IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 15, NO. 6, JUNE 2018

813

Learning a River Network Extractor Using
an Adaptive Loss Function

Furkan Isikdogan™, Alan Bovik, and Paola Passalacqua

Abstract—We have created a deep-learning-based river
network extraction model, called DeepRiver, that learns the
characteristics of rivers from synthetic data and generalizes
them to natural data. To train this model, we created a very
large database of exemplary synthetic local channel segments,
including channel intersections. Our model uses a special loss
function that automatically shifts the focus to the hardest-to-
learn parts of an input image. This adaptive loss function makes
it possible to learn to detect river centerlines, including the
centerlines at junctions and bifurcations. DeepRiver learns to
separate between rivers and oceans, and therefore, it is able to
reliably extract rivers in coastal regions. The model produces
maps of river centerlines, which have the potential to be quite
useful for analyzing the properties of river networks.

Index Terms— Coastal systems, convolutional neural networks,
deep learning, river network extraction.

I. INTRODUCTION

CCURATELY mapping rivers from remotely sensed

imagery is a challenging task, particularly in deltaic
systems. Existing methods [1], [2] supply limited power to
map river deltas, although they have been successfully applied
to remotely sensed data in noncoastal regions. To address
this problem, we proposed an automated channel extraction
algorithm [3], [4] that uses a unique set of optimized hand-
crafted filters to extract complex river networks in coastal
systems from multispectral remotely sensed images. This
tool, which is called RivaMap, uses the multiscale singularity
index [5], which is a powerful tool for finding continuous
curvilinear structures in images, where the index has a strong
response. We used this new tool to successfully delineate rivers
and to separate rivers from oceans.

One drawback of the singularity index is that it does not
have a strong response at river junctions and bifurcations,
resulting in gaps between centerlines. Obtaining the centerline
connectivity at these points is a difficult problem to solve but is
needed to quantitatively analyze the structure of river networks
and their dynamical changes in response to environmental
forcing. This is particularly relevant in coastal systems, where
densely populated landscapes are at risk due to natural and

Manuscript received September 19, 2017; revised December 26, 2017
and January 31, 2018; accepted February 28, 2018. Date of publication
March 19, 2018; date of current version May 21, 2018. The work of
P. Passalacqua was supported by the National Science Foundation under Grant
CAREER/EAR1350336, Grant FESD/EAR1135427, and Grant SEES/OCE-
1600222. (Corresponding author: Furkan Isikdogan.)

The authors are with the University of Texas at Austin, Austin,
TX 78112 USA (e-mail: isikdogan@utexas.edu; bovik@ece.utexas.edu;
paola@austin.utexas.edu).

Color versions of one or more of the figures in this letter are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2018.2811754

anthropogenic factors [6]. The structure of deltaic networks
has not been as studied as their upstream counterpart due to
a lack of appropriate tools [7].

In this letter, we describe an alternative data-driven approach
to river centerline detection. Our learned model, called Deep-
River, is based on the assumption that, given a sufficient
number of examples, a deep convolutional neural network
can learn image filters that respond strongly to centerlines.
We first feed a neural network with a large volume of synthetic
data covering a wide variety of possible configurations of
channels and their corresponding centerlines. We then apply
the trained model on real remotely sensed data, including
simple water index responses and surface water maps gen-
erated by a separate learned water extraction algorithm called
DeepWaterMap [8]. We thin the outputs of DeepRiver to
a single-pixel-width skeleton to obtain centerlines, and we
deploy the distance transform to estimate the channel width
at every centerline point. Finally, we validate the centerline
detection and width estimation performance on hand-cleaned
ground truth data. While there has been some research on
the applications of convolutional neural networks on similar
problems, including models trained to extract roads from
remotely sensed images [9], [10], the potential of using large-
scale synthetic data and adaptive loss rerouting to extract
centerlines remains unexplored. To the best of our knowledge,
this is the first model that uses a specialized convolutional
neural network with a synthetic data generator and an adaptive
loss function to extract river centerlines from remotely sensed
images. Our code and the trained models are freely available
at https://github.com/isikdogan/deepriver/.

II. DATA GENERATION

Our data generation process produces an unlimited stream of
randomly generated synthetic input images with corresponding
labels. The synthetic images consist of random configurations
of local channel segments. Although a single synthetic sample
is linear in nature, collectively they allow for learning to
approximate complex curvatures as locally linear structures.

The input images are P x (Q binary matrices that are
designed to simulate water masks. Each pixel in the image
is labeled as centerline, noncenterline water, or land.

The process starts with an empty mask where all pixels
are labeled as land. Then, it draws a main channel centerline
having a random orientation using Bresenham’s algorithm [11]
and labels the drawn pixels as centerline. The algorithm
then expands the centerline by a random width and labels
the expanded regions as noncenterline water. The widths

1545-598X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9244-9045

814 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 15, NO. 6, JUNE 2018

Fig. 1.

Examples of randomly generated channels and branches.

are modeled as a uniform random variable between 1 and
N/4 pixels, where N = min(P, Q) is the smaller matrix
dimension. The width is bounded by N/4, since the banks
of wider channels might otherwise be indistinguishable from
shorelines. A random number of branches are then added to the
existing centerlines, by iteratively drawing tributary centerlines
having random orientations and widths, starting at randomly
selected centerline pixels. The number of branches is selected
randomly from the set of integers {0,1,2,3}, while the width
of a tributary channel is a number lying between 1 and the
width of the main channel, so that the tributary channels are
always narrower than the main channel. A shoreline is added
with probability 0.5 by dividing the image into two randomly
partitioned regions and then labeling all pixels in one partition
as noncenterline water. Finally, the images are distorted with
additive noise, brightness and contrast shift, and Gaussian blur,
in random order and magnitude to emulate imperfect imaging
conditions (Fig. 1).

III. TRAINING A CENTERLINE EXTRACTOR
A. Model

We used a deep neural network and designed a special
loss function to learn to extract river centerlines. The model
consists of 10-scale convolutional encoder—decoder modules
(Fig. 2). Each convolutional module contains three convolu-
tional blocks, which consist of a convolutional layer followed
by batch normalization and rectified linear unit activation
layers [i.e., max (0, x)]. The model uses skip connections [12]
to reuse previous layer features and to fuse multiscale fea-
tures efficiently. We have shown in our earlier work [8] that
this architecture worked well on remotely sensed images for
surface water mapping.

We trained this model to extract river centerlines from
a large number of single-band synthetically generated and
labeled water masks. The model accepts as inputs single-band
water maps and outputs pseudoprobabilities for each class
label. The pseudoprobabilities are simply computed by passing
the output layer activations through a softmax function.

The synthetic input data were generated in run time during
training until the average training loss is converged. Therefore,

Water Mask

[Convolutional Module]
|
v

[Pooling]

Convolutional Module
rrrrrrr

Convolutional Module

Upsampling
Convolutional Module

Upsampling
Convolutional Module

[Upsampling]

Concatenation]

[Convolutional Module |
[Softmax |

Centerline and other class probabilities

Fig. 2. Overall architecture of the model. The skip connections (dashed
lines) on the left fuse multiscale features, whereas the skip connections on
the right help to reuse previous layer activations.

the model was not trained on the same data samples over
several epochs as is often done. We were able to do this
because of the simplicity and ease of computation of the
training matrices. Overall, more than 500000 input matrices
were generated and used during training.

B. Adaptive Loss Function

The centerlines have a relatively small number of pixels
as compared with the land and noncenterline water pixels.
Therefore, minimizing a uniform cost function during training
would cause centerlines to be minimally adapted to.

We addressed this problem by designing an adaptive loss
function that works well on imbalanced classes without
explicit class rebalancing. Our adaptive loss function first
computes the pixelwise cross entropy between the predicted
and target label matrices. Then, instead of averaging the loss
over all pixels, it applies a spatial max pooling to the pixelwise
loss values (Fig. 3). This max pooling operation adaptively
reroutes the pixelwise loss values, effectively shifting the
attention toward the pixels with the highest loss value within
a local neighborhood. This forces the model to work harder
toward learning the harder-to-learn pixels without explicitly
assigning a cost weight to each class.

The size of the pooling window determines the number of
pixels over which the maximum loss is evaluated. A pooling

ISIKDOGAN et al.: LEARNING A RIVER NETWORK EXTRACTOR USING AN ADAPTIVE LOSS FUNCTION 815

Pixel-wise
cross entropy

Predicted

Target labels 1

label Spatial max pooling

probabilities

Fig. 3. Computation of the adaptive loss.

Fig. 4. Channel extraction results on synthetically generated channels. (Left)
Input image has a main channel, two random branches, and a shoreline. (Right)
Model produces a strong response at the centerlines, successfully connects the
centerlines at the junctions, and separates between channels and the ocean.

size of 1 x 1 would disable the loss rerouting, whereas a
pooling window as large as the input image would make the
training highly sensitive to noise, since the model would focus
only on a single pixel at every iteration. We empirically choose
the pooling size as 8 x 8 and found that the results are not
highly sensitive to the pooling size except when it approaches
the extreme sizes.

This approach has two major benefits over explicit class
rebalancing. The first one is that it adapts to the input data
automatically. Therefore, a change in the input data distribu-
tion does not require recomputing the class frequencies and
changing the class weights accordingly in the loss function.
The second one is that since the loss is essentially class-
agnostic, it learns to compensate for within-class imbalance as
well as between-class imbalance. For example, centerlines are
hard to learn as compared with other classes, but intersections
are even harder to learn within the centerlines class. This
simple adaptive loss function drove the model to efficiently
learn centerlines and intersections on river networks.

C. Generalization to Natural Input Images

After training the model on synthetic images using adaptive
loss, the model learned to extract centerlines from both syn-
thetic (Fig. 4) and natural images (Fig. 5). The model is sensor-
agnostic and robust against noise, detail loss, and brightness
and contrast shifts as a result of being trained on randomly
distorted images. Therefore, the input can be any type of
remotely sensed image as long as there is a contrast between
water and nonwater pixels. For example, the model can be used
to extract rivers from Landsat-based water maps generated by
DeepWaterMap [8] or even a simple water index, such as the

modified normalized difference water index (MNDWI) [13])
(Fig. 5). Of course, the quality of the end result will depend
to some degree on the efficacy of the water index that supplies
input to the model.

The output layer activations of DeepRiver are remarkably
similar to the multiscale singularity index responses gener-
ated by RivaMap [4], both responding strongly to curvilinear
structures in their inputs. However, DeepRiver better handles
intersections, while also yielding thinner channel responses
that are more concentrated around the centerlines (Fig. 5). Fur-
thermore, RivaMap occasionally produces spurious responses
to river and ocean boundaries as a result of using an index that
has some edge response [4]. Unlike RivaMap, DeepRiver has
virtually no response to steplike edges (Figs. 4 and 5). This
improved property allows for separating rivers from oceans
and reliably extracting rivers in coastal regions. By using a
learned model that detects rivers and that more successfully
separates them from oceans, DeepRiver delivers accurate
results under a wider variety of conditions.

IV. CENTERLINE DELINEATION AND WIDTH ESTIMATION

DeepRiver delineates the rivers in a given input image.
However, the centerlines in the output are usually greater than
one pixel wide. DeepRiver does the hard part of thinning by
capturing the structure. Then, a simple thinning algorithm is
used as a postprocessing step to ensure that the produced skele-
ton is single-pixel wide. We use a fast thinning algorithm [14]
which iteratively removes noncenterline pixels until no further
pixels can be removed. The outputs of the centerline extraction
model do not require excessive thinning, since the centerlines
extracted by the model are already thin. Therefore, the thinning
procedure produces stable and reliable centerline results.

To estimate the channel width at each centerline pixel, our
algorithm computes the closest distance between the centerline
and the banks of rivers. Doubling this distance yields the river
widths. We used Borgefors’ distance transform algorithm [15]
to find the shortest path to the nearest land pixel from each
centerline point location.

V. EVALUATION

We evaluated the centerline detection and width estimation
performance of DeepRiver by measuring how well it could
reconstruct a river map from its centerline and width estimates.
We compared the results of our learned model with the results
generated by a nonlearning-based model RivaMap. We used
as input a manually annotated water mask of the Ganges—
Brahmaputra—Jamuna delta [16], which covers the delta with
30-m resolution. We manually delineated the shorelines and
separated the channels from the ocean on the input water mask.

We reconstructed the channels in the input water mask by
automatically extracting the centerlines, by determining where
the centerline probability was higher than the other classes
and regrowing the centerline pixels by amounts equal to their
widths (Fig. 6). Then, we compared the reconstructed channels
against the ground truth using precision [TP / (TP + FP)],
recall [TP / (TP 4+ FN)], and the corresponding commission
[FP / (TP + FP)] and omission [FN / (TP + EN)] errors. As an

816 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 15, NO. 6, JUNE 2018

(a)

(d) (e) ()

Channel extraction results on different types of natural images. (a) and (d) Input images. (b) and (e) Channels extracted by RivaMap [4]. (c) and

Fig. 5.
(f) Channels extracted by DeepRiver. Input (a) was generated by applying a water index (MNDWI) to a Landsat 8 image that shows a portion of the Ganges—
Brahmaputra river delta (WRS-2 path/row: 138/45). Input (d) was generated by running DeepWaterMap on a Landsat 8 image that shows a portion of the Niger
Delta (WRS-2 path/row: 188/57). Both RivaMap and DeepRiver are robust against contrast changes and can operate on water maps generated by different
algorithms. DeepRiver yields thinner centerlines reducing the dependence on a thinning algorithm and provides a better separation between rivers and oceans.

TABLE I
QUANTITATIVE EVALUATION OF DEEPRIVER AND RIVAMAP

Metric RivaMap DeepRiver
Precision 0.87 0.97
Recall 0.85 0.88
Commission Error 0.13 0.03
Omission Error 0.15 0.12
F1 Score 0.86 0.92
Width Correlation 0.83 0.92

overall performance measure, we used the Fl-score, which is
the harmonic mean of precision and recall. To evaluate width
estimation separately, we computed the correlation coefficient
between the width estimates and the ground truth widths.
To evaluate width estimation separately, we computed the
correlation coefficient between the width estimates and the
ground truth widths (Table I).

The results of our experiments showed that both RivaMap

Fig. 6. Visualization of the automatically extracted channels. Reconstructed
channels (shown in blue) overlaid on the input image.

and DeepRiver are reliable river extractors. Overall, DeepRiver
performed better, particularly in corner cases, such as channels
near shorelines and intersections. Although DeepRiver is able

to extract rivers reliably from noisy water masks, its centerline
extraction ability, no doubt, will be adversely affected by
poor quality input water masks. The interplay between river

ISIKDOGAN et al.: LEARNING A RIVER NETWORK EXTRACTOR USING AN ADAPTIVE LOSS FUNCTION 817

extraction performance and water masking, as it affects our
model and other models, is a broad topic that bears further
study.

VI. CONCLUSION AND FUTURE WORK

We have described a new deep-learning-based river center-
line extraction model, named DeepRiver. Our model is robust
against noise, detail loss, and brightness and contrast shifts.
Therefore, it can extract river centerlines from surface water
images, regardless of the types of sensors and algorithms used
to generate them. DeepRiver uses a very lightweight model
architecture and is amenable for efficient deployment on large
geographic data sets.

We have proposed an adaptive loss function that makes
learning harder-to-learn parts in the inputs easier without
explicit class balancing. This adaptive loss function allowed
for better handling the channel intersections and shorelines,
leading to an improvement in the performance in challenging
cases, such as extracting river networks on coastal regions.
Although we found this type of loss function to be very useful
for pixelwise classification of remotely sensed images, its use
cases are not limited to remotely sensed images. Other types of
image segmentation and transformation tasks can also greatly
benefit from this adaptive loss rerouting approach. Future work
would involve experimenting with using this loss function with
other types of input data that involve between-class and within-
class imbalance.

REFERENCES

[1] T. M. Pavelsky and L. C. Smith, “RivWidth: A software tool for the
calculation of river widths from remotely sensed imagery,” IEEE Geosci.
Remote Sens. Lett., vol. 5, no. 1, pp. 70-73, Jan. 2008.

[2] B. Lehner, K. Verdin, and A. Jarvis, “New global hydrography derived
from spaceborne elevation data,” EOS, Trans. Amer. Geophys. Union,
vol. 89, no. 10, pp. 93-94, 2008.

[3] F.Isikdogan, A. Bovik, and P. Passalacqua, “Automatic channel network
extraction from remotely sensed images by singularity analysis,” IEEE
Geosci. Remote Sens. Lett., vol. 12, no. 11, pp. 2218-2221, Nov. 2015.

[4] F. Isikdogan, A. Bovik, and P. Passalacqua, “RivaMap: An automated
river analysis and mapping engine,” Remote Sens. Environ., vol. 202,
pp. 88-97, Dec. 2017.

[5] G. S. Muralidhar, A. C. Bovik, and M. K. Markey, “A steerable,
multiscale singularity index,” IEEE Signal Process. Lett., vol. 20, no. 1,
pp. 7-10, Jan. 2013.

[6] J. P. M. Syvitski et al., “Sinking deltas due to human activities,” Nature
Geosci., vol. 2, no. 10, pp. 681-686, 2009.

[7]1 P. Passalacqua, “The Delta Connectome: A network-based framework
for studying connectivity in river deltas,” Geomorphology, vol. 277,
pp. 50-62, Jan. 2016.

[8] F. Isikdogan, A. C. Bovik, and P. Passalacqua, “Surface water mapping
by deep learning,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 10, no. 11, pp. 4909-4918, Nov. 2017.

[9] S. Saito, T. Yamashita, and Y. Aoki, “Multiple object extraction from
aerial imagery with convolutional neural networks,” J. Imag. Sci. Tech-
nol., vol. 60, no. 1, pp. 10402-1-10402-9, 2016.

[10] Y. Wei, Z. Wang, and M. Xu, “Road structure refined CNN for road
extraction in aerial image,” [EEE Geosci. Remote Sens. Lett., vol. 14,
no. 5, pp. 709713, May 2017.

[11] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Syst. J., vol. 4, no. 1, pp. 25-30, Mar. 1965.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770-778.

[13] H. Xu, “Modification of normalised difference water index (NDWI) to
enhance open water features in remotely sensed imagery,” Int. J. Remote
Sens., vol. 27, no. 14, pp. 3025-3033, 2006.

[14] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thin-
ning digital patterns,” Commun. ACM, vol. 27, no. 3, pp. 236-239,
1984.

[15] G. Borgefors, “Distance transformations in digital images,” Comput. Vis.,
Graph., Image Process., vol. 34, no. 3, pp. 344-371, 1986.

[16] P. Passalacqua, S. Lanzoni, C. Paola, and A. Rinaldo, “Geomorphic sig-
natures of deltaic processes and vegetation: The Ganges-Brahmaputra-
Jamuna case study,” J. Geophys. Res., Earth Surf., vol. 118, no. 3,
pp. 1838-1849, 2013.

