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The detection of lesions on mammography is a repetitive and fatiguing task. Thus, computer-aided
detection systems have been developed to aid radiologists. The detection accuracy of current sys-
tems is much higher for clusters of microcalcifications than for spiculated masses. In this article, the
authors present a new model-based framework for the detection of spiculated masses. The authors
have invented a new class of linear filters, spiculated lesion filters, for the detection of converging
lines or spiculations. These filters are highly specific narrowband filters, which are designed to
match the expected structures of spiculated masses. As a part of this algorithm, the authors have
also invented a novel technique to enhance spicules on mammograms. This entails filtering in the
radon domain. They have also developed models to reduce the false positives due to normal linear
structures. A key contribution of this work is that the parameters of the detection algorithm are
based on measurements of physical properties of spiculated masses. The results of the detection
algorithm are presented in the form of free-response receiver operating characteristic curves on
images from the Mammographic Image Analysis Society and Digital Database for Screening Mam-
mography databases. © 2008 American Association of Physicists in Medicine.
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I. INTRODUCTION

I.A. Clinical significance

The American Cancer Society estimates that 178 480 women
will be diagnosed with breast cancer in the U.S. in 2007
�Ref. 1� and 40 460 women will die of the disease. In the
U.S., breast cancer is the most common form of cancer
among women and is the second leading cause of cancer
deaths, after lung cancer.1 Women in the U.S. have about a 1
in 8 lifetime risk of developing invasive breast cancer.2,3

Early detection of breast cancer increases the treatment op-
tions for patients and also increases the survival rate.

Screening mammography, or x-ray imaging of the breast,
is currently the most effective tool for early detection of
breast cancer. Screening mammographic examinations are
performed on asymptomatic woman to detect early, clinically
unsuspected breast cancer. Two views of each breast are re-
corded: the craniocaudal view, which is a top to bottom view,
and the mediolateral oblique �MLO� view, which is a side-

view. Radiologists visually search mammograms for specific
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abnormalities. The most common signs of breast cancer that
radiologists look for are clusters of microcalcifications and
masses. A mass is a space-occupying lesion seen in at least
two different projections.4 Masses with spiculated margins
carry a much higher risk of malignancy than other types of
masses or calcifications. Spiculated masses account for about
14% of biopsied lesions, and about 81% of these are
malignant.5

Early detection via mammography increases breast cancer
treatment options and the survival rate.6 However, mammog-
raphy is not perfect. Detection of suspicious abnormalities is
a repetitive and fatiguing task. For every thousand cases ana-
lyzed by a radiologist, only 3–4 cases are malignant and thus
an abnormality may be overlooked. As a result, radiologists
fail to detect 10%−30% of cancers.7–9 Approximately two-
thirds of these false-negative results are due to missed le-
sions that are evident retrospectively.10

Computer-aided detection �CADe� systems have been de-
veloped to aid radiologists in detecting mammographic le-

11–15
sions that may indicate the presence of breast cancer.
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These systems act as a second reader and the final decision is
made by the radiologist. Most studies have shown that CADe
systems, when used as an aid, improve radiologists’ accuracy
in the detection of breast cancer,16–18 though some studies
have found no increase in the number of cancers detected.19

Current CADe systems are dramatically better at detect-
ing microcalcifications than masses. The most widely used
commercial CADe system is reported to have a 98.5% sen-
sitivity at 0.185 false positives per image �FPI� for microcal-
cification clusters and a 86% sensitivity at 0.24 FPI for
spiculated masses.18 However, the results vary considerably
on different data sets. For example, clinical studies to evalu-
ate the performance of commercial CADe systems for mass
detection have reported sensitivities ranging from 67% to
89% with the FPI ranging from 0.40 to 0.74 FPI.16,17,20–22

For normal images, FP rates of 1.3–1.8 FPI have been
reported.22,23

I.B. Review of prior work

A number of researchers have focused on the detection of
spiculated masses because of their high likelihood of malig-
nancy. The main idea behind previous approaches to the de-
tection of spiculated masses is that since they are character-
ized by spicules radiating in all directions, one should
compute the edge orientations at each pixel. Thus, each pixel
is represented by a feature vector, which represents the stron-
gest edge orientation at the pixel. The edge orientation can
be computed in a variety of different ways.

Kegelmeyer et al.24 developed a method to detect spicu-
lated masses using a set of five features for each pixel. They
used the standard deviation of a local edge orientation histo-
gram �ALOE� and the output of four spatial filters, which are
a subset of Law’s texture features. The idea of using the
ALOE feature is that, as a normal mammogram exhibits a
tissue structure that radiates in a particular orientation �from
the nipple to the chest�, it would have edge orientations pri-
marily in that direction. While in regions containing spicu-
lated lesions, edges would exist in many different orienta-
tions. To detect these differences, Kegelmeyer et al.24

computed the edge orientations in a window around each
pixel and then generated a histogram of the edge orienta-
tions.

Karssemeijer et al.25 detected spiculated masses by a sta-
tistical analysis of a map of pixel orientations. The orienta-
tion at each pixel was computed from the response of three
filter kernels, which are second-order, directional derivatives
of a Gaussian kernel in three directions �0,� /3,2� /3�.
These filters form a nonorthogonal basis. They used the re-
lation that at a particular scale, the output at any orientation
can be expressed as a weighted sum of the responses of the
filters. This was used to determine the orientation at each
pixel, and two features for each pixel were derived by a
statistical analysis of these pixel orientation maps. The pixels
were then classified as suspicious or normal.

Liu and Delp26 noted that, in general, it is difficult to
estimate the size of the neighborhood that should be used to

compute the local features of spiculated masses. Small
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masses may be missed if the neighborhood is too large and
parts of large masses may be missed if the neighborhood is
too small. To address this problem they developed a multi-
resolution algorithm for the detection of spiculated masses.26

A multiresolution representation of a mammogram using the
discrete wavelet transform was generated and four features at
each resolution for each pixel were extracted. Pixels were
then classified using a binary classification tree.

Zhang et al.27 noted that the presence of spiculated lesions
led to changes in the local mammographic texture. They pro-
posed that such a change could be detected in the Hough
domain, which is computed using the Hough transform. They
partitioned an image into overlapping regions-of-interest
�ROIs� and computed the Hough transform for each ROI.
The Hough domain of each ROI was thresholded to detect
local changes in the mammographic texture and to determine
the presence or the absence of a spiculated mass.

Zwiggelaar et al.28 proposed a model-based approach for
the detection of spiculated masses. They described a tech-
nique to characterize patterns of linear structures using prin-
cipal component analysis and factor analysis. They created
statistical models of spiculations created using regions-of-
interest containing spiculated masses.

I.C. Overview of this article

In this article, we present a new model-based framework
for the detection of spiculated masses. Toward this goal, we
have invented a new class of filters called spiculated lesion
filters �SLFs� to detect the spatial location where spicules
converge. We have also invented a new radon-domain tech-
nique for enhancing spicules in mammograms. The enhance-
ment is achieved by computing the radon transform of the
image and filtering in the radon domain.

There is a lack of data on physical properties of spiculated
masses and we have previously conducted a measurement
study in which radiologists measured the physical properties
of spiculated masses. As a part of this study we have shown
that the physical properties of spiculated masses can be mea-
sured reliably.29 The parameters of the models are based on
the spicule widths and lengths, diameter of the central mass,
and the number of spicules obtained from the measurement
study.

Finally, we have also developed models to reduce the
false positives due to normal linear structures �e.g., blood
vessels�. This is accomplished by using oriented difference-
of-Gaussian filters to identify and create a likelihood map of
potential normal structures.

II. MATERIALS AND METHODS

II.A. Overview of detection algorithm

The detection algorithm consists of three main compo-
nents, which are implemented in parallel �Fig. 1�. These
components are:

�a� spiculation filtering to enhance spicules and detect the

spatial locations where spicules converge,
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�b� detection of the central mass region of the spiculated
masses, and

�c� suppression of false positives due to normal linear
structures in the parenchyma.

II.A.1. Overview of spiculation filtering

A new algorithm for enhancing spicules is applied fol-
lowed by filtering with a new class of filters called spiculated
lesion filters which are designed to detect patterns of con-
verging linear structures.

II.A.1.a. Enhancement of spiculations The most promi-
nent feature of spiculated masses is the presence of spicules
radiating in all directions. We enhance spicules, approxi-
mated as curvi-linear structures, by filtering in the radon do-
main. The radon transform g�� ,�� of a continuous function
f�x ,y� is defined as30

g��,�� = �
y=−�

y=+�

�
x=−�

x=+�

f�x,y���� − x cos��� − y sin���� · dx · dy ,

�1�

where ��r� is the Dirac delta function31 and � and � are
parameters of the radon domain. Thus, for any given line in
an image, � is the length of a perpendicular line segment
from the origin to the line and � is the orientation of the line
segment with respect to the x axis. The term ���−x cos���
−y sin���� in Eq. �1� computes the integral of f�x ,y� along
the line �=x · cos���+y · sin��� and thus the value of g�� ,��
for any �� ,�� is the integrated density of f�x ,y� along this
line. Thus, a line in the image space f�x ,y� produces or maps
to a point in the radon domain. Also note that lines of differ-
ent thickness will have different representations in the radon
domain. For example, a single pixel thick line would be rep-

FIG. 1. This figure shows the block diagram of the detection algorithm. This
algorithm consists of three components. The first component aims to detect
the spatial locations where spicules converge. The second component is
designed to detect the central mass regions of the spiculated masses,
whereas the third component aims to reduce false positives due to normal
linear structures.
resented by a point in the radon domain, whereas a 4 pixel
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thick line would be represented by four points along a col-
umn in the radon domain. Thus, by enhancing sharp changes
or “local peaks” along the columns in the radon domain, it is
possible to detect the corresponding lines in the image by
applying a peak detection algorithm.

For our application, the filter �−1.25,−1.25,1 ,1 ,1 ,1 ,1 ,
−1.25,−1.25�T was used to detect peaks along the columns in
the radon domain. This particular filter was chosen based on
the thickness of the spicules obtained from our preliminary
measurement studies. Note that, as the sum of coefficients of
the filter is zero, the response of this filter to an area of
constant or slowly varying values will be zero or very small.
After filtering in the radon domain, the inverse radon trans-
form is computed using the filtered backprojection
algorithm32 to obtain an image in which linear structures
have been enhanced

f�x,y� = �
0

�

Q��x · cos��� + y · sin����d� , �2�

Q��t� = �
−�

�

S��w��w�expj·2�wtdw . �3�

The enhanced image f�x ,y� is obtained using Eq. �2�, where
Q��t� is defined in Eq. �3� and S��w� is the one-dimensional
Fourier transform of g��r�.32 Thus, the output of the enhance-
ment stage is a line-enhanced image and all subsequent pro-
cessing is performed on this image. Figure 2 shows the vari-
ous steps of the enhancement algorithm and examples of the
results of the enhancement algorithm are shown in Figs. 2�c�,
2�e�, and 3�b�.

The most common approach to computing a discrete ra-
don transform is based on calculating the projection of the
image intensities along radial lines oriented at specific
angles. Recently, the fast slant stack �FSS� method33 was
developed to compute a discrete form of the radon transform
of an image. In previous work, we conducted an observer
study and compared the effect of using the traditional ap-
proach to discretizing the radon transform versus the new
FSS algorithm in our spicule enhancement strategy.34 We
found that observers preferred the images enhanced with the
FSS approach and thus we have used this technique to dis-
cretize the radon tranform in this study.

II.A.1.b. Detection using spiculated lesion filters We
have invented a new class of filters, spiculated lesion filters,
to detect the spatial locations where spiculations
converge.35,36 The fundamental idea is to design a “matched
filter” for a spiculated lesion. The basic building blocks of
the SLF are spiculation filters, which are a new class of
complex quadrature filters.

The spiculation filter consists of quadrature components
which are the so-called cosine �fc�r ,� ;r0 ,� ,��� and sine
�fs�r ,� ;r0 ,� ,��� spiculation filters. These components are
shown in Figs. 4�a� and 4�b� and are defined as follows:
fc�r,�;r0,�,�� = g�r;r0,��cos���� , �4�
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fs�r,�;r0,�,�� = g�r;r0,��sin���� , �5�

g�r;r0,�� = exp��r − r0�2/2�2� , �6�

where r=�x2+y2, �=tan−1�y /x�, and � is the standard devia-
tion in pixels.

The parameter r0 is a size parameter measured in pixels

(a)

(b)

(c)

FIG. 2. �a� Flow chart of the spicule enhancement algorithm: First, the rado
column filter. Finally, the enhanced image is obtained by computing the inver
masses and �c� and �e� show the results of the enhancement algorithm, resp
and � is the modulation frequency measured in cycles per
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circumference. The Gaussian torus is defined by Eq. �6�. The
spiculation filters can also be written in the overall phasor
form as follows: h�r ,� ;r0 ,� ,��= fc�r ,� ;r0 ,� ,��
+ j fs�r ,� ;r0 ,� ,��. Also note that the root-mean-square value
�fc

2+ fs
2 of the quadrature components is equal to the toroidal

Gaussian envelope function g�r ;r0 ,��. The complex spicu-
lation filter has the advantage that the sum of the squared

(d)

(e)

nsform of an image is computed. The radon domain is then filtered with a
on transform. �b� and �d� show two regions of interest containing spiculated

ely,
n tra
se rad
ectiv
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responses of the two quadrature components is phase inde-
pendent. Thus, the filter will have the same response to a
spiculation even if it has been rotated.

The response of a spiculation filter to a spiculated lesion
is important, but it supplies incomplete information regard-
ing the pattern as only a band of a given radius is analyzed.
However, by combining multiple spiculation filters to form a
SLF, overall spiculated lesion responses may be obtained
�examples in Figs. 4�d� and 4�e��. The SLF can be made to

(a)

(b)

FIG. 3. A spiculated lesion on a mammogram �circled�. �a� Depicts the origi-
nal image and �b� shows the image obtained after applying the enhancement
algorithm. Note that small subtle spiculations are also enhanced and that
Fig. 2�b� was a region of interest selected from Fig. 3�a�. Other examples of
the results of the enhancement algorithm can be found in Figs. 8�b�, 9�b�,
and 10�b�.
match the size of the central mass region of a spiculated
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mass by appropriate selection of the inner filter radius. Like-
wise, spicule length can be matched to the SLF by appropri-
ate selection of the inner and the outer filter radii, the differ-
ence between these corresponding to spicule length. Of
course, the physical parameters of a particular lesion cannot
be known beforehand, and hence, a single appropriate SLF
cannot be predetermined. We use measurement data �Sec.
II D� to support the selection of the inner and outer radii rinner

and router for each SLF, as well as the frequency � of each
SLF. The filters are chosen such that the component toroidal
Gaussian envelopes intersect at their half-peak values, a
strategy that ensures that there will be no gaps in the re-
sponses along the radial directions. This approach has been
shown to be efficacious in numerous studies involving Gabor
filter applications.37–39 If the radius of a single spiculation
filter is r1 and the toroidal component of that filter is given
by g�r ;r1 ,��, then r2, the radius of the next spiculation filter
in the SLF, is r2=r1+2.3548·�. Figure 5�a� shows the toroi-
dal components of two spiculation filters of a SLF and Fig.
5�b� shows a cross section through these components.

The normalized cross correlation �NCC� was used for fil-
tering the enhanced image with each SLF. Let T be a SLF of
size M-by-M pixels and let I be the image of size L -by-L
such that M�L. The NCC is defined as follows:

NCC�i, j� =
1

�T · �I
�
k=1

M

�
m=1

M

	�T�k,m� − �T�

· �I�i + k − 1, j + m − 1� − �I�i, j��
 ,

�T =��
k=1

M

�
m=1

M

�T�k,m� − �T�2

�I =��
k=1

M

�
m=1

M

�I�i + k − 1, j + m − 1� − �I�i, j��2, �7�

where �T is the mean of the template and �T�i , j� is the mean
of the subimage centered at �i , j�. Let OPcos and OPsin be the
outputs obtained after filtering the enhanced image with the
two quadrature components of the SLF �cosine and sine
SLFs�. The magnitude response OPmag and the phase re-
sponse OPphase of the SLF are defined as

OPmag = ��OPcos�2 + �OPsin�2, �8�

OPphase = arctan�OPsin/OPcos� . �9�

The magnitude response OPmag of the SLF is smoothed
with a Gaussian filter �sigma=2�. This post-filtering has been
shown to be beneficial in numerous studies involving Gabor
filter applications.37–39 If the SLF “matches” a spiculated le-
sion, a peak would be obtained at the spatial location corre-
sponding to the center of the spiculated lesion. Thus, suspi-
cious regions can be identified by detecting the local peaks in
the overall output. Note that the larger the overall output at a
particular spatial location, the higher the likelihood that the

spatial location corresponds to the center of a spiculated le-
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sion. A likelihood map for the locations of spiculated masses,
SLF_Maxima, is computed by taking the maximum SLF
output across all SLFs,

SLF _ Maxima�x,y�

= max	SLF1�x,y�,SLF2�x,y�, . . . ,SLFN�x,y�
�∀x,y� .

�10�

II.A.2. Detection of the central mass region of the
spiculated masses

Gaussian filters are used to detect the central mass region.
While other studies have used Gaussian filters for mass de-
tection, key differences in our approach are that the size of
the filters was selected from the measurement data and that a
set of 25 Gaussian filters was used. The maximum output
value across all Gaussian filters computed at each pixel
�Gaussian_Maxima� represents the likelihood of the pres-
ence of a mass.

II.A.3. Suppressing false positive due to normal
linear structures in the parenchyma

In addition to spicules, structures such as blood vessels,
ducts, and other linear elements in the tissue parenchyma can
also be enhanced. The spiculated lesion filters can respond to
the criss-crossings of these normal structures and thus gen-
erate false positives. We used a strategy based on oriented
difference-of-Gaussian �DOG� filters to identify and suppress
false positives.

At each spatial location the image was filtered with an
elongated and oriented DOG filter �Fig. 6�. The orientation
of this filter was the local orientation ��i,j� at that spatial
location: �i,j =arctan�Gy /Gx�, where Gy and Gx are the gra-

(a) Cosine Spiculation
Filter with σ = 2, ω =10

(b) Sine Spiculation Filter
with σ = 2, ω =10

(c) Gaussian toru
2σ =

(d) Spiculated Lesion Filter σ =1, ω =10 (e) Spiculated Lesion Filter σ =1,
dients in the y and x directions, respectively. Since the goal is
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to identify linear structures that are not spicules, the width of
the central lobe is greater than the largest width of the spi-
cules measured.

II.A.4. Summary of the detection algorithm

As both the spiculated lesion filters and the Gaussian fil-
ters provide evidence for the presence of a spiculated mass,
the outputs from these filters are summed up in the overall
detection output. The responses from the oriented DOG fil-
ters denote the likelihood of normal structures �e.g., blood
vessels� and thus they are subtracted in the overall detection
output. Thus,

Overall _ Output = W1 · SLF _ Maxima

+ W2 · Gaussian _ Maxima

− W3 · DOG _ Response,

where W1 ,W2 ,W3 are weights that can be applied to the out-
put of each of the components of the detection algorithm. In
this study, we weighted the output of the components
equally.

II.B. Data description

Three sets of images were used for this study. Two sets of
images were obtained from the Digital Database for Screen-
ing Mammography40,41 �DDSM� and one from the Mammo-
graphic Image Analysis Society �mini-MIAS�.42,43

The DDSM is the largest publicly available data set of
digitized mammograms and consists of 2620 cases. Each ab-
normality has been outlined by a radiologist and this was
used as the “ground truth” for detection of spatial locations
of spiculated lesions. Thus, if the output of the detection
algorithm was located within this outline, then it was

10

FIG. 4. Example of a spiculation filter and SLFs: �a�
and �b� show the two quadrature components of the
spiculation filter, namely, the cosine and sine spicula-
tion filters, respectively. The toroidal Gaussian enve-
lope of the spiculation filter is shown in �c�. In �d� and
�e�, two spiculated lesion filters, each composed of
spiculation filters of progressively increasing radii and
matching radial frequencies � are shown. The SLFs in
�d� and �e� have the same inner radius but different
outer radii. These would correspond to lesions where
the central mass is the same size but the spicule lengths
differ.
s with

ω =
counted as a true-positive output. Note that as we do not aim
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to “segment” the mass and thus the “boundary” marked on
images in the DDSM database is adequate for assessing our
algorithm. The images in the DDSM database were scanned
at 50 �m. For computational efficiency, in this study we
decimated the images from the DDSM database by a factor
of 4 and thus the image resolution was 200 �m.

The images in the mini-MIAS database have a resolution
of 200 �m and each image has been clipped or padded so
that it is 1024	1024 pixels.42 The x and y image coordinates
of the center of the abnormality and the radius �in pixels� of
the circle enclosing the abnormality are provided and the
ground truth is created from this data. Thus, if the output of
the detection algorithm was located within this circular re-
gion, then it was counted as a true-positive output.

II.B.1. Image set 1: Images used for the
measurement study

A set of 21 images of spiculated masses from the DDSM

(a)

(b)

FIG. 5. �a� shows the toroidal components of two spiculation filters of a
spiculated lesion filter and �b� shows a cross section through these compo-
nents. The filters are chosen such that the component toroidal Gaussian
envelopes intersect each other at their half-peak values, a strategy that en-
sures that there will be no gaps in the responses along the radial directions.
database was used for the measurement study �Sec. II D�. All
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images were MLO view images from a single scanner and a
range of image density ratings were represented in this set.29

II.B.2. Image set 2: Images from mini-MIAS
database used for testing

A set of 50 images from the mini-MIAS database42 was
used to test the detection algorithm. This set consists of all
19 spiculated masses and the first 31 normal images from the
mini-MIAS database. These images were scanned with a
single digitizer, each contained a single lesion, and all im-
ages were MLO view images.

II.B.3. Image set 3: Images from the DDSM
database used for testing

A set of 100 images from the DDSM database was used to
test the detection algorithm. This set consists of 50 images of
spiculated masses and 50 normal images. The selected cases
were digitized by a single scanner and represented a range of
density ratings, subtlety ratings, and pathology. There was no
overlap between the images used in the measurement study
and those used to evaluate the detection algorithm. A list of
the images used in each of the three sets can be obtained on
the authors’ website.44

II.C. Measurement of physical parameters

We use the ROI manager plugin of NIH ImageJ �Ref. 45�
to enable a user, with minimal training, to place markers at
specific locations, and compute the Euclidean �pixel� dis-
tance between the markers. This interface allows for mea-
surement of spicule width both at the base of the spicule
�where it meets the mass� as well as at other points along the
spicule. The user can also measure the lesion dimensions of
the central region along the principal axes. In addition, the
operator can trace the spicule along its entire length using
straight lines, to determine spicule length, and the user can

FIG. 6. This figure shows a subset of the elongated and oriented DOG filters
used. The output of these filters is used to suppress the FPs due to linear
structures such as blood vessels and ducts.
count the spicules associated with a lesion. Since the reso-
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lution of the images is known, the pixel measurements can
be converted into physically meaningful quantities �e.g., mil-
limeters�.

A radiologist �G.J.W.� used NIH ImageJ to measure the
length and the width at the base for all spicules from each
spiculated mass. He also measured the length of the major
axis of the central region of each lesion. The number of
spicules that were visible for each lesion were also counted.
Table I summarizes the measurements made by the radiolo-
gist for the various parameters of spiculated masses. The
details of this measurement study can be obtained in the
article by Sampat et al.29 In previous work �Sampat et al.29�,
we demonstrated that it is feasible to make reliable measure-
ments of the physical properties of spiculated masses on
mammography using this system.

II.D. Selection of detection algorithm parameters
based on measurement data

The average width of spicules in our measurements was 5
pixels �1 mm�. Thus, to enhance spicules, each column of the
radon transform of the image is convolved with �−1.25,
−1.25,1 ,1 ,1 ,1 ,1 ,−1.25,−1.25�T.

To account for variability in the shape and the structure of
spiculated lesions, SLFs with different parameters are used.
The joint probability density function of the three variables
�central mass region radius, length of spicules, and the num-
ber of spicules� was estimated by the kernel method with
Gaussian kernels.46 The joint estimate was then randomly
sampled to select the parameters of the SLFs �Fig. 7� and the
Gaussian filters. For the Gaussian filters, the parameter
sigma was selected so that the half peak radius was equal to
radii measurements obtained after the random sampling of
the joint density function �sigma=radius /1.177�. Note that
while all of the parameters are based on the measurement
data, the number of filters was an empirical choice that could
be optimized in future studies.

III. RESULTS

In Figs. 8–10 we show the response of each step of the
detection algorithm. In Figs. 8�b�, 9�b�, and 10�b� we dem-
onstrate the effect of the spicule enhancement algorithm and
the output after filtering with the spiculated lesion filters is
shown in Figs. 8�c�, 9�c�, and 10�c�. The output after filtering
with a bank of Gaussian filters is used to detect the central
mass region �Figs. 8�d�, 9�d�, and 10�d�� and the oriented
DOG filters �Figs. 8�e�, 9�e�, and 10�e�� are used to suppress

TABLE I. Average measurements �mm� made by the radiologist �G.J.W.� (

standard deviation� across all spicules, all MLO images for spiculated
masses. These measurements represent the average value across 21 spicu-
lated masses.

Major axis Spicule width Spicule length Number of spicules

15.10�
7.98� 1.00�
0.296� 8.80�
2.62� 17.57�
6.01�
some linear structures.
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To report the performance of the detection algorithm,
free-response receiver operating characteristic �FROC�
curves were generated. A FROC curve is obtained by plot-
ting sensitivity on the y axis and the number of false posi-
tives per image on the x axis.

The overall output from the detection algorithm is nor-
malized by subtracting the mean and dividing by the stan-
dard deviation. A threshold is applied to the normalized over-
all output and pixels that have a value greater than the
threshold are viewed as potential lesions. A pixel is counted
as a true positive if it lies within the ground truth outlined by
the radiologist. If multiple pixels within the ground truth are
marked, they are all counted as a single true positive. More-
over, a pixel was marked only if the distance between it and
any other marked pixel was at least the average radius of the
central mass region.

At each threshold of the detection output, the FROC curve
provides the sensitivity and FPI. For the images from the
MIAS data set we obtained a sensitivity of 84% at 3 FPI
�Fig. 11�. For a set of 50 images of spiculated masses and 50
normal images from the DDSM, we achieved a sensitivity of
88% at 2.7 FPI �Fig. 12�.

Table II summarizes the results of prior studies for the
detection of the spiculated masses, though it is not possible
to directly compare studies that used different data sets.
From Table II we see that the number of spiculated masses
used in previous detection studies is quite small. The major
disadvantage of testing an algorithm on a small set of images
is that the natural variations among the spiculated masses are
not seen by the algorithm. To the best of our knowledge our
experiments are the largest detection studies �in terms of the
number of spiculated masses used�.

IV. DISCUSSION AND CONCLUSION

In this article, we have presented a new model-based
framework for the detection of spiculated masses. Toward

FIG. 7. The set of 25 SLFs used for the detection of spiculated masses. To
select the parameters of these SLFs an estimate of the joint pdf of the central
mass region radius, length of spicules, and number of spicules was obtained.
This joint estimate of the pdf was then randomly sampled to select the
parameters of the SLFs.
this goal, we have made several novel contributions.
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IV.A. Measurement study

We use measurements of lesion properties to guide the
design of the detection algorithm. While other groups have

FIG. 8. This figure shows the output obtained at each step of the detection a
The image obtained from the enhancement algorithm. �c� The output of the
from oriented DOG filters. �f� The overall output of the detection algorithm
conducted studies to measure physical characteristics of
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masses on mammography, most have only reported the mass
size for mixtures of different types of masses. For example,
Varela et al. reported the average mass size �from radiolo-
gists’ annotations� for 99 malignant masses and 98 benign

hm: �a� Original image and the ground truth outlined by the radiologist. �b�
lated lesion filters �d� The output from the Gaussian filters. �e� The output
lgorit
spicu
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masses.47 However, only the mass sizes for spiculated
masses were not reported. Saunders et al.48 measured the
physical characteristics of masses and calcifications and
these measurements were used to simulate breast masses and
calcifications. A total of 152 masses were measured and the
average size for malignant and benign masses was reported.
To the best of our knowledge, the only study where radiolo-
gists annotated spicules and other linear structures was con-
ducted by Zwiggelaar et al.,49 on a set of 15 images. In this
study, cross-sectional profiles of linear structures were used
to classify these structures as spicules, blood vessels, ducts,
etc. In our study all spicules were localized and measured by
a radiologist, whereas in the study by Zwiggelaar linear
structures were automatically detected and only a random

FIG. 9. This figure shows the output obtained at each step of the detection a
The image obtained from the enhancement algorithm. �c� The output of the
from oriented DOG filters. �f� The overall output of the detection algorithm
subset was annotated by a radiologist.
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IV.B. Spicule enhancement algorithm

We have proposed a new technique for enhancing spicules
in mammograms based on filtering in the radon domain. The
parameters of the filter are chosen based on the width of
spicules obtained from the measurement studies.

The related Hough transform has been applied for the
detection of spiculated masses by other researchers.27 How-
ever, a key innovation of our enhancement algorithm is the
filtering of the coefficients in the radon domain. To the best
of our knowledge, this has not been proposed in CADe or
other image processing applications.

IV.C. Spiculated lesion filters

We have invented a new class of filters called spiculated

hm: �a� Original image and the ground truth outlined by the radiologist. �b�
lated lesion filters. �d� The output from the Gaussian filters. �e� The output
lgorit
spicu
.

lesion filters to detect the spatial location where spicules con-
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verge. The SLFs are configured to have sizes, frequencies,
and extents derived from actual physical measurements.

IV.D. False positives

In this work, we created models for normal structures that
may cause false positives �e.g., oriented difference-of-
Gaussian filters to represent blood vessels�.

While we do not have complete information about the
properties of normal structures, from the measurement stud-
ies we know the range of the properties of spicules of spicu-
lated lesions. We note that this strategy to reduce false posi-
tives is implemented in parallel with the other components of
the detection algorithm, which are geared toward detecting
converging spicules and central mass regions. In comparison,
in previous approaches the reduction of false positives is
carried out sequentially, after the detection of the abnormal-
ity. Finally, the motivation for the use of oriented DOG filters
�instead of Gabor filters� to extract linear structures is de-
rived from computational models of the human visual system

50,51

(a) (b)

(d) (e)

FIG. 10. This figure shows the output obtained at each step of the detection a
The image obtained from the enhancement algorithm. �c� The output of the
from oriented DOG filters. �f� The overall output of the detection algorithm
(c)

(f)

lgorithm: �a� Original image and the ground truth outlined by the radiologist. �b�
spiculated lesion filters �d� The output from the Gaussian filters. �e� The output
.

�HVS�. Numerous studies of the HVS have shown that
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FIG. 11. The performance of the detection algorithm is reported using
FROC curves. The y axis of the FROC curve corresponds to the sensitivity
of the algorithm and the x axis corresponds to the number of FPI per image.
For the set of 50 images from the MIAS database we achieved a sensitivity
of 84% at 3 FPI for the detection of spiculated masses. This set contained all
19 images of spiculated masses from the MIAS database and 31 normal

images.
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the HVS seems to have adapted DOGs for edge and line
handling, whereas Gabor filters appear to be more appropri-
ate for textures and area-based processing. Thus, a number
of authors have used Gabor filters for texture seg-
mentation.37,38,52–57

IV.E. Detection results and number of false positives

We obtained 84% sensitivity �at 3 FPI� and 88% sensitiv-
ity �at 2.7 FPI� for the mini-MIAS and DDSM data sets,
respectively. This may seem large compared to other studies
on mass detection �e.g., Kegelmeyer et al.� Although
Kegelmeyer et al.24 reported a very low FP “on their data
set,” other researchers have not been able to achieve similar
results on different data sets.58,59 The observation that results
can vary considerably on different data sets is also seen with
commercial CADe systems and it is difficult to get a reliable
assessment of the performance of commercially available
CADe systems on the detection of masses and spiculated
masses. In an early report on the commercial CADe systems,
the detection accuracy of microcalcifications was reported as
98.5% sensitivity at 0.74 false positives per case. The detec-

FIG. 12. The performance of the detection algorithm is reported using
FROC curves. The y axis of the FROC curve corresponds to the sensitivity
of the algorithm and the x axis corresponds to the number of FPI per image.
For the set of 100 images from the DDSM database we achieved a sensitiv-
ity of 88% at 2.7 FPI for the detection of spiculated masses. This set con-
tained 50 images of spiculated masses and 50 normal images.

TABLE II. This table summarizes the performance of prior algorithms develo
and testing images used in each study.

Author Total No. of images Total No. of spiculated masses

Kegelmeyera 330 68
Karssemeijerb 50 19e

Delpc 38 19
Zwiggelaard 54 27

aReference 21.
bReference 22.
cReference 26.
dReference 28.
e
In the study by Karssemeijer �Ref. 22�, nine spiculated masses and ten architect
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tion accuracy of masses was reported as 85.7% at 1.32 false-
positive marks per case.60 In a subsequent study, the CADe
system is reported to have a 98.5% sensitivity at 0.185 FPI
for microcalcification clusters and a 86% sensitivity at 0.24
FPI for spiculated masses.18 While the results of the detec-
tion of microcalcifications are consistent, the detection re-
sults for masses vary considerably. For example, clinical
studies to evaluate the performance of commercial CADe
systems for mass detection, have reported sensitivities rang-
ing from 67% to 89% with the FPI ranging from 0.40 to 0.74
FPI.16,17,20–22 For normal images FP rates of 1.3 to 1.8 FPI
have been reported.22,23 It is likely that similar to the case of
masses the performance of CADe may vary significantly on
the detection of spiculated masses. To the best of our knowl-
edge, only one study has reported the performance of com-
mercial CADe on the detection of spiculated masses.18 Thus,
it is difficult to get a reliable assessment of the performance
of commercially available CADe systems on the detection of
spiculated masses.

In summary, results of any given CADe algorithm can
vary significantly depending on the data set used and two
CADe algorithms can only be directly compared when the
same training and testing sets are used. The discussion in this
article of results of prior studies and commercial systems
provides context for our work, but a direct comparison with
our results is not meaningful when a different data set was
used in the reference study.

IV.F. Detection results reported on images „with all
types of masses… from the DDSM

For the detection of masses in the DDSM, Heath et al.61

reported a sensitivity of 80% at 4.5 FPI for the testing set. In
another mass detection study, which used images from the
DDSM, Catarious et al.62 reported a sensitivity of 80% at 1.6
FPI and a sensitivity of 90% at 4.2 FPI. In a recent article
analyzing the effect of DOG parameters, Catarious et al.,63

reported a 81% sensitivity with FPI ranging from 1.35 to
3.66 FPI for different parameter values.63 It has been re-
ported that the DDSM is a difficult data set. For example,
Brake et al. obtained a better mass detection performance on
the Nijmegen data set �collected in the Netherlands� than on
the DDSM data set.64

r the detection of spiculated masses. It also presents the number of training

. of training images
of spiculated masses�

No. of testing images
�No. of spiculated masses� Sensitivity FPI

165�34� 165�34� 100 –
14 50�19�e 90 1

19�9� 19�10� 84.2 1
�Leave-one-out cross-validation method used� 70 0.01
ped fo

No
�No.
ural distortions were used.
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As our algorithm is designed for the detection of spicu-
lated masses only, it could be applied in sequence with algo-
rithms for detecting other types of lesions. Since our ap-
proach is different from other detection methods, it provides
complementary information to the overall CADe algorithm.
While there is no reason to anticipate that our algorithm will
generate more false-positives on images of nonspiculated le-
sions than on images of normal cases, we present some pre-
liminary results to support this assertion. On a set of 50
images, each containing one nonspiculated mass, we
achieved a sensitivity of 86% at 3 FPI �Fig. 13�.

IV.G. Advantages and limitations of model-based
approach

There are a number of advantages to using a model-based
approach. In the future, new knowledge about the properties
of structures to be detected can be easily incorporated. Like-
wise, one can later add in more detailed models of normal
structures that lead to false positives �e.g., linear structures in
the parenchyma�.

The major challenge of a model-based approach is the
lack of a straightforward way to decide on the number of
candidate “models,” i.e., spiculated lesion filters. In this
work, the selection of 25 filter banks was an empirical choice
and further studies will be required to define an optimal
number of filter banks.

Another potential limitation is that the properties of the 25
spiculated lesion filters were selected from measurements
from 21 spiculated lesions. In our measurement study, the
widths and lengths of all 369 spicules from these 21 spicu-
lated masses were measured. The filter-bank parameters were
selected from the joint probability density functions of the
properties of the spiculated masses. We believe that once we
have a good estimate of the joint probability density function
�pdf� of the properties of spiculated masses, we can generate
any number of samples �that is filters� from that pdf. The key

FIG. 13. The FROC curve for a set of 100 images. This set contained 50
images of nonspiculated masses and 50 normal images. A sensitivity of 86%
was obtained at 3 FPI. This shows that the algorithm does not generate more
false-positives on images of nonspiculated masses.
issue is whether we have obtained a good estimate of the pdf
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of the properties of the spiculated masses. In future work, we
will expand the data set of measurements in order to fine
tune our estimate of the pdf.

V. CONCLUDING REMARKS

In this article, we present a new model-based framework
for the detection of spiculated masses. We have invented a
new class of linear filters, spiculated lesion filters, for the
detection of converging lines or spiculations. These filters are
highly specific narrowband filters, which are designed to
match the expected structures of spiculated masses. As a part
of this algorithm, we have also invented a novel technique to
enhance spicules on mammograms based on filtering in the
radon domain. All parameters of the detection algorithm are
set using radiologists’ measurements of lesion properties. We
have also developed models to reduce the false positives due
to normal linear structures.
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