IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, MONTH, YEAR 1

Quality-Aware Images

Zhou Wang,Member, IEEE Guixing Wu, Hamid R. SheikiMember, IEEE,
Eero P. Simoncellsenior Member, IEEEEN-Hui YangSenior Member, IEEE,
and Alan C. Bovik,Fellow, IEEE

Abstract—We propose the concept ofquality-aware imagein to develop quality assessment algorithms that do not require
which certain extracted features of the original (high-quality) full access to the reference images.

image are embeddeq into the ir_nage data as_invisib_le hid(_jen Unfortunately,no-referencelNR) or “blind” image quality
messages. When a distorted version of such an image is received ti t \v difficult task. Most d NR
users can decode the hidden messages and use them to provid@ssessmen IS an extremely diificult task. Most propose

an objective measure of the quality of the distorted image. qua"f‘){ mgtric; are designed for one or a set of predefined
To demonstrate the idea, we build a practical quality-aware specific distortion types [4]-[10] that may not be generalized
image encoding, decoding and quality analysis systémwhich for evaluating images degraded with other types of distortions.
employs 1) a novel reduced-reference image quality assessmeny|oregver, knowledge of the distortions that arise between the
algorithm based on a statistical model of natural images, and original and corrupted images is in general not available to

2) a previously developed quantization watermarking-based data | . o .
hiding technique in the wavelet transform domain. image quality assessment systems. Thus, it is desirable to

. ) . . have a more general image quality assessment system that
Index Terms— quality-aware image, image quality assessment,

reduced-reference image quality assessment, natural image statis-'> applicable to a wide variety of distortions. However, to the
tics, generalized Gaussian density, information hiding, image Pest of our knowledge, no such method has been proposed

watermarking, image communication and extensively tested.
One interesting recent development in image/video qual-
ity assessment research is to desigduced-referenc¢éRR)
|. INTRODUCTION methods for quality assessment [2]], [[3]. These methods do
got require full access to reference images, but only needs

compression, transmission, processing, and reproduction. ﬁ{“a' information, in the form of a set of exltracted fea-
order to maintain, control and possibly enhance the quality €S- Conceptually, RR methods make the quality assessment
the image and video data being delivered, it is important f§#SK €asier than NR methods by paying the additional cost
data management systems (e.g., network video servers) toogé;ransmntlng side information to 'Fhe users. Th_e standgrd
able to identify and quantify quality degradations on the f _eployment of an RR method requires the side information

Since most of the image data will eventually be consum ) be sent through an ancillary data channel [3]. However,

by humans, the most reliable means of assessing ima{BL? restricts the application scope of the method because an

quality is subjective evaluation. However, subjective testirfgfditional data channel may be inconvenient or expensive
is expensive and time-consuming. On the other hand, m&%¢Provide. An alternative solution would be to send the

objective image/video quality assessment methods proposed'fif information in the same channel as the images being
the literature [1][3] are not applicable in this scenario becaul@nsmitted. For example, the side information can be included
they arefull-reference(FR) methods that require access to th@S @ component of the image data structure (e.g., as part of the

original images as references. Therefore, it is highly desirad|g2der of the image format). However, this strategy would be
difficult to implement in existing large-scale, heterogeneous
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Digital images are subject to a variety of distortions durin
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data because the data hiding process causes only Encoder

a pseudo-random bit sequence or a watermark image is hidden
inside the image being transmitted. The bit error rate or the
degradation of the watermark image measured at the receiver
side is then used as an indication of the quality degradation
of the host image signal. These methods are perhaps the fiigtl. Quality-aware image encoding, decoding and quality analysis system.
attempts to use information hiding technologies for the estima-
tion of image quality degradation. Nevertheless, strictly speak-
ing, these methods are not image qua“ty assessment method%t the receiver Side, the hidden messages are first decoded
because no extracted features about either the reference offfi@@ the distorted quality-aware image. In order for correct
distorted images are actually used in the quality evaluatigi¢coding of the messages, the key for information embedding
process. Instead, the distortion processes that occur in &l decoding is shared between the sender and the receiver.
distortion channel are gauged, in the hope that such estimak&pending on the application environment, there may be
channel distortion would correlate well with perceptual imagédifferent ways to distribute the embedding key. One simple
degradation incurred during transmission through the chanr!ution is to attach the key to the decoder software and/or
However, such a connection is obscured by the nature (e@lpllSh the key, so that it can be eaS”y obtained by all potential
complexity) of the image signals and the types of imagésers of quality-aware images. Note that the key is independent
distortions, which have variable effects on perceived imagéthe image and can be the same for all quality-aware images,
quality. In addition, these methods provide no clue about hd¥@ it does not need to be transmitted with the image data. The
the received distorted images can be repaired. decoded messages are translated back to the features about the
Information hiding or digital watermarking has been aféference image. Next, another feature e_xtreption procedure
active research area in the last decade. Traditionally, th&Sdresponding to the one at the sender side is applied to the
techniques have been designed for security-related applicatigiiorted image. The resulting features are then compared with
such as copyright protection and data authentication. RecentfipSe of the reference image to yield a quality score for the
researchers have attempted to broaden their application scgséorted quality-aware image.
to non-security oriented applications [14]], [[15]. Quality- In order to improve robustness, error detection/correction
aware images mainly belong to the second category (see S&ding techniques may be applied before the information
tion V for discussions), and they bring about new challeng§bedding process. Nevertheless, the hidden messages may

in the selection and design of information hiding techniquestill be decoded incorrectly when the distortions are extremely
severe. At the receiver side, the system must be able to detect

such situations (based on the error detection and correction
Il. QUALITY-AWARE IMAGE code) and report a failure message, instead of a quality score.

Feature
Extraction

| |
| | .
invisible changes to the image. : 1 | quality-
; ; I hidden ) awaré
¢ It does not require a separate data channel to transmit . - message | informat I image
H H : origina | eature - | In ormation |
the side Inform_atlon' image | | Extraction " | Embedding :
e It allows the image data to be stored, converted . |
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formats without losing the functionality of “quality- KEY distortion
” 1 H l ———————————————————————————
awareness”, prowded the hidden messages are not | Decoder and Quality Analyzer | process
corrupted during lossy format conversion. : :
o It provides the users with a chance to partially “repair’ i d;zzcéid !
the received distorted images by making use of thequality , RR Quality | Message [information | |
embedded features. measure ™ | | Assessment [~ Decoding [ | | yisiorted
|
This study is largely inspired by [11], [12] and [13], where : f E image
l :
| |
| |
: |

A. Framework

A system diagram of quality-aware image encoding, d&: Design Considerations

coding and quality analysis system is shown in Fig. 1. A Designing an effective quality-aware image system is a
feature extraction process is first applied to the original imagehallenging task. On the one hand, in order to provide effective
which is assumed to have perfect quality. The quality-awageiality prediction, the RR quality assessment system desires
image is obtained by embedding these features as invisibdeknow as much information as possible about the reference
messages into the original image. The quality-aware imageage. Therefore, the information hiding system would need to
may then pass through a “distortion process” before it reachembed a fairly large amount of information. On the other hand,
the receiver side. Here the “distortion process” is general iim order for the hidden messages to be invisible and for these
concept. It can be a distortion channel in an image commessages to survive a wide variety and degree of distortions,
munication system, with possibly lossy compression, noitige amount of information that can be embedded is limited.
contamination and/or postprocessing involved. It can also Bbhe RR quality assessment system must observe this limit and
any other processes that may alter the image. carefully select a set of features that can be encoded within the
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limit. These features must be highly relevant to image quality Figure 2 shows the histograms of the coefficients computed
degradations. They must also provide an efficient summdrgm one of the wavelet subbands in a steerable pyramid
about the reference image. decomposition [22] (a type of redundant wavelet transform
Another issue that may need to be considered is thhgt avoids aliasing in subbands). It has been pointed out
many data hiding techniques tend to change certain statistittgdt the marginal distributions of such oriented bandpass filter
features of the original image (e.g. [16]], [[17]). This couldesponses of natural images are highly kurtotic (with sharp
potentially conflict with quality assessment systems becauseaks at zero and much longer tails than Gaussian density, as
these systems may rely on the way that these statistical featutesionstrated in Fig. 2(a)) and have a number of important
change as an indication of quality degradation. implications to sensory neural coding of natural visual scene
To summarize, a successful quality-aware image syst¢@3]. In [24]], [[25], it was demonstrated that many natural
must provide a good trade-off between data hiding loathoking texture images can be synthesized by matching the
embedding distortion, robustness, and the accuracy of imagstograms of the filter responses of a set of well-selected
quality prediction. bandpass filters. Psychophysical visual sensitivity to histogram
changes of wavelet-textures had also been studied (e.g., [26]],
[[27]). In Fig. 2, it can be seen that the marginal distribution of
the wavelet coefficients changes in different ways for different
Perhaps the simplest way to implement a quality-awafgpes of image distortions. Such histogram changes in images
image system is to embed a certain number of (perhagsntaminated with white Gaussian noise have been observed
randomly selected) reference image pixels as hidden messagesviously and used for image denoising [19]], [[20].
For synchronization purpose, the positions of theses pixels et p(x) and¢(z) denote the probability density functions
also need to be embedded. At the receiver side, the decodeghe wavelet coefficients (assumed to be independently and
reference image pixels are compared with the correspondiggntically distributed) in the same subband of two images,
distorted image pixels, and certain distortion/quality metrigespectively. Letx = {z1,...,2x} be a set ofN randomly
such as mean squared error (MSE) and peak signal-to-naigf| independently selected coefficients. The log-likelihoods

ratio (PSNR), are estimated. of x being drawn fromp(z) and¢(x) are
Such a system, although simple, is quite weak in several

aspects. Firstly, it requires a high data hiding rate. For exam- 1 X 1 X
ple, for a512 x 512, 8 bits/pixel gray scale image, to embed !(P) = +; > log p(xs) and I(q) = N > log g(a)
1% of the image pixels (together withx 9 bits for encoding n=1 n=1 1)

each pixel position) requires a total of 68146 bits, a han¥spectively. Now assume thatz) is the true probability

load for most robust '”fo”_“a“oh h|d|_ng systems. SeconO"MEnsity distribution of the coefficients. Based on the law of
such a small number of pixels is unlikely to allow accuratf:‘érge numbers, whemV is large, the difference of the log-

estimation of the distortion metrics, unless the distortiog, oo qg (or equivalently, the log-likelihood-ratio) between

between the reference and distorted images is independen ¥) and : :
) . o ) 4 q(x) asymptotically approaches the Kullback-Leibler
and identically distributed noise. The obvious drawbacks stance [28] (KLD) between(z) and ¢(z):

this simple example lead us to consider image features that
are more efficient in summarizing image information and more p(x)
effective in evaluating image quality. U(p) — U(q) — d(pllq) = /p(x) log 7q(x)dx’ (2

C. A Simple Example

In previous work, a number of authors have pointed out
) the relationship between KLD and log-likelihood function
A. RR Quality Assessment and used KLD to compare images, mainly for classification
Here, we propose a new RR quality assessment meth@tdl retrieval purposes [29]-[32]. KLD has also been used
based on statistics computed for natural images in the wavdletquantify the distributions of image pixel intensity values
transform domain. Wavelet transforms provide a convenieigr the evaluation of compressed image quality [33]], [[34].
framework for localized representation of signals simultanétere, we use KLD to quantify the difference between wavelet
ously in space and frequency. They have been widely usegefficient distributions of a perfect quality reference image
to model the processing in the early stages of biologicahd a distorted image (denoted later onzés) and q(x),
visual systems and have also become the preferred foréspectively). To make an effective estimation, the coefficient
of representations for many image processing and compuustograms for both images must be available. The latter
vision algorithms. In recent years, natural image statistican be easily computed from the received distorted image.
have played an important role in the understanding of sensdiye difficulty is in obtaining the coefficient histogram of
neural behaviors of the human visual system [18]. In tHbe reference image at the receiver side. Transmitting all the
image processing literature, statistical prior models of natutistogram bins as hidden messages would result in either a
images have been employed as fundamental ingredientshgavy data load (when the bin step size is fine) or weaker
a large number of image coding and estimation algorithnstatistical characterization (when the bin step size is coarse).
(e.g., [19]-[21]). They have also been used for image quality One important discovery in the literature of natural image
assessment purposes (e.g., [8]). statistics is that the marginal distribution of the coefficients

Ill. | MPLEMENTATION
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(a) (b) (c) (d)

Fig. 2. Comparisons of wavelet coefficient histograms (solid curves) calculated from the same horizontal subband in the steerable pyramid decomposition
[22]. (a) original (reference) “buildings” image (cropped for visibility); (b) JPEG2000 compressed image; (c) white Gaussian noise contaminated image; (d)
Gaussian blurred image. The histogram of the original image coefficients is well fitted by a generalized Gaussian density model (dashed curves).

in individual wavelet subbands can be well-fitted with a 2ever p(x) with an expectation over the model densjiy, (z):
parameter generalized Gaussian density (GGD) model [35]:

il = [ pnte)tog "D ©
(2) = B —al/a) 3) q(x)
PmE) = 500 (1/5) ’ = d(pmllg) — d(pm|p) )

The second term is simply the KLD between the original

whereT'(a) = [ t*"te~'dt (for a > 0) is the Gamma o .
function. One fitting example is shown in Fig. 2(a) as thre“StOgram and the model (Eq. (4)), which is embedded in the

dashed line. This model provides a very efficient means 't%]&zg(; abr?/ dtrze)e?hC:?]?s;oT?;mﬁcr)?t;irrgislt?)rtzg il:nLaDet?etween
summarize the coefficient histogram of the reference image,ps’(?) * AL 9 ge-

that only two model parametefsy, 3} need to be transmitted _ / 1 Pm ()

to the receiver as hidden messages. This model has been d(pmlla) = | pm(@)log q(x) da. ®

explicitly used in previous work for image compression [21j1s is computed at the receiver side from the histogram bins
and texture image retrieval [32]. In add|t|0_n _to the fittingyt the distorted wavelet coefficients (analogous to Eq. (5)).
parametersy and §, we also embed the prediction error as Ryote that, unlike the encoding side, we avoid fittig) with

third parameter, which is defined as the KLD betwegr(z) 5 GGD model, which may not be appropriate for the distorted

andp(z): data.
() Finally, the overall distortion between the distorted and
d(pmllp) = /pm(x) log p"z ) dzx. (4) reference images is defined as:
p\x
K
1 ~
In practice, this quantity has to be evaluated numerically using D =log,(1+ D Z ld&(p*1¢")]) 9)
histograms: (U

. b whereK is the number of subbandg® and¢"* are the prob-
d(pm|lp) = me(i) lo m (%) : (5) ablllty_densny.functlons of th(k_—th §u_bbands in the_ reference
P(i) and distorted images, respectively, is the estimation of the
KLD betweenp* andq”, and Dy is a constant used to control
where P(i) and P,,,(¢) are the normalized heights of thiéh the scale of the distortion measure.
histogram bins, and is the number of bins in the histograms. Figure 3 illustrates our implementation of the feature ex-
At the receiver side, we wish to compute an approximatidraction system at the encoder side. We first apply a 3-scale
to Eqg. (2), the KLD between the histogram of the originad-orientation steerable pyramid transform [22] to decompose
image,p(x), and that of the distorted image(z). Since we the image into 12 oriented subbands (4 for each scale) and
do not have the original histogram, we replace the expectatithe highpass and lowpass residuals, as demonstrated in Fig.

i=1
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Feature Extraction System

! |
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Fig. 3. Feature extraction system at the encoder side.

4. For each subband, the histogram of the coefficients is
computed and then its feature parametfns 3, d(p..|p)}

are estimated using a gradient descent algorithm to minimize
the KLD betweenp(z) and p,,,(z). Six of the 12 oriented
subbands (as shown in Fig. 4) are selected for feature extrac- i ;
tion. The major criterion for selecting these subbands is to steeerable
reduce the data rate of RR features while at the same time, pyramid
maintain the quality prediction performance. Specifically, in decomposition
the Fourier domain, the adjacent steerable pyramid subbands
(in both scale and orientation) have significant overlaps, but
there is essentially no overlap between non-adjacent subbands.
Therefore, the 6 subbands marked in Fig. 4 are selected
to reduce the use of redundant information. Furthermore, in
our tests, selecting the other 6 oriented subbands or all the
12 oriented subbands gives similar overall performance of
image quality prediction. Finally, the extracted scalar features
are quantized to finite precision. Both and d(p..||p) are
guantized into 8-bit precision, and is represented using 11-

bit floating point, with 8 bits for mantissa and 3 bits for :
exponent. These quantization precision parameters were hand-
picked to represent the features in a limited number of bits |
while maintaining a reasonable approximation of the features.
The final result is a total of8 + 8 + 8 + 3) x 6 = 162 bits

that are embedded into the image.

B. Information Embedding Fig. 4. Steerable pyramid decomposition [22] of image (highpass residual
. . band not shown). A set of selected subbands (marked with dashed boxes) are
To embed the extracted features into the image, we cho@sed for GGD feature extraction.

to use an existing dithered uniform scalar quantization wa-

termarking method in the wavelet transform domain. This

method is a simple case of the class of quantization-indexPerator defined as

modulation information embedding techniques [36], which A4, fm=0

allow for “blind” decoding (decoding does not require the d(m) = { AJd D m— 1

access to the reference image) and achieve a good tradeoff ’

between data-hiding rate and robustness. The informati8hthe receiver side, a distorted coefficientis obtained and

embedding system is illustrated in Fig. 5. used to estimate the embedded bit based on the minimum
We first use a five-scale separable wavelet transform (spedifstance criterion:

ically, a quadrature mirror filter transform [37]) to decompose R . m

the reference image into 16 subbands, including the horizontal, (ca) = fg{rglir}l llea = @™ (ca)ll - (12)

vertical and diagonal subbands at each scale, and a low fre- ’

quency residual band. In order to embed one bit of information We embed the hidden messages into the horizontal, vertical
m e {0,1} into a wavelet coefficient, the coefficient is and diagonal subbands at the fifth scale (counted from fine

11)

altered according to the following rule: to coarse) of the wavelet decomposition. We choose to use
om these low-frequency components because they usually have
¢ = Qe+d(m)) —d(m) = Q™(c), (10) high signal energy and are less likely to be significantly

wherec, is the altered coefficient)(-) is a base quantization altered during typical image processing operations. Moreover,
operator with quantization step si2g andd(m) is a dithering such a selection avoids conflict with the proposed RR quality
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original -~ Feature recovered. It is often useful to distinguish between the two
image "|  Extraction cases, because in the latter case, a failure message can serve
___________________________________ e as an indication of low image quality. One way to make such
i & Y i a distinction is to look at the percentageof correct CRC
: Wavelet embedding key Error Detection/ | | b]ts .pecause .statlstlcally only in the. latter caEEmay. be
| Transform (positions of wavelet Correction ! significantly higher than 50%. Following the general idea of
: RS Coding | [11]-[13], one can take an even further step to &sas an
! — ¢ { ! |mportan_t factor for the prediction of image quality at very
: coefficients |  selecting Ditherred ! low quality range, although the accuracy may be complicated
| »  Wavelet »  Quantization | by the nature (e.g. complexity) of the images being evaluated.
: Coefficients Embedding :
| v | IV. TEST
i ‘\'/’\5’:\‘;";2? - i A. Performance of Quality Assessment
I | Coefficients quantized wavelet coefficients : In order to evaluate and compare the performance of im-
: ¢ : age quality assessment algorithms, we built a large image
: Iverse ] database (the LIVE image database, available online [39]) and
: Wavelet Information Embedding System | conducted an extensive subjective experiment to assess the
i | Transform : quality of the images in the database. The database contains
: : 29 high-resolution (typically 768512) original images altered
______ i"""_"""""""""""" with five types of distortions at different distortion levels. The
quality-aware distorted images were divided into seven datasets. Datasets
image 1 (87 images) and 2 (82 images) are JPEG2000 compressed
images; Datasets 3 (87 images) and 4 (88 images) are JPEG
Fig. 5. Information embedding system. compressed images; and Datasets 5, 6 and 7 (each containing

145 images) are distorted with white Gaussian noise, Gaussian

blur, and transmission errors in the JPEG2000 bitstream using
assessment method, which is based on detecting the staidast-fading Rayleigh channel model, respectively. Subjects
tical changes of the wavelet coefficients at the finer scaléygre asked to provide their perception of quality on a contin-
To further improve robustness, two error detection/correctiétpus linear scale and each image was rated by 20-25 subjects.
techniques are employed. First, a 16-bit cyclic redundandyne raw scores for each subject were converted into Z-scores
check (CRC) code [38] is computed and attached to the 18Rd rescaled within each dataset to fill the range from 1 to
information bits. Second, the resulting 178 bits are furth&00. Mean opinion score and the standard deviation between
encoded using a binary (15,5,7) BCH code [38], which caitibjective scores were then computed for each image.
correct up to 3 bits of errors out of every 15 bits. As a result, Three measures are computed to quantify the performance
a total of 540 bits are generated. The same number of wavelétthe proposed quality assessment method. First, following
coefficients are randomly selected from the fifth scale of tfie procedure given in the video quality experts group (VQEG)
wavelet transform, and every bit is encoded into one coefficigihase | FR-TV test [42], we use a logistic function to provide
using Eq. (10). The positions of the coefficients are sharédnonlinear mapping between the objective and subjective
between the sender and receiver as the embedding key. Scores:

At the receiver side, we first apply the same wavelet trans- f(s) = ay — as +ay (13)
form to the received image. The embedded 540 bits are then 1+ exp(—(s —a3)/as)
extracted from the corresponding wavelet coefficients usighere s is the objective score and;, as, a3 and as are

Eq. (12), and decoded with the BCH system. The decoded 1A model parameters, which are found numerically using a
bits are Sp“t into the corresponding 162 information bits ar}@bn"near regression process wNhaTLAB optimization tool-
16 CRC bits. We then calculate a new set of CRC bits using thgx. After the nonlinear mapping, the correlation coefficient
decoded information bits and compare them with the decodgghween the predicted and true subjective scores is calculated
CRC bits. If any of the CRC bit is incorrect, the system report§ evaluateprediction accuracy Second, the Spearman rank-
a failure message. Otherwise, the extracted 162 informatigfier correlation coefficient is employed to evaluatediction
bits are converted back into scalar features about the referepggnotonicity Finally, to evaluateprediction consistengythe
image and relayed to the quality assessment system. Finadlytlier ratio is used, which is defined as the percentage
a quality score of the distorted image is reported. of predictions outside the range af2 standard deviations

In several cases a failure message may be reportedbdtween subjective scores.
could be that the received image is not a quality-aware imageTo the best of our knowledge, no other RR method has
(no side information has been embedded) or the embeddebn proposed that 1) aims for general-purpose image quality
information is desynchronized (e.g., by image editing). It coulsssessment (as opposed to distortion- or application-specific),
also be that the image quality degradation is very seveend 2) uses such small amount of information about the refer-
such that the embedded information cannot be complet@gce image as compared to the proposed method. Therefore,
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TABLE |
PERFORMANCE EVALUATION OF IMAGE QUALITY MEASURES USING THELIVE DATABASE [39]. JP2: JPEG2000ATASET; JPG: JPEMATASET;
NOISE: WHITE GAUSSIAN NOISE DATASET, BLUR: GAUSSIAN BLUR DATASET, ERROR TRANSMISSION ERROR DATASET

Dataset JP2 (1)| JP2 (2)| JPG (1) | JPG (2)| Noise Blur Error
number of images 87 82 87 88 145 145 145
method type Correlation Coefficient (prediction accuracy)
Proposed RR || 0.9353 | 0.9490 | 0.8452 | 0.9695 | 0.8889| 0.8872| 0.9175
PSNR FR || 0.9337 | 0.8948 | 0.9015 | 0.9136 | 0.9866 | 0.7742| 0.8811

Sarnoff [40] | FR || 0.9706 | 0.9650 | 0.9589 | 0.9837 | 0.9631| 0.9480 | 0.9144
MSSIM [41] | FR || 0.9676 | 0.9669 | 0.9647 | 0.9856 | 0.9706| 0.9361| 0.9439
Wangetal.[7] | NR || N/A N/A | 09592 | 0.9808 | N/A | N/A | NA

Sheikhet al. [8] | NR 0.9258 | 0.9064 N/A N/A N/A N/A N/A
method type Rank-Order Correlation Coefficient (prediction monotonicity)
Proposed RR || 0.9298 | 0.9470| 0.8332 | 0.8908 | 0.8639| 0.9145| 0.9162
PSNR FR 0.9231 | 0.8816 | 0.8907 | 0.8077 | 0.9855| 0.7729| 0.8785

Sarnoff [40] | FR || 0.9668 | 0.9565 | 0.9528 | 0.8904 | 0.9411| 0.9381| 0.9048
MSSIM [41] | FR || 0.9566 | 0.9677 | 0.9572 | 0.9441 | 0.9719| 0.9425| 0.9498
Wangetal.[7] | NR || N/A N/A | 0.9507 | 0.8880 | N/A | N/A | N/A

Sheikhet al. [8] | NR 0.9192 | 0.8918 N/A N/A N/A N/A N/A
method type Outlier Ratio (prediction consistency)
Proposed RR 0.0690 | 0.0366 | 0.1839 | 0.0341 | 0.1793| 0.1172| 0.0621
PSNR FR || 0.0805| 0.0976 | 0.0920 | 0.1818 | 0.0000| 0.2069 | 0.1517

Sarnoff [40] FR || 0.0000 | 0.0366 | 0.0115 | 0.0000 | 0.0345| 0.0276| 0.0552

MSSIM [41] FR || 0.0000 | 0.0000| 0.0000 | 0.0114 | 0.0000| 0.0414 | 0.0345
Wanget al. [7] NR N/A N/A 0.0230 | 0.0227 | N/A N/A N/A
Sheikhet al.[8] | NR || 0.0575| 0.0610 N/A N/A N/A N/A N/A

we compare the proposed method with a set of general-purp&eRobustness of Information Embedding

FR moqels as well as applicatiqn-specific NR models. TheseThe information embedding system is tested with four
models include PSNR (FR), Lubin's Sarnoff model (FR) [40llistortion types: JPEG2000 compression, JPEG compression,
[[43]], [[44], the mean structural similarity index (MSSIM, yhite Gaussian noise contamination, and Gaussian blur. For
FR) [41], the JPEG quality index by Wargf al. (NR) [7],  convenience, we define the distortion levels as compression
and the JPEG2000 quality assessment method by Ske&h it rate (bits/pixel) for JIPEG2000 compression, quality fac-
(NR) [8]. Although such comparison is unfair to one methoghy (which controls the quantization step of discrete cosine
or another in different aspects, it provides a useful indicatiQiynsform coefficients) for JPEG compression, noise standard
about the relative performance of the proposed method. T&yiation for white noise contamination, and standard devia-
performance evaluation results of all methods are summarizgg}, of plurring filter for Gaussian blur, respectively. The same
in Table I. It can be seen that the proposed method perforg§ original images in the LIVE database [39] are used for
quite well for a wide range of distortion types. Specificallyine test. We first generate 10 quality-aware images (each uses
for 5 of the 7 datasets, it gives better prediction accuragy gifferent randomly generated embedding key) for each of
(h|gh§r correlation coefficients), better prgdlctlon monotoNigne test images. For any given distortion type and level, we
ity (higher Spearman rank-order correlation coefficients) angkort the 290 quality-aware images accordingly and check if
better prediction consistency (lower outlier ratios) than PSNkye nidden messages can be correctly decoded (by comparing
which is the most widely used FR image quality metric ighe CRC bits. see Section 11-B).

the image processing literature. .In .com.parison with the NR gince the RR quality assessment system can provide use-
models, the proposed method is inferior to Waegal's f| guality prediction only when the hidden messages are
method for the JPEG datasets (JPEG compressed imagg$ recovered, we use correct decoding rate (defined as
have distinct blocking effect, which is readily detected by,q percentage of the images whose embedded messages
an qppl|cat|<?n-speC|f|c NR method), and performs better thafs completely recovered) as the criterion for evaluating the
Sheikhet al’s method for the JPEG2000 datasets. Note thapsiness of the system. The test results are shown in Fig.
these application-specific NR methods are not applicable go\yhich covers the transition range (from 0 to 100% correct

pther types of 'imag'e distortiorjs. A .more'comp'lete 'gest M@Aécoding rate) of distortion levels for each distortion type.
include other distortion types (including mixed distortions) as

well as validations across different distortion types, but the
current testing results lead us to believe that the proposed
method is a reasonable and useful choice for quality-awareThe major contributions of the paper include: 1) Intro-
image systems. It needs to be emphasized that none of @ution of the concept of quality-aware image, and discus-
other methods being compared, or any other method we &f@n of its design considerations; 2) Implementation of a

aware of, can be used in this scenario. practical quality-aware image encoding, decoding and quality
analysis system; 3) Development of a simple and effective

V. CONCLUSION
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Fig. 6. Robustness test of the information embedding system. The quality/distortion level is defined as (a) bit rate (bits/pixel) for JPEG2000 compressed
images; (b) quality factor for JPEG compressed images; (c) noise standard deviation for white noise contaminated images; and (d) standard deviation (pixels)
of blurring filter for Gaussian blurred images.

RR image quality assessment algorithm based on a wavelsused significant quality degradations. Inspired by the work
domain statistical model of natural images; 4) Expansion of using data hiding techniques for error concealment (e.g.,
the application scope of information hiding technologies. Likgl6]], [[47]), we can have another interesting application of
other FR and RR approaches, the proposed quality assessittemtembedded features, which we refer to as “self-repairing
method assumes the existence of a perfect-quality referemoages”. The idea is to “repair” a distorted image by forcing
image. This constrains the application scope of the meth@bme of its statistical properties to match those of the original
In the case that this assumption does not hold, only an NiRage. Similar idea has been successfully used for texture
method can provide useful quality evaluation of the imagessynthesis (e.g., [24]], [[25]], [[48]). Finally, the principle idea
In the future, the research initiated in this paper can lmay be applied to other types of signals to create quality-aware
extended in several directions: The algorithm presented (@nd possibly self-repairing) video, audio, and multimedia, etc.
Section 1l is only a specific implementation of the general
framework of quality-aware image system (Fig. 1). The current VI. ACKNOWLEDGMENT
method can be improved in many ways. For example, differentThe authors would like to thank Dr. Javier Portilla, Dr. Hany
RR image quality assessment algorithms could be employg@rid, and the anonymous reviewers for valuable comments.
The improved algorithms may include more statistical image
features (e.g., joint statistics of wavelet coefficients), which REFERENCES
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