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Abstract—Mapping of surface water is useful in a variety of re-
mote sensing applications, such as estimating the availability of
water, measuring its change in time, and predicting droughts and
floods. Using the imagery acquired by currently active Landsat
missions, a surface water map can be generated from any selected
region as often as every 8 days. Traditional Landsat water indices
require carefully selected threshold values that vary depending on
the region being imaged and on the atmospheric conditions. They
also suffer from many false positives, arising mainly from snow
and ice, and from terrain and cloud shadows being mistaken for
water. Systems that produce high-quality water maps usually rely
on ancillary data and complex rule-based expert systems to over-
come these problems. Here, we instead adopt a data-driven, deep-
learning-based approach to surface water mapping. We propose
a fully convolutional neural network that is trained to segment
water on Landsat imagery. Our proposed model, named Deep-
WaterMap, learns the characteristics of water bodies from data
drawn from across the globe. The trained model separates wa-
ter from land, snow, ice, clouds, and shadows using only Landsat
bands as input. Our code and trained models are publicly available
at http://live.ece.utexas.edu/research/deepwatermap/.

Index Terms—Computer vision, convolutional neural networks,
landsat, machine learning, remote sensing.

I. INTRODUCTION

MAPPING surface water has been a common applica-
tion of remote sensing. Automated and semiautomated

surface water mapping methods generally rely on rule-based
systems [1]–[6], machine learning models, or a combination
of these two approaches [7]. Rule-based systems set specific
thresholds on certain spectral bands or deploy multiband indices,
whereas machine learning models tune trainable parameters on
data to learn optimal separations between classes.

A simple and commonly adopted approach to classifying
water bodies on Landsat images is to use a two-band water
index, such as the normalized difference water index (NDWI)
[8] or its modification MNDWI [9]. These water indices make
use of the reflectance characteristics of water in visible and
infrared bands to enhance water features. The enhanced results
are then thresholded to classify water bodies. This process may
be viewed as a simple rule-based system with a single rule.
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One problem encountered when using existing water indices
is that the optimal threshold values that separate water and non-
water responses vary with the section of earth being imaged,
hindering their global applicability. Although more sophisti-
cated methods, such as the automated water extraction index
[10], have improved the stability of methods that rely on optimal
thresholds, these threshold values still vary by region. Further-
more, NDWI and MNDWI poorly differentiate between water,
snow, and terrain shadows [2], even using an optimal threshold
for a given region. More sophisticated rule-based systems that
produce high-quality water maps [1], [2] rely on complex sets
of rules and ancillary data to overcome these problems, such as
the moderate resolution imaging spectroradiometer (MODIS)
data, digital elevation models, and glacier inventory datasets.

Toward developing algorithms that can classify water bod-
ies accurately, a wide variety of machine learning algorithms,
including artificial neural networks, have been explored in the
literature [7], [11], [12]. Many algorithms that rely on traditional
artificial neural networks learn spectral characteristics of water
pixels, without incorporating shape and texture information. Al-
though these algorithms have been successful at regional scales,
it has proved difficult to generalize them at the global scale,
since the characteristics of water and land vary significantly
across different regions [7].

Recent progress in artificial neural network research has
shown the effectiveness of deep learning methods at solving dif-
ferent segmentation, identification, and classification problems.
In particular, the use of convolutional neural networks has led to
a leap forward in image recognition [13]–[15]. Recent methods
have enabled per-pixel labeling of images by training end-to-
end convolutional neural networks, thereby greatly advancing
the state-of-the-art in semantic image segmentation [16]–[21].
The success of convolutional neural networks is a result of the
culmination of novel network architectures that can learn hier-
archies of features having high generalization capabilities, the
availability of large datasets, and powerful hardware-accelerated
computing. Large datasets that consist of pictures of everyday
scenes, such as ImageNet [22] and Microsoft COCO [23], have
been used in many image recognition applications [13], [15],
[24], [25]. However, there has been little research conducted on
applications of convolutional neural networks using large-scale
remotely sensed image datasets, such as the Landsat archives.
Despite some promising research on applications of convolu-
tional neural networks for remote sensing [26]–[30], including
some interesting classification approaches using deeper models
[31]–[33], the potential of exploiting very large-scale Landsat
imagery, even at a global scale, remains largely unexplored in
deep learning applications.
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Landsat archives contain remotely sensed imagery obtained
with global coverage for over 40 years, which are publicly
available free of charge. The currently active Landsat missions
(Landsat 7 and 8) finish a complete pass around the Earth every
16 days, with an 8-day relative offset from each other. There-
fore, it is possible to refresh the maps of the world’s surface
water every 8 days utilizing Landsat imagery. The limited avail-
ability of reliably labeled Landsat data, though, has hindered the
applicability of deep learning models for water body mapping.
Recently, a global inland water (GIW) dataset has been made
publicly available by the global land cover facility (GLCF) [2].
The GLCF dataset has been developed using different types of
methods and data, i.e., water and vegetation indices on Landsat
data, terrain indices on digital elevation models, and a MODIS-
based water mask. The dataset provides per-pixel labels for each
Landsat image in the Global Land Survey 2000 (GLS2000) col-
lection [34].

In this paper, we adapt convolutional neural network ideas that
have been successfully applied to the semantic segmentation of
everyday pictures, to the problem of surface water mapping of
multispectral Landsat imagery. Specifically, we approach sur-
face water mapping as an image segmentation problem. We uti-
lize similarities between remotely sensed images and everyday
photographs, while accounting for their differences in our neu-
ral network topology. We show that deep convolutional neural
networks trained end-to-end on multispectral Landsat imagery,
and on their corresponding per-pixel labels, can be used to ac-
curately map water bodies at the global scale.

The main contributions of this paper are as follows: We de-
signed a novel convolutional neural network architecture that
is capable of learning land cover features at multiple scales
from remotely sensed multispectral imagery. The model archi-
tecture (see Fig. 1) is mainly based on the well-known fully
convolutional network architecture [16], [17], yet it has key
differences that adapt our model to the targeted application, in-
cluding a greatly reduced number of trainable parameters, the
analysis at a larger number of scales, and the way the layers are
connected. Using this architecture, we trained a deep-learning-
based surface water model for Landsat images. Our proposed
model embeds the characteristics of water bodies in context
across the globe. These shape, texture, and spectral character-
istics help distinguish water from snow, ice, cloud, and terrain
shadows, without requiring a locally varying threshold. The
model is straightforward to implement and is fast in applica-
tion. As we show, the trained model delivers remarkable water
mapping results.

II. FULLY CONVOLUTIONAL NETWORKS FOR

SURFACE WATER MAPPING

A. Background

A convolutional neural network (CNN) is a type of artificial
neural network that draws inspiration from the biological visual
cortex. Like other types of artificial neural networks, CNNs
consist of layers of interconnected neurons, which implement
mathematical functions having trainable parameters. A key dif-
ference between a convolutional and an ordinary fully connected

Fig. 1. Overall architecture of DeepWaterMap, which produces pixel-wise
labels on a given Landsat scene. The skip connections are shown with dashed
lines. The skip connections on the left combine fine and coarse layer activations.
The skip connections on the right provide access to previous layer activations
at each layer. This figure illustrates the simplest version of the model. More
complex versions stack more convolutional blocks per scale.

artificial neural network, such as a multilayer perceptron, is the
local connectivity and weight sharing between neurons. In a
fully connected layer, each neuron is connected to every neu-
ron in the input. This is not feasible for high-dimensional in-
puts, such as images. Convolutional layers, on the other hand,
connect each neuron to a local region of the input, where
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neurons share weights. Essentially, local connectivity and
weight sharing make a convolutional layer a set of image fil-
ters with trainable weights. This approach greatly reduces the
number of parameters and enables learning features that provide
better generalization and localization.

A typical CNN learns hierarchical image features by stacking
convolutional layers with interleaved pooling layers that act as
downsamplers. The outputs of a convolutional layer are passed
through a nonlinear activation function before being fed into the
next layer. As a simple example, a three-layer CNN block with
no pooling layers may be denoted as

g(I) = σ(σ(σ(I ∗ C1) ∗ C2) ∗ C3) (1)

where I is the input image, σ is the activation function, Cn are
the convolutional layer weights, and the function g represents
activation at the end of the convolutional block. The convolu-
tional layers are followed by fully connected layers at the end of
the network that classify the data, given the convolutional layer
activations.

Fully convolutional networks (FCNs) [16], [17] were pro-
posed as a modification of CNN architectures that were pre-
viously designed for image classification. FCNs extend earlier
models, such as AlexNet [13], GoogLeNet [14], and VGG net
[15], by replacing the fully connected layers at the end of these
networks with convolutional layers. This modification enables
a model to accept images of arbitrary size as input and to make
predictions at every pixel instead of producing a single label per
image.

Layers that act like a downsampler in the models, such as
pooling and convolution with a stride larger than one, limit
the scale of detail in the final prediction. FCNs overcome this
limitation by combining features at different resolution levels via
skip connections that connect layers at different scales. Fusing
fine and coarse layers makes it possible to recover fine spatial
information discarded by the coarse layers, while preserving
coarse structures.

FCNs have produced promising image segmentation results
on everyday images [16], [17]. Everyday photographs and Land-
sat images greatly differ in the number of spectral bands and the
range of image sizes. Everyday pictures consist of bands in the
visible spectrum (e.g., RGB), while Landsat images also include
infrared bands. The number of bands can easily be adjusted by
modifying the number of nodes in the input layer. The range of
image scales can be much larger in remotely sensed images (e.g.,
a 2000-m-wide river versus a 30-m-wide river) as compared to
photographs normally taken from a human point of view (e.g.,
a bus versus a person). Generally, we have found that the devel-
opment of remotely sensed image segmentation models greatly
benefit from conducting the analysis over a larger number of
scales.

B. DeepWaterMap: A Deep-Learning-Based Water Model

Our model, which we call DeepWaterMap, is a multiscale
fully convolutional neural network that acts like an encoder–
decoder network. DeepWaterMap has two types of skip connec-
tions that connect nonconsecutive layers (see Fig. 1). The first

Fig. 2. Convolutional blocks at a single scale. A single convolutional block
(left) and a block with three convolutional layers (right).

type of skip connection (Fig. 1 dashed lines on the left) is similar
to those used in FCNs, where fine and upsampled coarse layers
are fused together by summing the predictions made at different
scales. Our network modifies this idea by replacing the sum-
mation operation by concatenation followed by a convolutional
layer. The convolutional layer in the decoder network learns
how to fuse activations at different scales instead of simply
summing the activations. The idea of fusing activations instead
of summing the scores was mentioned in [17], but the latter was
preferred for memory efficiency. To achieve memory efficiency,
we use a small and fixed number of filters (e.g., 16) per layer.
Each scale in the encoder network reuses the information from
previous layers, allowing us to reduce the number of filters at
each convolutional layer without compromising accuracy. The
second type of skip connection, which wraps around the con-
volutional layers in the encoder network (Fig. 1 dashed lines
on the right), makes it possible to reuse features from previous
layers. This type of skip connection has been shown to be useful
for efficiently training deep convolutional neural networks in
the ResNet [25] and DenseNet [35] papers.

In our model, we adopt a bottom-up approach, by gradu-
ally increasing the network complexity. The simplest version of
DeepWaterMap has a single convolutional layer at each scale
(see Fig. 1). More complex versions use multiple convolutional
layers per scale, where the added layers can learn more com-
plex feature hierarchies and discover more complex patterns. To
achieve memory efficiency, the last skip connection in the com-
plex versions skips over the middle convolutional blocks (see
Fig. 2). We tested the networks with one, three, and five convo-
lutional layers per scale, and chose the number of convolutional
layers in a convolutional block to be 3, since further increas-
ing the number of layers did not improve the overall accuracy
at the global scale (see Section IV). All three variants of our
model produced visually similar results where the difference in
the overall accuracy was observed only at the global scale (see
Table I).

We set the number of scales to 10 to maximize the receptive
field for the input size so that the model can make use of all
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TABLE I
COMPARISON OF MODELS: A TRADITIONAL MLP AND DEEPWATERMAP

WITH ONE-, THREE-, AND FIVE-LAYER CONVOLUTIONAL BLOCKS

Precision Recall Com. Err. Om. Err. F1

MNDWI 0.55 0.98 0.45 0.02 0.70
MLP 0.61 0.67 0.39 0.33 0.64
DeepWaterMap-1 0.81 0.94 0.19 0.06 0.87
DeepWaterMap-3 0.91 0.88 0.09 0.12 0.90
DeepWaterMap-5 0.92 0.87 0.08 0.13 0.90

contextual information available in a given sample input. The
scales are implemented by pooling and upsampling layers that
downsample and upsample the layer activations by factors of
two, respectively. The pooling layers perform a max-pooling
operation using a window size of 2 × 2, by forward propagating
the maximum value within this window. The upsampling lay-
ers use transposed convolutions having parameters initialized
to compute bilinear interpolation. This architecture provides
a broad description of the context for a given spatial location
through a hierarchy of multiscale features. Despite its depth, our
model architecture allows the number of trainable parameters
to remain small (1.5 M parameters in our largest model as com-
pared to 134 M parameters in the original fully convolutional
network architecture), thereby greatly reducing the risk of over-
fitting, as well as memory and processing power requirements.
All variants of our model required less than a minute to fully
process a full-size Landsat tile on an NVIDIA Tesla P100 GPU.

All of the convolutional layers except the first and last layers
deploy 3 × 3 filters. The first and last layers consist of 1 × 1 fil-
ters, acting as point operations that compute weighted averages
across filter activations, to minimize the loss of detail arising
from the spatial convolutions.

The convolutional layers in DeepWaterMap are followed by
batch normalization [36] and rectified linear unit (ReLU) ac-
tivation layers (i.e., max (0, x)). Batch normalization, which
normalizes layer activations by the batch mean and variance,
serves two main purposes in our model. First, it reduces the
internal covariate shift problem [36]. Covariate shift refers to
the phenomenon where the distribution of inputs at each layer
changes as the previous layer parameters are updated. In deep
network architectures, even small changes in the distributions
of the outputs of the early layers are amplified through the net-
work, thereby causing changes in the distribution of the inter-
nal layer inputs, and ultimately the output classifications. This
complicates the training of deep neural networks and slows con-
vergence during training. Second, batch normalization enables
multiscale feature concatenation by making the magnitudes of
different scale activations comparable. Naively concatenating
the layer activations without any type of normalization scheme
could cause features having larger magnitudes to dominate fea-
tures having smaller magnitudes.

The final convolutional layer in our model has one filter for
each class label, which acts as a scoring layer on the class
probabilities. This layer uses a normalized exponential function
(softmax) at the output to obtain pseudoprobabilities on the class

TABLE II
CONFUSION MATRIX FOR THE MLP PREDICTED RESULTS

Actual \Predicted Land Water Snow/Ice Shadow Cloud

Land 0.78 0.06 0.01 0.01 0.13
Water 0.01 0.67 0.14 0.17 0.01
Snow/Ice 0.01 0.70 0.29 0.00 0.00
Shadow 0.15 0.58 0.06 0.17 0.05
Cloud 0.42 0.46 0.04 0.01 0.07

TABLE III
CONFUSION MATRIX FOR THE RESULTS PREDICTED BY DEEPWATERMAP

WITH THREE-LAYER CONVOLUTIONAL BLOCKS

Actual \Predicted Land Water Snow/Ice Shadow Cloud

Land 0.91 0.01 0.01 0.04 0.03
Water 0.00 0.88 0.02 0.07 0.03
Snow/Ice 0.00 0.02 0.88 0.02 0.08
Shadow 0.05 0.33 0.00 0.59 0.03
Cloud 0.26 0.03 0.06 0.11 0.55

labels. Finally, pixels where the water class has the greatest
probability are labeled as water.

III. DATA PREPARATION AND TRAINING

We matched the Landsat 7 ETM+ images in the GLS2000
collection [34] with the corresponding per-pixels labels in the
GLCF inland water dataset [2] to create the training and test
datasets for all variants of the DeepWaterMap model. We in-
cluded all reflective bands except the panchromatic channel.
The panchromatic channel, which has higher resolution than
the rest of the channels, could be included to compute higher
resolution water maps if ground-truth labels were available that
matched the resolution of the band.

Certain classes in the dataset, such as snow/ice, shadow, and
clouds, have a relatively smaller number of pixels compared to
the others. Using a uniform cost function in such a dataset could
cause the classes with a relatively higher occurrence, such as
land and water, to dominate the model. This class imbalance
problem can be addressed using a class-weighted cost function,
where a higher cost is assigned to misclassification of smaller
classes. We used a median frequency balanced cross-entropy
function [37] as the cost function to be minimized during train-
ing. Median frequency balancing assigns a weight to a class
as wc = fmedian/fc , where fc is the frequency of a class c and
fmedian is the median of class frequencies. Using this median
frequency balanced cost function encourages the models to sep-
arate snow, ice, shadow, and clouds from water, despite their
relatively rare occurrence.

Our models can input images of arbitrary size during in-
ference. However, during training, all images in a minibatch
need to have the same dimensions, and the layer activations for
the entire batch need to fit the available memory. Therefore,
we cropped 512 × 512 pixel nonoverlapping patches from the
Landsat images, using a sliding window. We skipped “empty”
patches where more than 99% of the pixels were labeled as
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Fig. 3. High latitudes in North America: WRS-2 path/row: 49/24, British Columbia, Canada. (a) MNDWI response, (b) traditional MLP estimate for water
probability, (c) DeepWaterMap-3 estimate for water probability, (d) corresponding labels in the GLCF GIW dataset (blue: water, pink: snow/ice, and dark
and light gray: cloud and shadows), (e)–(g) DeepWaterMap-3 estimates for snow/ice, shadow, and cloud probabilities, respectively. DeepWaterMap success-
fully distinguishes between water, snow/ice, and shadow, while MNDWI and MLP fail to separate these classes from water. (a) MNDWI, (b) MLP water,
(c) DeepWaterMap water, (d) GLCF GIW labels, (e) DeepWaterMap snow/ice, (f) DeepWaterMap shadow, (g) DeepWaterMap cloud.

land. The resulting dataset contained more than 1.4 million la-
beled multispectral image patches. We randomly selected 80%
of these patches for training and the remaining 20% for testing.

When the training data are scarce, transferring pretrained
parameters from existing models as in [31], and [38] or prepro-
cessing the input data as in [32] and [33] can be useful. Given
the large number of samples in our training set, we did not
need to transfer features or preprocess the input images. Train-
ing our models from scratch allowed for a greater flexibility in
our model architecture. Using the input images as is without
any preprocessing let our models learn to extract useful features
directly from data.

We designed our model to utilize all context information
available in a given training sample by maximizing the re-
ceptive field. We chose the number of scales to be �log2 min
(N,M) + 1� that evaluates to 10 for a training input size N =
M = 512. Thus, the coarsest scale had a receptive field of 512
× 512 pixels. In other words, the coarsest scale had access to
all pixels in the input.

Very deep convolutional neural networks, like our DeepWa-
terMap model, have difficulty converging if the parameters are
randomly initialized. The weight initialization method described
in [39] provides a robust scheme for initializing very deep mod-
els. We initialized the weights in all convolutional layers, except
the upsampling layers (which are initialized to compute bilinear
interpolation) using this scheme.

We optimized the weights using the adaptive moment esti-
mation (Adam) algorithm [40] using the recommended default
hyperparameters β1 = 0.9 and β2 = 0.999, and a base learning
rate λ = 10−4 . The Adam algorithm computes adaptive learning
rates for different parameters and reduces the impact of tuning
the hyperparameters on convergence. We trained all models at
once, without training in stages or fine tuning, until the training
loss converged.

We trained three different versions of the DeepWaterMap
model, having one, three, and five convolutional layers per scale,
respectively. We shuffled the training set once before training
and trained the models with minibatches of eight samples. Train-
ing and testing all three models took less than 3 days on a server
equipped with three NVIDIA Tesla P100 GPUs. As a bench-
mark, we also trained a traditional multilayer perceptron (MLP)
on the same training set. The benchmark neural network had
30 hidden nodes, similar to the model in [12], which was also
trained to classify cloud, shadow, water, snow/ice, and clear sky
pixels.

IV. RESULTS

We tested each model, namely the MLP and DeepWaterMap
with one-, three-, and five-layer convolutional blocks, with re-
gards to water pixel classification performance on the test set. We
also ran a simple water classifier on the test set by thresholding
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Fig. 4. High latitudes in Europe: WRS-2 path/row: 200/18, Bergen, Norway. (a) MNDWI response, (b) traditional MLP estimate for water probability,
(c) DeepWaterMap-3 estimate for water probability, (d) corresponding labels in the GLCF GIW dataset (blue: water, pink: snow/ice, dark and light gray: cloud
and shadows), (e)–(g) DeepWaterMap-3 estimates for snow/ice, shadow, and cloud probabilities, respectively. DeepWaterMap successfully distinguishes between
water from snow/ice, shadow, and clouds, while MLP classifies them as water. (a) MNDWI, (b) MLP water, (c) DeepWaterMap water, (d) GLCF GIW labels,
(e) DeepWaterMap snow/ice, (f) DeepWaterMap shadow, (g) DeepWaterMap cloud.

the MNDWI response at zero, as suggested in the original
MNDWI paper [9]. We compared the models using precision
(user accuracy), recall (producer accuracy), and corresponding
commission and omission errors. Precision denotes the ratio of
pixels that are correctly classified as water to all pixels classified
as water, while recall is the ratio of detected water pixels to all
ground-truth water pixels. As an overall performance measure,
we used the F1-score, which is the harmonic mean of precision
and recall (see Table I). The simple MNDWI classifier yielded
many false positives, which led to a high commission error.
The MLP model had lower commission error and higher omis-
sion error rates as compared to MNDWI. All three versions of
the DeepWaterMap models delivered better overall performance
than the MNDWI and MLP classifiers. Increasing the number of
layers in the convolutional blocks in the DeepWaterMap mod-
els improved the F1-score, saturating at three layers per block.
Given that the ground truth had commission errors <5% and
omission errors <15% relative to established national datasets
[2], the water classification performance of our three and five-
block models was close to the limits defined by the training
data.

The confusion matrices (see Table II and III) show that our
model significantly outperformed the traditional MLP approach
at discriminating water from other classes. The traditional MLP
model learns the spectral response (pixel intensity values) for
different class labels. Our fully convolutional models, on the

other hand, are capable of learning multiscale shape and texture
features in addition to spectral response. These features help
discriminate between classes where the spectral responses may
be similar, such as water and shadows.

We show qualitative results on some images obtained from
across the globe that are part of the GLS 2000 collection of
Landsat images (see Figs. 3–7). The images include areas hav-
ing varying characteristics: high latitudes (see Figs. 3 and 4),
river channels in a tropical rainforest (see Fig. 5), urban areas
(see Fig. 6), and river deltas with vegetation (see Figs. 7 and 8) in
different continents. We visualize the model outputs by mapping
the class probabilities pc to a grayscale ramp, where pc = 0 is
black and pc = 1 is white. We also show the GLCF GIW dataset
labels for the corresponding regions for reference. The qualita-
tive results were aligned with the quantitative results. The visu-
alizations show that a simple MLP network trained on a global
dataset poorly separates water from snow/ice, shadow, cloud,
and urban areas as compared to the DeepWaterMap model. In
urban areas (see Fig. 6), even the simple MNDWI index provides
better separation between land and water, since it was designed
to suppress built-up noise.

DeepWaterMap was able to successfully detect underrepre-
sented classes, including snow/ice, shadow, and clouds, despite
their relatively lower accuracy in the quantitative results. One
reason that the quantitative results show lower accuracy on these
classes may be that clouds and shadows are not discrete objects.
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Fig. 5. River channels in a tropical rainforest: WRS-2 path/row: 1/62, Amazonas, Brazil. (a) MNDWI response, (b) traditional MLP estimate for water probability,
(c) DeepWaterMap-3 estimate for water probability, (d) corresponding labels in the GLCF GIW dataset (blue: water, pink: snow/ice, dark and light gray: cloud
and shadows), (e)–(g) DeepWaterMap-3 estimates for snow/ice, shadow, and cloud probabilities, respectively. DeepWaterMap successfully detects clouds and
their shadows, while MLP assigns them high probabilities of being water. (a) MNDWI, (b) MLP water, (c) DeepWaterMap water, (d) GLCF GIW labels,
(e) DeepWaterMap snow/ice, (f) DeepWaterMap shadow (g) DeepWaterMap cloud.

Fig. 6. Coastal urban area: WRS-2 path/row: 107/305, Tokyo, Japan. (a) MNDWI response, (b) traditional MLP estimate for water probability, (c) DeepWaterMap-
3 estimate for water probability, (d) corresponding labels in the GLCF GIW dataset (blue: water, pink: snow/ice, dark and light gray: cloud and shadows),
(e)–(g) DeepWaterMap-3 estimates for snow/ice, shadow, and cloud probabilities, respectively. DeepWaterMap correctly classifies water, while MLP fails to
suppress built-up noise. (a) MNDWI, (b) MLP water, (c) DeepWaterMap water, (d) GLCF GIW labels, (e) DeepWaterMap snow/ice, (f) DeepWaterMap shadow,
(g) DeepWaterMap cloud.
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Fig. 7. River delta: WRS-2 path/row: 188/57, Niger delta, Nigeria. (a) MNDWI response, (b) traditional MLP estimate for water probability, (c) DeepWaterMap-3
estimate for water probability, (d) corresponding labels in the GLCF GIW dataset (blue: water, pink: snow/ice, dark and light gray: cloud and shadows), (e)–(g)
DeepWaterMap-3 estimates for snow/ice, shadow, and cloud probabilities, respectively. DeepWaterMap separates vegetation, clouds, and cloud shadows from
water.

Fig. 8. River delta with mangrove forest: WRS-2 path/row: 138/45, a portion of the Brahmaputra–Jamuna delta, India and Bangladesh. (a) MNDWI response,
(b) traditional MLP estimate for water probability, (c) DeepWaterMap-3 estimate for water probability, (d) corresponding labels in the GLCF GIW dataset (blue:
water, pink: snow/ice, dark and light gray: cloud and shadows), (e)–(g) DeepWaterMap-3 estimates for snow/ice, shadow, and cloud probabilities, respectively.
DeepWaterMap separates vegetation from water. However, false positives are observed in the cloud and snow/ice classes.
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Thus, it is difficult to define binary labels on the cloud and
shadow classes. Furthermore, the errors on these classes were
not reported in the GLCF dataset, which we used as the ground
truth. As may be seen from the qualitative results, the labels for
these classes were not always precise in the ground-truth dataset.
Overall, our model learned to generalize well from noisy data.
However, on some input images (e.g., Fig. 8), the model deliv-
ered false positives on these underrepresented classes, leading
to confusion between the nonwater classes. Some of the un-
derrepresented classes had higher weights in the cost function
during training due to class balancing, which likely led to these
false positives.

As shown in these experiments, DeepWaterMap was able
to generalize the characteristics of water globally, resulting in
a high classification accuracy, particularly for the water class.
No noticeable loss of detail was observed in the outputs of
DeepWaterMap, showing that the model was able to efficiently
learn to fuse multiscale features.

We tested our model globally and focused on its ability to
learn features at the global scale; independent of the type of
terrain and the atmospheric conditions. Our model works well
across terrain types and atmospheric conditions. Finding a way
to segment the entire earth into different types of terrains and
test our model for different earth regions would require a rather
major effort. Yet, we recognize that such a study would be of
great interest.

V. CONCLUSION

We presented a deep fully convolutional neural network
model, called DeepWaterMap, to map surface water on Land-
sat imagery. In our model, we adopted a data-driven approach,
thereby removing the need for manually selected threshold val-
ues and other hand-crafted rules on different regions and condi-
tions. The model learns the global characteristics of land, water,
snow/ice, shadow, and clouds, including their shape, texture, and
spectral response. The model separates between these classes
using Landsat bands, without requiring ancillary data. The mul-
tiscale feature fusion in the model helps preserve the amount
of detail while taking the context into account during per-pixel
classification of the input. Our results show that our model per-
forms significantly better than the simple modified normalized
difference water index and the traditional multilayer perceptron
approach at discriminating water from other surface land cover.

DeepWaterMap can be applied on a variety of different prob-
lems involving diverse terrains, seasonal states, and particular
water networks (e.g., deltas). With minimal modification, Deep-
WaterMap can be trained for other tasks involving remotely
sensed images, such as classifying other types of land cover
(e.g., vegetation, forests, and urban areas). The maps generated
by our model would help us better understand environmental
change and predict our planet’s future.
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