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Abstract—With the introduction of multiple transmit and re-
ceive antennas in next generation wireless systems, real-time image
and video communication are expected to become quite common,
since very high data rates will become available along with im-
proved data reliability. New joint transmission and coding schemes
that explore advantages of multiple antenna systems matched with
source statistics are expected to be developed. Based on this idea,
we present an unequal power allocation scheme for transmission
of JPEG compressed images over multiple-input multiple-output
systems employing spatial multiplexing. The JPEG-compressed
image is divided into different quality layers, and different layers
are transmitted simultaneously from different transmit antennas
using unequal transmit power, with a constraint on the total
transmit power during any symbol period. Results show that
our unequal power allocation scheme provides significant image
quality improvement as compared to different equal power allo-
cations schemes, with the peak-signal-to-noise-ratio gain as high
as 14 dB at low signal-to-noise-ratios.

Index Terms—Distortion model, joint source-channel coding,
JPEG, multiple-input multiple-output systems, unequal error
protection, unequal power allocation.

1. INTRODUCTION

MAGE and video communication is becoming very
I common in wireless cellular systems with the introduction
of high data rates and efficient coding schemes. It is highly
anticipated that with the implementation of multiple-input
multiple-output (MIMO) systems, real-time image and video
communication will be among the major applications of next
generation wireless systems. An important characteristic of
most of the current image and video coding standards is that of
unequal importance of data. In almost all the current image and
video coding standards, data layers with unequal contribution to
image quality can be created. This property of unequal impor-
tance and layering of data can be used to design efficient coding
and transmission schemes that take into account image and
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video statistics. This idea has been a focus of active research
over the past few years and many joint coding and transmission
techniques have been developed. These methods are commonly
known as joint source-channel coding (JSCC), and joint source
coding and transmission power allocation depending on the
type of joint design. The main idea behind these joint design
techniques [1]-[4] is to allocate the available resources in such
a way that more important data suffer less distortion at the
cost of more distortion for less important data, with the goal
of minimizing overall distortion in the received images and
videos. These resources can be source and channel coding bits,
total transmission power, delay, etc. By using such joint design
techniques, significant quality gains can be achieved without
violating constraints on different available resources.

JSCC is the most commonly studied joint design problem for
image and video communication in the literature. Another im-
portant joint design problem is that of transmission power al-
location and optimization for image and video communication.
The main goal for such problems is either to minimize the total
distortion with a constraint on available transmission power, or
to minimize the power usage with a constraint on maximum
“tolerable” distortion. In Section I-A, we discuss various ex-
isting joint design methods for efficient image and video com-
munication.

A. Background

In [5] and [6], Modestino et al. proposed JSCC methods
for digital images. In these methods, distortion in the form of
mean-squared-error (MSE) was computed using the probability
density functions of the coded source, the quantizer step size
and the channel probability of error. Most important bits were
protected using selective error protection. These methods
demonstrated that significant increase in image quality could
be achieved using efficient channel coding without imposing
any penalty on the transmission bandwidth. In [7], Chande
and Farvardin proposed a JSCC scheme for progressive image
transmission over noisy channels. They developed algorithms
for optimal allocation of source and channel coding bits using
average distortion (MSE), average peak-signal-to-noise ratio
(PSNR) and average useful source coding rate as the cost func-
tions. In [8], Sherwood and Zeger proposed an efficient method
for progressively coded image transmission using concatenated
channel codes.

In [9], Eisenberg et al. presented a transmit power manage-
ment scheme for transmission of compressed video sequences
over a wireless channel. The energy needed to transmit the
video was minimized under a delay and distortion constraint.
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To achieve this, the source coding and physical layer pa-
rameters were adjusted simultaneously. Their results showed
that its is more energy efficient to jointly optimize the source
coding parameters and transmission power than adjusting
them independently. In [10], Atzori presented a method for
unequal power distribution among different JPEG2000 coding
units based on their contribution to total image quality. In this
scheme, the JPEG2000 stream was divided into different coding
packet groups. These different groups were transmitted through
separate subchannels and different rate and power. This scheme
showed a PSNR gain of around 4 dB at low SNRs for additive
white Gaussian noise (AWGN) and Rayleigh fading channels
as compared to equal power allocation.

In [11], Kozintsev and Ramchandran presented a multireso-
lution framework for optimally matching the source resolution
and signal constellation resolution trees for a wavelet image
decomposition based source coding model. The multiple res-
olutions resulting from subband decomposition of the image
were mapped to the multiresolution channel codes based
on instantaneous channel state information (CSI). This was
achieved using a Lagrangian-based optimization formulation
while keeping the transmitted modulation energy and band-
width fixed. It was shown that using the multiresolution based
approach, 2-3 dB of gain in signal-to-noise ratio (SNR) is
typically achieved over source-channel optimized single res-
olution based approaches.

Zhang et al. presented a power minimized bit allocation
scheme for wireless video communication in [12]. In this paper,
the authors allocated the total available bits between the source
and the channel coders based on wireless channel condition and
video quality requirements such that the total power consump-
tion was minimized. In [13], Yousefi’zadeh er al. presented
a power optimization problem for wireless multimedia trans-
mission with space-time block codes. A set of optimization
problems aimed at minimizing the total power consumption
with a given level of quality of service and bit budget were
formulated. They used Gauss-Markov and video source models
as their source coding model, Rayleigh fading channel with
Bernoulli/Gilbert-Elliott loss models, and space-time codes
for transmission. Their results showed that lowest optimal
power values were obtained when multiple transmit and receive
antennas were used.

In [14], Lu et al. developed a power minimization method
subject to a given level of quality of service for H.263 video
encoder employing Reed-Solomon channel codes for transmis-
sion. They used empirical models to estimate the distortion due
to source coding and transmission errors. They minimized the
total power consumption of the system consisting of power con-
sumption by the source and the channel encoder, and the trans-
mission power, with a constraint on total allowable distortion.
Kim and Kim presented another H.263 based power optimiza-
tion method for code division multiple access (CDMA) sys-
tems in [15]. In this method, a distortion model that takes mo-
tion compensation into account was developed for H.263 video
data employing error concealment. This model was then used to
minimize the target bit error rate (BER) of image frames such
that the total consumed power is minimized with a constraint on
maximum distortion. This scheme showed around 3.5 dB PSNR

gain as compared to conventional schemes that use fixed target
BER.

Tian presented two power allocation schemes for wireless
video communication in [16]. In these schemes, distortion was
minimized by allocating transmission power across packets
with a constraint on total transmission power. Using these
schemes, the author showed that a PSNR gain of up to 0.85 dB
can be achieved as compared to constant power methods.
In [17], Ji et al. developed a power optimization method
for transmission of MPEG-4 fine granularity scalable (FGS)
coded bitstream over MIMO systems employing orthogonal
frequency division multiplexing (OFDM). In this method, total
distortion was minimized by power-efficient assignment of
scalable source to spatial subchannels with a constraint on total
transmit power. Their scheme showed a PSNR gain of around
2.5 dB as compared to different nonoptimal schemes.

In [18], Luna et al. presented an energy efficient video trans-
mission scheme over wireless channels with delay and quality
constraints. In this method, source coding parameters were
selected jointly with transmitter power and rate adaption, and
packet transmission scheduling. The goal of this scheme was
to transmit a video frame with minimum transmission energy
under quality and delay constraints. Yu et al. present another
interesting energy optimizing scheme for JPEG 2000 image
transmission over wireless sensor networks in [19]. In this
scheme the authors jointly adjusted the source coding scheme,
the channel coding rate and the transmission power levels to
minimize the overall processing and transmission energy with
a constraint on total distortion.

In another related paper, Appadwedula et al. [20] presented a
power optimization method for image transmission over wire-
less channels. In this method, the source coder, the channel
coder, and power consumption were jointly optimized. They
maximized image quality with total power constraint on both
the RF transmission power, and the power consumption of the
digital implementation of the channel coder.

A few more joint design methods (JSCC and power/energy
optimization) for efficient image and video communication are
discussed in [21]-[31].

B. Limitations of Existing Power Optimization Methods

The main goal of all the methods discussed above was ei-
ther the minimization of energy/power with a constraint on total
allowable distortion, or the minimization of distortion with a
constraint on total energy/power. These methods showed large
amounts of energy/power savings or quality gains as compared
to methods that transmitted the images and videos with equal
power. Despite significant quality gains and energy/power sav-
ings, these methods have certain limitations as discussed below.

* Most of these unequal power/energy allocation methods

either used simulations or energy-distortion curves (sim-
ilar to rate-distortion curves in joint source-channel
coding literature) to estimate the distortion at the trans-
mitter at various power configurations. The entire process
of constructing energy-distortion curves and/or running
simulations to estimate distortion increases the computa-
tional complexity of the optimization process, making it
infeasible for real-time image and video transmission.
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Fig. 1. System model for UPA based MIMO system for JPEG image transmission.

* Most of the unequal power/energy allocation methods
for wireless image and video communication assume the
channel to be constant over a packet or layer. However, in
practical systems it is not necessary that the channel will
remain constant during the transmission of an image or
video packet or layer even for quasi-static channels. If the
channel changes during a packet or layer, the distortion
estimate, and, hence, the power allocation scheme would
give incorrect results and, hence, large amounts of quality
degradation. Due to this reason, the power allocation
methods should take into account the effects of channel
changes during an image/video packet or layer transmis-
sion.

* Most of the current power/energy allocation methods are
either for wireline systems or wireless systems with single
transmit and receive antennas. With MIMO systems ex-
pected to become an integral part of the next generation
wireless systems, these power/energy allocation methods
will not be very useful for image and video transmission.

C. Contribution—Unequal Power Allocation for JPEG
Transmission Over MIMO Systems

MIMO systems are expected to be implemented in next
generation wireless systems. With the use of multiple transmit
and receive antennas and advanced coding schemes such as
space-time codes, MIMO systems can be used to increase
system capacity as well as data reliability in wireless com-
munication systems [32]-[35]. Since high fidelity image and
video transmission require high bandwidth and reliability,
MIMO systems are highly advantageous for transmission of
images and videos. Most of the research in MIMO systems
and space-time codes has focused on designing codes with the
goal of minimizing overall error rate and maximizing data-rate
with the assumption of equal importance of data. However,
as discussed above, almost all of the current image and video
coding standards divide the coded images and videos into
different layers with unequal importance. Therefore, to take
full advantage of MIMO systems, image and video coding
and transmission techniques should be designed that take into
account this property of the underlying source. By designing
space-time coding and transmission schemes that take into
account source statistics and unequal importance of image and
video data, better quality and higher data rates can be achieved
without any overhead on total bandwidth or energy/power.

Based on this idea, an unequal power allocation method for
transmission of JPEG compressed images over MIMO systems

is proposed in this paper. The image is divided into different
quality streams, and these different streams are simultaneously
transmitted over different antennas with unequal power using
spatial multiplexing . Transmit power is allocated between dif-
ferent streams with the goal of minimizing the overall distor-
tion in the received image. The total transmit power over all
the transmit antennas during any symbol period is kept con-
stant. The effects of channel changes during an image segment/
layer transmission are also taken into account in this method.
Results show that quality gains as large as 14 dB in terms of
PSNR are obtained at low channel SNRs. As discussed above,
where a good amount of work has been done for designing
unequal power allocation methods for image and video trans-
mission over wireless systems with single transmit and receive
antennas, very little research has been carried out to date for
designing such methods for MIMO systems. In Section II, we
present our system model. Section III formulates our unequal
power allocation (UPA) problem, and provides a suboptimal so-
lution. Section IV provides simulation details with Section V
discussing our results. We conclude the paper in Section VI.

II. SYSTEM MODEL

A block diagram of our system model is shown in Fig. 1, with
a description of different components given below.

A. Source Coding Model

We used a progressive discrete cosine transform (DCT) based
JPEG coder with spectral selection mode of operation [36]. The
image is coded into 64 different quality layers (a DC layer and
63 AC layers), where each layer corresponds to the DCT co-
efficients from a particular subband. These DCT coefficients
from the DC layer are encoded using differential pulse coded
modulation (DPCM) coding, run-length and Huffman coding,
whereas the DCT coefficients from the AC layers are encoded
using run-length and Huffman coding. Within each layer, RST
(reset) markers are introduced to prevent error propagation be-
tween different parts of the bitstream. Encoding and decoding
are reinitialized at each RST marker. The encoded data between
two consecutive RST markers in a layer is called a “segment”.
More details on this source coder can be found in [37] and [38].
After coding the image in 64 layers, headers and markers are
separated from the bitstream, and they are assumed to be trans-
mitted error free since they only constitute a small portion of the
bitstream [38]. At the receiver, headers and markers are re-in-
serted at their appropriate locations before decoding.
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B. Spatial Multiplexing

After removing headers and markers, the bitstream is then
passed to the spatial multiplexing (SM) block. The SM block
divides this bitstream into four equal length streams, since there
are four transmit antennas. Streams are formed in order of im-
portance, with stream number 1 being the most important and
stream number four being the least important. These streams are
then passed to the power optimization block for unequal power
allocation. At the receiver, the multiplexer/combiner combines
these streams into a single stream and passes it to the JPEG de-
coder.

C. Channel Model

We use four transmit and four receive antennas in our MIMO
system for transmission of JPEG compressed bitstream. We as-
sume that the channel is Rayleigh flat fading with a slow fading
model. The channel matrix H is a 4 X 4 matrix whose entries
form an i.i.d. Gaussian collection with zero-mean, independent
real and imaginary parts, each with variance 1/2. We assume
that the channel H is perfectly known both to the transmitter
and the receiver. This is a common assumption in literature and
there exist many schemes that estimate channel with reasonable
to high accuracy [39], [40]. Four-quadrature amplitude modula-
tion (4-QAM) is used for modulating the bitstream.

D. Power Optimization

The power optimization (PO) block divides the 4 streams into
nonoverlapping blocks of lengths 2 X7 bits (4 x2T' matrix),
where 7T is the number of symbols for which we assume the
channel to be constant, and 2 is the number of bits per symbol
for 4-QAM modulation. Note that we will use the term block in
this paper to refer to a block (containing four streams) of sym-
bols over which the channel is constant. Power optimization is
then performed over each of these blocks independently to al-
locate transmit power between different streams such that the
overall distortion in the image due to each block is minimized.
The distortion model originally presented in [37] and [38] and
modified in Section III-B is used to determine minimum distor-
tion. The total transmit power from all the antennas during each
symbol period is kept constant at any given instant. The power
optimization block is also responsible for modulation and as-
signing different streams to different antennas. Antenna assign-
ment is performed by a simple antenna selection method during
power optimization, as described in Section III-C.

E. MMSE Receiver

We used a minimum mean-squared error (MMSE) receiver
to decode the spatially multiplexed bitstream. The MMSE re-
ceiver is a linear receiver, i.e., it separates the transmitted data
streams and then independently decodes each stream. More de-
tails on the MMSE receiver for spatial multiplexing systems can
be found in [41].

Notation

Let N be the total number of 4 x2T blocks in the image
stream, and x,, = [Z1,n, T2, T3, Ta,n]" be the transmit power
vector for block number n, with the elements of the vector cor-
responding to streams 1 to 4, respectively. Without loss of gen-

erality, the symbol period can be normalized to 1 to simplify the
relationship between transmit power and energy. Also, it can be
assumed that the noise covariance matrix is the Identity matrix
I,. Hence, the transmit power is equal to signal-to-noise ratio
(SNR) per symbol F; /Ny during any symbol period. Let X,
be a diagonal matrix with the k*" element of x,, as the (k, k)"
entry of X,,. Similarly, let X,, be a diagonal matrix containing
the square root of the entries of X,,. Then, the received signal
vector can be written as

y=HX,s+n

where y is the received 4 x 1 signal vector, s is the 4 x 1
transmit signal vector, and n is the 4 x 1 zero mean circularly
symmetric complex Gaussian noise vector with covariance
matrix I,.

III. UNEQUAL POWER ALLOCATION

Since different streams in the compressed image have dif-
ferent importance to image quality, more important streams
should be transmitted with more protection from errors as
compared to less important streams. One way to achieve this
is to transmit different streams with unequal transmit power
with more important streams being transmitted with more
power and less important streams with lesser power, without
violating the total transmit power constraint. In this section we
present our unequal power allocation method for transmission
of different streams in a JPEG compressed image over MIMO
systems. The main goal of this method is to transmit different
streams from different antennas with unequal power such that
overall distortion due to each block in the transmitted image
is minimized. The total transmit power over all the antennas
is kept constant during each symbol period. In this section,
first we briefly discuss our notation, and formulate the power
allocation problem. We then present our modified distortion
model for estimating distortion, and propose a suboptimal
numerical solution to the optimization problem.

A. Problem Formulation

The goal of the UPA problem is to find the optimal x,, that
minimizes the distortion in the image due to block number 7.
In this section, the UPA problem is formulated as a constrained
minimization, where the objective is to minimize the MSE in
the received image due to block n, with an equality constraint
on transmit power. This minimization is carried out over all the
blocks independently. The total M SE in the image is the sum
of MSE due to all the blocks: MSEr = Y._ MSE,(x,),
where N is the total number of blocks and M SE,(z,) is the
MSE contribution in the image due to block n. Since the MSE
due to the individual layers and segments is additive [37], [38],
the MSE due to individual streams is also additive because dif-
ferent streams contain data from different layers. Hence, the
MSE in the image due to block n can be written as

4

MSE,(x,) = ZMSEkn(:Ekn) ey
k=1

where M S Ey ,, (k) is the MSE due to the k" stream in the
n*" block. The MSE is minimized for each block independently
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due to the additivity of the MSE’s from individual blocks as
discussed in Section III-B. Hence, for block n, our optimization
problem can be stated as

min MSFE, (x,) )
with the equality constraint
4
9(xn) =Y xpn = Pror 3)
k=1

where Pror is the total transmit power from all the antennas at
any given instant. Note that £; = Pror in our case since the
symbol period is 1. Once a value of z}, ,, is obtained, the entire
k" stream in the n'" block is transmitted with power z, ,,.

B. MSE Estimation

A main part of the minimization problem in (2) is to find
MSEy »(z 5) for different values of zy, ,, in real-time during
the optimization procedure. One way of achieving this is to in-
troduce random bit errors in the coded image, decode it and then
find the MSE by comparing the corrupted image to the original
image. While this method will give an accurate estimation of the
MSE, it is highly computationally intensive and, hence, not fea-
sible in practical real-time optimization methods. A computa-
tionally efficient method is to use some kind of distortion model
to predict the amount of the MSE at different source coding rates
and channel bit error rates, and then use this model to estimate
the MSE in (2). In our previous work in [37] and [38], we devel-
oped a distortion model for predicting the MSE as a function of
source coding rate and channel bit error rate (BER) over a set of
images. In this paper, the distortion model is modified to work
on a per-image basis rather than a set of images, and use it to
predict MSE in the image due to individual streams and blocks.
By “per-image” we mean that only the information from the cur-
rent image is used to evaluate MSE. Note that a block contains 4
streams, and each stream in a block can have one or more full or
partial segments of the JPEG stream. Each segment can either
contain coded DC coefficients or coded AC coefficients. MSE
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[38] for a set if images. We modify these expressions to work on
“per-image” basis so that power optimization can be performed
for an image in real-time.

Suppose a segment s is divided into V' nonoverlapping parti-
tions. This case arises when a segment is transmitted over mul-
tiple blocks. Let M be the number of coefficients in each seg-
ment of an image (a constant) and let M, ,, be the number of
coded coefficients in partition v of segment s. Suppose the first
bit error in segment s occurs at bit number 4, , corrupting all
the ms,,, coded coefficients from this point to the end of the
segment. Let fiy,s, g s> 04 5 and oF  be the unquantized coef-
ficient mean, quantization error mean, unquantized coefficient
variance and quantization error variance for the coefficients in
segment s of the image. Let p¢ ,, be the probability of bit error in
partition v of segment s, and p;t be the probability of bit error
for the ¢t partition of segment s. Also, let w, ; and w; ,, be the
number of bits in the ¢** and v*" partitions respectively, and N
be the total number of pixels in the image. Let py, , (is,,) be the
probability that the first bit error in segment s occurs at bit po-
sition 4 ,, of partition v. Note that for the first bit error to occur
at i, ., all the previous partitions of segment s have to be error
free. Hence, py, , (is,.) is given as

v—1

pr. ., (is,’”) = H (1 _pz,t)ws.t (1 _pz,'u)is.v_lpi,v' (4)

t=1

Now, by modifying the distortion model expressions presented
in [37] and [38], the mean squared error in the image due to
quantization and channel errors in partition v of segment s can
be expressed as see (5), shown at the bottom of the page, where
MSE;, , is the MSE due to the coefficients that are corrupted
by the bit error. This MSE is different for the segments corre-
sponding to the DC and AC layers, since the DC coefficients
in the JPEG standard are DPCM coded, whereas the AC coef-
ficients are not. For the DC layer, M SE;, is given as see (6),
shown at the bottom of the page, where « is a first-order auto-re-
gressive process coefficient. The details of this derivation can
be found in [37] and [38]. For the segments from AC layers,
MSE,;SU is given as

expressions for DC and AC segments were derived in [37] and MSE;, , =ms, (0375 + Ni,s) . @)
v—1
Ws,v M — Msv — Z Me,t
MSE,, = Z ~ =1 (02.+ug.) + MSE;_, | p1.,(isw)
is,0=1
v—1
+ H (1 - pz,t)ws.t (1 - pi,w)ws.v (‘752,3 + ll’g,s) MS,'U (5)
t=1
MSE; ¥ lm : (2 (o« +u2) + (0F + u;s)) ~2 J; Al (ol tis) | mow =1 M =1
% [M (012;,5 + /1’121,5)] ’ Mgy = M
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Finally, M SE) (k) can be expressed as a sum of the
MSE:s due to individual segments and partitions of segments

MSEy n(2kn) = Y MSEsgy ®)
S(k,n)

where S(k,n) is a set containing pairs of segment number s and
partition number v contained in k** stream of block number
n. Note that the partitioning of segments into different blocks
depends on the total number of bits in the image, and the block
length.

The MSE expressions in (5) and (8) are expressed as a func-
tion of the instantaneous BER (in terms of p5 ,, for different seg-
ments and partitions in a block). Since the problem formulation
is in terms of transmission power/energy, these equations need
to be related to transmission power (or equivalently SNR). If
the channel is known at the transmitter, these expressions can be
easily derived for the MMSE receiver by modifying the signal
to interference and noise ratio (SINR) for the equal power case
[41]. Thus, for unequal power, the SINR 7y, ,, for the k" stream
of the n*" block can be expressed as

1
Men = [(pre e, n HEH 4+ 1y) =i o

-1 C))

where py, 1., is the k" column and &*" row entry of X,,. This
SINR can be easily related to the instantaneous BER for 4-QAM
using the following expression [42]:
1
BERw, = 51— (1 -Qmo? (0
where (+) is the @ function. Using these relations between

SINR, BER, X,, and x,,, the MSE can be related to the trans-
mission power (energy) X,,.

C. Solution to the Minimization Problem

Using expressions (4)—(10), unequal power allocation can be
performed in real-time using well developed optimization tech-
niques. Note that the optimization problem of (2) and (3) is not
a convex problem, and, hence, the solution might not be global.
Due to the complex nature of the expressions for MSE, it is
mathematically intractable to derive a closed form solution to
the power optimization problem. There are many well devel-
oped techniques to obtain numerical solutions to such optimiza-
tion problems. Here, the Kuhn-Tucker equations along with a
sequential quadratic programming (SQP) method are used to
solve this constrained multivariable minimization problem. The
SQP method formulates and solves a quadratic programming
(QP) subproblem at each iteration of the optimization process.
This method employs the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) formula to estimate the Hessian of the Lagrangian at
each iteration. An active set strategy similar to that described
in [43] is used to solve the QP subproblem. To solve this SQP
problem, MATLAB’s optimization toolbox is used. Using this
method, the optimum MSE and the corresponding transmission
power vector are obtained.

An interesting thing to note is that at any given instant, the
channel from a particular transmit antenna to the receive an-
tennas might be better than the channel corresponding to the

remaining transmit antennas. In fact, the channels from dif-
ferent transmit antennas to the receive antennas are very likely
to be different at different times. Therefore, a natural idea is to
transmit more important streams from “more reliable” transmit
antennas and less important streams from “less reliable” an-
tennas. This makes sense intuitively since less power will be
required by the most important stream if it is being transmitted
from the best antenna as compared to that of a random antenna.
Hence, more power can be allocated to less important streams
resulting in further reduction of overall distortion. Since the
channel stays constant for a block of symbols, and then changes,
an antenna selection process needs to be performed for each
block of symbols in real ime. Antenna selection is a research
problem of its own and there is a large amount of literature avail-
able on this topic. Instead of using any of the sophisticated an-
tenna selection methods that are available, a very simple method
of antenna selection based on SINR is used to keep the optimiza-
tion problem simple and computationally less intensive.

At any channel instantiation, first the four SINRs for the
four streams are computed using (9) for the case of equal
power allocation. Then, the transmit antenna corresponding
to the stream with highest SINR is selected to transmit the
most important stream, the transmit antenna with the second
highest SINR to transmit the second most important stream and
so on. This method of antenna selection is static as it assigns
different antennas to different streams at the beginning of the
optimization procedure for each channel instantiation based
on the equal power case. Though this scheme will give us the
best transmit antenna in terms of SINR, it might not give us the
second best antenna and so on. This is because the SINR for
the streams transmitted from different antennas changes when
the transmit power is varied between antennas, which in turn
can change the order of best to worse SINR streams, hence
making another antenna the second best rather than the one
found initially, in terms of SINR. A better scheme would be to
assign transmit antennas dynamically during the optimization
procedure, however, that will increase the computational com-
plexity since more iterations would be needed. Nevertheless,
as observed by simulations, this antenna selection scheme does
give significantly better results than that of randomly assigning
antennas to different streams. Antenna selection does not create
any problem at the receiver since the receiver computes the
received SINR for each stream and hence discovers the order of
importance of the streams. After antenna selection, constrained
power optimization is performed iteratively by searching
through different combinations of transmission power alloca-
tion to different streams. MSE is computed for these different
combinations of transmission power using (4)—(8), and the
power allocation vector corresponding to minimum the MSE
is chosen. The total transmit power at any given instant is kept
constant.

Note that the main goal of the problem is to demonstrate
that significant quality gains can be achieved by using unequal
power allocation matched to image statistics in a MIMO system.
Once the problem is formulated, well established optimization
algorithms can be used to find the optimal solution. As discussed
above, a SQP method is used to find the minimum MSE and the
corresponding transmission power allocation scheme. However,
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like most of the numerical optimization methods, this method is
also computationally extensive. To reduce the number of com-
putations performed, a very simple suboptimal power allocation
method is proposed in the following subsection. The results for
both of the methods are presented and compared in Section V.

D. Suboptimal Power Allocation Algorithm

Our original optimization problem is a minimization problem
in four variables. Most numerical optimization methods are
computationally intensive for optimization problems with
more than two variables. For real-time applications, it is
necessary that the power optimization procedure should be
computationally nonintensive. The number of computations
can be significantly reduced by devising simple suboptimal
algorithms that divide the original problem into optimization
problems with fewer numbers of variables, without imposing a
large penalty on performance. Based on this idea, a suboptimal
algorithm for the power allocation problem is developed in
this section. This algorithm quantizes the transmit power
for different streams and essentially breaks down the four
variable optimization problem into an iterative two variable
optimization problem.

After performing antenna selection as discussed in the pre-
vious section, the range of transmit power for each stream is
quantized in My, (k = 1...4, My = M3) levels, where k = 1
corresponds to the most important and k£ = 4 to the least impor-
tant stream. The algorithm starts by setting the initial minimum
MSE (M S E i) to a very large value (infinity), the total avail-
able power to F; and the total allocated power F 4 to zero. The
algorithm then varies the transmit power for the lst stream in
steps of Ay = E /M, from E; — E;/M, to E;/M;, while
varying the transmit power (energy) for streams 2 to 4 equally
in steps of A;/3. The main idea here is to vary the power for
stream 1 through the range of available power in steps while
dividing the remaining power equally between the remaining
three layers. The algorithm computes MSE at each step, and
if the MSE is lower than the previous M SFE ., it updates
M S E\piy to this value. The computations for the 1sz stream are

stopped when either the entire range of available power has been
spanned or when the SINR for the 1st stream becomes lower
than the SINR for any of the other three streams. The minimum
MSE of all these combinations is then assigned to M SF i,
and the corresponding transmission power for stream 1 is fixed
(z1,). The allocated power is modified to B4 = F 4+, and
the same process is repeated for the remaining streams. While
finding the transmission power for the k** stream, the transmis-
sion power for the 1s to (k — 1)** streams are fixed (already
found), the transmit power for the k” stream is varied in steps
of Ay, and the transmit powers for streams k+1 . . . 4 are varied
equally in steps of A /4 — k. This way, at any given time the
optimization problem is essentially a two variable constrained
minimization problem, hence reducing the computational com-
plexity significantly. This algorithm is summarized below.
Initialize: k =1, m =1, E4 =0, MSE,;, = oo,

Ay = E/M,y

Step 1: Do

Tpn = Fs —mAp — Fa,

Tk41lm = """ = T4n = mAk/(4 — k‘)

Find MSE(x,).

If MSE(x,) < MSEwyin,

then M SE in = MSE(Xn), Tyin = Tkn-
m =m+ 1.

While m < M;, AND Mke,n > Nk+1,m - - -
Step 2: Tkn = Tmin, FEir=FE4 4+ Th,n»
k=k+1,m=1 A, = (ES—EA)/Mk

If £ < 4 then goto Step 1,

else M SE ;. has the minimum value of

MSE, and x,, has the corresponding transmit

power for different streams.

This algorithm uses the fact that the received SINR for a more
important stream needs to be greater than the received SINR for
a less important stream to minimize the distortion. Using this
fact, this algorithm does not need not to compute the distortion
at all the quantized power levels. Note that after finding the best
suited power for a stream, this algorithm does not vary the power
for that stream during iterations for the remaining streams.

774,n
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E. Note on the Convergence of These Methods

The power allocation optimization problem is not convex.
Both the SQP and the suboptimal algorithms are not guaranteed
to give a globally optimum point as their solution. The solution
will depend on the starting point for the SQP optimization and
the number of power level steps for each stream (quantization)
for the suboptimal algorithm.

IV. SIMULATIONS DETAILS

We used a database! of 50 grayscale 512 x 512 randomly se-
lected natural grayscale images was used for the simulations.
1.25 bits per pixel source coding rate was used for all the images.
We assumed that the channel was constant for 250 symbols, cor-
responding to 500 bits for 4-QAM modulation. Unequal power
allocation was performed using the distortion model described
in Section III-B to predict the MSE for MATLAB’s (SQP) opti-
mization as well as the suboptimal algorithm, and the resulting
power allocation was used to transmit different streams simulta-
neously over different antennas. The model parameters, namely
the unquantized coefficient mean and variance, the quantiza-
tion error mean and variance, and the first order auto-regressive
process parameter “a” for each segment were found using the
original unquantized image and the quantization matrix. The
values of My = 30, M, = 20, M3 = M,; = 10 were
numbers of quantized power levels that were used for different

IThese images were randomly selected from the two-CD set of “Austin &
Vicinity—The world of nature” and “Austin and Vicinity—The human world”.
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Fig. 5. BER curves for UPA and EPA methods for “Dog” image.
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Fig. 6. BER curves for UPA and EPA methods for “Lena” image.

streams for the suboptimal power allocation method. The ac-
tual MSE at the receiver was also computed using the orig-
inal unquantized image and the distorted image to compare how
closely the model predicts the actual distortion obtained via sim-
ulations. MSE was converted to PSNR using the simple rela-
tion PSNR = 101log,,(255%/MSE), and PSNR versus average
channel SNR curves were plotted. 500 channel instantiations
were used at each SNR.

Figs. 3 and 4 show PSNR versus SNR curves for “Dog”
and “Lena” images respectively for unequal power allocation
using the optimization method of MATLAB (SQP) and the
suboptimal algorithm. The distortion model in Section III-B
was used to predict the MSE in real-time for these optimization
procedures. The PSNR curves obtained via simulations when
the image is transmitted using the power obtained using these
optimization procedures are also shown. In these figures, the
curves labeled “optimal” are those obtained using the SQP
optimization. For comparison, the PSNR curves for three dif-
ferent equal power allocation methods are also shown. In one
of these methods, antenna selection was performed, and more
important streams were transmitted using better antennas. This
scheme is labeled as “EPA—Antenna selection”. In the scheme
labeled “EPA—No antenna selection” in Fig. 3, no antenna se-
lection was performed and streams were transmitted from fixed
preallocated antennas. The same progressive JPEG coder was
used for these two schemes as for the unequal power case. In
the third scheme labeled “EPA—Sequential”, a sequential (also
called baseline) JPEG coder was used so that the subbands are
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Fig. 7. Dog image results for different power allocation schemes at 10-dB SNR. (a) Original unquantized image. (b) UPA, optimal allocation. (c) UPA, suboptimal
method. (d) EPA with antenna selection. (¢) EPA (no antenna selection). (f) EPA with sequential JPEG.

distributed uniformly in all the streams and a fair comparison
is observed. An equal number of RST markers and the same
source coding rate was used as in progressive JPEG. Figs. 5
and 6 show the BER curves for “Dog” and “Lena” images,
respectively, for different streams using suboptimal UPA and
EPA methods. For the UPA and “EPA—Antenna selection”
cases, the BERs for individual streams are shown along with
the average BER of all four streams. Since the BER for equal
power allocation cases (both sequential and progressive) is the
same for all the streams, only the total BER is shown. Tables I
and II compare the PSNR results for different power allocation
methods at various SNRs for the “Dog” and “Lena” images.
Results for the UPA and EPA schemes for the “Dog” image at
10-dB SNR and the “Lena” image at 5 dB SNR are shown in
Figs. 7 and 8, respectively.

V. RESULTS AND DISCUSSION

It is evident from the PSNR curves in Figs. 3 and 4 that
the proposed unequal power allocation scheme performs sig-
nificantly better than allocating power equally to different
streams. At 5 dB SNR, the PSNR gain for the UPA scheme has
an advantage of approximately 14 dB over sequential JPEG
with equal power allocation for both the images. Also, the
suboptimal power allocation method performs very close to
the optimal power allocation scheme. The difference in PSNR
between the SQP method (MATLAB’s numerical solution)
and the suboptimal algorithm is within 1.5 dB at all points.
The suboptimal method performs close to the optimal method
because the suboptimal method spans through the whole range
of available power for the most important stream (or while
SINR for the most important stream is greater than the SINRs
for less important streams) before fixing it to the power level
that causes minimum distortion. It then spans through the whole

range of leftover power to allocate power to the next important
streams and so on. Hence, this method has a high chance of
performing close to the optimal method as long as number of
steps in power levels for each stream are high enough (low
quantization). In terms of computational complexity, on the
average for each block, the optimal power allocation scheme
took 350 MSE evaluations to converge to a solution, whereas
the suboptimal method evaluated MSE 26 times on average,
reducing the computational complexity better than an order of
magnitude. Furthermore, to confirm that the solution is not a
local minima, MATLAB’s optimization was carried out mul-
tiple times with different starting points. This further increased
its computational complexity as compared to the suboptimal
algorithm.

Another encouraging thing to note is that the amount of dis-
tortion predicted by the distortion model during the optimization
procedure is very close (within 1 dB) to that of the actual amount
obtained via transmission simulations. The difference in PSNR
obtained using the model and the simulations is mainly because
the model predicts the average MSE in the image due to bit er-
rors in the entropy coded image. The error detection by software
decoder is not always 100% correct [38]. Due to this reason, we
see this small difference in PSNR between the curves labeled
Model Optimal (Model Suboptimal) and Simulations Optimal
(Simulations Suboptimal).

Figs. 5 and 6 show the BER curves for the UPA and EPA
schemes. As can be seen from these figures, the BER for stream
1 (the most important stream) for unequal power allocation was
much lower than all the other streams for unequal and equal
power allocation. Also, the BER for stream 4 (the least impor-
tant stream) for UPA was the worse of all the streams. The av-
erage BER of all the 4 streams for UPA is also higher than the
average BER for equal power allocation schemes. Although the
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Fig. 8. Lenaimage results for different power allocation schemes at 5-dB SNR. (a) Original unquantized image. (b) UPA, optimal allocation. (c) UPA, suboptimal
method. (d) EPA with antenna selection. (¢) EPA (no antenna selection). (f) EPA with sequential JPEG.

TABLE I
PSNR VALUES IN DB FOR DIFFERENT POWER ALLOCATION SCHEMES FOR “DOG” IMAGE

[ SNR (dB) [0 [ 5 [ 10 | 15 [ 20 [ 30 | 40 |
UPA - Optimal 20.25 | 2847 | 30.67 | 32.20 | 32.84 | 33.13 | 33.16
UPA - Sub-optimal 1891 | 27.67 | 30.22 | 32.11 | 32.83 | 33.13 | 33.16
EPA - Antenna Selection 931 | 11.69 | 184 | 2641 | 31.12 | 33.02 | 33.16
EPA - No Antenna Selection || 9.11 | 993 | 1222 | 16.03 | 2067 | 283 | 32.88
EPA - Sequential 11.02 | 12.68 | 1584 | 1998 | 24.38 | 31.14 | 33.34

average BER was higher for UPA, significantly better perfor-
mance in terms of quality (PSNR) was obtained for UPA. This
is because it is the stream with the highest contribution toward
image quality, and, hence, it is this stream that requires max-
imum transmission power and reliability. This shows that with
a constraint on total transmission power at any instant, signifi-
cant quality gains can still be achieved by allocating more power
to more important streams at the cost of reduced power for less
important streams.

Different streams for the EPA scheme with antenna selection
also have different BERs. The average BER of all these streams
is approximately the same, however, as that of the EPA scheme
without antenna selection, and sequential JPEG with EPA. Also
note that EPA with antenna selection performs better in terms
of PSNR as compared to EPA without antenna selection (for
progressive JPEG) at all points, and better than EPA for se-
quential JPEG for medium to high SNR range. This shows that
the idea of antenna selection provides better performance than
randomly assigning transmit antennas to different streams. The
quality gain for UPA is also obvious from the images shown in
Figs. 7 and 8.

Similar performance gains were obtained for all the other im-
ages as well. These results are very encouraging because they
show that significant quality gains can be achieved by using

image statistics for power allocation in MIMO systems. Al-
though the power allocation method proposed in this paper only
uses four transmit and four receive antennas, this approach can
be extended easily to any number of transmit and receive an-
tennas with slight modifications.

There can be many real-world applications of our proposed
UPA method. A feasible application can be to capture and
transmit images in a MIMO cellular environment. Another
application can be wireless security cameras transmitting im-
ages at regular intervals with a much better image quality. In
both these cases, high quality images can be transmitted with
an overall transmit power constraint. This method can also be
extended to power constrained efficient video transmission over
MIMO systems using our distortion model for video [44].

VI. CONCLUSION

In this paper, we presented an unequal power allocation
scheme for the transmission of JPEG compressed images over
MIMO systems employing spatial multiplexing. The image
was divided into 4 different streams with unequal contribution
to total image quality. These different streams were transmitted
using different antennas with unequal power with the goal
of minimizing the distortion in the transmitted image. The
overall transmit power is kept constant at any given instant.
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TABLE II
PSNR VALUES IN DB FOR DIFFERENT POWER ALLOCATION SCHEMES FOR “LENA” IMAGE

[ SNR (dB) H 0 { 5 ] 10 | 15 [ 20 } 30 ] 40 |
UPA - Optimal 18.65 | 28.43 | 3228 | 35.03 | 36.12 | 36.66 | 36.72
UPA - Sub-optimal 17.39 | 27.53 | 31.46 | 34.85 | 36.03 | 36.65 | 36.72
EPA - Antenna Selection 8.06 10.04 | 17.05 | 25.80 | 33.74 | 36.52 | 36.72
EPA - No Antenna Selection 7.93 8.60 10.83 | 14.58 | 19.01 | 29.43 | 36.63
EPA - Sequential 11.53 | 13.24 | 1640 | 20.65 | 2549 | 33.48 | 36.37

We also presented a suboptimal power allocation algorithm as
a numerical solution to the unequal power allocation problem.
Results show that our unequal power allocation scheme pro-
vides significant gains in terms of PSNR over various equal
power allocation schemes. This gain is as high as 14 dB at low
SNRs. Furthermore, our suboptimal algorithm performs very
close to optimal power allocation. These results indicate that
significant quality gains can be achieved if the source statistics
are taken into account while designing transmission schemes
without imposing any penalty on resources. To the best of
our knowledge no unequal power allocation scheme exists for
image transmission over MIMO systems. We plan to extend
this work to different video coding schemes and advanced
space-time coding techniques.
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