustrating the effect of Jensen’s inequality on the relationship between  and relationship .λ P
The average of the two (Px, 8x) at the s on each dotted line equal the particular pair at( , )P λ
the — in the center of the line.  Because of the curvature of 8x as a function of Px, these averages
necessarily lie above the values that would be given by the local 8-P relationship. 
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F(N)

F(N)

1F(N )

2F(N )

1N 2NN

Figure 2: Scale transition for a patch model with 8xNx = F(Nx), and density varying between two
values with equal frequency, showing the construction of one point (—) on the relationship
between and .   Note that the regional scale output, , lies below( )F N N 1 ( )t t tN F N Nλ+ = =

the output given by the local relationship, .  The particular curve represented here is the( )tF N
logistic. 
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