Preliminary Design Concept Review Falling Aerogel Re-entry Experiment (FLARE)

Aaron Pickens, Moe Suemura, Josh Elliott

December 8th, 2022

FLARE Mission Statement

To develop a Low-Cost Access to Space (LCAS) mission concept that demonstrates the successful deployment and retrieval of low-density 'space dropsondes' from a commercial reusable launch vehicle.

Presentation Outline

Ι. Introduction.....4 II. System Concept......5 III. IV. Background Science/Expected V. Deployer Concept VI. Dropsonde Concept

Introduction

Motivation:

- Current best method to perform sub-orbital high-altitude research is to use sounding rockets (\$\$\$)
- Using private sector short duration space flights (Blue Origin, Virgin Galactic) for collecting science data in addition to primary tourism mission is an appealing option

Project Concept:

- Aerogels (NASA, other sources) are low-density solid polymer foams that exhibit strong relative mechanical and thermal properties
- Electronics encapsulated within aerogel ('dropsondes') could survive the forces of launch/re-entry, and be used for upper atmospheric measurements

System Concept Diagram

- Power & Data storage
- Instrument control
- Ambient environment characterization
- Standard physical integration to spacecraft

System Constraints/Expected Data

Exterior Constraints

Propulsion Module Payload must fit JANUS and Dispenser

- Propulsion Module Payload Accommodation
 - Length: 40.69 cm (16 in)
 - Width : 33.02 cm (13 in)
 - Height : 25.40 cm (10 in)

- JANUS (JHU APL Integrated Universal Suborbital Integration Platform)
 - Length: 19.685 cm (7.75 in)
 - Width: 5.715 cm (2.25 in)
 - Height: 15.24cm (6 in)

Preliminary System Requirements/MOP's

System Requirement	Measure of Performance (MOP)
Survive Suborbital Flight and Landing - Dispenser	Dropsonde deployer shall survive anticipated launch environments while protecting aerogel dropsondes until deployment
Survive Suborbital Flight and Landing - Dropsonde	Aerogel dropsondes shall protect all internal electronics from the forces of launch, reentry and landing
Successfully Integrate with PM/APL Units	All mission components including the dropsondes and deployer shall successfully integrate with the PM and JANUS unit
GPS Location Data	Dropsonde spheres shall take and transmit location data in the altitude range of 50-100 km
Achieve Total Prototype Development Cost <\$5,000	The total prototype system cost (dropsondes, deployer, testing, etc.) shall be <\$5,000

Background Science/Expected Data

- GPS measurements taken at predetermined time intervals and stored onboard the probe
- Dropsonde GPS receiver/transmitter system will relay probe location to a ground station for guided locating
- Information such as wind velocity and atmospheric density based on dropsonde acceleration can be backed out of location info

$$F_D = ma_D = \frac{1}{2}\rho_a v^2 C_D A$$

Deployer Concept Designs

- To make the system easily manufacturable and flexible for different launch platforms, each dropsonde will be stored in it's own 'container'
- Each container includes a linear actuator or spring system for probe deployment, internal systems for keeping the probe in place during launch, and an electromechanically actuated lid
- Prototypes will be 3D printed, and a final revision would be machined (likely out of Aluminum)

1U Cubesat deployer with open lid, similar design to proposed dropsonde deployer concept

Heritage Release Mechanisms

- Frangibolt, TiNi, other market non-explosive actuator (NEA) devices exist, commonly used in CubeSat deployment
- Preloaded spring attached to pusher plate would accelerate dropsonde/container away from the launch vehicle
- Dropsonde container guided with internal deployer rails

- 5" diameter × 6" height
- 1 deployer for 1 dropsonde

Cup

- Contains the dropsonde
- Protects the dropsonde from the pushing force when deploying

Linear actuator & its holder

• Pushes out the dropsonde on predefined timing

Test on ground to see

- How far it pushes out the dropsonde
- Best angle to deploy
- \rightarrow Decide on
 - How many linear actuators to use
 - Use of spring system / other mechanisms
 - The angle of the deployer / holder

Linear actuator (Latching solenoid)

- Open Frame Latching (Push)
- 1.181" L x 0.630" W x 0.551" H
- Stroke Length: 0.138" (3.50mm)
- Duty Cycle: Pulse
- Voltage: 12VDC
- Power (Watts): 32 W
- DC Resistance (DCR): 4.50hm
- Weight: 0.084 lb (38.1 g)

Deployer Mechanical System Diagram

Deployer Concept Electrical Design

- Power and Flight data for the system is provided by the JANUS unit
- Deployment system timing and wireless communications handled by a computer/microcontroller (Arduino, RPi)
- Wireless startup commands sent to individual dropsondes via OTS WiFi/Bluetooth breakout board (or SparkX integrated system)

Deployer Electrical Block Diagram

Dropsonde Concept Designs

Dropsonde Mechanical Concept Designs

5 in. Sphere Diameter,

Fully Encapsulated*

*Images show CAD for featherweight OTS GPS system, small changes would be made if SparkX system is chosen instead

Dual-Hemisphere Aerogel Structure, Easily Moldable/Manufacturable

2.5 in. Sphere Diameter,

Partially Encapsulated*

21

Dropsonde Concept Electrical Design

- Featherweight GPS system •
 - COTS all-in-one product which contains a GPS receiver, data storage, and transmitter to communicate with a handheld ground station unit.
 - Small form factor.
- SparkX PCB stack GPS system
 - COTS system with modular components which easily integrate with one another. Very small form factor.

 - GPS unit, wireless transmitter, satellite receiver and other components.
 - Very low power consumption, sleep modes

Dropsonde Electrical Block Diagram

Project Management Updates

Fall Deliverables/Milestones

Deliverable:	Completion Date:
✓Overall Project Schedule/Goals Planning	September 13th
Top Level Requirements/AOA	September 20th
Preliminary Risk Analysis and CONOPS	September 27th
System Concept Review (SCR) Presentation	October 20th
Manufacturing, Testing Plan and Technology Roadmap	November 15th
Preliminary Concept Design Review	December 8th (Today)

Spring 2023 Schedule Overview

Technology Readiness Developments

So far...

- Completed reports outlining requirements and plans for the complete manufacturing and testing of all FLARE prototype components (TRL Level 1)
- Next semester, we will be starting individual and integrated system tests, maturing the concept up to TRL Level 3/4 by system delivery

Manufacturing Plans

- Deployer prototyping to be completed using 3D printers, shops on campus
- Different options for procuring Aerogel material have been explored, currently planning on purchasing custom molded aerogel hemispheres from a stock supplier, or creating a prototype aerogel for testing at Colorado School of Mines (Valerie contact)
- System concept electronics to be purchased fully off the shelf to test compatibility and functionality, custom PCB could be a future iteration if needed

Next Steps

- Preliminary Design Concept Review (PDR Lite) today
- Baseline designs to be matured based on feedback, completed and ready for prototyping in first weeks of Spring 2023
- Still waiting on Pcard to begin ordering prototyping components
- Spring semester will also involve all concept system testing, successive TRL demonstrations and a delivery of a fully functional prototype to APL in May

Questions?

Appendix

Prototyping Hardware Budget

Prototy	ping Hardware										
Material	Туре	Details	Individual Cost	Quanity	Total Cost	Link (Prov.)	ID	Lead Times	Notes	Ordered (Y/N)?	Received
Deployer Structure	1 kg PLA Filament	Used with Lulzbot, other low fidelity printers	\$25.00	1	\$25.00	https://itll.colorado.edu/ equipment/				no	no
Deployer Electronics	Breadboard		\$10.95	2	\$21.90	https://www.sparkfun.co m/products/112				no	
	Arduino Mega		\$48.95	1	\$48.95	https://www.sparkfun.co m/products/11061				no	
	M/M Jumper Cables (10 pack)		\$1.00	3	\$3.00	https://www.sparkfun.co m/products/19370				no	
	M/F Jumper Cables (20 pack)		\$2.10	2	\$4.20	https://www.sparkfun.co m/products/12796				по	
	F/F Jumper Cables (20 pack)		\$2.10	2	\$4.20	https://www.sparkfun.co m/products/12796				no	
	Resistor Pack		\$8.95	1	\$8.95	https://www.sparkfun.co m/products/10969				no	no
	Latching Solenoid		\$28.08	1	\$28.08	https://www.digikey.com /en/products/detail/delta -electronics/DSMS-073 0-12/5214008				по	no
Dropsonde Structure	Aerogel Material				\$0.00					no	no
	Large Styrofoam Balls (Pack of 4)		\$15.69	1	\$15.69	https://www.amazon.co m/Craft-Foam-Ball-Styr ofoam-Polystyrene/dg/B 07P97L8GL/ref=sr_1_1 6?crid=4014KB22FRCA &keywords=styrofoam%, 2Bballs&gid=16684536 73&sprefix=styrofoam%, 2Bballs∩︀%c2C85 &sr=8-16&th=1				no	no

Prototyping Hardware Budget (Continued)

	Featherweight GPS/Ground Station	Tracker + GS + 400 mAh Tracker Battery	\$365.00	1	\$365.00	https://www.featherweig htaltimeters.com/store/p 22/Featherweight_GPS Tracker_%28upd%29_ html	N/A	по	no
Dropsonde Electronics	LiPo Battery Charger	Adaptable so it's good for GPS unit and ground station batteries	\$13.50	2	\$27.00	https://www.sparkfun.co m/products/14380		no	
	SparkX Smol ZOE-M8Q	GNSS Transmitter/Recever w/o antenna	\$39.95	1	\$39.95	https://www.sparkfun.co m/products/18623		no	no
	SparkX Smol ESP32	Processor Board w/ Wifi chip	\$17.95	1	\$17.95	https://www.sparkfun.co m/products/186197_ga =2.66393004_34566784 5.1668067037-5623430 d6.1660075848_gac= 1.56400601.166806703 7.CJMKCAIAVK2bBhB8 EiwAZUP71HFIWdVx8 5p-IeNIN5HTZawJ9R2H Ecitoarcef7.CGVH6FD		по	
	SparkX Smol Power Board LiPo	Intelligent power distribution board (+charger?)	\$17.95	1	\$17.95	https://www.sparkfun.co m/products/18622?_ga =2.94721182.34566784 5.1668067037-5623430 46.1660079584&_gac= 1.183143892.16680670		nö	
	SparkX Smol Header Breakout	Breakout board to work with components on a breadboard	\$2.95	1	\$2.95	https://www.sparkfun.co m/products/18620		no	
	400 mAh LiPo Battery	Small power source	\$5.50	3	\$16.50	https://www.sparkfun.co m/products/13851		no	
				Sum Total:	\$647.27	7 <mark>0</mark>			

Mission Risk Determination Milestone

Risk summary

- 1 Probe is lost (final position not known)
- 2 Probe fails to deploy at apogee
- 3 Probe power failure
- 4 Probe fails to collect data
- 5 Data are unrecoverable (corrupt)
- 6 Rocket failure (catastrophic)
- 7 Janus power failure
- 8 Schedule slip due to electronics testing
- 9 Probe electronics overheats
- 10 Rocket fails to launch (non catastrophic)
- 11 Impact with ground destroys electronics
- 12 Impact with ground destroys data

Option A

- Limited scientific return.
- Greater risk of losing probe.
- Less risk of electronics failures.
- Less risk of schedule slip.

Risk summary

- 1 Probe is lost (final position not known)
- 2 Probe fails to deploy at apogee
- 3 Probe power failure
- 4 Probe fails to collect data
- 5 Data are unrecoverable (corrupt)
- 6 Rocket failure (catastrophic)
- 7 Janus power failure
- 8 Schedule slip due to electronics testing
- 9 Probe electronics overheats
- 10 Rocket fails to launch (non catastrophic)
- 11 Impact with ground destroys electronics
- 12 Impact with ground destroys data

Option B

- More significant scientific return.
- Less risk of losing probe.
- Greater risk of electronics failures.
- Greater risk of schedule slip.

FLARE Fall 2022 Introduction Video

https://drive.google.com/drive/folders/17Jm195q_mu_I5kSg1jWRxThq-gm_1_ha

