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Blind Image Quality Assessment: From Natural
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Abstract—Our approach to blind image quality assessment
(IQA) is based on the hypothesis that natural scenes possess
certain statistical properties which are altered in the presence of
distortion, rendering them un-natural; and that by characterizing
this un-naturalness using scene statistics one can identify the
distortion afflicting the image and perform no-reference
(NR) IQA. Based on this theory, we propose an (NR)/blind
algorithm - the Distortion Identification-based Image Verity
and INtegrity Evaluation (DIIVINE) index - that assesses the
quality of a distorted image without need for a reference
image. DIIVINE is based on a 2-stage framework involving
distortion identification followed by distortion-specific quality
assessment. DIIVINE is capable of assessing the quality of
a distorted image across multiple distortion categories, as
against most NR IQA algorithms that are distortion-specific
in nature. DIIVINE is based on natural scene statistics which
govern the behavior of natural images. In this paper, we detail
the principles underlying DIIVINE, the statistical features
extracted and their relevance to perception and thoroughly
evaluate the algorithm on the popular LIVE IQA database.
Further, we compare the performance of DIIVINE against
leading full-reference (FR) IQA algorithms and demonstrate
that DIIVINE is statistically superior to the often used
measure of peak signal-to-noise ratio (PSNR) and statistically
equivalent to the popular structural similarity index (SSIM). A
software release of DIIVINE has been made available online:
http://live.ece.utexas.edu/research/quality/DIIVINE release.zip
for public use and evaluation.

I. INTRODUCTION

We live in an increasingly visual digital world. Advances
in technology have allowed for images and videos to be
captured easily and efficiently, transmitted, stored, shared and
viewed over a range of devices; from pocket-size hand-held
ones to large HD screens. This progress coupled with the
fact that humans are highly visual creatures necessitates that
the reproduced 2D world of images and videos be accurately
rendered without deviating from what humans perceive as ac-
ceptable. The limits on bandwidth and the physical properties
of devices used to capture these visual signals imply that loss
of information and the introduction of extraneous artifacts are
bound to occur. Researchers in visual quality assessment have
endeavored to understand how the presence of these distortions
affect the viewing experience. The ideal approach to measure
the effect of distortions on the quality of viewing experience
is to solicit opinions from a sufficiently large sample of the
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human populace. Averaging across these opinions produces
a mean opinion score (MOS) which is considered to be the
perceived quality of the stimulus. Such subjective assessment
of visual quality is the best indicator of how distortions
affect perceived quality, however, they are time-consuming,
cumbersome and impractical. Hence one seeks to develop
algorithms that produce quality estimates of these distorted
visual stimuli with high correlation with MOS. Such objective
image quality assessment (IQA) is the focus of this paper.

Objective quality assessment can be divided into three
categories depending on the amount of information provided to
the algorithm [1]. Full-reference (FR) algorithms are provided
with the original undistorted visual stimulus along with the
distorted stimulus whose quality is to be assessed. Reduced-
reference (RR) approaches are those in which the algorithm
is provided with the distorted stimulus and some additional
information about the original stimulus, either by using a
auxiliary channel or by incorporating some information in
the distorted stimulus (such as a watermark). Finally, no-
reference (NR)/blind approaches to quality assessment are
those in which the algorithm is provided only with the
distorted stimulus. In this paper, we propose a method for
NR/blind image quality assessment (IQA).

Even though NR QA is potentially the most useful goal,
the difficulty of creating algorithms that accurately predict
visual quality, especially without any information about the
original image, has led to greater activity in the FR QA area
[2]. These studies have yielded considerable insights into the
perception of image distortions and image quality that may
prove useful in creating algorithms that assess quality without
need for a reference. RR QA remains attractive, not only as a
solution to the QA problem on its own, but also as a stepping
stone towards solving the NR QA problem [3], [4]. Indeed, our
approach to NR QA finds inspiration from previously proposed
models for FR QA [5], [6] as well as for RR QA [3], [4].

We have developed a computational theory for NR IQA
based on the statistics of natural images1 [7], [8], [9], [10].
Natural un-distorted images possess certain statistical proper-
ties that hold across different image contents. For example, it
is well known that the power spectrum of natural scenes fall-
off as (approximately) 1/fγ , where f is frequency [9]. Natural
scene statistic (NSS) models seek to capture those statistical
properties of natural scenes that hold across different contents.
Our approach to NR IQA is based on the hypothesis that,
the presence of distortions in natural images alters the natural

1By natural we mean any image that can be obtained from a camera - these
include pictures of man-made objects as well as forest/natural environments.
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statistical properties of images, thereby rendering them (and
consequently their statistics) unnatural [5]. The goal of an NR
IQA algorithm based on NSS is to capture this ‘unnatural-ness’
in the distorted image and relate it to perceived quality. In the
past, such NSS-based QA algorithms have been successfully
deployed for FR IQA [5], [6], for RR IQA [3], [4] and to a
small extent, for NR IQA [11]. We explore such an NSS-based
approach for NR IQA.

Our NR IQA model utilizes a 2-stage framework for blind
IQA that we introduced in [12]. In this framework, scene
statistics extracted from a distorted natural image are used
to first explicitly classify the distorted image into one of n
distortions (distortion identification - stage 1). Then, the same
set of statistics are used to evaluate the distortion-specific
quality (distortion-specific QA - stage 2) of the image. A
combination of the two stages leads to a quality score for the
image which, as we shall soon demonstrate, correlates quite
well with human perception and is competitive with leading
FR IQA algorithms. The proposed approach we call Distortion
Identification-based Image Verity and INtegrity Evaluation
(DIIVINE). The name is appropriate as the algorithm resulting
from the modeling framework succeeds at ‘divining’ image
quality without any reference information or the benefit of
distortion models.

The DIIVINE approach to NR IQA is a full-fledged real-
ization of the preliminary framework that we had proposed in
[12]. In [12], we had primarily proposed the 2-stage framework
and demonstrated simple implementations of the framework
as examples. Apart from the fact that the DIIVINE approach
performs much better than those realizations, the main con-
tribution of this work is the series of statistical features that
we extract, which go beyond the simple marginal descriptions
that the previous primary realizations extracted.

Before proceeding, we state some salient aspects of
DIIVINE. Present-day NR IQA algorithms are distortion-
specific, i.e., the algorithm is capable of assessing the quality
of images distorted by a particular distortion type. For exam-
ple, the algorithm in [13] is for JPEG compressed images, that
in [14] is for JPEG2000 compressed images and that in [15]
is for blur. DIIVINE, however, is not bound by the distortion-
type affecting the image since we do not seek distortion-
specific indicators of quality (such as edge strength at block
boundaries) but provide a modular strategy that adapts itself to
the distortion in question. Indeed, our framework is ostensibly
distortion-agnostic.

Further, since we do not use distortion-specific models,
DIIVINE can easily be extended to handle distortions beyond
those considered here. Finally, by performing a thorough
analysis of our algorithm we demonstrate that DIIVINE is
competitive with present day NR and FR IQA algorithms
across commonly encountered distortions. In fact, we shall
demonstrate that DIIVINE is not only statistically superior to
the full-reference peak signal-to-noise-ratio (PSNR) measure
of quality, but is also statistically indistinguishable from a
popular full-reference measure - the structural similarity index
(SSIM) [16].

The rest of the paper is organized as follows. In Section
II we review previous work in NR IQA, In Section III

we describe the various scene statistics we extract from the
image. In Section IV we describe how these features are
used for distortion identification, as well as for distortion-
specific quality assessment. We evaluate the performance of
the developed approach in Section V and conclude the paper
in Section VI.

II. PREVIOUS WORK

Most present-day NR IQA algorithms assume that the
distorting medium is known - for example, compression, loss
induced due to noisy channel etc. Based on this assumption,
distortions specific to the medium are modeled and quality is
assessed. By far the most popular distorting medium is com-
pression which implies that blockiness and bluriness should be
evaluated. In the following, we study blind QA algorithms that
target three common distortion categories: JPEG compression,
JPEG2000 compression, and blur. We also survey blind QA
algorithms that operate holistically.

A. Distortion-specific IQA Algorithms

1) JPEG IQA: The general approach to NR JPEG IQA
is to measure edge strength at block boundaries and relate
this strength and possibly some measure of image activity to
perceived quality. JPEG NR IQA algorithms include those that
use a hermite transform based approach to model blurred edges
[13], those that estimate first-order differences and activity in
an image [17], those that utilize an importance map weighting
of spatial blocking scores [18], those that use a threshold-based
approach on computed gradients [19] and those that compute
block strengths in the Fourier domain [20]. Each of these
approaches measures a subset of blocking, blur and activity
and computes perceptual quality, either using a training set,
or by combining features in an intelligent fashion.

2) JPEG2000 IQA: For JPEG2000 ringing artifacts in an
image are generally modeled by measuring edge-spread using
an edge-detection based approach and this edge spread is
related to quality [21], [22], [23]. Other approaches include
those that compute simple features in the spatial domain [14],
or those that utilize natural scene statistics [11]. In [11], the
authors exploit the dependency between a wavelet coefficient
and its neighbors, and the fact that the presence of distortion
will alter these dependencies. The dependencies are captured
using a threshold + offset approach, where the parameters are
estimated using a training set.

3) Sharpness/Blur IQA: Blur IQA algorithms model edge
spreads and relate these spreads to perceived quality, similar
to the approach followed by NR JPEG2000 IQA algorithms.
Edge strengths are quantified using a variety of techniques,
including block kurtosis of DCT coefficients [15], iterative
thresholding of a gradient image [24], and measuring the
probability of blur detection [25] or model the just-noticeable-
blur [26] in an image. Researchers have also explored the
use of saliency models for NR blur IQA [27]. A noise-
robust blur measure was also proposed in [28] that utilizes
a gradient-based approach coupled with the singular value
decomposition.
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It should be clear to the reader that each of these distortion
specific NR IQA algorithms attempt to model indicators of
quality for the distortion in question, and hence are unsuitable
for use in a general-purpose (distortion-agnostic) scenario.

B. Holistic IQA algorithms

Li proposed a series of heuristic measures to characterize
image quality based on three quantities - edge sharpness,
random noise level (impulse/additive white Gaussian noise)
and structural noise [29]. Edge sharpness is measured using
an edge-detection approach, while the random noise level is
measured using a local smoothness approach (impulse noise)
and PDE-based model (Gaussian noise). Structural noise as
defined by Li relates to blocking and ringing from compression
techniques such as JPEG and JPEG2000. Unfortunately, the
author does not analyze the performance of the proposed
measures, nor propose a technique to combine the measures
to produce a general-purpose quality assessment algorithm.

Gabrada and Cristobal proposed an innovative strategy
for blind IQA which utilized the Renyi entropy measure
[30] along various orientations to measure anisotropy. The
proposed approach is attractive since natural images are
anisotropic in nature and possesses statistical structure that dis-
tortions destroy. They measure mean, standard deviation and
range of the Renyi entropy along four pre-defined orientations
in the spatial domain and demonstrate their correlation with
perceived quality. Unfortunately , a thorough evaluation of the
proposed measure is again lacking.

Recently, Saad and Bovik proposed a general-purpose blind
quality assessment algorithm that computes four features
in the DCT domain: DCT kurtosis, DCT contrast and two
anisotropy measures inspired from [30] - maximum and
variance of the Renyi entropy along four orientations [31].
Features are extracted over two scales and a Gaussian
distribution is used to model the relationship between the
DMOS and the extracted features. The measure was shown to
perform well in terms of correlation with human perception
across distortion categories.

Blind/NR video quality assessment (VQA) is an important
problem that has followed a similar trajectory. Some authors
have proposed techniques which measure blockiness, blur,
corner outliers and noise separately, and use a Minkowski sum
to pool the measures of quality together [32], [33]. In both
these approaches, distortion-specific indicators of quality are
computed and pooled using a variety of pre-fixed thresholds
and training, as against our approach that uses concepts from
NSS to produce a modular and easily extensible approach
that can be modified to include other distortions than those
discussed here. We anticipate that the approach taken here
could be eventually extended to video to achieve good results.

III. SCENE STATISTICS OF DISTORTED IMAGES

The DIIVINE approach for NR IQA proceeds as follows.
The distorted image is first decomposed using a scale-space-
orientation decomposition (loosely, a wavelet transform) to
form oriented band-pass responses. The obtained subband

coefficients are then utilized to extract a series of statistical
features. These statistical features are stacked to form a vector
which is a statistical description of the distortion in the image.
Our goal is to utilize these feature vectors across images to
perform two tasks in sequence: (1) Identify the probability
that the image is afflicted by one of the multiple distortion
categories, then (2) Map the feature vector onto a quality
score for each distortion category, i.e., build a regression
model for each distortion category to map the features onto
quality, conditioned on the fact that the image is impaired
by that particular distortion category (i.e., distortion-specific
QA). The probabilistic distortion identification estimate is then
combined with the distortion-specific quality score to produce
a final quality value for the image. The method described
here is illustrated in Fig. 1 and is labeled as the Distortion
Identification-based Image Verity and INtegrity Evaluation
(DIIVINE) index.

A. Statistical Model for Wavelet Coefficients

In the DIIVINE framework, a set of neighboring wavelet
coefficients are modeled using the Gaussian Scale Mixture
(GSM) model [34]. An N dimensional random vector Y is
a GSM if Y ≡ z · U where ≡ denotes equality in probability
distribution, U is a zero-mean Gaussian random vector with
covariance CU , and z is a scalar random variable called a
mixing multiplier. The density of Y is then given by:

pY (y) =

∫
1

(2π)N/2|z2C1/2
U |

exp(
−Y TC−1U Y

z2
)pZ(z)dz

The GSM model has been used to model the marginal and
joint statistics of the wavelet coefficients of natural images
[34], [3], where the vector Y is formed by clustering a set of
neighboring wavelet coefficients within a subband, or across
neighboring subbands in scale and orientation.

Next, we shall describe the statistical features that we
extract from the distorted image and motivate their choice.
In order to illustrate how each of these features behaves in
natural and distorted images, we shall use the natural un-
distorted reference images shown in Fig. 2 and their distorted
counterparts, a subset of which are shown in Fig. 3. The
distortions in Fig. 3 are exactly the same as the ones that we
consider in this paper and that span the set of distortions in the
LIVE Image Quality Assessment Database [35] - JPEG and
JPEG2000 (JP2k) compression, additive white noise (WN),
Gaussian blur (blur) and a Rayleigh fading channel labeled
fast fading (FF).

B. Extracting Scene Statistics

In order to extract statistics from distorted images we
utilize the steerable pyramid decomposition [36]. The steerable
pyramid is an overcomplete wavelet transform that allows for
increased orientation selectivity. The choice of the wavelet
transform was motivated by the fact that the scale-space-
orientation decomposition that the wavelet transform performs
mirrors models of spatial decomposition that occurs in area V1
of the primary visual cortex [37], [38]. The steerable pyramid
has been previously used for FR IQA [5] as well as RR IQA
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Fig. 1. The proposed Distortion identification-based Image Verity and INtegrity Evaluation (DIIVINE) index consists of two stages: probabilistic distortion
identification followed by distortion-specific quality assessment as illustrated here.

(a) (b)

(c) (d)
Fig. 2. (a)-(d) The images used to demonstrate features derived under NSS models.

[3] with success. Note that we do not use the complex version
of the steerable pyramid as in [39], but that used in [5].

Given an image whose quality is to be assessed, the first
step is to perform a wavelet decomposition using a steerable

pyramid over 2 scales and 6 orientations. We have found that
an increased degree of orientation selectivity is beneficial for
the purpose of QA - more so than selectivity over more than
2 scales. The choice of steerable filters was also motivated
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(a) (b)

(c) (d)

(e)

Fig. 3. A subset of the distorted versions of images in Fig. 2. (a)-(e) correspond to the following distortions - (a) JP2k compression, (b) JPEG compression,
(c) white noise, (d) Gaussian blur and (e) fast fading distortion.

by its increased orientation selectivity. Our experiments have
indicated that increasing the number of scales beyond 2 does
not improve performance. The resulting decomposition results
in 12 subbands across orientations and scales labeled sθα,
where α ∈ {1, 2} and θ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}.

The next step is to perform the perceptually significant
process of divisive normalization [40]. Divisive normalization
or contrast-gain-control was proposed in the psychovisual
literature in order to account for the non-linear behavior of
certain cortical neurons. Such normalization accounts for inter-

actions between neighboring neurons and governs the response
of a neuron based on the responses of a pool of neurons
surrounding it [40]. Divisive normalization also reduces the
statistical dependencies between subbands thereby de-coupling
subband responses to a certain degree [40], [34]. Further,
divisive normalization models partially account for contrast
masking [38] - an essential ingredient in QA algorithm design.
Divisive normalization has been explicitly used for RR IQA in
the past [3]. FR IQA techniques such as the visual information
fidelity index (VIF) [5] and the structural similarity index
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(SSIM) [16] also utilize divisive normalization, albeit in an
implicit manner [41]. Finally, the successful MOVIE index, a
recently proposed FR VQA algorithm [42] also utilizes such
a technique (drawing inspiration from the Teo and Heeger
model [43]). Here, divisive normalization is implemented as
described in [3].

Specifically, given a subband coefficient y, our goal is to
compute a normalization parameter p, based on responses from
neighboring subbands in order to finally compute ŷ = y/p. To
estimate p we utilize the previously defined local statistical
model for natural images - the Gaussian scale mixture (GSM)
model [34]. In our implementation, for a center coefficient yc
at each subband we define a divisive normalization transform
(DNT) neighborhood vector Y that contains 15 coefficients,
including 9 from the same subband (3×3 neighborhood around
yc), 1 from the parent band, and 5 from the same spatial
location in the neighboring bands at the same scale. Given
this vector Y , the normalization coefficient p is computed
as p =

√
Y TC−1U Y/N . This computation is undertaken at

each coefficient in each subband to produce a divisively-
normalized set of subbands - dθα, where α ∈ {1, 2} and
θ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}. The interested reader
is referred to [3] for details on the divisive normalization
procedure.

In order to visualize how divisive normalization affects the
statistics of the subband coefficients, Fig. 4 plots a histogram
of coefficents from sθ1 and dθ1, where θ ∈ {0◦, 30◦, 60◦}. The
normalization makes the subband statistics more Gaussian-like
for natural images.
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Fig. 4. Figure demonstrating the effect of divisive normalization on the
subband statistics of image in Fig. 2(a). The first row shows the histogram of
subband coefficient distributions before divisive normalization, while the sec-
ond row is the distribution after normalization. Divisive normalization makes
the subband statistics of natural images more Gaussian-like, as compared to
the Laplacian nature of the pre-normalized subband coefficients.

In order to demonstrate that subband statistics are affected
by each distortion in a particular fashion, Fig. 5 plots the
coefficient distributions from d0

◦

1 of the image in Fig. 2(c) for
each distortion considered here. It should be clear that each
distortion affects the statistics in a characteristic way which
is essentially independent of the content (e.g., WN always
increases the variance of subband coefficients).

Given that each distortion affects subband statistics charac-
teristically, the goal is to compute marginal and joint statistics
across subbands in order to extract features that are relevant
to the perceived quality of the image.

Fig. 5. Subband statistics from d0
◦

1 of the image in Fig. 2 (c) for different
distortions. Notice how each distortion affects the statistics in a characteristic
way.

1) Scale and orientation selective statistics (f1-f24):
Subband coefficients from each of the 12 subbands are
parametrized using a generalized Gaussian distribution (GGD).
The GGD is:

fX(x;µ, σ2, γ) = ae−[b|x−µ|]
γ

x ∈ <

where, µ, σ2 and γ are the mean, variance and shape-parameter
of the distribution and

a =
bγ

2Γ(1/γ)

b =
1

σ

√
Γ(3/γ)

Γ(1/γ)

and Γ(·) is the gamma function:

Γ(x) =

∫ ∞
0

tx−1e−tdt x > 0

The shape parameter γ controls the ‘shape’ of the distri-
bution. For example, γ = 2 yields a Gaussian distribution
and γ = 1 yields a Laplacian distribution. The parameters of
the distribution (µ, σ2 and γ) are estimated using the method
proposed in [44]. GGD has also been used before to model
the subband statistics of natural images in RR IQA [4]. Since
wavelet subband responses are zero mean, we have to estimate
σ2 and γ for each subband leading to a total of 24 features. f1-
f12 correspond to σ2 across subbands and f13-f24 correspond
to γ across subbands.

At this juncture it may be prudent to explain the choice
of the GGD. The divisive normalization procedure tends to
produce coefficients distributed in a Gaussian manner for
natural images. In the presence of distortion however, this
Gaussianity at the output of the normalization procedure is not
guaranteed. For example, from Fig. 5, it should be clear that
distortions such as JPEG, JP2k, Blur and FF lead to highly
kurtotic (non-Gaussian) distributions even after the divisive
normalization procedure. Since the shape parameter of the
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Fig. 7. Histogram (normalized) of coefficients from d0
◦

1 and d0
◦

2 for the
image in fig. 2(c) and its various distorted versions. Notice the difference in
distributions of these across-scale coefficients for natural and distorted images.

GGD will capture this non-Gaussian nature, the GGD fit is
utilized here as against a simple Gaussian fit. We note that a
similar procedure was used for RR IQA in [3].

In order to demonstrate how these subband features affect
quality, Fig. 6 shows a plot of loge(σ2) vs. γ for one of the
subbands for each of the reference images in Fig. 2 and their
associated distorted versions.

We have previously shown that these simple marginal statis-
tics when used in a simple, preliminary blind IQA algorithm -
the Blind Image Quality Index (BIQI) [12] - do a good job of
identifying the distortion afflicting the image and predicting
the perceived quality of an image [12], [45]. Here we full de-
velop the 2-stage NSS-based IQA concept introduced in [12],
by deploying a much richer set of NSS-based features that
capture the dependencies between subband coefficients over
scales and orientations, as well as utilizing the perceptually
relevant divisive normalization procedure.

2) Orientation selective statistics (f25-f31): Images are nat-
urally multiscale. Further, there exists a relationship between
subbands at the same orientation and across different scales.
Distortions in an image will affect these across-scale statistics.
For example, in Fig. 7, we plot a histogram of coefficients from
d0

◦

1 and d0
◦

2 for the image in Fig. 2(c) and its various distorted
versions. In order to plot these distributions in 1-D, these
subbands were stacked together to form a large vector, whose
histogram we plot. Notice the difference in distributions of
these across-scale coefficients for natural and distorted images.

In order to capture the variation seen in Fig. 7, we again
utilize a GGD fit. The 1-D GGD is now fit to the coefficients
obtained by stacking together coefficients from subbands
at the same orientation but at different scales. Specifically,
6 GGD fits corresponding to each one of {dθ1, dθ2}, θ ∈
{0◦, 30◦, 60◦, 90◦, 120◦, 150◦} are computed. Again, these fits
are zero-mean and we compute two parameters - σ2 and γ. In
our experiments, σ2 does not add any information about the
perceived quality and hence we use only the computed γ’s as

features. Further, we also compute a GGD fit when all of the
subbands are stacked together (i.e., {dθα},∀α, θ) and use the γ
parameter again as our feature. Thus, f25− f30 correspond to
γ from the statistics across scales over different orientations,
while f31 corresponds to γ from the statistics across subbands.
In Fig. 8 we plot these computed γ values for each of the
images in Fig. 2 and their associated distorted versions.

3) Correlations across scales (f32-f43): One of the pri-
mary stages in human visual processing is filtering of the
visual stimulus by the retinal ganglion cells [38]. These cells
have center-surround-difference properties and have spatial re-
sponses that resemble difference of Gaussians (DoG) functions
[46], [38]. The responses of these cells serve a variety of
likely purposes including dynamic range compression, coding
and enhancement of features such as edges [46], [38]. Image
compression algorithms such as EZT and SPIHT [47], [48]
offer evidence of correlations across scales as well. Statistics
of edges have been used for blur quality assessment [49].
Given that edges are important, it is reasonable to suppose
that there exist elegant statistical properties between high-pass
responses of natural images and their band-pass counterparts.
Indeed, in our experiments, we found that such a relationship
exists for natural images and this relationship is affected by
the presence of distortion. We model high-pass band-pass
correlations in order to capture these dependencies.

Each bandpass (BP) subband is compared with the high-
pass (HP) residual band (obtained from the steerable pyra-
mid transform) using a windowed structural correlation [16].
Specifically, the BP and HP bands are filtered using a 15×15
Gaussian window with σ = 1.5 [16]. The structural correlation
is then computed as:

ρ =
2σxy + C2

σ2
x + σ2

y + C2

where σxy is the cross-covariance between the windowed
regions from the BP and HP bands, and σ2

x, σ
2
y are their

windowed variances respectively; C2 is a stabilizing constant
that prevents instabilities from arising when the denominator
tends to 0, and its value is the same as that used in [16].
The mean of the correlation map so obtained is used as the
correlation feature.

Fig. 9 plots the value of the correlation coefficient for each
of the 12 subbands and for all images considered in fig. 2 and
their associated distorted versions. Again, distortion-specific
clustering immaterial of content is evident.

Since there are 12 subbands, 12 such correlations are
computed, yielding features f32-f43.

4) Spatial correlation (f44-f73): Throughout this discus-
sion we have emphasized the observation that natural images
are highly structured and that distortions modify this structure.
While we have captured many such modifications in the
subband domain, one particular form of scene statistics that
remains neglected is the spatial structure of the subbands.
Natural images have a correlation structure that, in most
places, smoothly varies as function of distance.

In order to capture spatial correlation statistics, we pro-
ceed as follows. For each τ , τ ∈ {1, 2, . . . , 25}, and for
each dθ1, θ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}, we compute the
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Fig. 6. Plot of loge(σ2) vs. γ for d120
◦

1 for each of the images considered in Fig. 2 and their associated distorted versions. Notice how each distortion
seems to cluster in a particular region, immaterial of the image content. Images (a)-(d): left to right, top to bottom. Reference image (�), JPEG (◦), JPEG2K
(∆), WN (∗), blur (·) and ff (?).

joint empirical distribution between coefficients at (i, j) and
N τ

8 (i, j), where N τ
8 denotes the set of spatial locations at

a distance of τ (chess-board distance). The joint distribution
attained for a value of τ can be thought of as the joint
distribution pXY (x, y) between two random variables X and
Y . To estimate correlation between these two variables, we
compute:

ρ(τ) =
EpXY (x,y)[(X − EpX(x)[X])T (Y − EpY (y)[Y ])]

σXσY

where EpX(x)[X] is the expectation of X with respect to
the marginal distribution pX(x) obtained from the computed
joint distribution, and similarly for Y and (X,Y ). In order to
visualize this ρ(τ) for different distortions, in Fig. 10 we plot
ρ as a function of τ for the image in Fig. 2 (b) and its distorted
versions in Fig. 3. Notice how the presence of distortion alters
the spatial correlations statistics.

Once ρ(τ) is obtained, we parameterize the obtained curve
by fitting it with a 3rd order polynomial, where τ is the
distance at which the estimate of ρ is computed. Such a fit is
computed for dθ1,∀θ. The coefficients of the polynomial and

Fig. 10. Plot of spatial correlation coefficient (ρ(τ)) for various distance τ
for one subband of an image, across distortions.
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Fig. 8. Orientation Selective Statistics (γ) for reference and distorted images. Images (a)-(d): left to right, top to bottom. Reference image (�), JPEG (◦),
JPEG2K (∆), WN (∗), blur (·) and ff (?). 1 − 7 on the x-axis correspond to f25-f31.

the error between the fit and the actual ρ(τ) form the features
- f44-f73.

5) Across orientation statistics (f74-f88): One set of
statistics that remains unexplored are statistical correlations
that natural images exhibit across orientations. In order
to capture the distortion-induced modifications to these
statistical correlations across orientations, we compute
windowed structural correlation (same as the across scale
statistics) between all possible pairs of subbands at the
coarsest scale. The set of features is the lowest 5% [50],
[51] of the structural correlation values so obtained for each
pair, leading to a total of 6C2 = 15 features - f74-f88.
In Fig. 11 we plot the value of these across orientation
features for each of the images considered in Fig. 2 and their
associated distorted versions. Notice clustering of distortions
independent of content.

All of the features described here are listed in Table I for
reference.

Until now, we defined a series of statistical features that

we extracted from subband coefficients and we described
how each of these statistics are affected in the presence of
distortion. However, the relationship to quality for each of
these features requires clarification. Hence, in Fig. 12 we plot
the Spearman’s rank ordered correlation coefficient (SROCC)
across each of the distorted categories across all distorted
images in the LIVE image database. Note that no training
is undertaken here; the plot is simply to justify the choice of
the features as good indicators of quality. As is clear, some
features predict perceived quality with greater correlation with
human perception than others.

IV. DISTORTION-IDENTIFICATION BASED IMAGE VERITY
AND INTEGRITY EVALUATION

Our 2-stage approach to NR IQA - as realized here in con-
structing the DIIVINE index - consists of utilizing the features
extracted as described above for distortion-identification as
well as for distortion-specific quality assessment [12]. Both
these stages require a calibration process that relates the
computed feature to the distortion-class associated with it and
the human opinion score associated with it. This calibration
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Fig. 9. Across scale correlation statistics for reference and distorted images. Images (a)-(d): left to right, top to bottom. Reference image (�), JPEG (◦),
JPEG2K (∆), WN (∗), blur (·) and ff (?). 1 − 12 on the x-axis correspond to f32-f43.

Feature ID Feature Description Computation Procedure

f1 − f12 Variance of subband coefficients Fitting a generalized Gaussian
to subband coefficients

f13 − f24 Shape parameter of subband coefficients Fitting a generalized Gaussian
to subband coefficients

f25 − f31 Shape parameter across subband coefficients Fitting a generalized Gaussian
to orientation subband coefficients

f32 − f43 Correlations across scales Computing windowed
structural correlation between filter responses

f44 − f73 Spatial correlation across subbands Fitting a polynomial
to the correlation function

f74 − f88 Across orientation statistics Computing windowed structural correlation
between adjacent orientations at same scale

TABLE I
TABLE LISTING EACH OF THE FEATURES CONSIDERED HERE AND THE METHOD IN WHICH THEY WERE COMPUTED.
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Fig. 11. Across-orientation statistics for reference and distorted images. Images (a)-(d): left to right, top to bottom. Reference image (�), JPEG (◦), JPEG2K
(∆), WN (∗), blur (·) and ff (?). 1 − 15 on the x-axis correspond to f74-f88.

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Features

S
R

O
C

C

 

 
jp2k

jpeg

wn

gblur

ff

Scale & orientation selective
statistics

Orien.
sel.
stats.

Spatial Correlation Statistics
Correlations
across 
scales

Across Orientation
Statistics

Fig. 12. Spearman’s rank ordered correlation coefficient (SROCC) for each of the features from Table I on the LIVE image database.



12

is achieved using training, where a set of images whose
ground truth class of distortion as well the associated human
opinion score (i.e., perceived quality score) is known. Given
this training set, we calibrate the two stages of distortion-
identification and distortion-specific quality assessment. Once
calibrated, DIIVINE is capable of assessing the quality of any
distorted image without the need for the reference. Note that
the calibration stage also does not require the reference image.

Given a training set of images with known distortion class,
spanning the range of distortions (n) the algorithm is being
calibrated for, we train a classifier with the true class and the
feature vector as inputs. The classifier ‘learns’ the mapping
from feature space to class label, and once calibration is
achieved the trained classifier produces an estimate of the
class of distortion given an input image (i.e., the feature vector
associated with the input image).

Similarly, given a set of training images with known qual-
ity scores for each of the n distortion classes, we train n
regression modules that map the feature vector to the asso-
ciated quality score. Since each module is trained specifically
for each distortion, these regression modules, once trained,
function as distortion-specific assessors of quality, i.e., each
trained module will produce an estimate of quality (when
given as input an image/feature vector) under the assumption
that the image is distorted with that particular distortion. The
input image whose quality is to be assessed is passed through
each of these trained distortion-specific quality assessment
modules and hence we receive ~q, an n-dimensional vector
corresponding to the quality estimates from each of these n
regression modules.

In our approach, the classifier does not produce a hard
classification. Instead, probability estimates are extracted from
the classifier, which indicate the confidence that the trained
classifier demonstrates in placing the input in each of the n
classes. Thus, given an input image/feature vector, the trained
classifier produces an n-dimensional vector ~p, which represent
probabilities of the input belonging to each of the n classes.

Given the two vectors ~p and ~q, DIIVINE = ~pT ~q - i.e., each
distortion-specific quality score is weighted by the probability
of that distortion being present in the image.

Obviously, one can choose to utilize any classifier and any
regression tool to map the feature vectors onto classes/quality
scores. In this implementation we utilize a support vector
machine (SVM) for classification and support vector regres-
sion (SVR) for regression [52], [53]. The choice of SVM
and SVR were motivated by the fact that these tools have
been shown to perform well on high-dimensional hard clas-
sification/regression problems [54]. The interested reader is
directed to [52], [54], [53] for detailed explanations of SVMs
and SVRs.

We utilize the libSVM package [55] in order to implement
the SVM and the SVRs. The kernel used for both classification
and regression is the radial basis function (RBF) kernel, whose
parameters are estimated using cross-validation on the training
set.

V. PERFORMANCE EVALUATION

A. LIVE IQA database

We tested the DIIVINE index on the popular LIVE IQA
database [35], which consists of 29 reference images and
779 distorted images that span various distortion categories -
JPEG and JPEG2000 compression, white noise, Gaussian blur
and a Rayleigh fading channel (fast fading); along with the
associated human differential mean opinion scores (DMOS),
which are representative of the perceived quality of the image.

Since DIIVINE requires a training stage in order to calibrate
the relationship between the extracted statistical features and
the distortion category, as well as DMOS, we split the LIVE
dataset into 2 non-overlapping sets - a training set and a
testing set. The training set consists of 80% of the reference
images and their associated distorted versions while the testing
set consists of the remaining 20% of the reference images
and their associated distorted versions. The classification and
regression modules are trained on the training set and the
results are then tested on the testing set. In order to ensure
that the proposed approach is robust across content and is not
goverened by the specific train-test split utilized, we repeat this
random 80% train - 20% test split 1000 times on the LIVE
dataset and evaluate the performance on each of these test sets.
The figures reported here are the median of the indices used
for performance across these 1000 train-test iterations2.

The indices used to measure performance of the algorithm
are the Spearman’s Rank Ordered Correlation Coefficient
(SROCC), the linear (Pearson’s) correlation coefficient (LCC)
and the Root Mean Squared Error (RMSE) between the
predicted score and the DMOS. LCC and RMSE are computed
after passing the algorithmic scores through a logistic non-
linearity as in [35]. A value close to 1 for SROCC and LCC
and a value close to 0 for RMSE indicates superior correlation
with human perception. The median SROCC, LCC and RMSE
values across these 1000 train-test trials are tabulated in Tables
II-IV, for each distortion category, as well as across distortion
categories.

We also report the performance of two FR IQA algorithms -
peak-signal-to-noise-ratio (PSNR), and the structural similarity
index (SSIM). The former has been used (despite much criti-
cism [56], [57]) as a measure of quality for many years, and the
latter is now gaining popularity as a good-yet-efficient assessor
of perceived image quality. We also tabulate the performances
of several NR IQA algorithms, including original algorithms
used to demonstrate the concept of the two-stage framework
- the Blind Image Quality Index (BIQI) - BIQI-PURE and
BIQI-4D3, and the two holistic NR IQA algorithms that we
have previously discussed - Anisotropy based NR IQA [30]
and the BLind Image Integrity Notator using DCT Statistics
(BLIINDS) index [31]. The BIQI realizations are available
online [58], and the implementation of the anisotropy measure4

2We use the realigned DMOS scores as recommended in [35] and report
results only on the distorted images, as in [35].

3The reader is referred to [12] for details on these realizations of the BIQI-
framework.

4We note that in [30], the authors mention a correction for JPEG images,
which we do not implement here. The variance parameter as suggested is
used for NR IQA.
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JP2K JPEG WN Gblur FF All
PSNR 0.868 0.885 0.943 0.761 0.875 0.866

SSIM (SS) 0.938 0.947 0.964 0.907 0.940 0.913
BIQI-PURE 0.736 0.591 0.958 0.778 0.700 0.726

BIQI-4D 0.802 0.874 0.958 0.821 0.730 0.824
Anisotropic IQA 0.173 0.086 0.686 0.595 0.541 0.323

BLIINDS 0.805 0.552 0.890 0.834 0.678 0.663
DIIVINE 0.913 0.910 0.984 0.921 0.863 0.916

TABLE II
MEDIAN SPEARMAN’S RANK ORDERED CORRELATION COEFFICIENT
(SROCC) ACROSS 1000 TRAIN-TEST TRIALS ON THE LIVE IMAGE

QUALITY ASSESSMENT DATABASE. Italicized ALGORITHMS ARE NR IQA
ALGORITHMS, OTHERS ARE FR IQA ALGORITHMS.

JP2K JPEG WN Gblur FF All
PSNR 0.879 0.903 0.917 0.782 0.880 0.862

SSIM (SS) 0.940 0.947 0.983 0.902 0.952 0.906
BIQI-PURE 0.750 0.630 0.968 0.800 0.722 0.740

BIQI-4D 0.819 0.879 0.968 0.843 0.771 0.833
Anisotropic IQA 0.130 0.083 0.490 0.469 0.420 0.187

BLIINDS 0.807 0.597 0.914 0.870 0.743 0.680
DIIVINE 0.922 0.921 0.988 0.923 0.888 0.917

TABLE III
MEDIAN LINEAR CORRELATION (LCC) ACROSS 1000 TRAIN-TEST TRIALS

ON THE LIVE IMAGE QUALITY ASSESSMENT DATABASE. Italicized
ALGORITHMS ARE NR IQA ALGORITHMS, OTHERS ARE FR IQA

ALGORITHMS.

was obtained from [59]. We implemented the BLIINDS index
as described in [31].

It should be clear that DIIVINE performs well in terms
of correlation with human perception. Further, DIIVINE im-
proves upon the BIQI realizations, and is superior to the two
other holistic NR IQA approaches. Remarkably, DIIVINE also
trumps the full-reference PSNR, for each distortion separately
as well as across distortion categories. However, the most
salient observation from the Tables II-IV is that the proposed
no-reference approach is competitive with the full-reference
SSIM index! This is no mean achievement, since the SSIM
index is currently one of the most popular FR IQA algorithms.

Although distortion-identification/classification is not ex-
plicitly performed in the two-stage framework used here (recall
that we use a probabilistic classification in which the probabil-
ity of an image belonging to a particular distortion category
is estimated), in order to demonstrate that the features are
capable of identifying the distortion afflicting the image with
high accuracy, in Table V, we list the median classification

JP2K JPEG WN Gblur FF All
PSNR 11.87 13.60 11.14 11.25 13.33 13.89

SSIM (SS) 8.59 10.11 5.17 7.96 8.74 11.56
BIQI-PURE 16.54 24.58 6.93 11.10 19.48 18.36

BIQI-4D 14.34 15.06 6.94 9.90 17.90 15.05
Anisotropic IQA 24.65 31.40 24.41 16.19 25.44 26.68

BLIINDS 14.78 25.32 11.27 9.08 18.62 20.01
DIIVINE 9.66 12.25 4.31 7.07 12.93 10.90

TABLE IV
MEDIAN ROOT-MEAN-SQUARED ERROR (RMSE) ACROSS 1000

TRAIN-TEST TRIALS ON THE LIVE IMAGE QUALITY ASSESSMENT
DATABASE. Italicized ALGORITHMS ARE NR IQA ALGORITHMS, OTHERS

ARE FR IQA ALGORITHMS.

JP2K JPEG WN Gblur FF All
Class. Acc.(%) 80.00 81.10 100 90.00 73.33 83.75

TABLE V
MEDIAN CLASSIFICATION ACCURACY OF CLASSIFIER ACROSS 1000

TRAIN-TEST TRIALS ON THE LIVE IMAGE DATABASE.
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Fig. 13. Mean SROCC and error bars one standard deviation wide for the
algorithms evaluated in Table II, across 1000 train-test trials on the LIVE IQA
database.

accuracy of the classifier for each distortion category and the
overall accuracy as well. The caveat here is that the actual
accuracy of the classifier is not of great import for the proposed
approach, since hard classification is never performed. The
classification accuracies are reported for completeness.

B. Statistical Significance Testing

We tabulated the median correlation values of DIIVINE as
well as other NR and FR IQA algorithms in the previous
section. Although the presented results show some differences
in terms of the median correlation, in this section we evaluate
if this difference in correlation is statistically significant.
Our analysis here is based on the SROCC values across all
distortions.

Recall that we computed correlations for each of the al-
gorithms over 1000 test sets. Thus, apart from the median
score tabulated before, we have at our disposal the mean
SROCC value and the standard error associated with the 1000
correlation values. In Fig. 13, we plot this mean correlation
value across the dataset along with error bars one standard
deviation wide for each of the algorithms evaluated in Table
II.

In order to evaluate statistical significance, we utilize the
one-sided t-test between the correlation scores generated by
the algorithms across the 1000 train-test trials [60]. In Table
VI we tabulate the results of such statistical analysis. The null
hypothesis is that the mean correlation of the row is equal
to the mean correlation of the column at the 95% confidence
level. The alternative hypothesis is that the mean correlation of
the row is greater (or lesser) than the mean correlation of the
column. Table VI indicates which row is statistically superior
(‘1’), statistically equivalent (‘0’) or statistically inferior (‘-1’)
to which column.



14

PSNR SSIM BIQI-PURE BIQI-4D Anisotropic IQA BLIINDS DIIVINE
PSNR 0 -1 1 1 1 1 -1
SSIM 1 0 1 1 1 1 0

BIQI-PURE -1 -1 0 -1 1 1 -1
BIQI-4D -1 -1 1 0 1 1 -1

Anisotropic IQA -1 -1 -1 -1 0 -1 -1
BLIINDS -1 -1 -1 -1 1 0 -1
DIIVINE 1 0 1 1 1 1 0

TABLE VI
RESULTS OF THE ONE-SIDED T-TEST PERFORMED BETWEEN SROCC VALUES. A VALUE OF ‘1’ INDICATES THAT THE ALGORITHM (ROW) IS

STATISTICALLY SUPERIOR TO THE ALGORITHM (COLUMN). A VALUE OF ‘0’ INDICATES STATISTICAL EQUIVALENCE BETWEEN THE ROW AND COLUMN,
WHILE A VALUE OF ‘-1’ INDICATES THAT THE ALGORITHM (ROW) IS STATISTICALLY INFERIOR TO THE ALGORITHM (COLUMN). Italicized ALGORITHMS

ARE NR IQA ALGORITHMS, OTHERS ARE FR IQA ALGORITHMS.

From Table VI, it is obvious that DIIVINE is statistically
better than other no-reference approaches to IQA. Further,
DIIVINE is statistically superior to the full-reference PSNR.
This is a significant result indeed, for we are unaware of any
NR IQA algorithm that is not only capable of assessing quality
across many distortion categories, but also performs statisti-
cally better than the full-reference PSNR. Indeed, DIIVINE,
which predicts perceived quality given ONLY the distorted
image produces correlations with human subjective judgments
at a level that is statistically indistinguishable from the full-
reference structural similarity index (SSIM) that needs both the
reference and distorted image in order to assess quality! This
suggests that one can safely replace the FR SSIM with the
NR DIIVINE without any loss in performance, provided that
the distortions encountered are well-represented by the dataset
used to train DIIVINE (here - the LIVE IQA database).

C. Database Independence

Since NR IQA algorithms are generally trained and tested
on various splits of a single dataset (as described above), it is
natural to wonder if the trained set of parameters are database-
specific. In order to demonstrate that the training process is
simply a calibration, and once such training is performed,
DIIVINE is capable of assessing the quality of any distorted
image (from the set of distortions it is trained for) we evaluate
the performance of DIIVINE on an alternate database - the
TID2008 [61].

The TID database consists of 25 reference images and 1700
distorted images over 17 distortion categories. Of these 25
reference images only 24 are natural images and we test
our algorithm only on these 24 images. Further, of the 17
distortion categories we test DIIVINE only on those categories
it has been trained for - JPEG, JPEG2000 compression (JP2k),
Additive white noise (WN) and Gaussian Blur (blur)5. In
order to evaluate DIIVINE on the TID database, we train the
parameters of DIIVINE using the entire LIVE IQA database
as described previously. The trained model is then tested for
its performance on the TID database. In Table VII, we tabulate
the SROCC values obtained for such testing for each distortion
as well as across distortion categories. Further, we also list
the performance of the FR PSNR and SSIM for comparison

5Although DIIVINE has been trained for FF, the JP2k transmission loss
distortion on the TID database does not correspond to this kind of fading
channel model and hence is not considered here.

JP2K JPEG WN Gblur All
PSNR 0.825 0.876 0.918 0.934 0.870

SSIM (SS) 0.963 0.935 0.817 0.960 0.902
DIIVINE 0.924 0.866 0.851 0.862 0.889

TABLE VII
SPEARMAN’S RANK ORDERED CORRELATION COEFFICIENT (SROCC) ON

THE TID2008 DATABASE. Italicized ALGORITHMS ARE NR IQA
ALGORITHMS, OTHERS ARE FR IQA ALGORITHMS.

Step Percentage of Time
Steerable Pyramid Decomposition 2.52

Divisive Normalization 10.83
Or. & Scale selective Statistics 0.10
Orientation selective Statistics 0.48

Across scale Correlations 8.42
Spatial Correlation 69.72

Across Orientation Statistics 7.92

TABLE VIII
INFORMAL COMPLEXITY ANALYSIS OF DIIVINE. TABULATED VALUES

REFLECT THE PERCENTAGE OF TIME DEVOTED TO EACH OF THE STEPS IN
DIIVINE.

purposes. It is clear from Table VII that the performance of
DIIVINE is NOT database dependent and that once trained
DIIVINE is capable of assessing the quality of images across
the distortions that it is trained for.

D. Computational Analysis

Although DIIVINE was not developed under the constraint
of real-time analysis of images, given that the performance
of DIIVINE is as good as leading FR QA algorithms, its
computational complexity is relevant when one considers
applications of DIIVINE. Hence, it is prudent to perform an
informal analysis of the computations needed to predict the
quality of an image without a reference using DIIVINE.

An unoptimized MATLAB code takes approximately 60
seconds to produce a quality estimate on a 1.8 GHz processor
with 2 GB of RAM running Windows XP and MATLAB
R2008a for a 512 × 768 image. The amount of time taken
for training the SVM/SVRs is negligible as is the time taken
to predict the quality by the trained classifier/regressors com-
pared to that of feature extraction. In Table VIII we tabulate the
percentage of time devoted to each of the steps in DIIVINE.

As is clear from Table VIII, spatial correlation statistics
occupy a considerable chunk of the processing time. This is
primary because constructing the 2D PDFs needed for various
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spatial shifts is a computationally intensive process. One
would imagine that implementing this efficiently in compile-
able code (such as C) would cut down the time needed con-
siderably. Further, the steerable pyramid decomposition in this
version of DIIVINE is performed using the MATLAB toolbox
from the authors [36], without using MEX code as recom-
mended. Given that there exists C code for the same, it is not
wrong to suppose that the time take for this section may also
be reduced drastically. Similar arguments hold for the divisive
normalization process. The across-orientation statistics and the
across scale correlations are based on windowed structural
correlation computation, whose current implementation is in
MATLAB. Recently, however, faster real-time implementa-
tions of such windowed correlations have been made available,
which would reduce the computation associated with these
steps as well [62].

Thus, it seems that DIIVINE can be re-coded efficiently
in order to achieve close-to-real-time (if not real-time) perfor-
mance. Thus, application of DIIVINE should not suffer owing
to its complexity.

VI. CONCLUSION

We proposed a no-reference (NR)/blind image quality as-
sessment (IQA) framework and integrated algorithm based on
natural scene statistics, that assesses the quality of an image
without need for a reference across a variety of distortion
categories. This algorithm - the Distortion identification-based
Image Verity and INtegrity Evaluation (DIIVINE) index -
utilizes the previously proposed two-stage framework which
first identifies the distortion present in the image and then
performs distortion-specific quality assessment to provide an
ostensibly distortion-independent measure of perceptual qual-
ity, using extracted natural scene statistic features. We detailed
the statistical features extracted, along with motivations drawn
from vision science and image processing, and demonstrated
that the DIIVINE index correlates well with human perception
of quality. We undertook a thorough analysis of the proposed
index on the publicly available LIVE IQA Database, and
showed that the proposed measure is statistically superior
to other NR IQA algorithms that function across distortion
categories. Further, we compared the performance of DIIVINE
with two standard full-reference QA algorithms: the peak
signal-to-noise-ratio (PSNR) and the single-scale structural
similarity index (SSIM). We showed that DIIVINE is statisti-
cally superior to the FR PSNR and statistically indistinguish-
able from the FR SSIM. To the best of our knowledge, DI-
IVINE is the only IQA algorithm that not only assesses quality
across a range of distortions, but also correlates with human
perception judgments at a level that is statistically equivalent
to good FR measures of quality. Finally, we demonstrated that
DIIVINE performance is database-independent and can easily
be extended to distortions beyond those considered here, and
performed an informal complexity analysis.

The proposed approach is modular, and can easily be
extended beyond the set of distortions considered here.
Importantly, DIIVINE does not compute specific distortion
features (such as blocking), but instead extracts statistical

features which lend themselves to a broad range of distortion
measurements. Future work will involve increasing the
subset of distortions beyond those considered here, in
an effort to further relax any distortion dependence. A
software release of DIIVINE has been made available online:
http://live.ece.utexas.edu/research/quality/DIIVINE release.zip.
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[30] S. Gabarda and G. Cristóbal, “Blind image quality assessment through
anisotropy,” Journal of the Optical Society of America A, vol. 24, no. 12,
pp. 42–51, 2007.

[31] M. A. Saad, A. C. Bovik, and C. Charrier, “A perceptual DCT Statistics
based Blind Image Quality Metric,” IEEE Signal Processing Letters,
vol. 17, no. 6, pp. 583–586, 2010.

[32] M. Farias and S. Mitra, “No-reference video quality metric based on
artifact measurements,” in IEEE International Conference on Image
Processing, vol. 3, 2005, pp. 141–144.

[33] J. Caviedes and J. Jung, “No-reference metric for a video quality
control loop,” 5th World Multiconference on Systemics, Cybernetics and
Informatics, 2001.

[34] M. Wainwright and E. Simoncelli, “Scale mixtures of Gaussians and the
statistics of natural images,” Advances in neural information processing
systems, vol. 12, no. 1, pp. 855–861, 2000.

[35] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation
of recent full reference image quality assessment algorithms,” IEEE
Transactions on Image Processing, vol. 15, no. 11, pp. 3440–3451, Nov.
2006.

[36] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger,
“Shiftable multiscale transforms,” IEEE Transactions on Information
Theory, vol. 38, no. 2, pp. 587–607, 1992.

[37] B. A. Olshausen and D. J. Field, “How close are we to understanding
V1?” Neural Computation, vol. 17, no. 8, pp. 1665–1699, 2005.

[38] R. Sekuler and R. Blake, Perception. McGraw Hill, 2002.
[39] M. P. Sampat, Z. Wang, S. Gupta, A. C. Bovik, and M. K. Markey,

“Complex wavelet structural similarity: A new image similarity index,”
IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2385–2401,
October 2009.

[40] M. J. Wainwright, O. Schwartz, and E. P. Simoncelli, “Natural image
statistics and divisive normalization: modeling nonlinearities and adap-
tation in cortical neurons,” Statistical theories of the brain, pp. 203–222,
2002.

[41] K. Seshadrinathan and A. C. Bovik, “Unifying analysis of full reference
image quality assessment,” 15th IEEE International Conference on
Image Processing, 2008. ICIP 2008, pp. 1200–1203, 2008.

[42] ——, “Motion tuned spatio-temporal quality assessment of natural
videos,” Image Processing, IEEE Transactions on, vol. 19, no. 2, pp.
335–350, 2010.

[43] P. Teo and D. Heeger, “Perceptual image distortion,” SID International
Symposium Digest of Technical Papers, vol. 25, pp. 209–209, 1994.

[44] K. Sharifi and A. Leon-Garcia, “Estimation of shape parameter for
generalized Gaussiandistributions in subband decompositions of video,”
IEEE Tran. Circ. Syst. for Video Tech., vol. 5, no. 1, pp. 52–56, 1995.

[45] A. K. Moorthy and A. C. Bovik, “Statistics of natural image distor-
tions,” Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on, pp. 962–965, 2010.

[46] S. Palmer, Vision science: Photons to phenomenology. MIT press
Cambridge, MA., 1999.

[47] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Signal Process, vol. 41, no. 12, p. 34453462,
1993.

[48] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits
Syst. Video Technol., vol. 6, p. 243250, 1996.

[49] M. J. Chen and A. C. Bovik, “No-reference Image Blur Assessment
using Multiscale Gradient,” 1st International Workshop on Quality of
Multimedia Experience (QoMEX), 2009.

[50] A. K. Moorthy and A. C. Bovik, “Visual importance pooling for
image quality assessment,” IEEE Journal of Selected Topics in Signal
Processing, Issue on Visual Media Quality Assessment, vol. 3, no. 2, pp.
193–201, April 2009.

[51] M. H. Pinson and S. Wolf, “A new standardized method for objectively
measuring video quality,” IEEE Transactions on Broadcasting, no. 3,
pp. 312–313, Sep. 2004.

[52] V. Vapnik, The Nature of Statistical Learning Theory. Springer Verlag,
2000.

[53] B. Schölkopf, A. Smola, R. Williamson, and P. Bartlett, “New support
vector algorithms,” Neural Computation, vol. 12, no. 5, pp. 1207–1245,
2000.

[54] C. Burges, “A tutorial on support vector machines for pattern recogni-
tion,” Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167,
1998.

[55] C. Chang and C. Lin, “LIBSVM: a library for support vector machines,”
http://www.csie.ntu.edu.tw/ cjlin/libsvm/, 2001.

[56] B. Girod, “What’s wrong with mean-squared error?, Digital images and
human vision, A. B. Watson, Ed.” pp. 207–220, 1993.

[57] Z. Wang and A. C. Bovik, “Mean squared error: love it or leave it?
- a new look at signal fidelity measures,” IEEE Signal Proceessing
Magazine, vol. 26, no. 1, pp. 98–117, 2009.

[58] A. K. Moorthy and A. C. Bovik, “Perceptually significant spatial pooling
techniques for image quality assessment,” Human Vision and Electronic
Imaging XIV. Proceedings of the SPIE, vol. 7240, January 2009.

[59] S. Gabarda and G. Cristobal. (2010, November). [Online]. Available:
http://www.iv.optica.csic.es/page49/page51/page51.html

[60] D. Sheskin, Handbook of parametric and nonparametric statistical
procedures. CRC Press, 2004.

[61] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and
F. Battisti, “Tid2008 - a database for evaluation of full reference visual
quality assessment metrics,” Advances of Modern Radioelectronics,
vol. 10, pp. 30–45, 2009.

[62] M. J. Chen and A. C. Bovik, “Fast structural similarity index algo-
rithm,” Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on, pp. 994–997, 2010.

Anush Krishna Moorthy received the B.E. degree
in Electronics and Telecommunication with a Silver
Medal from the University of Pune, Pune, India,
in June 2007, and the M.S. degree in Electrical
Engineering from the University of Texas, Austin,
in May 2009, and ascended to Ph.D. candidacy in
September 2010.

He joined the Laboratory for Image and Video
Engineering (LIVE), University of Texas, Austin, in
January 2008 and is currently the Assistant Director
with LIVE, Department of Electrical and Computer

Engineering, University of Texas. Anush Moorthy is the recipient of the
Continuing Graduate Fellowship from The University of Texas at Austin
for 2010-2011, the Professional Development Award, Fall 2009, Fall 2010,
the Center for Perceptual Systems Travel Grant, Spring 2010 and the TATA
scholarship for higher education abroad.

His research interests include image and video quality assessment, image
and video compression, and computational vision.



17

Alan Conrad Bovik is the Curry/Cullen Trust En-
dowed Chair Professor at The University of Texas
at

Austin, where he is Director of the Laboratory
for Image and Video Engineering (LIVE). He is a
faculty member in the Department of Electrical and
Computer Engineering and the Center for Perceptual
Systems in the Institute for Neuroscience. His re-
search interests include image and video processing,
computational vision, and visual perception. He has
published about 600 technical articles in these areas

and holds two U.S. patents. His several books include the recent companion
volumes The Essential Guides to Image and Video Processing (Academic
Press, 2009). Al was named the SPIE / IS&T Imaging Scientist of the Year
for 2011. He has also received a number of major awards from the IEEE Signal
Processing Society, including: the Best Paper Award (2009); the Education
Award (2007); the Technical Achievement Award (2005), and the Meritorious
Service Award (1998). He received the Hocott Award for Distinguished
Engineering Research at the University of Texas at Austin, the Distinguished
Alumni Award from the University of Illinois at Champaign-Urbana (2008),
the IEEE Third Millennium Medal (2000) and two journal paper awards from
the international Pattern Recognition Society (1988 and 1993). He is a Fellow
of the IEEE, a Fellow of the Optical Society of America (OSA), a Fellow
of the Society of Photo-Optical and Instrumentation Engineers (SPIE), and
a Fellow of the American Institute of Medical and Biomedical Engineering
(AIMBE). He has been involved in numerous professional society activities,
including: Board of Governors, IEEE Signal Processing Society, 1996-1998;
co-founder and Editor-in-Chief, IEEE Transactions on Image Processing,
1996-2002; Editorial Board, The Proceedings of the IEEE, 1998-2004; Series
Editor for Image, Video, and Multimedia Processing, Morgan and Claypool
Publishing Company, 2003-present; and Founding General Chairman, First
IEEE International Conference on Image Processing, held in Austin, Texas,
in November, 1994.

Dr. Bovik is a registered Professional Engineer in the State of Texas and
is a frequent consultant to legal, industrial and academic institutions.


