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Chapter 13: Applying scale transition theory 
to metacommunities in the field 

 
Brett A. Melbourne, Anna L. W. Sears, Megan J. Donahue and Peter Chesson 

 

Introduction 
A metacommunity consists of local communities linked by dispersal. This concept distinguishes 
between community processes that operate at local spatial scales and dispersal processes that link 
local communities together. The dynamics of the metacommunity as a whole result from an 
interplay between these local and regional processes, affecting dynamical outcomes such as 
stability, competitive exclusion, and persistence (Bolker and Pacala 1997; Chesson 2000; De 
Jong 1979; Hassell et al. 1991; Ives 1988; Pacala and Levin 1997). The major issue in 
metacommunity studies is understanding how regional dynamics arise from local dynamics, in 
other words, scaling up from the dynamics of local communities to the larger spatial scale of the 
metacommunity. In the chapter on scale transition theory (Chesson et al., chapter 12), we saw 
that the rules that determine community dynamics change as our view shifts from the small 
spatial scale of the local community to the larger spatial scale of the metacommunity. The key 
determinants of these changes were shown to be spatial variation between local communities and 
nonlinearity in local processes, neither being important without the other. Indeed, it is the 
interaction between spatial variation and nonlinearity that underpins the changes. Spatial 
heterogeneity is ubiquitous to ecological systems: we know from field experience that the 
density of each species, their resources, competitors, and predators vary over space. By 
nonlinearities, we mean that the relationship between population growth rate and the density of 
conspecifics, resources, competitors, or predators is nonlinear. Nonlinearities are also ubiquitous 
to ecological systems. For example, local per capita growth rates that depend on environmental 
conditions, or the simple act of one species feeding on another, involve nonlinearities. Any 
source of density dependence, such as intra- or inter-specific competition, also involves a 
nonlinearity. 
 
The critical insight of scale transition theory is that spatial variation between local communities, 
and nonlinearities within local communities, interact to determine the dynamics of the 
metacommunity. Through this insight, scale transition theory systemizes the study of 
metacommunities by identifying key quantities, which represent spatial mechanisms, that 
contribute to change with spatial scale. The spatial storage effect and fitness-density covariance 
are two examples of such mechanisms (Chesson 2000; Chesson et al., chapter 12). The presence 
and magnitude of these mechanisms also provides evidence that metacommunity processes are 
important to the dynamics of the metacommunity. If these mechanisms are absent we would 
expect little difference in dynamics between local-scale communities and metacommunities, that 
is, linking local communities together by dispersal would have little consequence. 
 
In this chapter we show how to apply scale transition ideas, as presented in the theory chapter 12 
using examples from three quite different field systems. There are three steps to implement this 
research program: 1) derive a model to translate the effects of local dynamics to the 
metacommunity scale and to identify key interactions between nonlinearity and 
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spatial variation; 2) measure nonlinearities at local scales; and 3) measure spatial variances and 
covariances. We show how to work through each of these steps and how to combine the models 
and data to calculate effects on dynamics at the metacommunity scale. Our field examples 
demonstrate a range of dynamical outcomes that result from a metacommunity structure. The 
first two field examples focus on a single species or functional group within a metacommunity 
but include interactions with other trophic levels. These first two examples are perhaps best 
considered metapopulation studies but they serve as a bridge to demonstrate how scale transition 
tools are applied to metacommunities. The final example is for competition between two species 
of annual plants. In all three examples, considering the spatial context of the metacommunity 
allows a deeper understanding of the mechanics of the system. 
 

Example 1: benthic algae and grazers on stream cobbles 
The first field example is for the dynamics of benthic algae growing on stream cobbles and 
grazed by insect larvae. Recently, stream systems, and the algae-grazer system in particular, have 
inspired much interest in the issue of heterogeneity and scaling because of high spatial variation 
in the density of organisms and physical conditions (Cooper et al. 1997, 1998; Downes et al. 
1993; Nisbet et al. 1997). Melbourne and Chesson (submitted) described a study of the scale 
transition for algae (more accurately periphyton dominated by algae) and grazers in a stream 
system in southeastern Australia. In these streams, algal assemblages were dominated by diatoms 
and green algae and were consumed mainly by the aquatic larval stages of caddisfly, mayfly and 
waterpenny species. Interactions between algae and grazers occur in local patches, on centimeter 
scales, yet we wish to scale up to a metacommunity scale that encompasses the entire study area, 
some 42 km of stream. What role does spatial structure play in this system? How big might the 
effects of spatial structure and spatial variation be on algal-grazer dynamics at the larger scale of 
the stream? 
 

Model to scale up algae and grazers 
It is worth going into some detail to show how models were derived to scale up from local 
processes at the scale of centimeter-sized patches to the regional scale of the stream. We begin 
by formulating a model for the dynamics of algae and grazers at the local scale. We treat algae 
and grazers as functional groups, not differentiating the separate dynamics of each species but 
instead examining the overall dynamics of algae and grazers. At the local scale, algal dynamics 
are determined by three processes: algal growth, consumption by grazers, and dispersal of algae 
into and out of a location. Here we use the patch model formulation of the scale transition 
(Chesson et al., chapter 12, equation 12.10). A simple model for algal dynamics at location x (a 
small patch, say 2 cm in diameter) is thus 

 
( ) ( ) ,,A,A xxxxx

x IGAfAg
dt

dA ε−+−=
 (13.1) 

where A is the density of algae (biomass per unit area), t is time, and G is the density of grazers 
(biomass per unit area). The model is a standard balance equation plus dispersal terms, where 
g(A) is a function that describes algal growth rate (biomass per unit area per unit time) as a 
function of algal density, and f(A)G describes the rate of algal consumption by grazers, where 
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f(A) is the functional response of a grazer. In writing consumption as f(A)G, we are assuming that 
grazer consumption is linear in G, which means that grazers do not interact with each other 
directly through interference but only indirectly by consuming algae, a standard assumption for 
this system (Nisbet et al. 1997). Algal dispersal to and from location x is modeled by the generic 
functions IA,x and εA,x, to which we can assign any set of dispersal rules (provided that dispersal 
mortality is factored into the growth rate terms [Chesson et al., chapter 12]). For example, algal 
immigration rate, IA, at location x might depend on the output from nearby patches or the 
vagaries of stream currents, and algal emigration rate, εA, at location x might depend on algal 
density at that location. Equation 13.1 is in continuous time, which matches the nature of algal 
dynamics. A simple model for grazer dynamics at location x is 

 ( )( ) ,,G,G xxxx
x IGmAcf

dt
dG ε−+−=  (13.2) 

where c is the conversion efficiency of grazers, m is grazer mortality, and grazer movement is 
modeled by the generic functions IG,x and εG,x. Thus, a model for the local dynamics of algae and 
grazers consists of the coupled equations 13.1 and 13.2. To match the time scale that can be 
achieved in field experiments (i.e. two to three weeks), we reformulate the model for grazer 
dynamics to a short time scale, over which the net gain in grazer density due to the consumption 
of algae is trivial (Nisbet et al. 1997). Thus, we set [cƒ(Bx)-m]Gx = 0, and the local dynamics of 
grazers is determined only by movement into and out of the location. For example, such 
movement might be a result of foraging decisions made by individual grazers (recall that a 
location is a 2 cm diameter patch), or a response to environmental conditions or predators at the 
location, or upstream or downstream movement in response to stream flow. To fully specify the 
model, we need to put forward specific functions for g(A) and f(A) but for now we leave the 
model in its general form and proceed to the scaling up step. As we will see, we do not need to 
specify the algal dispersal and grazer movement functions. 
 
We wish to scale up to find the dynamics for the entire stream. At this regional scale, we 
consider the system to be effectively closed, meaning that the rate of dispersal across the 
boundaries is so small that it can have no effect on internal dynamics. Over short time scales, this 
is an especially realistic assumption for streams. The entire stream encompasses the headwaters, 
so there is no immigration from upstream and there is no immigration from the surrounding 
terrestrial environment. The only dispersal that occurs across the stream boundaries is at the 
downstream end, where the amount of dispersal across the stream boundary is tiny compared to 
that within the system upstream. We consider only short time scales here but over longer time 
scales we might need to deal with flood events, when there can be a large export of algae and 
grazers from the system at the downstream end. 
 
To scale up from local, centimeter sized patches, to the regional scale of a stream, where patches 
(indexed by x) are now linked by dispersal of algae and movement of grazers, we average the 
local dynamics over all patches. This regional average is a foundation of the scale transition: the 
average of the local densities is in fact the regional density (Chesson et al., chapter 12). Thus, 
averaging over both sides of equations 13.1 and 13.2, the regional dynamics are 
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( ) ( ) ( ) ( )

( ) ( )

,0GGGG

AAAA

=−=−=

−=

−+−=−+−=

εε

εε

II
dt
Gd

GAfAg

IGAfAgIGAfAg
dt
Ad

 (13.3) 

where the overbars indicate an average over space, and the subscript x disappears because that is 
what we are averaging over. The overbar extends all the way across the right hand side, 
indicating that the rate of change in algal density at the regional scale is an average of the local 
functions for growth, consumption, and dispersal. As averages are additive, the regional average 
simplifies to the separate averages for growth, consumption, and dispersal (equation 13.3). Since 
the system is effectively closed at the regional scale, individuals leaving one location within the 
region enter another location, so that the total number of individuals leaving locations is equal to 
the total number of individuals entering locations (i.e., 0=− εI ). Thus the dispersal functions 
disappear and dispersal within the system becomes an implicit part of the model, rather than 
appearing explicitly at the regional scale. 
 
Equation 13.3 is our fundamental equation for the regional dynamics and we can now work 
through it to find a useful expression for the scale transition by using the properties of nonlinear 
averages given in chapter 12, box 2. The average of the product ( )GAf  in equation 13.3 splits 
into the product of the averages and the covariance in space between them (chapter 12, equation 
12.B2.6), so 

 ( ) ( ) ( )( )GAfGAfAg
dt
Ad ,Cov−−= . (13.4) 

At this stage, the equation still gives the exact dynamics for the region. Thus, in equation 13.4 it 
can be seen that the dynamics for the region involves the covariance over space between grazer 
functional response and grazer density. The grazer functional response will vary in space 
according to variation in algal density between locations. By approximating g(A) and f(A) as 
second order Taylor polynomials (chapter 12, equation 12.B2.5), we get 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ),,CovVar
2
1Var

2
1 GAfGAAfAfAAgAg

dt
Ad

−⎟
⎠
⎞

⎜
⎝
⎛ ′′+−⎟

⎠
⎞

⎜
⎝
⎛ ′′+= (13.5) 

where Var(A) is the variance of A over space and ( )Ag ′′  and ( )Af ′′  are the second derivatives of 
( )Ag  and ( )Af . Finally, rearranging and taking a linear approximation for f(A) in the 

covariance term (chapter 12, equation 12.B2.8) we get 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),,CovVar
2
1Var

2
1

c
ba

model fieldmean
44 344 21

44 344 2144 344 21
44 344 21 GAAfAGAfAAgGAfAg

dt
Ad ′−′′−′′+−=

−

(13.6) 

where ( )Af ′  is the first derivative of ( )Af . The structure of this model for the regional 
dynamics is very informative and empirically useful. The first two terms are the mean field 
model, which is simply the equation for local dynamics (equation 13.1 without dispersal) with 
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the mean density across patches substituted for local density. We can think of the mean-field 
model as representing local dynamics. The regional dynamics are thus given by the mean field 
model plus three scale transition terms (a-c) that correct the mean field model to account for 
spatial structure. Most importantly, equation 13.6 tells us what we need to measure in field 
studies: the nonlinearities in algal growth and grazer consumption expressed by g''(A) and f''(A), 
the spatial variance of algal density, Var(A), and the spatial covariance of algal and grazer 
density, Cov(A,G). Here nonlinear means that the rate of algal growth or consumption varies as a 
nonlinear function of algal density (discussed below). 
 
To analyze the consequences of the metapopulation structure, we consider the magnitude and 
sign of the terms (a-c) relative to the mean-field model and to each other. Terms (a) and (b) are a 
consequence of spatial variation in algal density between patches and clearly demonstrate how 
changing scale involves an interaction between nonlinearity and spatial variation, since they 
involve the product of 1) the second derivative g''(A) or f''(A), which measure nonlinearities in 
the local processes of algal growth or grazer functional response respectively, and 2) the variance 
in algal density between locations, Var(A). For algal growth, g(A), local nonlinearities might 
result from competition for resources within the algal film. For example, as algal density 
increases, shading by overlying algal cells reduces the photosynthetic rate of cells in layers 
below, resulting in density dependent growth. For the functional response of grazers, f(A), local 
nonlinearities might result from a handling time requirement or an attack rate that varies with 
algal density, for example, as in a classic Type II or Type III functional response. Depending on 
the sign of the second derivatives ( )Ag ′′  and ( )Af ′′ , which are determined by whether each 
function is concave down (negative second derivative) or concave up (positive second 
derivative), the nonlinearities may work either in opposing directions, thus moderating the effect 
of variation, or in the same direction, thus compounding the effect of variation on regional 
dynamics. The third term (c) also results from an interaction between nonlinearity and spatial 
variation but the interaction is now due to the two-dimensional nonlinearity of algae and grazer 
density. This nonlinearity is simply because grazers eat algae. Spatial variation in G alone does 
not appear in the regional model and the effect of spatial variation in G enters only through 
spatial covariation with A. This is because we assume that grazer consumption is linear in G 
(equation 13.1). The influence of spatial variation in grazer density on the scale transition 
depends on the covariance between algae and grazer density (term c), in other words, on how 
algae and grazers are distributed in space in relation to one another. 
 
While dispersal of algae and movement of grazers within the system are explicit in the 
construction of the model, they do not appear in equation 13.6. Instead, the effects of dispersal 
and movement on the spatial pattern are represented by the variance and covariance terms. For 
example, the movement of grazers affects these terms because grazers move around in the 
stream, eating algae, thus creating (or destroying) variation in algal density. Similarly, movement 
and consumption could set up covariance between algae and grazer density. Thus, while 
dispersal of algae and movement of grazers does not appear in the regional model (indeed an 
equation for the dynamics of grazers does not appear at all), the model incorporates the effects of 
algal dispersal and grazer movement within the system. 
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We know that this system consists of local patches in the stream that are linked by dispersal of 
algae and movement of grazers. If this metapopulation structure is important in explaining 
dynamics at the larger scale of the stream, then we should be able to detect and quantify the 
interactions (a-c) in the field. That requires measuring the nonlinearities associated with algal 
growth and grazer consumption as well as the variances and covariance in equation 13.6.  
 

Measuring nonlinearities in algae and grazers 
In general, local nonlinearities can be estimated by varying levels of the nonlinear factors 
(usually population density) in an experiment and fitting models to the experimental data to 
describe the shape of the nonlinearities. This same general approach is applied to all three field 
examples in this chapter, although the methodological details are peculiar to the processes and 
experimental constraints of the different systems. To measure nonlinearities in the algae-grazer 
system, we need to put forward specific functional forms for algal growth and grazer foraging. 
Recall that nonlinear means that the rate of algal growth or consumption varies as a nonlinear 
function of algal density. It is useful in this step to put forward alternative models as hypotheses 
for the functional form and to test between models by confronting them with experimental data, 
as described in Melbourne and Chesson (submitted ms). To measure nonlinearities in algal 
growth, the experiment involved excluding grazers from rocks in the stream and examining the 
growth of algae in centimeter-sized patches in the absence of grazers, over a range of initial 
density for the algae. The functional response of grazers was determined similarly by examining 
consumption over a range of algal densities in the stream. The best-fitting models were the 
logistic model for algal growth and the Type III functional response for grazers. These models, 
parameterized from the local scale data, characterize the nonlinearities in the process of algal 
growth g(A) and grazer consumption f(A) at local scales. 
 

Measuring spatial variances and covariances 
Measuring spatial variation at the scale of local nonlinearities is critical to estimating the scale 
transition. We need to first identify the scale of the local nonlinearity, which is defined as the 
range of space over which the influence of the nonlinear process is homogeneous (the ecological 
neighborhood sensu Addicott et al. 1987). For a density dependent process, like algal growth, 
this scale is the scale of density dependence (Chesson 1996, 1998a). These scales can be tricky 
to determine precisely but their order of magnitude is often obvious. In the algae-grazer system, 
the different scales are the scale of competition between algal cells (on the order of micrometers 
to millimeters) and the scale of the grazer consumption process (on the order of centimeters to 
meters). We set the scale of algal growth to the smallest scale we could measure, which 
corresponded to our algal sampling device (2.4 cm diameter). For the scale of grazer 
consumption, we also assume the smallest scale we could measure (2.4 cm diameter), meaning 
that grazers can perceive and respond to variation in algal density between centimeter-sized 
patches. To measure the spatial variance of algal density and the spatial covariance for algal and 
grazer density, samples of algae and grazer density were taken in a hierarchical sampling design 
and the total variance and covariance at the scale of the local nonlinearity was estimated by 
analysis of the variance components (Melbourne and Chesson submitted; Searle et al. 1992; 
Underwood and Chapman 1996). 
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Combining the model with field data to scale up 
Having identified models and estimated parameters for the nonlinear functions for algal growth 
and grazer foraging, and estimated the spatial variances and covariance in equation 13.6, we can 
now scale up the dynamics from the local scale of a centimeter-sized patch, where interactions 
between individuals take place, to the scale of the stream, which is made up of patches linked by 
dispersal of algae and movement of grazers. A note of caution is required here. The 
approximations in equation 13.6 give the trend as the variance increases from zero, but if the 
equations are not quadratic, the approximation may become inaccurate when the spatial variance 
is large. The logistic model for algal growth is exactly quadratic but the Type III functional 
response for grazers departs markedly from a quadratic and the approximation breaks down 
because we observe high variance (figure 13.1). For the Type III response, we calculated the 
exact scale transition for terms (b) and (c) in equation 13.6, as described in Melbourne and 
Chesson (submitted). 
 
The effect of scaling up is to reduce the instantaneous rate of growth at the stream scale 
compared to local patches (figure 13.1). That is, for a given algal density at the stream scale, 
growth is reduced compared to growth for the same algal density at the patch scale. The area 
shaded in gray in figure 13.1 represents the scale transition: the difference in output from the 
patch-scale population dynamics (given by the mean-field curve) and the spatial model for the 
stream that takes into account the metapopulation structure. The metapopulation structure 
doesn’t qualitatively alter aspects of the short term dynamics, such as the stability because the 
general form of the spatial model is still a hump-shaped curve (figure 13.1). However, an 
important basic property that is quantitatively altered is the equilibrium density of algae, ∗A , the 
balance of growth and consumption. This short term equilibrium density is reduced at the stream 
scale by about 41%, a substantial reduction (figure 13.1). Thus, spatial variation and nonlinearity 
interact to reduce algal density at the metapopulation scale. 
 
Recall that the important components that arise because of the metapopulation structure are the 
terms (a-c) in equation 13.6 that represent interactions between nonlinearity and spatial variance. 
When we look at the three components of the scale transition, the main effect is seen to be from 
the interaction of nonlinearity in algal growth with spatial variation in algal density (figure 13.2), 
because both the nonlinearity and the variance were high. This effect is offset somewhat by the 
interaction between the nonlinear functional response with spatial variation in algal density 
(figure 13.2). Nonlinearity in the functional response was less than for algal growth, so the offset 
is smaller than the algal growth term. The spatial covariance of algae and grazers was negative 
but the covariance term was too small to influence the outcome (figure 13.2). Thus, by 
examining these relative contributions we can determine the most important spatial mechanisms 
that alter dynamics at the regional scale. 
 
This example demonstrates the basic concepts and properties of the scale transition in translating 
the effects of local scale processes to the scale of the metapopulation, where locations are linked 
by dispersal. Scale transition theory identified the important component mechanisms that change 
dynamics at the metapopulation scale. These components were then possible to measure 
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relatively easily by applying standard field experiments and sampling designs. We confirmed 
that metapopulation processes were important to the dynamics of the system because we detected 
large scale transition components. Had we not detected such large components, we would not 
expect the metapopulation structure to have any important effects on dynamics at the larger scale 
of the stream, the stream would act much like a patch. The next field example involves a greater 
variety of local processes than the simple example above, demonstrating that more complicated 
cases are approached in the same way. 
 

Example 2: dynamics of an intertidal crab 
The second field example is for the dynamics of an intertidal crab that, like many other marine 
organisms, has a planktonic larval stage. Current research in marine ecology recognizes that 
marine systems are metacommunities, in which local populations and communities are 
interconnected through larval dispersal (Armsworth 2002; Chesson 1998b; Jones et al. 1999; 
Swearer et al. 1999, 2002; Thorrold et al. 2002). This metacommunity view contrasts with a 
“supply-side” perspective of marine systems, in which larval supply is treated as an external 
force that sets the stage for subsequent local dynamics but does not feedback to the larval pool 
(Gaines and Roughgarden 1985; Grosberg and Levitan 1992). When marine systems are viewed 
as a metacommunity, larval supply is not an external force on local communities but interacts 
with local processes to influence local and metacommunity dynamics (Armsworth 2002; 
Chesson 1998b). 
 
In our example system, the porcelain crab, Petrolisthes cinctipes, lives under rocks in intertidal 
cobblefields in the northeast Pacific. It releases larvae that feed and develop in the plankton for 
1-2 months. Upon returning to adult habitat, the larvae settle and, if they survive high post-
settlement mortality, recruit to the adult population (Donahue 2003; Jensen 1989, 1991). Adults 
are filter-feeders and live in aggregations under rocks. Rocks are relatively discrete habitat 
patches because P. cinctipes move little unless their rock is disturbed. There are two natural 
scales of variation to consider: rocks (rock area≈0.1m2) within sites, and sites (site length≈1 km) 
within the metacommunity that encompasses the coastline. Competitive interactions between 
crabs occur at the rock scale. Predators forage across rocks within sites. Sites are connected by 
larval dispersal. We model larval distribution in the following way: larvae generated at all sites 
enter a larval pool and the proportion of this larval pool distributed to a particular site is a site-
scale characteristic. We wish to scale up from rock- and site-scale interactions to the 
metapopulation that encompasses the coast. 
 

Model to scale up crab dynamics 
We begin by formulating a model for the dynamics of P. cinctipes at the cobble scale, where 
interactions between individuals take place. The important population processes can be divided 
into recruitment and adult growth. Juveniles settle gregariously in response to adult density  
(Donahue submitted ms; Jensen 1989). To recruit, settlers must survive predation from resident 
predators (several species of fish and crabs) (Donahue 2003; Jensen 1991) and competition from 
resident adults (Donahue 2004). For adult crabs, growth rate and fecundity depend on 
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conspecific density (Donahue 2004). These processes lead to a general model for the dynamics 
of crab biomass, Nx, under cobble x from the release of larvae in one season, t, to the  
release of larvae in the next t+1: 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )tLtPtNhtNgtNtN xxxxxx ,,1 ++=+ . (13.7) 

In this model, g(Nx(t)) is a function that describes the density dependent growth and mortality of 
adult crabs and h is a function that describes recruitment. Recruitment is determined by the 
biomass of adults under the rock, Nx(t), the biomass of predators, Px(t), and larval supply, Lx(t), 
the total biomass of larvae delivered to the site. The larvae Lx(t) are the dispersed offspring of the 
adults present in the system at time t: Adults from cobble x produce bNx(t) new larvae, which 
disperse and become the inputs Lx(t) to equation 13.7. The equation implicitly assumes that 
dispersal is instantaneous. In reality it is spread out over time during the interval t to t + 1, with 
equation 13.7 being most accurate if dispersal is concentrated early in the time interval. Dispersal 
of larvae between sites could follow any mode of dispersal. For example, larvae could enter a 
global pool and disperse to sites according to ( )tNbUtL xx =)( , where Ux is the proportion of the 
regional larval pool delivered to the site (see also equation Chesson et al., chapter 12, equation 
12.13). As the transition from adults to larvae is linear, we focus on the stage transition from 
larvae to adults in equation 13.7. Adult growth and competition take place at the rock-scale, 
while recruitment has both site-scale (larval supply, predator abundance) and rock-scale 
(competition, gregarious settlement) factors. To fully specify the model, we need specific 
functions for g and h but as in the previous example, we leave the model in its general form and 
proceed to the scaling up step. 
 
To understand regional dynamics in this system, we take spatial averages of both sides of this 
equation: 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )tLtPtNhtNgtNtN ,,1 ++=+ .  (13.8) 

The spatial average of the right-hand side can be approximated by a Taylor expansion. Since our 
general model is a function of three variables, we perform our Taylor expansion around mean 
adult density, mean predator density, and mean larval supply, each of which generate variance 
and covariance terms. Note that we are not tracking the dynamics of predators, but predator 
density influences attack rates.  
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  (13.9) 

On first impression, this equation looks rather complicated because of the need for partial 
derivatives to account for nonlinearities. However, the equation has the familiar form that we 
saw in the first example and in chapter 12. The first line of equation 13.9 is the mean-field 
model. If there were no spatial variation in adult density, predator abundance, or larval supply, 
the mean-field model would be the correct model at the metapopulation scale. Of course, there is 
spatial variation in these variables, and the next three lines of the equation take this into account. 
Thus, the regional dynamics are given by the mean field model plus the seven terms (a-g) that 
correct the mean field model to account for spatial structure. To scale up, we need to measure the 
scale transition terms (a-g) from field studies. 
 
The first scale transition term (a) of equation 13.9 is the interaction of nonlinearity in adult 
growth with spatial variation in adult density. The nonlinearity measures the strength of 
competition between adults. Since P. cinctipes have a clumped distribution, term (a) accounts for 
higher competition at higher densities. The second term (b) includes the nonlinearity of 
recruitment with respect to adult density, measured by the partial derivative. This nonlinearity is 
influenced by the competitive effect of adults on settlers, the protection from predation that 
settlers gain from adults, and the tendency for settlers to choose rocks with higher adult densities. 
Each of these processes interacts with variation in adult density. The third term (c) is nonzero 
only when predation rate has a nonlinear dependence on predator density, e.g., if there were 
interference between predators. In our study of P. cinctipes, we have assumed that predator 
effects are additive and this term is zero. The fourth term (d) is the nonlinearity of recruitment 
with respect to larval supply times the variance of larval supply. Spatial variation in larval supply 
is notoriously high among marine organisms, ranging several orders of magnitude. This term 
could be important even if the nonlinearity with respect to larval supply is comparatively small. 
 
Terms (e) to (g) of equation 13.9 result from the two-dimensional nonlinearities in recruitment. 
There are no two-dimensional nonlinearities in adult growth because it is a function of a single 
variable, adult density. While the predator term (c) equals zero, there can be two-dimensional 
nonlinearities between predators and adult density and between predators and larval supply. 
Term (e) arises because adult density influences the abundance of settlers (through gregarious 
settlement, competition, and protection from predation) and predators respond to settler 
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abundance. Therefore, there is a two-dimensional nonlinearity between predators and adult 
density. Term (f) arises because of gregarious settlement, in which larval supply interacts with 
adult density. Finally, term (g) arises because predators respond to prey density, and larval 
supply influences prey density. Each of the two-dimensional nonlinearities is multiplied by its 
respective covariance term. 
 

Measuring local nonlinearities 
Our next goal was to empirically evaluate each component of this model. Since we wanted to 
estimate the functions for adult growth, g(N(t)), and larval recruitment, h(N(t),P(t),L(t)), we 
needed to perform growth and recruitment experiments over a range of densities. Starting with 
the growth component, we tested for intraspecific competition by tracking individual growth 
rates over a range of crab densities in field and laboratory experiments. We found that growth 
rate declined with increasing density and that smaller individuals were more strongly impacted 
by competition than large individuals (Donahue 2004). Since our general model has only two 
size classes, we incorporated size-specific competition by fitting a different competition 
coefficient for adults on settlers than adults on other adults. Competition is a nonlinearity with 
respect to adult density in both the growth and recruitment components of equation 13.9. 
 
Previous studies indicated that P. cinctipes settle preferentially with conspecifics (Jensen 1989). 
To quantify gregarious settlement, we manipulated adult density in field enclosures and counted 
the number of settlers to each enclosure (Donahue 2003). We performed this experiment during 
two settlement pulses to see how larval supply influenced the settlement pattern. We found that 
the per capita rate of settlement increased then saturated with adult density. This generates 
nonlinearity with respect to adult density. 
 
Settlers remain under adults and are protected from predation by this behavior (Jensen 1991). 
One model for this interaction is a decline in attack rate as the ratio of adults to settlers increases 
(Donahue 2003). We assume there is no interference between predators. This generates 
nonlinearity with respect to adult density and larval supply, but only two-dimensional 
nonlinearities with respect to predators. 
 

Measuring spatial variances and covariances 
With models of density dependence established and parameterized, we measured variation in 
adult density, predator density, and supply at the appropriate scales. Variation in adult density is 
at the rock scale, while variation in predator density and larval supply is at the site scale. At 
fourteen cobblefield sites, we sampled forty rocks for adult crabs and predators. Since predators 
were less abundant, we sampled an additional eighty rocks for predators. From this, we could 
estimate the rock-scale and site-scale variance in adult density, Var(N), site-scale variance in 
predator abundance, Var(P), and site-scale covariance between adults and predators, Cov(N,P). 
At eight sites, we sampled larval supply using nearshore collectors and estimated the site-scale 
variance in larval supply, Var(L), and the site-scale covariances between density and supply, 
Cov(N,L), and between predator abundance and supply, Cov(P,L). Within a site, we consider 
supply to rocks and predator density at each rock within a single site to be uniform and, 
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therefore, there is no contribution of variance (or covariance) from the rock-scale that contributes 
to site-scale variance. 
 

Combining nonlinearities and spatial variances to scale up 
From the empirically derived functions and parameter estimates for growth, competition, 
predation, and gregarious settlement, we calculated values for each of the seven terms (equation 
13.9, a-g) in the regional model (figure 13.3). Spatial variation in adult abundance has a negative 
effect on adult growth (figure 13.3a). Since P. cinctipes are highly aggregated, a large proportion 
of adults live at higher than average density and the overall effect of variation is to almost cancel 
out the growth of adults. The overall effect of spatial variation in adult density, predator 
abundance, and larval supply is to decrease recruitment per rock (figure 13.3, the sum of scale 
transition terms b-g). Of the five components of equation 13.9 that contribute to the scale 
transition, only three are large enough to see in Figure 13.3. First, adults compete with settlers, 
which results in an overall negative effect of adult aggregation on recruitment. Therefore, ½ 
∂2h/∂N2 Var(N) (equation 13.9b) contributes to the scale transition. Second, larvae settle 
gregariously with adults, and adults and larvae positively covary, resulting in a positive 
contribution to the scale transition through the joint nonlinearity of adults and larvae, ∂2h/∂N∂L 
Cov(N,L) (equation 13.9f). Third, increasing larval supply increases predation as the number of 
settlers outstrips the protective effect of adults, resulting in a negative effect of ∂2h/∂P∂L 
Cov(P,L) (equation 13.9g). Nonlinearity with respect to larval supply is small so that even with 
the large variance in larval supply ½ ∂2h/∂L2 Var(L) (equation 13.9d) does not contribute 
substantially to the scale transition for recruitment. Adults decrease predation on settlers and 
there is negative covariance between adults and predators; this results in a negative but negligible 
contribution to recruitment through ∂2h/∂N∂P Cov(N,P) (equation 13.9e). Surprisingly, the 
pronounced spatial variation in recruitment does not have a strong effect on regional dynamics. 
Though spatial variation in larval supply can be extremely large, an average adult biomass is 
~200x larger than settler biomass. The net effect is that competition between adults is more 
important than recruitment in determining regional biomass. 
 
From this empirical exploration of scale transitions in P. cinctipes, we can draw several 
conclusions. First, spatial variation in recruitment decreases regional recruitment compared to 
the mean-field model. Supply-side theory and experiments demonstrate large differences in local 
dynamics due to spatial variation in larval supply; our results demonstrate the importance of 
these local changes to regional recruitment. Second, despite enormous spatial variation in larval 
supply demonstrated for this and many other marine species, recruitment has a relatively small 
effect on overall standing stock for iteroparous species. Finally, while adult aggregation has a 
negative effect on adult growth rate, it has positive effects on recruitment through joint 
nonlinearities with larval supply and predators as a result of gregarious settlement and 
facilitation. Since gregarious settlement (Burke 1986; Pawlik 1992) and facilitation (Bertness 
and Callaway 1994; Bertness and Grosholz 1985; Bertness and Leonard 1997) are relatively 
common among marine organisms, the importance of these joint nonlinearities may be a general 
phenomenon. 
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Example 3: competition between two species of annual plants 
The final field example is for competition between two species of annual plants. The aim was to 
quantify processes contributing to the coexistence of annual plants in the Chihuahuan desert, 
Arizona (Sears 2004). In this system, we envisage two important spatial scales: the scale of local 
communities, corresponding in size to the competition neighborhood of the plants, and the scale 
of the metacommunity where local communities are linked by dispersal of seed. The spatial scale 
of the metacommunity is perhaps the most natural one for examining coexistence processes, 
because net population dynamics at the metacommunity scale will reflect spatial variation in 
density and in the abiotic environment. However, the importance of metacommunity processes in 
providing opportunities for species coexistence, such as competition/colonization trade-offs and 
environmental heterogeneity, have been difficult to test, given the complexity of natural systems. 
Here we show how community models can be designed to be parameterized with readily 
available field data to quantify an important metacommunity process contributing to coexistence, 
the spatial storage effect (Chesson et al., chapter 12). 
 
We compared the contribution of local-scale and metacommunity-scale processes to species 
coexistence by comparing the effects of local competition with the influence of the spatial 
storage effect. The focal species were Erodium cicutarium and Phacelia popeii (hereafter 
Erodium and Phacelia), rosette-forming annual plants, that germinate with the winter rains, and 
complete their lifecycle in the spring. In the years immediately before this study, the population 
of Erodium, a non-native, went from low abundance at the study site to being the dominant 
winter annual species. Phacelia is native to the region, and has highly variable abundance 
depending on rainfall. Though sparse, Phacelia was the second most common annual plant 
during the course of the study. 
 
The spatial storage effect can arise when there is spatial environmental variation, each species 
has a particular patch type that is most favorable to it, (i.e. each species has an environmental 
niche), and species disperse between locations. If a species has a positive covariance between the 
favorability of the environment and the competition that it experiences at different locations, 
variation in the environment acts to reduce the population growth rate of the species at the 
metacommunity scale (Chesson 2000). When the growth rates of high density species are more 
limited by this mechanism than are the growth rates of low density species, then variation in the 
environment acts to promote coexistence. Many studies have shown that competition intensity 
changes with variation in the environment (see review in Goldberg et al. 1999). But when does 
environmental variation make a difference for community dynamics? Using carefully designed 
models, we can make progress in understanding how metacommunity processes contribute to 
diversity maintenance in complex environments. 
 

Model to scale up the dynamics of annual plants 
In chapter 12, we formulated a model for the local dynamics of an annual plant community and 
scaled that model up to give the dynamics of the metacommunity. In that model, we saw that the 
dynamics of the metacommunity depend on a number of spatial covariances (Chesson et al., 
chapter 12, equation 12.23). Sears (2004), focuses in on one component of that model, the effect 
of spatial variation on plant yield and how this contributes to species coexistence through the 



Melbourne BA, Sears AL, Donahue MJ, Chesson P. (2005). Applying scale transition theory to metacommunities 
in the field. In M. Holyoak, M. A. Leibold and R. D. Holt eds. Metacommunities: Spatial Dynamics and 
Ecological Communities. Chicago, University of Chicago Press, pp 307-330. 
 
 

13.14  

spatial storage effect. The spatial storage effect involves Cov(E,C), the covariance of a species’ 
response to the environment, E, and response to competition, C (Chesson et al., chapter 12, 
equation 12.26). We begin by formulating a local model for plant yield (quantified in the field as 
the number of inflorescences produced per adult, a surrogate for seed production), which is the 
result of two local processes, the response of the plant to the local environment and the response 
of the plant to the presence of conspecific or interspecific neighbors. In this case, the driver of 
the plant environmental response is the vigor (Vj) parameter described in Chesson et al. (chapter 
12, Table 12.1). We use the symbol Yjx as the final yield combining vigor (V) with the yield per 
unit biomass (Y) and competition (C) of chapter 12 (Table 12.1). To facilitate data analysis and 
improve the numerical accuracy of the approximations we use a log scale. The model is defined 
in chapter 12 in the way most conducive to understanding, but the log scale works better for data 
analysis and numerical calculations. Thus, we write the yield for species j at each location x as 

 jxjxjx CEY −=ln , (13.10) 

where Ejx is the log yield (as growth or fecundity) of an individual in response to environmental 
conditions alone, and Cjx is the competitive effect of neighbors on focal plants, defined as the 
reduction in log yield. Thus, Ejx is the log of the product of the vigor and yield per unit biomass 
parameters of chapter 12, and Cjx is the log of the C of chapter 12. While we generally define Cjx 
as a competition term, there is no sign restriction, and thus the theory permits facilitation when 
Cjx is negative. Yield is the anti-log of equation 13.10, 

 ( ) jxjxjxjx CECE
jx eeeY −− == . (13.11) 

Thus, equation 13.11 is our local model for plant yield. 
 
To scale up from local community dynamics to the regional scale of the metacommunity, where 
locations are now linked by dispersal of seed, we take the spatial average of the local dynamics 
over all locations. We expect both the environmental response E and competition C to vary in 
space, so averaging over both sides of equation 13.11, and expanding the average of the product 
(chapter 12, equation 12.B2.6), the regional yield is 

 ( )jjjjjj CECECE
j eeeeeeY −−− +== ,Cov . (13.12) 

This equation gives the exact yield for the metacommunity scale. Approximating jEe and jCe− of 
the mean terms as second order Taylor polynomials (chapter 12, equation 12.B2.5), and taking a 
linear approximation for jEe and jCe− in the covariance term (chapter 12, equation 12.B2.8) we get 
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where Var(Ej) is the spatial variance of the environmental response and Var(Cj) is the spatial 
variance of the competitive response. We use equation 13.13 for analyses but a more intuitive 
form is obtained by expanding the products and dropping a higher order term: 
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Like the regional models of the previous examples, the structure of this model tells us how plant 
response to competition is modified at the metacommunity scale and it tells us what we need to 
measure in field studies to quantify the importance of metacommunity-scale processes. The 
dynamics of the metacommunity are given by the mean field model, which represents the 
average local response of each species to environment and competition, plus terms (a-c) that 
correct the mean field model to account for the metacommunity structure. 
 
Thus, spatial variation potentially plays an important role in the metacommunity. In addition to 
local responses (represented by the mean-field model), average per capita yield for each species 
depends on spatial variation in its response to the environment (a) and to competition (b) and on 
the spatial covariance of its response to environment and competition (c). Equation 13.14 tells us 
that spatial variance in response to the environment and competition increases the average local 
response to the environment, but that a positive covariance between these responses reduces a 
species’ yield at the metacommunity scale. However, of most interest here is how these 
quantities change with relative abundance of the species for then we can determine how they 
contribute to species coexistence (Chesson et al., chapter 12). The most important effects come 
from the behavior of Cov(E,C). 
 
At a metacommunity-scale, Cov(E,C) can provide a brake to population growth rates that is, in a 
sense, independent of local processes that promote coexistence (such as resource partitioning). 
Positive Cov(E,C) means that the response of a species to competition is greatest where the 
environment is most favorable. To promote coexistence between species, the numerically 
dominant competitor must have a greater positive Cov(E,C) than that of the low density species. 
We expect that high density species may often have a greater Cov(E,C) than low density species 
because they are likely to experience intense intraspecific competition in their most favorable 
locations in the environment. When there are species-specific differences in environmental 
preference, low density species are more likely than high density species to experience 
competitive release in their best growing locations, and for low density species there is never 
likely to be a strong relationship between competition intensity and the favorability of the 
environment (see chapter 12 for a comprehensive discussion of how this works for different 
types of spatial environmental variation). 
 
There are a number of reasons why it is essential to think of Cov(E,C) as an independent, 
emergent process. In the first place, Cov(E,C) requires environmental heterogeneity, and thus 
cannot be considered at small spatial scales. The effects of Cov(E,C) are also somewhat 
independent of neighborhood-scale resource partitioning, such as light-nutrient limitation 
differences or differences in rooting depth. While resource partitioning at the neighborhood scale 
can promote coexistence in the absence of environmental variation, likewise Cov(E,C) can 
promote coexistence when the relative intensity of intraspecific and interspecific neighborhood 
competition predicts competitive exclusion, as we show here. Finally, it is convenient to think of 
it as an independent mechanism because it occupies a separate position in population models, 
allowing us to analyze how this interaction contributes independently to coexistence. In this 
form, local competition intensity and Cov(E,C) are community-level parameters, allowing 
comparison between species, and between systems. 
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If a metacommunity structure is important in explaining the regional dynamics in this system, 
such as in promoting the coexistence of Erodium and Phacelia, then we should be able to detect 
and quantify the variation-dependent terms of equation 13.14 (a-c) in the field, in addition to the 
local response (the mean-field model) of each species in the community. 
 

Measuring nonlinearities in annual plants 
In contrast to the previous two field examples, the nonlinearities here have been defined 
explicitly instead of being expressed as general functions. That is, yield is a nonlinear function of 
environment and competition (equation 13.11). As a result of these nonlinearities, the quantities 
to measure (equation 13.14) are Ej and Cj. Sears (2004) used a field experiment to quantify these 
terms. Metacommunity dynamics were estimated within a 400 m2 field site in the Chihuahuan 
desert of Arizona. Here, we envisage local-scale communities in 1 m2 quadrats, linked by 
dispersal to make up the metacommunity at the 400 m2 site scale. This habitat was dominated by 
Erodium, but included a sparse distribution of Phacelia and negligible densities of other annual 
species. A standard neighborhood competition experiment was used to compare the yield of 
Erodium and Phacelia with and without Erodium competitors. The experiment did not look at 
the intraspecific competition of Phacelia, or at its effects on Erodium, because Phacelia was at 
very low densities and unlikely to have strong neighborhood effects. 
 
The experiment was done in a randomized block design, where in each of ten, 1 m2 blocks 
distributed across the study site, two paired Erodium and two paired Phacelia plants were chosen 
to represent responses to the local (block) conditions. Plants in each pair were randomly assigned 
to removal or control treatments, where immediate neighbors were either removed or retained. 
The plant response to the environment (Ej) is estimated as the ln-transformed yield of plants in 
the removal treatment, ln(Yj,removal), thus favorable environments for either species were those 
blocks in which they had the most positive response in the absence of neighbors. The response to 
competition (Cj) is estimated as the log response-ratio of plants in the removal and control 
treatments, ln(Yj,removal / Yj,control). The relevant nonlinearities (equation 13.14) are derived from 
corrected values of Ej and Cj, described below. Local-scale competition was estimated as the 
mean-field response to neighbors (equation 13.14), which excludes the effects of variation in Ej 
or Cj. 
 

Measuring spatial variances and covariances 
In previous examples, variances and covariances involved densities, that are straightforward to 
measure directly. Here, these quantities are measured in a field experiment by assaying the 
responses of individual plants to the presence and absence of neighbors. With this approach, 
there is no independent estimate of response to the environment and response to competition, 
because competitive response is estimated as the log response ratio of plants in the removal and 
control treatments. Thus, to accurately estimate the variances and covariance, we must correct 
our estimates of Ej and Cj to remove their common error. This requires a customized approach 
(Sears 2004; Chesson and Sears, in prep.). In this approach, the statistical model assumes that the 
environmental response varies between blocks within the metacommunity, but that plants of the 
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same species within a block (the local community) share a common environmental response. The 
statistical model simultaneously estimates Ej, Cj, Var(Ej), Var(Cj) and Cov(Ej, Cj). 
 

Combining the model with field data to scale up 
With measurements for the nonlinear function for yield and estimates of spatial variances and 
covariances in hand, we can now scale up the dynamics for yield from the local scale of the 
competition neighborhood to the scale of the metacommunity. Here we are not simply interested 
in the difference of the mean-field model compared to the spatial model but also in the 
magnitude of the different scale transition components for the two species (equation 13.14), 
since the relative magnitude of these components determines the importance of the spatial 
storage effect. For inflorescence number, Erodium had a significant positive Cov(E,C), but did 
not have significant local-scale intraspecific competition (Figures 13.4A, 13.5A). Figure 13.4A 
indicates that the lack of local scale competition was due to a balance between facilitation in 
poor environments, and competition in favorable environments, which in turn contributed to the 
positive Cov(E,C). In contrast, Phacelia experienced intense interspecific competition from 
Erodium, but did not have a significant Cov(E,C) (Figures 13.4B, 13.5B). 
 
Thus, covariance between plant response to the environment and competition, a process 
occurring only at the scale of the metacommunity, retarded the population growth rate of the 
dominant competitor, Erodium, while local-scale processes did not. While this study did not 
show that Erodium and Phacelia will continue to coexist, it demonstrates that, through the spatial 
storage effect, variation in the environment contributes to the possibility of coexistence, and is 
therefore important for metacommunity dynamics. Additionally, this study only narrowly 
considered the spatial storage effect as expressed through one measure of plant yield 
(inflorescence number). Other forms of environmental response, leading (for example) to 
variation in survival or germination, will have separate, contributions to the spatial storage effect 
and potentially provide other avenues for coexistence (Chesson et al., chapter 12). 
 
The metacommunity approach described here contrasts with traditional ANOVA tests of 
neighborhood competition experiments, which contain the inherent assumption that the 
environment is uniform because the test compares mean plant responses and does not include the 
effects of variance. This traditional approach, which corresponds here to the mean-field model, 
has two problems if we are evaluating competition in a variable environment. First, it does not 
include the response-enhancing effects of variance (equation 13.14). Second, and most 
importantly, it does not take into account the effects of Cov(E,C) which may either enhance or 
retard plant response at the metacommunity scale, depending on the sign of the covariance 
(equation 13.14). Thus, coexistence predictions from traditional neighborhood competition 
experiments cannot be scaled up to the metacommunity. However, ANOVA tests can be used to 
test whether the local-scale effects of competition are significant. 
 

Conclusions 
In the three examples above, we have demonstrated the concepts and properties of the scale 
transition in translating the effects of local scale processes to the scale of the metacommunity. 
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Although concerning different field systems and different processes, the examples share a 
common three step approach to studying the scale transition: derive a model to scale up, measure 
nonlinearities, and measure spatial variances and covariances. In each example, the scale 
transition model identifies the important component mechanisms that change dynamics at the 
metacommunity scale. The structure of the model for the metacommunity scale is the same in 
each example, consisting of a mean-field model representing local dynamics modified by new 
terms to correct for spatial structure. The new terms in each model all represent interactions 
between nonlinearity and spatial variation. These correction terms, which can be thought of as 
representing spatial mechanisms, were then quantified by applying standard field experiments 
and sampling designs. In each example, local nonlinearities were estimated by varying levels of 
the nonlinear factors in an experiment and fitting models to describe the shape of the 
nonlinearities. Variances and covariances were measured using standard ANOVA or custom 
maximum likelihood procedures. In each example components of the scale transition with large 
magnitude were detected, confirming that metacommunity processes were, or had potential to be, 
important to the dynamics of the system at the larger scale. 
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Figure 13.1. Comparison of the patch-scale model (mean-field model) and the stream-scale 
model for the algae-grazer system (equation 13.6). The calculations are based on fitted functions, 
parameter estimates, and spatial variances and covariances from field data. The shaded areas 
represent the reduction in the instantaneous rate of change that occurs in the stream-scale model. 
a) Logistic algal growth, g(A). ΔK change in carrying capacity in the logistic model. Since the 
logistic is quadratic, the stream-scale model is exact. b) Type III grazer removal rate, f(A)G. 
Dashed line is the exact stream-scale model. The dotted line is the quadratic approximation for 
the stream-scale model and deviates markedly from the exact model. c) Full periphyton-grazer 
model, g(A) -  f(A)G. The stream-scale model is exact. ∗ΔA  change in equilibrium biomass. 
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Figure 13.2. Contribution of each scale transition term to the total change in the equilibrium 
density of algae at the stream scale (equation 13.6, a-c). The calculations are based on fitted 
functions, parameter estimates, and spatial variances and covariances from field data. Term (a) 
reduced the equilibrium biomass at the stream scale and was responsible for about 60% of the 
total change, whereas term (b) counteracted the effect of term (a), and term (c) was of little 
importance. Although the terms are labeled by their quadratic approximations, the exact scale 
transition is shown for term (b) and (c). Term (a) is also exact, since g(A) is the logistic model 
and is quadratic. 
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Figure 13.3. Scale Transition for P. cinctipes. The scale transition terms (equation 13.9 a-g) are 
shown in gray and the mean-field model components in black. The calculations are based on 
fitted functions, parameter estimates, and spatial variances and covariances from field and 
laboratory data. All components are densities (biomass per rock) relative to the regional mean. 
Therefore, adult growth in the mean-field model is an increase of 24%, which is cancelled out by 
the scale transition for growth (a). Overall, the scale transition terms for recruitment (b-g) reduce 
recruitment at the regional scale compared to the mean-field model for recruitment. 
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Figure 13.4. Relationship between plant responses to the environment and competition for 
Erodium and Phacelia. Each point gives the raw data from individual blocks, in units of 
ln(inflorescence number). One was added to the Phacelia inflorescence number before ln-
transformation. Response to the environment is estimated as the response of target plants in 
removal treatments and response to the competition is estimated as the log response ratio of 
plants in removal and control treatments (see text). Model fitting shown for significant Cov(E,C). 
Solid line shows least squares fit to raw data. Broken line shows maximum likelihood fit which 
corrects for sampling error. Figures next to points in B show numbers of overlapping points. 
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Figure 13.5. Population model fits for per capita inflorescence number production of Erodium 
and Phacelia, showing the estimates of different models. The “E only” model gives the spatial 
average yield as the response to the environment in the absence of neighbors. The “mean-field” 
model (first term in equation 13.14) gives the spatial average yield in the presence of neighbors, 
without accounting for variation in the environment or in density dependence. This corresponds 
to the mean effect of local-scale competition. The “full” model gives the spatial average yield in 
the presence of neighbors, accounting for variation in the environment and density dependence 
(full model in equation 13.13-13.14). Lower case letters show statistically homogeneous groups. 
 


