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We develop a new model for no-reference 3D stereopair quality assessment that considers the impact of binocular
fusion, rivalry, suppression, and a reverse saliency effect on the perception of distortion. The resulting framework,
dubbed the S3D INtegrated Quality (SINQ) Predictor, first fuses the left and right views of a stereopair into a single
synthesized cyclopean image using a novel modification of an existing binocular perceptual model. Specifically,
the left and right views of a stereopair are fused using a measure of “cyclopean” spatial activity. A simple product
estimate is also calculated as the correlation between left and right disparity-corrected corresponding binocular
pixels. Univariate and bivariate statistical features are extracted from the four available image sources: the left
view, the right view, the synthesized “cyclopean” spatial activity image, and the binocular product image. Based
on recent evidence regarding the placement of 3D fixation by subjects viewing stereoscopic 3D (S3D) content,
we also deploy a reverse saliency weighting on the normalized “cyclopean” spatial activity image. Both one- and
two-stage frameworks are then used to map the feature vectors to predicted quality scores. SINQ is thoroughly
evaluated on the LIVE 3D image quality database (Phase I and Phase II). The experimental results show that SINQ
delivers better performance than state of the art 2D and 3D quality assessment methods on six public databases,
especially on asymmetric distortions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction quality and distortion types [10] and Chen et al. proposed an NR
method that extracts features from synthesized “cyclopean” images,
computed disparity maps and uncertainty maps [11]. Su et al. modeled
stereopairs with bivariate statistical models [12,13] and proposed a 3D
blind image naturalness quality index based on both univariate and

bivariate natural scene statistics (NSS) models [14]. Su et al. proposed

In the past two decades there has been tremendous progress on
both the theoretical and practical aspects of visual quality assessment
(QA) [1]. The problem of 2D picture quality prediction has been
intensively studied [2-7]; however, the field of 3D perceptual quality
assessment is relatively nascent [8]. Although 3D capture and display

technologies have greatly advanced and become widely affordable,
progress still needs to be made on developing better tools that can
effectively evaluate, maintain and improve the quality of 3D visual
signals [8]. With the rapid growth of available 3D content, the need
for accurate and efficient methods for assessing the quality of 3D visual
signals is increasing.

Here we consider the problem of No-Reference Stereoscopic 3D
(S3D) picture quality prediction, hence no reference signal is assumed
present. Several studies have been presented to address the problem
of NR 3D visual quality assessment. Akhter et al. proposed a NR 3D
QA algorithm which extracts features from stereopairs and an estimated
disparity map [9]. Ryu et al. discussed the relationship between stereo
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an improved cyclopean image synthesis model, and extracted percep-
tually relevant NSS features using bivariate statistical models from
spatially adjacent bandpass coefficients of the synthesized cyclopean
images [14]. Natural scene statistics features measured on 3D visual
coordinates propel the NR 3D IQA model in [15]. Lopez et al. [16]
proposed an S3D video quality assessment method based on depth maps
and video motion. While these early advances on the NR S3D IQA
problem are promising, further improvements are possible by better
accounting for human stereo perception mechanisms. Algorithms for
conducting S3D IQA have been developed by modeling a variety of
binocular vision characteristics, e.g., binocular energy responses [17],
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gain-control mechanisms [18], models of visual information extrac-
tion [10] and of Gabor filter responses [19]. However, there is still
room for improvement beyond available S3D IQA models with regards
to correlation with human subjective judgments. Here we develop a way
to account for both binocular perception and the differences in low-
level content between the two views in a new NR S3D picture quality
assessment model. The proposed model and resulting algorithm contains
three main innovations. First, we use a simple measure of spatial activity
to model the binocular perception process by calculating the differences
between the two views arising from distortion, and use it to modify an
existing method of synthesizing a cyclopean image. Second, based on
recent evidence regarding the placement of 3D fixations by humans
viewing S3D content, we deploy a model of visual reverse saliency
to optimize the process of feature extraction. Lastly, we compute a
novel disparity-corrected correlation image obtained by computing the
products of corresponding pixels between the two stereopair images.
The experimental results demonstrate the effectiveness of the proposed
method in improving the prediction of the perceived quality of S3D
picture content.

The rest of the paper is organized as follows. Section 2 reviews
related S3D image quality assessment models. Section 3 describes the
binocular perception model we use. We introduce the concept of the
S3D product image or between-view empirical correlation in Section 4.
The various features are integrated into a new NR stereopair quality
assessment model, called SINQ. We evaluate the performance of SINQ
against the state-of-the-art in Section 5 and conclude the paper in
Section 6.

2. Related work

S3D image quality prediction models can be classified according
to the types of 2D and 3D information that is computed from the
stereoscopic pairs. The simplest 3D IQA algorithms do not incorporate
depth/disparity information, instead using features drawn directly from
the left and right view images. Yasakethu et al. [20] used various
2D IQA models to predict the quality of left and right view images
independently, then synthesized both scores to obtain predictions of S3D
quality. Most 2D-based 3D IQA algorithms belong to this category.

The deployment of models of stereoscopic perception and disparity
computations can be used to improve on 2D-based models. You et al.
applied a variety of 2D IQA algorithms on stereopairs as well as on
disparity maps to predict perceptual quality [21]. Sazzad et al. [22] took
disparity information into account to assess the quality of symmetrical
and asymmetrical JPEG compression stereopairs. Zhao et al. proposed a
binocular JND (BJND) model, which uses basic properties of binocular
vision in response to asymmetric noise [23]. Lopez et al. utilized depth
maps and video motion to measure the quality of a 3D video [16]. The
authors of [24] proposed a theory that binocular perception is not uni-
formly distributed and can be classified into different types of perception
patterns. Based on this theory, Shao et al. classified S3D images into non-
corresponding, binocular fusion, and binocular suppression regions, and
evaluated the quality of each region independently [24]. Lin et al. [25]
assessed the quality of compression distortion considering binocular
integration, and Silva et al. [19] proposed a novel video quality metric
based on binocular suppression theory.

In addition to using depth/disparity information, accounting for
the fused perception of a given S3D scene by computing an estimated
cyclopean image is a useful way to improve S3D quality predictions.
A growing number of algorithms have utilized a cyclopean image to
construct better S3D IQA models. Maalouf et al. [26] utilized disparity
information to compute a cyclopean image by averaging the left view
and compensated right view. In [18], a new 3D image quality model
specifically tailored for mobile 3D video was proposed, which considers
a cyclopean view, binocular rivalry, and the scene geometry. More
recently, Chen et al. developed a framework for assessing the quality
of both symmetrically and asymmetrically distorted stereopairs [27].
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In their framework, given the left and right view images, an estimated
disparity map was computed using a stereo algorithm, while the per-
ceptual responses are generated on the stereo images using a Gabor
filter bank. Finally, a “cyclopean image” was synthesized from the
stereo image pair, the estimated disparity map and the Gabor filter
responses. Chen et al. further developed this framework by proposing
an NR S3D IQA algorithm in [11]. Su et al. improved the cyclopean
image synthesis model and proposed a 3D blind image naturalness
quality index [14], which uses a parallel-viewing geometry to generate
a convergent cyclopean image from the left and right views images,
then extracts perceptually relevant NSS features from spatially adjacent
bandpass coefficients of the cyclopean images. Yang et al. [28] proposed
a saliency map to define an S3D model that processes a “cyclopean
image”. A “cyclopean image” synthesis framework is also adopted here
in the proposed SINQ model, but with a different fusion strategy based
on a measure of relative spatial activity.

3. Binocular spatial activity model

In order to analyze the mechanisms that drive binocular vision in
an accessible way, we thoroughly consider the phenomena of binocular
fusion, rivalry and suppression. The relationship between the amount
of spatial activity, which is a measure of normalized image variance,
contained in an S3D image pair [10] and perceived image quality is
also studied. Levelt [29] demonstrated that low-level sensory factors
can strongly influence binocular rivalry and suppression. He pointed
out that strong stimuli, such as areas of high contrast or sharp edges
tend to dominate rivalry between the two views. Following this idea,
we construct a cyclopean fusion model based on the hypothesis that
an image in a (grayscale) stereopair containing the greater amount of
spatial activity will dominate perception.

3.1. Binocular fusion, rivalry and suppression

The human visual system (HVS) receives visual stimuli from the
two eyes and combines them into a single combined percept [30].
When the two views share similar characteristics, binocular fusion can
happen easily, driven by processes of vergence, accommodation, and
other visual adaptations when viewing the real, natural world. However,
binocular rivalry can occur when unusual dissimilar (dichoptic) monoc-
ular stimuli are presented to the corresponding retinal locations of the
two eyes. Then, rather than perceiving a single, stable fused image, one
either experiences alternations in perceptual awareness over time as the
two stimuli compete for perceptual dominance, or diplopia, which is
what usually occurs when viewing stereopairs containing asymmetric
distortions. If one of the stimuli dominates the other, then binocular
suppression will occur. A related challenging issue is how to model
the process of binocular combination, when evaluating asymmetrically
distorted stimuli [30]. Since the binocular perception of degrees or
characteristics of distortion can greatly influence the perceived quality
of S3D images [31], determining how to synthesize the two views to
simulate the perception of a 3D scene is a key ingredient of a successful
3D images quality assessment model.

Normal viewing of stereo images in daily life usually results in
binocular fusion rather than binocular rivalry, since the stereopairs
share similar content. However, when viewing electronically displayed
S3D content, the introduction of distortions may destroy this similarity,
leading to binocular rivalry. This rivalry can modify the perception
of the distortions [11,14,27,32], and can even lead to feelings of
physiological discomfort [33]. Clearly, binocular rivalry is an important
factor in S3D quality perception [18,19,24,25,27].
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Fig. 1. Comparison of variances of corresponding left and right views of asymmetrically distorted stereopairs. (a) Noise distorted. (b) Blur distorted.
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Fig. 2. Scatter plot of DMOS versus the corresponding MS-SSIM scores of asymmetrically noisy left/right views. The fitted curves show that DMOS correlates with the MS-SSIM scores of
the right view images better than with the left view images. The SROCC between DMOS and MS-SSIM scores of right views was 0.9369, while the SROCC between DMOS and MS-SSIM
scores of left views was 0.5180.

3.2. Spatial information and binocular perception

We conducted studies on blur and noise distorted images to further
clarify the connection between binocular vision and these distortions.
If one of the views is blurry and the other is sharp, the visual system
may reduce the loss of high frequency information of the blurred view,
resulting in a fused stereoscopic perception highly similar to the sharper
view [34,35]. The perception of stereopairs tends to be dominated by
the sharper, higher-quality image when one or both are distorted by

blur [10,36].

However, when noise is introduced, the perception of

stereopairs may be dominated by the low-quality component, i.e., a

quality tends
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high-frequency distortion [10,33]. Blur tends to decrease the amount
of spatial activity in images, while noise tends to increase the amount
of spatial activity, i.e. by comparing the amount of spatial activity
in the left and right views, we can determine the dominant factors
affecting S3D quality prediction. Thus, our approach to S3D quality
prediction operates under the hypothesis that the perception of S3D

to be dominated by the image containing the greater
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Fig. 3. Scatter plot of DMOS versus the corresponding MS-SSIM scores of asymmetrical blurred left/right views. The fitted curves show that DMOS correlates with the MS-SSIM scores of
the left view images better than with the right view images. The SROCC between DMOS and MS-SSIM scores of right views was 0.5564, while the SROCC between DMOS and MS-SSIM

scores of left views was 0.8729.

amount of spatial activity. To validate this hypothesis, we conducted a
series of experiments on a subset of the LIVE 3D Image Quality Database
(Phase II) [37]. Specifically, we used the set of asymmetric stereopairs
distorted by blur and noise. By design, all of the selected left views have
less distortion than the corresponding right views in the LIVE database.
We used the MS-SSIM [38] index as a proxy to measure the quality of
each of the left and right images.

We first analyzed the relationship between image distortion (noise
and blur) and spatial activity, measured using variance [39], (see
Fig. 1). When the left and right views of images from this database are
asymmetrically distorted, the right view is more severely distorted and
hence, the scatter points gather on one side of the diagonal. Clearly,
image noise increased spatial activity, while blur decreased spatial
activity. We used the individual (left and right) image of the reference
and distorted stereopairs as inputs to compute MS-SSIM scores, then
analyzed the correlation between the MS-SSIM scores and the DMOS
provided by the database (see Figs. 2 and 3). For the case of noise
distortion, the results show that the right view (which contains more
spatial information than the left view) MS-SSIM scores better correlated
with human judgments (DMOS) than did the left-view scores. For blur
distortion, the left view (with more spatial information than the right
view) MS-SSIM scores better correlated with human quality perception.
These experimental results support our hypothesis, suggesting that the
(left or right) view containing greater spatial activity will dominate S3D
quality perception.

3.3. Binocular spatial activity model

Based on the experiments we described above, we have observed
that spatial activity is not only useful for determining whether there
will be binocular rivalry (suppression) between the left and right view
images, but it can also be used to further evaluate the relative degrees
of influence of the two views when binocular rivalry occurs. We next
describe the quantitative binocular spatial activity model expressive of
our hypothesis. Stereopsis is largely a local process [40], and the relative
amounts of information contained in stereopairs may vary locally over
space, hence we define a local spatial binocular activity measure as
follows. Let I, (i) denote the left view (luminance) image, where i
(x,y) are spatial image coordinates. Then, let S; (i) be a neighborhood
centered at i, e.g. defined by a moving NxN window. We have observed
that the performance of the model is not very sensitive to the window
size, and we fixed it to N =17. Then express the spatial activity within
S; (i) as:

e[S, ()] =logy [67 () +1], €8]
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Fig. 4. Flow diagram of proposed NR S3D quality assessment model.

where the unit additive constant guarantees a positive spatial infor-
mation, and ai (i) is the variance of S; (i). The monotonic logarithm
serves to compress the activity values to a smaller range. Similarly
defining quantities Sy (i), ”?z (i), and € [Sg ()] on the right image I (i),
a synthesized “cyclopean” spatial activity image O (i) can be modeled
as:

{e[S @] +C}-I )+ {e[Sp(i+d)|+C} Ip(i+d;)

{e[SL @] +C}+{e[Sr(i+d;)]+C}

where d; is the horizontal disparity at coordinate i, and C=0.01 is
a small positive number to guarantee stability. Thus, the calculation
of the binocular spatial activity measure O (i) follows three steps: (1)
Generate a disparity map between the left and right view images using a
simple stereo disparity estimation algorithm (we deploy a simple stereo
algorithm which utilizes the SSIM index as a matching criterion, as
motivated in [27]); (2) Generate spatial activity maps on the left and
right view images using (1); (3) Synthesize a final “cyclopean” spatial
activity image using (2).

o= ., @

4. No-reference stereopair quality assessment

Next we describe our proposed model of S3D picture quality predic-
tion. Fig. 4 shows a flow diagram of the model.
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Fig. 5. Four inputs. (a) Left view image. (b) Right view image with two distorted patches: white Gaussian noise and Gaussian blur, respectively. (c) “cyclopean” spatial activity image.

(d) Product image.

Along one path that accepts both images as inputs, a “cyclopean”
measure of binocular spatial activity is generated using (2). Along a
parallel path, an empirical correlation image is obtained by computing
the products of corresponding disparity-shifted pixels of the two stere-
opair images. We tried two methods to analyze the degree of correlation
between the left and right views. One uses a multivariate generalized
gaussian distribution (MGGD) to model the relationship between the
different views, the other uses a bivariate product. It has been shown
that using the bivariate product has lower time complexity and still
delivers good performance. This element-by-element product image is a
simple way of estimating the degree of correlation between the corre-
sponding pixels [6]. We employ it to capture the disparity compensated
empirical correlation between the left and right view images. These
two matrices (“cyclopean” spatial activity and correlation) form an S3D
quality feature vector.

The product image P (i) is computed as:

Pi)=1I.() I (i+d;), 3)

which is a simple measure of disparity compensated correlation. This
product image can be very efficiently computed. The combined effec-
tiveness of the synthesized “cyclopean” spatial activity image and the
binocular product image will be studied in Section 4.

As described above, the process of feature extraction at this stage has
produced four feature maps: the left view image, the right view image,
the synthesized “cyclopean” spatial activity image and the product
image. Fig. 5 shows an example of each of these four inputs. The left
view image is undistorted, while the right view image contains two
distorted patches containing additive noise and blur, respectively. The
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“cyclopean” spatial activity image responds strongly to noise, but is
insensitive to the blur. This result correlates well with human visual
perception. Finally, the product image is shown.

These four feature maps represent a large amount of data. Towards
reducing the feature maps into a small number of “quality-aware”
descriptors we first apply a process of normalization. The normalization
process is reminiscent of the one used by the natural scene statistics
(NSS) motivated BRISQUE 2D IQA model [6], which has achieved
success as a blind 2D image quality predictor. When viewing a given
scene, humans may cast their attention and gaze at different places.
Spatial acuity peaks at the foveola and rapidly declines away from
fixation. Naturally, locating the points of fixation, then weighting an
IQA model accordingly, could provide better correlation with perceived
quality. Liu et al. [41] conducted a series of eye tracking experiments
which showed that human viewers tend to visually fixate on smooth
depth regions, while avoiding large disparity gradients associated with
depth discontinuities. This observation, named reverse saliency, showed
that depth information can be used in the prediction of visual saliency.
It has been successfully deployed in a 3D saliency model and as part
of the S3D visual discomfort model [42,43]. Here we also deploy this
interesting and powerful concept to compute a weighting map from the
disparity gradient image computed on each stereopair, then use this
map to “reverse-saliency-weight” the normalized “cyclopean” spatial
activity image. As with BRISQUE, we extract parametric features from
a model fit to define a small set of quality-predictive features by using
the generalized Gaussian distribution (GGD) and asymmetric GGD.
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Fig. 6. Histograms of MSCN coefficients of (a) the “cyclopean” spatial activity image and (b) the product image computed on a natural undistorted stereopair and several distorted
versions of it. ori: original image. wn: white noise. jp2k: JPEG2000. jpeg: JPEG compression. blur: Gaussian blur. ff: fast fading.

4.1. Univariate parametric features

On each of the four feature maps, mean subtracted contrast nor-
malized (MSCN) coefficients [6] are computed, as follows. Given a
normalized map F (i) (of size M x N),

F @) — pp (i)

MSCNp ()= =

, @
where ur and o, are the local mean and standard deviation of F at
location i, and C, is a stabilizing constant. The local mean and standard
deviation values are computed over Gaussian-weighted windows as
in [6], and the size of window is also set at 7 x 7. Then, the reverse-
saliency weighted MSCN coefficients of the “cyclopean” spatial activity
image are computed as follows:

MSCN, (i) = W;- MSCNEg (i), %)
_ 1
1+ |va ©)

and |Vd,| is the gradient magnitude of disparity d;. The MSCN his-
tograms of the “cyclopean” spatial activity image and the product image
are plotted in Fig. 6 for a number of distorted versions of an original
image. It may be seen that the histograms of the MSCN coefficients of
the “cyclopean” spatial activity image computed on the original image
and on the product image have Gaussian-like appearances. However, the
introduction of various distortions changes the shape of the histogram
in characteristic ways.
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We utilize a generalized Gaussian distribution (GGD) to fit the MSCN
coefficient distributions of the four maps (the left view image, the right
view image, the synthesized “cyclopean” spatial activity image and the
product image). The GGD with zero mean can be expressed as:

oy C(Ix\*
S (nao) = S e exp[ < ; ) ] @
where
_ [ra/e
b=\ TG/ ®

and I (-) is the standard gamma function. The fitting procedure is the
same as that used in [6]. The resulting best-fit shape parameter a and
scale parameter o2 from each of the four feature maps (i.e. the left view,
the right view, the synthesized “cyclopean” spatial activity image and
the binocular product image) are both adopted as quality features.

4.2. Bivariate Parametric Features

We also model the local spatial bivariate product statistics of
spatially adjacent MSCN coefficients to capture the local structure
information. The asymmetric GGD is used to model pairwise products of
neighboring MSCN coefficients along four orientations-horizontal (H),
vertical (V), main-diagonal (D1) and secondary-diagonal (D2) [6]. We
adopt the same strategy on the four feature maps (similarly defining
quantities M.SC N, (i) on the MSCN histograms of the “cyclopean” spa-
tial activity image M .SC N (i)). Pairwise products of MSCN coefficients
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Fig. 7. Histograms of paired products of horizontally adjacent MSCN coefficient feature maps of an undistorted stereopair and corresponding distorted versions of the stereopair. (a)
“cyclopean” spatial activity image. (b) binocular product image. ori: original image. wn: white noise. jp2k: JPEG2000. jpeg: JPEG compression. blur: Gaussian blur. ff: fast fading.

along four orientations are computed as follows.

H (m,n) = MSCN (m,n) MSCN (m,n+ 1), (©)]
V (m,n) = MSCN (m,n) MSCN (m+ 1,n), 10
D1 (m,n) = MSCN (m,n) MSCN (m+ 1,n+ 1), 11
D2(m,n) = MSCN (m,n) MSCN (m+ 1,n—1), (12)

where m and n index rows and columns in the MSCN map. Fig. 7 plots the
pairwise product MSCN histograms of the “cyclopean” spatial activity
image and the binocular product image (using horizontally-adjacent
MSCN coefficients). The MSCN product histograms of feature maps
computed on the original image tend towards a slightly asymmetrical
Laplacian-like appearance with a longer right tail than left, while the
various distortions include different, narrower shapes and scales in
characteristic ways.

We use an asymmetric GGD model to fit the empirical distributions
of paired products of neighboring MSCN coefficients along four orien-
tations: horizontal, vertical, main diagonal and counter diagonal. These
are computed on each of the four feature maps. The asymmetric GGD
model with zero mean is given by:

v v
Y ap|-(=
(B +8.) T (1)) [ (ﬁl) 13)

12

)

(B +8,) L1/
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where
_[ram

By =0 TG/ 14)
_ r{/v)

br=o VTGam s

The shape parameter v and left and right scale parameters §, and p, are
used as quality-predictive features.

Some discussion of the normalization of the four types of feature
maps is worthwhile. The univariate and bivariate parametric features
found by the GGD and AGGD fits form an effective summarization of the
spatial behavior of each of the feature maps. In the case of the left and
right view images, the parametric features have perceptual significance,
since the MSCN coefficients have an interpretation both as a model
of retinal processing [44] and as a canonical natural scene statistic
model [45]. The MSCN parameters also form the core of a successful no-
reference image quality predictor [6]. On the other two feature maps,
we simply apply the MSCN process to remove redundancies from the
data and extract the same parameters, although we do not ascribe a
neural mechanism to these constructs.

Images are naturally multiscale, since they contain objects of differ-
ent depths and sizes, and so is low-level retinal and cortical processing
in primate vision systems. Moreover, multiscale processing has been
shown to improve the efficacy of leading image quality models [6,38].
Therefore, all of the above features are computed at two scales: the
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Table 1
Comparison of median SROCC of compared S3D IQA models against DMOS on LIVE Phase I database.
Method WN JP2K JPEG Blur FF All
PSNR 0.932 0.799 0.121 0.902 0.588 0.834
SSIM [3] 0.938 0.858 0.436 0.879 0.586 0.877
MS-SSIM [38] 0.942 0.893 0.611 0.926 0.734 0.924
2D VIF [52] 0.931 0.901 0.581 0.934 0.804 0.920
VSI [53] 0.932 0.874 0.602 0.905 0.718 0.872
BRISQUE [6] 0.940 0.812 0.569 0.860 0.784 0.901
SSEQ [54] 0.909 0.827 0.438 0.879 0.732 0.903
GWH-GLBP [55] 0.903 0.791 0.465 0.891 0.641 0.886
Chen FR [27] 0.948 0.888 0.530 0.925 0.707 0.916
3D Chen NR [11] 0.919 0.863 0.617 0.878 0.652 0.891
Su [14] 0.906 0.838 0.603 0.791 0.679 0.903
SINQ 0.954 0.897 0.656 0.883 0.841 0.936
Table 2

original image scale and a coarser scale downsampled by a factor of
2, as in [6].

Next we deploy a two-stage framework first introduced in [46] to
map the feature vectors to perceptual quality scores. The two-stage
framework is (1) distortion classification followed by (2) distortion-
specific quality assessment, using a support vector machine (SVM) to
classify by distortion in the first stage, and a support vector regression
(SVR) to form a mapping of features to quality predictions in the second
stage [47,48]. The Libsvm-3.16 toolbox [49] was utilized to implement
the SVM and SVR using the radial basis function (RBF) kernel.

5. Experimental results

We tested the performance of our proposed method on the LIVE
3D image quality database. There are two phases contained in this
publicly available database: Phase I [50], in which all of the stereopairs
are symmetrically distorted, and Phase II [37], which consists of both
symmetrical and asymmetrical distortions, i.e., where the left and right
view images are impaired by different degrees of the same distortion. In
addition, we further evaluated the performance of SINQ on four other
3D IQA databases. The performance was evaluated via three metrics:
Spearman’s Rank Ordered Correlation Coefficient (SROCC), Pearson’s
Correlation Coefficient (LCC) and the Root Mean Squared Error (RMSE)
between the predicted quality scores and DMOS. The predicted scores
were mapped to DMOS using the 5-parameter logistic nonlinearity
function described in [51] before computing LCC and RMSE. The lower
RMSE and higher LCC and SROCC values indicate better correlation
with human perception. To achieve a more comprehensive comparison,
several 2D and 3D IQA models are also included in our comparison
experiments. Note that NR IQA methods are italicized, while all others
are FR and RR IQA methods.

5.1. Performance on Phase I database

The LIVE Phase I Stereo Image Quality database consists of 20
reference images and 365 corresponding distorted images (80 each for
JPEG, JP2K, WN and FF and 45 for Blur) with co-registered human
scores in the form of DMOS. Smaller values of DMOS correspond to
better image quality. All distortions are symmetric. For the purpose
of comparison, several top-performing 2D IQA models were selected,
including the FR algorithms PSNR, SSIM [3], MS-SSIM [38], VIF [52],
and VSI [53] and the NR models BRISQUE [6], SSEQ [54], and GWH-
GLBP [55]. These 2D IQA algorithms were applied to both views of each
stereo pair, resulting in two quality scores. The mean value of the two
scores was used as the predicted score. Several available 3D IQA models
were also tested. These included a cyclopean natural scene statistic
based method proposed by Chen et al. [27], which also targets binocular
rivalry, and the NR IQA methods proposed by Chen et al. [11] and Su
et al. [14]. The software releases of all of the selected IQA models are
publicly available. For the FR methods, all of the reference and distorted
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Comparison of median LCC of compared S3D IQA models against DMOS on LIVE Phase I
database.

Method WN JP2K JPEG Blur FF All
PSNR 0.935 0.788 0.228 0.916 0.701 0.836
SSIM 0.942 0.875 0.489 0.918 0.670 0.877
MS-SSIM 0.948 0.931 0.684 0.944 0.807 0.930

2D VIF 0.931 0.937 0.681 0.965 0.862 0.925
VSI 0.958 0.928 0.674 0.973 0.810 0.871
BRISQUE 0.941 0.847 0.615 0.926 0.853 0.910
SSEQ 0.932 0.906 0.626 0.956 0.787 0.919
GWH-GLBP 0.932 0.863 0.582 0.961 0.733 0.912
Chen FR 0.942 0.912 0.603 0.942 0.776 0.917

3D Chen NR 0.917 0.907 0.695 0.917 0.735 0.895
Su 0.961 0.917 0.746 0.953 0.721 0.922
SINQ 0.970 0.948 0.734 0.967 0.898 0.956

Table 3

Comparison of median RMSE of compared S3D IQA models against DMOS on LIVE Phase
I database.

Method WN JP2K JPEG Blur FF All
PSNR 5.897 7.976 6.369 5.807 8.865 9.010
SSIM 5.578 6.262 5.703 5.740 9.226 7.891
MS-SSIM 5.296 4.738 4.769 4.774 7.336 6.028

2D VIF 6.076 4.510 4.787 3.776 6.302 6.232
VSI 4.594 4.562 4.467 3.200 6.511 7.969
BRISQUE 5.640 6.894 5.158 5.473 6.491 6.793
SSEQ 5.748 5.337 4.639 3.798 7.068 6.381
GWH-GLBP 5.835 6.195 4.827 3.567 7.675 6.657
Chen FR 5.581 5.320 5.216 4.822 7.837 6.533

3D Chen NR 6.433 5.402 4.523 5.898 8.322 7.247
Su 3.931 4.873 3.959 4.326 8.613 6.258
SINQ 3.834 3.985 4.049 3.554 5.018 4.781

stereopairs were used for testing, while for the NR methods, which are
generally learning-based, we randomly divided the reference stereopairs
and corresponding distorted counterparts into 80% training and 20%
test subsets (the same as [6,11] and [14]). There was no overlap of
content between the training and test subsets. In order to avoid any bias
introduced by image content on training, the random procedure of 80%
training and 20% test was repeated over 1000 trials. The median SROCC,
LCC and RMSE results across the 1000 random trials are tabulated in
Tables 1-3. The best performing method for distortion type and on the
entire database is marked in bold type.

From Tables 1-3, it may be observed that, in most cases, SINQ
performed better than all of the compared 2D and 3D IQA models. In
particular, the comparison with [6] shows that our model effectively
captures the effects on quality perception introduced by stereopsis,
since the non-stereo features used in SINQ are identical to those that
define [6]. For every type of distortion SINQ delivered competitive
performance. Since there are only symmetric distortions in the Phase
I database, we may infer that SINQ is able to predict the perceptual
severity of symmetric distortions quite effectively.
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Comparison of median SROCC of compared S3D IQA models against DMOS on LIVE Phase
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Table 6
Comparison of median RMSE of compared S3D IQA models against DMOS on LIVE Phase
1I database.

Method WN JP2K JPEG Blur FF All Method WN JP2K JPEG Blur FF All
PSNR 0.665 0.641 0.492 0.868 0.747 0.701 PSNR 6.673 7.439 6.481 5.604 7.081 7.824
SSIM 0.921 0.703 0.679 0.836 0.835 0.793 SSIM 3.934 6.758 5.451 7.510 5.736 6.737
MS-SSIM 0.947 0.800 0.854 0.800 0.827 0.777 MS-SSIM 3.306 6.390 3.695 8.379 5.720 6.874

oD VIF 0.838 0.822 0.846 0.951 0.933 0.819 2D VIF 5.907 5.464 4.087 2.221 4.197 6.184
VSI 0.948 0.787 0.804 0.845 0.854 0.799 VSI 2.089 4.723 3.780 5.049 4.720 6.790
BRISQUE 0.846 0.593 0.769 0.862 0.935 0.770 BRISQUE 5.731 7.193 4.448 4.323 4.206 7.038
SSEQ 0.938 0.769 0.841 0.922 0.843 0.802 SSEQ 2.809 5.346 3.494 3.575 5.738 6.519
GWH-GLBP 0.903 0.905 0.849 0.950 0.928 0.804 GWH-GLBP 3.974 3.563 3.338 2.423 3.652 6.282
Chen FR 0.940 0.814 0.843 0.908 0.884 0.889 Chen FR 3.368 5.562 3.865 3.747 4.966 4.987

3D Chen NR 0.950 0.867 0.867 0.900 0.933 0.880 3D Chen NR 3.513 4.298 3.342 4.725 4.180 5.102
Su 0.946 0.845 0.818 0.903 0.899 0.905 Su 3.547 5.482 4.169 4.453 4.199 4.657
SINQ 0.957 0.909 0.839 0.909 0.924 0.931 SINQ 2.519 3.463 3.476 2.481 3.803 3.959

Table 5 Table 7

Comparison of median LCC of compared S3D IQA models against DMOS on LIVE Phase II
database.

Median classification accuracy and standard deviation of stage 1 of SINQ across 1000 trials
on LIVE Phase II database.

Method WN JP2K JPEG Blur FF All WN JP2K JPEG Blur FF All
PSNR 0.782  0.653  0.467 0915  0.788  0.721 Mean acc. (%) 95.9 89.7 99.4 94.9 88.1 93.6
SSIM 0930 0725  0.669  0.842  0.867  0.802 Standard deviation ~ 0.079  0.146  0.035  0.061 0.107  0.041
MS-SSIM 0951  0.759  0.864  0.799  0.868  0.793

. VIF 0.835  0.831  0.847 0.987 0.931  0.837 Table 8
VSI 0.975 0.817 0.834 0.916 0.909 0.804 Performance of single-stage realization of SINQ on LIVE Phase II and Phase II databases.
BRISQUE 0.845  0.681  0.795  0.951  0.931  0.782
SSEQ 0960 0739  0.840 0973  0.873  0.826 WN JP2K  JPEG  Blur FF All
GWH-GLBP 0.918 0.923  0.881 0.981 0.945  0.825 SROCC 0.959 0.869 0.671 0.886 0.809 0.933
Chen FR 0.957  0.834 0862 0963 0901 _ 0900 Phase I LCC 0.974 0939 0734 0967 0876  0.953

30 Chen NR 0.947  0.899  0.901 0.941  0.932  0.895 RMSE 3.590 4363 4079  3.433 5364 4982
Su 0.953 0.847 0.888 0.968 0.944 0.913 SROCC 0.940 0.922 0.837 0.920 0.940 0.926
SINQ 0970 0920  0.871  0.984  0.938  0.936 Phase IT LCC 0.963 0931 0.866 0980  0.951  0.929

RMSE 2962 3316 3575 2818 3326  4.090

5.2. Performance on Phase II database

The LIVE Phase II Stereo Image Quality database consists of 8
reference images and 360 distorted images (72 each for JP2K, JPEG,
WN, FF and Blur) with co-registered human scores in the form of DMOS.
For each type of distortion, every reference stereopair was processed
to create three symmetric distorted counterparts and six asymmet-
ric distorted counterparts. Hence the database contains a mixture of
symmetric and asymmetric distortions. Asymmetric distortions are an
important consideration, as they can occur in a variety of ways, as
for example proposed asymmetric 3D picture compression algorithms.
The experiments were conducted in the same way as on the Phase
I dataset, using SROCC, LCC and RMSE as performance metrics, and
compared with the same 2D and 3D IQA models. The median results
across 1000 random trials are given in Tables 4-6. We can see that
when the test images contain asymmetric distortions, the prediction
accuracy of each 2D IQA method severely deteriorated as compared with
symmetric distortions. However, SINQ was able to predict the quality of
asymmetric distortions quite well, and again outperformed all of the
other tested 2D and 3D IQA models on the Phase II database. These
results further confirm the efficacy of the SINQ S3D quality prediction
model.

5.3. Statistical significance

Although the results showed apparent differences between the mod-
els, we conducted statistical tests to determine whether the differences
were statistically significant. Because the Phase II database contains a
mixture of symmetric and asymmetric distortions, and is more complex
than the Phase I database, we only conducted experiments on the Phase
II database. We determined significance using the t-test on SROCC of
the compared algorithms across 1000 train-test trials. Figs. 8 and 9
show a box plot of SROCC and the results of the t-test, respectively.
The null hypothesis we applied is that the value of the mean correlation
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in the row is equal to the value of the column with a confidence of
95%. The alternate hypotheses are that the mean correlation value
of the row is lesser or greater than the value of the column. Fig. 9
indicates whether an algorithm in a row is statistically inferior (‘-1’),
statistically equivalent (‘0’) or statistically superior (‘1’) to the algorithm
in a column. From Fig. 8 it may be seen that SINQ delivered the most
stable results among all methods. SINQ also was superior as measured
by the t-test (see Fig. 9). Thus we may conclude that the performance of
SINQ is quite stable, and statistically better than all the other compared
FR and NR algorithms.

5.4. Classification accuracy

As mentioned earlier, SINQ embodies a two-stage framework [46] to
map the feature vectors to the distortion categories and then to predicted
quality scores. The probability of the tested image belonging to each
distortion type is predicted using a SVM multi-class classification engine.
Then, five separate SVR models are trained to predict the perceptual
quality of the tested image, one for each distortion type. Classification
efficacy was tested over 1000 80% training and 20% testing trials. The
mean classification accuracy and standard deviation across 1000 trials
were used as the performance metrics, as tabulated in Table 7. The mean
classification accuracy of SINQ across the entire database was 93.6%
with a relatively small standard deviation 0.041. SINQ was also able to
distinguish the individual distortion types with high accuracy, especially
on the JPEG and White Noise (WN) distortions.

5.5. Single-stage performance

In order to show that the features defining SINQ are effective
without a first classification stage, we also created a single-stage SINQ
model where features are directly mapped to quality without distortion
identification. We conducted the performance of this model on the
LIVE 3D Image Quality Database (Phase I and Phase II). The median
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Fig. 8. Box plot of SROCC of algorithms across 1000 train-test trials on the Phase II database.
2D MS- 2 2D GWH-
2D PSNR 2D SSIM SSIM 2D VIF 2D VSI BRISQUE 2D SSEQ GLBP Chen FR  Chen NR Su SINQ
2D PSNR 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2D SSIM 1 0 1 -1 -1 1 -1 -1 -1 -1 -1 -1
2D MS-
SSIM 1 -1 0 -1 -1 1 -1 -1 -1 -1 -1 -1
2D VIF 1 1 1 0 1 1 1 1 -1 -1 -1 -1
2D VSI 1 1 1 -1 0 1 -1 -1 -1 -1 -1 -1
2D
BRISQUE 1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1
2D SSEQ 1 1 1 -1 1 1 0 -1 -1 -1 -1 -1
2D GWH-
GLBP 1 1 1 -1 1 1 1 0 -1 -1 -1 -1
Chen FR 1 1 1 1 1 1 1 1 0 1 -1 -1
Chen NR 1 1 1 1 1 1 1 1 -1 0 -1 -1
Su 1 1 1 1 1 1 1 1 1 1 0 -1
SINQ 1 1 1 1 1 1 1 1 1 1 1 0

Fig. 9. Results of T-test between SROCC values of various IQA algorithms.

SROCC, LCC and RMSE values across 1000 random trials are tabulated
in Table 8. When compared with the two-stage performance in Tables 1—
6, the performances are nearly indistinguishable suggesting that two
stages are only needed if the distortion categorization is required for
some other process, such as image correction [56].

5.6. Individual feature map contributions

The proposed SINQ model uses summary statistical parameters
drawn from four different feature maps: original left and right view
images, the synthesized “cyclopean” spatial activity image and the
binocular product image. It is of interest to study the contributions of
each, as well as the efficacy of the reverse saliency model. We divided
the features into five groups corresponding to feature maps and tested
the prediction power of each group. The median SROCC, LCC and RMSE
scores across 1000 80% training and 20% testing trials were again
tabulated, in Table 9. We found that features drawn from the binocular
product image performed about as well those from the “cyclopean”
spatial activity image and much better than those from the original
left and right views. The reverse saliency model delivers an obvious
improvement in performance. When compared with the experimental
results in Tables 4-6, SINQ is still able to reach a relatively high level
of performance if using only features drawn from “cyclopean” spatial
activity images or binocular product images. By combining features
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from all four sources, even better performance is achieved, as shown in
Table 9. Thus, each type of feature map makes an important contribution
to the performance of SINQ.

5.7. Performances on symmetric and asymmetric distortions

We further compared the same set of 2D and 3D IQA models on
the separate Phase I and Phase II databases, and found that almost
all of the 2D and 3D methods are able to reasonably predict the per-
ceptual severity of symmetric distortions, but generally perform worse
on asymmetric distortions. By contrast, SINQ performs well on both
symmetric and asymmetric distortions. Since the Phase II database is
composed of both symmetric and asymmetric distortions, we conducted
a further comparative test to study the performance of SINQ. We divided
the Phase II database into two separate subsets of only symmetric and
asymmetric distortions and tested the performance of several 2D and 3D
IQA methods on both subsets. The results are listed in Table 10.

On only symmetric distortions, SINQ outperformed all the other
tested IQA methods except Su’s NR model [14], while the 2D MS-SSIM,
2D VIF, Chen FR and Chen NR models all obtained good performance.
On asymmetric distortions, SINQ outperformed all the others by a signif-
icant margin. We found that all of the 2D and 3D IQA models performed
significantly worse on asymmetric distortions than on symmetric ones,
except SINQ, which had only a modest drop in performance.
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Table 9
Performance of feature map on LIVE Phase II database.
SROCC LCC RMSE
Left view 0.723 0.781 7.140
Right view 0.675 0.702 7.954
“Cyclopean” spatial activity image without reverse saliency 0.873 0.889 5.157
“Cyclopean” spatial activity image with reverse saliency 0.922 0.923 4.232
Binocular product image 0.860 0.878 5.308
SINQ 0.931 0.936 3.959
Table 10 ) o results further confirm that the “cyclopean” spatial activity model is
Performance on symmetric and asymmetric distortions on LIVE Phase II database. an effective descriptor of the perceptual quality of stereopairs.
Method SROCC
Symmetric Asymmetric 5.9. Computational complexity
PSNR 0.776 0.587
SSIM 0.828 0.733 The computations expended by our model are mainly consumed in
&i‘SSIM ggii ggg;‘ the process of synthesizing a cyclopean image, computing a product
2D Vs 0.836 0.742 image, and subsequent feature extraction. Since all these steps are pro-
BRISQUE 0.849 0.667 cessed in the spatial domain, the complexity of SINQ is quite reasonable.
SSEQ 0.822 0.662 We selected seven IQA models and compared their complexities. The
GWH-GLBP 0.853 0.678 original MATLAB code of each algorithm was run on the chosen 100
Chen FR 0.923 0.842 3D images from the LIVE Phase II database, and the mean computation
3D Chen NR 0.918 0.834 time of each model over these images was used as the complexity metric.
0. .849 - .
?I’N Q 0 z:; g‘s;(‘)s The results in Table 12 show that SINQ is faster than the compared 3D
. methods, but slower than the 2D methods, using a PC with a quad-core
Table 11 3.4 GHz and 8 GB RAM.

Performance comparison between 2D baseline IQA models and binocular enhanced IQA
models on LIVE Phase II database.

SROCC
2D Baseline Binocular model
PSNR 0.701 0.722
SSIM 0.793 0.836
MS-SSIM 0.777 0.879
VIF 0.806 0.859
Table 12
Comparison of time complexity of eight IQA methods.
Method Time (s)
SSIM 0.082
2D VIF 1.595
BRISQUE 0.141
GWH-GLBP 0.200
Chen FR 23.110
3D Chen NR 11.667
Su 170.396
SINQ 3.232

5.8. Generality of cyclopean spatial activity map

To further study the usefulness of the “cyclopean” spatial activity
image, we conducted a verification experiment on several 2D IQA
algorithms (PSNR, SSIM, MS-SSIM and VIF) by applying them on the
“cyclopean” image. The results of the 2D baseline were obtained by
averaging the left and right algorithm scores, and the results of the
binocular model were obtained by computing the 2D algorithms on the
synthesized “cyclopean” spatial activity images. The comparison results
on the Phase II database are tabulated in Table 11.

It may be observed that the median SROCC values of the 2D IQA
methods increased sharply, especially for MS-SSIM and VIF. These

Table 13
Information of the four databases.

5.10. Performance on four other databases

We further tested the performance of SINQ on four other 3D IQA
databases. These databases are the MLC 3D Database [57], the IRRCyN
IVC Database [58], and the Waterloo IVC 3D IQA Database [59], which
includes two datasets, called Phase I and Phase II. We summarize the
relevant details of these databases in Table 13, including the numbers
of reference images, symmetric distorted images, asymmetric distorted
images and distortion types. The experiments were conducted in the
same way as on the LIVE database, using SROCC, LCC and RMSE as
performance metrics. The median results across 1000 random trials on
the four image databases are given in Table 14. SINQ also achieved
highly competitive prediction accuracy and outperformed all of the
other compared 2D and 3D IQA models, especially on the MCL and
IRRCyN IVC databases. Also, we divided the Waterloo IVC database into
two parts: symmetric and asymmetric distorted images, and evaluated
the performance of SINQ on each subset separately. The results are
showed in Table 15. Although other tested methods’ results fluctuated
severely, SINQ predicted the quality uniformly quite well on the Wa-
terloo IVC database. These results again confirm the efficacy of the
proposed SINQ model.

6. Conclusion

We have developed a new NR S3D IQA model called SINQ. A
novel modification of an existing binocular perceptual model is utilized
to form synthesized “cyclopean” spatial activity images. A binocular
product image is also generated to express correlations between the
left and right disparity-corrected corresponding binocular pixels. A
powerful reverse saliency weighting strategy was also deployed that
boosts performance further. SINQ was extensively validated on several
S3D image databases, and shown to deliver standout performance. We

Symmetric distorted image No.

Asymmetric distorted image No. Distortion type No.

Database Reference image No.

Waterloo IVC phase I 6 78
Waterloo IVC phase II 10 130
MCL 9 648
IRRCyN IVC 6 96

252 3
330 3
0 6
0 5
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Table 14
Comparison of compared S3D IQA models on four databases.
Method Waterloo IVC Phase I Waterloo IVC Phase II MCL IRRCyN IVC
SROCC LCC RMSE SROCC LCC RMSE SROCC LCC RMSE SROCC LCC RMSE
SSIM 0.631 0.743 10.526 0.577 0.671 14.192 0.783 0.765 1.677 0.709 0.743 15.668
2D VIF 0.682 0.761 10.213 0.628 0.693 13.794 0.865 0.862 1.317 0.741 0.847 12.454
BRISQUE 0.866 0.870 7.547 0.866 0.855 10.000 0.786 0.810 1.500 0.565 0.658 16.912
GWH-GLBP 0.831 0.800 9.687 0.830 0.811 11.202 0.843 0.858 1.307 0.818 0.855 10.949
Chen FR 0.569 0.674 11.623 0.444 0.569 15.740 0.839 0.762 1.686 0.676 0.683 17.100
3D Chen NR 0.911 0.926 6.232 0.884 0.882 8.961 0.799 0.813 1.497 0.835 0.851 12.088
SINQ 0.937 0.956 4.960 0.911 0.922 7.377 0.928 0.951 0.806 0.900 0.929 8.155
Table 15 . o ) [14] C.-C. Su, L.K. Cormack, A.C. Bovik, Oriented correlation models of distorted natural
SROCC of compared models on symmetric and asymmetric distortions of Waterloo IVC images with application to natural stereopair quality evaluation, IEEE Trans. Image
database. Process. 24 (5) (2015) 1685-1699.
Method Waterloo IVC phase Waterloo IVC phase II [15] K. Lee, A.K. Moorthy, S. Lee, A.C. Bovik, 3D visual activity assessment based on
S - A i s - As - natural scene statistics, IEEE Trans. Image Process. 23 (1) (2014) 450-465.
ymmetric SymmEtric ymmetric ymmetric [16] J.P. Lopez, J.A. Antonio, D. Jimenez, J.M. Menendez, Stereoscopic 3D video quality
SSIM 0.608 0.620 0.549 0.551 assessment based on depth maps and video motion, EURASIP J. Image Video Process.
2D VIF 0.720 0.654 0.641 0.588 (2013).
BRISQUE 0.956 0.836 0.941 0.825 [17] F. Shao, G. Jiang, M. Yu, Binocular energy response based quality assessment of
GWH-GLBP 0.956 0.743 0.924 0.724 stereoscopic images, Digit. Signal Process. 29 (2014) 45-53.
Chen FR 0.863 0.491 0.642 0.390 [18] L. Jin, A. Boev, K. Egiazarian, A. Gotchev, Quantifying the importance of cyclopean
3D Chen NR 0.934 0.907 0.897 0.867 view and binocular rivalry-related features for objective quality assessment of mobile
SINQ 0.967 0.934 0.917 0.904 3D video, EURASIP J. Image Video Process. (2014).

found several aspects of the problem to be of particular interest which
might merit further research. For example, since reverse saliency is
based only on depth information, perhaps a more general saliency model
could achieve better performance. In the future we plan to extend these
ideas towards developing S3D video quality prediction models that
incorporate space-time measures of binocular spatial activity as well
as space-time natural scene statistic models.
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