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Abstract— We consider the problem of depth estimation on
digital stereo mammograms. Being able to elucidate 3D infor-
mation from stereo mammograms is an important precursor
to conducting 3D digital analysis of data from this promising
new modality. The problem is generally much harder than the
classic stereo matching problem on visible light images of the
natural world, since nearly all of the 3D structural information
of interest exists as complex network of multilayered, heavily
occluded curvilinear structures. Toward addressing this difficult
problem, we formulate a new stereo model that minimizes a
global energy functional to densely estimate disparity on stereo
mammogram images, by introducing a new singularity index as
a constraint to obtain better estimates of disparity along critical
curvilinear structures. Curvilinear structures, such as vasculature
and spicules, are particularly salient structures in the breast,
and being able to accurately position them in 3D is a valuable
goal. Experiments on synthetic images with known ground truth
and on real stereo mammograms highlight the advantages of the
proposed stereo model over the canonical stereo model.

Index Terms— Stereo mammography, stereo correspondence,
disparity estimation, singularity index.

I. INTRODUCTION

IGITAL mammography remains the first choice modality
for screening asymptomatic women for detecting signs of
early breast cancer. Excellent image resolution (<100 microns
per pixel) at a low radiation dose, reasonable cost, short image
acquisition time, and ease of use have made mammography
practical. However, mammography suffers from one major
drawback: the loss of 3D information due to the projection
of the breast onto a 2D image plane. The 3D to 2D projection
process results in what is commonly referred to as anatomical
noise due to overlapping out of plane tissue structures.
Anatomical noise is one of the key factors hindering the
correct interpretation of a mammogram. For example,
anatomical noise could obscure subtle cancers, or could cause
false visual relationships between different tissue structures
suggesting a cancer, where in reality there may exist none.
Such inaccurate diagnoses often result in additional imaging
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tests and biopsy procedures that add to both monetary and
emotional costs for women undergoing these procedures.
Further, the positive predictive value of mammography in a
routine screening program is quite low (10-30%) [1], [2].
These shortcomings have driven recent developments in the
area of 3D breast imaging in the form of breast tomosynthe-
sis [3], stereoscopic (stereo) mammography [4], and breast
computed tomography (CT) [5]. Breast tomosynthesis has
been recently approved by the Food and Drug Administration
for clinical use in the U.S., while stereo mammography is
currently undergoing clinical trials. Breast CT is still under
investigation.

Stereo x-ray imaging and visualization of the breast
provides the interpreting radiologist with a 3D view of the
anatomical structures of the breast [4]. The advent of full
field digital mammography, high quality digital displays, and
stereoscopic devices have led to rapid progress in stereo
mammography. In stereo mammography, two X-ray projection
images of the breast are acquired at two slightly different
angles. The angle of separation between the two x-ray images
is typically between 4-10 degrees. The breast and the detector
remain fixed in position while the x-ray source is rotating. The
net radiation dose required for the stereo acquisition is kept
equivalent to the dose required for digital mammography by
distributing the dose between the two projections.

The resulting stereo mammogram is then viewed using a
stereoscopic display and cross-polarized lenses. Stereo acute
observers can fuse the stereo mammogram pair and perceive
the structures throughout the breast in 3D. Stereo imaging
contrasts with breast tomosynthesis and breast CT in which
multiple projections are acquired over a much wider angular
range (15-50 degrees for tomosynthesis and 360 degrees for
breast CT). However, as demonstrated in [6]—[8], it is possible
to view tomosynthesis projection images using a stereoscopic
display. Stereo imaging and visualization of the breast has
already shown great promise in improving upon the specificity
of breast cancer detection and reducing unnecessary patient
recalls, while at the same time not compromising on the
sensitivity of breast cancer detection, as demonstrated by the
clinical studies of Getty et al. [4] and D’Orsi et al. [9].

The advent of stereo mammographic imaging, while still
nascent, has opened the door for the development of
computational tools for visualizing and interpreting stereo
mammograms. At the crux of computational stereo lies the
stereo correspondence or matching problem. Stereo matching
is the process of matching each pixel in one of the stereo
views to candidate pixels in the other view. Finding the best
match yields a positional difference known as disparity arising
from the slightly different geometries of the captured views.
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Once the disparity is estimated at a sufficient number of image
locations in the reference view, it is possible to reconstruct
the geometry of the original 3D scene using knowledge of the
imaging geometry. However, estimating the optimal disparity
given just the two views of the stereo pair is an ill-posed
problem. A pixel in the reference view could have multiple
candidate matches (often known as the problem of non-
uniqueness) in a 2D search window in the other matching
view. The size of this search window is not known a priori.

To simplify the matching process, the epipolar assumption
is often made use of. The epipolar assumption constrains the
candidate matches to lie along a specific line or a curve in the
2D plane, which can be determined with the knowledge of
the imaging geometry, thereby simplifying the search problem
to a 1D problem. For convenience, it is often assumed that the
epipolar lines correspond to the image rows, which have been
aligned to correspond to one another in each of the two views.
This assumption can be asserted under a non-vergent parallel
baseline imaging geometry, but only holds approximately
for a vergent imaging geometry provided the angle of
separation between the views is small (typically
less than 12-15 degrees). However, even with the epipolar
constraint in place (irrespective of whether they are based on
the imaging geometry or not), the disparity estimation problem
is still complicated by factors such as non-uniqueness of
intensity matches (along a 1D search window), half occlusions
(points of the 3D scene seen only in one image and not in the
other), and transparency (seeing through objects). These kinds
of phenomena occur throughout typical stereo mammogram
images.

The focus of this paper is a novel computational stereo
model that is specifically directed towards estimating a
dense disparity map from a pair of stereo mammograms.
As demonstrated in prior observer studies with stereo
mammography ([6]-[8]), radiologists can perceive depth
throughout the breast. This suggests that there is enough
opacity contained in various structures of the breast such
as parenchymal tissue, masses, and curvilinear structures,
thereby necessitating dense disparity estimation algorithms.
The problem of reliably estimating a dense disparity map from
a pair of stereo mammogram images is very important since
this is the first step towards developing computational tools
for interpreting stereo mammograms. These tools will assist
the radiologist in interpreting stereo mammograms when the
modality is routinely used in the clinical workflow. Exam-
ple usage of computational tools for stereo mammogram
interpretation include quantifying parenchymal patterns and
breast density in 3D, measuring lesion properties in 3D, and
estimating the depth at which a tumor is located, providing
highly localized 3D information for lesion biopsy.

A peculiarity of mammograms is the presence of many
singularities in the form of curvilinear structures of various
lengths, widths, and tortuosities, which exhibit a complex
occlusion pattern. This is unlike what is seen in optical images
of typical natural scenes, which are largely comprised of piece-
wise smooth surfaces. Computational stereo algorithms for
natural scenes exploit this property and constrain the resulting
disparity to be piece-wise smooth. In the case of stereo
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Fig. 1.

A pair of stereo mammogram images.

mammograms, piece-wise smoothness is violated at singular
points often arising out of a network of curvilinear structures
comprised of vasculature, ducts, lobules and spicules. For
example, Fig. 1 illustrates a pair of stereo mammogram
images. Stereo acute observers can fuse this pair without
using any stereoscopic devices by just crossing their eyes. The
resulting 3D view in the brain, also known as the cyclopean
view, is comprised of a number of curvilinear structures
lying in different depth planes. Preserving these curvilinear
structures in the disparity space is important in order to
estimate the depth at which these structures lie. Indeed, the
reliable detection of curvilinear structures in mammograms has
been a widely studied problem and continues to be of interest
for developing robust computer-aided detection (CADe) and
diagnosis (CADx) algorithms (see [10], [11]). Towards solving
this difficult aspect of the problem, our proposed model
employs a novel singularity index that was recently developed
to reliably detect singular points in images [12], [13]. The
singularity index can be configured to detect point mass like
structures such as impulses in a 1D signal or curvilinear
masses in images, while rejecting step edges. It can also
be configured to do the opposite. Experimental results on
synthetic images with known ground truth data and on real
stereo mammograms show the advantages of the proposed
model over the canonical model for our application.

The rest of the paper is organized as follows: We begin
with a short review of existing work in computational stereo
for natural scenes and mammographic images in Section 1. A.
In Section II, we describe the baseline stereo models,
which serves as comparisons for the proposed model.
Section III discusses the proposed stereo model, while
Section IV provides details on the optimization strategy.
We describe the experimental methodology and results in
Sections V and VI, respectively. We conclude with a brief
discussion in Section VIIL.

A. Relevant Work on Disparity Estimation

There exists a large body of work on computational stereo
for disparity estimation. A detailed review of computational
stereo is provided in [14] and [15]. Broadly speaking, existing
disparity estimation algorithms are founded on the premise of
brightness (or color) constancy, i.e., the projected brightness
(or color) of 3D scene points visible on both the stereo
views are similar. The brightness constancy assumption is
often handled via a matching/similarity cost function that
assigns a cost based on the projected brightness values at the
corresponding points of the two views. It should be noted
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that other matching cost functions such as those based on
luminance derivatives and mutual information have been
explored to handle images having radiometric differences
resulting in unequal projected brightness values [16]. However,
brightness constancy alone is insufficient to reliably estimate
the disparity due to problems associated with non-uniqueness
and half occlusions as described before. As a result, the
brightness constancy assumption is often augmented with
a disparity smoothness assumption, which penalizes large
changes in the disparity gradient. The disparity smoothness
assumption is based on the premise that natural 3D scenes are
composed of objects and surfaces that are largely piecewise
smooth. With these assumptions in place, stereo algorithms
fall under two broad categories: 1) local algorithms, and
2) global algorithms.

Local algorithms are typically window-based, where the
best matching disparity at a given pixel is dependent on
the intensity (or color) values within a local window [14].
The disparity smoothness assumption is typically enforced
by aggregating support from neighboring pixels within the
local window. Global algorithms pose the disparity estima-
tion problem as an optimization problem [14], where in an
energy functional containing a brightness constancy term, or
photometric constraint, and the disparity smoothness term is
minimized using an optimization algorithm such as simulated
annealing [17], graph cuts [18], or variational level sets [19].

Disparity estimation algorithms are sometimes also catego-
rized as sparse or dense algorithms [14]. Sparse algorithms
typically employ a feature detector such as an edge or a
curvilinear structure detector on the reference image and
estimate disparity only at points of high confidence feature
extraction. The motivation behind sparse algorithms is to
eliminate matching in textureless regions where disparity esti-
mation is often compounded by non-unique matches. Dense
stereo algorithms attempt to estimate disparity at every point
of the reference image. Disparity estimation algorithms could
also be either single scale or multi-scale. Single-scale algo-
rithms operate only on the original image resolution, while
multi-scale algorithms (see [17], [19]) employ a hierarchical
coarse-to-fine approach, where the disparity estimated at a
coarser scale is supplied as an initial estimate to the disparity
estimation process at the subsequent finer scale. Low-pass and
band-pass image pyramids [20] are commonly employed in
multi-scale stereo algorithms. The Middlebury website [21]
contains a comprehensive evaluation of various kinds of stereo
algorithms on benchmark natural scene data sets.

Computational stereo and disparity estimation has also been
studied for applications involving microscopic and medical
images. For instance, Kim et al. [22] presented one of the
earlier algorithms concerning the estimation of disparity in
stereo images of biological specimens obtained from a stereo
light microscope. Theirs was a sparse algorithm that esti-
mated disparity at points of high gradient magnitude and
subsequently recovered the 3D shapes of contours evident on
vascular cast stereo images. One of the first algorithms for
stereo mammography was proposed by Chelberg et al. [23].
They used Laplacian of Gaussian (LOG) filters for perform-
ing stereo matching on a stereo mammography pair of a
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digital phantom. Corresponding points were matched only
between zero-crossings of the same sign and roughly the
same orientation in the left and right images, thereby resulting
in sparse disparity estimates. Other research groups have
proposed algorithms for extracting corresponding features
from two-view stereo-axial biopsy mammograms and standard
two-view (MLO and CC) mammograms for use in computer-
aided diagnosis of breast cancer (see [24], [25]). However, this
is a much harder problem since the two views are acquired
over a very wide angle (between 30-60 degrees) with different
amounts of compression.

II. BASELINE STEREO MODELS

We first describe the canonical stereo model, one of the
baselines for comparing the performance of the proposed
stereo model. Let I1(x) and I>(x) denote the two images
of a rectified stereo pair (such that the corresponding rows
are registered), where x = (x, y)” represents an image pixel
location belonging to the discrete rectangular domain Z2. Let
I (x) denote the reference image. Let D(x) denote the integer-
valued disparity at the image location x. Then, according to
the canonical stereo model, D is computed as the minimizer
of the following energy functional:

E(D(x)) = Ep(D(x)) + 41 Es(D(x)), ey

where Ep(D(x)) represents the photometric term, Eg(D(X))
represents the disparity smoothness term, and A; is a weight
indicating the relative importance of the smoothness term.

The photometric term penalizes disparity assignments that
result in large intensity differences between the correspond-
ing points: Ep(D(x)) = (I1(x,y) — L(x + D(x,y), y))>.
By penalizing large intensity differences between the corre-
sponding points of a stereo mammogram pair, we implicitly
assume that the projected intensities along two linear
x-ray trajectories separated by a small angle are similar. The
disparity smoothness term penalizes large changes in disparity
gradient and is defined as the sum of absolute difference
in disparity between that assigned to a given pixel and its
immediate neighbors: Eg(D(x)) = Z |D(x) — D(p)|, where

eN
p is a pixel location in the neighbolr)hood N of x.

The canonical model is optimized using simulated anneal-
ing. There are a number of stereo matching optimization
algorithms available [14], but not all are suitable for the
problem on hand. As described in [18], the optimization
strategy used to minimize a stereo functional plays a crucial
role in obtaining favorable disparity results, even if the
model is the simple canonical model described here. However,
in comparing functional models of binocular matching and
task-specific features underlying these models, it is important
to deploy equivalent optimization strategies when making the
comparisons. Therefore we utilize simulated annealing as the
baseline optimization method to test the compared models.
Thus we compare the models directly by adopting the same
optimization strategy. While the canonical stereo model can
be optimized using graph cuts [18], which we also illustrate
in this paper, this approach is not feasible for the stereo
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mammographic model described in section III due to the
presence of complex, non-linear second order regularizers in
the objective function.

As a second baseline stereo model, we use a top-performing
objective function in the Middlebury stereo evaluation [21],
originally put forth by Woodford et al. [26] for comparing
the performance of the proposed stereo model. The stereo
model proposed in [26] employs a second order smoothness
prior for the regularizer term Eg(D(x)) and is defined as

Es(D(x) = D W(NID(P) — 2Dx) + D(q)l. where
P.qeN

p and q are pixel locations in the neighborhood N of x and
W(N) describes a weighting term associated with the pixels
in the neighborhood N. The second order smoothness prior
approximates the second derivative of the disparity function.
The neighborhood N is defined over the set of all 3 x 1 and
1 x3 patches, which are centered at the current pixel location x.
The weighting term W(N) is set to encourage disparity
edges to coincide with the edges in the reference image.
Woodford et al. [26] argue in favor of second order smoothness
priors over the first order smoothness priors such as those
defined in the canonical stereo model since the first order
smoothness prior encourages low curvature fronto-parallel
planes, which is rarely the case in real world stereo images
and in stereo mammograms. While the objective function is
optimized using an extension of the “QPBO” algorithm in
the original work [26], here we optimize it using simulated
annealing for the same reasons described in the canonical
stereo model baseline comparison.

III. PROPOSED STEREO MODEL

A drawback of the two baseline stereo models is that neither
model is designed to promote curvilinear masses in disparity
space to better preserve fine-scale curvilinear structures. The
model by Woodford et al. [26] disables the second order
smoothness term at edge locations of the reference image,
but does not explicitly promote curvilinear masses in disparity
space. We build on this strategy of disabling the smoothness
terms at the edge locations of the reference image, but further
refine it to handle both depth discontinuities arising from
edges, and from complex patterns of impulse-like occluding
fine scale curvilinear structures that need to be preserved in
the disparity space. The problem of preserving depth discon-
tinuities and promoting curvilinear masses in disparity space
necessitates the reliable detection of singularity locations in
the reference view of the stereo mammogram pair.

Two kinds of singularities are encountered in stereo mam-
mograms: a) impulse singularities, such as those arising from
isolated curvilinear masses or the medial axis of fine scale
curvilinear structures, and b) edge singularities, such as those
arising from the boundaries of curvilinear structures and
other anatomical components. Fig. 2 shows one view of
two different stereo mammograms (top) with multiple scan-
lines highlighted in color. Also shown in Fig. 2 (bottom)
are the corresponding 1D cross-sectional luminance profiles
along the different scan-lines. The presence of impulse and
edge singularities is clearly evident in the 1D luminance
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Fig. 2. One view of two different stereo mammogram pairs (top) with
multiple scan-lines highlighted in color. The corresponding 1D luminance
cross sectional profiles are shown in the bottom.

cross-sectional profiles (Fig. 2 (bottom)). Towards finding
these kinds of singularities reliably and robustly in images,
we have recently developed a new singularity index [12], [13].
We briefly review this next.

A. A New Singularity Index

Since our model operates on a raster basis, we introduce the
singularity index in 1D although it can be defined on functions
of arbitrary dimensionality [12]. Let f(x),x € R be a 1D
function, where for example, f(x) could represent the 1D
luminance cross-sectional profiles shown in Fig. 2 (bottom).
Also, let f/(x) and f”(x) denote its first and second order
derivatives, respectively. The singularity index is then defined
as the dimensionless ratio:

Lf ) f" ()]

wlf(x)] = NI

Invariance to underlying local brightness offsets is ensured by
locally debiasing the function f(x) by everywhere subtracting
the local mean computed using a large, unit area gaussian
filter (g;). The scale A of this gaussian filter may be chosen
as a function of the scale and fractional magnitude of the
signal to be detected, which we model as an isolated smoothed

point mass of height K and scale w: f(x) = Ke 02 . A good
criterion to ensure large response is to force | f(0) — f ) <
€K, where f(x) = f(x)—gi(x)* f(x) is the locally debiased
1—€~ e

)

signal and € € (0, 1] yields the lower bound 4 > w

According to this design, the 1D cross-sectional proﬁles of
isolated curvilinear masses, whose twice derivative is large
and once derivative is small will yield a strong response to
the index w, while edge singularities, as might arise from
structures other than curvilinear masses, whose once derivative
is large and twice derivative is small will yield a desirable
weak response to the index. Thus, the singularity index is
highly specific to and sensitive to important breast structures.
This can be seen by modeling the 1D cross-sectional profile
of a thin curvilinear structure as a gaussian of height K > 0

X
and scale w: f(x) = Ke2w?, for which the index evaluates to
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Fig. 3. Response of the smoothed singularity impulse index (red) when
applied to a 1D luminance cross-sectional profile from a stereo mammogram
image (blue).

2 .. .
’%} at the origin. As K increases, or as w decreases, w[ f(0)]
also increases, as desired. Conversely, for an input that is a
2

smoothed edge: f(x) = Kemw? *u(x), where u(x) is the unit-
step, the index evaluates to O at the origin.

The scale of the singularity index can be controlled by
introducing pre-filtering, creating a ‘smoothed index’:

1o * f (X)) * f(x)]
148,y * f(O)?

where, g is a smoothing filter such as an unit-area gaussian:
2

go(x) = éaeﬁ. The use of gaussian filters to smooth
the signal stabilizes derivative computations and reduces the
effect of noise. The factor a allows for an optimized impulse
against edge-side lobe response (see [13]). We use the value
o = 1.7754 based on arguments given in [13]. The smoothed
singularity index (3) can be easily extended to detect impulses
at any or multiple scales by using the scale normalized
index Wo pormlf(x)] = azwg [f(x)]. The response of the
smoothed singularity index (3) when applied to a 1D lumi-
nance cross-sectional profile from a stereo mammogram image
is illustrated in Fig. 3. It is evident from Fig. 3 that the
singularity index responds strongly to isolated impulses and
is not sensitive to the polarity of the impulse.

The smoothed singularity index (3) can also be generalized
to detect other types of singularities such as edges, which may
arise from important breast structures such as large masses and
dense (radio-opaque) tissues. Consider the k"-order index

lgg "+ fOllgs™ * £ ()]
L+ lghy * fOO1F 7

where (k = 1) yields (3), an impulse index. Likewise,
k = 2 yields an edge singularity index that responds strongly
to edges, while responding minimally to impulses.

The singularity index is extended to 2D by adopting a design
mechanism inspired by Canny for edge detection [27]. We first
determine the direction 8(x, y) at each pixel along which the
second derivative of the gaussian smoothed image attains a
local extremum, which is a good estimate of the direction
orthogonal to the singularity. Once this direction is estimated,
we evaluate the responses of the gaussian derivative filters

Yol f (X)) = 3)

wELfoo)] =

“)
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along this direction and compute the singularity index. The
steerable property of the derivatives of an isotropic gaussian
enable the various derivative responses to be computed effi-
ciently as described in [28]. Non-maxima suppression (NMS)
is finally applied to the index response along the dominant
orientation 4 (x, y).

Note that the simple second derivative operator can be used
to detect impulse singularities. However, a detailed theoretical
analyses described in [29] reveals that the singularity index has
better robustness to noise and yields a much smaller side lobe
response to edges than does the second derivative operator.
The results of these analyses [29] motivate the use of the
new singularity index in the current application in which the
disparity space is partitioned into piece-wise smooth regions,
edges, and curvilinear structures. For the approach to succeed,
the operator response to edges and curvilinear structures needs
to be mutually exclusive, and the new singularity index has
this property.

B. Singularity Index for Disparity Estimation

We employ both the impulse and edge singularity indices to
specifically enhance the difficult disparity estimation of critical
curvilinear structures such as spicules and vasculature seen
on a pair of stereo mammogram images. Their purpose is
two-fold: 1) the 2D impulse and edge singularity indices
applied to the reference view of a stereo mammogram pair
provide valuable cues to the locations where the dispar-
ity smoothness constraint needs to be de-emphasized, and
2) the 1D impulse index is used to promote curvilinear masses
at locations where the 2D impulse index produced a strong
response when applied to the reference view of the stereo
mammogram pair. The complete stereo model is defined as
follows:

E(D(x)) = Ep(D(x))
+ (1 — w1 (x))(1 — w2(x)) Es(D(x))
+ w2 (x) Ec(D(x)), ©)

where the term E p(D(x)) enforces the photometric constraint
and is defined as in the well-known canonical stereo model,
the term Eg(D(x)) enforces the disparity smoothness con-
straint, and the term E¢(D(x)) promotes curvilinear masses
in disparity space. Further, w(x) and w;(X) serve to control
Es(D(x)) and Ec(D(x)), and are defined as functions of the
edge index (wgz) and the impulse index () applied to the
reference image, respectively: w;(x) = 1 — L(w2[I1(x)]) and
w2(x) = 1 — L(w}[11(x)]). The function L(v) = exp(—¢;)
maps the singularity index response to the range [0, 1], where
the constant Cr € R is a threshold on the index value.
w1 (x) — 1 implies the presence of an edge at the location x
in the reference image, while w;(x) — 1 implies the presence
of an impulse at the location x.

The disparity smoothness term is defined as Eg(D(x)) =
Al Z(l —w1(p))|D(x) — D(p)|, where p is a pixel location

peN
in the neighborhood N of x, and A; is a weight indicating

the relative importance of the term. The smoothness term Eg
ceases to apply between pairs of neighboring pixels when
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either pixel is an edge pixel, i.e. w; — 1 at either pixel.
Likewise, curvilinear masses are promoted via the term E¢
in disparity space at locations where wy(x) — 1. We next
describe the term E¢ in detail.

C. Promoting Curvilinear Masses

We hypothesize that critical, fine-scale curvilinear masses
such as vasculature and spicules that are contained in the
breast are characterized by large second derivatives and small
first derivatives in the direction orthogonal to the axes of the
curvilinear masses in disparity space. On the other hand, it
has been perviously shown [30] that disparity varies smoothly
along image contours projected from 3D contours. The
term Ec embodies both these properties of curvilinear masses
and is defined as follows:

Ec(D(x)) = 22{(ID(q) — D(X)| + |D(x) — D(p)])
+(ID(q) — 2% D(x) + D(p)|)}
— 1302y, [D(X)]), (6)

where p and q are locations in a 3 x 3 neighborhood of x,
and 1, and A3 represent the relative weights of the individual
terms.

We employ the 1D scale-normalized smoothed singularity
index (3) in (6) to promote large second derivatives and small
first derivatives in the direction orthogonal to a curvilinear
mass in disparity space. Since (6) is applied point-wise
at locations of isolated impulses and curvilinear masses esti-
mated by the weighting function w, from the reference image
of the stereo pair (i.e. the location of the impulses are
pre-computed), the factor a in (3) is set to 1. Further, the
convolution operator in (3) is replaced by the simple inner
product.

The first two terms in (6) augment the singularity index
by ensuring that disparity varies smoothly and continuously
along the axes of curvilinear masses [30]. Hence, neighboring
locations p and q are selected to lie along the curvilinear
mass, i.e. along a direction orthogonal to the dominant orienta-
tion 6(x), whose estimate is obtained from the 2D singularity
index applied to the reference image of the stereo pair (here
we define the dominant orientation to be the orientation that
is along the unit normal vector to a point on the curvilinear
structure)). In (6), the singularity index v, is applied to a 1D
sequence of disparity values in a neighborhood of x defined
along the dominant orientation. The size of this neighborhood
is dependent on the scale ¢ of the 1D gaussian filter in (3). The
dominant orientation 6 at each pixel location x is quantized
to lie along one of four directions (east-west, northeast-
southwest, north-south, northwest-southeast) surrounding the
pixel location x. The locations p and q are then chosen to
be along a direction orthogonal to the dominant orientation
(i.e. along the unit tangent vector to a point on the curvilinear
structure). This is illustrated in Fig. 4.

IV. MULTI SCALE OPTIMIZATION

We employ the Metropolis simulated annealing algorithm
to optimize both the proposed stereo model (5) and the
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Fig. 4. The dominant orientation of a curvilinear structure at location X is
illustrated by the arrow. The locations p and q are the neighboring locations
orthogonal to the dominant orientation.

Algorithm 1 Optimization of the Proposed Stereo Model

Inputs: Stereo image pair I; and I, with I; taken as the
reference image, an initial estimate for the disparity map
D, and the weighting functions w; and ws computed by
applying the 2-D singularity index v, on I;.
Output: The final disparity map D for I;.
1: Set a start temperature 7.
2: while 7" > end temperature do
3:  for each pixel location x in /; do
4: Dy D(X)
5: Compute E(Dy) = Ep(Dy) + (1 — wi(x))(1 —
wa(x))Es(D1) + wa(x) Ec(D1).

6: Sample a new disparity D5 uniformly from the range
[Dr, Dy
7: Compute E(D3) = Ep(D3) + (1 — wi(x))(1 —

w2(X))ES(D2) + w2(X)EC(D2).
8: AFE « E(Dg) — E(Dl)

9: if AE < 0 then

10: D(X) «— Dy

11: else

12: Select a random number r uniformly from the
range [0, 1].

13: if < exp(—5E) then

14: D(x) «+ Dy

15: end if

16: end if

17: end for
18: T+« T-—-AT
19: end while

canonical stereo model (1). While slow, the Metropolis
simulated annealing algorithm has been shown to produce
good disparity estimates provided the annealing schedule is
properly selected [17]. We adopt a hierarchical, coarse-to-fine
multi-scale optimization approach that iteratively smooths and
sub-samples the stereo images by a factor of two. Simulated
annealing is run at each scale and the disparity obtained from
a coarser scale serves as the initialization at the subsequent
finer scale. The disparity estimated at a coarser scale is linearly
interpolated and multiplied by a factor of 2 prior to using it as
an initial estimate at each subsequent finer scale. Algorithm 1
gives the pseudo-code for the optimization of the proposed
model at a given hierarchical scale.

V. EXPERIMENTAL METHODOLOGY
A. Creation of Synthetic Mammograms

Real stereo mammogram images lack ground truth
disparity data. Hence, only qualitative results of the proposed
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Fig. 5.

Examples of synthetic stereo images. The reference image is shown in column 1, while the ground truth disparity and the ground truth occlusion

maps are shown in columns 3 and 4, respectively. Occluded pixels in the ground truth disparity map have 0 intensity.

and canonical stereo models can be shown on real stereo
mammograms. In order to quantitatively compare the proposed
and canonical stereo models, 50 synthetic stereo images with
ground truth disparity data were generated. The synthetic
images were created with an 1/f# background texture. For
each stereo pair, the exponent f was a random number
uniformly generated on [1.0, 2.5] to resemble mammographic
texture [31]. The background texture was assigned a global
disparity of 3 pixels.

Five circular regions whose centers and radii were randomly
selected in the reference image were horizontally displaced
by a random disparity value uniformly selected from the
range 5-16 pixels in the other image of the stereo pair. Each
center coordinate was constrained to lie within the image
plane and to be the only coordinate within a 25 x 25 window
around it. The radii of the circular regions were uniformly
selected from the range 20-40 pixels.

Curvilinear structures were then overlaid on the
background texture in the reference image. The intensity
along the curvilinear structures was set to a constant whose
value was computed as the sum of the background intensity
at the first coordinate of the curvilinear structure and a
random positive offset. The number, orientation, starting
coordinate, length, width, and the disparity of the curvilinear
structures in each stereo pair were randomly selected. The
number of curvilinear structures was uniformly generated
on [20,30], each starting coordinate was constrained to
lie within the image plane and to be the only coordinate
within a 25 x 25 window around it, while the length, width,
and disparity of each curvilinear structure was uniformly
selected from 30-150 pixels, 1-8 pixels, and 11-21 pixels,
respectively.

Each curvilinear structure was created as follows: a random
number was uniformly generated on [0, 1]. If the value of this
random number was greater than 0.75, then the curvilinear
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Fig. 6. Percent bad pixel error of the proposed and the canonical single-scale
and multi-scale stereo models along the curvilinear structures.
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Fig. 7. Overall percent bad pixel error of the proposed and the canonical
single-scale and multi-scale stereo models.

structure was created as a straight line between two end
points using the Bresenham line algorithm [32]. Given the start
coordinate, the end coordinate was determined based on the
length and orientation of the straight line. The orientation was
a random number uniformly selected from 5-30 degrees. If the
random number was less than 0.75, the curvilinear structures
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Fig. 10.  Percent bad pixel error of the proposed and the second order
smoothness stereo models along the non-occluded curvilinear structures.

were generated using a contour traversal algorithm with tortu-
ousity. First, given the start coordinate, a direction of growth
was randomly selected. This could either be south (vertical),
southeast (diagonal right), or southwest (diagonal left). After
traversing in this direction for 1/9"" of the length, the direction
of traversal was changed. If the previous direction of traversal
was either southeast or southwest, then the new direction of
traversal could only be south, while if the previous direction
was south, then the new direction was randomly selected
to be either southeast or southwest. The traversal continued
till the pre-specified length of the contour was reached or
the contour grew out of the image plane. Fig. 5 illustrates
three examples of synthetic stereo images with ground truth
disparity data and occlusion maps created in this way. Though
these synthetic images provide a gross resemblance of the
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Fig. 12. Results of the proposed and the multi-scale canonical stereo models
(simulated annealing) on the synthetic stereo pair illustrated in row 1 in Fig. 5.
Column 1: disparity estimated from the canonical model, Column 2: ground
truth disparity, and Column 3: disparity estimated from the proposed model.
Three different regions outlined in red in rows 1, 3, and 5 are shown up
close in rows 2, 4, and 6 to illustrate examples of regions were the disparity
estimates produced by the canonical model were incorrect.

structures present in a real mammogram, they represent the
first dataset of their kind and provide valuable ground truth
disparity.

B. Parameter Setting

Here, we describe the parameter settings that are used in the
baseline and proposed stereo models. The parameter 11, which
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Fig. 13. Results of the proposed and the multi-scale canonical stereo models
(simulated annealing) on the synthetic stereo pair illustrated in row 2 in Fig. 5.
Column 1: disparity estimated from the canonical model, Column 2: ground
truth disparity, and Column 3: disparity estimated from the proposed model.
Two different regions outlined in red in rows 1 and 3 are shown up close in
rows 2 and 4 to illustrate examples of regions were the disparity estimates
produced by the canonical model were incorrect.

controls the disparity smoothness constraint is common to both
the models. Typically, 1| is set according to the application.
For example, if the 3D scene is composed of primarily piece-
wise smooth surfaces, then A; is set to a large value to
enforce the disparity smoothness constraint tightly. On the
other hand, in the stereo-mammography application, the breast
is composed of very few piece-wise smooth surfaces, that
usually arise from solid breast masses and dense (radio-
opaque) tissues. Hence, we set 11 = 1 in both the models. If 4;
is set to a large value, then the resulting disparity space will be
over-smoothed. We used an 8-connected square neighborhood
(N = 8) to evaluate the smoothness constraint.

The parameters 1, and 43 are specific to the proposed model
and control the continuity and promotion of curvilinear masses
in disparity space, respectively. We set 1> > A3, thereby
placing a stronger emphasis on disparity continuity along the
direction of curvilinear masses. We set A, = 100 and A3 = 5.
These parameters were found to yield good performance on
the synthetic stereo pairs. Note that one could also adopt
the more computationally intensive grid-search and cross-
validation processes [33] to arrive at values for the parameters
Ay and A3.

The number of hierarchical scales used in the multi-scale
optimization process was set to 3. At each hierarchical scale
of optimization, both the 2D impulse and edge singularity
indices were applied to the reference view of the stereo
pair at that scale. The 2D impulse index was applied to
detect fine scale curvilinear structures at each hierarchical
scale of optimization, and hence we set ¢ = 1.5 pixels.
Similarly, the scale ¢ of the 1D impulse index that is used to
promote curvilinear masses in disparity space in (6) was set
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Fig. 14. Results of the proposed and the multi-scale canonical stereo models
(simulated annealing) on the synthetic stereo pair illustrated in row 3 in Fig. 5.
Column 1: disparity estimated from the canonical model, Column 2: ground
truth disparity, and Column 3: disparity estimated from the proposed model.
Three different regions outlined in red in rows 1, 3, and 5 are shown up
close in rows 2, 4, and 6 to illustrate examples of regions were the disparity
estimates produced by the canonical model were incorrect.

to 1.5 pixels. The 2D edge index was computed over 5 scales
at each hierarchical scale of optimization, where the lowest
scale was 1.5 pixels, and each subsequent coarser scale was
larger than the previous finer scale by a factor of /2.

A linear annealing schedule comprised of 200 iterations was
employed with a start temperature of 10.0 and end temperature
of 0.01 for both the proposed and canonical stereo models. The
temperature decrement AT (see Algorithm 1) was set to 0.05,
while the integer disparity range ([Dr, Dy] in Algorithm 1)
was set to [1, 21] pixels. The initial disparity estimate at the
coarsest scale was set to 1 pixel everywhere.

C. Performance Measure

The stereo models were evaluated using the percent bad
pixel error measure B = % Z (|D(x,y)—GT(x,y)| > op),

x,
where D is the estimated dis(payr)ity, GT is the ground truth dis-
parity, P is the total number of pixels in the image, and Jp is
the disparity error tolerance. We set dp = 1 pixel. We report
the following percent bad pixel error measures: a) percent bad
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Fig. 15.

An example of a real stereo mammogram image (courtesy Emory University, Atlanta, GA) and computed disparity maps. Row 1: the stereo

mammogram pair with the reference image shown in the left column. The disparity in the regions outlined in color are shown up-close in Fig. 17.
Row 2: computed disparity maps using the canonical stereo model (left) and the proposed stereo model (right).

Fig. 16.

Another example of a real stereo mammogram image (courtesy Emory University, Atlanta, GA) and computed disparity maps. Row 1: the

stereo mammogram pair with the reference image shown in the left column. The disparity in the regions outlined in color are shown up-close in Fig. 18.
Row 2: computed disparity maps using the canonical stereo model (left) and the proposed stereo model (right).

pixel error measure along curvilinear structures (B.), b) overall
percent bad pixel error measure (B), c) percent bad pixel
error measure evaluated only for the non-occluded curvilinear
pixels (Benoce), and d) overall percent bad pixel error measure
evaluated only for non-occluded pixels (Bpocc). Note that
Benoce and Byyee were computed using the occlusion maps
created from the ground truth disparity data. The difference

in the performance measures of the canonical and proposed
models were evaluated for statistical significance using the
Wilcoxon Sign Rank (WSR) test [34].

D. Real Mammograms

The proposed and the canonical stereo models were
also run on a set of five real stereo mammogram images
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(courtesy Emory University, Atlanta, GA, see Figs. 15 and 16).
To supplement this set, we also ran the models on a set
of 48 stereo pairs created from craniocaudal tomosynthesis
projection images described in detail here [7]. The two images
of the stereo mammogram pair were separated by an angular
spacing of 10 degrees, while the angular separation was
8 degrees for the stereo tomosynthesis pairs. Each image in
both modalities had a resolution of approximately 100 microns
per pixel. For computational efficiency, the images were sub-
sampled by a factor of 4 prior to running both the stereo
models. The algorithm settings used for the real stereo mam-
mogram images were identical to the synthetic stereo images,
except the disparity range was set to [1, 35] pixels. This range
was arrived at by manually inspecting many landmark points
that were visible on both the images of the stereo mammogram
pairs.

VI. RESULTS

Fig. 6 plots B. computed for the proposed and the
canonical stereo models for the 50 synthetic stereo images.
As can be seen from Fig. 6, the proposed model clearly
outperforms the single-scale and multi-scale canonical models
in estimating disparity along the curvilinear structures irre-
spective of the optimization strategy used to optimize the
canonical model (simulated annealing or graph cuts [18].
The difference in performance is statistically significant as
evaluated via the WSR test (p-value < 0.0001 for both
the single-scale and multi-scale canonical models). Also, the
performance of the multi-scale canonical model is better than
the single-scale model. Fig. 7 plots B computed for the
proposed and the canonical stereo models for the 50 synthetic
stereo images. Again, the proposed model performs better
than the single-scale and multi-scale canonical models. The
difference in performance is again statistically significant
(WSR p-value < 0.001 for both the canonical models).
Figs. 8 and 9 plot Bcyoce and Byocc, respectively. The better
performance of the proposed model is evident from these
figures. Again, the difference in performance is statistically
significant.

Figs. 10 and 11 plot Benoce and Bpoee, respectively for
the proposed and the second order smoothness prior stereo
model described in [26]. As can be seen from these figures,
the proposed model clearly outperforms the second order
smoothness prior stereo model on the 50 synthetic stereo
images. The difference in performance is statistically sig-
nificant. These results suggest that even though the model
incorporates second order smoothness priors to encourage
structures with curvature, which are disabled at edge locations,
it does not quite promote curvilinear masses in the disparity
space.

Figs. 12, 13, and 14 show the ground truth disparity
(column 2), the estimated disparity maps from the multi-
scale canonical model optimized using simulated annealing
(column 1), and the proposed model (column 3) for the
3 synthetic stereo images illustrated in Fig. 5. The disparity
maps shown in Figs. 12, 13, and 14 are pre-multiplied
by the ground truth occlusion maps (see Fig. 5). Hence,
occluded pixels have 0 intensity (black) in the disparity maps
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Fig. 17. Close up of the estimated disparity maps with the canonical stereo
model in the left column and the corresponding region from the proposed
stereo model in the right column. The color outlines correspond to the outlines
in Fig. 15 and indicate regions of blurring and poor discontinuity in the
disparity map produced by the canonical model.

in Figs. 12, 13, and 14. The regions outlined in red on the
three disparity maps are shown up close and they illus-
trate some of the key regions where the canonical model
produces erroneous disparity estimates and the proposed
model does not. The disparity along the curvilinear masses
in these regions is affected by the background dispar-
ity in the canonical model resulting in blurring, while
in the proposed model they are better estimated due to
the de-emphasis of smoothness at impulse and edge loca-
tions and explicit promotion of curvilinear masses in the
disparity space. The results on all 50 images is made
available on http://live.ece.utexas.edu/research/stereomammo/
AdditionallmagesAndResults.tar.gz.

Figs. 15 and 16 shows the disparity maps estimated by the
proposed and the canonical stereo models for the two real
stereo mammogram images (top row). In order to visualize the
results of the two models better, Figs. 17 and 18 show the close
up of representative disparity regions comprising curvilinear
structures (corresponding to the regions outlined in color on
the reference images in Figs. 15 and 16). Figs. 17 and 18
reveal blurring and greater discontinuity in the disparity along
the curvilinear structures in the estimates produced by the
canonical model (left column) when compared to the proposed
model (right column). While it is hard to ascertain these
results quantitatively due to lack of ground truth disparity data,
the proposed stereo model can be observed to preserve the
curvilinear masses in the disparity space better than the canon-
ical stereo model. The results on the entire data set is made
available on http://live.ece.utexas.edu/research/stereomammo/
AdditionallmagesAndResults.tar.gz. Finally, we also ran the
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Fig. 18. Close up of the estimated disparity maps with the canonical stereo
model in the left column and the corresponding region from the proposed
stereo model in the right column. The color outlines correspond to the outlines
in Fig. 16 and indicate regions of blurring and poor discontinuity in the
disparity map produced by the canonical model.

Fig. 19.
pairs. First row: Tsukuba (B = 0.31), Second row: Venus (B = 0.35),

Performance of the proposed stereo model on Middlebury stereo

Third row: Cones (B = 0.39), Fourth row: Teddy (B = 0.40).
Column 1: left image, column 2: ground truth disparity, column 3: estimated
disparity.

proposed stereo model on the standard evaluation stereo
pairs (Tsukuba, Venus, Cones, and Teddy) downloaded from
the Middlebury website [21] as illustrated in Fig. 19.
While not explicitly designed for the Middlebury stereo
pairs, the proposed model performs reasonably as is evident
in Fig. 19.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 9, SEPTEMBER 2015

VII. CONCLUSION

We have created a new stereo correspondence model for
estimating disparity for a given pair of stereo mammogram
images. The algorithm employs a recently developed singu-
larity index [12], [13] to reliably detect locations of impulse
and edge singularities in the reference image of the stereo pair.
The singularity index is used to de-emphasize smoothness and
promote curvilinear structures in the disparity space. Extensive
experimental results on synthetic and real data show that the
proposed model works. Key areas for future work include
modeling the vergent geometry of the stereo mammographic
image acquisition system explicitly in the computational stereo
model rather than assuming that the corresponding image
rows are registered, explicitly handling occlusion in the stereo
model, and reconstructing 3D surfaces from the estimated dis-
parity. Also, we plan to explore better and faster optimization
algorithms such as those based on graph cuts for optimizing
the proposed model [18]. There has been recent work on opti-
mizing energy functionals containing higher order priors using
graph cuts based techniques [26] and it would be interesting to
explore these in the context of the proposed model. Finally, we
would like to compare the proposed model with other state-
of-art stereo algorithms such as those listed on the Middlebury
evaluation website [21], none of which, however account for
curvilinear mass structures. Unfortunately, none of the top
10 algorithms have code publicly available nor are any of the
authors positively responsive to our requests.
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