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Abstract— The capability to automatically evaluate the quality
of long wave infrared (LWIR) and visible light images has
the potential to play an important role in determining and
controlling the quality of a resulting fused LWIR-visible light
image. Extensive work has been conducted on studying the
statistics of natural LWIR and visible images. Nonetheless, there
has been little work done on analyzing the statistics of fused
LWIR and visible images and associated distortions. In this paper,
we analyze five multi-resolution-based image fusion methods in
regards to several common distortions, including blur, white
noise, JPEG compression, and non-uniformity. We study the
natural scene statistics of fused images and how they are affected
by these kinds of distortions. Furthermore, we conducted a
human study on the subjective quality of pristine and degraded
fused LWIR-visible images. We used this new database to create
an automatic opinion-distortion-unaware fused image quality
model and analyzer algorithm. In the human study, 27 subjects
evaluated 750 images over five sessions each. We also propose
an opinion-aware fused image quality analyzer, whose relative
predictions with respect to other state-of-the-art models corre-
late better with human perceptual evaluations than competing
methods. An implementation of the proposed fused image qual-
ity measures can be found at https://github.com/ujemd/NSS-of-
LWIR-and-Vissible-Images. Also, the new database can be found
at http://bit.ly/2noZlbQ.

Index Terms— NSS, LWIR, multi-resolution image fusion,
fusion performance.

I. INTRODUCTION

IN RECENT years, increasing levels of uncertain global
security, along with the availability of cheap, intelligent
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digital cameras is encouraging interest in the development
of video systems capable of detecting anomalies or events
that may affect the economics and safety of human activi-
ties [1]. Popular outdoor video surveillance systems that rely
on electro-optical sensors such as visible-light CCD cameras
are often prone to failures due to ambient illumination changes
and weather conditions [2], [3]. One way of improving
performance is to use alternate modes of sensing, such as
infrared sensing, either alone or in combination with visible
light. Decreasing costs and increasing miniaturization have
made infrared sensing an interesting element in surveillance
system design [4]–[8].

Although Long Wave Infrared (LWIR) sensors can accu-
rately capture useful video data in low-light and night-vision
applications, the images obtained lack the color information
and relative luminances of visible spectrum sensors. By con-
trast, RGB sensors do capture color and correct relative
luminances, but are sensitive to illumination variations and
lack the ability to capture revealing information available in
the thermal bands [9]. Two main benefits of the joint use of
thermal and visible sensors are: the complementary natures of
the two modalities and the information redundancy captured
by the sensors, which increases the reliability and robustness
of a surveillance system. These advantages have motivated
the computer vision community to study and investigate algo-
rithms for fusing infrared and visible videos for surveillance
applications [6].

Due to growing interest in LWIR and visible light image
fusion, considerable efforts have been made to develop objec-
tive quality measures of fused images. The performance
of different image fusion algorithms has been evaluated
by image fusion quality metrics that are based on infor-
mation theory [10]–[12], space and frequency based image
features [13]–[16], image structural similarity [17]–[19], and
models of human perception [20], [21].

Chen and Blum [21] investigated the performance of fusion
metrics based on human vision system models, assuming
the presence of several levels of additive white Gaussian
noise (AWGN). Liu et al. [22] analyzed the impact of AWGN
and blur on fused images. They found that the quality of fused
images is degraded with decreases in the quality of the images
being fused. When the AWGN level was severe, the fused
images were all of almost the same quality, regardless of the
fusion scheme used. These studies did not analyze important
real distortions that often occur on LWIR sensors, such as
“non uniformity’ (NU) impairments and the “halo effect.”
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NU manifests as an undesirable grid-like pattern on images
obtained using focal plane arrays [23], while the “halo effect”
appears around very hot or cold objects in imagery from
uncalibrated ferroelectric BST sensors [24], causing regions
surrounding bright objects to grow darker, and regions around
dark objects to grow lighter [25]. Although extensive work
has been conducted on studying the statistics of natural scenes
captured in the visible light spectrum and their relationship to
picture quality [26]–[30], and some studies have been done
on the statistics of LWIR images [31], [32], very little work
has been done on analyzing the statistics of fused LWIR and
visible light images, and how those statistics might be affected
by the presence of any of multiple possible impairments.

The objective of this work is to analyze how image
distortions such as AWGN, blur, JPEG compression, and non-
uniformity noise in LWIR and visible images affect the statis-
tics (NSS) of fused LWIR-visible images. We deploy previous
bandpass image statistical models proposed in [31], [33],
and [34] as a starting point, and create ‘opinion-distortion-
unaware’ (ODU) and ‘opinion-aware’ (OA) no-reference
image quality prediction models using them. An impor-
tant distinction between the model we develop here and
BRISQUE [33], is that we deploy an additional set of features,
including log-derivative and divisively normalized steerable
pyramid coefficients that provide higher sensitivity to high
frequency noise and that explicitly capture band-pass char-
acteristics. An image quality model is ODU if it does not
require training on databases of human judgments of distorted
images and does not rely on training on, or tuning to specific
distortions. By contrast, a model is OA if it has been trained on
a database(s) of human rated distorted images and associated
human subjective opinion scores. A deep comparison of the
results obtained by our proposed OA and ODU models with
those of state-of-the-art algorithms shows that our new model
achieves highly competitive results.

In a previous study, we analyzed the effects of distortions
on the NSS of images fused by three different methods [35].
We significantly extend that work by modeling the statistics
of fused LWIR and visible light images, by analyzing these
statistics on five popular multi-resolution fusion methods, by
conducting a human study on the subjective quality of pristine
and degraded fused LWIR-visible images, and by creating new
and effective ODU and OA fused image quality analyzers.

The remainder of this paper is organized as follows: the
following subsections outline the image databases, statistical
models, and image fusion methods that we use. Section 2
describes the processing and feature models we employ.
Section 3 presents the results of an extensive subjective
human study that we carried out, and also details two NSS-
based fused image quality models that we have developed,
and a comparison of their performance against other mod-
els in regards to their ability to predict subjective scores.
Sections 4 and 5 broadly discuss the results obtained along
with suggestions for further work.

A. LWIR and Visible Image Sources

This study of multimodal image fusion uses three databases
that we hereafter refer to as OSU [36], TNO [37], [38], and

Fig. 1. Example images from the OSU (a-c), MORRIS (d-f) and TNO
(g-i) databases. (a), (d), and (g) are visible light images, (b), (e), and (h) are
LWIR images, and (c), (f), and (i) are images fused using a gradient pyramid.

Fig. 2. Examples of fused images after the following distortions were applied
to the constituent visible light and LWIR images: (a) Additive white gaussian
noise. (b) Non-Uniformity. (c) Blur. (d) JPEG compression. Images obtained
from [32].

MORRIS [32]. The OSU database contains 80 visible light and
LWIR image pairs from the Ohio State University campus.
The TNO database contains 74 image pairs. The MORRIS
database contains 14 indoor and outdoor image pairs on urban
environments. Before processing the images, they were all
linearly re-scaled to the range [0, 1] to be able to apply the
simulated distortions consistently. A few example images from
these databases can be seen in Fig. 1.

B. Distortion Models
Several studies have characterized and modeled noise in the

LWIR spectrum. Images obtained from focal plane arrays can
present NU fixed pattern noise [23], which produces a grid-
like pattern. In this work we deploy the spectral additive model
of NU fixed pattern noise presented in [31] and [39].

The distortion level is controlled using the standard devia-
tion parameter σNU , which scales the dynamic range of the
NU noise. Other common types of distortions which could
affect both LWIR and visible images are also considered here,
such as AWGN, blur, and JPEG compression. Three distortion
levels are used throughout the study for each distortion type,
which were applied to the LWIR and visible images of the
three databases. For AWGN and NU the standard deviation
was varied as σAW G N = σNU = {0.0025, 0.01375, 0.025}; for
blur, a Gaussian blur kernel of size 15 × 15 pixels with σblur =
{1, 2, 3} was used; and for JPEG compression, the quality was
set to 100, 90 and 80 percent using the “imwrite” Matlab
algorithm. Fig. 2 depicts several fused images obtained when
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Fig. 3. Comparison of MSCN histograms of 154 ROIs from fused images (80 from the OSU database and 74 from the TNO database). The ROI sizes were
64 × 64 pixels. The figures show three distortion levels increasing from left to right for AWGN, blur, JPEG compression, and non uniformity (NU). In some
cases the plots of the histograms of pristine images “org” are obscured by overlap of other curves. The terms AVG, GP, SIDWT refer to the fusion methods
Average, Gradient Pyramid, and Shift Invariant Discrete Wavelet Transform, respectively.

both image sources were affected by the most severe distortion
level.

C. Multi-Resolution Fusion Methods

In night vision applications, one of the most commonly
used tools is multi-resolution image fusion (MIF), which aims
to retain the main features from the source images [40].
This technique focuses on accessible multi-resolution feature
representations and an image fusion rule to guide the combi-
nation of coefficients in the transform domain. How the fusion
algorithm adapts to different object-to-background situations
is still not well understood.

Liu et al. [22] used fusion performance models to evaluate
six common multi-resolution fusion methods, of which we
consider the following five: average (AVG), gradient pyra-
mid (GP) [41], Laplacian pyramid (LP) [42], ratio of low-pass
pyramid (RP) [43], and shift-invariant discrete wavelet trans-
form with Haar wavelet (SIDWT) [44]. The decomposition
level used in each of the algorithms was set to four, and the
fusion rule used in each case was the maximum of the high-
pass pair of channels and the average of the low-pass channels.

II. NSS OF FUSED LWIR AND VISIBLE IMAGES

A. Processing Model

Prior research on non-reference IQA has determined that
the most successful IQA measures are based on bandpass

statistical image models [34], [45]. Hence, our approach
deploys as processing models:

(i) Mean-Subtracted Contrast Normalized (MSCN) coeffi-
cients [33].

(ii) Four ‘paired product’ horizontal (H ), vertical (V ), and
diagonal (D1 and D2) coefficients (or directional corre-
lations) calculated as the products of adjoining MSCN
coefficients [33].

(iii) MSCN coefficients supplemented by a set of log-
derivative coefficients (P D1...P D7), which are
intended to provide higher sensitivity to high-frequency
noise [46].

(iv) Coefficients obtained from a steerable pyramid image
decomposition are used to capture oriented band-pass
characteristics [29].

In this section we illustrate the most representative his-
tograms for three fusion methods (average, gradient pyramid,
and shift-invariant discrete wavelet transform) and for each
type of coefficients. The histograms of the MSCN coefficients
of regions of interest (ROI) of fused LWIR and visible light
images suffering from three levels of four kinds of applied
distortion (as well as no distortion) are depicted in Fig. 3.
A total of 154 ROIs from five scenes were selected by extract-
ing center patches of size 64×64 from the OSU and TNO data-
bases. The parameters of each noise type were as described
earlier, in subsection I-B. Observe that blur distortion tended to
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Fig. 4. Comparison of horizontal paired product histograms of 154 ROIs from fused images. The ROI sizes were 64×64 pixels. The figures show increasing
distortion levels from left to right for AWGN, blur, JPEG compression, and NU distortions. In some cases the plots of undistorted “org” histograms are
obscured by overlap of other curves.

produce thinner histograms, while AWGN and NU produced
wider histograms. We also noticed how the Laplacian pyramid
fusion method appeared to more severely affect the shapes
of the fused image histograms (more examples can be found
in the supplement at: http://bit.ly/2mi0CAy), and thereby the
likely degree of the apparent naturalness of the resulting fused
images.

Exemplar histograms of the paired product coefficients of
fused images were generated following the same procedure
as was used for the MSCN fused images. Fig. 4 depicts
the horizontal (H ) paired product histograms. A remarkable
characteristic is the high sensitivity to blur distortions, which
produces thinner histograms. In the case of the Gaussian
pyramid fusion method, there is a noticeable sensitivity to
AWGN, which leads to wider histograms, as it does for NU
distortion, to a lesser degree. However, these histograms fail to
effectively distinguish between JPEG compressed and pristine
images. Histograms of V , D1, and D2 coefficients presented
similar characteristics.

Using the same ROI extraction procedure on both pris-
tine and distorted images, we computed the log-derivative
coefficients, and plotted exemplar histograms of the P D6
coefficients in Fig. 5. These coefficients exhibit a higher
sensitivity to blur than the other distortions. It is interesting to
see that in the P D6 histograms, JPEG distortion produces

increasingly thinner histograms as the image quality
decreases.

In our case, the steerable pyramid decomposition was
computed over six orientations, where each band is
denoted dθ

α , where α indicates the scale and θ ∈ {0°, 30°,
60°, 90°, 120°, 150°}. Using the same pooled ROI extraction
procedure, histograms produced from the d30°

1 coefficients are
plotted in Fig. 6, where the effect of AWGN is in general
noticeable, yet not as apparent as it was with other types
of studied coefficients. The effect of NU noise is minimal,
contrary to blur distortion, where the widths of the histograms
markedly decrease at higher distortion levels. However, when
analyzing the distortion behavior in the horizontal and vertical
subbands, d0

1 and d90
1 , the NU becomes distinctively spread

out. Please refer to the supplement at http://bit.ly/2mi0CAy for
other examples of these histograms. In general, the various
histograms are distinctively descriptive of the effects of the
various types of distortions of fused images. By using closed
form statistical models to parametrically fit these histograms, it
is possible to extract distortion-sensitive features, as we show
in the next section.

B. Feature Models

Prior work on statistical image modeling has led to the
development of models of the empirical distributions of both



MORENO-VILLAMARÍN et al.: PREDICTING THE QUALITY OF FUSED LWIR AND VISIBLE LIGHT IMAGES 3483

Fig. 5. Comparison of log-derivative histograms of 154 ROIs obtained from fused images. The ROIs sizes are 64 × 64 pixels. The figures show increasing
distortion levels from left to right for AWGN, blur, JPEG compression, and NU. In some cases the plots of undistorted “org” histograms are obscured by
overlap of other curves.

high-quality and distorted photographic visible light images,
as well as of infrared pictures that have been subjected to
bandpass processing followed by divisive normalization. These
are both well-modeled as following a Generalized Gaussian
Distribution (GGD). This is true of pictures processed by
MSCN, paired log-derivative filters, and steerable pyramid
filters [31], [33], although the fitting parameters will charac-
teristically vary. The standard method is to fit the histogram
of the bandpass coefficients to the GGD probability density
function:

f (x; α, σ) = α

2β�(1/α)
exp

(
−

( |x |
β

α))
(1)

where

β = σ

√
�(1/α)

�(3/α)
, (2)

α is the shape parameter, σ is the spread parameter, and � is
the Gamma function:

�(t) =
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0
xt−1 exp−x dx . (3)

The products of spatially adjacent bandpass/normalized
coefficients are well modeled as following an Asymmet-
ric Gaussian Distribution (AGGD), with probability density

function:
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where
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�(3/v)
(5)

and

βr = σr

√
�(1/v)

�(3/v)
. (6)

Here v is the shape, and σl and σr are the spread parameters
of the left (negative) and right (positive) sides of the model
density.

Following [31], we estimate the GGD parameters (α, σ ) and
the AGGD parameters (v, σl , σr ) using the moment matching
technique in [47]. For each coefficient product image, a mean
parameter is also computed:

η = (βr − βl)
�(2/v)

�(1/v)
. (7)



3484 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 7, JULY 2017

Fig. 6. Comparison of d30°
1 steerable pyramid histograms of 154 ROIs from fused images. The ROI sizes were 64 × 64 pixels. The figures show increasing

levels of distortion from left to right for AWGN, blur, JPEG compression, and NU. In some cases the plots of the histograms of “org” are obscured by overlap
of other curves.

TABLE I

FEATURE SUMMARY FOR MSCN ( f ), PAIRED PRODUCTS ( pp),
PAIRED LOG-DERIVATIVES ( pd ), AND STEERABLE

PYRAMID COEFFICIENTS (sp)

Hence, four parameters (v, σl , σr , and η) are extracted from
the histograms of the adjacent products of MSCN coefficients.
At a single scale of processing, we thereby obtain 46 features

per image, as summarized in Table I. These features are all
computed over three scales: the initial image scale, and other
two scales reduced by factors of two and four along each
dimension, yielding a total of 138.

As a way of visualizing the features and the way that
they cluster in response to the presence of distortion, we
projected an exemplar set onto a two-dimensional space
using Principal Component Analysis (PCA). Fig. 7 depicts
the two-dimensional PC space of features extracted from
all of the fused images contained in the databases, and for
each of the considered fusion algorithms. As may be seen,
the positions and variances of the clusters generated by the
average, gradient pyramid, and SIDWT fusion algorithms
suggest that these approaches produce stable and consistent
features. However, the features produced by the Laplacian
and ratio pyramid fusion algorithms resulted in less consistent
clusters.

Fig. 8 shows the same features for all the images and fusion
algorithms plotted together. It may be observed that in Figures
8a and 8b, sub-clusters formed corresponding to each database,
presumably due to differences between the LWIR sensor
technologies. Fig. 8c plots features computed on pristine and
distorted fused images, labeled according to the types of
distortions. The OSU database LWIR images were captured
using a ferro-electric thermal sensor that follows a non-linear
function of intensity, which may affect the NSS features
extracted from the images. Nonetheless, as shown in Fig.8c,
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Fig. 7. Clustering of principal components of features extracted from images
produced by different infrared/visible light fusion algorithms. (a) Average.
(b) Gradient Pyramid. (c) Laplacian Pyramid. (d) Ratio Pyramid. (e) SIDWT
with Haar wavelet. The labels O1 and O2 refer to two scenes from the OSU
database, while the labels DD, TD, UD refer to three scenes from the TNO
database.

features from distorted images still appear to cluster away from
the pristine images.

III. QUALITY ASSESSMENT OF FUSED LWIR
AND VISIBLE IMAGES

A. Subjective Study

Because such a resource was not already available, we
conducted a human quality perceptual study, which we used to
both create a trained opinion aware IQA model (later described
in subsection III-C), and as a tool to assess how well fused
image quality prediction models perform on fused LWIR and
visible light images, as measured by how well they correlate
with subjective judgments. Later, we report the experimental
protocol of the study, and the method of processing of the
opinion scores.

To avoid fatiguing the human subjects with too many images
to evaluate, we selected a total of 25 pairs of pristine LWIR
and visible images, including 11 pairs from the TNO database
and 14 pairs from the MORRIS database. The images were
processed using three types of distortion, three levels of
each distortion and three fusion methods. The image pairs
were first processed by three levels of each of three types
of simulated distortion: additive white Gaussian noise and

Fig. 8. A total of 138 features extracted from all of the images from the OSU
and TNO databases are projected in a 2D space using PCA with a cumulative
variance of 0.9973. (a) Features extracted only from pristine Visible light,
LWIR, and fused images. (b) Features extracted only from fused images. (c)
Features extracted from both pristine and distorted fused images. The labels
O1 and O2 refer to pictures from the OSU database, while the terms DD, TD,
UD refer to pictures from the TNO database. The terms AWG, blur, JPEG,
NU refer to the image distortions, while org represents the pristine images.

blur were applied to both the LWIR and the visible light
images, while non uniformity distortion was applied only on
the LWIR images. For AWGN and NU, the distortion level
was controlled using a standard deviation parameter σAW G N =
σNU = {0.0025, 0.01375, 0.025}, while blur was applied
using 15 × 15 Gaussian kernels having spread parameters
σblur = {1, 2, 3} pixels. We chose and applied the fusion
methods that we judged to best preserve cluster stability
and consistency: the average, the gradient pyramid, and the
SIDWT, as shown in Fig. 7.

We conducted the study on 27 volunteers. Each person was
asked to evaluate the images using a procedure we wrote
using the Matlab Psychophysics Toolbox [48]. Each subject
evaluated 150 single stimulus images over each of five testing
sessions, yielding a total of 750 judged images apiece. The
test procedure was conducted following the recommendations
in [49], where the authors used a variant of the absolute
category rating with hidden reference (ACR-HR) from ITU-T
Rec. P.910, where each original image is included in the
experiment but not identified as such. The screen resolution
was 1024×768 and the stimulus images were displayed at their
native resolution, at a viewing distance that varied between
45cm and 55cm. In each session, the images were randomly
shuffled, then sequentially displayed for 7 seconds each as
depicted in Fig. 9. Immediately following, the subject rated
the image on a continuous sliding quality bar with Likert-
like labels “Bad”, “Poor”, “Fair”, “Good”, and “Excellent”,
as shown in Fig. 10. The recorded scores were sampled
and converted to integer values on [0, 100]. In addition, we
measured the illumination levels during the tests, which varied
between 220 and 240 lux, ensuring that they did not change
significantly between sessions.
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Fig. 9. Example stimulus.

Fig. 10. Sliding quality bar.

Fig. 11. Histograms of DMOS in 15 equally spaced bins for (a) scores
obtained before subject rejection and (b) scores obtained after subject
rejection.

The obtained subjective scores were then processed to
discount individual preferences for images and differences
in image content, as explained in [31] and [49]. First, we
computed difference scores, defined as the difference between
the score of each image and the score of its hidden reference,
which were then converted to Z-scores and combined to build a
matrix [Zi j ] with elements corresponding to the Z-score given
by subject i to image j . After obtaining the matrix, a subject
rejection procedure was applied to discard unreliable scores,
as specified in ITU-R BT 500.11 [49], [50].

Following this procedure, five outliers were found and
removed, and the remaining Z-scores were linearly rescaled
to [0, 100]. Finally, the Difference Mean Opinion Scores
(DMOS) of each image were computed as the mean of the
rescaled Z-scores for the remaining 22 subjects [31], [49].

Histograms of the DMOS are shown in Fig. 11, which
indicate a fairly broad distribution of the DMOS. Scores
before subject rejection fell within the range [45, 80], while
scores after subject rejection fell within [31, 74] yielding
a wider range of visual quality. For DMOS obtained after
subject rejection, it should be noted that most of the subject
evaluations were distributed over about half of the quality
range. In the following section, we study the performance
obtained when fusing pristine images by comparing them to
Mean Opinion Scores (MOS).

B. Opinion-Distortion-Unaware Image Quality Analyzer

We have developed a ‘completely blind’ (opinion and dis-
tortion unaware) model of the perceptual quality of a fused

TABLE II

DESCRIPTION OF THE FUSION PERFORMANCE MODELS STUDIED IN [22]

image. To compute it, 80 pristine image pairs from the OSU
database were used, with sizes of 298 × 217 pixels. These
were fused (using the three aforementioned fusion algorithms),
yielding 240 fused pristine images. We then extracted 138
‘quality-aware’ NSS features from each image, from which
our pristine fused picture model is obtained. This model was
calculated by fitting the features to a multivariate Gaussian
model, as was done in the NIQE [34] and feature-enriched
IL-NIQE [51] models. The model consists of a mean vector
μ and a covariance matrix �; using these, it is possible to
evaluate the quality of an image by comparing the pristine
model to a similarly constructed model of the degraded image.
The quality prediction score is then calculated as the (modi-
fied) Mahalanobis distance between the previously constructed
pristine feature model and the feature model of the distorted
image:

QD(μ1, μ2,�1,�2)

=
√

(μ1 − μ2)T

(
�1 + �2

2

)−1

(μ1 − μ2), (8)

where μ1, μ2 and �1, �2 are the mean vectors and covariance
matrices of the models obtained using the standard maximum
likelihood estimation procedure in [52].

To verify the performance of our model, we compared the
scores given to pristine fused images to the fusion quality
model predictions shown in Table II, which were previously
studied by Liu et al. in [22]. We also evaluated the per-
formance of each of the individual feature groups ( f , pp,
pd , and sp) using the same approach, obtaining quality
models similar to QD that we denote Q f , Q pp , Q pd , and
Qsp . Previous studies have compared the resulting fusion
performance predictions to subjective judgments of small sets
of fused images [10], [13]. Here we analyze how well the
predictions correlate to the subjective scores of pristine fused
images. First, we computed the Z-score from each raw opinion
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score s, then rescaled them to fill the range [0, 1]. Since
DMOS can only be computed as the difference between the
scores given to a pristine image and the scores given to a
distorted image, we calculated Mean Opinion Scores (MOS)
for each pristine fused image after removing outliers. In order
to account for a possible non linear relationship between the
quality predictions and MOS, the algorithm scores were passed
through the following logistic function:

Q′
j = β2 + β1 − β2

1 + exp−(Q j−β3/|β4|) (9)

where Q j is the objective quality value for stimulus image j .
Each β parameter was estimated via nonlinear least squares
optimization using the Matlab function “nlinfit,” to min-
imize the least squares error between MOS j and the fitted
scores Q j . To facilitate numerical convergence, the quality
predictions were first linearly rescaled before performing
optimization. We chose the initial β parameters following the
recommendation in [53]:

β1 = max(MOS) (10)

β2 = min(MOS) (11)

β3 = Q̄ (12)

β4 = 1 (13)

The new values Q′
j were used to compute the Spear-

man’s Rank Correlation Coefficient (SRCC), Pearson’s Lin-
ear Correlation Coefficient (LCC), and Root Mean Squared
Error (RMSE) between samples. SRCC was deployed as a
measure of non-linear monotonicity between the reference
and predicted values, while LCC was used as a measure
of linear correlation between actual and predicted values.
RMSE evaluates the accuracy of the predictions. An effective
objective quality measure would have SRCC and LCC closer
to one and RMSE nearer to zero. The results from the
evaluation are shown in Table III. Some of the resulting
correlation coefficients yielded a negative sign, therefore we
give their absolute values. In this comparison, we included
the NR IQA algorithm IL-NIQE [51], whose pristine fused
image features are extracted from the same set of images
deployed for the models QD , Q f , Q pp , Q pd , and Qsp . The
models that produced negative correlation coefficients include
the spatial frequency metric QS F [17], the Chen-Blum metric
QC B [21], IL-NIQE, and our models, which are based on
NSS features. We observe that the Q pd model provided the
highest correlations with respect to subjective image quality
judgments, followed by IL-NIQE and QD .

C. Opinion Aware Fused Image Quality Analyzer

As mentioned earlier, we also created an opinion aware (but
otherwise blind) model by training on human subjective qual-
ity judgments of the images. To do this we employed a Support
Vector Regression (SVR) algorithm to fit the NSS features to
the DMOS, thereby obtaining a trained opinion aware quality
model QSV R . This method has been previously applied to IQA
using NSS-based features [31], [33]. We utilized the LIBSVM
package [54] to implement an ε-SVR with a Radial Basis
Function kernel, and found the best-fitting parameters C and

TABLE III

ABSOLUTE VALUES OF SRCC, LCC, AND RMSE BETWEEN MOS AND
PREDICTED MOS PRODUCED BY VARIOUS QUALITY PREDICTION

MODELS ON THE EVALUATED PRISTINE FUSED IMAGES

γ using 5-fold cross-validation. The best-fitting parameters
obtained were C = 211.5 and γ = 2−5, which yielded a
mean squared error M SE = 7.59. Our experiments were
carried out by using the 675 distorted fused images and their
corresponding DMOS from the subjective study.

In order to test our quality measure QSV R , we included
BRISQUE in the set of quality measures to be evaluated with
respect to their correlation to human judgments. BRISQUE
was modified by using the same pristine fused image set and
quality scores deployed in QSV R . Since QSV R and BRISQUE
require a training procedure to calibrate, we divided the data
from the subjective study into two random subsets, where
80% of the fused images and associated DMOS were used
for training and 20% for testing, taking care not to overlap
the train and test content. This was done to ensure that the
results would not depend on features extracted from learned
content, rather than from distortion. The predicted scores were
then passed through the logistic non-linearity described in the
previous section.

We repeated this process over 1000 iterations, computed
SRCC, LCC, and RMSE for all models, and tabulated their
median values in Table IV. The median of the SRCC, LCC,
and RMSE values is not skewed much by extremely large
or small values, thereby providing a robust figure of merit.
For measures other than QSV R and BRISQUE, we used 80%
of the data to estimate the β parameters, and the other 20%
to validate the prediction of the logistic function. The results
given by the validation were used to compute the correlation
coefficients. Fig. 12 depicts a scatter plot of the predicted
scores delivered by our quality model QSV R versus DMOS for
all the images evaluated in the subjective study described in
subsection III-A, along with the best-fitting logistic function.
Observe that the model QSV R achieved the highest correlation
against the human scores, followed by BRISQUE, while the
other models yielded lower correlations. Notice that in this
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Fig. 12. Scatter plot of QSV R prediction scores versus DMOS for all images
assessed in the subjective human study and the best fitting logistic function.
Notice the near-linear relationship.

case, when comparing to scores given to distorted images, QM

outperformed all of the fused image quality measures classified
as Feature groups, further motivating the use of quality aware
measures such as QSV R and BRISQUE. Even though the
comparison between ODU and OA image quality measures
may be regarded as biased because of the deployment of
subjective scores in the OA approaches, it is important to note
that the state-of-the-art measures of image fusion performance
studied in [22] are ODU since, unlike QSV R , those fusion
performance models do not involve a training process linked
to subjective scores. Nonetheless, in Table IV, we included the
OA image quality measure BRISQUE, which uses the same
pristine fused image set and quality scores deployed in QSV R .
Table III tabulates the SRCC, LCC, and RMSE between
MOS and predicted MOS for pristine images, while Table IV
presents the median SRCC, LCC, and RMSE between DMOS
and predicted DMOS for distorted images.

We carried out a one-sample Kolmogorov-Smirnov test to
establish whether the 1000 SRCC values from the predictions
of 20 fused quality measures (20.000 SRCC values) come
from a standard normal distribution (i.e. null hypothesis). This
test rejected the null hypothesis at the 5% significance level.
Hence, since nonparametric tests make no assumptions about
the probability distributions of the variables, we conducted a
Kruskal-Wallis test on each median value of SRCC between
the DMOS and the quality measures (after nonlinear mapping),
to evaluate whether the results presented in Table IV are
statistically significant. Table V tabulates the results of the
statistical significance test. The null hypothesis was that the
median correlation for the (row) algorithm was equal to
the median correlation for the (column) algorithm with a
confidence of 95%. The alternate hypothesis was that the
median correlation of the row was greater than or less than the
median correlation of the column. From Table V, we conclude
that QSV R produced highly competitive quality predictions on
the tested fused pictures with statistical significance against all
of the other quality algorithms tested.

TABLE IV

MEDIAN SRCC, LCC, AND RMSE BETWEEN DMOS AND PREDICTED
DMOS OVER 1000 ITERATIONS

Fig. 13. Examples of best (a) and worst (b) rated images from the subjective
study.

IV. RESULTS AND DISCUSSION

We found that fused LWIR-visible images created using
multi-resolution fusion algorithms such as Average, Gradient
Pyramid, Laplacian Pyramid, Ratio Pyramid, and SIDWT,
possess statistical regularities when band-pass filtered and divi-
sively normalized, and that these regularities can be modeled
and used to characterize distortions and to predict fused image
quality. As shown through the histogram analysis, some groups
of NSS features are more predictive of some types of distortion
than the rest: P D coefficients effectively responded to JPEG
compression and blur distortions, while d0°

1 and d90°
1 were

effective for measuring NU distortion. Furthermore, we devel-
oped both opinion-distortion-unaware (‘completely blind’) and
opinion-aware image quality analyzers, which predict human
quality evaluations of fused LWIR and visible images more
reliably than other state-of-the-art models.

One limitation of our research was the limited availability
of aligned LWIR and visible image pairs. The OSU database
contains little image content diversity, making it unsuitable
for inclusion in the subjective study. Other databases that
we examined did not provide registered visible and infrared
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TABLE V

STATISTICAL SIGNIFICANCE MATRIX OF SRCC BETWEEN DMOS AND PREDICTED QUALITY SCORES. A VALUE OF “1” INDICATES THAT THE
PERFORMANCE OF THE MODEL IN THE ROW WAS STATISTICALLY BETTER THAN THAT OF THE MODEL IN THE COLUMN, “0” MEANS THAT

IT IS STATISTICALLY WORSE, AND “-” MEANS THAT IT IS STATISTICALLY INDISTINGUISHABLE

images. Nonetheless, the results provided by our opinion-
aware quality analyzer outperformed all the other fusion
quality algorithms, while having the advantage of not needing
source LWIR and visible light images like the models studied
in [22] to compute a quality estimate. QSV R , as for any
other OA method, requires training on human evaluations.
Moreover, it is unable to provide a quality map of the image,
where each pixel would represent an image quality value. In
Fig. 13, we show examples of the best and worst images rated
according to the DMOS obtained in the subjective study, with
the best image having a DMOS of 29.659 and the worst image
having a DMOS of 75.920.

Previous studies of fused image quality have not accounted
for the presence of distortion in the source images, or even
of LWIR-specific distortions. Moreover, in some cases the
authors evaluated their proposed models using very limited
sets of image pairs [10]–[13], [20]. Although the work in [22]
assessed AWGN and blur distortions, our approach also con-
siders the effects of NU, and proposes a fusion quality model
that analyzes image degradation. To our knowledge, there has
been no prior work on the analysis of NSS extracted from
pristine and distorted fused LWIR and visible images. We
believe that this work can serve as a solid starting point
for further development of perceptual quality aware fusion
algorithms.

V. CONCLUSION AND FUTURE WORK

NSS play an important role when analyzing distortions
present in fused LWIR and visible light images, as they
have previously proved useful in modeling degradations of
visible and infrared pictures. We found that NSS are also
potent descriptors of the quality of fused images affected by
AWGN and NU. Therefore, we proposed ODU and OA fused
image quality analyzers that outperform current fusion quality
indexes, correlating better with human subjective evaluations.
Although a broader spectrum of distortion types would have
allowed deeper insights, it would have lengthened the duration
of the human study to an unacceptable degree. Future studies

might be able to use the proposed models to evaluate other
distortions present in infrared images, and by using scene
statistics of fused images measured on other types of image
sensors. Furthermore, fused LWIR-visible videos used in sur-
veillance applications are of great interest. These videos could
be modeled and studied with the aid of spatio-temporal NSS
to improve tracking algorithms.
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