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Abstract— Most publicly available image quality databases
have been created under highly controlled conditions by
introducing graded simulated distortions onto high-quality
photographs. However, images captured using typical real-world
mobile camera devices are usually afflicted by complex mixtures
of multiple distortions, which are not necessarily well-modeled
by the synthetic distortions found in existing databases. The
originators of existing legacy databases usually conducted human
psychometric studies to obtain statistically meaningful sets of
human opinion scores on images in a stringently controlled
visual environment, resulting in small data collections relative
to other kinds of image analysis databases. Toward overcoming
these limitations, we designed and created a new database that
we call the LIVE In the Wild Image Quality Challenge Database,
which contains widely diverse authentic image distortions on a
large number of images captured using a representative variety
of modern mobile devices. We also designed and implemented a
new online crowdsourcing system, which we have used to conduct
a very large-scale, multi-month image quality assessment (IQA)
subjective study. Our database consists of over 350 000 opinion
scores on 1162 images evaluated by over 8100 unique human
observers. Despite the lack of control over the experimental
environments of the numerous study participants, we demon-
strate excellent internal consistency of the subjective data set.
We also evaluate several top-performing blind IQA algorithms
on it and present insights on how the mixtures of distortions
challenge both end users as well as automatic perceptual quality
prediction models. The new database is available for public use
at http://live.ece.utexas.edu/research/ChallengeDB/index.html.

Index Terms— Perceptual image quality, subjective image
quality assessment, crowdsourcing, authentic distortions.

I. INTRODUCTION

THE FIELD of visual media has been witnessing explosive
growth in recent years, driven by significant advances

in technology that have been made by camera and mobile
device manufacturers, and by the synergistic development of
very large photo-centric social networking websites, which
allow consumers to efficiently capture, store, and share high-
resolution images with their friends or the community at
large. The vast majority of these digital pictures are taken by
casual, inexpert users, where the capture process is affected
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by delicate variables such as lighting, exposure, aperture,
noise sensitivity, and lens limitations, each of which could
perturb an image’s perceived visual quality. Though cameras
typically allow users to control the parameters of image
acquisition to a certain extent, the unsure eyes and hands of
most amateur photographers frequently lead to occurrences of
annoying image artifacts during capture. This leads to large
numbers of images of unsatisfactory perceptual quality being
captured and stored along with more desirable ones. Being
able to automatically identify and cull low quality images,
or to prevent their occurrence by suitable quality correction
processes during capture are thus highly desirable goals that
could be enabled by automatic quality prediction tools [1].
Thus, the development of objective image quality models from
which accurate predictions of the quality of digital pictures
as perceived by human observers can be derived has greatly
accelerated.

Advances in practical methods that can efficiently predict
the perceptual quality of images have the potential to sig-
nificantly impact protocols for monitoring and controlling
multimedia services on wired and wireless networks and
devices. These methods have the potential to also improve
the quality of visual signals by acquiring or transporting them
via “quality-aware” processes. Such “quality-aware” processes
could perceptually optimize the capture process and modify
transmission rates to ensure good quality across wired or
wireless networks. Such strategies could help ensure that end
users have a satisfactory quality of experience (QoE).

The goal of an objective no-reference image quality assess-
ment (NR IQA) model is as follows: given an image (possibly
distorted) and no other additional information, automatically
and accurately predict its perceptual quality. Given that the
ultimate receivers of these images are humans, the only
reliable way to understand and predict the effect of distortions
on a typical person’s viewing experience is to capture opinions
from a large sample of human subjects, which is termed
subjective image quality assessment. While these subjective
scores are vital for understanding human perception of image
quality, they are also crucial for designing and evaluating
reliable IQA models that are consistent with subjective
human evaluations, regardless of the type and severity of the
distortions.

The most efficient NR IQA algorithms to date are
founded on the statistical properties of natural1 images.

1Natural images are not necessarily images of natural environments such as
trees or skies. Any natural visible-light image that is captured by an optical
camera and is not subjected to artificial processing on a computer is regarded
here as a natural image including photographs of man-made objects.
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Fig. 1. (a) A pristine image from the legacy LIVE Image Quality Database [12] (b) JPEG compression distortion artificially applied to (a). (c) White noise
added to (a). (d) A blurry image also distorted with low-light noise from the new LIVE In the Wild Image Quality Challenge Database.

Natural scene statistics (NSS) models [1] are based on the
well-established observation that good quality real-world pho-
tographic images2 obey certain perceptually relevant statistical
laws that are violated by the presence of common image
distortions. Some state-of-the-art NR IQA models [2]–[10]
that are based on NSS models attempt to quantify the degree of
‘naturalness’ or ‘unnaturalness’ of images by exploiting these
statistical perturbations. This is also true of competitive
reduced-reference IQA models [11]. Such statistical
‘naturalness’ metrics serve as image features which are
typically deployed in a supervised learning paradigm, where a
kernel function is learned to map the features to ground truth
subjective quality scores. A good summary of such models
and their quality prediction performance can be found in [2].

A. Authentic Distortions

Current blind IQA models [2]–[10] use legacy benchmark
databases such as the LIVE Image Quality Database [12] and
the TID2008 Database [13] to train low-level statistical image
quality cues against recorded subjective quality judgements.
These databases, however, have been designed to contain
images corrupted by only one of a few synthetically introduced
distortions, e.g., images containing only JPEG compression
artifacts, images corrupted by simulated camera sensor noise,
or by simulated blur. Though the existing legacy image
quality databases have played an important role in advanc-
ing the field of image quality prediction, we contend that
determining image quality databases such that the distorted
images are derived from a set of high-quality source images
and by simulating image impairments on them is much too
limiting. In particular, traditional databases fail to account
for difficult mixtures of distortions that are inherently intro-
duced during image acquisition and subsequent processing
and transmission. For instance, consider the images shown
in Fig. 1(a) - Fig. 1(d). Figure 1(d) was captured using a
mobile device and can be observed to be distorted by both
low-light noise and compression errors. Figure 1(b) and (c)
are from the legacy LIVE IQA Database [12] where JPEG
compression and Gaussian blur distortions were synthetically
introduced on a pristine image (Fig. 1(a)).

2We henceforth refer to such images as ‘pristine’ images.

Although such singly distorted images (and datasets)
facilitate the study of the effects of distortion-specific
parameters on human perception, they omit important and
frequently occurring mixtures of distortions that occur in
images captured using mobile devices. This limitation is
especially problematic for blind IQA models which have great
potential to be employed in large-scale user-centric visual
media applications. Designing, training, and evaluating IQA
models based only on the statistical perturbations observed on
these restrictive and non-representative datasets might result in
quality prediction models that inadvertently assume that every
image has a “single” distortion that most objective viewers
could agree upon. Although top-performing algorithms
perform exceedingly well on these legacy databases (e.g., the
median Spearmann correlation of 0.94 on the legacy
LIVE IQA Database [12] reported by BRISQUE [2] and
0.96 reported by Tang et. al in [10]), their performance is
questionable when tested on naturally distorted images that are
normally captured using mobile devices under highly variable
illumination conditions. Indeed, we will show in Sec. VI that
the performance of several top-performing algorithms staggers
when tested on images corrupted by diverse authentic and
mixed, multipartite distortions such as those contained in the
new LIVE In the Wild Image Quality Challenge Database.

With this in mind, we formulated the goal of designing a
unique and challenging database containing a large number of
authentically distorted images. Of course, we had to consider
the question: What makes an image quality database repre-
sentative? Beyond capturing a wide variety of image content
including pictures of people, objects, and both indoor and
outdoor scenes, such a database should also account for the
various and diverse frequently used commercial image capture
devices. The corpus of pictures should also have been obtained
under varied illumination conditions and, given the propensity
of users to acquire their pictures in imperfect ways, they
should exhibit a broad spectrum of authentic quality “types,”
mixtures, and distortion severities. The result of our effort is
a difficult new resource called the LIVE In the Wild Image
Quality Challenge Database. Of course, since we did not
synthetically distort images, no pristine references are avail-
able; hence the new database is only suitable for no-reference
IQA research.



374 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 1, JANUARY 2016

B. Large-Scale Subjective Study

Since existing records of human quality judgements
are associated with legacy “synthetic” databases, another
important contribution that we made is to acquire human
opinion scores on authentically distorted images. Most existing
no-reference image quality assessment models follow a
supervised learning paradigm, hence their accuracy is strongly
linked to the quality and quantity of the annotated training
data available. Having access to more ratings per image
means that variations of perceived quality can be more easily
captured. The human opinion scores in most of the legacy
datasets were collected by conducting subjective studies in
fixed laboratory setups, where images were displayed on a
single device with a fixed display resolution and which the
subjects viewed from a fixed distance. However, significant
advances in technology made by camera and mobile
device manufacturers now allow users to efficiently access
visual media over wired and wireless networks. Thus, the
subjective image quality opinions gathered under artificially
controlled settings do not necessarily mirror the picture
quality perceived on widely used portable display devices
having varied resolutions. Gathering representative subjective
opinions by simulating different viewing conditions would be
exceedingly time-consuming, cumbersome, and would require
substantial manual effort. On the other hand, exploring novel
ways to collect subjective scores online requires dealing with
noisy data, establishing the reliability of the obtained human
opinions, etc. - a challenging research topic.

As we describe in the following, we have conducted such
a study to obtain a very large number of human opinion
scores on the LIVE Challenge image data using a sophisticated
crowdsourcing system design. We explain the human study, the
method of validating the data obtained, and demonstrate how it
can be used to fruitfully advance the field of no-reference/blind
image quality prediction.

C. Contributions

We describe our attack on the difficult problem of blind
image quality assessment on authentically distorted images
from the ground up and summarize our contributions below:

1) First, we introduce the content and characteristics of
the new LIVE In the Wild Image Quality Challenge
Database, which contains 1162 authentically distorted
images captured from many diverse mobile devices.
Each image was collected without artificially introducing
any distortions beyond those occurring during capture,
processing, and storage by a user’s device.

2) Next, we aimed to gather very rich human data, so we
designed and implemented an extensive online subjec-
tive study by leveraging Amazon’s crowdsourcing sys-
tem, the Mechanical Turk. We will describe the design
and infrastructure of our online crowdsourcing system3

and how we used it to conduct a very large-scale,
multi-month image quality assessment subjective study,
wherein a wide range of diverse observers recorded their
judgments of image quality.

3A report describing early progress of this work appeared in [14].

3) We also discuss the critical factors that are involved in
successfully crowdsourcing human IQA judgments, such
as the overall system design of the online study, methods
for subject validation and rejection, task remuneration,
influence of the subjective study conditions on end users’
assessment of perceptual quality, and so on.

4) As a demonstration of the usefulness of the study
outcomes, we also conducted extensive empirical stud-
ies on the performance of several top-performing NR
IQA models (Sec. VI), both on a legacy benchmark
dataset [12] as well as on the new LIVE In the Wild
Image Quality Challenge Database.

Our results demonstrate that: (1) State-of-the-art NR IQA
algorithms perform poorly on the LIVE In the Wild Image
Quality Challenge Database, which has a high percentage
of images distorted by multiple processes, all of which are
authentic (Sec. VI-B). (2) Our human-powered, crowdsourcing
framework proved to be an effective way to gather a large
number of opinions from a diverse, distributed populace over
the web. So far, we have collected over 350, 000 human
opinion scores on 1,162 naturally distorted images from over
8, 100 distinct subjects, making it the world’s largest, most
comprehensive online study of perceptual image quality ever
conducted. (3) A correlation of 0.9851 was obtained between
the MOS values gathered from the proposed crowdsourcing
platform and those from a different study conducted by
the creators of the LIVE Multiply Distorted Image Quality
Database [15]. This high correlation advocates the veracity
of our designed online system in gathering reliable human
opinion scores (Sec. IV-C3).

II. RELATED WORK

A. Benchmark IQA Databases - Content and
Test Methodologies

Most of the top-performing IQA models (full, reduced,
and no-reference) have been extensively evaluated on two
benchmark databases: the LIVE IQA Database which was
designed in 2005 and the TID2008 Database, designed and
released in 2008. The LIVE IQA Database, one of the first
comprehensive IQA databases, consists of 779 images, much
larger than the small databases that existed at the time of
its introduction [16]– [18]. This legacy database contains
29 pristine reference images and models five distortion
types - jp2k, jpeg, Gaussian blur, white noise, and fast fading
noise [12]. The TID2008 Database is larger, consisting of
25 reference and 1700 distorted images over 17 distortion
categories. TID2013 [19] is a very recently introduced image
quality database with an end goal to include the peculiarities
of color distortions in addition to the 17 simulated spatial
distortions included in TID2008. It consists of 3000 images
and includes seven new types of distortions, thus modeling a
total of 24 distortions. We refer the reader to [13] and [19]
for more details on the categories and severities of image
distortions contained in this database.

These databases [12], [13], [19] contain quality ratings
obtained by conducting subjective studies in controlled
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laboratory settings.4 The TID2008 opinion scores were
obtained from 838 observers by conducting batches
of large scale subjective studies, whereby a total of
256,000 comparisons of the visual quality of distorted images
were performed. Although this is a large database, some of
the test methodologies that were adopted do not abide by
the ITU recommendations. For instance, the authors followed
a swiss competition principle and presented three images,
wherein two of them are the distorted versions of the third
one. A subject was asked to choose one image of superior
quality amongst the two distorted images. We believe that
this kind of presentation does not accurately reflect the
experience of viewing and assessing distorted images in the
most common (e.g. mobile) viewing scenarios. Furthermore,
in each experiment, a subject would view and compare
306 instances of the same reference image containing
multiple types and degrees of distortions, introducing the
significant possibility of serious hysteresis effects that are not
accounted for when processing the individual opinion scores.

In pairwise comparison studies, the method for calculat-
ing preferential ranking of the data can often dictate the
reliability of the results. Certain probabilistic choice model-
based ranking approaches [20]–[22] offer sophisticated ways
to accurately generate quality rankings of images. However,
the opinion scores in the TID2008 database were obtained
by first accumulating the points “won” by each image. These
points are driven by the preferential choices of different
observers during the comparative study. The mean values of
the winning points on each image were computed in the
range [0 − 9] and are referred to as mean opinion scores.
This method of gathering opinion scores, which diverges from
accepted practice, is in our view questionable.

Conversely, the LIVE IQA Database was created following
an ITU recommended single-stimulus methodology. Both the
reference images as well as their distorted versions were
evaluated by each subject during each session. Thus, quality
difference scores which address user biases were derived for
all the distorted images and for all the subjects. Although the
LIVE test methodology and subject rejection method adheres
to the ITU recommendations, the test sessions were designed
to present a subject with a set of images, all afflicted by
the same type of distortion (for instance, all the images in
a given session consisted of different degrees of JPEG 2000
distortion) that were artificially added to different reference
images. We suspect that this could have led to over-learning
of each distortion type by the subjects as the study session
progressed.

Since cameras on mobile devices make it extremely easy
to snap images spontaneously under varied conditions, the
complex mixtures of image distortions that occur are not well-
represented by the distorted image content in either of these
legacy image databases. This greatly motivated us to acquire
real images suffering the natural gamut of authentic distortion
mixtures as the basis for a large new database and human
study. Such a resource could prove quite valuable for the

4The authors of [13] report that about 200 of their observers have partici-
pated in the study via the Internet.

design of next-generation robust IQA prediction models that
will be used to ensure future end users’ high quality of viewing
experience.

B. Online Subjective Studies

Most subjective image quality studies have been conducted
in laboratory settings with stringent controls on the experimen-
tal environment and involving small, non-representative sub-
ject samples (typically graduate and undergraduate university
students). For instance, the creators of the LIVE IQA Database
used two 21-inch CRT monitors with display resolutions of
1024 × 768 pixels in a normally lit room, which the subjects
viewed from a viewing distance of 2 − 2.5 screen heights.

However, the highly variable ambient conditions and the
wide array of display devices on which a user might potentially
view images will have a considerable influence on her percep-
tion of picture quality. This greatly motivates our interest in
conducting IQA studies on the Internet, which can enable us
to access a much larger and more diverse subject pool while
allowing for more flexible study conditions. However, the lack
of control on the subjective study environment introduces
several challenges (more in Sec. IV-A), some of which can
be handled by employing counter measures (such as gathering
details of the subject’s display monitor, room illumination, and
so on) [43].

A few studies have recently been reported that used
web-based image, video, or audio rating platforms [24]–[31].
Some of these studies employed pairwise comparisons
followed by ranking techniques [20]–[22] to derive quality
scores, while others adopted the single stimulus technique and
an absolute category rating (ACR) scale. Since performing
a complete set of paired comparisons (and ranking) is
time-consuming and monetarily expensive when applied on
a large scale, Xu et al. [33], [34] introduced the HodgeRank
on Random Graphs (HRRG) test, where random sampling
methods based on Erdös-Rényi random graphs were used to
sample pairs and the HodgeRank [35] was used to recover the
underlying quality scores from the incomplete and imbalanced
set of paired comparisons. More recently, an active sampling
method [36] was proposed that actively constructs a set of
queries consisting of single and pair-wise tests based on the
expected information gain provided by each test with a goal
to reduce the number of tests required to achieve a target
accuracy. However, all of these studies were conducted on
small sets of images taken from publicly available databases
of synthetically distorted images [12], mostly to study the
reliability and quality of the opinion scores obtained via the
Internet testing methodology. In most cases, the subjective
data from these online studies is publicly unavailable.

To the best of our knowledge, we are aware of only one
other project [27] reporting efforts made in the same spirit
as our work, that is, crowdsourcing the image subjective
study on Mechanical Turk by following a single-stimulus
methodology.5 However, the authors of [27] tested their crowd-
sourcing system on only 116 JPEG compressed images from

5The authors of [24] also used Mechanical Turk, but they adopted a pairwise
comparison methodology.



376 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 1, JANUARY 2016

the legacy LIVE Image Quality Database of synthetically
distorted images [12] and gathered opinion scores from only
forty subjects. By contrast, the new LIVE In the Wild Image
Quality Challenge Database has 1162 challenging images and
engaged more than 8100 unique subjects. Also, we wanted
our web-based online study to be similar to the subjective
studies conducted under laboratory settings with instructions,
training, and test phases (more details in Sec. IV-B). We also
wanted unique participants to view and rate the images on a
continuous rating scale (as opposed to using the ACR scale).
Thus we chose to design our own crowdsourcing framework
incorporating all of the above design choices, as none of
the existing successful crowdsourcing frameworks [24], [27],
[30]–[32] seemed to offer us the flexibility and control that
we desired.

III. LIVE IN THE WILD IMAGE QUALITY

CHALLENGE DATABASE

In practice, every image captured by a typical mobile digital
camera device passes several processing stages, each of which
can introduce visual artifacts. Authentically distorted images
captured using modern cameras are likely to be impaired by
sundry and mixed artifacts such as low-light noise and blur,
motion-induced blur, over and underexposure, compression
errors, and so on.

The lack of content diversity and mixtures of bonafide
distortions in existing, widely-used image quality databases
[12], [13] is a continuing barrier to the development of better
IQA models and prediction algorithms of the perception of
real-world image distortions. To overcome these limitations
and towards creating a holistic resource for designing the next
generation of robust, perceptually-aware image assessment
models, we designed and created the LIVE In the Wild Image
Quality Challenge Database, containing images afflicted by
diverse authentic distortion mixtures on a variety of commer-
cial devices.

Figure 2 presents a few images from this database. The
images in the database were captured using a wide variety of
mobile device cameras as shown in Fig. 3. The images include
pictures of faces, people, animals, close-up shots, wide-angle
shots, nature scenes, man-made objects, images with distinct
foreground/background configurations, and images without
any specific object of interest. Some images contain high lumi-
nance and/or color activity, while some are mostly smooth.
Since these images are naturally distorted as opposed to being
artificially distorted post-acquisition pristine reference images,
they often contain mixtures of multiple distortions creating an
even broader spectrum of perceivable impairments.

A. Distortion Categories

Since the images in our database contain mixtures of
unknown distortions, in addition to gathering perceptual qual-
ity opinion scores on them (as discussed in detail in Sec. IV),
we also wanted to understand to what extent the subjects could
supply a sense of distortion type against a few categories of
common impairments. Thus we also conducted a separate
crowdsourcing study wherein the subjects were asked to select

Fig. 2. Sample images from the LIVE In the Wild Image Quality Challenge
Database. These images include pictures of faces, people, animals, close-up
shots, wide-angle shots, nature scenes, man-made objects, images with distinct
foreground/background configurations, and images without any specific object
of interest.

Fig. 3. Distribution of different manufacturers of the cameras that were used
to capture a sample of images contained in our database.

the single option from among a list of distortion categories
that they think represented the most dominant distortion in
each presented image. The categories available to choose from
were - “Blurry,” “Grainy,” “Overexposed,” “Underexposed,”
“No apparent distortion. Its a great image,” and “I don’t
understand the question.” We adopted a majority voting policy
to aggregate the distortion category labels obtained on every
image from several subjects. A few images along with the
category labels gathered on them are shown in Fig. 4.

1) 100% Consensus: Images presented in the left column
of Fig. 4 were sampled from an image pool where a majority
of the subjects were in full agreement with regard to their
opinion of the specific distortion present in those images.

2) 50% Consensus: The images presented in the second col-
umn are from a pool of images that received an approximately
equal number of votes for two different classes of distortions.
That is, about 50% of the subjects who viewed these images
perceived one kind of dominant distortion while the remaining
subjects perceived a completely different distortion to be the
most dominating one.

3) No Consensus: The confusion of choosing a dominant
distortion was more difficult for some images, a few of which
are presented in the last column. Here, nearly a third of the
total subjects who were presented with these images labeled
them as belonging to a distortion category different from the
two other dominant labels obtained from the other subjects.

Figure 4 highlights the risk of forcing a consensus on image
distortion categories through majority voting on our dataset.
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Fig. 4. Different distortion category labels obtained after aggregating the data. The images presented in the left column mostly had one dominant distortion
that most subjects could agree opon. The images presented in the next two columns have multiple distortions leading to disagreement amongst the opinions
of the subjects (OE, UE = Over-, Underexposed.) Best viewed in color.

Multiple objective viewers appeared to have different sensitivi-
ties to different types of distortions which, in combination with
several other factors such as display device, viewer distance
from the screen, and image content, invariably affect his/her
interpretation of the underlying image distortion. This non-
negligible disagreement among human annotators sheds light
on the extent of distortion variability and the difficulty of
the data contained in the current database. We hope to build
on these insights to develop a holistic identifier of mixtures
of authentic distortions in the near future. For now, we take
this as more direct evidence of the overall complexity of the
problem.

B. No Well-Defined Distortion Categories
in Real-World Pictures

The above study highlights an important characteristic of
real-world, authentically distorted images captured by naïve
users of consumer camera devices - that these pictures cannot
be accurately described as generally suffering from single dis-
tortions. Normally, inexpert camera users will acquire pictures
under highly varied illumination conditions, with unsteady
hands, and with unpredictable behavior on the part of the
photographic subjects. Further, the overall distortion of an
image also depends on other factors such as device and lens
configurations. Furthermore, authentic mixtures of distortions
are even more difficult to model when they interact, creat-
ing new agglomerated distortions not resembling any of the
constituent distortions. Indeed real-world images sufer from a
many-dimensional continuum of distortion perturbations. For
this reason, it is not meaningful to attempt to segregate the
images in the LIVE In the Wild Image Quality Challenge
Database into discrete distortion categories.

IV. CROWDSOURCED FRAMEWORK FOR

GATHERING SUBJECTIVE SCORES

Crowdsourcing systems like Amazon Mechanical
Turk (AMT), Crowd Flower [37], and so on, have emerged as
effective, human-powered platforms that make it feasible to
gather a large number of opinions from a diverse, distributed
populace over the web. On these platforms, “requesters”
broadcast their task to a selected pool of registered “workers”
in the form of an open call for data collection. Workers
who select the task are motivated primarily by the monetary
compensation offered by the requesters and also by the
enjoyment they experience through participation.

A. Challenges of Crowdsourcing

Despite the advantages offered by crowdsourcing frame-
works, there are a number of well-studied limitations of
the same. For example, requesters have limited control over
the study setup and on factors such as the illumination of the
room and the display devices being used by the workers. Since
these factors could be relevant to the subjective evaluation
of perceived image quality, we gathered information on these
factors in a compulsory survey session presented towards the
end of the study (more details in Sec. IV-B).

The basic study structure and procedures of subjective
testing in a crowdsourcing framework differ from those
of traditional subjective studies conducted in a laboratory.
Subjective tests conducted in a lab environment typically
last for many minutes with a goal of gathering ratings on
every image in the dataset and are usually conducted in
multiple sessions to avoid subject fatigue. For instance, the
study reported in [12] was conducted in two sessions where
each session lasted for 30 minutes. However, crowdsourced
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tasks should be small enough that they can be completed by
workers quickly and with ease. It has been observed that it is
difficult to find workers to participate in large and more time
consuming tasks, since many workers prefer high rewards per
hour [38]. Thus, an online test needs to be partitioned into
smaller chunks. Further, although requesters can control the
maximum number of tasks each worker can participate in, they
cannot control the exact number of times a worker selects a
task. Thus, it is very likely that all the images in the dataset
will not be viewed and rated by every participating worker.

Despite these limitations imposed on any crowdsourcing
framework, our online subjective study, which we describe in
great detail below has enabled us to gather a large number of
highly reliable opinion scores on all the images in our dataset.

Image aesthetics are closely tied to perceived quality and
crowdsourcing platforms have been used in the past to study
the aesthetic appeal of images [39]. Here we have focused
on gathering subjective quality scores using highly diverse
aesthetic content. We also informed users how to focus on
quality and not aesthetics. In future studies, it will be of
value to gather associated side information from each subject
regarding the content and aesthetics of each presented image
(or video).

B. Instructions, Training, and Testing

The data collection tasks on AMT are packaged as HITs
(Human Intelligence Tasks) by requesters and are presented
to workers, who first visit an instructions page which explains
the details of the task. If the worker understands and likes the
task, she needs to click the “Accept HIT” button which then
directs her to the actual task page at the end of which, she
clicks a “Submit Results” button for the requester to capture
the data.

Crowdsourcing has been extensively and successfully used
on several object identification tasks [40], [41] to gather seg-
mented objects and their labels. However, the task of labeling
objects is often more clearly defined and fairly straightforward
to perform, by contrast with the more subtle, challenging,
and highly subjective task of gathering opinion scores on
the perceived quality of images. The generally naive level
of experience of the workers with respect to understanding
the concept of image quality and their geographical diversity
made it important that detailed instructions be provided to
assist them in understanding how to undertake the task without
biasing their perceptual scores. Thus, every unique participat-
ing subject on AMT that selects our HIT was first provided
with detailed instructions to help them assimilate the task.
A screenshot of this web page is shown in Fig. 5. Specifically,
after defining the objective of the study, a few sample images
were presented which are broadly representative of the kinds of
distortions contained in the database, to help draw the attention
of the workers to the study and help them understand the task
at hand. A screenshot of the rating interface was also given on
the instructions page, to better inform the workers of the task
and to help them decide if they would like to proceed with it.

1) Ensuring Unique Participants: After reading the instruc-
tions, if a worker accepted the task, and did so for the

Fig. 5. Instructions page shown before the worker accepts the task on AMT.

Fig. 6. The rating interface presented to every subject on which they can
provide opinion scores on images.

first time, a rating interface was displayed that contains a
slider by which opinion scores could be interactively provided.
A screenshot of this interface is also shown in Fig. 6. In the
event that this worker had already picked our task earlier, we
informed the worker that we are in need of unique participants
and this worker was not allowed to proceed beyond the instruc-
tions page. Only workers with a confidence value6 greater than
0.75 were allowed to participate. Even with such stringent
subject criteria, we gathered more than 350,000 ratings overall.

2) Study Framework: We adopted a single stimulus con-
tinuous procedure [42] to obtain quality ratings on images
where subjects reported their quality judgments by dragging
the slider located below the image on the rating interface. This
continuous rating bar is divided into five equal portions, which
are labeled “bad,” “poor,” “fair,” “good,” and “excellent.” After
the subject moved the slider to rate an image and pressed the
Next Image button, the position of the slider was converted
to an integer quality score in the range 1 − 100, then the
next image was presented. Before the actual study began, each
participant is first presented with 7 images that were selected
by us as being reasonably representative of the approximate
range of image qualities and distortion types that might

6AMT assigns a confidence score in the range of 0-1 to each worker, based
on the accuracy of their responses across all the HITs they have accepted thus
far. The higher this number, the more trustworthy a worker is.
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Fig. 7. Illustrating the design of our HIT. Once a worker clicked the “Accept HIT” button and did so for the first time, we directed her to the training phase
which was followed by a test phase. A worker who had already participated once in our study and attempted to participate again was not allowed to proceed
beyond the instructions page. For the purpose of illustration, we show gold standard and repeated images in exclusion. In reality, the pool of 43 test images
was presented in a random order.

Fig. 8. Illustrating how our system packages the task of rating images as a
HIT and disperses it on Mechanical Turk.

be encountered. We call this the training phase. Next, in the
testing phase, the subject is presented with 43 images in a
random order where the randomization is different for each
subject. This is followed by a quick survey session which
involves the subject answering a few questions. Thus, each
HIT involves rating a total of 50 images and the subject
receives a remuneration of 30 cents for the task. Figure 7
illustrates the detailed design of our HIT on IQA and Fig. 8
illustrates how we package the task of rating images as a HIT
and effectively disperse it online via AMT to gather thousands
of human opinion scores.

C. Subject Reliability and Rejection Strategies

Crowdsourcing has empowered us to efficiently collect large
amounts of ratings. However, it raises interesting issues such
as dealing with noisy ratings and addressing the reliability of
the AMT workers.

1) Intrinsic Metric: To gather high quality ratings, only
those workers on AMT with a confidence value greater
than 75% were allowed to select our task. Also, in order

to not bias the ratings due to a single worker picking our
HIT multiple times, we imposed a restriction that each worker
could select our task no more than once.

2) Repeated Images: 5 of each group of 43 test images
were randomly presented twice to each subject in the testing
phase. If the difference between the two ratings that a subject
provided to the same image each time it was presented
exceeded a threshold on at least 3 of the 5 images, then that
subject was rejected. This served to eliminate workers that
were providing unreliable, “random” scores. Prior to the full-
fledged study, we conducted an initial subjective study and
obtained ratings from 300 unique workers. We then computed
the average standard deviation of these ratings on all the
images. Rounding this value to the closest integer yielded 20
which we then used as our threshold for subject rejection.

3) Gold Standard Data: 5 of the remaining 38 test images
were drawn from the LIVE Multiply Distorted Image Quality
Database [15] to supply a control. These images along with
their corresponding MOS from that database were treated as
a gold standard. The mean of the Spearman’s rank ordered
correlation values computed between the MOS obtained from
the workers on the gold standard images and the corresponding
ground truth MOS values from the database was found to
be 0.9851. The mean of the absolute difference between the
MOS values obtained from our crowdsourced study and the
ground truth MOS values of the gold standard images was
found to be 4.65. Furthermore, we conducted a paired-sampled
t-test and observed that this difference between gold standard
and crowdsourced MOS values is not statistically significant.
This high degree of agreement between the scores gathered
in a traditional laboratory setting and those gathered via an
uncontrolled online platform with several noise parameters
is critical to us. Although the uncontrolled test settings of
an online subjective study could be perceived as a challenge
to the authenticity of the obtained opinion scores, this high
correlation value indicates a high degree of reliability of the
scores that are being collected by us using AMT, reaffirming
the efficacy of our approach of gathering opinion scores and
the high quality of the obtained subject data.

D. Subject-Consistency Analysis

In addition to measuring correlations against the gold stan-
dard image data as discussed above, we further analyzed the
subjective scores in the following two ways:
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Fig. 9. Scatter plot of the MOS scores obtained on all the images in the
database.

1) Inter-Subject Consistency: To evaluate subject
consistency, we split the ratings obtained on an image
into two disjoint equal sets, and computed two MOS values
on every image, one from each set. When repeated over
25 random splits, an average Spearman’s rank ordered
correlation between the mean opinion scores between the two
sets was found to be 0.9896.

2) Intra-Subject Consistency: Evaluating intra-subject reli-
ability is a way to understand the degree of consistency of the
ratings provided by individual subjects [43]. We thus measured
the Spearman’s rank ordered correlation (SROCC) between
the individual opinion scores and the MOS values of the gold
standard images. A median SROCC of 0.8721 was obtained
over all of the subjects.

All of these additional experiments further highlight the
high degree of reliability and consistency of the gathered
subjective scores and of our test framework.

V. ANALYSIS OF THE SUBJECTIVE SCORES

The database currently comprises of more than
350,000 ratings obtained from more than 8,100 unique
subjects (after rejecting unreliable subjects). Enforcing
the aforementioned rejection strategies led us to reject
134 participants who had accepted our HIT. Each image was
viewed and rated by an average of 175 unique subjects, while
the minimum and maximum number of ratings obtained per
image were 137 and 213, respectively. While computing these
statistics, we excluded the 7 images used in the training phase
and the 5 gold standard images as they were viewed and rated
by all of the participating subjects. Workers took a median
duration of 4.37 minutes to view and rate all 50 images
presented to them. The Mean Opinion Scores (MOS) after
subject rejection was computed for each image by averaging
the individual opinion scores from multiple workers. MOS
is representative of the perceived viewing experience of each
image. The MOS values range between [3.42 − 92.43].
Figure 9 is a scatter plot of the MOS computed from the
individual scores we have collected. In order to compare the
MOS values with single opinion scores (SOS), we computed
the standard deviation of the subjective scores obtained on
every image and obtained an average standard deviation
of 19.2721.

The uncontrolled online test environment poses certain
unique challenges: a test subject of any gender or age may be

Fig. 10. Illustrating (a) the kind of consumer image capturing devices
preferred by users and (b) their sensitivity to perceived distortions in digital
pictures viewed on the Internet.

viewing the image content on any kind of a display, under any
sort of lighting, from an unknown distance, and an unknown
level of concentration, each of which can affect her choice of
quality score. Figures 11 (a) and 11 (b) illustrate the demo-
graphic details of the unique subjects who have participated
in our study.7 Most of them reported in the final survey that
they are inexperienced with image quality assessment but do
get annoyed by image impairments they come across on the
Internet. Since we did not test the subjects for vision problems,
they were instructed to wear corrective lenses during the study
if they do so in their day-to-day life. Later in the survey,
the subjects were asked if they usually wore corrective lenses
and whether they wore the lenses while participating in the
study. The ratings given by those subjects who were not
wearing their corrective lenses they were otherwise supposed
to wear were rejected. Figures 11 (c) and 11 (d) illustrate
the distribution of the distances from which workers have
viewed the images and the broad classes of different display
devices used by them. These four plots illustrate the highly
varied testing conditions that exist during the online study
and also highlight the diversity of the subjects. Figure 10 (a)
illustrates the distribution of the types of consumer image
capture devices that are preferred by the users. It is evident
from this plot that most of the workers reported that they prefer
using mobile devices to capture photographs in their daily use.
One of the questions we posed to our subjects in the survey
was whether the poor quality of pictures that they encounter
on the Internet bothers them. Subjects chose between the
following four options - “Yes,” “No,” “I don’t really care,”
and “I don’t know.” The distribution of the responses to this
question is plotted in Fig.10 (b) which clearly indicates that a
large population of the workers are bothered by poor quality
Internet pictures.

We next present our analysis of the influence of several
factors such as age, gender, and display devices on user’s
perceptual quality. In all cases, we study the effect of each
factor independently while fixing the values of the rest of the
factors. We believe this strategy helped us to closely study

7Gathering demographic details of the workers is a common practice on
Mechanical Turk. None of the workers expressed any concerns when providing
us with these details.
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Fig. 11. Demographics of the participants (a) gender (b) age (c) approximate distance between the subject and the viewing screen (d) different categories
of display devices used by the workers to participate in the study.

Fig. 12. A few randomly chosen images from the LIVE In the Wild Image Quality Challenge database that are used to illustrate the influence of various
parameters on the QoE of the study participants. The upper caption of each image gives the image MOS values and the associated 95% confidence intervals.
(a) MOS = 3.42 ± 1.08. (b) MOS = 55.78 ± 3.65. (c) MOS = 41.43 ± 2.98. (d) MOS = 67.52 ± 3.08. (e) MOS = 91.44 ± 1.69.

the influence of each factor independently and to help avoid
combined effects caused by the interplay of several factors on
a user’s perceptual quality. Note that the results presented in
the following sections are consistent irrespective of the specific
values that were fixed for the factors.

A. Gender

To understand to what extent gender had an affect on our
quality scores, we separately analyzed the ratings obtained
from male and female workers on five randomly chosen
images (Figures 12(a)-(e)) while maintaining all the other
factors constant. Specifically, we separately captured the opin-
ion scores of male and female subjects who are between
20 − 30 years old, and reported in our survey to be using
a desktop and sitting about 15 − 30 inches from the screen.
Under this setting and on the chosen set of images, both male
and female workers appeared to have rated the images in a
similar manner. This is illustrated in Figure 13(a).

B. Age

Next, we considered both male and female workers who
reported using a laptop during the study and were sitting about
15 − 30 inches away from their display screen. We grouped
their individual ratings on these 5 images (Fig. 12) according
to their age and computed the MOS of each group and plotted
them in Fig 13(b). For the images under consideration, again,
subjects belonging to different age categories appeared to have
rated them in a similar manner.

Although gender and age did not seem to significantly affect
the ratings gathered on the randomly chosen images discussed
above, we believe that other factors such as the content in
the image can play a significant role in being appealing to
one group more than to another. A systematic study focussed
exclusively on understanding the interplay of image content,
gender, and age using this database might help us better
understand the impact of each of these factors on perceptual
quality.

C. Distance From the Screen

We next explored the influence of the distance between a
subject and her monitor, on the perception of quality. One of
the questions in the survey asked the subjects to report which
of the three distance categories best described a subject’s
location relative to the viewing screen - “less than 15 inches,”
“between 15 to 30 inches,” and “greater than 30 inches.”

We gathered the ratings of subjects who reported to be
between 30 − 40 years old and were participating in the study
using their desktop computer. We grouped their ratings8 on the
five test images (Fig. 12) according to these distance categories
and report the results in Fig. 13(c). It may be noticed that the
difference between the mean of the ratings obtained on the
same image when viewed from a closer distance as compared
to when the same image was viewed by subjects from a greater
distance is not statistically significant. However, we do not rule

8We received very few ratings from subjects who reported to be sitting
greater than 30 inches away from their display screen and hence excluded
those ratings from this segment of analysis.
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Fig. 13. Plots showing the influence of a variety of factors on a user’s perception of picture quality. The factors are: (a) gender (b) age (c) approximate
distance between the subject and the viewing screen and (d) types of display devices used by the workers to participate in the study. The plots detail the
range of obtained MOS values and the associated 95% confidence intervals.

out the possible influences that viewing distance may have on
distortion perception from an analysis of 5 random images.
The observed indifference to viewing distance could be due
to an interplay of the resolution of the display devices, image
content, and viewing distances which is a broad topic worthy
of future study.

D. Display Device

To better understand the influence of display devices on
QoE, we focussed on workers between 20 − 30 years old
and who reported to be 15 − 30 inches away from the screen
while participating in the study. We grouped the ratings of
these subjects on the five images in Fig. 12 according to the
display device that the subjects reported to have used while
participating in the study.

As illustrated in Fig. 13(d), the influence of the specific
display device that was used for the study appears to have
had little effect on the recorded subjective ratings. Of course,
we are not suggesting that the perceptual quality of images is
unaffected by the display devices on which they are viewed.
It is possible that more fine-grained detail regarding the type
of display device used by the study participants (e.g., screen
resolution, display technology involved, shape of the
screen etc.) could deepen our understanding of the depen-
dency between display device and perceptual image quality.

However, we chose to focus as much of each participants’
effort on the visual tasks as reasonable, and so did not poll
them on these details, leaving it for future studies.

E. Annoyance of Low Image Quality

As mentioned earlier, one of the questions posed to the
subjects in the survey was whether the quality of pictures
they encounter on the Internet bothers them (distribution of
the responses in Fig. 10 (b)). When we grouped our ratings
according to these three answers, we noticed that the subjects
from each of these three response categories were almost
equally sensitive to the visual distortions present in the images
from our dataset. This is illustrated in Fig. 14 (b).

Figure 15 illustrates how MOS values flatten out with
increases in the number of subjects rating the images. It is
interesting to note that there is much more consistency on
images with very high and very low MOS values than on
intermediate-quality images. Of course, the opinion scores
of subjects are affected by several external factors such as
the order in which images are presented, a subject’s viewing
conditions, and so on, and the MOS thus exhibit variability
with respect to the number of workers who have rated them.

We summarize all the factors whose influence we studied
and presented in this section (by controlling the other factors)
in Table I.



GHADIYARAM AND BOVIK: MASSIVE ONLINE CROWDSOURCED STUDY 383

TABLE I

SUMMARY OF OUR ANALYSIS OF THE DIFFERENT QoE INFLUENCING FACTORS ON THE PERCEPTION OF IMAGE DISTORTIONS

Fig. 14. Plot showing the influence of users’ distortion sensitivity on their
quality ratings (along with the associated 95% confidence intervals).

The crowdsourcing image quality study allowed our diverse
subjects to participate at their convenience, and in diverse,
uncontrolled viewing circumstances, enhancing our ability to
investigate the effects of each of these factors on perceived
picture quality. The results of our studies of those factors
affecting data reliability, and our observations of the high
correlations of the objective quality scores against the MOS
values of the gold standard images that were obtained under
controlled laboratory conditions, both strongly support the
efficacy of our online crowdsourcing system for gathering
large scale, reliable data.

F. Limitations of the Current Study

Crowdsourcing is a relatively new tool with considerable
potential to help in the production of highly valuable and
generalized subjective databases representative of human judg-
ments of perceptual quality. However, the approach involves
many complexities and potential pitfalls which could affect the
veracity of the subject results. A good summary and analysis
of these concerns may be found in [43].

For example, while we have a high degree of faith in
our subject results, it is based on a deep analysis of them
rather than simply because the participants were screened
to have high AMT confidence values. As mentioned earlier,

Fig. 15. MOS plotted against the number of workers who viewed and rated
the images shown in Fig. 12.

the confidence values of the workers computed by AMT is
an aggregate that is measured over all the tasks in which a
worker has participated. This metric thus is not necessarily
an indicator of reliability with regards to any specific task
and should be accompanied by rigorous, task-specific subject
reliability methods. Future studies would benefit by a more
detailed data collection and analysis of the details of workers’
display devices [43] and viewing conditions. While our
current philosophy, even in laboratory studies, is to not screen
the subjects for visual problems, given the newness of the
crowdsourcing modality, it might be argued that visual tests
could be used to improve subject reliability checks. Many
other environmental details could be useful, such as reports
of the time spent by a worker in viewing and rating images,
to further measure worker reliability.

VI. EXPERIMENTS

We also explored the usefulness of the new database by
using it to evaluate the quality prediction performance of a



384 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 1, JANUARY 2016

number of leading blind IQA algorithms. These algorithms are
almost invariably machine learning-based training procedures
applied on perceptual and/or statistical image features. There-
fore, in all of the experiments described below, we randomly
divided the data9 into content-separated disjoint 80% training
and 20% testing sets, learned a model on the training data,
and validated its performance on the test data. To mitigate any
bias due to the division of data, we repeated the process of
randomly splitting the dataset over 50 iterations and computed
Spearman’s rank ordered correlation coefficient (SROCC) and
Pearson’s linear correlation coefficient (PLCC) between the
predicted and the ground truth quality scores at the end of
every iteration. We report the median of these correlations
across 50 iterations. A higher value of each of these metrics
indicates better performance both in terms of correlation with
human opinion as well as the performance of the model.

A. New Blind Image Quality Assessment Model

We recently proposed a novel blind image quality
assessment model [46]–[48], dubbed Feature maps based
Referenceless Image QUality Evaluation Engine (FRIQUEE),
that seeks to overcome the limitations of existing blind IQA
techniques with regards to mixtures of authentic picture distor-
tions, such as those contained in the LIVE In the Wild Image
Quality Challenge Database. FRIQUEE is a natural scene
statistics (NSS) based model that is founded on the hypothesis
that different existing statistical image models capture distinc-
tive aspects of the loss of the perceived quality of a given
image. FRIQUEE embodies a total of 564 statistical features
that have been observed to contribute significant information
regarding image distortion visibility and perceived image qual-
ity. We designed a model that combines a deep belief net and
an SVM and achieves superior quality prediction performance
when compared to the state-of-the-art. Our proposed deep
belief net (DBN) [48] has four hidden layers formed by
stacking multiple restricted boltzmann machines (RBM) and
by learning weight matrices at every level by treating the
hidden layer’s activities of one RBM as the visible input data
for training a higher level RBM in a greedy layer-by-layer
manner [49]. Our DBN builds more complex representations
of the simple statistical FRIQUEE features provided as input
and remarkably generalizes over different distortion types,
mixtures, and severities. The deep feature representations
learned from our DBN together with subjective opinion scores
are later used to train a regressor such that, given a unique test
image, its quality is accurately predicted.

B. Comparing the Current IQA Models on the LIVE
In the Wild Image Quality Challenge Database

We extracted the quality-predictive features proposed
by several prominent blind IQA algorithms (whose code
was publicly available) on the images of the LIVE In the
Wild Image Quality Challenge Database and used the same

9In the results reported in Sec.VI-B, 149 images that were captured during
the night were excluded from the dataset. Thus, the total number of images for
this experiment consisted of only 1013 images. In Sec. VI-D, the experiments
were repeated including these images.

TABLE II

MEDIAN PLCC AND MEDIAN SROCC ACROSS 50 TRAIN-TEST
COMBINATIONS ON THE LIVE IN THE WILD IMAGE

QUALITY CHALLENGE DATABASE

learning model that was originally presented in their work10

under the 80-20 train-test setting. In this experiment, we
excluded 149 images that were captured during the night.
We studied the influence of including night images in the
data in Sec. VI-D. In the case of FRIQUEE, a combination
of DBN and SVM was used and the DBN’s input layer has
564 units, which is equal to the number of features extracted
from an image. We report the results in Table II from
which we conclude that the performance of our proposed
model on unseen test data is significantly better than current
top-performing state-of-the-art methods when tested on the
LIVE In the Wild Image Quality Challenge Database.

C. Comparison on a Benchmark Legacy Database

To further highlight the challenges that the authentic dis-
tortions present in our database pose to top-performing algo-
rithms, we also computed the median correlation values when
the algorithms were tested on the standard legacy benchmark
database [12]. FRIQUEE was implemented using the DBN
model, by extracting 564 features on all the images of the
dataset and repeating the same evaluation procedure over
50 iterations. For the other blind IQA models, we use the
same learner that was presented originally in their work. We
present the median correlation values obtained in Table III.
It may be observed that all of the top-performing models, when
trained and tested on the legacy LIVE IQA database which is
comprised of singly distorted images, perform remarkably well
as compared to their performance on our difficult database
of images suffering from unknown mixtures of distortions
(Table II).

D. With and Without Night-Time Images

Of the total of 1, 162 images, 149 pictures were captured at
night and suffer from severe low-light distortions11 (Fig. 16).
It should be noted that none of the legacy benchmark databases

10In the case of DIIVINE [3] and C-DIIVINE [8] which are two-step
models, we skipped the first step of identifying the probability of an image
belonging to one of the five distortion classes present in the legacy LIVE IQA
Database as it doesn’t apply to the newly proposed database. Instead, after
extracting the features as proposed in their work, we learned a regressor on
the training data.

11We interchangbly use ‘low-light images’ or ‘night images’ to refer to
these images.
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TABLE III

PERFORMANCE ON LEGACY LIVE IQA DATABASE [12]. ITALICS INDICATE
NR IQA MODELS. -NA- INDICATES DATA NOT REPORTED

IN THE CORRESPONDING PAPER

Fig. 16. A few images from LIVE In the Wild Image Quality Challenge
database which were captured during the night.

have images captured under such low illumination conditions
and it follows that the NSS-based features used in other models
were created by training natural images under normal lighting
conditions. Here, we probe the predictive capabilities of top-
performing blind IQA models when such low-light images
are included in the training and testing data. We therefore
included the night-time pictures into the data pool and trained
FRIQUEE and the other blind IQA models. The results are
given in Table IV. Despite such challenging image content,
FRIQUEE still performed well in comparison with the other
state-of-the-art models. This further supports the idea that a
generalizable blind IQA model should be trained over mixtures
of complex distortions, and under different lighting conditions.

E. Combining Different IQA Databases

Since NR IQA algorithms are generally trained and tested
on various splits of a single dataset (as described above),
it is natural to wonder if the trained set of parameters are
database specific. In order to demonstrate that the training
process is simply a calibration, and that once such training
is performed, an ideal blind IQA model should be able to
assess the quality of any distorted image (from the set of
distortions it is trained for), we evaluated the performance
of the multi-model FRIQUEE algorithm on combinations of
different image databases - the LIVE IQA Database [12] and
the LIVE Multiply Distorted IQA Database [15], as well as the
new LIVE In the Wild Image Quality Challenge Database. The
same 80-20 training setup was followed, i.e., after combining
images from the different databases, 80% of the randomly
chosen images were used to train our DBN model and the

TABLE IV

MEDIAN LCC AND MEDIAN SROCC ACROSS 100 TRAIN-TEST
COMBINATIONS ON THE DAY+NIGHT IMAGES OF LIVE IN THE

WILD IMAGE QUALITY CHALLENGE DATABASE

WHEN SVM WAS USED

TABLE V

MEDIAN LCC, MEDIAN SROCC, MEAN PRECISION (MP) AND MEAN
RECALL (MR) ACROSS 100 TRAIN-TEST COMBINATIONS ON

DIFFERENT COMBINATIONS OF IMAGE DATASETS WHEN

DBN PROPOSED IN [46] AND [47] WAS USED

trained model was then tested on the remaining 20% of the
image data. We present the results in Table V. It is clear from
Table V that the performance of FRIQUEE is not database
dependent and that once trained, it is capable of accurately
assessing the quality of images across the distortions (both
single and multiple, of different severities) that it is trained
for. The results clearly show FRIQUEE’s potential to tackle the
imminent deluge of visual data and the unavoidable distortions
they are bound to contain.

VII. CONCLUSIONS AND FUTURE WORK

With more than 350, 000 subjective judgments overall,
we believe that the study described here is the largest, most
comprehensive study of perceptual image quality ever con-
ducted. Of course, digital videos (moving pictures) are also
being captured with increasing frequency by both professional
and casual users. In the increasingly mobile environment,
these spatial-temporal signals will be subject to an even
larger variety of distortions [1] arising from a multiplicity
of natural and artifical processes [52]. Predicting, monitoring,
and controlling the perceptual effects of these distortions
will require the development of powerful blind video quality
assessment models, such as [53], and new VQA databases
representative of human opinions of modern, realistic videos
captured by current mobile video camera devices and exhibit-
ing contemporary distortions. Current legacy VQA databases,
such as [54] and [55] are useful tools but are limited in regard
to content diversity, numbers of subjects, and distortion realism
and variability. Therefore, we plan to conduct large-scale
crowdsourced video quality studies in the future, mirroring
the effort described here, and building on our expertise in
conducting the current study.
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