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Abstract How to scale up from local-scale interactions to
regional-scale dynamics is a critical issue in field ecology.
We show how to implement a systematic approach to
the problem of scaling up, using scale transition theory.
Scale transition theory shows that dynamics on larger
spatial scales differ from predictions based on the local
dynamics alone because of an interaction between local-
scale nonlinear dynamics and spatial variation in density
or the environment. Based on this theory, a systematic
approach to scaling up has four steps: (1) derive a model
to translate the effects of local dynamics to the regional
scale, and to identify key interactions between nonlin-
earity and spatial variation, (2) measure local-scale
model parameters to determine nonlinearities at local
scales, (3) measure spatial variation, and (4) combine
nonlinearity and variation measures to obtain the scale
transition. We illustrate the approach, with an example
from benthic stream ecology of caddisflies living in rif-
fles. By sampling from a simulated system, we show how
collecting the appropriate data at local (riffle) scales to
measure nonlinearities, combined with measures of
spatial variation, leads to the correct inference for
dynamics at the larger scale of the stream. The approach
provides a way to investigate the mechanisms and con-
sequences of changes in population dynamics with spa-
tial scale using a relatively small amount of field data.
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Introduction

A vexing problem in ecology is how to make predic-
tions for population dynamics at large spatial scales
based on the information gained at small spatial
scales, because small-scale trends in population
dynamics are often contradicted by large-scale out-
comes (e.g. Chesson 1996; Englund and Cooper 2003).
At the most fundamental level, scale transition theory
shows that the majority of the important changes in
population dynamics that arise with such changes in
scale can be attributed to an interaction between local-
scale nonlinear population dynamics and spatial vari-
ation in either population density or the physical
environment (Chesson 1978, 1996, 1998a, b, 2001;
Chesson et al. 2005). This interaction has been shown
in theoretical models to promote stability, persistence,
and coexistence on larger spatial scales, contrary to
predictions of small-scale dynamics alone (e.g. Ches-
son 2000; De Jong 1979; Hassell et al. 1991; Ives 1988;
Pacala and Levin 1997). This interaction means also
that quantitative features, such as the large-scale
carrying capacity, are different from the small-scale
predictions (e.g. Bolker and Pacala 1997; Chesson
1998b; De Jong 1979).

Measuring the theoretically predicted interaction be-
tween nonlinearity and variation provides a way to
understand linkages between scales and to scale up
population dynamics from local to regional scales.
Furthermore, measuring this interaction provides a
general test of spatial mechanisms in population
dynamics. As it is relatively straightforward to quantify
local nonlinearities and spatial variation, it is possible to
measure their interaction in field studies. The funda-
mentals of scale transition theory are described in
Chesson (1978, 1996, 1998a, b) and Chesson et al.
(2005). Here, we emphasize how scale transition theory
is used with data. Special cases of the general scale
transition methods, presented here, have been discov-
ered from time to time by others beginning with Lloyd



180

and White (1980) and more recently exemplified by Rees
et al. (1996). Although we lay out a general method, we
use an example from stream ecology, involving the
population dynamics of caddisflies, as an illustration.
We apply the method to simulated data to demonstrate
that it gives the correct inference for dynamics at the
larger scale.

A model for caddisfly dynamics

The larval stages of some caddisfly species, especially
those in the family Glossosomatidae (e.g. Glossosoma
and Agapetus) are important consumers of periphyton,
the complex of algae and other microorganisms that
grow on benthic surfaces (Kohler 1992). Many caddis-
flies have an annual life cycle, living out most of their
lives as aquatic larvae in stony bottomed streams, before
emerging as adults that are winged and typically short
lived (2 days—2 weeks). Habitat preferences differ be-
tween species, with some species found over a range of
flow velocities and water depths, though most species do
not occur in deeper pools (Kohler and Wiley 1997). To
illustrate the application of scale transition theory, we
focus on a hypothetical habitat specialist of stream riffles
(faster flowing areas over cobble beds). Individual larvae
of this species forage for periphyton within a riffle but do
not move between riffles because the intervening pools
are a barrier to dispersal. The adults on the other hand
can fly between riffles. While this simplification is
appropriate for species that are relatively sedentary as
larvae, such as Glossosoma and Agapetus, among others
(Hughes et al. 1998; Jackson et al. 1999), it does not
apply to stream invertebrates in general, as many species
disperse as larvae in the current. For species with dis-
persing larvae, a similar theoretical treatment to that
developed here would be used but the model would also
need to account for larval spatial dynamics on the
within-generation time scale. For our riffle specialist
with adult migration, the spatial structure of the popu-
lation is thus an assemblage of local populations (within
riffles) with migration between them, that is, a meta-
population in the general, but not strict, sense (Chesson
2001; Hanski and Simberloff 1997). It is simplest to
consider a species with a synchronous, annual life cycle
(Fig. 1). The discrete spatial structure, annual life cycle,
and synchronicity are convenient for illustration and
suited to the caddisfly example, but scale transition
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Fig. 1 Annual life cycle of the caddisfly (larvae L, adult 4) showing
times and parameters of the riffle-scale model (Table 1)
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theory extends broadly to spatially structured popula-
tions, with few restrictions (Chesson et al. 2005).

A plausible model based on this life cycle is presented
in Table 1. The model divides the annual life cycle of the
caddisfly into three periods. In the first period, ¢ to t+d,
larvae are isolated within riffles where they feed on
periphyton (Fig. 1). Competition for periphyton means
that larval survival within riffles is density dependent.
Survival at the riffle scale is therefore a nonlinear func-
tion of larval density, which we represent by a Ricker
function (Table 1). In the second period, t+d to t+h,
adults disperse (Fig. 1). Dispersal to and from riffle x is
modeled by the generic functions /I, and E,, to which we
can assign any set of dispersal rules (Table 1). Thus,
each riffle population is an open system embedded in a
larger assemblage of riffles. In the final period, t+h to
t+1, adults lay eggs, which then over winter to produce
the larvae that begin the next cycle (Fig. 1). We assume
that fecundity and egg survival are independent of
density (Table 1). This model is the basis of the analyses
illustrated here.

Scale transition theory

Scaling up from the riffle scale to the stream requires
calculating the dynamics of the stream-scale density. We
illustrate this calculation using the predispersal adult
stage, but the same calculation applies to any stage. The
stream-scale density can be expressed as the average of
the local-scale (riffle) densities. For example, the density
of predispersal adults in the stream is the number in each
riffle added up and divided by the total area. Thus, if
there are k riffles in the stream, the density of adults in
the stream just before dispersal (time 7+ d) is

e A;<r+ d) 0

where 4 (1 + d) is the density of adults in riffle x, and the
overbar indicates the average over space (riffles). A

=A(t+d),

Table 1 Riffle-scale model of the caddisfly life cycle

Within riffle interactions

of larvae leading

to predispersal adults.
Dispersal of adults.
Larvae that hatch

from eggs laid by adults

At 4 d)=Se =L (¢)

Ac(t+h) = Sad(t +d) + I, — E;
Le(t+1) = fS.A.(t + h)

L: density of larvae

A: density of adults

x: indexes riffles

t: time

S: density-independent survival probability of larvae
o: determines strength of competition between larvae
S,: fraction of adults surviving to reproduce

I: density of adults immigrating to riffle x

E.: density of adults emigrating from riffle x

f: number of eggs per adult

Se: fraction of eggs that survive



multiplier can be added to account for nonriffle area,
and weightings can be added to allow different riffles to
have different areas, but such more elaborate formulae
do not alter the principles illustrated here. Thus, for our
purposes, expression (1) defines the stream-scale density,
A(t+d) : a simple average of local densities.

When expressed in terms of the larval stage, the
average in Eq. 1 becomes an average of a nonlinear
function. From the life cycle described above, the tran-
sition from larvae to adults in a riffle at time ¢+ d is of
the generic form

Ax(t+d) = F(L(1)), (2)

where F describes adult emergence as a function of larval
density at time z. Using Eq. I, we now see that the
stream-scale adult density at time ¢+ d is

A(t+d) :W (3)

The overbar, on the right hand side of Eq. 3, extends all
the way across the expression, indicating that the density
of adults emerging from the stream is an average of a
function. In Table 1, F is nonlinear; competition be-
tween larvae is described by a Ricker function, so that

(4)

Thus, adult density at the stream scale is the average of a
nonlinear function. It is this averaging of a nonlinear
function (‘“nonlinear averaging’) that leads to changes
in dynamics with changes in scale (Chesson 1996, 1998a,
b).

With nonlinear functions, it is most often the case
that

= F(L(1)).

A(t +d) = Se=OL(y).

F(L(1)) # F(L(1)), (5)

that is, when the function F is nonlinear, the average of
the function is generally different from the function of
the average. The critical importance of this fact to spa-
tial ecology was first pointed out by Chesson (1978),
although Lloyd’s mean crowding (Lloyd 1967) is a
precursor for logistic population dynamics. Nonlinear
averaging has also been discussed in a general biological
context under the heading “the fallacy of averages”
(Welsh et al. 1988), and as Jensen’s inequality (Ruel and
Ayres 1999), which applies to the special case of non-
linear functions that curve in one direction only (e.g.
Feller 1971).

If we ignored nonlinear averaging, we would have the
equation

A(t+d) = F(L(t)). (6)

This equation is true only for linear F, or when L does
not vary in space. Although wrong in general, Eq. 6 has
an important place in scale transition theory in defining
what population dynamics would be in the absence of
variation in space: it is called the mean-field model. We
can think of the mean-field model as representing riffle-
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scale dynamics: it is the model that would apply at the
riffle scale in the absence of migration between riffles at
different densities. In this light, the inequality in Eq. 5
says that if the riffle-scale dynamics are nonlinear, the
dynamics for the stream (left hand side) are different
from the dynamics described by the riffle-scale formula
(right hand side).

Quantifying the scale transition

From the inequality in Eq. 5, the scale transition, 7, can
be quantified as the difference between the stream-scale
model and the mean-field

T =F(L(1)) = F(L()). (7)

Equation 7 is used to quantify the scale transition both
in models and using field data. The full model for stream
density takes the form

A(t+d)=F(L(@t))+T. (8)

Thus, the nonlinear average consists of the mean-field
model plus the scale transition term, 7, that ““scales up”’
the mean-field model. Nonlinear averaging and its effect
on Tis illustrated graphically in Fig. 2 (see also Chesson
1996, 1998a).

The scale transition can be understood by realizing
that T arises because of an interaction between nonlin-
earity and spatial variation. This interaction is demon-
strated by using a quadratic approximation to the
function F, which leads to the formula

T~ %F”(Z(z))Var(L(t)) 1, 9)

where Var(L) is the variance of larval density (Chesson
1998a, b). The second derivative in Eq. 9 measures the
degree of nonlinearity in the function F. Thus, the scale
transition is the product (or interaction) of the degree of
nonlinearity at the riffle-scale and the spatial variance in
density between riffles. We can conclude that the inter-
action between nonlinearity and spatial variation, rep-
resented approximately in Eq. 9, is the essential
mechanism that changes dynamics with a change in scale
from riffles to the stream.

Using the quadratic approximation of Eq. 9, adult
emergence for the whole stream is

A(t+d) = Se™OL(1) +La(aL(t) —2)Se I Var(L(t)).

mean—fieldmodel

T,(larvae)
(10)

Thus, we see that the dynamics of the stream density are
described by the mean-field model for adult emergence
(compare with Table 1) corrected by the scale transition
term, T, (larvae), which describes the interaction be-
tween nonlinearity at the riffle-scale and spatial variation
in larval density between riffles. The effect of nonlin-
earity and spatial variation in density between riffles is
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Fig. 2 Nonlinear averaging with riffle-scale dynamics given by the
Ricker model. The figure is for a simplified stream system that
consists of just two riffles (y and z) with different densities of
caddisfly larvae. Two different levels of spatial variation in larval
density between riffles are represented in a (low variation) and b
(high variation), holding mean density constant between a and b.
The survival of larvae through to adults is density-dependent
according to the Ricker model (thick curve) in a and b and density
independent (thick line) in (¢). The dashed lines connect the larval
densities [L(#)] in each riffle with the density of adults [4(7 + d)] that
emerge from each riffle. The solid line connects the average larval
density of the two riffles with the density of emerging adults that
would be expected if larval density in the stream was homogeneous
(mean field). Nonlinear averaging (a and b) occurs when there is
spatial variation in larval density because the density of adults
emerging from the stream is the average (open circle) of the output
from the two riffles (dashed lines). The magnitude of the scale
transition (7) is the difference between the spatial average (open
circle) and the mean field (filled circle). When there is more
variation between riffles (b) the scale transition is greater. When
local dynamics are linear, there is no scale transition (c)

therefore to alter the density of adults emerging from the
stream, as illustrated in Fig. 2.

Scale transition for the full caddisfly life cycle

Equation 10 is for the critical nonlinear stage in the life
cycle. The other stages involve linear relationships and
their stream-scale densities are

A(t+h) = S, A(t +d) (11)

L(t+ 1) = fSA(t + h), (12)

where the overbars indicate an average over riftles. Since
these stages involve linear relationships, the mean-field
model for these stages is correct and no scale transition
terms appear in the stream-scale equations (compare
Eqgs. 11-12 with Table 1).

Equation (11) demonstrates a key concept in scaling
up. At the stream scale, the dispersal terms that appear
at the riffle scale (Table 1) disappear because

A(t+h) =SA(t+d)+1—-E
=S A(t+d)+1—-E (13)
= S, A(t+d).

The overbar extends all the way across the right hand
side indicating that adult density at the stream scale after
dispersal is the average of the combined effects of all
factors contributing to riffle-scale density. At the stream
scale, we consider the system to be effectively closed,
meaning that dispersal across the boundaries is so small
that it can have no important effect on internal
dynamics. This is a realistic scenario for streams, where
adult caddisflies disperse along the stream corridor and
rarely cross terrestrial habitat. Therefore, individuals
leaving one riffle enter another riffle, and the total
leaving riffles is equal to the total entering riffles (i.e.
I — E =0). Thus, dispersal terms do not appear at the
stream scale despite being explicit in the model con-
struction (Table 1). Provided that dispersal mortality is
factored into the adult survival parameter S,, the
stream-scale model is correct for any mode of dispersal
(Chesson 1998a).

Equations 10, 11, 12 can be combined into one by
defining R=S S, /' S., which leads to a full stream-scale
model expressing larvae at time ¢ in terms of larvae at
time 7+ 1:

Lt+1)= Re ™ OL(t) +La(aL(r) —2)Re~LOVar(L(r)).

mean—field model T,(total)

(14)

This equation again consists of a mean-field model with
Ricker form, plus the scale transition term, T, (total).
Equation 14 cannot be used directly to measure the full
scale transition from field data, because we must census
the intermediate adult stage in order to capture the
density dependent process. Thus, to measure the scale
transition from field data, we first need to use Eq. 10 to
calculate the scale transition for the larval stage.

Spatial simulation of the stream metapopulation

To demonstrate the application of scale transition the-
ory, we simulate the caddisfly system using the model in
Table 1. The form of migration between riffles is not
specified there. To specify migration, we imagine that all
adults disperse, and immigration into a riffle is deter-
mined by the environmental attractiveness of the riffle to
an adult. For example, attractiveness might involve the
suitability of surrounding vegetation. To simulate this,
we assign each riffle an attractiveness value by drawing a
random number from a standard gamma distribution.
Then, individuals from the global pool immigrate to
riffles according to a Poisson process with rate param-
eter equal to the attractiveness value, until all individuals
from the global pool have dispersed back to a riffle. For
a large number of riffles (we use 1,000), this mode of



dispersal results in a negative binomial distribution for
the adults after dispersal, where the aggregation
parameter, k, of the negative binomial is the shape
parameter of the gamma distribution (Chesson 1998a).
We use realistic values for the parameters in Table 1,
from data in Marchant (1999) for the caddisfly Agapetus
monticolus («=0.036, S=0.7, f=25, §,S.=0.15-0.5).

Quantifying the scale transition in the model simulation

Before we discuss field data, we will examine the scale
transition for the model simulation and use the scale
transition model of Eq. 12, to understand the simulation
results. Scaling up from riffles to the stream changes
dynamics both qualitatively and quantitatively (Fig. 3).
The mean-field model, which represents the riffle-scale
model, has a stable limit cycle when R is moderately high

High R Low R
120 1a b
45
30 Mean-field model
15 f Spatial simulation
0

120
= 80
40
0
= 3|f Var(L()
-
= 1
= -
p -
§ i
~ -5 | T approx
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Fig. 3 One realization of the spatial simulation with the negative
binomial dispersal model for high (left column) and low (right
column) values of the density-independent finite rate of increase R
(R=SS,fS.). a,b The mean density of larvae from the 1,000 riffles
in the stream (closed circles) compared with riffle-scale dynamics in
the absence of migration (or mean-field model; open circles). ¢, d
The dynamics of density in three of the 1,000 riffles. Each symbol
represents a different riffle. e, f The dynamics of the spatial variance
in larval density, Var [L(7)], (squares), and the scale transition, 7,
measured (1) by the quadratic approximation (Egs. 9, 14) (crosses),
and (2) exactly by the difference in production between the spatial
simulation and the mean-field model (i.e. Eq. 7) (open circles).
Var(L) is the population variance of the 1,000 riffles. a, ¢, e
x=0.036, R=8.75 (§=0.7, f=25, S,S8.=0.5), k=5. b, d, f
x=0.036, R=2.625 (S=0.7, /=25, S,S.=0.15), k=3
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(Fig. 3a). In contrast, when riffles are connected by adult
migration, the stream-scale dynamics are stable with
rapid convergence on an equilibrium (Fig. 3a). For a
lower value of R, the qualitative nature of the dynamics
is preserved in scaling up, but there is a quantitative
difference: the equilibrium biomass is reduced by about
15% (Fig. 3b). These changes can be traced to the
interaction between nonlinearity in larval survival and
spatial variation in larval density. The scale transition,
T, arising from this interaction is represented by the
approximate correction term, 7, (total), in Eq. 12. By
simulation, 7 can also be measured exactly as the dif-
ference in production for the spatial simulation and the
mean-field model (Eq. 7). The dynamics of T follow that
of the variance (Fig. 3e, f). For the fluctuating popula-
tion with high R, T boosts production when density is
high (production low), and depresses production when
density is low (production high), evening out production
over the range of stream-scale densities and dampening
the fluctuations (Figs. 3a and 4a). For the stable popu-
lation with low R, T depresses production reducing the
equilibrium density (Figs. 3b and 4b). Thus, the inter-
action between nonlinearity and spatial variation chan-
ges the shape of the production function at the stream
scale compared to the production function at the riffle
scale (Fig. 4).

Quantifying the scale transition in the field

Scale transition theory suggests a systematic approach
to scaling up with field data that has four steps, which
we illustrate with simulated data. First, derive a scale
transition model to translate the effects of local
dynamics to the regional scale, and to identify key

L(i+1)

0 30 60 90 0 30 60 90
L (1)

Fig. 4 Production functions for the mean-field (Ricker) model
(solid line) compared to points from one realization of the spatial
simulation with the negative binomial dispersal model (open circles)
for high (a) and low (b) values of the density-independent finite rate
of increase R (R=S S,f S.). The exact scale transition (Eq. 7) is the
vertical difference between the mean-field curve and each point.
The quadratic approximation (Eq. 14) is also shown (crosses).
Overlapping points were removed for clarity. The dashed line is the
stream-scale production function: the theoretical expectation of the
Ricker model with negative binomial variation (Chesson 1996; De
Jong 1979); this curve is a check on the simulation results and
shows the full effect of scaling up on the production function. a
2=0.036, R=8.75 (§=0.7, f=25, S,5.=0.5), k=5. b 2=0.036,
R=2.625(§=0.7, =25, S,S.=0.15), k=3
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interactions between nonlinearity and spatial variation.
Second, measure local-scale model parameters to deter-
mine nonlinearities at local scales. Third, measure spa-
tial variances and covariances. Fourth, combine
nonlinearity and variation measures to obtain the scale
transition. We already have the scale transition model
(Egs. 10-12), so we proceed to the other steps. There are
two main issues in measuring nonlinearities and spatial
variation in the field. First, we will not know a priori the
form of nonlinearity. Second, field densities will be
measured with error.

There are two possible approaches to measuring
nonlinearities in the field. The first approach is to
perform a density manipulation experiment to control
density at time ¢ and measure the resulting density at
t+d. For example, we might set up caged arenas in
the stream, stocked with different densities of larvae.
However, experimental control of density is not al-
ways possible and care is needed to avoid cage effects
and other scaling artifacts (Englund and Cooper
2003). An alternative to experimental manipulation is
to monitor riffles that encompass a range of initial
larval densities and count adults as they emerge and
before they disperse. For example, in the field, larval
density at time ¢ would be measured in quadrats using
a standard benthic sample net, and the density of
adults emerging at time ¢+ d would be measured using
standard emergence traps. We demonstrate the moni-
toring approach here.

Field sampling

The sample design requires sufficient local populations
(riffles) to encompass a range of initial densities, and
replicate samples within a riffle to estimate measurement
error. We need to account for measurement error be-
cause it affects the estimation of both nonlinearities and
spatial variance in density. A range of sample designs are
possible. A simple and efficient design is to select # riffles
at random with m random samples per riffle to give a
total of n x m samples. This design allows estimation of
both nonlinearities and spatial variance in density using
the same data.

We demonstrate measuring the scale transition for
one annual cycle. To simulate field sampling, we gener-
ated artificial data corresponding to the spatial simula-
tion in Fig. 3b. From the 1,000 riffles in the spatial
simulation, we selected 40 riffles at random (i.e. the
sample was 4% of riffles). For each of the 40 riffles, at
time 1=15 we measured larval density in two replicate
samples, and at time ¢+ d, we measured the density of
adults emerging in two replicate samples. To simulate
samples measured with error, we introduced multipli-
cative error to the true densities in the simulation, so
that the observed larval density L(obs) and observed
adult density A4(obs) were given by L(obs)= Lg; , and
A(obs)= A¢,, where ¢ and g, are larval and adult
observation error, respectively, and In(¢) is a normal

random variable with variance 0.02, corresponding to
measurement error of about 14%.

Estimating riffle-scale model parameters

As we do not know the nature of the nonlinearity in
larval survival, a good strategy is to propose several
functional forms and determine which accords best with
the data (Hilborn and Mangel 1997). Including a linear
model among these models serves as an alternative to the
hypothesis that dynamics are nonlinear. Here, as
examples, as well as the Ricker model (Table 1), we
fitted the Beverton—Holt model

A (t+d) = il

_mLXO)’ (15)

and the linear model (i.e. density independent survival)

At +d) = SL(t). (16)

The models were fitted to the data using standard
maximum likelihood methods. The best-fitting model
was determined using the Akaike information criterion
(AIC).

For the artificially generated dataset, the best-fitting
model for the local production function was clearly
the Ricker model (Fig. 5), which had the lowest AIC
(Table 2). The linear model was a poor fit to the data
(Fig. 5; Table 2). The estimated parameter values for
the Ricker model were close to the known parameter
values in the simulation (Table 2). These parameter
estimates are known to be biased due to measurement
error in the independent variable (larval density). For
these data, the bias is negligible because the variance
of the measurement error is small (~1%) compared to
the variance in larval density. When the measurement
error is large, a procedure such as simulation—extrap-
olation is needed to reduce the bias (Carroll et al.
1995).
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Fig. 5 Different models for the riffle-scale production function
fitted to simulated data. The best-fitting model was the Ricker
model (solid line), which can be compared with the Beverton—Holt
model (dashes) and the linear model (dots-dashes)



Table 2 Parameter estimates, degrees of freedom, residual mean
square, and Akaike information criterion for fits of the riffle-scale
production function

Model Parameters df RMS? AIC
Ricker® S$=0.669, a=0.0345 38 0.01229 —-26.5
Linear §=0.306 39 0.2333 90.3
Beverton—Holt S=1.033, ¢c=0.1187 38 0.02630 3.98

“Models were fitted on the natural logarithm scale
®The true parameters were S=0.70, o =0.036

Estimating spatial variance

To determine the spatial variance in density, we used
hierarchical analysis of variance to decompose the var-
iance into two variance components: the spatial variance
between riffles and the variance due to measurement
(sampling) error (Searle et al. 1992). The between-riffle
variance was estimated to be 181.4 (Table 3), close to the
true variance of all 1,000 riffles measured without error
in the spatial simulation of 170.4. The stream-scale lar-
val density, estimated by the sample mean of the larval
density, was 22.66, close to the true value of 22.53
measured without error in the simulation.

Combining nonlinearity and variation measures

We have now sufficient information to find the quadratic
approximation for the scale transition of the larval stage
(Eq. 10), for this one point in time (z=15). Substituting
the parameter estimates for nonlinear survival, esti-
mated mean-larval density, and estimated variance into
Eq. 10, we find that the density of adults emerging at the
stream scale is 5.770. This compares to 6.937 in the
mean-field model, which is estimated by substituting the
parameter estimates and estimated mean-larval density
into the riffle-scale equation for the larval stage (Eq. 6).
Thus, the estimated scale transition by the quadratic
approximation, T, (larvae), is —1.167, or —16.8%. As
the remaining life-history parameters in Eqs. 11-12
simply apply a constant multiplier to 7, this is also the
proportional reduction in L(z + 1) for the full life cycle
in Eq. 14.

An alternative to using the quadratic approximation
for estimating the scale transition is to first estimate
A(t +d) using

Ar+d)=FD =13 F), (17

Table 3 Analysis of variance summary for the variance compo-
nents analysis of larval density showing degrees of freedom, sums
of squares, mean squares, and variance components

Stratum df SS MS Var. comp.
Riffle 39 14,492.215 371.595 181.431
Sample 40 349.337 8.733 8.733
Total 79 14,841.552
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where F(L) is the Ricker model with the estimated
parameter values, and L; is the larval density in the ith
riffle of the n sampled riffles. In this approach, the data
are used as an empirical surrogate for the probability
distribution function of the larval densities. Equation 17
is robust to departures from quadratic nonlinearity and
handles spatial heterogeneity that is not adequately
summarized by the variance. The scale transition, T, is
then calculated in the usual way (Eq. 7) as

T=F(L)-F(L) =%anF(L,~) —F(%anLl), (18)

where the second term on the right hand side is the
estimated mean-field model. For these data, Eq. 18 gives
T=-0.989, or —14.3%. For both the quadratic
approximation and Eq. 18, the estimates for T are close
to the true scale transition measured without error in the
spatial simulation of —13.7%, with Eq. 18 giving the
more accurate estimate.

Averaging over multiple nonlinearities

Above, we have considered the case with nonlinearity
from density-dependent survival and spatial variation
only in population density. Scale transition theory ex-
tends to multiple nonlinearities and variation in the
environment (Chesson 2000; Chesson et al. 2005). Then,
scale transition equations involve multiple scale transi-
tion terms. For example, differences between riffles in
resource productivity (e.g. from shading) could lead to
variation between riffles in the per capita competitive
effects of larvae (i.e. variation in o); or variation between
riffles in disturbance intensity (Downes et al. 1998) could
affect larval survival, independently of larval density and
competition. For the case of variation in survival, pre-
dispersal adult density for a riffle is then
Ac(t +d) = ScLy(t)e (19)

where S, represents the riffle specific effect of distur-
bance intensity on larval survival. The scale transition
equation for Eq. 19 is

A(t+d) = SL(t)e™ ) +1a(aL(t) —2)Se 2 OVar(L(r))

mean—{field model T,

+¢/(L(1))Cov(S, L(1)),

Ty

(20)

where g(L.(f))= L.(t)exp(—a L,(¢)). Thus, as before, the
stream-scale model is the mean-field model plus scale
transition terms. The first-scale transition term, T,, is
due to the interaction of density dependence and varia-
tion in density, as before (Eq. 10), while T3, is due to the
joint variation of disturbance and density dependence.
The second term shows that scaling up from riffles to the
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stream depends on the spatial covariance between dis-
turbance regime and larval density. As either scale
transition term could be positive or negative, the two
terms could have either conflicting or reinforcing effects
on stream dynamics. Spatial variation in the competition
parameter, o, similarly gives rise to extra scale transition
terms.

These scale transition terms can be thought of as
representing different spatial mechanisms. With multi-
ple mechanisms, an analysis of the scale transition in-
volves not only determining the total effect of spatial
dynamics but the relative contribution of the different
mechanisms. To measure the scale transition terms
using field data, the approach is not very different,
from before except that now, we need to allow for S or
o to vary between riffles. Melbourne et al. (2005)
present examples of estimating multiple scale transition
terms in the field.

Discussion

In the examples above, we have demonstrated the
concepts and properties of the scale transition in
translating the effects of local-scale processes to the
larger scale, where local populations are linked by
dispersal. We outlined a four step approach to scaling
up based on scale transition theory: derive a model to
scale up, measure nonlinearities, measure spatial vari-
ances and covariances, and combine nonlinearity and
variation measures to obtain the scale transition. In
the caddisfly examples, the model at the larger scale of
the stream always consisted of a mean-field model,
representing riffle-scale dynamics, modified by new
terms to account for spatial variation and nonlinearity
in scaling up to the stream. These scale transition
terms are interactions between nonlinearities and spa-
tial variation and represent the spatial mechanisms
responsible for changing dynamics at the larger scale
of the stream. The scale transition terms thus point to
key quantities that can be measured in the field. In the
caddisfly example, we demonstrated that these quan-
tities are measured correctly in the field by fitting
models to describe nonlinearities at the riffle scale, and
using appropriate sampling and estimation methods to
measure spatial variation.

An important feature of scale transition theory is that
while migration within the system is not measured
explicitly, migration results in the generation of spatial
pattern, measured by spatial variances and covariances.
The importance of spatial processes is thus measured by
evaluating the magnitude of the scale transition terms in
which they appear. For most systems, multiple scale
transition terms will appear in equations for dynamics at
the larger scale. Focusing on these fundamental scale
transition terms allows the relative importance of dif-
ferent mechanisms to be assessed quantitatively, and
facilitates comparison between different systems and
different models.

An advantage of the approach is that spatial
mechanisms can be examined with relatively little data,
and much can be gained by measurements for just one
time step. In the example that simulated field sam-
pling, the sampling interval was one time step, tar-
geting the density-dependent process in the caddisfly’s
life history. This snapshot was sufficient to demon-
strate that a significant interaction between nonlin-
earity and spatial variation was present. Sampling in
multiple years would provide further insight. If sam-
pling were continued for say, the following 2 years, we
would find that the scale transition, 7, remained close
to 15%, causing the stream-scale carrying capacity of
caddisflies to be depressed by the same amount
(Fig. 3b). Thus, sampling in multiple years would have
confirmed the results from the single time step. To
conclude, the empirical demonstration that the inter-
action exists validates the basic premise of spatial
models that spatial heterogeneity and spatial processes
are important to population dynamics.

A full understanding of population dynamics at the
stream scale requires understanding how the variances
and covariances in stream-scale equations arise and
change over time. This can be difficult because spatial
variation can arise through a complex interplay of dis-
persal, local dynamics, stochasticity, and spatial varia-
tion in the environment (Bolker and Pacala 1999; Snyder
and Chesson 2003). One possible approach to this issue
is by studying the relationship between the variance and
the mean. A range of mechanisms that generate rela-
tionships of mean to variance, and their effect on scaling
up are discussed in Chesson (1998a) and Chesson et al.
(2005). Despite the potential complexity in processes
that generate spatial variation, empirical studies show
that spatial variation often changes systematically with
mean density (e.g. Clark et al. 1996; Taylor et al. 1988),
suggesting that a relationship between mean and vari-
ance might be established empirically and used in scaling
up. Finally, an aspect of scale transition theory that
extends the empirical approach presented here, is how
spatial variation on multiple scales contributes to scaling
up through an interaction with the spatial scales of
nonlinearities (Chesson 1998a).
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