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Abstract— We propose the concept ofquality-aware image, in
which certain extracted features of the original (high-quality)
image are embedded into the image data as invisible hidden
messages. When a distorted version of such an image is received,
users can decode the hidden messages and use them to provide
an objective measure of the quality of the distorted image.
To demonstrate the idea, we build a practical quality-aware
image encoding, decoding and quality analysis system1, which
employs 1) a novel reduced-reference image quality assessment
algorithm based on a statistical model of natural images, and
2) a previously developed quantization watermarking-based data
hiding technique in the wavelet transform domain.

Index Terms— quality-aware image, image quality assessment,
reduced-reference image quality assessment, natural image statis-
tics, generalized Gaussian density, information hiding, image
watermarking, image communication

I. I NTRODUCTION

Digital images are subject to a variety of distortions during
compression, transmission, processing, and reproduction. In
order to maintain, control and possibly enhance the quality of
the image and video data being delivered, it is important for
data management systems (e.g., network video servers) to be
able to identify and quantify quality degradations on the fly.
Since most of the image data will eventually be consumed
by humans, the most reliable means of assessing image
quality is subjective evaluation. However, subjective testing
is expensive and time-consuming. On the other hand, most
objective image/video quality assessment methods proposed in
the literature [1]–[3] are not applicable in this scenario because
they arefull-reference(FR) methods that require access to the
original images as references. Therefore, it is highly desirable
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to develop quality assessment algorithms that do not require
full access to the reference images.

Unfortunately,no-reference(NR) or “blind” image quality
assessment is an extremely difficult task. Most proposed NR
quality metrics are designed for one or a set of predefined
specific distortion types [4]–[10] that may not be generalized
for evaluating images degraded with other types of distortions.
Moreover, knowledge of the distortions that arise between the
original and corrupted images is in general not available to
image quality assessment systems. Thus, it is desirable to
have a more general image quality assessment system that
is applicable to a wide variety of distortions. However, to the
best of our knowledge, no such method has been proposed
and extensively tested.

One interesting recent development in image/video qual-
ity assessment research is to designreduced-reference(RR)
methods for quality assessment [2]], [[3]. These methods do
not require full access to reference images, but only needs
partial information, in the form of a set of extracted fea-
tures. Conceptually, RR methods make the quality assessment
task easier than NR methods by paying the additional cost
of transmitting side information to the users. The standard
deployment of an RR method requires the side information
to be sent through an ancillary data channel [3]. However,
this restricts the application scope of the method because an
additional data channel may be inconvenient or expensive
to provide. An alternative solution would be to send the
side information in the same channel as the images being
transmitted. For example, the side information can be included
as a component of the image data structure (e.g., as part of the
header of the image format). However, this strategy would be
difficult to implement in existing large-scale, heterogeneous
networks such as the Internet, because it requires all the users
in the communication network to adopt a new image format,
or amend all the existing image formats to allow the side
information to be included. Besides, lossy data transmission
and typical image format conversion may cause loss of the
original image headers.

In this paper, we propose the concept ofquality-aware
image, in which extracted features of the reference image are
embedded as hidden messages. When a distorted version of
such an image is received, the users can decode the hidden
messages and use them to help evaluate the quality of the
distorted image using an RR quality assessment method. There
are several advantages of this approach:

• It uses an RR method that makes the image quality
assessment task feasible (as compared to FR and NR
methods).

• It does not affect the conventional usage of the image
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data because the data hiding process causes only
invisible changes to the image.

• It does not require a separate data channel to transmit
the side information.

• It allows the image data to be stored, converted
and distributed using any existing or user-defined
formats without losing the functionality of “quality-
awareness”, provided the hidden messages are not
corrupted during lossy format conversion.

• It provides the users with a chance to partially “repair”
the received distorted images by making use of the
embedded features.

This study is largely inspired by [11], [12] and [13], where
a pseudo-random bit sequence or a watermark image is hidden
inside the image being transmitted. The bit error rate or the
degradation of the watermark image measured at the receiver
side is then used as an indication of the quality degradation
of the host image signal. These methods are perhaps the first
attempts to use information hiding technologies for the estima-
tion of image quality degradation. Nevertheless, strictly speak-
ing, these methods are not image quality assessment methods
because no extracted features about either the reference or the
distorted images are actually used in the quality evaluation
process. Instead, the distortion processes that occur in the
distortion channel are gauged, in the hope that such estimated
channel distortion would correlate well with perceptual image
degradation incurred during transmission through the channel.
However, such a connection is obscured by the nature (e.g.,
complexity) of the image signals and the types of image
distortions, which have variable effects on perceived image
quality. In addition, these methods provide no clue about how
the received distorted images can be repaired.

Information hiding or digital watermarking has been an
active research area in the last decade. Traditionally, these
techniques have been designed for security-related applications
such as copyright protection and data authentication. Recently,
researchers have attempted to broaden their application scope
to non-security oriented applications [14]], [[15]. Quality-
aware images mainly belong to the second category (see Sec-
tion V for discussions), and they bring about new challenges
in the selection and design of information hiding techniques.

II. QUALITY -AWARE IMAGE

A. Framework

A system diagram of quality-aware image encoding, de-
coding and quality analysis system is shown in Fig. 1. A
feature extraction process is first applied to the original image,
which is assumed to have perfect quality. The quality-aware
image is obtained by embedding these features as invisible
messages into the original image. The quality-aware image
may then pass through a “distortion process” before it reaches
the receiver side. Here the “distortion process” is general in
concept. It can be a distortion channel in an image com-
munication system, with possibly lossy compression, noise
contamination and/or postprocessing involved. It can also be
any other processes that may alter the image.
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Fig. 1. Quality-aware image encoding, decoding and quality analysis system.

At the receiver side, the hidden messages are first decoded
from the distorted quality-aware image. In order for correct
decoding of the messages, the key for information embedding
and decoding is shared between the sender and the receiver.
Depending on the application environment, there may be
different ways to distribute the embedding key. One simple
solution is to attach the key to the decoder software and/or
publish the key, so that it can be easily obtained by all potential
users of quality-aware images. Note that the key is independent
of the image and can be the same for all quality-aware images,
so it does not need to be transmitted with the image data. The
decoded messages are translated back to the features about the
reference image. Next, another feature extraction procedure
corresponding to the one at the sender side is applied to the
distorted image. The resulting features are then compared with
those of the reference image to yield a quality score for the
distorted quality-aware image.

In order to improve robustness, error detection/correction
coding techniques may be applied before the information
embedding process. Nevertheless, the hidden messages may
still be decoded incorrectly when the distortions are extremely
severe. At the receiver side, the system must be able to detect
such situations (based on the error detection and correction
code) and report a failure message, instead of a quality score.

B. Design Considerations

Designing an effective quality-aware image system is a
challenging task. On the one hand, in order to provide effective
quality prediction, the RR quality assessment system desires
to know as much information as possible about the reference
image. Therefore, the information hiding system would need to
embed a fairly large amount of information. On the other hand,
in order for the hidden messages to be invisible and for these
messages to survive a wide variety and degree of distortions,
the amount of information that can be embedded is limited.
The RR quality assessment system must observe this limit and
carefully select a set of features that can be encoded within the



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, MONTH, YEAR 3

limit. These features must be highly relevant to image quality
degradations. They must also provide an efficient summary
about the reference image.

Another issue that may need to be considered is that
many data hiding techniques tend to change certain statistical
features of the original image (e.g. [16]], [[17]). This could
potentially conflict with quality assessment systems because
these systems may rely on the way that these statistical features
change as an indication of quality degradation.

To summarize, a successful quality-aware image system
must provide a good trade-off between data hiding load,
embedding distortion, robustness, and the accuracy of image
quality prediction.

C. A Simple Example

Perhaps the simplest way to implement a quality-aware
image system is to embed a certain number of (perhaps
randomly selected) reference image pixels as hidden messages.
For synchronization purpose, the positions of theses pixels
also need to be embedded. At the receiver side, the decoded
reference image pixels are compared with the corresponding
distorted image pixels, and certain distortion/quality metric,
such as mean squared error (MSE) and peak signal-to-noise
ratio (PSNR), are estimated.

Such a system, although simple, is quite weak in several
aspects. Firstly, it requires a high data hiding rate. For exam-
ple, for a512× 512, 8 bits/pixel gray scale image, to embed
1% of the image pixels (together with2× 9 bits for encoding
each pixel position) requires a total of 68146 bits, a heavy
load for most robust information hiding systems. Secondly,
such a small number of pixels is unlikely to allow accurate
estimation of the distortion metrics, unless the distortion
between the reference and distorted images is independently
and identically distributed noise. The obvious drawbacks of
this simple example lead us to consider image features that
are more efficient in summarizing image information and more
effective in evaluating image quality.

III. I MPLEMENTATION

A. RR Quality Assessment

Here, we propose a new RR quality assessment method
based on statistics computed for natural images in the wavelet
transform domain. Wavelet transforms provide a convenient
framework for localized representation of signals simultane-
ously in space and frequency. They have been widely used
to model the processing in the early stages of biological
visual systems and have also become the preferred form
of representations for many image processing and computer
vision algorithms. In recent years, natural image statistics
have played an important role in the understanding of sensory
neural behaviors of the human visual system [18]. In the
image processing literature, statistical prior models of natural
images have been employed as fundamental ingredients in
a large number of image coding and estimation algorithms
(e.g., [19]–[21]). They have also been used for image quality
assessment purposes (e.g., [8]).

Figure 2 shows the histograms of the coefficients computed
from one of the wavelet subbands in a steerable pyramid
decomposition [22] (a type of redundant wavelet transform
that avoids aliasing in subbands). It has been pointed out
that the marginal distributions of such oriented bandpass filter
responses of natural images are highly kurtotic (with sharp
peaks at zero and much longer tails than Gaussian density, as
demonstrated in Fig. 2(a)) and have a number of important
implications to sensory neural coding of natural visual scene
[23]. In [24]], [[25], it was demonstrated that many natural
looking texture images can be synthesized by matching the
histograms of the filter responses of a set of well-selected
bandpass filters. Psychophysical visual sensitivity to histogram
changes of wavelet-textures had also been studied (e.g., [26]],
[[27]). In Fig. 2, it can be seen that the marginal distribution of
the wavelet coefficients changes in different ways for different
types of image distortions. Such histogram changes in images
contaminated with white Gaussian noise have been observed
previously and used for image denoising [19]], [[20].

Let p(x) andq(x) denote the probability density functions
of the wavelet coefficients (assumed to be independently and
identically distributed) in the same subband of two images,
respectively. Letx = {x1, ..., xN} be a set ofN randomly
and independently selected coefficients. The log-likelihoods
of x being drawn fromp(x) andq(x) are

l(p) =
1
N

N∑
n=1

log p(xn) and l(q) =
1
N

N∑
n=1

log q(xn) ,

(1)
respectively. Now assume thatp(x) is the true probability
density distribution of the coefficients. Based on the law of
large numbers, whenN is large, the difference of the log-
likelihoods (or equivalently, the log-likelihood-ratio) between
p(x) andq(x) asymptotically approaches the Kullback-Leibler
distance [28] (KLD) betweenp(x) andq(x):

l(p)− l(q) −→ d(p‖q) =
∫

p(x) log
p(x)
q(x)

dx , (2)

In previous work, a number of authors have pointed out
the relationship between KLD and log-likelihood function
and used KLD to compare images, mainly for classification
and retrieval purposes [29]–[32]. KLD has also been used
to quantify the distributions of image pixel intensity values
for the evaluation of compressed image quality [33]], [[34].
Here, we use KLD to quantify the difference between wavelet
coefficient distributions of a perfect quality reference image
and a distorted image (denoted later on asp(x) and q(x),
respectively). To make an effective estimation, the coefficient
histograms for both images must be available. The latter
can be easily computed from the received distorted image.
The difficulty is in obtaining the coefficient histogram of
the reference image at the receiver side. Transmitting all the
histogram bins as hidden messages would result in either a
heavy data load (when the bin step size is fine) or weaker
statistical characterization (when the bin step size is coarse).

One important discovery in the literature of natural image
statistics is that the marginal distribution of the coefficients
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Fig. 2. Comparisons of wavelet coefficient histograms (solid curves) calculated from the same horizontal subband in the steerable pyramid decomposition
[22]. (a) original (reference) “buildings” image (cropped for visibility); (b) JPEG2000 compressed image; (c) white Gaussian noise contaminated image; (d)
Gaussian blurred image. The histogram of the original image coefficients is well fitted by a generalized Gaussian density model (dashed curves).

in individual wavelet subbands can be well-fitted with a 2-
parameter generalized Gaussian density (GGD) model [35]:

pm(x) =
β

2αΓ(1/β)
e−(|x|/α)β

, (3)

where Γ(a) =
∫∞
0

ta−1e−tdt (for a > 0) is the Gamma
function. One fitting example is shown in Fig. 2(a) as the
dashed line. This model provides a very efficient means to
summarize the coefficient histogram of the reference image, so
that only two model parameters{α, β} need to be transmitted
to the receiver as hidden messages. This model has been
explicitly used in previous work for image compression [21]
and texture image retrieval [32]. In addition to the fitting
parametersα andβ, we also embed the prediction error as a
third parameter, which is defined as the KLD betweenpm(x)
andp(x):

d(pm‖p) =
∫

pm(x) log
pm(x)
p(x)

dx. (4)

In practice, this quantity has to be evaluated numerically using
histograms:

d(pm‖p) =
L∑

i=1

Pm(i) log
Pm(i)
P (i)

, (5)

whereP (i) andPm(i) are the normalized heights of thei-th
histogram bins, andL is the number of bins in the histograms.

At the receiver side, we wish to compute an approximation
to Eq. (2), the KLD between the histogram of the original
image,p(x), and that of the distorted image,q(x). Since we
do not have the original histogram, we replace the expectation

overp(x) with an expectation over the model density,pm(x):

d̂(p‖q) =
∫

pm(x) log
p(x)
q(x)

dx (6)

= d(pm‖q)− d(pm‖p) (7)

The second term is simply the KLD between the original
histogram and the model (Eq. (4)), which is embedded in the
image by the encoder. The first term is the KLD between
pm(x) andq(x), the histogram of the distorted image:

d(pm‖q) =
∫

pm(x) log
pm(x)
q(x)

dx. (8)

This is computed at the receiver side from the histogram bins
of the distorted wavelet coefficients (analogous to Eq. (5)).
Note that, unlike the encoding side, we avoid fittingq(x) with
a GGD model, which may not be appropriate for the distorted
data.

Finally, the overall distortion between the distorted and
reference images is defined as:

D = log2(1 +
1

D0

K∑

k=1

|d̂k(pk‖qk)|) , (9)

whereK is the number of subbands,pk and qk are the prob-
ability density functions of thek-th subbands in the reference
and distorted images, respectively,d̂k is the estimation of the
KLD betweenpk andqk, andD0 is a constant used to control
the scale of the distortion measure.

Figure 3 illustrates our implementation of the feature ex-
traction system at the encoder side. We first apply a 3-scale
4-orientation steerable pyramid transform [22] to decompose
the image into 12 oriented subbands (4 for each scale) and
the highpass and lowpass residuals, as demonstrated in Fig.
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Fig. 3. Feature extraction system at the encoder side.

4. For each subband, the histogram of the coefficients is
computed and then its feature parameters{α, β, d(pm‖p)}
are estimated using a gradient descent algorithm to minimize
the KLD betweenp(x) and pm(x). Six of the 12 oriented
subbands (as shown in Fig. 4) are selected for feature extrac-
tion. The major criterion for selecting these subbands is to
reduce the data rate of RR features while at the same time,
maintain the quality prediction performance. Specifically, in
the Fourier domain, the adjacent steerable pyramid subbands
(in both scale and orientation) have significant overlaps, but
there is essentially no overlap between non-adjacent subbands.
Therefore, the 6 subbands marked in Fig. 4 are selected
to reduce the use of redundant information. Furthermore, in
our tests, selecting the other 6 oriented subbands or all the
12 oriented subbands gives similar overall performance of
image quality prediction. Finally, the extracted scalar features
are quantized to finite precision. Bothβ and d(pm‖p) are
quantized into 8-bit precision, andα is represented using 11-
bit floating point, with 8 bits for mantissa and 3 bits for
exponent. These quantization precision parameters were hand-
picked to represent the features in a limited number of bits
while maintaining a reasonable approximation of the features.
The final result is a total of(8 + 8 + 8 + 3) × 6 = 162 bits
that are embedded into the image.

B. Information Embedding

To embed the extracted features into the image, we choose
to use an existing dithered uniform scalar quantization wa-
termarking method in the wavelet transform domain. This
method is a simple case of the class of quantization-index-
modulation information embedding techniques [36], which
allow for “blind” decoding (decoding does not require the
access to the reference image) and achieve a good tradeoff
between data-hiding rate and robustness. The information
embedding system is illustrated in Fig. 5.

We first use a five-scale separable wavelet transform (specif-
ically, a quadrature mirror filter transform [37]) to decompose
the reference image into 16 subbands, including the horizontal,
vertical and diagonal subbands at each scale, and a low fre-
quency residual band. In order to embed one bit of information
m ∈ {0, 1} into a wavelet coefficientc, the coefficient is
altered according to the following rule:

cq = Q(c + d(m))− d(m) ≡ Qm(c) , (10)

wherecq is the altered coefficient,Q(·) is a base quantization
operator with quantization step size∆, andd(m) is a dithering

steeerable

pyramid


decomposition


Fig. 4. Steerable pyramid decomposition [22] of image (highpass residual
band not shown). A set of selected subbands (marked with dashed boxes) are
used for GGD feature extraction.

operator defined as

d(m) =
{ −∆/4, if m = 0

∆/4, if m = 1 . (11)

At the receiver side, a distorted coefficientcd is obtained and
used to estimate the embedded bit based on the minimum
distance criterion:

m̂(cd) = arg min
m∈{0,1}

‖cd −Qm(cd)‖ . (12)

We embed the hidden messages into the horizontal, vertical
and diagonal subbands at the fifth scale (counted from fine
to coarse) of the wavelet decomposition. We choose to use
these low-frequency components because they usually have
high signal energy and are less likely to be significantly
altered during typical image processing operations. Moreover,
such a selection avoids conflict with the proposed RR quality
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Fig. 5. Information embedding system.

assessment method, which is based on detecting the statis-
tical changes of the wavelet coefficients at the finer scales.
To further improve robustness, two error detection/correction
techniques are employed. First, a 16-bit cyclic redundancy
check (CRC) code [38] is computed and attached to the 162
information bits. Second, the resulting 178 bits are further
encoded using a binary (15,5,7) BCH code [38], which can
correct up to 3 bits of errors out of every 15 bits. As a result,
a total of 540 bits are generated. The same number of wavelet
coefficients are randomly selected from the fifth scale of the
wavelet transform, and every bit is encoded into one coefficient
using Eq. (10). The positions of the coefficients are shared
between the sender and receiver as the embedding key.

At the receiver side, we first apply the same wavelet trans-
form to the received image. The embedded 540 bits are then
extracted from the corresponding wavelet coefficients using
Eq. (12), and decoded with the BCH system. The decoded 178
bits are split into the corresponding 162 information bits and
16 CRC bits. We then calculate a new set of CRC bits using the
decoded information bits and compare them with the decoded
CRC bits. If any of the CRC bit is incorrect, the system reports
a failure message. Otherwise, the extracted 162 information
bits are converted back into scalar features about the reference
image and relayed to the quality assessment system. Finally,
a quality score of the distorted image is reported.

In several cases a failure message may be reported. It
could be that the received image is not a quality-aware image
(no side information has been embedded) or the embedded
information is desynchronized (e.g., by image editing). It could
also be that the image quality degradation is very severe,
such that the embedded information cannot be completely

recovered. It is often useful to distinguish between the two
cases, because in the latter case, a failure message can serve
as an indication of low image quality. One way to make such
a distinction is to look at the percentageR of correct CRC
bits because statistically only in the latter case,R may be
significantly higher than 50%. Following the general idea of
[11]–[13], one can take an even further step to useR as an
important factor for the prediction of image quality at very
low quality range, although the accuracy may be complicated
by the nature (e.g. complexity) of the images being evaluated.

IV. T EST

A. Performance of Quality Assessment

In order to evaluate and compare the performance of im-
age quality assessment algorithms, we built a large image
database (the LIVE image database, available online [39]) and
conducted an extensive subjective experiment to assess the
quality of the images in the database. The database contains
29 high-resolution (typically 768×512) original images altered
with five types of distortions at different distortion levels. The
distorted images were divided into seven datasets. Datasets
1 (87 images) and 2 (82 images) are JPEG2000 compressed
images; Datasets 3 (87 images) and 4 (88 images) are JPEG
compressed images; and Datasets 5, 6 and 7 (each containing
145 images) are distorted with white Gaussian noise, Gaussian
blur, and transmission errors in the JPEG2000 bitstream using
a fast-fading Rayleigh channel model, respectively. Subjects
were asked to provide their perception of quality on a contin-
uous linear scale and each image was rated by 20-25 subjects.
The raw scores for each subject were converted into Z-scores
and rescaled within each dataset to fill the range from 1 to
100. Mean opinion score and the standard deviation between
subjective scores were then computed for each image.

Three measures are computed to quantify the performance
of the proposed quality assessment method. First, following
the procedure given in the video quality experts group (VQEG)
Phase I FR-TV test [42], we use a logistic function to provide
a nonlinear mapping between the objective and subjective
scores:

f(s) =
a1 − a2

1 + exp(−(s− a3)/a4)
+ a2 , (13)

where s is the objective score anda1, a2, a3 and a4 are
the model parameters, which are found numerically using a
nonlinear regression process withMATLAB optimization tool-
box. After the nonlinear mapping, the correlation coefficient
between the predicted and true subjective scores is calculated
to evaluateprediction accuracy. Second, the Spearman rank-
order correlation coefficient is employed to evaluateprediction
monotonicity. Finally, to evaluateprediction consistency, the
outlier ratio is used, which is defined as the percentage
of predictions outside the range of±2 standard deviations
between subjective scores.

To the best of our knowledge, no other RR method has
been proposed that 1) aims for general-purpose image quality
assessment (as opposed to distortion- or application-specific),
and 2) uses such small amount of information about the refer-
ence image as compared to the proposed method. Therefore,
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TABLE I

PERFORMANCE EVALUATION OF IMAGE QUALITY MEASURES USING THELIVE DATABASE [39]. JP2: JPEG2000DATASET; JPG: JPEGDATASET;

NOISE: WHITE GAUSSIAN NOISE DATASET; BLUR: GAUSSIAN BLUR DATASET; ERROR: TRANSMISSION ERROR DATASET.

Dataset JP2 (1) JP2 (2) JPG (1) JPG (2) Noise Blur Error
number of images 87 82 87 88 145 145 145

method type Correlation Coefficient (prediction accuracy)
Proposed RR 0.9353 0.9490 0.8452 0.9695 0.8889 0.8872 0.9175

PSNR FR 0.9337 0.8948 0.9015 0.9136 0.9866 0.7742 0.8811
Sarnoff [40] FR 0.9706 0.9650 0.9589 0.9837 0.9631 0.9480 0.9144
MSSIM [41] FR 0.9676 0.9669 0.9647 0.9856 0.9706 0.9361 0.9439

Wanget al. [7] NR N/A N/A 0.9592 0.9808 N/A N/A N/A
Sheikhet al. [8] NR 0.9258 0.9064 N/A N/A N/A N/A N/A

method type Rank-Order Correlation Coefficient (prediction monotonicity)
Proposed RR 0.9298 0.9470 0.8332 0.8908 0.8639 0.9145 0.9162

PSNR FR 0.9231 0.8816 0.8907 0.8077 0.9855 0.7729 0.8785
Sarnoff [40] FR 0.9668 0.9565 0.9528 0.8904 0.9411 0.9381 0.9048
MSSIM [41] FR 0.9566 0.9677 0.9572 0.9441 0.9719 0.9425 0.9498

Wanget al. [7] NR N/A N/A 0.9507 0.8880 N/A N/A N/A
Sheikhet al. [8] NR 0.9192 0.8918 N/A N/A N/A N/A N/A

method type Outlier Ratio (prediction consistency)
Proposed RR 0.0690 0.0366 0.1839 0.0341 0.1793 0.1172 0.0621

PSNR FR 0.0805 0.0976 0.0920 0.1818 0.0000 0.2069 0.1517
Sarnoff [40] FR 0.0000 0.0366 0.0115 0.0000 0.0345 0.0276 0.0552
MSSIM [41] FR 0.0000 0.0000 0.0000 0.0114 0.0000 0.0414 0.0345

Wanget al. [7] NR N/A N/A 0.0230 0.0227 N/A N/A N/A
Sheikhet al. [8] NR 0.0575 0.0610 N/A N/A N/A N/A N/A

we compare the proposed method with a set of general-purpose
FR models as well as application-specific NR models. These
models include PSNR (FR), Lubin’s Sarnoff model (FR) [40]],
[[43]], [[44], the mean structural similarity index (MSSIM,
FR) [41], the JPEG quality index by Wanget al. (NR) [7],
and the JPEG2000 quality assessment method by Sheikhet al.
(NR) [8]. Although such comparison is unfair to one method
or another in different aspects, it provides a useful indication
about the relative performance of the proposed method. The
performance evaluation results of all methods are summarized
in Table I. It can be seen that the proposed method performs
quite well for a wide range of distortion types. Specifically,
for 5 of the 7 datasets, it gives better prediction accuracy
(higher correlation coefficients), better prediction monotonic-
ity (higher Spearman rank-order correlation coefficients) and
better prediction consistency (lower outlier ratios) than PSNR,
which is the most widely used FR image quality metric in
the image processing literature. In comparison with the NR
models, the proposed method is inferior to Wanget al.’s
method for the JPEG datasets (JPEG compressed images
have distinct blocking effect, which is readily detected by
an application-specific NR method), and performs better than
Sheikhet al.’s method for the JPEG2000 datasets. Note that
these application-specific NR methods are not applicable to
other types of image distortions. A more complete test may
include other distortion types (including mixed distortions) as
well as validations across different distortion types, but the
current testing results lead us to believe that the proposed
method is a reasonable and useful choice for quality-aware
image systems. It needs to be emphasized that none of the
other methods being compared, or any other method we are
aware of, can be used in this scenario.

B. Robustness of Information Embedding

The information embedding system is tested with four
distortion types: JPEG2000 compression, JPEG compression,
white Gaussian noise contamination, and Gaussian blur. For
convenience, we define the distortion levels as compression
bit rate (bits/pixel) for JPEG2000 compression, quality fac-
tor (which controls the quantization step of discrete cosine
transform coefficients) for JPEG compression, noise standard
deviation for white noise contamination, and standard devia-
tion of blurring filter for Gaussian blur, respectively. The same
29 original images in the LIVE database [39] are used for
the test. We first generate 10 quality-aware images (each uses
a different randomly generated embedding key) for each of
the test images. For any given distortion type and level, we
distort the 290 quality-aware images accordingly and check if
the hidden messages can be correctly decoded (by comparing
the CRC bits, see Section III-B).

Since the RR quality assessment system can provide use-
ful quality prediction only when the hidden messages are
fully recovered, we use correct decoding rate (defined as
the percentage of the images whose embedded messages
are completely recovered) as the criterion for evaluating the
robustness of the system. The test results are shown in Fig.
6, which covers the transition range (from 0 to 100% correct
decoding rate) of distortion levels for each distortion type.

V. CONCLUSION

The major contributions of the paper include: 1) Intro-
duction of the concept of quality-aware image, and discus-
sion of its design considerations; 2) Implementation of a
practical quality-aware image encoding, decoding and quality
analysis system; 3) Development of a simple and effective
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Fig. 6. Robustness test of the information embedding system. The quality/distortion level is defined as (a) bit rate (bits/pixel) for JPEG2000 compressed
images; (b) quality factor for JPEG compressed images; (c) noise standard deviation for white noise contaminated images; and (d) standard deviation (pixels)
of blurring filter for Gaussian blurred images.

RR image quality assessment algorithm based on a wavelet-
domain statistical model of natural images; 4) Expansion of
the application scope of information hiding technologies. Like
other FR and RR approaches, the proposed quality assessment
method assumes the existence of a perfect-quality reference
image. This constrains the application scope of the method.
In the case that this assumption does not hold, only an NR
method can provide useful quality evaluation of the images.

In the future, the research initiated in this paper can be
extended in several directions: The algorithm presented in
Section III is only a specific implementation of the general
framework of quality-aware image system (Fig. 1). The current
method can be improved in many ways. For example, different
RR image quality assessment algorithms could be employed.
The improved algorithms may include more statistical image
features (e.g., joint statistics of wavelet coefficients), which
may lead to better quality prediction accuracy. For another
example, different information hiding techniques could be
used to enhance the robustness to a broader range of distortion
types. The current method is sensitive to geometric transfor-
mations, gain attack and perhaps some other types of malicious
attacks. The general concept of quality-aware images does
not exclude itself from being employed in security-related
applications. For example, in a pay-per-view scenario, an
image could be paid according to its quality degradation.
However, given the limited capability of the existing robust
image watermarking techniques (including the one we are
currently using), we propose to use it mainly for non-security
oriented applications, in which nobody will benefit from
“removing” or “destroying” the embedded information, and
therefore, the images are less likely to encounter malicious
attacks (though the precise definition of malicious attacks
could vary for different application environment). This is
different from security-related applications such as copyright
protection, where robustness to malicious attacks [45] is an
essential issue.

The general approach may also be used beyond the scope
of image quality assessment. For example, suppose an image
is subject to a number of distortion stages. One can embed
the quality scores measured at the intermediate stages into the
image as additional hidden messages. The end receiver can
then trace back to find the critical processing stages that have

caused significant quality degradations. Inspired by the work
of using data hiding techniques for error concealment (e.g.,
[46]], [[47]), we can have another interesting application of
the embedded features, which we refer to as “self-repairing
images”. The idea is to “repair” a distorted image by forcing
some of its statistical properties to match those of the original
image. Similar idea has been successfully used for texture
synthesis (e.g., [24]], [[25]], [[48]). Finally, the principle idea
may be applied to other types of signals to create quality-aware
(and possibly self-repairing) video, audio, and multimedia, etc.
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