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Abstract—Multicolor fluorescence in situ hybridization
(M-FISH) techniques provide color karyotyping that allows
simultaneous analysis of numerical and structural abnormalities
of whole human chromosomes. Chromosomes are stained com-
binatorially in M-FISH. By analyzing the intensity combinations
of each pixel, all chromosome pixels in an image are classified.
Due to the overlap of excitation and emission spectra and the
broad sensitivity of image sensors, the obtained images contain
crosstalk between the color channels. The crosstalk complicates
both visual and automatic image analysis and may eventually
affect the classification accuracy in M-FISH. The removal of
crosstalk is possible by finding the color compensation matrix,
which quantifies the color spillover between channels. However,
there exists no simple method of finding the color compensation
matrix from multichannel fluorescence images whose specimens
are combinatorially hybridized. In this paper, we present a method
of calculating the color compensation matrix for multichannel
fluorescence images whose specimens are combinatorially stained.

Index Terms—Chromosomes, color compensation, crosstalk,
fluorescence in-situ hybridization (FISH), fluorescence, multicolor
fluorescence in-situ hybridization (M-FISH), multicolor, multi-
spectral.

I. INTRODUCTION

T HE fluorescence in situ hybridization (FISH) microscopic
imaging modality has been widely used for the analysis of

genes and chromosomes. Multiple fluorophores are often used
combinatorially to visualize multiple biological components
simultaneously. Using combinatorial labeling methods,
components within the specimen can be discriminated using
fluorophores. When five fluorophores are used, 31 objects can
be analyzed by the binary combinations (presence or absence)
of the fluorophores. gray scale images of specimens, stained
with fluorophores, can be obtained using a monochrome
camera and a set of optical bandpass filters that are specifically
designed for the excitation and emission wavelengths of the
fluorophores.

In particular, multiplex FISH (M-FISH) uses five flu-
orophores to uniquely identify all 24 chromosome types
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in human genome. A sixth fluorophore, DAPI (4 -6-di-
amidino-2-phenylindole, a blue fluorescent dye), is used to
counterstain the chromosomes. Using an epifluorescence mi-
croscope and a set of optical bandpass filters, six monochrome
images are captured.

Each pixel of an M-FISH image is composed of six values that
correspond to the intensities of six fluorophores. By analyzing
the intensity combinations of the pixels, all of the chromosome
pixels in an image are identified, and a pseudocolor is assigned
based on the class the pixel belongs to [1], [2].

M-FISH is an important tool for the visualization of translo-
cations (exchange of chromosomal material between chromo-
somes), which is extremely common in cancer cells. A high ac-
curacy in pixel classification has been one of the central goals
to achieve the success of the M-FISH technique. The channel
crosstalk complicates processing of the images and also may
adversely affect the classification results, depending on the clas-
sification methods, by making less certain of the likelihood of a
pixel to the correct class.

In general, there are two types of M-FISH systems: systems
that use a set of optical bandpass filters as described above [3],
and systems that use an interferometer [4]. While the earlier type
captures a number of monochrome images which correspond to
the intensities of each fluorophore, the later type captures the
complete emission spectra over a range of wavelengths at every
pixel. Developed techniques in this paper are pertinent to the
earlier one.

When specimens are singly stained, each color channel of the
image should display only one fluorophore component. How-
ever, due to the overlap of excitation and emission spectra and
the broad sensitivity of imaging sensors, the obtained images
contain a certain amount of crosstalk between the color chan-
nels. This phenomenon is called color spreading [5] or color
spillover [6] (Note that in the field of flow cytometry, “color
spreading” is termed as “color spillover”). These color spread-
ings introduce uncertainties and complexities into the image
analysis.

The inverse process of color spreading is called color com-
pensation. The color compensation method for FISH images
was first introduced by Castleman [5], [7], [8] by modeling the
color spreading effect as a linear transformation. Color compen-
sation can be done only if the color spread matrix is defined.
The color spread matrix quantifies the amount of each color
being spread to the other colors. So far, the color spread matrix
has been experimentally found, usually for cases where objects
within the specimen are singly labeled.

By measuring the intensities across color channels at the lo-
cation of an object that is singly labeled, we can easily quantify
how much the single color is spilt over other channels. How-
ever, when none of objects are singly labeled, the determination
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of color spread matrix is not easy unless singly labeled refer-
ence samples are specifically prepared.

For interferometer based systems, there also exist color com-
pensation methods [6], [9]. The preferred color compensation
method for this kind of systems is linear unmixing, which also
requires prior knowledge of the reference spectra for a given
dye.

In this paper, we present a mathematical method of calcu-
lating the color spread matrix for M-FISH without the need of
preparing singly labeled samples. The new technique can be
easily applied to other combinatorially labeled FISH images and
multichannel images that exhibit a similar signal formation pat-
tern as M-FISH images.

In Section II, a method of computing color spread matrix from
the captured images is described. An example of calculating the
color spread matrix is described in III. In Section IV, we present
color compensation results applied to M-FISH images.

II. COLOR COMPENSATION

A. Signal Model

Castleman [7], [10] has modeled the color spreading effect as
a linear transformation

(1)

where is the color spread matrix that specifies how the
colors are spread among the channels, is the vector of
true fluorophore intensities at a particular pixel, is the
vector of black-level offsets of the imaging sensors (e.g., three
channel color CCD or monochrome CCD), is the
diagonal matrix of exposure times of each channel, and is
the vector containing the measured intensity values at
a particular pixel. This model assumes that the gray levels are
linear with brightness of the fluorophores.

Then the true intensities can be found, given , , , and
by

(2)

Normally, , , and are given but the color spread matrix is
not. Without the color spread matrix, the true intensities cannot
be recovered. When objects are uniquely stained, estimating the
color spread matrix is relatively simple. We will illustrates the
procedure by an example. Suppose three biological objects are
uniquely stained with three fluorophores as shown in Table I.
Then (1) can be written

(3)
where is the gray level of red channel at the th pixel, is
the exposure time for red channel, is the proportion of red
color being spread to green channel, and the rest are analogous.

The color spread matrix, which is dependent on the filter sets,
fluorophores, and imaging sensors, can be found from three

vectors from three objects. The intensities of the observed
signal are for red dye,
for green dye, and for blue dye respectively, and

TABLE I
COLOR MAP: OBJECT 1 IS STAINED WITH RED DYE, OBJECT 2 IS STAINED

WITH GREEN DYE, AND OBJECT 3 IS STAINED WITH BLUE DYE

and . , , or is a set
of indexes of the objects stained with red, green, or blue dye, re-
spectively. Knowing that the intensities of are originated only
from the intensity of red, green, or blue dye, the true pixel values
are found by , sim-
ilarly , and . Here is
divided by 2 because of the integration time. After plugging in

into (3), the nine unknowns of can be found by solving
nine linear equations from . Simply, calculating
the intensity ratios of is the solution in this case. Thus, the
color spread matrix in this example is

The first column of the color spread matrix tells that 15% and
5% of the red intensity is spread to the green and blue chan-
nels, respectively. The inverse matrix of the color spread ma-
trix, called the color compensation matrix, corrects these color
spreadings and recovers the true signal intensities. Once the
color spread matrix is computed, it can be used for other images
that are captured under the similar (ideally the same) conditions
using the same optical system and fluorophores.

When the specimens are combinatorially stained, the estimate
of the true intensities from the observed signal cannot be done
in the same way as when the specimens are uniquely stained.
In M-FISH, six fluorophores are combinatorially used to dis-
criminate 24 chromosome types. Chromosome 1, for example,
is stained only with DAPI and spectrum gold dyes, chromosome
2 with DAPI and Red, chromosome 4 with DAPI, Green and
Red, and so on. In the following sections, we will explain how
to compute the color spread matrix from only the observed
signal and the exposure times, .

The measured signal of the M-FISH images can be written
the same way as Castleman’s model for FISH images but with
slightly more details as

(4)

where is the 6 1 vector of the observed signal intensities at a
pixel, is the 6 1 vector of the true signal intensities, is the
6 6 color spread matrix, includes the dc-offset of the CCD
and various factors that cause background intensity elevation,
is the noise of the imaging device such as white noise and shot
noise, and is the 6 6 diagonal matrix of exposure times.
In this model, we explicitly write that the background intensity
increases linearly as the exposure time increases. Note that pixel
index for the vectors is specified only when necessary.

Six channels of the M-FISH image are first median filtered
with a 3 3 kernel in order to eliminate the shot noise from ,
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and then lowpass filtered with a 3 3 kernel to remove the high
frequencies which are mostly dominated by the white noise.
Fortunately, the amount of shot noise and white noise from the
imaging sensor in M-FISH images are not significant. Thus, the
term is effectively minimized from (4).

B. Background Correction

The background intensity is mostly affected by the auto-flu-
orescence of the slide, the dc offset of the CCD, unattached
free fluorescent molecules, the intensity of the defocused ob-
jects from out of depth of field, etc. Also, regions having a high
density of objects usually have an elevated background intensity
relative to regions without objects because of the flair effect. All
these factors contribute to the nonflat intensity elevation of the
background.

A 2-D cubic surface was estimated from the background
pixels in order to remove . The surface that has the min-
imum mean square error relative to the background pixels is
the estimated 2-D cubic surface [10]. Other various types of
background correction techniques for microscope images can
be found in [11].

The background pixels for each channel are found by a
-means clustering method , in which the threshold

is found while iteratively regrouping grayscale values into
two classes until the class means converge. Given a grayscale
image , the intensity distribution is assumed to be a mixture of
two gaussians: , ,
where is the grayscale value in image , and are the
background class and foreground class, respectively,
is the probability density function, and are the mean and
the standard deviation respectively. We further assumed that

for simplicity. Let denote a set of
unlabeled samples drawn independently from the mixture

density

The decision boundary that partitions into two groups,
and , is computed by minimizing the sum-of-squared error

and that minimize are found iteratively using

(5)

where is the decision boundary, and are the class
means, and and are the prior probabilities

. Given the initial estimates of and
, the initial is found. Using the initial , the new means

are found. This minimization process is repeated until the class
means or converges. and are chosen as the
initial values for and , respectively. The samples in ,
pixels below the threshold , represent the background pixels.

Given the background pixels, the 2-D cubic surface is esti-
mated as follows. The function for a 2-D cubic surface [10] is

(6)

where are the coefficients that determine the surface
shape, and are the coordinates, and is the intensity
value at th row and th column. The ten coefficients are esti-
mated from the given background pixels by solving ,
where is a column vector containing intensity values,

is a matrix containing and coordinates and their
products with different powers, and is a 10 1 column vector
containing the ten unknowns

...
...

...
...

...
...

...
...

...
...

...
...

The least squares solution for that minimizes the sum of the
mean square error is determined by

Using the coefficients and (6), a 2-D cubic surface that best
fits the given background pixels is obtained. Finally, the esti-
mated surface for each channel is then subtracted from the cor-
responding channel removing the above mentioned noises in
from (4).

C. Color Compensation

After the background correction, the signal model becomes

(7)

The formation of this signal can be viewed as in Fig. 1. Six orig-
inal gray levels of are linearly mixed by the color spread ma-
trix . Note that the vectors and in the signal model are the
pixels only from the chromosome area now. Let’s define as
a matrix containing vectors, and similarly is also
a matrix. The observed signal before the exposure times
are applied can be written as . The goal is to solve for
and given the observation . Finding the linear mixing
matrix and the original signal from the observed signal is
a problem similar to the cocktail-party problem, where there are

speakers and recording devices, and the recorded sig-
nals are weighted sum of the true signals. The recently devel-
oped technique called independent component analysis (ICA)
has been used quite successfully to estimate the mixing channel
parameters, , from the mixed signal based on the assump-
tion that each digital signal (represented as a function of time) is
statistically independent of each other at every time index [12].
ICA can also be used to separate the M-FISH mixed signal
into six different statistically independent signals. However, the

that ICA estimates for M-FISH is not the same as the true
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Fig. 1. Signal formation of M-FISH images. The measured intensities at a pixel is � � ���. The original intensities � � �� � � � � � � � � � at a pixel is
linearly mixed by the color spread matrix �, and the mixed intensities are scaled by the integration times � through � , resulting in the captured intensities
� � �� � � � � � � � � �.

signals since the combinatorial labeling causes dependencies
among the true signals.

Let be an th observed pixel that belongs to chromo-
some 1 or . A realistic set of pixel values of may be

. From the color labeling information
about chromosome 1, we know that at least four values in
should be zero, i.e., . Values in
should be zero where the staining is not present, and values re-
main unknown where fluorophores are present. This can be re-
peated for 24 chromosomes, creating 76 unknowns for the true
signal. Also, all 36 values in the color spread matrix are un-
known. Thus, the total number of unknowns are 112. Realisti-
cally, we may not find a unique solution given only the observed
signal, but we can derive an optimal solution utilizing as much
information as possible about the signal.

In practice, even after the careful noise removal, an observed
pixel will differ from , that is , where
may include factors not considered in our system model such
as nonuniform hybridization inside of each chromosome, un-
removed noise after median and lowpass filtering and back-
ground subtraction, and saturation of the pixels. Considering
as a multivariate random variable that belongs to a class ,
where , maximum-likelihood class parameters
are estimated assuming the distribution of the random variable
is normal. Therefore, we compute the mean vectors of each
class from either manually or automatically classified images
[2]. When using an automatic classification method, the result
should be verified and misclassified pixels should be excluded.
At least one image should be classified to identify pixels of each
class and thus to formulate the equations. Having more pixels
per class across from a number of images should reduce any
possible variations between images. Once the color spread ma-
trix is computed from one or a number of images, the color
spreading of other images that are captured under the same con-
ditions can be corrected. However, a caution should be taken
when applying the color spread matrix to other images. The
photo-bleaching effect, which is a well-known problem in flu-
orescence imaging, degrades the signal intensity as a function
of time given an amount of excitation light. Thus, when cap-
turing images, one should be attentive to applying the same total
amount of excitation light at each imaging location to minimize
the variation in signal intensities from image to image, and of
course all other setups of the imaging system should be iden-

tical. Otherwise, a new color spread matrix has to be computed
for a new set of differently captured images.

In order to minimize the effect of noise in the estimation of
the color spread matrix, the 6 24 matrix is formed as

...

(8)

where are the number of pixels that belong to each
chromosome . If is negligible, can be expressed

(9)

The matrixes and contain the unknowns. In order to form
a system of linear equations, (9) is written as

(10)

The solution for (10) should satisfy the following constraints.
1) We assume that the intensity of all chromosomes stained

with a particular dye should be the same in the original
signal. For example, there are 10 chromosomes that are
stained with green dye using Vysis probe, and the mean
intensity of each chromosome should be the same. This
assumes that all objects have the same hybridization sensi-
tivity to the same fluorophore. However, if there are differ-
ences in the sensitivity and information is not given, then
our assumption will give the best estimate. If the informa-
tion is given, then the sensitivity ratios should be and can
be incorporated into the equations.

2) The intensity between the input and output signals should
be preserved, i.e., the sum along each columns of
should be the same as the sum along each columns of ,

. To satisfy the this, each column of
the color spread matrix should sum to 1.

Using these constraints, a nonhomogeneous linear system of
244 equations is formed as . The solution for 36 un-
knowns of and 76 unknowns of that optimally satisfy
the equations is found. is the 244 112 coefficient ma-
trix, is a column vector of the 112 unknowns, and is a
column vector of 214 zeros and 30 nonzero values. Among 214
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TABLE II
EXAMPLE. COLOR LABELING TABLE (LEFT), COLOR SPREAD MATRIX

(MIDDLE), AND EXPOSURE TIMES (RIGHT)

equations, 144 equations are generated from (10), having 6
24 zeros on the right side of the equation, and 70 equations
are formed by the condition that the none zero values in each
row of should be identical. Among 30 nonzero values in ,
24 values are sums of intensities of each chromosome across
spectra and 6 values are 1 s, representing sums of each column
of the color spread matrix. The optimal solution that gives the
minimum least squares error of this overdetermined problem is
computed by . In practice, will not be
error free. The amount of perturbation in is directly related to
the level of noise in . Thus, pixels should be carefully selected,
and especially pixels with saturated gray level, 255, should be
avoided since the saturation is nonlinear. In actual computa-
tion, QR decomposition of is used to find the solution and
to avoid the calculation of , since is strongly influ-
enced by round off errors [13]. QR decomposition is a matrix
factorization method that factorizes as , where
is an orthogonal matrix and is an upper tri-
angular matrix. The solution is then found by backsubstitution
from .

The color spread matrix can only be estimated when the
number of differently labeled objects is equal or larger than the
number of fluorophores.

III. EXAMPLE OF COMPUTING THE COLOR SPREAD MATRIX

In this section, we show an example of how to formulate a
linear system of equations from the observed signal. Suppose
three objects are stained with three fluorophores combinatori-
ally according to the color map shown in Table II, and the color
spread matrix of the imaging system associated with those three
fluorophores is also defined in Table II. The color map shows
that object one is stained with fluorophore 1 and 2, object two is
with fluorophore 1 and 3, and object three is with all three fluo-
rophores. The color spread matrix indicates that, for each fluo-
rophore, twenty percent of the original signal intensity is spread
to the other channels. The original signal is defined as

Rows in represent objects and columns represent spectra.
The observed signal is defined as . Strictly
speaking, the matrix is a set of means of each object as
shown in (8). Then the matrix of the observed signal is

Now, given , , and the color table, we will estimate the color
spread matrix and the original signal . We have nine un-
knowns for the color spread matrix and seven unknowns for the
true signal. The solution for the total of sixteen unknowns can
be found by solving the following equation
with conditions defined in II-C. The equation can be written

(11)

Equation (11) can be written as a linear system of equa-
tions in 16 unknowns, , where is the coefficient
matrix, is the column vector of the unknowns, and is the

column vector. From (11), nine equations are formed.
The sums of columns of should be the same as the sums
of columns of . This gives three equations. The sum of each
column of should be 1. This gives three more equations.
Further, nonzero values in a row of should be the same,
yielding four more equations. Thus, a total of 19 equations are
formed. A linear system of equations in unknowns has a
unique solution if the coefficient matrix and the augmented
matrix has the same rank, and the rank equals . In this ex-
ample, . The solution is found by
the QR decomposition. contains the solution for .
Then the estimated color spread matrix is

contains the solution for the unknown values.
The true signal estimated is

and . Thus, the MSE between the estimation and
the truth is zero. In this example, the proposed method finds the
unknowns with no error.

IV. RESULTS

A. Color Compensation of M-FISH Images

In this section, we show the result of color compensating
M-FISH images, and in addition we quantitatively show the im-
provement in image quality after the color compensation using
mean squared error (MSE) and the structural similarity index
(SSIM), a recently developed metric that has been shown to sig-
nificantly surpass the MSE as a means for quantifying structural
similarities between two images [14]. Given two images and
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Fig. 2. Background correction. Elevated background intensity is removed after the background correction, but the channel crosstalk still remained. Profiles in
(d) are drawn from middle rows of (a) and (b). (a) Original aqua channel. (b) Background corrected image. (c) Estimated cubic surface. (d) Profile: top-before,
bottom-after.

, SSIM includes the luminance, contrast, and structure terms,
and it is expressed

(12)

where and , and is the dy-
namic range of the pixel values (255 for 8-bit images). For the
constants, we used and (refer [14]
for the details). SSIM is calculated within a 11 11 circular
symmetric window, which moves pixel-by-pixel over the entire
image. It is easily shown [14] that , where

if and only if .
M-FISH images are obtained from a publicly available data-

base at Advanced Digital Imaging Research, which contains
200 hand-segmented M-FISH images. The database is avail-
able online. Fig. 2 shows the result of background correction.
The original image in Fig. 2 has an elevated background and

1http://www.adires.com/05/Project/MFISH_DB/MFISH_DB.shtml

displays channel crosstalk. The estimated cubic surface of the
background is shown in Fig. 2(c). The background corrected
image shown in Fig. 2(b) is obtained after subtracting Fig. 2(c)
from Fig. 2(a). Fig. 2(d) is a profile drawn from the middle rows
of Fig. 2(a) and (b), and it clearly shows that the background el-
evation is effectively removed.

After correcting the background of five images that are cap-
tured from the same slide, pixels from each chromosome class
are collected from those images. The means of each class are
computed to form the matrix . Then the color spread matrix
is calculated. Fig. 3(c) shows the color compensation result on
an image, which was not included in the five sample images to
compute the color spread matrix, and as shown in the figure, all
the crosstalk was effectively removed. A significant improve-
ment in image quality is achieved after the color compensation.

Six-channel synthetic images, representing the ideal color
compensation result, are generated using the ground truth from
the database in order to quantify the image quality improve-
ment. Ideally the images should be binary and represented by
only two values, for example, 0 for nonfluorophore intensity and
any reasonably large value, within the grayscale, for fluorophore
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Fig. 3. Color compensation. The color compensation removed the channel crosstalk effectively. A significant increase in image quality is achieved on image (c).
(a) Original image. (b) Background correction. (c) Color compensation.

TABLE III
IMAGE QUALITY IMPROVEMENT. SUBINDEX � REPRESENTS

BEFORE COLOR COMPENSATION, AND SUBINDEX

� REPRESENTS AFTER COLOR COMPENSATION

intensity. From the observation that the grayscale of chromo-
somes normally takes a midrange, a grayscale value of 128 is
chosen for the chromosome intensity. The gray levels in areas
where chromosomes overlap are usually saturated, and thus 255
is chosen for the overlapping area. The background area is set to
0. The MSE and the mean SSIM (MSSIM) are measured from
before and after color compensated images against the synthetic
images. An average of MSEs and MSSIMs across six channels
per image is shown in Table III. MSSIM becomes one when two
images are identical. As shown in Table III, the MSE reduced
by a factor of 4 and the MSSIM increased by a factor of 10 after
the color compensation.

V. DISCUSSION

M-FISH image formation involves much more complex pro-
cesses and nonlinearities than our signal model as shown in
(4). The estimation of color compensation matrix will be bi-
ased when the noise is included in the estimation. The noise
terms in our signal model, such as and , are rather effectively
removed. However, other types of noise that are not included
in our signal model, such as nonuniform hybridization inside
chromosomes and among different chromosomes and unwashed
free fluorescent molecules, and any deviations from true signal
formation in our signal model affect the calculation of color
compensation matrix. In order to minimize the effect of noise,
images of good quality, i.e., large signal-to-noise ratio (SNR),
less or no saturated pixels, and low biochemical noise, are pre-
ferred. When the level of noise is high, the solution for the color
compensation matrix often becomes useless containing negative
values. Noisy data should be avoided in the first place, but when
inevitable a conditional optimization can be utilized to obtain

a meaningful solution. Another factor that is not considered in
our signal model, thus not included in the preprocessing steps,
is the image misalignment. Image misalignment is a common
phenomenon in multichannel images, which is mainly due to
chromatic aberration of optical components. The degree of mis-
alignment varies depending on the dataset. In ADIR M-FISH
database, there are three different datasets distinguished by the
labeling probes, which are Vysis, ASI, and PSI. Vysis dataset
delivers high quality images—less biochemical noise, low mis-
alignment, and large SNR—compared to the other two datasets.
As the primary goal of this paper is to present the method of cal-
culating the color compensation matrix, a subset of Vysis data
is used as an example in this paper. Since the Vysis dataset has
negligible amount of misalignment, the image registration was
not performed in our case. However, when the amount of mis-
alignment is significant, a proper image registration [15] must be
performed as a preprocessing step before computing the mean
vectors.

VI. CONCLUSION

We have shown a method of estimating the color spread
matrix (or color compensation matrix) for combinatorially hy-
bridized multicolor FISH images. The developed method does
not require the preparation of singly labeled objects to obtain the
reference spectra of each fluorophore. Instead, it only requires
the knowledge of the mean vectors of all differently colored
objects in the specimen. The mean vectors are computed, from
a set of sample images, by either manually or automatically
classifying objects. When automatic classification method is
used, pixels below a certain posterior probability or likelihood
value should be rejected. Once the color compensation matrix
is computed from a set of sample images, all other images, that
are taken under the same conditions as the sample images are
captured, can be color compensated.

This paper also presents examples of formulating a linear
system of equations in order to estimate the color spread matrix.
The improvement on image quality after the color compensation
is shown both qualitatively and quantitatively, and a significant
improvement is observed. SSIM and MSE are used to measure
the image quality improvement. MSSIM improved by a factor
of 10, and MSE reduced by a factor of four on average after the
color compensation.
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The developed technique of computing the color spread ma-
trix from a set of obtained images can be easily applied to other
multicolor FISH images where specimens are combinatorially
stained and imaged from a set of optical filter based systems, and
furthermore it can be extended to other multichannel images that
exhibit a similar signal formation pattern as the M-FISH images.
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