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a b s t r a c t

The image gradient is a commonly computed image feature and a potentially predictive
factor for image quality assessment (IQA). Indeed, it has been successfully used for both
full- and no- reference image quality prediction. However, the gradient orientation has
not been deeply explored as a predictive source of information for image quality assess-
ment. Here we seek to amend this by studying the quality relevance of the relative gra-
dient orientation, viz., the gradient orientation relative to the surround. We also deploy a
relative gradient magnitude feature which accounts for perceptual masking and utilize an
AdaBoosting back-propagation (BP) neural network to map the image features to image
quality. The generalization of the AdaBoosting BP neural network results in an effective
and robust quality prediction model. The new model, called Oriented Gradients Image
Quality Assessment (OG-IQA), is shown to deliver highly competitive image quality pre-
diction performance as compared with the most popular IQA approaches. Furthermore,
we show that OG-IQA has good database independence properties and a low complexity.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Given the exploding development and deployment of
visual acquisition, display and processing technologies,
digital images have become ubiquitous in our daily life.
Advanced image capture devices that are built into digital
cameras, smart phones and wearable devices now allow us
to acquire high resolution images frequently and con-
veniently. Users can easy and nearly instantly share and
receive these images conveniently via social websites such
as Facebook and Flickr. These images often suffer from
nal Natural Science
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H. Huang),
quality degradations caused by distortion, hence image
quality assessment (IQA) models that can accurately pre-
dict human subjective judgments remain an important
topic of research. Subjective assessment of image quality is
time-consuming and difficult to exploit. So the develop-
ment of objective IQA models, especially blind or no-
reference (NR) models that operate without reference
image data, are of particular relevance. A successful IQA
model can be applied to improve many image processing
applications including image acquisition, processing and
transmission [1]. For example, an NR IQA model can be
used to monitor image communication channels, and in
particular can be used to predict image quality to provide
feedback to optimize image transmission.

Generally speaking, objective IQA models can be cate-
gorized into full-reference (FR) approaches [2–14],
reduced-reference (RR) approaches such as [15], and NR
approaches [16–36]. FR and RR approaches need all or part
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of the original image information to form quality predic-
tion while NR approaches operate entirely absent any
reference image. Under circumstances where original
images are not available, as in most mobile and photo-
graphic situations, NR approaches offer the greatest free-
dom and flexibility, and recently have attracted intensive
research.

Many effective FR IQA approaches utilize the image
gradient (such as FSIM [4], ESSIM [5], GMSD [6] and VGS
[8]), however not all aspects of the gradient have been
deeply explored for IQA, in particular, the gradient orien-
tation [8]. The majority of successful NR IQA approaches
utilize models of natural image statistics to detect differ-
ences between natural high-quality images and distorted
ones (e.g., the generalized gaussian and gaussian scale
mixture models of image wavelet coefficients used by
DIIVINE [16], of DCT coefficients in BLIINDS [17], of curvelet
coefficients in CurveletQA [27] and related models of the
smoothed image gradient magnitude and laplacian used
by BIQA [28]). The image gradient orientation and its
relevance for visual quality prediction remains an inter-
esting avenue of research.

Natural images are highly structured and correlated
over orientations and scales [37]. Local statistics based
orientation models are used in BRISQUE [19] to conduct
image quality assessment, while the Histograms of
Oriented Gradients (HOG) [38] method has been success-
fully used to develop a variety of modes of human detec-
tion. Local orientation dependencies of bandpass or gra-
dient images contain significant information regarding
image naturalness and object structure [6,19,28,39]. This
information is modified by the introduction of image dis-
tortion. Thus, a promising simple way of approaching the
IQA problem is to analyze the correlation structure of
image gradient orientations. In this direction, we propose
an efficient general-purpose NR IQA model called the
Oriented Gradients Image Quality Assessment (OG-IQA)
index. This newmodel further explores the potential of the
image gradient for NR IQA beyond the gradient magnitude
[6,28]. Thus, our work here complements prior work by
using the image gradient orientation, rather than the
gradient magnitude, for NR IQA.

Furthermore, an AdaBoosting BP neural network is
considered as the learning image quality evaluation model
in OG-IQA method. Given its outstanding generalization
ability, the classical back-propagation (BP) neural network
has been widely used for classification and regression. The
performance of the network can be further improved by
simple ensemble realization [40]. One of the most useful
ensemble methods is adaptive boosting (viz., AdaBoost)
[41,42] which delivers impressive performance. It has been
amply demonstrated that a boosting ensemble generally
outperforms a single network, and may produce large
gains in accuracy [43]. The AdaBoost algorithm is based on
combining many relatively Weak Learners to build a
stronger regression machine [44]. Here, we deploy the
AdaBoosting BP neural network to conduct quality pre-
diction on distorted images across multiple distortion
categories, using quality-predictive oriented image gra-
dient features. The LIVE image database [45,46] is used for
performance evaluation of the model. The experimental
results indicate that OG-IQA correlates exceptionally well
with human subject judgments of image quality.

The rest of the paper is organized as follows. Section 2
reviews previous work on NR IQA. Section 3 and Section 4
describe limitations of off-the-shelf IQA algorithms and
gradient magnitude based feature extraction methods.
Section 5 details the feature learning method, an Ada-
Boosting BP neural network. Section 6 presents experi-
mental results. Finally, we conclude the paper in Section 7.
2. Related work

2.1. General-purpose NR IQA models

NR IQA models generally involve two steps: feature
extraction and feature learning based quality assessment.
The performances of these methods rely on both the per-
ceptual relevance of the extracted features and on the
method of feature learning. Natural scene statistics (NSS)
models, such as the Gaussian Scale Mixture (GSM) model
have been shown to be both perceptually relevant and
highly regular descriptors of natural images [37,47].
Recently Gao et al. proposed a NSS-based IQA model which
used multiple kernel function instead of a single RFB
function [26]. Hou et al. solved the IQA problem via a novel
deep learning algorithm [29]. Narwaria and Lin utilized a
support vector regression (SVR) to learn to fuse image
features into quality score predictions [30]. Brando and
Queluz found that the parameters of a Laplace probability
density model of the DCT coefficients of JPEG compressed
images correlates well with the severity of blocking effects
[21]. Sheikh et al. used the joint histogram of wavelet
coefficients to perform NR IQA on JPEG2000 compressed
images [22]. Li et al. extracted image features including
phase congruency, entropy and gradient magnitude, and
used them to train a general regression neural network
(GRNN) to solve the NR IQA problem on multiple distor-
tion categories [23]. Saad et al. proposed a new method for
NR IQA named BLIINDS [17,24]. BLIINDS transforms the
images to the block DCT domain, then utilizes a general-
ized Gaussian distribution (GGD) model fit to reduce the
NSS feature vector dimension. Moorthy et al. proposed a 2-
stage framework for NR IQA [16,18] which uses NSS fea-
tures extracted from a distorted image for distortion
identification and subsequent distortion-specific IQA.
Mittal et al. contributed a new NSS-based NR IQA method
that operates in the spatial domain named BRISQUE [19].
BRISQUE is based on bandpass filtering and local non-
linear divisive normalization to reduce the correlations
between the bandpass responses. Mittal et al. further uti-
lized the image features in BRISQUE to develop training-
free IQA models [31,48]. Xue et al. proposed an unsu-
pervised algorithm based on natural image statistics the-
ory [32]. Ye et al. proposed unsupervised algorithms based
on designed visual codebooks [33,34]. Ke et al. extracted
the image features using the human visual system and the
free-energy-based brain theory [35]. Ke et al. solved the
NR IQA for blur images using a sharpness metric in the
autoregressive (AR) parameter space [36]. Overall,
research in this area continues to thrive [49]. We can also
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observe that the novel learning evaluation models are
meaningful to the IQA field. Thus, we utilize an Ada-
boosting BP neural network as the learning evaluation
model in our method.

2.2. Existing gradient-based IQA approaches

The image gradient has been widely used in the IQA
field owing to the rich information it conveys regarding
image edges and structures. It also exhibits statistical
regularities on naturalistic images. For example, Zhang
et al. used phase congruency along with the gradient
magnitude to compute and weight local quality scores [4].
Zhang et al. utilized anisotropic regularity and irregularity
of the image edges to estimate image quality [5]. Xue et al.
used the variance of a gradient magnitude similarity map
to estimate the image quality [6]. Liu et al. proposed a full-
reference algorithm which uses the contrast between
pristine and distorted oriented gradient maps to compute
image quality [7]. Zhu et al. proposed a FR IQA model
combining the image gradient magnitude with compar-
isons of image gradient magnitude and orientation to
predict the quality [8]. Yang et al. combined HOG with the
structural similarity (SSIM) index to create a FR IQA index
[9]. Cheng et al. proposed a reduced reference image
quality assessment model based on NSS and information–
theoretic distance measures based on the gradient mag-
nitude [15]. Under the assumption that details revealed by
the gradient affect image quality to a large degree, Zhang
et al. proposed the Multi-Level Similarity (MLSIM) index
for FR IQA [10]. Chen and Bovik use a combination of
multiscale gradient and natural image statistic (NSS) fea-
tures to predict blurred image quality [20]. Xue et al.
combine the gradient magnitude with the laplacian of
gaussian to form joint statistics which are highly pre-
dictive of image quality [28]. Wang el al. compute a His-
tograms of Oriented Gradients (HOG) based distance
measure to evaluate image distortions [12]. Bondzulic et al.
utilize the gradient magnitude and gradient orientation to
design a new FR image quality metric [13]. The majority of
the abovementioned gradient-based algorithms are FR or
RR IQA approaches, hence require a pristine reference
signal to operate. Here we explore, for the first time, the
gradient orientation, expressed as a relative value, as a
quality-predictive feature for no-reference IQA.
3. Limitations of gradient-based approaches

Most gradient-based IQA approaches are FR or RR
approaches [4–10], while the majority of gradient-based
NR approaches are distortion-specific such as [20]. A
recent exception is [28], which employs statistics of the
gradient magnitude and the laplacian to predict image
quality. Based on the success of these approaches, there
appear to be strong intrinsic connections between the
image gradient and image quality. With a view towards
exploring the complementary quality information pro-
vided by the image gradient orientation, thereby further
deepening our understanding of how to design efficient
NR IQA models, we study the relative contributions of the
two modes of information. First we explore the estimated
image gradient magnitude, defined as:

∇Iði; jÞ
�� ��¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2x ði; jÞþ I2yði; jÞ
q

; ð1Þ

where Ix(i, j) and Iy(i, j) are approximate values of the
directional derivatives in the horizontal x and vertical y
directions corresponding to sample directions i and j.

3.1. Gradient dislocation vs. gradient distribution

Image distortion clearly exerts a great influence on the
image gradient magnitude. However, this effect is largely
dominated by shrinkage of the gradient magnitude caused
by blur-like distortion processes. However, for other kinds
of distortions, changes in the gradient magnitude dis-
tributions may be less evident, while still being visually
apparent in the image owing to changes in the spatial
locations of large gradient magnitude. Using JPEG distor-
tion as an example, the differences between the gradient
magnitude maps of a ‘pristine’ image and a JPEG distorted
version of it may be quite visible and numerically sig-
nificant, even while the histograms of the two gradient
magnitude histograms are very similar, making statistical
modeling of this quantity less valuable. Fig. 1 depicts an
example of this phenomenon.

3.2. Gradient orientation

The scalar-valued gradient magnitude only conveys part
of the ‘picture’ with regards to local image brightness var-
iations. Visual cortical neurons are highly sensitive to local
orientation information in images [50,51]. Since image dis-
tortions are likely to modify local image anisotropies, it is
worth exploring the value of the gradient orientation to
augment NR IQA models. For example, both the locations
and distributions of the gradient orientation between origi-
nal image and its JPEG distortion version can be dis-
tinguished obviously (see Fig. 2), while the ones of gradient
magnitude can cause the problem as shown in Fig. 1.
4. Gradient orientaion features

The gradient orientation conveys information that is
complementary to that carried by the gradient magnitude,
and has been used to obtain improved FR IQA results.
Define the estimated gradient orientation by:

∠∇Iði; jÞ ¼ arc tan
Iyði; jÞ
Ixði; jÞ

� �
: ð2Þ

Orientation is relative, and modern feature extraction
mechanisms that utilize gradient orientation information
compute it in a relative manner, e.g. SIFT [52] and Histo-
grams of Oriented Gradients (HOG) [53]. Likewise, relative
gradient magnitude information can convey much
regarding changes in local structure. Image distortions that
modify local structure can modify the existing local
orientation information. Orientation may be measured
absolutely, against the frame of reference of the image
coordinate system, or it can be measured in a relative
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Fig. 1. Differences in the gradient magnitudes of a pristine image and a JPEG distorted version of it. (a) Original image, (b) JPEG distorted image
(DMOS¼79.9594 as recorded at the LIVE Database [45]), (c) gradient magnitude of original image, (d) gradient magnitude of JPEG image, (e) histograms of
the zoomed image patches in (c) and (d). The yellow lines (manual annotations) in (c) and (d) are roughly aligned with the spatial locations of high gradient
magnitude values in the two magnified image patches. The histogram in (e) shows that the locations of high gradient magnitude in the patches are
different while having a similar first-order distribution.
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manner against the background of local orientations,
represented as, for example, an average value. The latter
mode of measurement is more relevant for image quality
assessment, since relative orientation features can capture
departures from the natural distribution of local orienta-
tions caused by local degradations of image structure.
Following this philosophy, we also define a relative gra-
dient magnitude feature, the similar idea being that
impairments to local contrast are best cast against the
surrounding contrasts. Indeed, this is a form of the con-
trast masking principle.
Thus, three types of gradient maps are computed from
Ix and Iy, and utilized to characterize the quality-
dependent behavior of the image gradient over patches
of size M�N: the gradient magnitude (GM), the relative
gradient orientation (RO), and the relative gradient mag-
nitude (RM). The GM is given as before by (1) while the RO
is given by



Fig. 2. Differences in the gradient orientations of a pristine image and a JPEG distorted version of it. (a) Gradient orientation of original image in Fig. 1(a),
(b) gradient orientation of JPEG image in Fig. 1(b), (c) histograms of the zoomed image patches in Fig. 1(c) and (d). The histogram in (c) shows that the JPEG
distortion can obviously degrade gradient orientation by changing most gradient orientation into limited radians (e.g. 0, π/4 and π/2).
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where the local average orientation is defined to be

∠∇Iði; jÞAVE ¼ arc tan
Iyði; jÞAVE
Ixði; jÞAVE

� �
;

using the average directional derivative estimates

Iyði; jÞAVE ¼
1

MN

XX
ðm;nÞAW

Iyði�m; j�nÞ;

and

Ixði; jÞAVE ¼
1

MN

XX
ðm;nÞAW

Ixði�m; j�nÞ;

where W is a set of relative coordinate shifts defining the
local neighborhood over which the derivative values are
taken. For example, if the neighborhood is 3�3 square,
then M¼N¼3 and W¼{(�1,�1), (�1,0), (�1,1), (0,�1),
(0,0), (0,1), (1,�1), (1,0), (1,1)}. In fact, our basic imple-
mentation uses this neighborhood although we also
explore performance against neighborhood size later, in
Section 6.

Likewise, the RM is defined as

j∇Iði; jÞjRM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIxði; jÞ� Ixði; jÞAVEÞ2

þðIyði; jÞ� Iyði; jÞAVEÞ2

vuuut ; ð4Þ

in terms of the average local derivatives.
Cortical neurons are highly sensitive to anisotropic
information in images, and image distortion processes can
modify and create unnatural local anisotropies [18,22,25].
It is quite possible to create sophisticated, regularized and
multiscale estimates of local derivatives, e.g., by Gaussian
smoothing, Gaussian pyramid [54], or steerable pyramid
[55]. In our implementation, we utilize Gaussian partial
derivative aligned filters in the horizontal and vertical
directions to compute the values of the directional gra-
dient components, Ix and Iy, respectively. By comparing
with other filters (e.g. Sobel and Prewitt), the Gaussian
partial derivative aligned filters can be considered as a
more smoothed edge filter which is benefit to our fol-
lowing process, such as computing RM and RO. The
Gaussian partial derivative filters are given by

∇γGðx; y;σÞ ¼ � γ
2πσ4exp �x2þy2

2σ2

� �
; ð5Þ

where Gðx; y;σÞ ¼ � 1
2πσ2exp �x2 þy2

2σ2

� �
is the Gaussian ker-

nel, and where the Ƴ represents either the horizontal x or
the vertical y direction of partial derivative.

Fig. 3(b)–(d) depicts the three types of gradient and
relative gradient characteristics that are considered here,
computed on the original picture in Fig. 3(a).

According to our hypothesis, changes to the statistical
distributions of the gradient and relative gradient quan-
tities caused by image distortions can be used to quantify



Fig. 3. Gradient and relative gradient maps. (a) Original image, (b) gradient magnitude (GM), (c) relative gradient orientation (RO), (d) relative gradient
magnitude (RM).
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the degree of perceived image distortion as well as to
classify the distortions by type. In the following, we study
the behavior of the various gradient characteristic maps on
exemplars of the five common distortions contained in the
LIVE IQA Database [45,46] (see Figs. 4 and 5). It is apparent
that each type of gradient map is deeply and distinctly
affected by the five types of distortions.

Fig. 4 depicts GM, RO and RM maps on an exemplar
image distorted by each type of LIVE impairment, while
Fig. 5 shows the histograms of these same maps on all the
same distorted images. Clearly, the histograms are also
significantly reshaped in characteristic ways, with blur and
compression attenuating the GM histogram, and where all
the distortions are more greatly separated in the RO and
RM histograms.

By examination of Fig. 5, the gradient and relative
gradient histograms have a high frequency variation while
such variation is ruleless. So the use of a fitting function to
those histograms with the least loss is likely to be
unproductive. However, following Ruderman [37], who
used variance to study the distributions of natural images,
we use the histogram variance to characterize the corre-
sponding distributions. Although the variances cannot
express all the characters of those histograms, they still
represent the most obvious character (viz. the high fre-
quency variation). Given a (normalized to unit sum)
histogram h(x), define the variance as

Var½h� ¼
X
x

ðhðxÞ�hÞ2; ð6Þ

where h is the sample mean of the histogram.
Thus we have a 3-dimensional feature vector:

Feature¼ ½vGM ; vRO; vRM�:
Denote the variances computed on each of the histo-

grams of the GM, RO, RM maps by vGM, vRO and vRM,
respectively.

In order to take into account the multiscale character of
natural images, of image distortions, and of visual per-
ception [11,17], we also downsample the image by a factor
of 2, then compute the same three features yielding a 6-
dimensional feature vector (3 features at each scale). The
extracted features are tabulated in Table 1.
5. Learning image quality evaluation

After extracting the gradient features which are
ostensibly predictive of image quality in a 6-dimensional
space, we build a mapping from image features to image
quality via an AdaBoosting BP neural network. The idea of
the AdaBoost algorithm is to combine many Weak Lear-
ners, the relatively weak learning algorithmwhich seeks to
follow the distribution of the training set [56], while



Fig. 4. Gradient and relative gradient maps of a natural undistorted image and five corresponding distorted versions of it.

L. Liu et al. / Signal Processing: Image Communication 40 (2016) 1–15 7
adaptively adjusting to errors of the weak hypotheses,
thereby learning a robust and accurate classifier or
regression model [41,57]. Here, the BP neural network is
treated as the Weak Learner element of the AdaBoosting
algorithm.

A gap between the test and training set may occur
when the two sets are from different databases. Using a
curve, which is learned from the training set automatically,
to normalize the test set is more reasonable than the
manual normalization computed with max and min values
of training data rigidly. Hence, we design the structure of
the BP neural network as two hidden layers, where the
first hidden layer auto-normalizes the features by the
sigmoid transfer function. Hence, there is no manual nor-
malization of the features. Both hidden layers regress on
the image quality. Fig. 6 shows a schematic diagram of the
structure of the AdaBoosting BP neural network, where the
structure of the BP neural network is described inside the
dashed box.

In the BP neural network, the input layer has the same
number of neural cells as the dimension of the image
features and the output layer is formed by only one
neural cell whose output is predictive of the image
quality. Both hidden layers contain 6 nodes as does the
input layer. The transfer function of the first hidden layer
is a tangent sigmoid function whose range is �1 to 1,
while that of the second hidden layer is the radial basis
function [58].

Given an input (test set X), the overall flow of the
Adaboosting BP neural network framework that computes
the predicted output on a test set Ŷ is described as follows.
First, confirm the quantity T of the Weak Learners (viz., the
BP neural network) and map the subjective image quality
of the training set Ytrain into the range [0,1] to adjust the
transform function of the output layer.

Then, the next few steps need to be done for each Weak
Learner. For the ith Weak Learner, train it on the training
set Xtrain and Ytrain, and estimate the predicted output of
the training set Ŷ

i
train and the test set Ŷ i. Consequently, the

distribution Di, which represents the contribution of each
training set for computing the training error, of the



Fig. 5. Histograms of gradient and relative gradient maps of the natural undistorted image in Fig. 4 (top left) and five corresponding distorted versions of it.
(a) Gradient magnitude, (b) relative gradient orientation, (c) relative gradient magnitude.

Table 1
Summary of the gradient and relative gradient features.

Feature ID Feature description

vGM1, vGM2 Variances of histogram of gradient magnitude over two
scales

vRO1, vRO2 Variances of histogram of relative gradient orientation
over two scales

vRM1, vRM2 Variances of histogram of relative gradient magnitude
over two scales

Fig. 6. Structure of the AdaBoosting BP neural network.
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training set Xtrain for the ith Weak Learner can be calcu-
lated by:

Di;j ¼
1=K ; i¼ 1

Di�1;j � ð1þσ U lðYj
train� Ŷ

i�1;j
train ÞÞ ; i¼ 2;…; T

;

8<
: ð7Þ

where

lðxÞ ¼
1; x4threshold

0; xrthreshold
;

(

where K is the number of training vectors in the training
set, and j indexes the jth element in a vector whose range
is the integers between 1 and K. For example, Di,j stands for
the jth element in the vector Di. The function l is a binary
indictor function whose result is 1 when the independent
variable in it exceeds the threshold and is 0 otherwise,
while the σ is a constant between 0 and 1. For simplicity,
we fixed the values of both threshold and σ to 0.1, and
T¼10.

We use an Adaboosting algorithm [59] to measure the
evaluation error of the ith Weak Learner Erri via combining
the gap between the predicted and real image quality with
the corresponding distribution Di. Hence, the Erri can be
computed using the distribution Di by

Erri ¼
X

j ¼ 1;:::;K

Di;j � lðYj
train� Ŷ

i;j
trainÞ; ð8Þ

and utilize a convex function to transform the error of each
Weak Learners into its weight, in order to give those Weak
Learners with a lower error a higher weight, while the
ones with a higher error a smaller weight. The ith Weak
Learner weight αi can be defined as

αi ¼
1

e�bð Errij j� cÞ: ð9Þ



Fig. 7. Scatter plots between each feature group using distortion images drawn from the LIVE IQA database. (a) 3D scatter plots between the variances of
GM, RO, RM maps, (b) 2D scatter plots between the variance of RM and GM maps, (c) 2D scatter plots between the variance of RM and RO maps, (d) 2D
scatter plots between the variance of GM and RO maps.
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Thus, the final output Ŷ is a weighted combination of
the predicted outputs:

Ŷ ¼
X

i ¼ 1;:::;T

αi � Ŷ
i
: ð10Þ
6. Experimental results

The overall IQA framework using the features defined
here, which we call OG-IQA, was validated on the LIVE IQA
database [45,46], which consists of 29 reference images
and 779 distorted images disrupted by five distortion
categories (JPEG, JPEG2K, white noise, gaussian blur and
FF). The features are used to train an AdaBoosting BP
neural network engine to conduct distortion classification
and quality assessment, respectively. The Spearman’s Rank
Ordered Correlation Coefficient (SROCC), the linear corre-
lation coefficient (LCC) and the Root Mean Squared Error
(RMSE) between the objective quality scores (predicted
DMOS) and the subjective quality scores (DMOS) were
used as performance evaluation indices. A value close to
1 for SROCC and LCC and a value close to 0 for RMSE
indicate superior linear rank-order correlation, and preci-
sion with respect to human perception, respectively.

In our experiments, we first evaluated the efficacy of
each feature/feature vector used in OG-IQA and compared
them and OG-IQA with a set of popular FR and NR
approaches. We also study the complexity of OG-IQA and
verified the performance of OG-IQA on different IQA
databases. In our implementation, we used a random
selection of 80% of the images in the LIVE Database as a
training set and the remaining (content-separate) 20% as
the test set for the AdaBoosting BP neural network and
conducted 1000 randomly divided train-test trials. For the
compared algorithms, we calculated the quality of the test
images predicted by them using the two-step framework
[18] except for PSNR, SSIM [2], VIF [3] and BIQA [28].

6.1. Correlation of each feature/feature vector with human
opinions

To illustrate the degree by which image quality affects
those features, we deployed all the distorted images from



Table 2
Median SROCC of gradient and relative gradient features.

SROCC JP2k JPEG NOISE BLUR FF ALL

vGM1, vGM2 0.5223 0.6780 0.9649 0.9519 0.6797 0.6823
vRO1, vRO2 0.9462 0.9633 0.9617 0.9541 0.8632 0.9223
vRM1, vRM2 0.7769 0.6987 0.9666 0.9252 0.7587 0.7443

Table 3
Median LCC of gradient and relative gradient features.

LCC JP2k JPEG NOISE BLUR FF ALL

vGM1, vGM2 0.6021 0.8077 0.9755 0.9515 0.7806 0.7421
vRO1, vRO2 0.9546 0.9757 0.9701 0.9566 0.8805 0.9193
vRM1, vRM2 0.8088 0.7586 0.9739 0.9467 0.8204 0.7617

Table 4
Median RMSE of gradient and relative gradient features.

RMSE JP2k JPEG NOISE BLUR FF ALL

vGM1,

vGM2

22.9053 20.6923 7.3328 7.3572 19.2799 20.9879

vRO1, vRO2 8.5049 7.6549 8.0485 6.9552 14.5817 12.2597
vRM1,
vRM2

16.9782 22.9655 7.5615 7.7256 17.5331 20.2969

Table 5
Median SROCC on the LIVE IQA database.

SROCC JP2K JPEG NOISE BLUR FF ALL

PSNR 0.9041 0.8946 0.9829 0.8073 0.8941 0.8834
SSIM 0.9609 0.9737 0.9702 0.9515 0.9560 0.9484
VIF 0.9682 0.9820 0.9844 0.9715 0.9626 0.9633
BIQI 0.8587 0.7171 0.9748 0.9171 0.7681 0.7657
CBIQ 0.9130 0.9638 0.9581 0.9203 0.8832 0.8965
DIIVINE 0.9430 0.9086 0.9839 0.9567 0.8948 0.9254
BLIINDS-II 0.9478 0.9575 0.9634 0.9350 0.9018 0.9326
BRISQUE 0.9327 0.9341 0.9890 0.9505 0.8756 0.9398
BIQA 0.9535 0.9570 0.9884 0.9609 0.9379 0.9509
OG-IQA 0.9370 0.9643 0.9867 0.9612 0.8985 0.9500

Table 6
Median LCC on the LIVE IQA database.

LCC JP2K JPEG NOISE BLUR FF ALL

PSNR 0.8859 0.8780 0.9829 0.8036 0.8926 0.8642
SSIM 0.9710 0.9819 0.9863 0.9556 0.9622 0.9463
VIF 0.9809 0.9891 0.9921 0.9771 0.9686 0.9616
BIQI 0.8742 0.7241 0.9810 0.9171 0.8272 0.7771
CBIQ 0.9102 0.9438 0.9410 0.9403 0.8991 0.8951
DIIVINE 0.9497 0.9316 0.9883 0.9451 0.9198 0.9275
BLIINDS-II 0.9614 0.9733 0.9735 0.9422 0.9247 0.9422
BRISQUE 0.9377 0.9717 0.9934 0.9487 0.9049 0.9467
BIQA 0.9620 0.9835 0.9920 0.9664 0.9451 0.9587
OG-IQA 0.9459 0.9827 0.9904 0.9673 0.9110 0.9524
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the LIVE IQA database [45,46] covering a wide range of
human opinion scores, and plotted their feature vectors in
Fig. 7. Each point represents an image and can be dis-
tinguished by its shape and color (from green to red,
where green indicates very high image quality while red
represents very low image quality). We can observe that
the image features begin to occur at the ends of the plot-
ting as the image quality degrades. At the low image
quality level, the white noise and JPEG distorted image
features can be well separated, whereas the JP2k, BLUR
and the fast fading distorted image features overlap toge-
ther, because that all three distortion are mainly degrade
image via blurring.

We also validate the performances of each feature
vector in Tables 2–4. It may be seen that each feature is in
agreement with human subjective opinion in varying
degrees according to distortion and contributes to algo-
rithm performance in different ways. Furthermore, we can
observe that the features from RO map are more effective
than others for JPEG and JP2k distortions. Since JPEG and
JP2k mainly contain the blocking, the blur and ringing,
respectively, they will degrade the image quality in local
regions. Hence, both distortions can affect the gradient
orientation much more seriously than the gradient mag-
nitude due to the limitations detailed in Section 3.

6.2. Statistical performance comparison against state-of-
the-art

In order to validate the statistical performance of OG-
IQA, we compared it against three FR approaches (PSNR,
SSIM [2] and VIF [3]) and six NR approaches (DIIVINE [16],
BLIINDS-II [17], BIQI [18], CBIQ [33], BRISQUE [19] and
BIQA [28]). All the models were trained separately on each
of the five different distortion types, and also on all five
types. All three indexes were obtained using the same 80%
training-20% testing protocol over 1000 iterations, with
the results listed in Tables 5–7. To further test the effec-
tiveness of our algorithm, we also determined its perfor-
mance on the TID2013 database [60] and the LIVEMD
database [61], as shown in Fig. 8 and Table 8. The TID2013
database consists of 25 reference images and 3000 dis-
torted images over 24 distortion categories, while the
LIVEMD database has 15 reference images and 450 mul-
tiply distorted images, including blur followed by JPEG (BJ)
and blur followed by noise (BN). For TID2013 database, we
tested OG-IQA only on the 24 natural reference images and
associated 19 distortion categories, except for the 5 color
distortion categories.

From the experimental results on the LIVE IQA data-
base, it may be observed that OG-IQA correlates well with
human subjective opinions of image quality and achieves
highly competitive performance against existing NR IQA
models (indeed, it is only slightly inferior to the top-
performing FR IQA model VIF and the NR IQA approach
BIQA). The results on the TID2013 and LIVEMD databases
(see Fig. 8 and Table 8) also show that OG-IQA performs
well across a wide variety of distortions. It is worth noting
that OG-IQA only requires the generation of an efficient 6-
dimensional feature vector, while the feature dimensions



Table 8
The performance on the LIVE MD IQA database.

PSNR SSIM BRISQUE BIQA OG-IQA

SROCC BJ 0.7636 0.8912 0.8901 0.8680 0.8765
BN 0.7781 0.9097 0.8851 0.6812 0.8536

LCC BJ 0.8007 0.8500 0.9286 0.9137 0.9244
BN 0.8060 0.8713 0.9024 0.7057 0.9016

RMSE BJ 23.4543 10.0778 7.7702 13.1277 7.2592
BN 23.1530 8.9742 6.8885 7.7607 7.8300

Table 7
Median RMSE on the LIVE IQA database.

RMSE JP2K JPEG NOISE BLUR FF ALL

PSNR 11.7312 15.3627 5.4190 11.0876 12.8265 13.7388
SSIM 6.0037 5.9826 4.6378 5.3804 7.6237 8.8403
VIF 4.9039 4.6802 3.5170 3.8891 6.9530 7.5035
BIQI 13.9383 24.3130 6.4001 9.5840 17.4349 19.6292
CBIQ 9.0130 18.6518 0.5231 8.6302 13.6837 12.7917
DIIVINE 9.0021 12.7674 5.0479 7.8777 12.1846 11.6621
BLIINDS-II 7.8225 8.0873 7.5637 8.0368 11.8464 10.4938
BRISQUE 9.9458 8.2839 3.7676 7.6569 13.2282 10.0548
BIQA 8.4471 6.7571 4.4512 6.6180 10.8117 9.2097
OG-IQA 9.2754 6.5073 4.5628 6.0938 12.7999 9.5267

Fig. 8. SROCC distributions on the TID2013 database. The histogram shows the median SROCC values of each algorithm while the line in each column
means its range of the mild outliers.
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of BIQI, DIIVINE, BLIINDS-II, BRISQUE and BIQA are 18, 88,
24, 36 and 40, respectively.

6.3. Statistical significance and hypothesis testing

Fig. 9 shows box plots of the SROCC distribution of each
algorithm over 1000 trials. Although there exist differ-
ences in the median correlations between the different
algorithms (see Tables 5–7), these differences may not be
statistically relevant. Hence, to evaluate the statistical
significance of the performance of the algorithms con-
sidered, we conducted the multiple comparisons test [62]
using the SROCC values obtained from the 1000 train-test
trials, and tabulated the results in Table 9. The numbers in
first row indicate that the minus of the mean value of each
group, and a 95% confidence interval for the mean is listed
in second and third rows, respectively. For example, the
numbers in column BRISQUE, indicate that the SROCC
values mean of our method minus the mean of BRISQUE is
estimated to be 0.012, while the difference of the means
with a 95% confidence interval is [0.0081–0.0159].

From Table 9 we may conclude that OG-IQA is com-
petitive with the popular IQA approaches such as PSNR,
SSIM, BIQI, DIIVINE, BLIINDS-II, and top-performing NR
approaches such as BRISQUE and BIQA. The stability of OG-
IQA matches that of BIQA as observed from Fig. 9. This
performance summary suggests that OG-IQA is an attrac-
tive option for NR assessment of picture quality.

6.4. Variation with window size

From Table 10, it may be observed that the algorithm
performance varies with the size of the window over
which the gradient quantities are computed.

The performance is marginally better with decreased
window size, likely since the computed features are more
sensitive to highly local distortions.

6.5. Statistical performance comparison against different
regressors

In order to validate the effectiveness of the regressor
used in our method, we use our image features to compare
against other two regressors, and the results are listed in
Table 11.

The results show that the regressors based on neural
network have a better performance than the one based on
SVR, while the AdaBoosting neural network has the best
performance in almost all contrast items. We may spec-
ulate that the features from RO, RM and GM may have
different importance for evaluating the image quality and
those features may be recombined via linear combination
to improve their robustness.

6.6. Database independence

To prove the database independence of OG-IQA, we
also tested it on the TID2013 image database, using the 24



Table 9
Multiple comparisons test on SROCC of each IQA algorithm.

PSNR SSIM VIF BIQI CBIQ DIIVINE BLIINDS-II BRISQUE BIQA

Mean 0.0668 0.0008 �0.0145 0.1966 0.0575 0.0298 0.0217 0.0120 �0.0017
Upper mean 0.0629 0.0031 �0.0184 0.1927 0.0535 0.0258 0.0178 0.0081 �0.0056
Lower mean 0.0707 0.0047 �0.0106 0.2005 0.0614 0.0337 0.0256 0.0159 0.0023

Table 10
Median SROCC of OG-IQA on the LIVE IQA database with different
window sizes.

M, N JP2K JPEG NOISE BLUR FF ALL

4, 4 0.9347 0.9573 0.9822 0.9667 0.9002 0.9381
5, 5 0.9313 0.9544 0.9775 0.9639 0.8905 0.9327
6, 6 0.9208 0.9476 0.9738 0.9569 0.8660 0.9194
9, 9 0.8964 0.9165 0.9689 0.9416 0.8592 0.8844
12, 12 0.8468 0.8859 0.9668 0.9377 0.7641 0.8531

Table 11
Median SROCC of OG-IQA features using different regressors on the LIVE
IQA database.

JP2K JPEG NOISE BLUR FF ALL

Our method 0.9370 0.9643 0.9867 0.9612 0.8985 0.9500
SVR 0.9522 0.9672 0.9812 0.9518 0.8669 0.9265
BP Neural
Network

0.9395 0.9594 0.9823 0.9609 0.8848 0.9384

Table 12
Median SROCC of OG-IQA on the TID2013 database.

JP2K JPEG NOISE BLUR ALL

PSNR 0.8904 0.9150 0.9420 0.9661 0.9216
SSIM 0.9489 0.9316 0.8742 0.9704 0.9212
BRISQUE 0.8961 0.8585 0.9000 0.8709 0.8819
BIQA 0.9421 0.8930 0.8128 0.8819 0.8922
OG-IQAmanual 0.8906 0.8835 0.8606 0.8827 0.8821
OG-IQAauto 0.8919 0.8861 0.8705 0.8923 0.8946

Fig. 9. Box plots of SROCC distributions of IQA models on the LIVE IQA database. The red line in the rectangle means the median values of the 1000 trials
SROCC values for each algorithm, while the upper and lower ends of the rectangle means the first and third quartiles, respectively. The length of the dotted
line means the range of the mild outliers, and the symbol “þ” represents the extreme outliers for each algorithm.

Table 13
Median SROCC of OG-IQA on the LIVE IQA database.

JP2K JPEG NOISE BLUR ALL

PSNR 0.9041 0.8946 0.9829 0.8073 0.8834
SSIM 0.9609 0.9737 0.9702 0.9515 0.9484
BRISQUE 0.8998 0.9119 0.9659 0.9094 0.9151
BIQA 0.8668 0.9204 0.9674 0.9371 0.9191
OG-IQAmanual 0.8719 0.9136 0.9774 0.9187 0.9161
OG-IQAauto 0.8976 0.9262 0.9778 0.9201 0.9250

Table 14
Classification accuracy with 1000 train-test trials.

JP2K JPEG NOISE BLUR FF ALL

Accuracy (%) 81.08 79.45 100 92 24 75.47
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natural reference images and the same four commonly
occurring distortion categories: JPEG2000, JPEG, Gaussian
noise, and Gaussian blur in it.

We trained OG-IQA on the LIVE IQA Database to obtain
a model which we then tested on the TID2013 Database. In
other words, we used the images in the LIVE IQA database
as a training set and the images from TID2013 Database as
the test set. For further comparison, we also trained our
model on the TID2013 database and tested it on the LIVE
IQA database. For OG-IQA, we verify the effectiveness of
the auto-normalization process and manual normalization
process in our method. The median SROCC was again used
as the performance index, and is tabulated in Tables 12



Fig. 10. Mean confusion matrix for distortion classifier across 1000 train-test trials.

Table 15
Comparison of time complexity (time for feature extraction) of five NR
IQA algorithms.

The algorithm complexity The run time (s)

DIIVINE(88D) O(K(log(K)þdþK)) 30.5294
BLIINDS-II(24D) O((K/(d2))*log(K/(d2))) 133.5213
BRISQUE(36D) O(K*d2) 0.1340
BIQA(40D) O(K*(d1þd2)) 0.1140
OG-IQA(6D) O(K*d) 0.1060

Table 16
Comparison of time complexity (time for training) of three regressor
methods.

The algorithm complexity The run time (s)

Our method T*(I*L*CþC*L) 8.3930
BP neural network I*L*C 1.9660
SVR D*L2 0.0930
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and 13. It may be observed that OG-IQA trained in this way
achieved highly competitive performance on both the LIVE
and the TID2013 Databases.

6.7. Classification accuracy

We analyzed the classification performance of our
algorithm on the LIVE IQA database. The input of the
neural network is also the six image features, but the
output is a 5-dimensional vector of predicted distortion
type. For example, the output labeling for JP2K distortion
is the vector [1,0,0,0,0] while the vector indicating JPEG is
[0,1,0,0,0]. The performance indicator is the median clas-
sification accuracy on each distortion category as well as
across all distortion categories over the 1000 trials. These
results are shown in Table 14. We also show the confusion
matrix for each category of distortion in Fig. 10. The ver-
tical axis of the confusion matrix represents the true dis-
tortion class while the horizontal axis denotes the pre-
dicted distortion class. The numerical values are the con-
fusion probabilities obtained over 1000 trials.

From Table 14, we can observe that the FF distortion is
the least distinguishable distortion, while the others are
highly distinguishable. However, the absolute classifica-
tion accuracy is not of importance to the predicted per-
formance of our method, because what relative to the
performance is not an absolute classification, but an indi-
cation of the amount of each distortion present in the
image [18].
Fig. 10 shows that the FF distortion is mainly mis-
classified as JP2k and blur. This is cause that the FF dis-
tortion images are multidistorted by a JP2k compressed
and a processing simulating packet loss and exhibits blur
and ringing.

6.8. Computational complexity

Since the computation time of NR IQA models is mainly
consumed in the process of feature extraction, we com-
pared the efficiency of feature extraction against that of
four other holistic no-reference approaches (DIIVINE [16],
BLIINDS-II [17], BRISQUE [19] and BIQA [28]) assuming the
input image is K¼512�768 pixels. Let d be the window
size (in pixels) used for feature computation. For example,
d in DIIVINE is the neighborhood vector size, while d1 and
d2 in BIQA are the spans of the gradient operators (i.e., the
Laplacian of Gaussian and the directional derivative
operators) and the size of the joint probability matrix
respectively, and d in OG-IQA is the size of the gradient
operators (i.e., the local neighborhood used to compute
the directional derivative operators). The results in
Table 15 show that OG-IQA is faster than DIIVINE, BLIINDS-
II, BRISQUE, and BIQA, using a Dell desktop computer with
a quad‐core CPU, 3.4 GHz and 4 GB RAM.

Furthermore, we also analyze the training and the
prediction complexity using other two regressors (viz. SVR
and BP neural network) with our 6-dimension features on
the LIVE database. Let D be the dimension of the features, L
be the size of the training set and the test set and I be the
max iteration set in the neural network based algorithms.
For AdaBoosting algorithm, the T represents the number of



Table 17
Comparison of time complexity (time for test) of three regressor
methods.

The algorithm complexity The run time (s)

Our method T*L*C 0.4990
BP neural network L*C 0.0940
SVR D*L 0.0160
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the Weak Learners and the C means the number of link
between each neuron. The results (see Tables 16 and 17)
show that the Running Time of the SVR is much faster than
that of the neural network. However, we can assume that
the neural network based methods can deal with the big
data more faster than the SVR in time complexity, because
the time complexity of SVR is based on the quadratic of the
training set, and the neural network based methods can be
optimized via parallel processing.
7. Conclusion

We presented OG-IQA, a novel NR IQA model that uses
efficient perceptual image features and an advanced fea-
ture learning algorithm. The performance of OG-IQA vali-
dates the use of features descriptive of image structure
that use the image relative gradient orientation as a
complementary and effective ‘quality-aware’ source of
information for conducting NR IQA. Indeed, the experi-
mental results show that OG-IQA is highly competitive
with the most popular IQA approaches, and has a very low
time complexity.

Going forward, we believe that the concept of relative
gradient values (computed in space–time) may prove
useful for the development of blind video quality models,
an area that remains open. It is also possible that the ideas
herein could be improved by incorporating measures of
image content, as in the FR IQA model described in [63].
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