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Images With Application to Natural
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Abstract— In recent years, bandpass statistical models of
natural, photographic images of the world have been used with
great success to solve highly diverse problems involving image
representation, image repair, image quality assessment (IQA),
and image compression. One missing element has been a reliable
and generic model of spatial image correlation that reflects
the distributions of oriented and relatively oriented spatial
structures. We have developed such a model for bandpass
pristine images and have generalized it here to also capture
the spatial correlation structure of bandpass distorted images.
The model applies well to both luminance and depth images.
As a demonstration of the usefulness of the generalized model,
we develop a new no-reference stereoscopic/3D IQA framework,
dubbed stereoscopic/3D blind image naturalness quality index,
which utilizes both univariate and generalized bivariate natural
scene statistics (NSS) models. We first validate the robustness
and effectiveness of these novel bivariate and correlation NSS
features extracted from distorted stereopairs, then demonstrate
that they are predictive of distortion severity. Our experimental
results show that the resulting 3D image quality predictor based
in part on the new model outperforms state-of-the-art full- and
no-reference 3D IQA algorithms on both symmetrically and
asymmetrically distorted stereoscopic image pairs.

Index Terms— Natural scene statistics (NSS), image quality
assessment (IQA), 3D, stereoscopic image pair, bivariate model.

I. INTRODUCTION

NATURAL scene statistics (NSS) have proven to be
important ingredients towards both understanding the

evolution of human vision systems (HVS) [3], [4] and
solving diverse problems in image and video processing,
e.g., representation, compression, denoising, and quality
assessment [5]. In particular, much advancement has been
made in predicting image and video perceptual quality by
exploiting reliable NSS models of bandpass pristine and
distorted images. Deviations from the regularity of natural
statistics, when quantified appropriately, enable the design of
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algorithms capable of assessing the perceptual quality of an
image without the need for any reference image. For example,
Moorthy et al. [6], [7] deployed summary NSS features
derived from luminance wavelet coefficients to develop
a two-stage framework for 2D image quality assessment:
distortion-identification followed by distortion-specific quality
prediction models. In [8], Saad et al. proposed a pragmatic
approach to no-reference 2D image quality assessment using
a small number of features computed from an NSS model
of block DCT coefficients. Recently, Mittal et al. proposed
no-reference [9] and “completely blind” [10] 2D image
quality assessment algorithms utilizing spatial-domain
NSS models. These no-reference algorithms are able to
deliver highly competitive performance relative to commonly
used 2D full-reference quality metrics, e.g., MS-SSIM [11].

There has also been work conducted on exploring
3D natural scene statistics and their applications [12]–[14].
Potetz et al. [12] examined the relationships between
luminance and range over multiple scales and applied their
results to shape-from-shading problems. Liu et al. [13]
explored the statistical relationships between luminance and
disparity in the wavelet domain, and applied the derived
models to a Bayesian stereo algorithm. Recently, Su et al. [14]
proposed reliable statistical models for both marginal and
conditional distributions of luminance/chrominance and
disparity in natural images, and used these models to
significantly improve a chromatic Bayesian stereo algorithm.

However, most natural scene statistical models proposed
in the literature have been characterized only by univariate
distributions of bandpass images, while higher-order
dependencies between spatially adjacent bandpass responses to
natural images are not yet well-understood. Some early work
has been conducted on analyzing and modeling joint/bivariate
relationships between sub-band natural image coefficients.
For example, Portilla et. al [15], [16] proposed a Markov
statistical descriptor of texture images using a set of parametric
constraints on pairs of complex wavelet coefficients at adjacent
spatial locations, orientations, and scales. In [17] and [18],
the authors found that the coefficients of orthonormal wavelet
decompositions of natural images are fairly well-decorrelated;
however, they are not independent. Liu et al. [19] measured
inter- and intra-scale dependencies between image wavelet
coefficients using mutual information. In [20], Sendur et al.
considered image wavelet coefficients and their parents
(at adjacent coarser scale locations), and proposed a circularly
symmetric bivariate distribution to model their dependencies.
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Po et al. [21] applied a 2D contourlet transform to
natural images, and examined both the marginal and joint
distributions. They measured the dependencies between
image contourlet coefficients using mutual information, and
proposed a hidden Markov tree (HMT) image model with
Gaussian mixtures that can capture inter-location, inter-scale,
and inter-direction dependencies. Although these bivariate and
joint statistics have been demonstrated to be able to provide
improvements over univariate NSS models on practical
image applications, e.g., image denoting [20], [22], texture
synthesis [15], [16], and texture retrieval [21], none of them
has offered a closed-form quantitative model of the bivariate
correlations of bandpass natural images. If available, such
a closed-form expression could be invaluable for analyzing
spatial statistical image behavior and for formulating easily
expressed and computed optimized solutions to a wide variety
of image processing problems.

Specifically, there has been a missing element of reliable
and generic modeling of the statistical distributions of
oriented and relatively oriented spatial structures in natural
images. Aiming to fill this gap, we developed in [1] a
bivariate and a closed-form correlation NSS models of
spatially adjacent pixels of bandpass pristine natural images,
and demonstrated that these models also apply well to both
natural spatial luminance/chrominance and spatial depth
information [2]. The first contribution that we make here
is a more general closed-form NSS model than the one
in [2], that is able to capture the correlation structure of
bandpass distorted images via a more versatile set of model
parameters. Our second contribution is inspired by recent
successful NSS-based 2D image and video quality assessment
algorithms. We propose a no-reference stereoscopic/
3D (S3D) image quality metric, dubbed Stereoscopic/
3D BLind Image Naturalness Quality (S3D-BLINQ) Index,
which deploys these novel NSS models to quantify and predict
perceived distortions on stereoscopically viewed binocular/
3D image pairs. S3D-BLINQ is the first quality assessment
algorithm that utilizes bivariate and correlation NSS models,
and it achieves superior performance over previous
NSS-based IQA algorithms when predicting the perceptual
quality of S3D images. In the context of image IQA, the most
important reason for a bivariate model is that both images
and distortions contain strong bivariate dependencies. Those
of images create structure, while those of distortions degrade
the structure, thus impairing the image appearance.

We proceed as follows. The new bivariate and correlation
NSS models are introduced in Section II, while Section III
reviews previous work on S3D image quality assessment.
The proposed S3D-BLINQ Index framework is detailed in
Section IV. Validation of the new NSS models on 3D data
is also included in Section IV. Section V presents a perfor-
mance evaluation of S3D-BLINQ Index. Finally, Section VI
concludes with possible directions of future work.

II. BIVARIATE AND CLOSED-FORM

CORRELATION NSS MODELS

It has been demonstrated that the distributions of divisive-
normalized bandpass responses to natural, photographic

images possess strong Gaussian-like regularities. Natural
scene statistical models of this type have been widely
deployed in numerous image and video applications with
success [7], [22], [23]. However, less progress has been made
on the development of accurate and general statistical models
of the higher-order dependencies that exist between spatially
neighboring bandpass image responses.

Towards developing such models of the bivariate,
correlation statistics of oriented, bandpass images, we utilize
the steerable pyramid decomposition of images, which is an
over-complete wavelet transform that allows for increased
orientation selectivity [24]. The wavelet transform model
is motivated by the fact that its space-scale-orientation
decomposition broadly resembles the band-pass filtering that
occurs in area V1 of primary visual cortex [25], [26]. After
applying the multi-scale, multi-orientation decomposition, the
perceptually significant process of divisive normalization is
applied to the image wavelet coefficients of all sub-bands [18].
The divisive normalization transform (DNT) used here is
implemented as follows [27]:

S(xi , yi ) = s(xi , yi )√
cs + s�

g sg

= s(xi , yi )√
cs + ∑

j g(x j , y j )s(x j , y j )2

(1)

where (xi , yi ) are spatial coordinates, s represents the
sub-band wavelet coefficients, S represents the coefficients
after DNT, and cs is a semi-saturation constant. The sum
occurs over neighborhood pixels indexed by j , where
{g(x j , y j )} is a Gaussian weighting function.

Previous work by others and ourselves [1], [28] showed
that the empirical joint histograms of spatially adjacent
sub-band coefficients of natural images can be well fitted
by multivariate generalized Gaussian distribution (MGGD)
models, which include both multivariate Gaussian and Laplace
distributions as special cases. The probability density function
of a multivariate generalized Gaussian distribution (MGGD)
is defined as:

p(x; M, αb, βb) = 1

|M| 1
2

gαb,βb(x
�M−1x) (2)

where x ∈ R
N , M is an N × N symmetric scatter matrix,

αb and βb are the scale and shape parameters, respectively,
and gαb,βb(·) is a density generator defined as:

gαb,βb(y) = βb�( N
2 )

(2
1

βb παb)
N
2 �( N

2βb
)
e
− 1

2 ( y
αb

)βb
(3)

where y ∈ R
+. Note that when βb = 0.5, Eq. (2) becomes

a multivariate Laplacian distribution, and when βb = 1,
Eq. (2) corresponds to a multivariate Gaussian distribution.
Moreover, when βb → ∞, the MGGD converges to a
multivariate uniform distribution. In our recent work, we
have become interested in modeling the bivariate empirical
histograms of horizontally adjacent sub-band coefficients
of both 2D and 3D (cyclopean) images using the bivariate
generalized Gaussian distribution (BGGD) with N = 2. The
parameters of the BGGD can be obtained on the bandpass
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Fig. 1. The correlation coefficients between spatially adjacent sub-band
responses as a function of relative orientation.

coefficients of images using the maximum likelihood
estimator (MLE) algorithm described in [2].

By examining the fitted BGGD models of pristine bandpass
images, i.e., not artificially subjected to, or containing any
noticeable distortions, we have found orientation dependencies
between spatially adjacent sub-band image coefficients [1].
In particular, when the spatial relationship of adjacent
responses, e.g., horizontal, matches the sub-band orientation,
e.g., 1

2π , the joint distribution of the responses becomes
peaky and extremely elliptical. On the other hand, when the
spatial relationship and the sub-band orientation approach
orthogonality, e.g., horizontal vs. 0 (rad), the joint distribution
becomes nearly circular and more Gaussian-like.

We can seek to quantitatively capture this statistical depen-
dency on relative orientation from an interesting, systematic
and potentially useful perspective by directly modeling the
correlation entries embedded in the scatter matrix M of the
BGGD model. We define relative orientation to be the differ-
ence between the sub-band tuning orientation and the spatial
orientation of adjacent responses. For example, if the sub-band
tuning orientation is 0 (rad), and the pixels are horizontally
adjacent, i.e., the spatial orientation is 1

2π , meaning that they
are orthogonal, then the corresponding relative orientation is
equal to 0− 1

2π = − 1
2π . We have observed that the correlation

coefficient between horizontally adjacent bandpass responses
reaches a maximum when the sub-band orientation is 1

2π ,
whereas horizontal neighboring responses become nearly
uncorrelated as the sub-band tuning orientation approaches
0 (rad) and π . In addition, the correlation takes symmetric
values around sub-band orientation equal to π

2 and is periodic
with respect to all possible relative orientations between the
pairs of horizontally adjacent sub-band responses and their ori-
entation tuning. In particular, we observed that the correlation
coefficients, when plotted as a function of relative orientation,
have a roughly sinusoidal shape but with narrowed lobes.
We also observed that when images are distorted by commonly
occurring impairments, such as blur, noise, compression or
those found in publicly available image quality databases, the
correlation plots as a function of relative orientation also take
roughly sinusoidal shapes but with different degrees of lobe
narrowness. Figure 1 illustrates an example of the correlation

coefficient plots as a function of relative orientation for both
pristine and impaired images afflicted by different types
of distortions from the LIVE IQA Database [29]. We can
clearly see that all curves possess sinusoidal-like shapes, but
with different degrees of lobe narrowness depending on the
distortion type. This strongly suggested to us that a successful
model of the sub-band correlations could enable us to capture
the effects of distortions on sub-band correlations.

We have found that the periodic relative orientation
dependency of the correlation coefficients is well modeled by
a closed-form exponentiated cosine function given by:

ρ = f (θ1, θ2) = A

[
1 + cos (2(θ2 − θ1))

2

]γ

+ ce (4)

= A [cos (θ2 − θ1)]2γ + ce (5)

where ρ is the correlation coefficient between spatially
adjacent bandpass responses, θ1 and θ2 represent spatial
and sub-band tuning orientations, respectively, A is the
amplitude, γ is the exponent, and ce is the offset. Note that
the correlation coefficient ρ is period-π in relative orientation
and reaches maximum value when θ2 − θ1 = kπ, k ∈ Z. This
three-parameter model is a more general form that extends the
simple one-parameter correlation NSS model proposed in [1],
which holds well for pristine images, but fails to capture
the distinct characteristics of impaired images afflicted by
different types of distortions, as shown in Figure 1. The
model parameters are estimated via non-linear least squares
using the Levenberg-Marquardt algorithm [30].

Since we developed this more general relative orientation
correlation model in the context of our work on natural
3D statistics and their applications, we validate the generalized
BGGD and exponentiated cosine models on perceptually
relevant “cyclopean” images, formed from the left and right
images of a stereopair, as discussed in Section IV-B. In partic-
ular, with a more versatile set of parameters, [A, γ , ce]�, the
general closed-form correlation model developed in this paper
is able to describe and quantify both pristine and distorted
S3D image pairs, as demonstrated later in Sections IV-F and V.

III. PREVIOUS WORK ON S3D IQA

As with other digital visual media [31], the quantity of
S3D images and videos that are delivered by the cinema,
television, and online entertainment industries on a daily
basis for human consumption has been growing dramatically
over the past few years. According to recent theatrical market
statistics gathered by the Motion Picture Association of
America (MPAA) [32], the proportion of cinema screens that
are 3D has reached 35% worldwide, and approximate half
of all moviegoers viewed at least one 3D movie in 2012.
As Hollywood director James Cameron, who directed and
produced Avatar, stated in an interview with BBC news in
Aug. 2013 [33], “All forms of entertainment will eventually
be 3D, because that’s how we see the world.” In fact, the wave
of 3D has not been limited to the entertainment industry. Given
the development of greatly improved acquisition and display
technologies, S3D images and videos can provide natural
and versatile visual presentations for numerous applications,
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including robot navigation [34], remote education [35],
anatomical exploration [36], therapeutic treatment [37],
and so forth. As these large volumes of S3D data are
making their way to consumers and other users, a variety
of issues have arisen regarding efficient compression and
reliable transmission of S3D content, especially when being
transmitted over already-stressed wireless networks. At every
stage of capture, compression, storage, and transmission,
it is desirable to maximize the quality of the final visual
experience, and in this regard, incorporating principles of the
human perception of S3D quality is of importance [38]–[40].

As an interesting and important application of the new
parametric correlation model [1], we develop an automatic
no-reference (NR) S3D image quality model that is able
to automatically predict the perceptual quality of distorted
S3D images, without benefit of any reference signal, making
it useful for practical applications. Models that attempt to
solve the S3D IQA problem may be distinguished by whether
they utilize computed or measured depth/disparity information
from the stereoscopic pairs. Thus, the simplest S3D IQA
models apply off-the-shelf 2D IQA algorithms to both left
and right stereo images, then aggregate the two quality
scores to form a final prediction of the quality of the fused
stereopair. Both full-reference 2D models, e.g., PSNR [41],
SSIM [42], and MS-SSIM [11], and 2D NR models, e.g.,
DIIVINE [7], BLIINDS [8], and BRISQUE [9], can be
used in this way. Yasakethu et al. [43] applied a variety of
2D IQA algorithms to the left and right views independently,
then averaged them to obtain S3D quality scores, achieving
fairly good correlation with both perceived image and depth
quality. Gorley et al. [44] reported a full-reference S3D IQA
model that they found preferable to the PSNR for controlling
practical S3D image compression rates. Recently, there has
been increased emphasis on developing S3D IQA models that
utilize the encoding of depth/disparity stimuli from the natural
environment by modeling cortical neurons with disparity-tuned
receptive fields [45]–[47]. Benoit et al. [48] predict the quality
of S3D image pairs using the disparity information computed
from off-the-shelf stereo algorithms [49], [50]. Recent studies
have demonstrated the importance of depth/disparity for
understanding perceptual S3D image quality. For example,
Chen et al. [51] showed that when viewing S3D image pairs,
subjects tend to agree on perceived image quality, but have
more diverse opinions on their sensations of depth.

Although the depth/disparity information extracted from
S3D image pairs does affect the perceptual quality of
viewed stereoscopic images, the question of how best to
exploit this information remains incompletely answered.
You et al. [52] attempted to quantify the degradation of
disparity information by applying 2D IQA algorithms on the
disparity maps computed from both reference and distorted
left-right image pairs [50]. Disparity information can also be
used indirectly to bolster an S3D IQA algorithm. For example,
Sazzad et al. [53] utilized disparity information to design an
NR IQA algorithm to predict the quality of both symmetrically
and asymmetrically JPEG-coded stereo image pairs.

However, the ultimate goal of an S3D IQA algorithm is
to form predictions of the quality of the ultimate cyclopean

Fig. 2. S3D-BLINQ Index framework.

image [54] formed within an observer’s mind when a
left-right image pair is stereoscopically presented. Towards
this end, several recent researchers have attempted to
evaluate perceptual quality by synthesizing an intermediate
image that more-or-less agrees with cyclopean perception.
Maalouf et al. [55] proposed a reduced-reference quality
metric that compares the sensitivity coefficients [56] extracted
from the two cyclopean images synthesized from the
reference and distorted stereopairs. Chen et al. [57] proposed
a full-reference S3D IQA algorithm exploiting a perceptually
synthesized cyclopean image to account for binocular rivalry.
In [58], the authors extended this framework to create a
no-reference model using 2D and 3D natural scene statistical
features extracted from S3D image pairs.

IV. NATURAL STEREOPAIR QUALITY INDEX

Inspired by the success of 2D image/video quality
assessment algorithms that use 2D natural scene statistics,
we have developed a no-reference natural stereopair quality
index (S3D-BLINQ Index), which achieves high correlations
with human subjective judgments of S3D image quality using
the novel bivariate and correlation NSS models explained
in Section II, along with a symmetrically defined model of
the cyclopean image, to extract robust, effective features for
S3D image quality prediction.

A. Framework Overview

Figure 2 diagrams the processing flow of the proposed
S3D-BLINQ Index framework. S3D-BLINQ Index first forms
a convergent cyclopean image using disparity maps computed
from both left- and right-view images as references. Next, both
spatial-domain and wavelet-domain univariate NSS features, as
well as the bivariate and correlation NSS features introduced in
Section II, are extracted from the convergent cyclopean image.
Finally, the perceptual quality of S3D images is predicted by
mapping the extracted features to human opinion scores. Each
step is detailed in the following sub-sections.
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B. Convergent Cyclopean Image Formation

The synthesized cyclopean image model adopted in prior
work was formed by fixing the left-view image, then warp-
ing the right-view image onto the corresponding left-view
image coordinates using a disparity map computed by a
stereo algorithm using the left-view image as reference [59].
Of course, the binocular human vision system does not form
a cyclopean 3D precept using the left- or right-view image
as reference; instead, it synergistically fuses the two views
into an intermediate image on a coordinate frame defined
relative to fixation [54]. A biased cyclopean image model may
fail to capture certain parts of the 3D world accurately, e.g.,
near depth discontinuities, when the S3D image pair is asym-
metrically distorted. To address this distinction, we deploy a
more complete and hence perceptually relevant model of the
convergent cyclopean image using a general parallel-viewing
geometric model of practical S3D image display scenarios.

A simple linear model proposed by Levelt [60], which
remains the most widely-used cyclopean image model,
explains the formation of the perceived cyclopean image IC

experienced when a stereoscopic stimulus is presented as a
linear combination of neural representations of the stimuli
IL and IR to the left and right eyes:

IC = wL · IL + wR · IR (6)

where wL and wR are the weighting coefficients on the corre-
sponding stimuli with the constraint wL +wR = 1. Assuming
the disparity map is computed using the left image as reference
to match the right image, the synthesized cyclopean image may
be generated as [55], [57], [58]:

IC (x, y) = wL(x, y) · IL(x, y)

+ wR(x −DL(x, y), y) · IR(x −DL(x, y), y) (7)

where (x, y) are spatial pixel coordinates, IL and IR are left
and right image representations (e.g., luminance or bandpass
luminance), respectively, wL and wR are the weighting maps,
and DL is the disparity map computed by matching elements
of IR to those in IL , i.e., using IL as reference. However, this
synthesized cyclopean image may fail to capture certain char-
acteristics that may affect the perception of an asymmetrically
distorted stereopair. For example, consider two asymmetrically
distorted stereopairs having the same content, one of them a
pristine left-view image with a distorted right-view image, and
the other a pristine right-view image with a similarly impaired
left-view image. A synthesized cyclopean image arrived at
using Eq. (7) will possibly generate very different results on
these two asymmetrically distorted stereoscopic image pairs,
whereas we would ordinarily expect the perception of these
stereopairs to be similar. To address this possible bias in the
synthesized cyclopean image, we propose a more perceptually
relevant model that we call the convergent cyclopean image.
This model has the virtue of, even for symmetrically distorted
or undistorted images, providing a larger and collectively
consistent set of constraints on this difficult, ill-posed problem.

Without loss of generality and towards practical
applications, we adopt a simple parallel-viewing geometry to
generate a convergent cyclopean image given a stereoscopic

Fig. 3. Parallel-viewing geometry for generating the convergent cyclopean
image from the left and right images.

image pair, as illustrated in Fig. 3. In principle, a convergent
cyclopean image may be formed as a linear combination of
both the disparity-compensated left- and right-view images,
yielding a coherent, symmetrically defined representation.
The simplest approach is to model the convergent disparity
as equal to half of the right-to-left or left-to-right disparities
computed by a canonical stereo algorithm. Then, the
convergent cyclopean image ICC becomes:

ICC(x, y) = wL(x + D′
R(x, y), y) · IL(x + D′

R(x, y), y)

+ wR(x − D′
L(x, y), y) · IR(x − D′

L(x, y), y)

(8)

where D′
R(x, y) = DR(x,y)

2 and D′
L(x, y) = DL (x,y)

2 are
convergent disparity maps computed using the right and left
images as references, respectively, and DR and DL are the
canonical disparity maps computed using the right and left
images as references, respectively.

The stimulus strengths, i.e., the weighting maps wL and wR

in (8), are modeled as the sum of the energies of wavelet
coefficients computed using a steerable pyramid, followed by
a DNT taken across sub-bands as described in Section II.
As a result, the convergent cyclopean image given a
stereoscopic image pair is formed as

ICC(x, y) = EL [x + D′
R(x, y), y]

EU (x, y)
· IL [x + D′

R(x, y), y]

+ ER[x − D′
L (x, y), y]

EU (x, y)
· IR [x − D′

L(x, y), y]
(9)

EL(x, y) =
∑K

k=1 S2
Lk

(x, y)

K
(10)

ER(x, y) =
∑K

k=1 S2
Rk

(x, y)

K
(11)

EU (x, y) = EL [x + D′
R(x, y), y] + ER[x − D′

L(x, y), y]
(12)
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Fig. 4. Examples of convergent cyclopean images formed by pristine, asymmetrically JPEG-compressed, and asymmetrically Gaussian blurred stereopairs.
(a) Pristine right view. (b) Pristine left view. (c) Pristine convergent cyclopean image. (d) JPEG-compressed right view. (e) Pristine left view. (f) Asymmetrically
JPEG-compressed convergent cyclopean image. (g) Gaussian blurred right view. (h) Pristine left view. (i) Asymmetrically Gaussian blurred convergent cyclopean
image.

where EL and ER are the left and right energy maps,
SLk and SRk are the left and right sub-band coefficients at
sub-band k, K is the number of sub-bands, and EU serves to
achieve unit-sum weighting as in (6).

Figure 4 shows some examples of convergent cyclopean
images formed by pristine and asymmetrically distorted
stereopairs. All left-view images are pristine, while the
right-view image examples include pristine, JPEG-
compressed, and Gaussian blurred images. When a human
observes such stereopairs, the deep question arises whether,
upon successfully free-fusing left- and right-view images,
one would be able to construct a clear 3D percept by some
process of distortion masking or whether the view might
have an appearance of heightened distortion, perhaps owing
to a facilitation of the asymmetric impairments. For example,
blocky distortions on the a JPEG-compressed right-view
image might be more or less apparent on 3D viewing, while
Gaussian blur of one of the images may not reduce the
sharpness of the overall 3D percept. Such questions have
been explored deeply in the experiments reported in [51] and
in more focused studies in the references cited there. In any
case, the generated convergent cyclopean images render a
means of capturing these perceptual effects.

C. Spatial-Domain Univariate NSS Feature Extraction

It has been demonstrated that natural scene statistics (NSS)
models provide powerful and robust tools for gauging

human judgments of visual distortions on 2D images and
videos [7], [8], [23]. Early on, Ruderman [61] showed that
a simple non-linear operation of local mean subtraction and
divisive variance normalization on natural image luminances
results in a decorrelated, Gaussianized ’contrast’ image. This
spatial-domain NSS model has been extended in various ways
and successfully deployed in no-reference 2D quality assess-
ment algorithms [9], [10] which deliver highly competitive
performance relative to top-performing full-reference metrics.
We utilize a similar decomposition to extract spatial-domain
univariate features from each convergent cyclopean image.
First, the luminance of the convergent cyclopean image, ICC ,
is transformed as:

ÎCC(x, y) = ICC(x, y) − μ(x, y)

σ (x, y) + c
(13)

where (x, y) are spatial pixel coordinates, μ and σ are locally
weighted spatial means and standard deviations computed
using a Gaussian window superimposed over the spatial neigh-
borhood, and c = 1 is a constant that ensures stability.
To capture a broader spectrum of distortion statistics than
Gaussian on convergent cyclopean images, we use the univari-
ate generalized Gaussian distribution (GGD) model to fit the
empirical histograms of the contrast images ÎCC . The proba-
bility density function of a univariate GGD with zero mean is:

p(x; αu, βu) = βu

2αu�( 1
βu

)
e−( |x |

αu
)βu

(14)
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Fig. 5. Joint histograms of horizontally adjacent bandpass coefficients from a pristine convergent cyclopean image and corresponding BGGD fits at
the finest scale along different sub-band tuning orientations. Top row: orientation = 0, middle row: orientation = π

4 , and bottom row: orientation = π
2 .

(a) BGGD fit and histogram. (b) 2D illustration of histogram. (c) 2D illustration of BGGD fit. (d) BGGD fit and histogram. (e) 2D illustration of histogram.
(f) 2D illustration of BGGD fit. (g) BGGD fit and histogram. (h) 2D illustration of histogram. (i) 2D illustration of BGGD fit.

where �(·) is the ordinary gamma function and αu and βu

are scale and shape parameters, respectively.
We use the moment-matching based approach proposed

in [62] to estimate the parameters of the univariate
GGD fit. The two extracted univariate GGD parameters,
[αu, βu]�, are deployed as spatial-domain “quality-aware”
features.

Since the normalizing operation (13) is isotropic,
we also model the statistical relationships between
neighboring pixels along different orientations using the
very general univariate asymmetric generalized Gaussian
distribution (AGGD) [9], [63]. Specifically, we fit the empirical
histograms of pairwise products of adjacent (cardinal and diag-
onal) coefficients of the convergent cyclopean contrast image,
ÎCC , using the multi-parameter univariate AGGD probability

density function with zero mean:

p(x; αl, αr , βa) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

βa

(αl + αr )�( 1
βa

)
e
−( −x

αl
)βa

, x < 0

βa

(αl + αr )�( 1
βa

)
e−( x

αr
)βa

, x ≤ 0
(15)

where βa is the shape parameter, and αl and αr are scale
parameters that control the spread of the AGGD to the left
and right of the origin. The parameters of the AGGD fits are
also estimated using the moment-matching based approach
in [62]. All three AGGD parameters, [αl , αr , βa]�, extracted
from each S3D convergent cyclopean contrast image are
employed as spatial-domain quality features.
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Fig. 6. Plots of the two BGGD model parameters as a function of relative orientation from pristine and distorted convergent cyclopean images.
(a) scale parameter αb. (b) shape parameter βb .

D. Wavelet-Domain Univariate NSS Feature Extraction

Considerable work has focused on modeling the statistics
of natural images using multi-scale, multi-orientation
transforms, e.g., Gabor filters, wavelets, etc [4], [64].
Success has also been attained by utilizing transform-domain
NSS models to create 2D image and video quality assessment
models [7], [8], [23]. In these kinds of IQA models,
perceptually relevant transform-domain features are computed
via area V1-like band-pass filtering. Likewise, we process the
convergent cyclopean image ICC using the same steerable
pyramid wavelet decomposition as described in Section II,
followed by the divisive normalization transform (1). We again
use the univariate GGD to fit the empirical histograms of
these sub-band coefficients using (14). The two resulting
GGD parameters from each sub-band, scale and shape, are
included in the wavelet-domain feature set.

E. Bivariate Density and Correlation NSS Feature Extraction

We employ the novel bivariate density and correlation
NSS models introduced in Section II to extract wavelet-domain
features from the convergent cyclopean image ICC , using the
same steerable pyramid transform and DNT (1) as described
in Section IV-D. First, we validate the efficacy of these novel
NSS models by fitting the BGGD to the empirical histograms
of spatially adjacent bandpass coefficients after DNT of con-
vergent cyclopean images formed by undistorted stereopairs.
Figure 5 shows the joint empirical histograms of horizontally
adjacent bandpass coefficients and the corresponding BGGD
fits at the finest scale over several different orientations
(0, π

4 , π
2 ). These bivariate histograms were obtained by first

binning both responses at spatially adjacent locations. For
example, given responses at locations (x, y) and (x + 1, y)
on a 2D grid, count the number of occurrences within each
grid entry, then compute the height of each grid entry by
normalizing its occurrence by the sum of occurrences from all
entries. In the plots, blue bars represent the true histograms
while colored meshes represent the fits. Clearly, the bivariate
joint distributions of horizontally adjacent wavelet coefficients
are well modeled by BGGD. The 2D figures, which are

iso-probability contour maps of the joint distributions, also
illustrate the high accuracy of the fits obtained using the
BGGD models. The most important observation here is that
the shapes and heights of the joint distributions both vary
with sub-band orientation. This matches our early findings of
BGGD fits on pristine 2D images [1], i.e., there exist much
higher dependencies between spatially adjacent pixels after
being decomposed by bandpass filters when the orientations
are similar.

To portray a clear picture of this relative orientation
dependency, we plot the two BGGD model parameters
αb and βb as a function of relative orientation on convergent
cyclopean images afflicted by different types of distortion
in Fig. 6. Clearly there is a strong relative orientation
dependency of both parameters, each reaching minimum
value when the spatial orientation matches the sub-band tuning
orientation, i.e., x2 − x1 = 0. Thus, horizontally adjacent
sub-band coefficients share the highest correlation when their
tuning orientation is π

2 , with the correlation declining away
from π

2 . These plots also show that different types of distortion
cause different degrees of relative orientation dependency,
which we shall also exploit to develop additional quality-aware
correlation features. Specifically, the scale and shape parame-
ters [αb, βb]� are deployed as bivariate NSS quality features.

As discussed in Section II, the relative orientation
dependency of spatially adjacent bandpass responses of
images is reflected by a systematic behavior of the correlation
coefficients. Figure 7 shows exponentiated cosine function
fits to the correlation coefficient plots of horizontally adjacent
wavelet coefficients, as a function of relative orientation, on
convergent cyclopean images afflicted by several different
types of distortion. The appearances of the exponentiated
cosine model fits are quite close to the orientation-dependent
correlation coefficient curves, in agreement with the low
mean squared errors (MSE), where the model parameters
were estimated with non-linear least squares using the
Levenberg-Marquardt algorithm [30]. Note that the model
varies with distortion type. We also conducted a multivariate
statistical hypothesis test as we describe in the next subsection
that illustrates the discriminative power of the exponentiated
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Fig. 7. Exponentiated cosine fits to the curves of correlation coefficients between spatially adjacent wavelet coefficients as a function of relative orientation
for distorted convergent cyclopean images. (a) Pristine. (b) White Noise. (c) JPEG 2000. (d) JPEG. (e) Gaussian Blur. (f) Fast-Fading.

cosine model. Based on these amicable results, we include
the exponentiated cosine model parameters, [A, γ , ce]�, as
distortion sensitive IQA features.

F. Validation of the Closed-Form Correlation NSS Model

The exponentiated cosine model of the correlation
coefficients between spatially adjacent sub-band responses
was shown to be a reliable model of natural photographic
images in [1]. Here we validate the applicability of the
more general exponentiated cosine model (5) for convergent
cyclopean images formed from a diversity of distorted
stereoscopic image pairs taken from the LIVE 3D Image
Quality Database Phase II [65]. Specifically, we performed
a statistical hypothesis test on the three parameters of the
exponentiated cosine model across all computed convergent
cyclopean images for each type of distortion, including the
pristine convergent cyclopean images. First, we computed the
orientation-dependent correlation coefficient curves at a par-
ticular scale for all ND images afflicted by distortion type D
in the database, and obtained corresponding exponentiated
cosine fits for each distorted cyclopean image. Denote each
exponentiated cosine fit by a vector x = [A, γ , c]� ∈ R

3,
where A, γ , and c are the three model parameters, amplitude,
exponent, and offset, respectively. For brevity, we tabulate the
results only for the finest scale; however, we obtained similar
results for other scales as well (see [66]). Next, we computed
the mean model parameter vector across all convergent
cyclopean images having distortion type D, denoted

xD = ∑ND
i=1 xDi , where xDi = [ADi , γDi , cDi ]�. Then, we

applied a two-sample multivariate t-test to determine whether
the null hypothesis H0, i.e., the two mean vectors xD1 and xD2

of two different distortion types D1 and D2 are equal, is
supported. If the null hypothesis is supported, then the two
exponentiated cosine models of distortion types D1 and D2
are statistically identical. However, if H0 is rejected, we can
conclude that distortion types D1 and D2 possess significantly
different exponentiated cosine models. In particular, we
computed Hotelling’s two-sample T -squared statistic T 2,
which generalizes the Student’s two-sample t statistic:

T 2 = ND1 ND2

ND1 + ND2

(xD1 − xD2)
�Sp

−1(xD1 − xD2) (16)

where Sp is an unbiased estimate of the pooled covariance
matrix:

Sp =
∑ND1

D1i =1(xD1i
− xD1)(xD1i

− xD1)
�

ND1 + ND2 − 2

+
∑ND2

D2i =1(xD2i
− xD2)(xD2i

− xD2)
�

ND1 + ND2 − 2
(17)

Finally, T 2 can be related to the F-distribution as:

ND1 + ND2 − P − 1

(ND1 + ND2 − 2)P
T 2 ∼ FP,ND1 +ND2 −P−1 (18)

where P is the dimension of xD1i
and xD2i

.
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TABLE I

STATISTICAL HYPOTHESIS TEST RESULTS WITH COMPUTED p-VALUES. A VALUE OF ‘−1’ IN THE PARENTHESIS INDICATES

THAT THE NULL HYPOTHESIS IS REJECTED WHILE A VALUE OF ‘+1’ INDICATES THAT IT IS SUPPORTED

Therefore, we are able to compute the p-value of our null
hypothesis test as:

p = 1 − CFP,ND1
+ ND2

−P−1

(
ND1 + ND2 − P − 1

(ND1 + ND2 − 2)P
T 2

)
(19)

where CFP,ND1
+ ND2

−P−1 represents the cumulative distribution

function of the F-distribution. Note that in our test,
P = 3 and ND1 = ND2 = 72. We repeated this null hypothesis
test on all different pairs of distortion types, including the
pristine, to examine the robustness of the exponentiated cosine
model.

Table I shows the test results on all distortion type
pairs, where each entry records the computed p-values along
with whether the null hypothesis between the row and col-
umn distortion types was rejected or not. Note that since
Hotelling’s two-sample T -squared statistic T 2 commutes, the
entries in Tables I are diagonally symmetric. Clearly, at the
one-sided significance level α = 0.05, all hypothesis tests were
rejected with p-value < α, indicating that every distortion
type, including the pristine, can be characterized by a distinct
exponentiated cosine model. These results not only support
the validity of the proposed exponentiated cosine model of the
relative orientation-dependent correlation coefficients between
spatially adjacent sub-band responses across different types of
distorted convergent cyclopean images, but also substantiate
its relevance for developing quality-predictive features on
S3D images.

G. Quality Prediction

The last step in the proposed S3D-BLINQ Index framework
is to predict the quality of stereoscopic image pairs using the
aforedescribed NSS features extracted from the corresponding
convergent cyclopean images. A mapping is learned from
the feature space to human subjective quality scores using
a regression model. The proposed framework is generically
amenable to the application of any kind of regressor. The
implementation of S3D-BLINQ Index described here utilizes
a support vector machine (SVM) regressor (SVR) [67]
using multiple train-test sequences as described in the next
section. SVR is generally noted for being able to handle high
dimensional data [68], and has also been used to create a
variety of 2D IQA models [7], [69]. We utilized the LIBSVM
package [70] to implement the SVR model with a radial
basis function (RBF) kernel, whose parameter was estimated
by cross-validation [71].

V. EXPERIMENTAL RESULTS

A. Performance Evaluation of S3D-BLINQ Index

In the previous section, we motivated and developed a
statistics-based S3D IQA framework, dubbed S3D-BLINQ
Index, that incorporates old and new models of the univariate
and bivariate statistics of natural photographic S3D images.
We next evaluated the efficacy of the new S3D IQA model
against state-of-the-art 2D and S3D IQA models on the LIVE
3D Image Quality Database Phase II [65], which consists of
both symmetrically and asymmetrically distorted stereopairs.
There are five different types of distortions in the LIVE 3D
Image Quality Database Phase II: JPEG and JPEG2000 (JP2K)
compression, additive white Gaussian noise (WN), Gaussian
blur (Blur), and a Rayleigh fast-fading channel distortion (FF).
The severities of each of the degradations vary significantly
and with good overall perceptual separations between
distortion levels. For full-reference algorithms, we used all
of the available reference and distorted stereopairs, while
for no-reference algorithms, we divided the whole database
into 80% training and 20% testing subsets at each train-test
iteration so that there was no overlap between training and
testing image content. This train-test procedure was repeated
1000 times to ensure that there was no bias introduced due
to the image content used for training. We report the median
performance across all iterations as the final performance
score.

We computed two correlation measures, Spearman’s rank-
order correlation coefficient (SROCC) and Pearson’s linear
correlation coefficient (LCC), along with the root-mean-
squared error (RMSE) between the predicted quality scores
and the recorded subjective opinion scores (DMOS) to evaluate
the performance of the quality assessment models [72]. Since
both LCC and RMSE are accuracy measures, all algorithm
scores were passed through a logistic non-linear function to
map to DMOS space before computing LCC and RMSE [72].
The SROCC, LCC, and RMSE values of the tested
2D and S3D IQA models evaluated on the LIVE 3D Image
Quality Database Phase II are summarized and tabulated in
Tables II–IV. We reported the performance for each distortion
type, as well as an “overall” metric score computed using
all test image pairs across different distortion types. Higher
values of the two correlation measures, SROCC and LCC,
and lower values of RMSE indicate better performance.

From Tables II and III, it can be seen that the highest
attained performance by any “pure 2D” IQA model on
the LIVE S3D image pairs reached about 0.8 correlation
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TABLE II

COMPARISON (SROCC) OF DIFFERENT 2D AND 3D IMAGE QUALITY

ASSESSMENT MODELS ON DIFFERENT DISTORTION TYPES IN

THE LIVE 3D IMAGE QUALITY DATABASE PHASE II

TABLE III

COMPARISON (LCC) OF DIFFERENT 2D AND 3D IMAGE QUALITY

ASSESSMENT MODELS ON DIFFERENT DISTORTION TYPES IN

THE LIVE 3D IMAGE QUALITY DATABASE PHASE II

TABLE IV

COMPARISON (RMSE) OF DIFFERENT 2D AND 3D IMAGE QUALITY

ASSESSMENT MODELS ON DIFFERENT DISTORTION TYPES IN

THE LIVE 3D IMAGE QUALITY DATABASE PHASE II

against the subjective opinion scores. Again, the quality
scores predicted by these models were obtained by simply
averaging the scores computed on the left- and right-view
images. Among these 2D quality metrics, the full-reference
SSIM index achieved the best performance.

The best S3D image quality prediction models that utilize
3D information were able to deliver a significantly higher
0.9 correlation level of performance. In particular, utilizing
a synthesized cyclopean image boosts the performance of
simple 2D IQA models, such as MS-SSIM, by more than
0.1 correlation level. By combining a synthesized cyclopean
image with statistical models of disparity statistics, the
no-reference S3D IQA model proposed by Chen et al. [58]
was able to deliver performance comparable to the best

TABLE V

COMPARISON OF DIFFERENT CYCLOPEAN MS-SSIM IMPLEMENTATIONS

ON THE LIVE 3D IMAGE QUALITY DATABASE PHASE II

full-reference models. However, as mentioned earlier,
perceptual issues arise when forming cyclopean images
with left-right (or right-left) bias from an S3D image
pair. Since all of the asymmetrically distorted stereoscopic
image pairs in the LIVE 3D Image Quality Database
Phase II [65] were created using a pristine left-view image
and a right-view image impaired by different types and
degrees of distortions. Therefore, the two synthesized
left- and right-view cyclopean images with bias may present
differing perceptual characteristics, possibly resulting in
biased performance of S3D IQA models utilizing cyclopean
images, such as cyclopean MS-SSIM [57] and Chen [58].

To further investigate how much bias these perceptually
distinct cyclopean images can introduce, we examined three
different implementations of cyclopean MS-SSIM using
the two possible left- and right-view cyclopean images.
Implementation M1 computed the MS-SSIM score between
the undistorted and distorted left-view cyclopean images
generated using the disparity maps computed using the left-
view images, which are always pristine, as references. This
is the same implementation adopted in [57]. Implementation
M2 computed the MS-SSIM score from right-view cyclopean
images with disparity maps computed using the right-view
images, which always contain some types of distortion, as ref-
erences. In the last implementation M3, we generated the final
quality score by simply averaging the two above MS-SSIM
scores. The last implementation could be used in practical
scenarios because real-world stereoscopic image pairs can be
impaired with either asymmetry. We tabulate the performance
of these three different cyclopean MS-SSIM implementations
in Table V. It can be seen that the performance drops
dramatically for implementation M2. The seemingly more
natural implementation (M3) also suffers with reduced
performance not significantly different than the 2D MS-SSIM
index. Regarding the no-reference S3D IQA model proposed
by Chen et al. [58], since the features are extracted asymmetri-
cally, their algorithm would require modification to be applied
on arbitrary asymmetries. In the performance comparisons,
the original implementations in [57] and [58] were used.

Another issue with the cyclopean image model is that
the disparity maps computed from the distorted S3D image
pairs invariably contain inaccuracies and errors. It has been
previously shown that full-reference S3D IQA algorithms
utilizing cyclopean image models suffer by degradation of
the disparity maps computed from distorted image pairs [57].
To investigate how this disparity inaccuracy can affect the
performance of the proposed no-reference S3D-BLINQ Index,
for each distorted image pair, we used the disparity maps
computed from its corresponding reference/pristine image pair
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TABLE VI

COMPARISON OF THE PROPOSED S3D-BLINQ INDEX FRAMEWORK WITH

THE CONVERGENT CYCLOPEAN IMAGE USING DIFFERENT DISPARITY

MAPS ON THE LIVE 3D IMAGE QUALITY DATABASE PHASE II

to form the convergent cyclopean image, then extracted the
NSS features from the reference/pristine convergent cyclopean
image, and finally evaluated the perceptual S3D image quality
based on these features. Table VI shows the performance
comparison using different disparity map sources. Unlike the
full-reference case, the proposed no-reference S3D-BLINQ
Index delivers better performance using the disparity maps
computed from distorted image pairs, which would be the
common scenario for practical applications. This result could
be explained by the fact that human subjects also evaluate
the quality of S3D image pairs by directly computing internal
disparity representations from distorted image pairs, with no
access to presumably more accurate disparity maps that could
be acquired from reference/pristine image pairs, were they
available. Therefore, we believe that the proposed convergent
cyclopean image model can better alleviate the perceptual dis-
tinction introduced by conventional cyclopean image models.

By synthesizing a more perceptually relevant and consistent
convergent cyclopean image and by utilizing robust, effective
bivariate and correlation natural image statistical models,
S3D-BLINQ Index is able to achieve better than 0.9 corre-
lation using both SROCC and LCC. It not only outperforms
other state-of-the-art 2D and S3D IQA algorithms in terms of
correlation monotonicity and accuracy, but also predicts the
perceptual quality of stereoscopic image pairs with the lowest
RMSE, as shown in Table IV.

Tables II – IV also detail the performance of each
quality assessment algorithm on different types of distorted
stereopairs. We can see that almost all 2D and S3D algorithms
are able to predict quality scores that correlate well with
human opinions for stereoscopic image pairs affected by
the WN distortion. However, several quality metrics perform
poorly when predicting the perceptual quality of stereopairs
impaired by JPEG, JP2K, and Blur distortions. These
poor performances may be explained as a result of binocular
facilitation [51], [73] whereby distortions co-located with high
depth variations are more easily found by human subjects. This
observed effect is not yet well understood or properly modeled.

To examine the capability of different 2D and S3D IQA
models when dealing with unequally distorted stereopairs,
which may be more common in practice, we list in Table VII
the performance of the same algorithms on both symmetrically
and asymmetrically distorted stereoscopic image pairs in the
LIVE 3D Image Quality Database Phase II [65]. It can be
seen that most of the examined quality models are capable
of predicting scores that correlate well with human judgments
on symmetrically distorted stereopairs. However, almost all of
them perform poorly on asymmetrically distorted stereopairs,
except for those utilizing cyclopean images. Among these,

TABLE VII

COMPARISON (SROCC) OF DIFFERENT 2D AND 3D IMAGE QUALITY

ASSESSMENT ALGORITHMS ON SYMMETRICALLY AND

ASYMMETRICALLY DISTORTED STIMULI IN THE LIVE

3D IMAGE QUALITY DATABASE PHASE II

TABLE VIII

COMPARISON OF DIFFERENT 2D AND 3D IMAGE QUALITY

ASSESSMENT MODELS ON THE TOYAMA DATABASE

S3D-BLINQ Index afforded the best performance on both
symmetrically and asymmetrically distortions, resulting in the
best overall correlation numbers as well.

Finally, to further validate the robustness of S3D-BLINQ
Index, we also evaluated its performance on another 3D image
quality database, the Toyama Database [74], [75], which was
created under significantly different conditions. The Toyama
Database contains 10 reference stereoscopic image pairs, and
480 symmetrically/asymmetrically JPEG-coded stereopairs,
all having a resolution of 640 × 480. A double stimulus
impairment scale (DSIS) method was used to conduct the
subjective experiment, where distorted and reference image
pairs were displayed sequentially in random order. Subjects
were asked to assess the annoyance they experienced when
viewing the distorted image pair against the reference one
using a five-level scale: very annoying = 1, annoying = 2,
slightly annoying = 3, perceptible but not annoying = 4, and
imperceptible = 5. A rather small 10-inch auto-stereoscopic
display was used in their subjective experiment.

Table VIII summarizes the performance of the tested 2D and
S3D IQA models on the Toyama Database in terms of SROCC,
LCC, and RMSE against the recorded subjective mean opinion
scores (MOS). Note that the reported performance of the
tested no-reference IQA models were computed by a
10-fold, i.e., leave-one-out, cross-validation accuracy
estimation procedure [71]. Except for PSNR, all 2D and
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TABLE IX

COMPARISON (SROCC) OF THE PROPOSED S3D-BLINQ INDEX

FRAMEWORK USING DIFFERENT FEATURE SETS ON SYMMETRICALLY

AND ASYMMETRICALLY DISTORTED STIMULI IN THE LIVE

3D IMAGE QUALITY DATABASE PHASE II

S3D IQA models perform fairly well on the Toyama
Database, while the full-reference MS-SSIM delivers the best
performance. The S3D-BLINQ Index outperforms all of the
other S3D IQA models, and is able to deliver performance that
is competitive with MS-SSIM, achieving similar correlation
levels and a lower RMSE.

B. Augmentation of the Bivariate and Correlation Models

The solid performance of S3D-BLINQ Index can be
attributed to utilizing the perceptually relevant, convergent
cyclopean image and robust and descriptive bivariate and
correlation NSS models. Here we analyze the performance
boost provided by the novel bivariate and correlation NSS
features underlying the S3D-BLINQ Index learning process.
Specifically, we incorporated three different sets of features
extracted from the convergent cyclopean image, following the
same framework as described in Section IV. The three feature
sets include the spatial-domain univariate NSS features, the
wavelet-domain univariate NSS features, and the bivariate and
correlation NSS features. In essence, the univariate spatial- and
wavelet-domain NSS features capture the marginal statistics of
image bandpass responses at each sub-band, which are affected
by different types of distortion. For example, WN always
increases the variance of sub-band coefficients [7]. On the
other hand, the bivariate NSS features model the joint statistics
of spatially adjacent sub-band coefficients, which are of partic-
ular value since high-order image dependencies are disturbed
by distortions. Most importantly, the NSS correlation features
further capture the inter-orientation dependencies of image
bandpass responses across sub-bands [21], thereby making it
possible to quantify deviations caused by spatially correlated
image impairments.

We tabulate the performance of these three different feature
sets, as well as the combination of all, i.e., S3D-BLINQ
Index, in Table IX. It can be seen that using only the
spatial-domain univariate NSS features is able to achieve
0.9 level of correlation performance on symmetrically
distorted stereopairs, while the wavelet-domain univariate
NSS features improve performance on asymmetric distortions.
The bivariate and correlation NSS features further augment
performance on asymmetrically distorted stereopairs, resulting
in an overall 0.9 SROCC score when combining all feature
sets. This comparison also suggests that the best result can be
attained by using the complete S3D-BLINQ Index feature set,
while sufficient accuracy can be provided by using only the
bivariate and correlation features to capture both symmetric
and asymmetric distortions in practical applications.

VI. CONCLUSION

We generalized our new bivariate and correlation
NSS models to capture the spatial oriented structure in
bandpass distorted 2D and S3D images. These bivariate
and correlation models are validated to be able to robustly
and reliably quantify the statistical regularities embedded
in spatially adjacent luminance pixels, and preliminarily
yet systematically address one of the most important issues
on NSS modeling of higher-order dependencies, which has
not been well explored in literature. To demonstrate the
efficacy of these new models, we deploy them to develop a
new no-reference S3D IQA framework – the Stereoscopic/
3D BLind Image Naturalness Quality (S3D-BLINQ) Index.
Our contributions are twofold. First, we defined a novel and
powerful set of quality-discriminative features by exploiting
the new bivariate and correlation NSS models. Second, we
proposed a convergent cyclopean image model to address
bias encountered by earlier cyclopean image models.

We believe that both the new bivariate/correlation natural
scene statistical models and the convergent cyclopean
image model provide useful and robust tools for predicting
perceptual S3D image quality. These novel models and
tools can potentially be applied to solve various 3D vision
and image/video processing problems, e.g., de-noising,
super-resolution, shape-from-X, etc. Future work includes
developing a “completely” blind S3D quality evaluator
by appropriately modeling stereopair naturalness, and by
incorporating perceptual measurements of visual discomfort
into S3D quality of experience (QoE) models.
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