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Efficient Stereoscopic Ranging via Stochastic
Sampling of Match Quality
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Abstract—We present an efficient method that computes dense
stereo correspondences by stochastically sampling match quality
values. Nonexhaustive sampling facilitates the use of quality
metrics that take unique values at noninteger disparities. Depth
estimates are iteratively refined with a stochastic cooperative
search by perturbing the estimates, sampling match quality, and
reweighting and aggregating the perturbations. The approach
gains significant efficiencies when applied to video, where initial
estimates are seeded using information from the previous pair in a
novel application of the Z-buffering algorithm. This significantly
reduces the number of search iterations required. We present a
quantitative accuracy evaluation wherein the proposed method
outperforms a microcanonical annealing approach by Barnard
[2] and a cooperative approach by Zitnick and Kanade [27], while
using fewer match quality evaluations than either. The approach
is shown to have more attractive memory usage and scaling than
alternatives based on exhaustive sampling.

Index Terms—Computational geometry, cooperative stereo, re-
cursive estimation, simulated annealing, stereo vision, stochastic
approximation.

I. INTRODUCTION

A FTER more than 30 years of research, intensive effort is
still being applied to improve computational stereo tech-

niques that reconstruct dense scene structure estimates from
stereo or monocular imagery. The core problem is to determine
the correspondences between all the pixels in two (or more) im-
ages being analyzed. This computation, which at its root is based
on a measure of local match quality, remains a challenge, and it
accounts for the majority of complexity and runtime in compu-
tational stereo approaches.

We present a new method, named quality-efficient stochastic
sampling (QUESS), which reduces the number of match quality
computations required to accurately estimate dense stereo corre-
spondences from calibrated monocular video. Most approaches
exhaustively compute the match qualities of all potential cor-
respondences. Instead, we apply a stochastic and cooperative
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search in the solution space. This approach reduces the number
of match quality evaluations and facilitates the use of more com-
plex quality metrics, as well as metrics defined on noninteger
depth or disparity domains (for which exhaustive search is im-
possible). QUESS iteratively applies a simple formulation of
local and aggregated influences which, together with techniques
for seeding depth estimates from the previous frame, enables
an efficient stochastic and cooperative search for dense stereo
correspondences in calibrated video. It is motivated by passive
aerial modeling applications, although it can be applied to other
related problems.

Following a brief background discussion in Section II, Sec-
tion III describes the approach as it is applied to standard-ge-
ometry stereo pairs. Section IV describes extensions that enable
use on calibrated monocular video. Section V presents analyses
of accuracy, number of match quality evaluations, scalability,
runtime, and memory usage. Comparisons against an early sto-
chastic approach by Barnard [2] and a cooperative approach by
Zitnick and Kanade [27] are also presented. We end with con-
clusions in Section VI.

II. BACKGROUND

The topic of automated stereo reconstruction still lacks a ro-
bust and deployable general solution. A number of open re-
search problems remain. Runtime and efficiency continue to be
challenges, as well as finding match quality metrics that are ro-
bust to image quality, lighting, and perspective changes. Robust-
ness to camera path (in single-camera stereo) and scene orien-
tation are also issues.

Aerial modeling from calibrated monocular video has re-
ceived somewhat less attention than other stereo applications
and lacks a generally applicable solution. A single camera fol-
lows an aerial platform’s known but independently controlled
path, with position and orientation changing incrementally
between frames. The stereo geometry is nonstandard and
constantly changing, and stereo frame pairings must be se-
lected from a set of buffered frames. Intrinsic and extrinsic
camera parameter values are available. Expected characteris-
tics include large absolute ranges (hundreds or thousands of
meters), large absolute disparities (tens or hundreds of pixels),
and large disparity ranges. Approaches must address complex
and uncontrolled outdoor scenes with moving objects, and be
robust to uncontrolled lighting and other imaging artifacts. A
reliable solution to this challenging problem would enable a
wide variety of applications in the commercial, government,
and military domains.

A substantial body of related work exists. Relevant surveys of
sparse stereo approaches can be found in [7], dense stereo in [4]
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and [22], and multiview stereo in [23]. A few techniques are of
particular relevance. Cooperative techniques [17], [27] repeat-
edly apply local (and/or nonlocal) effects to iterate towards a
solution. Approaches using simulated annealing [9] or micro-
canonical annealing [2], [5] apply stochastic sampling and sto-
chastic optimization. Beyond these, however, the use of either
stochastic sampling or stochastic optimization is very rare in
the literature. Multiview stereo systems simultaneously process
a sequence of many images in nonstandard stereo geometries.
Also relevant are systems targeting real-time operation (see [4]).
The system in [14] is unique in its use of an active, foveating and
vergent stereo geometry.

These approaches provide inspiration, but they each have dis-
advantages that require recombination and extension. Cooper-
ative techniques typically compute local match quality exhaus-
tively at integer-valued disparities. As a result, the match quality
metric is evaluated many times, requiring considerable amounts
of memory and runtimes which change with the camera and
scene geometries. Stochastic search approaches avoid exhaus-
tive sampling of all possible local solutions, but they can be
slow to converge and still typically quantize disparity values.
Real-time systems [13], [26] often require unattractive assump-
tions, such as a fixed geometry (yielding an insufficient stereo
baseline for aerial modeling) or specialized hardware.

QUESS combines existing techniques with new methods
yielding particular advantages. Iterative cooperative processing
allows straightforward control of runtimes and facilitates ini-
tialization of estimates using results from previous frame pairs.
Directly estimating real-valued depths allows the use of quality
metrics that are not constrained to integer disparity values
[24]. Stochastic sampling exploits piecewise continuity and
continuity of matching likelihood constraints [15] to greatly
reduce the search space, allowing the use of more complex local
match quality metrics (see [11]) while maintaining acceptable
runtimes. QUESS is cooperative and stochastic, combining the
advantages of both.

III. BASIC TWO-FRAME APPROACH

Here, we discuss the representation of the estimated quan-
tities, the core stochastic cooperative search and the local and
aggregated influences on which it is based.

A. Definitions and Representations

Consider two 2-D images and , with image
defined as the reference image. The images are assumed to be

in a standard stereo geometry with known (or assumed) stereo
baseline and intrinsic parameters. A scalar floating-point depth

can be estimated at each pixel based on the local match
quality function , which varies with depth esti-
mate . Depth estimates can be converted to and from equivalent
disparities as required (e.g., to compute or for evaluation in
disparity-based frameworks).

TABLE I
OVERVIEW OF THE QUESS APPROACH

Direct depth estimation contrasts with estimating integer dis-
parity values and postprocessing to recover sub-pixel disparities
or depths. Estimating floating-point depth directly is preferable
in situations with large depth ranges and significant spatial vari-
ations. It also avoids quantization and supports match quality
metrics defined on continuous domains.

B. Stochastic Cooperative Search

An overview of QUESS is given in Table I. Depth estimates
are iteratively refined with a stochastic cooperative search.
QUESS perturbs the depth estimates, reweights perturbations
using local influence computed from their effects on , and
adds aggregated influence to the estimates to incrementally
move them towards a better solution. The search is guided by a
schedule analogous to those used in simulated annealing.

Depth estimates at each pixel are initialized from the previous
search stage, previous frame, or from a uniform distribution over
the bounds and . Depth bounds vary pixel
by pixel and are defined using any prior knowledge about the
scene (including disparity bounds).

In each iteration , random noise is
added to the previous depth estimate to form a can-
didate depth estimate . is
evaluated at the candidate to compute a new sample,

.
The noise added to each depth estimate is uni-

formly distributed, subject to two constraints. The first con-
straint is a maximum depth perturbation magnitude

relative to the pixel-specific depth bounds

(1)

By gradually reducing samples in later iterations are
forced to be closer to current estimates. The second constraint
limits so the perturbed estimate remains
within bounds; see (2), shown at the bottom of the page.

Constraint (2) is necessary because even if is small,
(1) may not prevent from falling outside the allowable

(2)
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range if is close to or . The
constraints are introduced before sampling, instead of sampling
and then clipping, to avoid biases caused by over-sampling at
the extremes of the depth range.

A local influence is computed at each pixel by pref-
erentially weighting depth perturbations that improve . Local
influence is aggregated over a support region to produce ag-
gregated influence . Aggregated influence is added to
the last iteration’s depth estimate to incrementally improve the
estimates, . Details of local
and aggregated influence appear in Section III-C.

Finally, depth estimates are smoothed at the end of each it-
eration, modeling the piecewise continuity constraint [18], and
helping the effects of the influence function to propagate.

Search parameters vary by stages. The search schedule de-
fines the maximum depth perturbation magnitude , aggre-
gation neighborhood , and number of iterations for each
stage. is a square region with side length specified as a frac-
tion of the average of the row and column resolutions, , to
insulate search parameters from changes in image resolution.
and are large in early stages to capture gross scene struc-
ture. They both shrink in later stages to capture detail and force
convergence of the estimates. This is analogous to the cooling
process of simulated annealing or the organization process of
self-organizing maps.

The QUESS approach is heuristic. While good results are
achieved and convergence is enforced by the search schedule,
the estimates are not guaranteed to be optimal.

C. Match Quality, Local Influence, and Aggregated Influence

Local influence is derived from the stochastic samples of .
Many alternative metrics were explored, including weighted
sum of absolute differences, squared error, and normalized
cross-correlation (hereafter, XCORR). Although QUESS en-
ables the use of more complex , excellent results are achieved
even with simple definitions. XCORR is used since it provides
superior performance in our simulations owing to the divisive
normalization.

Fig. 1 shows example depth perturbations (ex-
pressed in grayscale), resulting changes in match quality

, local influence , and
aggregated influence .

Local influence selectively weights depth perturbations that
improve the depth estimate as inferred by improve-
ments in . Random depth perturbations result in “noisy”

and . Some perturbations increase depth
while others decrease depth. Some increase quality while many
decrease quality. Local influence should be positive where per-
turbations that increase depth also increase quality, and negative

Fig. 1. Influence formulation and aggregation. (a) Depth perturbations
� ��� ��. (b) Changes in �� ��� ��. (c) Local influence � ��� ��.
(d) Aggregated influence � ��� ��.

where perturbations that decrease depth increase match quality.
Where perturbations decrease match quality, local influence
should be either zero or oriented away from the perturbation.

Results are improved by categorizing pixels as either con-
tributing or noncontributing. For contributing pixels, is
the depth perturbation realizing the maximum historical sample
of in the current search stage. For noncontributing pixels,

.
A pixel is contributing if it passes two tests.

1. A minimum on the standard deviation of local pixels.
2. A minimum on the range of samples at that pixel.

These tests inhibit local influence from pixels where is un-
reliable due to insufficient texture or other features that may
cause values to be similar (e.g., a dominant gradient along
the epipolar direction).

Local influence is defined as (3)–(5), shown at the bottom of
the page, where is the standard deviation in a
local 9 9 square region. The mask is defined rela-
tive to all historical samples, but the local influence of con-
tributing pixels is defined relative to samples in the current
search stage only (via ). This exploits all knowledge of

to identify reliable samples, but still forces the estimates to
converge and capture detail in later search stages. Computing
local influence requires maintaining only , , and
two minima/maxima of .

Like local influence, there is flexibility in the definition of ag-
gregated influence. It should capture consistent trends in local
influence that reflect scene structure, reject spurious local influ-
ences caused by artifacts, and tend towards zero when an ac-
ceptable solution is reached.

Averaging over is efficient and can be effective on
some scenes. However, this enforces smoothness where piece-
wise-smoothness is instead desired. Anisotropic smoothing pre-
vents loss of detail along boundaries [1], [20], with promising
accuracy but at a significant cost. Other robust aggregation ap-
proaches, including order-statistic filtering (e.g., [3] and [16])
or bilinear filtering can be applied.

We found a selective median filter to be particularly effective.
Median filters that combine partial histograms for each column

if true
if false

(3)

such that (4)

(5)
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Fig. 2. Selective median filtering. (a) Reference image. (b) Disparity maxi-
mizing XCORR. (c) Contributing pixel mask � ��� ��. (d) aggregated influ-
ence � ��� ��.

are in pixel number and (1) in filter kernel size when
applied to integer images [21]. Efficiency is improved by incre-
mentally updating bin indices [12]. We implemented two novel
extensions. The first only includes a value in the histograms if
it passes a mask. The second applies the filter to floating point
images by returning the histogram bin center containing the me-
dian—an approximation with bounded error to the true median.

Fig. 2 illustrates the effects of the filter on a representative
disparity image. Depicted are the reference image, the disparity
at which XCORR is maximized, an example contribution mask,
and the results of selective median filtering.

IV. EXTENSIONS TO CALIBRATED VIDEO

Modifications of the search process combined with pre- and
postprocessing provide additional efficiencies when QUESS is
applied to calibrated video input.

A. Preprocessing

The processing necessary to operate on calibrated aerial video
comprises frame pairing, rectification, and input masking.

When applied to calibrated video, QUESS generates depth
estimates for each frame in the video stream. The most recent
frame in the stream is defined as the reference frame . Fol-
lowing [25], stereo pairs are formed by selecting a nonadjacent
frame (see Fig. 3) to maintain a target ratio between the
stereo baseline and the minimum depth to the scene. To sim-
plify computation, is defined simply as the Euclidean dis-
tance between the camera origins. In addition to providing a
stereo baseline sufficient to generate accurate depths (which
pairing adjacent frames would not do), this provides robustness
to changes in platform speed and direction, making it possible
to tune other parameters to a more consistent geometry.

QUESS gains advantages from rectifying, but rectification is
not strictly necessary. Image is reprojected to a plane that is
parallel to (but not necessarily coplanar with) the image plane
of , thereby creating . This can be described as a partial
planar rectification. After rectification, scene elements at infinite
depth exhibit zero disparity, and unit vectors in the epipolar di-
rection at each pixel in can be computed and stored. Epipolar
lines are not collinear or parallel as in a standard stereo ge-
ometry. However, the rectification allows quick conversion be-
tween estimated depth and equivalent disparity for computing
match quality. This process also enforces correspondences to
lie on epipolar lines.

Fig. 3. (a) Reference image � masked for artifacts. (b) Paired image �

masked for artifacts. (c) Rectified paired image � masked for artifacts,
rectification, and scene assumptions.

Fig. 4. (a) Depths (pseudocolored) in frame � . (b) Depths re-projected to
frame � by Z-buffering.

Following frame pairing and rectification, a mask is com-
puted to identify pixels satisfying various constraints on corre-
spondences.

1. That has the same domain as .
2. That corresponding pixels lie within the images.
3. That pixels are not coincident with known artifacts.
4. That depth estimates respect known scene boundaries.

Pixels failing these constraints are black in Fig. 3(c).

B. Modifications to Stochastic Cooperative Search

QUESS stochastic search is modified in three ways. First, es-
timates and intermediate values are initialized using results from
the previous frame pair when available. This lets estimates con-
verge over multiple frames—existing estimates are refined in-
stead of generating entirely new estimates. As shown in Fig. 4,
depth estimates can be seeded aggressively since camera posi-
tion and orientation differ little between adjacent frames. Es-
timates from the last frame are re-projected to the new refer-
ence frame and adjusted for changes in camera origin, using
Z-buffering [8] to address occlusion. A similar application of
Z-buffering is used to initialize key quantities such as ,

, and statistics of , letting the search leverage results
from the previous frame pair. Any small gaps can be filled by
nearest-neighbor interpolation.

Second, the search schedule is modified to exploit the
redundancy between frame pairs. The search schedules still
requiresuccessivestages todecrease theperturbationmagnitudes
andneighborhoodsizes, thuscapturingbothgross scenestructure
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Fig. 5. Results on Middlebury Teddy (a)–(d) and Cones (e)–(h) data. (a), (e) Reference image. (b), (f) Micro-Canonical Annealing (MCA) [2] disparities.
(c), (g) Zitnick–Kanade (ZK) [27] disparities. (d), (h) QUESS disparities.

TABLE II
QUESS SEARCH SCHEDULE PARAMETERS

and detail. A unique schedule is used for the first frame that
performs more iterations and emphasizes larger perturbations.
All subsequent frames use schedules with significantly fewer
iterations. These emphasize smaller neighborhoods and smaller
depth perturbation in order to refine the existing solution and
capture detail, although they must also capture larger structures
in newly-visible regions. Combined with aggressive seeding,
the modified search schedule lets estimates converge over many
frame pairs with very few iterations (and evaluations) per
pair.

Third, conservative assumptions constrain the depth es-
timates at each pixel. Application-specific assumptions can
considerably improve speed and accuracy. For example, aerial
modeling benefits more from bounds on elevation than bounds
on disparity, and those bounds are easier to estimate reliably
(e.g., from existing low-resolution elevation data).

C. Postprocessing

After computing depth estimates with respect to , intrinsic
and extrinsic camera parameters are used to compute equivalent
3-D positions in an absolute reference frame. The final output
is a 3-D point cloud for each frame. These clouds can be fused
and converted to surface models for further analysis using tools
and techniques such as [6] and [19].

V. PERFORMANCE ANALYSIS

A. Middlebury Stereo Pairs

Evaluation on the Middlebury data lets us compare QUESS
against many leading approaches, although the benefits of
QUESS are stronger when processing aerial video data.

A variety of parameter combinations were explored and the
best results are presented. QUESS used XCORR over a 5 5
window for , and influence thresholds of and .
Its search parameters are given in Table II. Relatively many

samples are required for a single stereo pair but far fewer
samples can used for video data. MCA parameters were set
following [2] (minimum temperature 30, maximum tempera-
ture 300, 500 iterations per scale, and 85% of iterations for
cooling). The parameter , which weights smoothness against
match quality, was set empirically to . Following [27],
ZK used 15 iterations, occlusion threshold 0.005, and a
support region. We empirically set inhibition exponent

and used 1 1 absolute differences (AD) for . Alterna-
tive quality metrics such as 5 5 sum of absolute differences,
1 1 squared differences, and 5 5 sum of squared differences
did not improve results.

Reference images and computed disparity are shown in
Fig. 5 for the Teddy and Cones datasets, and performance
metric values are given for all Middlebury datasets in Table III.

QUESS is not competitive with leading approaches on the
Tsukuba or Venus scenes. On the Teddy and Cones scenes it is
within the range of results posted for other approaches, although
it is not a top performer. This is not unexpected since many al-
gorithms leading the Middlebury evaluation emphasize single
stereo pairs of indoor scenes taken at short range, or scenes that
have large planar regions, large areas of low contrast, or rela-
tively simple geometries. These scenes allow assumptions and
techniques that may be less attractive for outdoor aerial mod-
eling or other data. QUESS performs best on the two scenes that
are most representative of outdoor scenes in their complexity,
disparity ranges, nonplanar geometry, and higher texture. These
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TABLE III
MIDDLEBURY EVALUATION RESULTS FOR MICRO-CANONICAL ANNEALING (MCA), ZITNICK-KANADE (ZK), AND QUESS (Q). NON, ALL, AND DISC STAND

FOR NONOCCLUDED, ALL, AND NEAR DISCONTINUITIES

results show that QUESS is viable even on types of data it does
not emphasize

Our ZK results did not repeat those achieved in [27], where
the authors obtained nonoccluded error rates of 1.5%–3.0% on
the Tsukuba scene. Results for other scenes were not given. Our
observed performance was significantly tdifferent on Tsukuba
(27.0%–28.5%) and was slightly worse than QUESS on all met-
rics except those exclusively measuring results near disparity
discontinuities. ZK provides a novel method for explicitly iden-
tifying occlusions, so superior performance near discontinuities
is expected. Because we used our own implementation of ZK,
the differences between our results and those of [27] imply that
an important subtlety of the approach may have been missed in
either the published description or in our implementation.

MCA performance was generally poor, both qualitatively and
quantitatively. Appealing qualitative results were shown in [2]
on other datasets, but we are not aware of prior MCA results
posted for Middlebury data.

Approaches that stochastically sample are rare in the
literature and none appear among the over 60 approaches with
posted Middlebury results at the time of writing. While many
approaches use stochastic models of the disparity field, they
sample exhaustively and apply deterministic optimization
algorithms. By combining stochastic and cooperative tech-
niques, QUESS outperforms approaches from each category. It
is also the only approach we are aware of using nonexhaustive
stochastic sampling and optimization that is competitive with
the top 60 performers on any of the Middlebury datasets.
Nonexhaustive sampling of provides complexity, runtime,
and memory benefits as discussed below.

B. Aerial Video

Performance was evaluated on a calibrated monocular aerial
video dataset provided by the Air Force Research Laboratory.
The dataset contains 32 videos of a suburban scene captured
at 60 frames per second (interlaced) and 720 480 resolution.
The scene spans m in the horizontal and 17 m in
the vertical. Sparse ground truth positions are known for 301
locations, including building corners, fiducial markers, and
ground locations. The platform traveled at 35 mph at elevations
around 110 m, with camera declinations of to degrees,
yielding true depths in the range of 150 to 220 m. Platform
position and orientation is known for each frame. Field of view
and nontrivial offsets in position and orientation between the
platform and camera were estimated by minimizing the re-pro-
jection error of ground truth positions. Analysis was performed
on a representative 200-frame de-interlaced sequence.

Calibration inaccuracies in intrinsic and extrinsic parameters
shape the definition of the accuracy metric. Sparse ground truth

is projected to a 2-D pixel location. Depth estimates for all pixels
within a radius are considered and absolute error (AE) is de-
fined as the minimum Euclidean distance between the ground
truth position and the estimated 3-D positions. Mean absolute
error (MAE) averages AE over all visible ground truth points
and all frames. This defines a family of MAE metrics with
error values decreasing monotonically with .

Results are presented for , which was selected by inspec-
tion based on residual re-projection error. Between 1800 and
2200 ground truth comparisons contributed to each MAE value.
Results are presented for downsampled 360 240 video due to
the memory limitations of the ZK approach, discussed in Sec-
tion V-E.

A variety of parameter combinations were explored and the
best results are presented. QUESS used XCORR over a 5 5
window for the match quality metric, and influence thresholds
of and . Its search parameters are given in
Table II, which require significantly fewer evaluations per
frame than when processing a single stereo pair. MCA param-
eters were identical to the evaluation on Middlebury data. ZK
used ten iterations, occlusion threshold 0.02, a support
region, and 5 5 sum of absolute differences (SAD)
for the match quality metric.

The target stereo baseline was varied over
for MCA and QUESS, and up to 0.25 for ZK to capture all im-
portant trends. Intentionally loose elevation assumptions simu-
lated imprecise a priori scene knowledge (45 m vertical range
versus the actual 17 m range) and defined the disparity ranges
for each approach. MCA and ZK require a standard stereo ge-
ometry, so a planar rectification following [10] was applied. Dis-
parity estimates were converted to depth estimates and trans-
formed to the reference frame for evaluation.

Fig. 6 shows a reference image and example reconstructions
for MCA, ZK, and QUESS. Results are shown for ,
at which QUESS achieves its best accuracy. Fig. 7 plots recon-
struction error against target stereo baseline ratio for the three
approaches.

As seen in Fig. 7, QUESS outperforms both MCA and ZK at
the sparse evaluation positions. QUESS achieves m
at . This equates to 0.62% estimate error relative to ab-
solute depth, which is 0.29 pixels average disparity magnitude
error at that baseline. ZK performance is somewhat competitive,
and achieves m at , resulting in 1.01%
depth estimate error and 1.50 pixels average disparity magni-
tude error. MCA performance is not competitive, achieving a
minimum at . These relative results are
consistent with evaluations on the Middlebury data.

A few trends are evident. The accuracy of all approaches de-
grades for small , where the reduced disparity range makes
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Fig. 6. Example reconstructions from aerial video. (a) Reference images with sparse evaluation positions marked. (b) MCA estimated elevations. (c) ZK estimated
elevations. (d) QUESS estimated elevations.

Fig. 7. Reconstruction error versus stereo baseline.

disparity estimates sharply quantized, and depth estimates are
simultaneously more sensitive to disparity error. Metrics de-
fined at sub-pixel disparities ([24]) would help, but increased
sensitivity will remain. QUESS and MCA accuracy degrade
at higher where viewpoint changes make correspondence
matching more difficult. ZK accuracy gradually improves as
grows and the effects of disparity quantization are reduced. ZK
accuracy becomes unstable as grows further, likely because
few frames are successfully paired and few depth estimates are
generated per frame. QUESS outperforms ZK and MCA, but it
can produce inaccurate results in large regions of low texture or
contrast (as do most other approaches).

These results demonstrate that by combining stochastic and
cooperative techniques, QUESS outperforms both a stochastic
approach and an exhaustive cooperative approach on a realistic
and complex dataset. Accurate range estimates are generated
from high-range calibrated aerial video. QUESS has a variety
of additional advantages which are discussed next.

C. Number and Scalability of Match Quality Evaluations

The primary advantages of QUESS are the generation of
depth estimates using fewer evaluations of , and its attractive
scaling properties with respect to video resolution, stereo
baseline ratio, and scene bound assumptions.

Analysis of evaluations is focused on comparing to ZK be-
cause ZK can be used as a representative for other approaches.

For example, the current MCA implementation is not compet-
itive with respect to evaluations because is recomputed
on each iteration which results in 500 samples per pixel per
scale. We could reimplement MCA to exhaustively sample
at each scale and then use a lookup table, but then MCA would
still be no better than ZK in number of Q samples. Any approach
that exhaustively samples will encounter the same scalability
issues as ZK.

QUESS requires evaluations of
for by images, where is the fraction of overlap-
ping pixels in the stereo pair (a function of and camera path

), and is the total number of iterations in the schedule.
The value , so . QUESS generates

depth estimates per frame pair.
Exhaustive approaches are more difficult to characterize. ZK

requires

evaluations, where and are the number of rows and
columns after projective rectification, is analogous to

, and is the range of potential disparities for resolution
and scene bounds . is a complex function of camera

path and stereo baseline that grows with increasing baseline.
An upper bound on is not easily determined. ZK generates

depth estimates per frame pair.
Fig. 8 plots the average evaluations per frame for the aerial

video test data, as a function of . QUESS requires fewer eval-
uations per frame only in some ranges. QUESS shows a steady
decline in as shrinks with increasing and other fac-
tors remain constant. For ZK, the number of evaluations grows
with for low until a decrease in dominates and
follows. The values of , , , and are all complicated
functions of camera path and baseline. QUESS achieves its best
accuracy at evaluations per frame and ZK achieves
its best accuracy at per frame. On the surface, ZK may
appear superior in number of evaluations (although its accu-
racy is worse), but this is not the complete story.

Fig. 9 plots the number of depth estimates generated per
frame. Increasing the stereo baseline decreases the number
of estimates per frame as overlap decreases. Qualitatively
different behavior is seen in the number of evaluations of Q
per depth estimate in Fig. 10. QUESS uses a constant number
of match quality evaluations per depth estimate, independent
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Fig. 8. Average � evaluations per frame.

Fig. 9. Average depth estimates per frame.

Fig. 10. Average � evaluations per depth estimate.

of stereo baseline. The number of ZK evaluations per estimate
is dominated by the growth of with increasing . QUESS
achieves its best performance at 52 evaluations per estimate,
but ZK requires an average of 203 per estimate. QUESS gener-
ates more accurate results using 75% fewer evaluations per
estimate.

The specifics of the analysis will differ between exhaustive
approaches, but the themes generalize. For roughly linear
camera paths, all factors will decrease with increasing
(here, by coincidence only). However, , ,

and are determined by frame pairing and rectification. Any
exhaustive algorithm that needs a standard stereo geometry and
uses the same projective rectification will share these values.
The value is also shared. For any exhaustive approach,
will decrease with and will increase, resulting in more
evaluations of per estimate. By contrast, QUESS can freely
optimize without changing the number of evaluations.

QUESS also has more attractive scaling properties with re-
spect to resolution and other factors. For QUESS, evaluations
scale directly with number of pixels . For ZK, dou-
bling and also doubles , so scales with .
This applies to any method that exhaustively computes at in-
teger disparity magnitudes in a search range based on camera
and scene geometry—doubling resolution causes an unavoid-
able scaling in evaluations of .

ZK inhibition computations scale with in the number
of pixels, as opposed to the scaling described in [27].
For each row, column, and disparity, inhibition is summed over
a second disparity index whose range is also linear in resolution.
For simple metrics, computing ZK inhibition may dominate
computing , but that is not necessarily true for complex
metrics or for other approaches.

Scene geometry and camera path have complex and signifi-
cant effects on for any exhaustive approach, further compli-
cating their use under uncontrolled scene and camera geome-
tries. By contrast, the number of evaluations in QUESS is in-
dependent of scene geometry and camera path once the number
of iterations is chosen.

D. Runtime

Runtimes are given in Table IV for each dataset at three
different resolutions. Runtime was measured with a single
2.5-GHz dual-core CPU with 3.5-GB RAM. While QUESS
was not the fastest of the three approaches, a direct compar-
ison does not reflect all the relevant issues. Algorithms were
implemented in Matlab and were vectorized, but with no effort
to optimize the implementations. As a result, QUESS did not
capitalize on opportunities to reduce the number of match
quality evaluations by exploiting increases in . MCA and ZK,
however, do benefit because lower frame overlap shrinks the
size of the data cube created for rectified stereo pairs.

QUESS runtimes were significantly lower on video data than
on the single stereo pairs because the initialization techniques
described in Section IV-B allow its search schedules to be short-
ened. Runtime scales with number of pixels, increasing by a
factor of about four for every doubling in resolution. QUESS
runtimes are independent of , and for an optimized imple-
mentation would actually decrease with increasing . This in-
sulation of runtimes also applies to stereo geometry and relative
scene orientation. Neither characteristic holds for approaches
that exhaustively sample .

ZK runtimes follow the number of evaluations shown in
Fig. 8. Runtime ranges are given because ZK runtime varies
significantly with . As expected, each doubling of resolution
creates an 8-fold increase per frame in evaluations, an ap-
proximate 8-fold increase in total runtime, and doubling of
evaluations and runtime per depth estimate. ZK thus scales with

in the number of pixels.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 20, 2010 at 09:36 from IEEE Xplore.  Restrictions apply. 



COFFMAN AND BOVIK: EFFICIENT STEREOSCOPIC RANGING VIA STOCHASTIC SAMPLING OF MATCH QUALITY 459

TABLE IV
RUNTIME (SECONDS/FRAME) FOR MICRO-CANONICAL ANNEALING (MCA), ZITNICK-KANADE (ZK), AND QUESS (Q). RESULTS ARE GIVEN FOR

FULL-RESOLUTION (FR), 1/2 RESOLUTION, 1/4 RESOLUTION, AND 1/8 RESOLUTION

MCA runtimes also follow the number of evaluations, and
also vary significantly with . evaluations scale linearly in
pixels in the current implementation because is recomputed
each iteration. If we instead quantize the disparity space and
sample it exhaustively, MCA will scale with like ZK
but with a much lower hidden constant that it currently has.

The use of simple functions actually minimizes the runtime
advantages of QUESS over other approaches. As more complex
metrics are used, evaluation of becomes a larger percentage of
runtime and the advantages of quality-efficient stochastic sam-
pling become more pronounced.

E. Memory Usage

QUESS has memory advantages over approaches that ex-
haustively sample and retain all samples in memory, and it
is thus more attractive than exhaustive approaches on memory-
constrained devices or platforms. QUESS requires storing ap-
proximately 20 floating-point values for each pixel, independent
of . All aspects of memory usage scale with and are in-
dependent of stereo baseline, frame overlap, camera motion, and
scene structure.

ZK memory usage follows directly from the number of
evaluations analyzed in Section V-C, since all samples are
stored in a 3-D data cube. As a result, ZK memory also scales
with . ZK requires two data cubes of this size. At its
best accuracy, ZK requires the simultaneous storage of over 400
floating point values per depth estimate.

As currently implemented, MCA memory requirements are
similar to QUESS because is recomputed in each iteration.
If we instead compute values once at all disparities and store
them for later retrieval, MCA memory usage becomes nearly
identical to ZK. Both alternatives have significant disadvantages
for MCA.

Similar scaling properties are shared by other exhaustive ap-
proaches. The size of any exhaustive cube of samples is af-
fected by stereo baseline, frame overlap, camera motion, scene
orientation, and scene structure. Few of these factors are easily
controlled so exhaustive approaches can cause problems on lim-
ited memory devices. Our aerial video comparisons were per-
formed at 360 240 resolution because even on a modern ma-
chine with significant memory, ZK generated Matlab out-of-
memory errors on 720 480 imagery.

VI. CONCLUSION

This paper presents quality-efficient stochastic sampling
(QUESS), a new stochastic and cooperative sampling approach
for generating dense stereo correspondence estimates using
fewer local match quality metric evaluations than exhaustive
approaches. It is based on a set of general techniques that are

easily applied to a variety of applications. Its strengths are
maximized when operating on calibrated monocular video, but
in more common applications such as robotic navigation the
approach suffers no loss. It exploits the continuity of matching
likelihood constraint to skip portions of the disparity search
space. Estimates are initialized from the previous frame pair’s
results to allow convergence across multiple frame pairs. A
relatively simple formulation of local influence selectively
re-weights random perturbations injected into the solution,
and aggregated influence extracts consistent trends from the
stochastic sampling of match quality. QUESS is both stochastic
and cooperative, with advantages from both. It was shown to
outperform both Barnard’s stochastic approach [2] and Zitnick
and Kanade’s cooperative approach [27] on a complex and
representative dataset, while requiring fewer match quality
evaluations.

QUESS has a number of advantages over exhaustive ap-
proaches. It requires fewer match quality metric evaluations
per depth estimate, with corresponding gains in efficiency.
It reduces memory requirements and provides better scaling
in both runtime and memory. Runtime and memory usage
are insulated from a variety of factors that cannot be easily
controlled, including stereo baseline, camera path, and scene
orientation and structure. Advantages are demonstrated using
simple quality metrics, but become more pronounced as metric
complexity increases. It facilitates the use of complex and
robust metrics, and metrics defined on noninteger disparities.

Potential future work includes further tuning of search sched-
ules, exploring influence formulations based on gradient ascent
search, and exploring efficient anisotropic filtering [1] for influ-
ence aggregation and depth estimate smoothing. Further work
with more complex quality metrics is also of interest, as is de-
veloping optimized and parallelized implementations.
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