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Abstract— Being able to predict the degree of visual discomfort
that is felt when viewing stereoscopic 3D (S3D) images is
an important goal toward ameliorating causative factors, such
as excessive horizontal disparity, misalignments or mismatches
between the left and right views of stereo pairs, or conflicts
between different depth cues. Ideally, such a model should
account for such factors as capture and viewing geometries, the
distribution of disparities, and the responses of visual neurons.
When viewing modern 3D displays, visual discomfort is caused
primarily by changes in binocular vergence while accommodation
in held fixed at the viewing distance to a flat 3D screen. This
results in unnatural mismatches between ocular fixations and
ocular focus that does not occur in normal direct 3D viewing.
This accommodation vergence conflict can cause adverse effects,
such as headaches, fatigue, eye strain, and reduced visual
ability. Binocular vision is ultimately realized by means of
neural mechanisms that subserve the sensorimotor control of eye
movements. Realizing that the neuronal responses are directly
implicated in both the control and experience of 3D perception,
we have developed a model-based neuronal and statistical
framework called the 3D visual discomfort predictor (3D-VDP)
that automatically predicts the level of visual discomfort that
is experienced when viewing S3D images. 3D-VDP extracts two
types of features: 1) coarse features derived from the statistics of
binocular disparities and 2) fine features derived by estimating
the neural activity associated with the processing of horizontal
disparities. In particular, we deploy a model of horizontal
disparity processing in the extrastriate middle temporal region
of occipital lobe. We compare the performance of 3D-VDP with
other recent discomfort prediction algorithms with respect to
correlation against recorded subjective visual discomfort scores,
and show that 3D-VDP is statistically superior to the other
methods.

Index Terms— Visual discomfort assessment, middle temporal
neural activity, accommodation vergence conflict, stereoscopic 3D
viewing, S3D, vergence.
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I. INTRODUCTION

STEREOSCOPIC 3D (S3D) multimedia services provide a
more immersive quality of experience (QoE) by enabling

depth perception. S3D perception brings a richer experience to
viewers that is uniquely different from a 2D visual experience:
a feeling of on-site presence in a 3D scene. However, unwanted
side effects in the form of different types of visual discomfort
can occur while one is participating in the stereoscopic
experience. The possible sources of visual discomfort have
been extensively studied with respect to safety and health
issues, such as asthenopia (eyestrain), a feeling of pressure in
the eyes, nausea, a reduced visual sensitivity, a reduced ability
to accommodate and/or converge the two eyes, headaches and
neck pain [1]–[3].

Several factors that can cause visual discomfort when
viewing S3D have been identified. In [9], for example, the
authors studied the issue of visual discomfort caused by
misalignment of viewed S3D image pairs in regards to vertical
and torsional disparities. They showed that these regressed
factors are tightly correlated with experienced visual dis-
comfort when they occur. In [10], the authors demonstrated
that keystone artifacts captured by toed-in binocular capture
systems also correlate with visual discomfort. The authors
of [11] developed a visual comfort improvement technique
based on the horizontal disparity range and on window viola-
tions in S3D content. They mentioned that window violations
may cause severe discomfort. However, this type of distortion
can generally be prevented during capture by aligning the
main objects in the frame without window violation. Flawed
presentations of horizontal disparity, such as excessively large
or otherwise unnatural disparities, can also lead to severe
visual discomfort [7], [8]. In [12], various other factors that
could cause visual discomfort were reviewed, including optical
distortions and motion parallax.

In the absence of geometrical distortions and window
violations, factors related to horizontal disparity are the domi-
nant factors that cause visual discomfort. Accordingly, here
we focus on the horizontal disparity and on analyzing its
neural activity statistics related to the perception of horizontal
disparities. Visual discomfort caused by viewing 3D images
typically results from a perceptual discordance of the depth
signals perceived on a flat stereoscopic display. For example,
under natural viewing conditions, the accommodation and
vergence processes are connected with each other. Varying the
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vergence via eye movement induces proportional changes
in accommodation, and vice versa. However, when viewing
a stereo image on a flat stereoscopic display, discrepancies
may occur between the degree of accommodation required to
achieve a sharp image for a given amount of vergence, which
causes perceptual confusion and conflicts in the visual control
system [4], [6].

Horizontal disparity is a fundamental depth cue that
modifies the visual perception of the immediate 3D envi-
ronment by inducing vergence movements, which are deeply
related to visual discomfort [13]. The mechanical oculomotor
movements that cause vergence are driven by cortical signal-
ing from the brain, hence a good model of the appropriate
neural responses to viewed S3D stimuli expressed in terms of
horizontal disparity could be a very useful tool for predicting
the degree of discomfort that is felt. We approach the problem
under the assumption that no reference data describing the
stereo image is available a priori. This type of assessment
is a difficult problem, since the goal is to understand and
predict the experience of viewing an image over a 3D visual
space without an established reference for comparison. The
problem is similar in this regard to recent blind image quality
models for 2D and 3D images [14], [15], [20]–[22] that extract
features from a training set of a database.

Numerous studies have studied the question of visual
discomfort arising from horizontal disparity anomalies that
are experienced when viewing stereo images. The authors
of [23] and [24] report experimental studies on the
effect of excessive horizontal disparity on visual comfort.
Diplopia (double vision) begins when horizontal dispar-
ity exceeds Panum’s fusional area, thereby causing visual
discomfort [25]. The authors of [26]–[28] argue that the
accommodation-vergence (AV) conflict is the primary cause
of visual discomfort. In [26] and [27], a “comfort zone” of
comfortable 3D viewing is defined that is limited by extremes
of horizontal disparity within which clear single binocular
vision can be achieved [4]. Several studies suggest a value of
about ±1◦ (degree of visual angle) as a comfort limit, based on
empirical measurements [12], [26]. In [16]–[20], the authors
argue that the entire scene being viewed should be positioned
in depth behind the viewing screen for a more comfortable
viewing experience, implying that negative disparities induce
more discomfort than do positive disparities, at least relative to
the context provided by the fixed depth reference of the screen
boundaries [29]. In addition, visual discomfort can also be
caused by optical or geometrical misalignments between the
left and right binocular images [30]–[32].

More recent efforts have been directed towards extracting
measures of visual discomfort from the statistics of horizontal
disparities. Yano et al. [26] computes the ratio of sums of
horizontal disparities near the screen and those far from the
screen. The horizontal disparities near and far are determined
by defining the comfort zone to be 60 arcmin. The degree
of actual experienced visual discomfort was recorded by
human subjects viewing S3D movie clips along with measured
waveforms of each viewer’s accommodation response. The
results on 6 subjects indicated that the computed horizontal
disparity ratio closely relates to experienced visual discomfort

when viewing S3D. Nojiri et al. [20] compute a variety
of discomfort factors from parameters of the distribution of
experienced horizontal disparity, such as the minimum and
maximum values, range, dispersion, absolute average, and
average. They carried out a subjective study of experienced
visual discomfort and sense of 3D presence on 20 subjects.
The results indicate that the range of the horizontal disparity
distribution has a high correlation with visual discomfort
(∼0.80). Choi et al. [21] distinguish three kinds of features:
spatial, temporal, and differential components. The 3D spatial
components derive from spatial depth complexity and depth
position, calculated based on the variance and absolute mean
of the disparity map, as a way of capturing both AV conflicts
and excessive horizontal disparity. They find a high correlation
(∼0.77) between a model regressed on their computed
features and the results of a subjective test involving
20 subjects. Kim et al. [22] proposed several metrics that
predict 3D visual discomfort, including the experienced
horizontal disparity range and maximum angular disparity,
assuming a comfort zone of 60 arcmin. They found the range
of maximum experienced angular disparity to have the highest
correlation (∼0.87) with the outcomes of the subjective test,
among the features tested.

The use of statistical features such as these generally stems
from the observation that larger horizontal disparities are more
likely to cause severe visual discomfort. Horizontal disparity
magnitude can provide a good predictor of 3D visual discom-
fort, yet a more elaborate statistical formulation of horizontal
disparity should produce even better models of stereoscopic
visual discomfort. Further, visual discomfort arises from other
factors than the amplitude of horizontal disparity, and other
3D statistical features might also be relevant to visual discom-
fort, thereby deepening the available quantitative description
of visual discomfort. This is the approach we take, using
models of neural responses to derive more specific aspects
of horizontal disparities.

We have developed a visual discomfort model and algorithm
dubbed the 3D Visual Discomfort Predictor (3D-VDP), which
extracts two types of statistical features. The first type is a
“coarse” feature extracted from a horizontal disparity map.
It is defined in terms of known causative factors of visual
discomfort that have been identified by psychophysical studies
of binocular vision. This follows the same basic philosophy
as the statistical features used in previous models [16]–[22].
The other feature is a “fine” feature that is derived from
a neural coding model used in computational neuroscience.
The underlying assumption is that, since visual discomfort is
mainly caused by changing the vergence eye movements while
accommodation is fixed on a screen (resulting in AV conflict),
stereo images requiring a similar degree of vergence would
induce a similar level of visual discomfort. Thus, the fine
features are defined in terms of estimated neural activity
levels in the middle temporal (MT) region of the brain, which
plays an important role in encoding horizontal disparity for
vergence eye movements [34], [35]. In Section II, we take
a broad view of the neural pathway along which horizontal
disparity perception occurs and from which vergence eye
movements are directed. Section III details the coarse/fine
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Fig. 1. Horizontal disparity and vergence control in the brain. Left: The neural pathways between horizontal disparity processing in cortical areas V1 and
MT/MST and control of vergence eye movements by the extraocular (rectus) muscles [34], [36], [52], [53]. Right: 13 types of measured horizontal disparity
tuning profiles exhibited by MT neurons [35]. See Section II and Section III-B for details.

statistical feature based model of visual discomfort that is used
in 3D-VDP. The coarse and fine features are combined using
a regression analysis, and visual discomfort is predicted using
the regressed quality model.

II. NEURAL PROCESSING CONTROLLING

VERGENCE EYE MOVEMENT

The main goal of vergence eye movement is to minimize
the horizontal disparity of a fixated target object to near zero
in order to simultaneously project the target onto the fovea of
each eye. As shown in Fig. 1, eye movements are controlled
via a feedback system between vision and optomotor control.
While there are large cortical areas involved in 3D perception
and numerous interconnections among them [36], we shall
focus our attention on those areas along the neural pathway
that are essential for accomplishing vergence eye movements.

When an image is projected onto the retina in the form of
light, it is transformed into an electrical signal via transduction
by the photoreceptors. The outputs of the photoreceptors are
transmitted to the retinal ganglion cells via an intrinsic local
neural network, the responses of which form the first receptive
field (RF) of the visual system. This processed visual informa-
tion is then relayed via the lateral geniculate nucleus (LGN)
to primary visual cortex (area V1) [38]. The information from
the two eyes is segregated until the LGN, and first combined
in V1 [39]. Certain neurons in V1 are activated by stimuli from
both eyes, and encode phase differences in horizontal disparity
between the signals from the two eyes [40]. Broadly speaking,
the separate neural pathways diverge from V1, termed the
ventral and dorsal streams, both having a complete retinotopic
mapping available. The ventral stream largely follows the
path V1 → V2 → V4 → temporal lobe and is sometime
called the “What Pathway”, as processing is largely implicated
with shape recognition and object representation [42]. The
dorsal stream follows the path V1 → V2 → MT → parietal
lobe and is sometimes called the “Where Pathway” as it is
associated with motion computations, object locations and
trajectories, and control of the eyes and arms. The secondary
visual area, V2, is located next to V1 and is a gateway to the
higher visual areas. The two streams also play distinct roles

in binocular depth perception. The neurons along the ventral
stream create perceptual representations of 3D object shapes
and the sense of 3D arrangements in space [43]. The neurons
along the dorsal stream are predominantly involved in compu-
tations of low-level motion and horizontal disparity primitives,
such as optical flow [44]. The dorsal stream encodes the sense
of spatial arrangement and provides data used in the guidance
of vergence eye movements [33], [34], [41].

Visual area MT is a key processing stage along the dorsal
stream that plays important roles in motion perception, eye
movements, and the computation and processing of binocular
disparity. The visual responses of area MT neurons are tuned
to attributes of the stimuli, such as retinal position, direction
of motion, speed of motion, stimulus size, and binocular
disparity [36], [46]. Early studies of binocular disparity
processing focused on V1 since it is the first visual processing
stage that encodes stereopsis, and therefore horizontal disparity
tuning of MT is derivative of that in V1. However, recent
studies indicate that MT plays a major role in subsequent hor-
izontal disparity processing and horizontal disparity selectivity
in this area is considerably stronger than in other cortical
areas, such as V1 or V4, although neurons in V4 produce
strong responses to relative disparities, as might be useful
in the computation of 3D depths [35], [36], [41], [78]. The
horizontal disparity tuning curves of MT neurons can be
accurately described using the family of Gabor functions [35].
Although V1 neurons also have horizontal disparity tuning
functions that are also well-modeled by Gabor functions,
MT neurons exhibit a broader horizontal disparity tuning
range than V1 neurons at comparable eccentricities [76].
Importantly, MT neurons directly feed medial superior
temporal (MST) neurons [48], whose collective activity carries
substantial information regarding the initiation of vergence eye
movements [49]. Therefore, it is likely that the responses of
MT neurons play a key role in the perception of depth as it
relates to the guidance of vergence eye movements [41].

As such, our visual discomfort model includes neural
features that describe activity in area MT. We make use of data
reported in [35], which provides parametric fits to horizontal
disparity tuning curves using Gabor functions for 13 typical
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Fig. 2. Overall processing flow of the neural and statistical feature based 3D Visual Discomfort Predictor (3D-VDP). Statistical and neural features are
extracted from the estimated horizontal disparity map of a stereo image pair. A support vector regressor (SVR) is trained on the extracted features and the
subjective discomfort scores to construct a discomfort prediction model.

Fig. 3. Definition of horizontal disparity relations and examples of idealized empirical disparity distributions (histograms) along with descriptions of the
statistical features computed from them.

MT neurons, as depicted on the right side of Fig. 1. Since
neurons in area MST, which initiate vergence eye movements,
receive most of their inputs from area MT [48], it appears
that the horizontal disparity-selective MT neurons play a
substantial role in the control of vergence eye movements.
Further processes involved in vergence eye movements are
summarized as follows. Since areas MT/MST have reciprocal
connections with the frontal eye field (FEF), it is thought that
the signals that guide vergence eye movements emanate from
area MST to the FEF [50]. In addition, it has been suggested
that area MST is also involved in early stages of processing
visual signals for depth pursuit, while the FEF plays a primary
role in the control of vergence eye movements by generating
motor control signals, which are carried to the premotor
neurons of the supra-oculomotor area (SOA) and the superior
colliculus (CS) located in the brain stem. The SOA and the
SC produce ocular motor signals that drive fast and slow
vergence, respectively [51]–[54]. Finally, the eyeballs converge
or diverge by action of the extraocular (rectus) muscles, which
are controlled by premotor control circuits in the brain stem
and cerebellum, which compute the final motor signals that
drive vergence eye movements [54].

III. 3D VISUAL DISCOMFORT PREDICTOR

The overall processing flow of the 3D Visual Discomfort
Predictor (3D-VDP) is depicted in Fig. 2. Two types of
information are computed from the estimated horizontal

disparity map to form a feature vector that is predictive of
visual discomfort. The first type derives from a statistical
analysis of horizontal disparity. The second type extracts a
predictive measure of neural activity in a brain center that is
heavily implicated in both horizontal disparity processing and
vergence eye movement control. The extracted features are
learned, along with subjective S3D image discomfort scores
recorded in a large human study using a support vector regres-
sor (SVR). An aggregate visual discomfort score is computed
using this predictive model trained on the IEEE Standard
Association (IEEE-SA) stereo image database, which is
publicly available at [55].

A. Statistical Analysis of Horizontal Disparity Maps

Horizontal disparity maps may present a variety of empirical
distributions, for example, the idealized histograms depicted
in plots A to F in Fig. 3. In the figure, α is the angle
between the two eyes when verged at a fixation point on
the display screen and β is the angle between projections
onto the retina from points nearer or further from the viewer
than the point of fixation. When the horizontal pixel disparity
is zero, the angular disparity is zero, as depicted by the
dashed line in Fig. 3. A stereo image may contain negative
(crossed, α − β < 0), or positive (uncrossed, α − β > 0)
disparities at points appearing in front of or behind the screen,
respectively.
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Fig. 4. Presentation used in a simple subjective test to compare statistical horizontal disparity features. The view is ‘from above’ in panels A-F. The top
two panels are the S3D stimulus for case A as viewed by the subjects. The configurations A-F correspond to the distributions A-F in Fig. 3.

Excessively large, discomfort producing disparities can
appear at either end of the horizontal disparity range. For
example, in Fig. 3, the hypothetical distributions A and B
present excessively large positive and negative disparities,
respectively. Horizontal disparity events near both ends of the
distribution may be good candidate features for describing
excessive horizontal disparity. In addition, following the results
in [16]–[20] and the experiment described in Fig. 4 (and in
detail later), excessive negative disparities generally produce
more discomfort than excessive positive disparities of the same
magnitudes.

We use these observations as follows. Generally, it is known
that the most severe local distortions have a large effect on
the perceived quality of 2D images and videos [17], [18].
Likewise, we can may assume that the most excessive dispari-
ties exert a significant effect on the degree of visual discomfort
that is experienced. Therefore, compute the pth-percentiles
of both the left (lower) and right (higher) sides of the
distribution:

f1 = 1

dmax
·
⎛
⎝ 1

Nl
p

∑
n<N ·p/100

d (n)

⎞
⎠, (1)

f2 = 1

dmax
·
⎛
⎝ 1

Nr
p

∑
n>N ·(100−p)/100

d (n)

⎞
⎠, (2)

where N is the total number of horizontal disparity values,
Nl

P and Nr
P are the number of disparities within the

lower and upper pth-percentiles, respectively ( p could be
5% or 10%, for example), d (n) is the nth disparity among the
rank-ordered horizontal disparity values, and dmax is the
maximum horizontal disparity. Since most of the disparities
processed by area MT fall within the range −2◦ and +2◦ [35],
we shall use dmax = 2◦. If the mean of the lower or upper
pth-percentile of horizontal disparity values is larger than dmax

(lower than −dmax), we set f1 = 1 or f2 = 1 ( f1 = −1 or
f2 = −1), respectively.

AV conflicts occur when there are inconsistencies between
the distances implied by vergence eye movements and those
for accommodation to screen distance. Most non-zero dis-
parities compel vergence eye movements, which can cause
AV conflicts. Yet, it is not easy to predict the degree of an
AV conflict precisely, since many internal and external factors
influence the processes of accommodation and vergence, such
as visual acuity, pupil size, age, luminance, contrast and
accommodation-vergence coupling [4], [5]. However, there
is a certain tendency that the greater the dispersion of the
horizontal disparity distribution from zero, the more likely that
an AV conflict occurs. A simple measure of dispersion relative
to zero is:

f3 = 1

dmax

√
1

N

∑
n

d (n)2, (3)

where, if f3 > 1, set f3 = 1. The distributions C and D
in Fig. 3 have similar means but very different dispersion
relative to zero disparity, which implies that a stereo image
corresponding to D could induce a more severe AV conflict
than one corresponding to C.

The distributions E and F have similar dispersions but
different skewness of the horizontal disparity distributions.
As mentioned above, negative disparities tend to induce greater
degrees of visual discomfort than do positive disparities. Thus
define a simple measure of skewness to capture the influence
of the horizontal disparity distribution, f4:

f4 =
∑
n

d (n)

∑
n

|d (n)| . (4)

If the horizontal disparity distribution is more concentrated on
the negative (or positive) side of zero disparity, f4 approaches
−1 (or 1). The sign and magnitude of f4 captures horizontal
disparity skewness relative to zero disparity. In cases C and D,
the disparities are symmetrically distributed around
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zero disparity, hence f4 ≈ 0, and horizontal disparity skewness
has little influence.

In order to better understand the role of statistical
horizontal disparity features on experienced visual discom-
fort, we conducted a simple subjective study. Consider four
numbered spheres laterally arranged along the horizontal as
depicted in the top left and right images of Fig. 4. The four
numbered spheres are variously positioned with disparities
corresponding to the panels A-F in Fig. 4. The stimuli are
1920 × 1080 resolution S3D images containing spheres of
diameter 250 pixels (about 13 centimeters in the display). The
horizontal pixel disparities of the third balls in A and B were
set to 67 pixels (angular disparities of 1.2◦), 57 pixels
for the spheres in C (angular disparity of 1◦), and 12 pixels
for the spheres in D-F (angular disparities are 0.2◦).
Panels A and B in Fig. 4 depict cases of large positive
and negative excessive disparities, respectively. C and D
in Fig. 4 demonstrate instances of very different disparity
dispersions relative to zero disparity, corresponding to possible
AV conflicts. Panels E and F show cases where a negatively
skewed distribution of horizontal disparity incurs a greater
degree of visual discomfort than does a positively skewed
disparity. Panels A-F correspond to possible realizations of
the distributions A-F in Fig. 3. In Fig. 4, the solid line
represents the line of zero disparity, while the dotted lines
represent the comfort zone used by Yano et al. [26] and
Kim et al. [22]. The third spheres from the left in A and B have
the same absolute disparity, while all of the spheres in E and F
have the same absolute disparity. The subjective study was
conducted using the same experimental environment described
in Section IV. Sixteen subjects participated in the test. The
subjects were asked to select the most comfortable stimulus
amongst A against B, C against D, and E against F. All subjects
consistently selected A, C, and E as more comfortable views
than B, D, and F, respectively.

We calculated the features used in [20]–[22] and [26],
to compare performance relative to features f1 - f4. As shown
in Fig. 4, only f1 - f4 were able to discriminate all of
the differences. We also compared features used in previous
studies. The feature used by Yano [26] is only applicable
to cases A, B, and C. Since the feature is calculated as
the sum of disparities outside the comfort zone, without
disparities within the comfort zone, the feature cannot be
defined for cases D, E, and F due to numerical instability.
Since the features used by Choi [21] include the variance
and absolute mean of disparity, it is difficult to discriminate
between negative and positive disparities. The features used
in Kim [22] include the disparity range and the sum of absolute
maximum disparities, which also cannot distinguish between
negative and positive disparities. The features of Nojiri [20]
do allow for all the cases. However, the results obtained when
correlating the features against subjective scores are not very
good, as shown in Section IV.

B. Features From the Neural Population Coding Model

The neural interaction of accommodation and vergence in
the midbrain can be modeled as a cross-coupled feedback

system [56]. A change of accommodation naturally alters
vergence via the accommodation-vergence (AV) cross-link.
Likewise, retinal disparity also modifies accommodation
through the vergence-accommodation (VA) cross-link.
However, when viewing a stereo image on a flat stereoscopic
display, accommodation decisions produced in the midbrain
conflict with horizontal disparity inferences produced by
neural activity in area MT that guide vergence eye movements
as a function of retinal disparity. Thus, we use a model of
neural activity in area MT to derive features that can be
used to automatically predict visual discomfort induced by
AV conflicts. Specifically, we use a model of the responses of
neurons in visual area MT that appear to be dedicated to both
stereo perception and control of vergence eye movements.

Neural coding is a field of computational neuroscience
concerned with identifying the relationship between a stimulus
and the electrical responses of neurons [57]. In order to
guide motor actions based on sensory information, neurons
propagate signals in the form of electrical pulses called action
potentials or spikes. The information contained within the
signal is encoded as a pattern of action potentials in response
to each input stimulus. The relationship between the stimuli
and the responses of neurons in area MT can be modeled
using population coding [46], [57], [58] whereby information
is encoded based on the aggregate activity of populations of
neurons [59].

Neural population codes are based on the neurophysio-
logical finding that individual neurons selectively respond to
particular variables underlying each stimulus. The selectivity
is described by a tuning function representing the mean firing
rate of the cell as a function of the variable. In [35], the authors
formulated models of the tuning curves of visual area MT as
functions of the amplitude of horizontal disparity. Gabor
functions [60], [61], or Gaussian kernel functions modulated
by sinusoidal carrier waves, were used to fit the curves, as
depicted in the plots on the right side of Fig. 1. As described
in [35], the curve-fit parameters were obtained by displaying
moving random-dot stereograms containing a range of
different disparities to each of three alert macaques and by
quantifying the resulting measured MT neuron responses [35]
(the visual system of monkeys closely resembles that of
humans, and they perceive stereoscopic depth much as humans
do [39]). The parameters of 13 exemplar tuning curves
(from [35]) are given in Table I. The tuning function of the
i th typical MT neuron can be modeled as:

Ri (d) = Ri
0 + Ai · e−0.5((d−di

0)
2
/σ 2

i )

· cos(2π fi (d − di
0) + �i ), (5)

where d is horizontal disparity, Ri
0 is the baseline response,

Ai is the amplitude of the Gaussian kernel, di
0 is the center of

the Gaussian, σi is the width of the Gaussian, fi is frequency,
and �i is the phase. We consider 13 representative neurons
deemed typical of a much larger population of 501, and whose
curve-fit parameters are given in [35].

Since MT cells are also selective for other variables
such as velocity, in addition to horizontal disparity, it is
assumed that the neurons are intrinsically noisy, hence the
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Fig. 5. The right image is obtained by locally shifting the left image using horizontal disparity values. (a) Left image. (b) Probability of horizontal disparity
distribution where only one horizontal disparity exists. (c) Mean firing rate for each of a set of tuning functions assuming a poisson distribution of the
population responses.

TABLE I

CURVE-FIT PARAMETERS FOR THE TUNING

FUNCTIONS OF FIG. 1 GIVEN IN [35]

population coding model is approached using a probabilistic
framework [58], [59], [62], [63]. The probability mass function
of the firing rate ri of the i th neuron is often modeled as
Poisson:

P [ri |d] = e−Ri (d) (Ri (d))ri

ri ! . (6)

If there is a single horizontal disparity, as depicted in Fig. 5 (b)
(left image is Fig. 5 (a), right image is the disparity shifted
left image where horizontal disparity is d), and where d tunes
a set of mean firing rates for the 13 typical MT neurons, using
the tuning functions (5). Fig. 5 (c) shows firing rates obtained
using the tuning functions of typical MT neurons when the
input horizontal disparity is as shown in Fig. 5 (b). The actual
spikes would be Poisson distributed about the mean firing rate
as depicted by the dotted lines in Fig. 5 (c).

In (6), the firing rate ri is probabilistically described
using only a single horizontal disparity value d . However,
sampled, discrete-space stereoscopic images contain multiple
possible disparities, e.g., as shown in the horizontal
disparity maps of Figs. 6 (e) and (f), whose left images

are Figs. 6 (a) and (b). An alternative model is required
to deal with multiple disparities. The input disparities
in Figs. 6 (e) and (f) can be modeled as realizations of a
probability distribution, P [d], as shown in Figs. 6 (i) and (j),
respectively. A more comprehensive encoding model can be
obtained using the extended Poisson model in [58]:

P [ri |P [d]] = e−E[ri ] E[ri ]ri

ri ! , (7)

where E [ri ] is the expected mean firing rate given the
horizontal disparity probability distribution, P [d]:

E [ri ] =
∑

d

P [d] · Ri (d). (8)

It should be noted that horizontal disparities are dependent
on eccentricity in the retinal images. However, since we do
not model the exact firing rate for a specific fixation point
or for each position on the retina, but instead stochastically
estimate the mean firing rate using the overall distribution
of disparities, we do not consider the effect of eccentricity.
Figs. 6 (m) and (n) show the estimated mean firing responses
activated by the stereo images in Figs. 6 (a) and (b),
respectively.

The expected mean firing rate in (8) is the shape parameter
of the Poisson distribution of the action potentials.
We calculate normalized neural features from the expected
mean firing rates:

fi+4 = E [ri ]

Rmax
, 1 ≤ i ≤ 12, (9)

where Rmax is the maximum MT neuron response. In the
experimental data of [35], the response of the fifth cell exhib-
ited the largest response at preferred disparity −0.2 among
all MT neuronal responses, so we use Rmax = R5(−0.2) to
normalize the feature values between [0, 1].

Figures 6 (c) and (d), which show the left stereo
images ‘OSL3_100’ and ‘ISS8_25’ in the IEEE-SA data-
base, respectively, have similar expected means firing rates as
in Figs. 6 (m) and (n), as shown in Figs. 6 (o) and (p), respec-
tively. Although the spatial arrangement of action potentials
would be different in real MT neurons, the distributions of
expected action potentials are quite similar when comparing
Figs. 6 (m) and (o). They have roughly similar horizontal
disparity distributions as those in Figs. 6 (i) and (j), as shown
in Figs. 6 (k) and (l), respectively. However, other elements,
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Fig. 6. Probability distribution of horizontal disparity and population responses. (a)-(b) Left stereo images composed of image patches having diverse disparity
distributions. (c) Left image of the stereo image ‘OSL3_100’. (d) Left image of the stereo image ‘ISS8_25’. (e)-(h), (i)-(l) and (m)-(p) Horizontal disparity
maps, probability distributions of horizontal disparity and estimated mean firing rates of the stereo images (a)-(d), respectively.

such as the horizontal disparity maps and other characteristics
of the image, are quite different. Yet in the subjective tests,
discomfort (MOS) values 3.9148, 1.7234, 3.8462, and 1.7692
were obtained for the stereo images in Figs. 6 (a)-(d), respec-
tively. The test environment was as described in Section IV.

Fig. 7 shows examples where neural features are
used to supplement statistical features. As can be seen
in Figs. 7 (a) and (c), the statistical features are unable
to discriminate between stereo images whose MOS are dif-
ferent. However, as may be seen in Figs. 7 (b) and (d),
since the neural features more finely represent the distribution
of disparities in the same way that MT neurons produce
action potentials, the neural features discriminate between the
different stereo images.

Fig. 8 shows the average mean firing rate after dividing
the IEEE-SA database into bins of MOS of visual discomfort.
The circle, rectangle, cross and triangle symbols denote the
average mean firing rates for stereo images whose MOS are in
the 0%−25%, 25%−50%, 50%−75% and 75%−100% bins,
respectively. It may be observed that stereo images associated
with low MOS tend to produce relatively high mean firing
rates on MT neurons whose preferred horizontal disparity is

crossed, and vice versa. Since, in our model, stereo images
that induce similar MT action potentials produce similar levels
of subjective visual discomfort, the distribution of the action
potentials presents a promising feature for predicting visual
discomfort. Here, the important thing is that we extract reliable
features based on a good model of the action potential that
is generated when a human viewer perceives depth. Towards
this end, the classic Gabor tuning function model is quite
suitable [35]. The typical tuning functions shown in Table 1
clearly demonstrate the feasibility of using horizontal disparity
tuned MT neural data to predict the degree of visual discomfort
experienced when humans view S3D images. In Section V,
it is demonstrated that these fine neural features effectively
complement the coarse statistical features, giving rise to con-
siderable performance improvement when predicting visual
discomfort.

IV. IEEE-SA STEREO IMAGE DATABASE

In order to test 3D-VDP and other models that we and
others are developing, we built the IEEE-SA stereo image data-
base and conducted a subjective discomfort experiment [55].
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Fig. 7. Statistical (coarse) and neural (fine) features of the stereo images
‘ISL5_25’, ‘OSS9_50’, ‘ONS8_75’ and ‘ISL1_50’, whose MOSs are 2.8461,
3.4615, 2.6923 and 3.5384, respectively. (a) Statistical features of the stereo
images ‘ISL5_25’ and ‘OSS9_50’ (b) Neural features of the stereo images
‘ISL5_25’ and ‘OSS9_50’ (c) Statistical features of the stereo images
‘ONS8_75’ and ‘ISL1_50’ (d) Neural features of the stereo image ‘ONS8_75’
and ‘ISL1_50’.

Fig. 8. Average of mean firing rate as a function of recorded subjective
visual discomfort on the IEEE-SA database.

Fig. 9. Categories in the IEEE-SA database. The abbreviations of the
8 categories come derive the first letters of each category level. For example,
ISS denotes the category ‘indoor - salient object - small scale’.

We divided the collected stereoscopic scenes into eight
categories encompassing a diversity of shapes and depths,
which are reasonably representative and challenging, as shown
in Fig. 9. The scenes were divided into indoor and outdoor
categories. Each category was then divided again according to

Fig. 10. Example images from the IEEE-SA Stereo Image Database. From
top row to bottom row: ISS, ISL, INS, INL, OSS, OSL, ONS and ONL.

whether they contain ‘salient’ objects, such as people, dolls,
cars, bikes, books, or sculptures. Finally, scene depth was
estimated as the shooting distance, then category was again
subdivided by the range of object depths in the scene. The
categorization and labeling scheme is shown in Fig. 9. The
stereo images in the categories ISS and INS were captured
in small spaces (rooms, small offices and hallways), while
category ISL and INL stereo pairs were captured in larger
spaces, such as lobbies and large hallways. Category OSS and
the OSL stereo pairs were distinguished by distances from
the nearest salient object (OSS if closer than about 3 m, and
OSL if farther). The ONS and ONL categories were roughly
distinguished by the distance from the background in the
scene (OSS if closer than about 5 m, and OSL if farther).
Figure 10 shows example images from the IEEE-SA stereo
image database, where each row corresponds to the eight
categories, ranging from ISS to ONL as depicted in Fig. 9.

The IEEE-SA stereo image database includes a total of
800 stereo image pairs of high-definition (HD) resolution
(1920 × 1080 pixels). The database was enriched by using
multiple evenly separated convergence points on each scene.
The convergence point was adjusted by shifting the sensors
in the integrated twin-lens 3D camcorder, a PANASONIC
AG-3DA1, thereby modifying the relative depth distribution
between the observer and the screen. The apparatus was not
toed-in, instead horizontal disparity was obtained by a parallel
setup thereby avoiding keystone distortions [65]. Additionally,
the captured S3D images are absent of vertical disparities
because of the built-in precision aligned twin-lens system.
The IEEE-SA stereo image database is composed of 160
such convergence-sampled sets so that each content category
contains 20 sets.
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Fig. 11. Distribution of horizontal disparity (deg). (a) IEEE-SA stereo image
database (b) EPFL stereo image database.

The IEEE-SA stereo image database includes highly diverse
disparities. Figure 11 (a) shows that the overall horizontal
disparity distribution over all 800 stereo image pairs is approx-
imately normally distributed with a mean near zero, ranging
from extremes of around −3◦ to +3◦. For simplicity, we
obtained the horizontal disparity maps using the optical flow
software from [66], available at [67]. We use the horizon-
tal component of the computed ‘motion vectors’ computed
between the left and right images as horizontal disparity. The
choice of the optical flow software is motivated by the fact that
this tool delivers competitive prediction of horizontal disparity
as compared to the state of the art on the Middlebury Stereo
Evaluation table [68], [69]. Since the optical flow algorithm
does not assume an epipolar constraint [70], the computational
complexity is somewhat higher than otherwise, but with the
advantage of computing possibly better disparities.

Figure 11 (b) shows the total horizontal disparity
distribution of the EPFL stereo image database [64]. The
EPFL stereo image database consists of stereo images having
resolution 1920 × 1080 pixels, with associated subjective
opinion scores. Nine different scenes were captured using a
rig-based 3D system with six cameras at varying distances
ranging from 10 − 60 cm, leading to a total of 54 stereo
image pairs. Notice that the distribution is nearly one-sided,
with mostly positive disparities.

The subjective discomfort assessment experiment was
conducted in a laboratory environment, commensurate with
standardized recommendations for subjective evaluation of
picture quality [71]. The ratio of the luminance of an inactive
screen to the peak luminance was below 0.02. The ratio of the
luminance of the screen when displaying only black level in
a completely dark room to that corresponding to peak white
was about 0.01. The ratio of the luminance of the background

behind the picture monitor to the peak picture luminance was
about 0.15. Otherwise, the room illumination was low.
A 46-inch polarized stereoscopic monitor with HD
(1920 × 1080) resolution was used to display the test
stereo images. Each subject viewed the test stereo images
at a distance of about 170 cm, or about three times the
height of the monitor, as suggested in [72]. Twenty-eight
subjects participated in the subjective test, with ages ranging
from 22 to 38 years and an average of 28 years, which is
nearly double the level recommended in ITU-R BT.500 [71].
All were non-experts in the fields of 3D image processing
and quality assessment.

Each subject was asked to assign a visual discomfort score
to each stereo test image using a Likert-like scale: 5 = very
comfortable, 4 = comfortable, 3 = mildly comfortable,
2 = uncomfortable, and 1 = extremely uncomfortable. Due to
the large number of test images in the IEEE-SA stereo image
database, we divided the tests into nine separate sessions,
one for training and eight for testing. During the training
session, the subjects were instructed regarding the method-
ology of the test and the general range of comfort levels by
showing them 20 stereo images broadly spanning the range of
parameters in the database. In each session, the subjects each
assessed 100 stereo image pairs, by first randomly shuffling
the 800 stereo images in the IEEE-SA stereo image database,
then evenly dividing them into eight sessions. A rest period of
10 minutes was inserted between sessions in order to reduce
accumulated visual fatigue. Also, each subject participated in
only four test sessions on a given day, and the remaining four
sessions on another day. After completing the subjective tests,
we discarded four outlier subjects that were detected according
to the guideline described in [71]. Thus, MOS was computed
using the results on 24 valid subjects.

V. STATISTICAL PERFORMANCE EVALUATION

3D-VDP is learned using a regression tool that maps
feature vectors to predicted discomfort scores. Test and train-
ing sets were drawn from the IEEE-SA database along with the
corresponding MOS. Regression was conducted using
SVR [73], [74], which performs well on high-dimensional
regression problems, and has been successfully utilized in
previous NR-QA algorithms [14]. The libSVM package [75]
was utilized to implement the SVR using the linear kernel,
whose parameter was estimated by cross-validation during the
training session. Since we used the linear kernel, there is only
one parameter (i.e., the penalty parameter of the error term in
the linear kernel).

We rigorously tested and compared 3D-VDP against the
state of the art on the IEEE-SA stereo image database.
We computed the Spearman rank order correlation coefficient
(SROCC), Pearson linear correlation coefficient (LCC), and
root mean square error (RMSE) between predicted and sub-
jective scores to evaluate the discomfort prediction power of
all of the compared algorithms. The database was subdivided
into 80% of the stereo pairs for each training set and 20% for
test set (every training set and subsequent test set were
made to be entirely content-separate). Specifically, since each
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Fig. 12. Median LCC of Visual Discomfort Predictor as a function of the
percentage of the IEEE-SA stereo image database comprised by the training
set (over 2000 iterations).

TABLE II

LCC OVER 2000 TRIALS OF RANDOMLY CHOSEN

TRAIN AND TEST SETS ON IEEE-SA DATABASE

TABLE III

SROCC OVER 2000 TRIALS OF RANDOMLY CHOSEN

TRAIN AND TEST SETS ON IEEE-SA DATABASE

category contains 20 sets of stereo image pairs, 18 sets were
chosen for training and 2 for testing, respectively, for each
category. In order to ensure that the results were not built
on a specific train-test separation, we iterated the train-test
sequence 2000 times using randomly chosen training and
test sets. In addition, to determine whether the discomfort
prediction models were dependent on the training data, we
also found the median LCC as a function of the percentage
of the overall dataset that the training set comprised over the
2000 trials, as shown in Fig. 12. This percentage was varied
from 1% to 90%. While the LCC decreased with decreasing
training set percentage, the reduction in performance was not
significant until the training set fell below 10% of the overall
database.

TABLE IV

RMSE OVER 2000 TRIALS OF RANDOMLY CHOSEN

TRAIN AND TEST SETS ON IEEE-SA DATABASE

TABLE V

LCC OVER 2000 TRIALS BY COMBINING FEATURES

OF THE PROPOSED AND PREVIOUS MODELS

TABLE VI

LCC, SROCC AND RMSE OF COMPARED

MODELS ON EPFL DATABASE

The mean, median, and standard deviations of the LCC,
SROCC, and RMSE computed across the 2000 train-test trials
is tabulated in Tables II-IV for all of the discomfort prediction
models considered. SVR was utilized to train all of the models
to achieve a fair comparison. In the Tables, “3D-VDP” is
used as a shorthand for the 3D Visual Discomfort Predictor,
while “Statistical 3D-VDP” uses only the features explained
in Section III-A, “Neural 3D-VDP” uses only the features
developed in Section III-B and “3D-VDP” uses both the neural
and statistical features. Clearly, 3D-VDP delivers significantly
better predictive performance than the other models in terms
of both correlation and reliability. Moreover, while Neural
3D-VDP does not supply standout performance when used
alone, the complementary information it contributes, when
combined with statistical 3D-VDP, leads to considerable per-
formance improvement. In addition, in Table V, we measured
the efficacy of the neural and statistical features by apply-
ing them to conventional models. It was observed that the
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TABLE VII

RESULTS OF THE F-TEST PERFORMED ON THE RESIDUALS BETWEEN OBJECTIVE VISUAL

DISCOMFORT PREDICTIONS AND MOS VALUES AT A SIGNIFICANCE LEVEL OF 99.9%

LCC values were significantly improved compared to those
of Table II. We obtained the LCC values over the 2000 trials
by combining the features of the proposed models with the
previous model. However, these levels did not exceed the
performance reached by 3D-VDP alone, suggesting that no
reverse improvement occurs.

In order to demonstrate the database independence of
3D-VDP and that the training process is only a calibration,
we performed additional testing on the EPFL stereo image
database. We trained 3D-VDP on the entire IEEE-SA database,
then tested the trained model on the EPFL database. The
performance results and comparisons with the other models are
given in Table VI. Since the distribution of horizontal disparity
is strongly biased toward positive disparity on this database,
and since the number of stereo images is small and spans
a smaller range of vergence angles and disparities, the per-
formance results of all the models are inflated. Nevertheless,
the performance of 3D-VDP is quite competitive, although the
capture system, the horizontal disparity distributions, and the
visual content of the EPFL database are different from those
of the IEEE-SA database.

Table VII shows the results of F-tests conducted to assess
the statistical significance of the errors between the MOS
scores and the model predictions on the IEEE-SA database.
The residual error between the predicted score of a discomfort
prediction model and the corresponding MOS value in the
IEEE-SA database can be used to test the statistical efficacy
of the model against other models. The residual errors between
the model predictions and the MOS values are

R = {Qi − MOSi , i = 1, 2, . . . , NT } (10)

where Qi is the i th objective visual discomfort score and
MOSi is the corresponding i th MOS score. The F-test was
used to compare one objective model against another objective
model at the 99.9% significance level (i.e., at a p-level of 0.001
and critical F-value of 1.6378 when the degrees of freedom
were 159 for both numerator and denominator). Table VII is
the result of the F-test. A symbol value of “1” indicates that
the statistical performance of the model in the row is superior
to that of the model in the column, while “0” indicates the
performance in the row is inferior to that in the column, and
“-” indicates equivalent performance. The results indicate that
3D-VDP achieves better performance than the prior models
with statistical significance.

VI. CONCLUSIONS

The 3D Visual Discomfort Predictor extracts two kinds
of features: coarse statistical features computed from a
horizontal disparity map, and fine features indicative of
likely induced neural activity in a central processing stage of
horizontal disparity perception and vergence eye movement.
In the future, we plan to generalize measures of
“3D naturalness” on stereoscopic images to improve the
process of visual discomfort prediction, by including other
factors such as geometrical distortions and window violations.
The idea of that direction of inquiry is that stereo pairs
associated with “natural” reconstructions, e.g., that closely
conform to data-driven 3D natural scene models [76], [77],
will be comfortable to view (assuming a human viewing
geometry).
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