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ARTICLE INFO ABSTRACT

Keywords: Almost all existing 3D visual discomfort prediction models are based, at least in part, on features that are
Visual discomfort extracted from computed disparity maps. These include such estimated quantities such as the maximum
Implicit-disparity disparity, disparity range, disparity energy and other measures of the disparity distribution. A common first step
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prediction largely depends on the accuracy of the disparity result. Unfortunately, most algorithms that compute
disparity maps are expensive, and are not guaranteed to deliver sufficiently accurate or perceptually relevant
disparity data. This raises the question of whether it is possible to build a 3D discomfort prediction model
without explicit disparity calculation. Towards this possibility, we have developed a new feature map, called the
percentage of un-linked pixels (PUP), that is descriptive of the presence of disparity, and which can be used to
accurately predict experienced 3D visual discomfort without the need for actually calculating disparity values.
Instead, PUP features are extracted by predicting the percentage of un-linked pixels in corresponding retinal
patches of image pairs. The un-linked pixels are determined by feature classification on orientation and
luminance distributions. Calculation of PUP maps is much faster than traditional disparity computation, and the
experimental results demonstrate that the predictive power attained using the PUP map is highly competitive
with prior models that rely on computed disparity maps.

1. Introduction

Stereoscopic movies have gained popularity in recent years, as
reflected by the large amount of 3D content being offered to consumers
at the cinema and in home theatres. Although 3D displays effectively
enhance viewers' visual experience by providing a more immersive,
stereoscopic visualization, low-quality 3D images can induce feelings of
discomfort such as eye strain, headache, fatigue, asthenopia, and other
phenomena leading to a less pleasant viewing experience [1]. Several
possible factors that may affect visual discomfort have been extensively
studied, such as the vergence—accommodation conflict [2], duration of
viewing, the viewing distance [3-5], the amount of defocus-blur [6-8],
and the distribution of disparities along the vertical dimension and its
relation to the shape of the empirical horopter [9,10]. Towards being
able to predict and potentially reduce feelings of visual discomfort
experienced when viewing 3D images, a large number of studies have
focused on finding features that can be reliably extracted from 3D
images (stereopairs) towards developing automatic 3D discomfort
prediction algorithms [11-13].

In the absence of geometrical distortions and window violations,
factors related to vergence and accommodation conflict induced by
horizontal disparity are thought to be the dominant factors that cause
visual discomfort [14]. Commonly, the features used in discomfort
prediction models have included the disparity range, maximum angular
disparity, disparity distribution, disparity location and disparity gradi-
ent [15-20], among various other quantities calculated from disparity
maps. Hence, the predictive powers of existing discomfort assessment
models generally depend strongly on the accuracy of disparity calcula-
tion.

Disparity calculation methods can be classified into algorithms that
conduct sparse and dense stereo matching. Sparse stereo matching
methods do not calculate disparity at every pixel, hence often offer the
advantage of low complexity [17,18]. Dense stereo matching methods
calculate disparity at every pixel. Most recent discomfort assessment
models are built on dense stereo matching algorithms, such as the
matching algorithm [21] used in [15], dynamic programming [22,19],
and the Depth Estimation Reference Software [23] used in [16]. Kim
and Sohn used both sparse and dense disparity calculations [20]. High-
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quality dense disparity calculation is both expensive and difficult, yet
the predictive capability of discomfort models could suffer if only
sparse disparity features delivered by a low complexity algorithm were
available. To improve the accuracy of disparity calculation results while
also increasing calculation speed, additional information regarding the
range of available depths or of the camera parameters may be exploited
[22,23], but this kind of information may not be easy to obtain. These
limitations raise the question of whether it is possible to build a 3D
visual discomfort model that does not require disparity calculation.
Indeed, there is no convincing perceptual evidence that disparity maps
are the best source of information when defining features to drive visual
comfort models. Disparity information provided by depth maps is
neither a continuous nor a “linear” source of information [24,25].

Therefore, we ask: are there other discomfort-predictive features
that can be quickly computed from stereopairs while enabling accurate
discomfort prediction? Is it enough to infer the presence of disparity
without computing it? Towards realizing these possibilities, we for-
mulated a new discomfort predictive framework that relies on a simple,
perceptually relevant implicit disparity tool, that we call the percentage
of un-linked pixels map (PUP map).

2. Background

In a 3D scene viewed on a stereoscopic display, referred to here as
Stereoscopic 3D (S3D), accommodation is fixed by the distance of the
dichoptic images from the two eyes. However, vergence is free to adapt
to the disparity-defined depth planes that occur when a fused image is
achieved. This produces a perceptual conflict. Prolonged exposure to
conflicts between vergence and accommodation when viewing S3D
content produces visual fatigue and discomfort [26]. The binocular
disparity signal is the primary cue for vergence. It is much stronger than
blur or other factors in evoking vergence [27]. To simulate the
vergence—accommodation conflict without the use of disparity maps,
we instead seek to deploy other information descriptive of the binocular
disparity signals.

2.1. Corresponding retinal images and linked images

When viewing natural scenes, the two eyes receive corresponding
images that originate from the same locations in space (Fig. 1). Images
that the visual system treats as corresponding images will be referred to
as linked images [28].

Corresponding retinal images are images that have the same
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Fig. 1. The relationship of corresponding images, linked images and corresponding
retinal images. Point a is the fixation point, while a’ and a” are the linked images of point
a on the left and right retinae. Points b’ and b” are the linked images of b. Point b” is the
corresponding retinal image of b”, also projected from point bz on the horopter. b; and
b are corresponding images of b, both located on the screen plane.
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projected location on the two retinae and that also project to the same
location in visual cortex [29]. For example, the blue point b in Fig. 1 is
a point in space. The points b; and b, are corresponding points
displayed on a screen to the left and right eyes. The points b’ and b” are
the linked images of these points received by the stereoscopic vision
system. The point b” is the corresponding retinal image of b".

The horopter is the surface containing all those points in space
whose images fall on corresponding points of the retinae of the two
eyes.

Given a set of distinct objects on the horopter, the visual system has
no difficulty linking corresponding images, since each point in the
image is linked to a corresponding retinal position. In this situation, the
linked images are also corresponding retinal images. Hence the
disparity between the linked images is zero and no disparity signal is
triggered.

During stereoscopic vision, the fixation point is the location in 3D
space that is fixated by the two eyes.

For example, in Fig. 1, the fixation point a which is on the horopter
is projected to a’ on the left eye and a” on the right eye. Since they are
projected from the same point in space and located on the horopter,
they are linked in the stereoscopic vision system, and no disparity signal
is triggered.

However, for images which do not lie on the horopter, there exists a
mismatch between the linked image and corresponding retinal image
due to disparity. Images are not linked to their corresponding retinal
images, but are instead linked to shifted images. For example, point b in
Fig. 1, which is in front of the horopter, is projected to b’ and b” on the
two retinas. The point b’, which is linked to b”, is shifted leftwards from
its corresponding retinal image b”. These unlinked images will trigger
disparity signals [28,30]. A useful and robust predictor of the presence
of disparity signals may be formed by judging whether the correspond-
ing retinal image is linked or unlinked.

2.2. Percentage of un-linked pixels

In Fig. 2, the red blocks in the right views are the retinal image (CRI)
blocks that correspond to the blue blocks in the left view. The blue
blocks in the right view are the linked image (LI) blocks. It is supposed
that the pixels in the left view blocks have the same disparities.

Several possible conditions exist. In condition @ indicated in Fig. 2,
since the disparity is 0, the LI block is the same as the CRI block.
However, for conditions @ through @, since the LI blocks are linked to
shifted retinal image blocks because of horizontal disparities, mis-
matches arise between the LI blocks and CRI blocks. Further, the shifted
distances between the LI blocks and the CRI blocks are the same as the
disparities between the blocks. For LI blocks having no zero disparities,
only part of the image is linked to the CRI block due to shift. The shaded
area in the left view is that part of a blue LI block that can be linked to a
sub-image in its corresponding retinal image. The shaded region in the
right view is its linked area. Therefore in condition ®, the shaded region
in the right view is as large as the CRI block. However when the
disparity increases, the shaded region is reduced (conditions @ and ®).
When the disparity is at least as large as the width of the CRI block
(conditions @ and ®), there is no shaded region, i.e., no part of the blue
LI block is linked to its corresponding retinal image.

On the other hand, the size of the shaded region is also affected by
the size of the image. For a larger block (conditions ® and @) of width
of 2W,, the shaded region is larger than the smaller block having the
same disparity. In this situation, most of the blue block is linked to its
CRI block.

Hence given the disparity and the size of the block, the size of the
shaded area can be described by them as follows:

d
SLinked = Sa(l - Wa] 0< da < %
a
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Fig. 2. Positional relationships between linked images and corresponding retinal images.

where S, is the area of CRI block a, W, is the width of CRI block a, d is
the disparity of the block and S, ., is the shaded area which is the part
of the block that can be linked to its corresponding retinal image.
Conversely, if the size of the shaded area can be found, then the
disparity of a block having consistent disparity can be approximately
expressed as follows:

5 Sine
da:(l-LT“)Wa d,<W,

d, > W, )

where d, is the estimated disparity. From (2), it is apparent that for a
given block width, the disparity has a proportional relationship with
S"_;M. This parameter is the percentage of coordinates in the left

image which do not have links to the corresponding retinal image. We
call this quantity the percentage of un-linked pixels (PUP). If PUP =0 over
a patch, then the local disparity is zero and all of the patch pixels are
linked. Conversely, if PUP =1, the disparities will be equal to or larger
than the width of the block, and all of the pixels in the block are un-
linked.

We use this quantity to describe the likely presence of disparity. As
we elaborated in last section, others have shown that visual discomfort
induced by watching S3D images can be predicted by features extracted
from disparity signals. Here we instead use quantities that are
predictive of disparity, but that do not require expensive calculation
of disparity values, to predict the degree of experienced visual
discomfort induced by viewing S3D images.

3. Visual discomfort modeling using PUP

The stereoscopic vision system attempts to link images having
similar luminance, size, shape, orientation, and color. Conversely,
images having different orientations, luminances or other aspects are
not linked [28,30]. Hence, a corresponding retinal image pair having
more pixels with disparate luminances, orientations or other image
aspects will generally have more un-linked pixels and a high PUP.

For instance, Fig. 3(a) shows a S3D image from the IEEE-SA
database [31]. The red block has a large disparity while the blue one
has a small disparity. Figs. 3(d) and (e) are CRI blocks in the left and
right views corresponding to the red block, while Figs. 3(b) and (c) are
CRI blocks corresponding to the blue block. Figs. 3(f)-(i) are the
corresponding luminance histograms. From Figs. 3(b) and (c), since
most of the pixels in blue block are linked to the CRI block, and linked
pixels have similar luminances, the luminance histograms of the left
view (Fig. 3(f)) and the right view (Fig. 3(g)) are similar. Otherwise,
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since only a small percent of pixels in the red block are linked, the
luminance histograms (Figs. 3(h) and (i)) differ significantly between
views. The right view contains more low-luminance pixels (Figs. 3(e)
and (i)) which cannot be linked with the pixels of higher luminance in
the left view (Figs. 3(d) and (h)).

A similar result is obtained with orientation histograms. We
captured orientation information using the responses of Gabor filters
of different orientations [32,33]. The responses were normalized to the
range [0, 1] before computing distribution histograms. Horizontal and
vertical oriented Gabor filters were deployed with center frequencies
0.592 cycles/degree. The design of the Gabor filter tessellation and
parameters was based on the perceptual design conducted by Su et al.
[34] which uses a cortical model based on neuronal data. Figs. 3(j)—(m)
show the horizontal orientation histograms. The horizontal orientation
histograms of the blue block are very similar, but the orientation
histograms of the red block are different. A very similar result is also
obtained for the vertical orientation histograms. More pixels in the right
view of the red block have large Gabor responses which cannot be
linked to pixels with small Gabor responses in the left view.

To obtain PUP values, it is first necessary to classify pixels into
groups such that pixels within each group have similar features. These
groups are defined as feature groups. It is supposed that pixels within
the same feature group are linked to each other, and that pixels from
different groups cannot be linked. For example, the pixels in the left and
right images are classified into two feature groups, FG1 and FG2. If the
left image has 10 more pixels than its corresponding retinal image in
group FG1, these 10 pixels cannot be linked to pixels in group FG2 in
the corresponding retinal image, hence are un-linked.

Although in some cases (e.g., background and foreground images
having very similar luminance, texture or other image features) un-
linked pixels may be classified as linked pixels by feature grouping, in
most cases, the number of un-linked pixels is well represented by
counting the numbers of pixels in the different feature groups:

X gt Ny — F N )|
2

S,

unlinked =

3

where N, is the number of feature groups and H"Yisi(;) and H"™Mis(j)
are the numbers of pixels in the ith group in the left and right views.
Hence PUP is defined as:

Zl_f\':hxist |H"N’“'“(i) — "N ()|
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It is important to observe that while (4) measures a type of
similarity between blocks or patches, the similarity measure is made
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Fig. 3. Example image from IEEE-SA, from left column to right column: (b) and (c) are the corresponding blue blocks in the left and right images, (d) and (e) are the corresponding red
blocks in the left and right images, respectively, (f)—(i) are the corresponding luminance histograms, (j)-(m) are the corresponding horizontal orientation histograms, and (n)-(q) are the

feature distribution histograms.

only on corresponding blocks, i.e., there is no searching or “matching“
process or attempt to estimate actual disparity values therefrom. The
same is true of later expressions, e.g., (6) and (7).

3.1. Pixels grouping by feature classification

Following the analysis from earlier, the pixels can be classified by
their orientations and luminance distribution. Pixels having both
similar orientation and luminance distributions are classified into the
same group. Orientation features are extracted along four different
Gabor orientations (both cardinals and both diagonals) at a constant
spatial frequency of 0.592 cycles/degree. The design of the Gabor filter
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set was based on the perceptual model used by Su et al. [34]. The
responses are normalized into the range [0, 1] before the classification
process. If the normalized response is sufficiently large along an
orientation, then the orientation feature along this direction is marked
as high. Otherwise, the orientation is marked as low. The judgment is
made according to comparison with a threshold as:

O'(x, y, ) = high if G'(x, y, 6) > T(0)

O'(x, y, ) =low if G'(x, y, 6) < Tz(6) (5)

where O’(x, v, 0) is the orientation feature associated with the left view
pixel at orientation 0 at coordinate (x, y) and Gl(x, y, 6) is the normal-
ized Gabor response at (x, y). T;(0) is the threshold applied on the Gabor
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response at orientation 6. Hence if G'(x, y, 0) is at least as large as its
corresponding threshold 7;;(9), O'(x, v, 6) is marked as high. Otherwise,
0'(x, y, 0) is marked as low. Here we simply take T;(9) = 0.5. Hence
pixels are classified into 16 different groups according to their orienta-
tion features.

After classification by orientation, the pixels are sub-grouped by
luminance levels within each orientation feature group. The number of
luminance levels was empirically fixed at 5. Finally, the pixels are
classified into 80 (N,;,, = 80) different feature groups. Figs. 3(n)-(q) plot
the resulting feature distribution histograms for the red and blue blocks.
For each red block, the number of pixels in each feature group differs
between the two views. By contrast, the number of pixels in each
feature group is very similar between the two views for blue blocks.
Hence the same result is obtained: most pixels in the red block cannot
be linked to pixels in its CRI block. However, most pixels in the blue
block can be linked to the pixels in its CRI block.

3.2. The sign of PUP

In addition, as described in [17,35-37,14,9], excessive uncrossed
disparities generally produce more discomfort than excessive crossed
disparities of the same magnitudes. Hence the polarity of disparity
seriously impacts the degree of experienced visual discomfort. If the
local disparity is uncrossed, the locally linked image will be shifted to
the left of the corresponding retinal image in the right view. The
percentage of un-linked pixels between the left and shifted right view
images are a useful measure of the direction of disparity. The sign of
PUP can be used to represent the polarity of disparity, and can be
estimated as follows:

T 1 3 (0) = Hsog )]

i=1

PUR, =
) 21Vtm‘al
Nuist 1270 1+ ’ .
PUP _ i 1Hp ) () = Hig (01
Roeyy — 2N

(6)

where t is a variable that controls the degree of shift in the correspond-
ing right view image. For example, Fig. 4 depicts the spatial relation-
ship between the right shifted right view image and the left view image.
The value of t in Eq. (6) is estimated by the disparity value predicted by
PUP:

total

1=PUR X W @)
U
PUR, = = PUPY., (PUR, < PUF )
_ U
PUR:y) = PUPyy (PUR. ) > PURR () ®

where PUR, , is the signed PUP value and PUP&V) is the unsigned PUP
value. At local coordinate (x, y), PUF,, . and PUF; vy ATE the values of
PUP computed between the left and shifted right view images,
respectively. When PUPL,(X_y) < PUB{(X'y), then the left image has more
pixels linked to the left shifted image in the right view and the disparity
signal is uncrossed. When PUPL,(X_),)=PUEe,(x,y), the sign of PUR,,, is
negative.

3.3. PUP map

For every sub-image in an S3D image pair being processed, a signed
PUP value is obtained. To simplify calculation, the images are divided
into sub-images of constant size rather than attempting image segmen-
tation.

3.3.1. Height of patch

Firstly, the height of each patch is determined following Kooi and
Toet [8], who provided a limit on vertical disparity. They recom-
mended that viewing comfort is not reduced by keystone distortions of
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Fig. 4. Spatial relationship between the right shifted right view image and the left view
image.

up to 0.57° of visual angle. The viewing distance between each subject
and the 3D display was fixed at about 3 times the screen height as
suggested in ITU-R BT.1438 [38] and as used in previous studies
[39,16,14]. Hence the approximate patch height for an image of
resolution 1920 x 1080 was 32 pixels.

3.3.2. width of patch

From (2), the maximum disparity which PUP can describe is
controlled by the width of the sub-image. Therefore, the width of the
image patch should be set as reasonably large as possible to capture
large disparities. However, as the width increases, an image patch may
contain diverse objects and disparity levels which will affect the
estimation of disparity signals. Since different images may have very
different aspects, images with highly variable disparity levels and many
details may be better analyzed using a smaller patch width, while
images with few disparity levels and details should be analyzed using a
larger width. Generally, multiple patch widths are needed for accurate
modeling.

The region within which objects are fused binocularly is called
Panum's fusional area. Objects located outside Panum's area induce
double vision and binocular suppression may occur [40]. While
Panum's fusional area marks the limit of the accommodative output
under natural viewing conditions, comfortable viewing is not guaran-
teed.

A sub-region inside Panum's fusional area known as Percival's zone
of comfort defines maximum retinal disparities under normal viewing
conditions that lead to comfortable viewing [41]. Hence if the disparity
of the image patch is smaller than Percival's zone of comfort, it will
have little effect on the visual experience. If the disparity surpasses
Panum's fusional area, the degree of visual discomfort may greatly
increase.

Therefore, the width of the image patch is defined as a function of
the size of the comfort zone and the fusional area. Three different patch
widths are deployed in the model. The width of the largest patch
corresponds to the disparity limit of the fusional area. The width of the
smallest patch corresponds to the disparity limit of the comfort zone.
The width of the average patch corresponds to the average value of the
fusional limit and the comfort limit disparities.

Disparities larger than 60-70 min of arc are more likely to induce
visual discomfort [42,43]. Hence 60 min of arc was determined as the
disparity limit of the comfort zone. Disparities larger than about 4.93°
generally cannot be fused without diplopia [40]. Hence 4.93° was
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determined as the disparity limit of the fusional area. The block widths
were determined using the pixel disparity limit of the fusional area and
the comfort zone. The pixel disparity is transformed from angular
disparity to pixel disparity as follows:

b/2 — V*tan| arctan LA dy
2V

d= .
PP

9

where d is the pixel disparity, b is the distance between the two eyes
(65 mm), V is the viewing distance (three times the height of the
monitor), PP is the size of each pixel on the screen, and dp is the angular
disparity. For an image with a resolution of 1920 x 1080 pixels, the
block widths of PUP-L, PUP-M, PUP-S were computed to be 280, 168
and 56 pixels, respectively, and PUP-M is found by averaging the block
widths of the PUP-L and PUP-S maps. Given an image pair, three PUP
maps with large, average and small patch widths (PUP-L, PUP-A and
PUP-S) were extracted.

3.3.3. Overlapping patches

Typically, image patches partition the image along rows. For
example, in Fig. 5, a piece of the image is subdivided into two patches
p1 and p, of widths W,,. However, objects may overlap multiple patches,
like the green circle in Fig. 5, which may lie in different disparity planes
than the background. This may adversely affect the accuracy of the PUP
signals. Instead, overlapping patches may be used. In the example in
Fig. 5 (lower part), adjacent patches have overlap of width
(1 = b) x W,

Hence for a patch of width W, and height H,, the PUP map is:

PUR, PURy 4y xw,.1) PUR| 4y xn—1)x W, 1)
PUEI,]+M,)
PU (x.y)
PUEI,1+(m—l)XH;7) PUEl+h;X(n—l)XWb,H-(m—l)XHb)

(10

where b, < 1. When W, takes larger values, b, is made smaller. In our
implementation b, was fixed at 1/5, 1/3, and 1/2 for PUP-L, PUP-A and
PUP-S, thereby making the distances between adjacent blocks in PUP-L
and PUP-A the same as the width of the blocks in PUP-S (56 pixels).
Hence the total number of patches in the PUP map is:

)

where N, is the number of patches and H; and W, are the height and

H,X(W,—Wb

N _, =—
P, T byx W an

W =2W,
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w,'=w, 1

Fig. 5. Example of improved patch subdivision.
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width of the image. Fig. 6 is the corresponding set of PUP maps
obtained on the image in Fig. 3.

3.4. Features used in PUP map

In order to predict the degree of experienced visual discomfort on an
S3D image, each of four kinds of features were extracted from the PUP-
L, PUP-A and PUP-S maps following the feature extraction method in
[15]. Thus, each kind of map has four kinds of features and the total
number of features used in PUP map set is 12. The features include the
mean values of positive and negative PUP, and the upper and lower 5%
of the PUP values:

1

f=— ) PUP@®)
Neos PUP(n)>0 (12)
1
L=— 3 PUP®)
Nveg PUP(n)<=0 13)
1
h=a Y. PUP®)
5% n<Nrprarx0.05 14
£, = Nl PUP(n)
95%  n>Npyq1x0.95 (15)

where PUP(n) is the nth smallest value in a PUP map, and Np,, and Ny,
are the number of positive and negative values in a PUP map,
respectively. If Np,; = Ny,, = 0, then f =f, = 0. Ny, and Nys, are the
number of values lower and higher than 5% and 95% of the PUP values.

4. Performance evaluation

To evaluate the efficiency of the PUP map features in predicting
visual discomfort, the compute time, correlation coefficient and outlier
ratio between predicted results and MOS and robustness were tested in
this section.

The features extracted from the set of PUP maps were tested on the
IEEE-SA stereo image database [31], which consists of 800 stereo high-
definition images, along with associated subjective visual discomfort
scores. The IEEE-SA database was specifically built to test 3D visual
discomfort predictor models [15,14] (more details can be found in
[14]). We rigorously tested the PUP features on the IEEE-SA stereo
image database and compared the results with prior work [15,17-
20,44]. Among these models, Nojiri et al. [17] and Yano et al. [18] also
considered temporal aspects of visual discomfort, hence are less
comparable. The temporal parts of their models were removed by us
for better comparison in this experiment. Choi et al. [19] targeted
visual fatigue which is one of the main aspects of visual discomfort and
may impact the comparison results. Table 1 overviews the depth
estimation algorithm and the features extracted in these prior works.

To compare the discomfort prediction efficiency of the PUP maps
with that of features extracted from disparity maps, the same types of
features were also extracted from the results of four popular disparity
extraction models using Egs. (11)-(14): the mean values of crossed
(MP) and uncrossed (MN) disparities (MN), and the top 5% of the
largest (TL) and smallest (TS) disparities. The details of the feature
extraction can be found in [15]. The disparity estimation models tested
were: the optical flow based algorithm [21], dynamic programming
[22], a low complexity sum-of-absolute difference stereoscopic lumi-
nance matching model (Disparity SAD or DSAD), and a simple SSIM
based stereo algorithm DSSIM [50]. DSSIM is a window-based stereo
matching algorithm based on the SSIM index (DSSIM) [50]. The
disparity map of a stereo pair is generated by using SSIM as the
matching objective, resolving ties by a minimum disparity criterion.
Both the computation times and prediction results were tabulated for
comparison. The speed testing was done on the IEEE-SA stereo image
database. The computing environment was an Apple MacPro4.1 with
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Table 1

Overview of comparison models.
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Fig. 6. Set of PUP maps for the image in Fig. 3.

Models

Depth estimation

Extracted features

Nojiri et al.

Block level phase correlation

The minimum and maximum

[17] computation [17] values, range, dispersion,
absolute average, and average
disparities

Yano et al. Block level correlation The ratio of sums of horizontal
[18] computation [18] disparities near the screen and

those far from the screen.

Choi et al. Dynamic programming [22] Spatial depth complexity and
[19] depth position (the variance

and absolute mean of the
disparity map)

Kim and SIFT matching [45,46] and The experienced horizontal
Sohn region-dividing technique with  disparity range and maximum
[20] energy-based regularization angular disparity

[47]

Richardt Normalized cross-correlation The consistency of the two

etal. [44] [48] and left-right consistency  stereo half-images
check [49]

Park et al. Optical flow software [21] Anomaly of AV/A ratio,

[15] anomaly of VA/V ratio, absence
of de-focus blur, and absence of
differential blur

Table 2

Compute times of disparity calculation algorithms and PUP map extraction.

Algorithm

PUP

Flow Dynamic

DSSIM

DSAD Park et al. [15]

Time (h)

2.41

45.71 40.17

22.04 3.51

57.21

Intel Xeon CPU e5520 2.27 GHz (16CPUs) and 6 GB of RAM. All models
were implemented in MATLAB. Table 2 shows the computation
comparison between PUP map set extraction and prior work: Park
et al. [15] and the four disparity algorithms. The computation times

were recorded in units of hours. From Table 2, it is apparent that PUP
map set extraction is faster than all of the disparity calculation
algorithms and much faster than Park et al. [15].

The PUP model and comparison prior models were all trained and
tested on the IEEE-SA database using a support vector regressor (SVR).
The IEEE-SA database with corresponding MOS was divided into test
and training subsets. SVRs have been shown to perform well on high-
dimensional regression problems. To implement the SVR, we used the
LibSVM package [51] with the radial basis function kernel, whose
parameters were estimated by cross-validation during the training
session. 1000 iterations of the train-test process were used and the
image database was randomly divided into 80% training and 20% test
sets across 1000 iterations at each iteration. The training and testing
sets did not overlap in content.

The performance was measured using Spearman's rank ordered
correlation coefficient (SROCC), (Pearson's) linear correlation coeffi-
cient (LCC), and root mean square error (RMSE) between the predicted
scores and the MOS following ITU-T P.1401 [52]. Higher SROCC and
LCC and lower RMSE values indicate good correlation (monotonicity
and accuracy) against human quality judgments. Before calculating the
performance measures (other than SROCC), the algorithm scores were
transformed using a four parameter non-linear (logistic) regression as
recommended in [53].

To observe the relationship between the specific band of spatial
frequencies that the Gabor filter is tuned to, the mean values of SROCC
and LCC were computed as a function of spatial frequency over the
1000 iterations, and plotted in Fig. 7. Clearly, the predictive power of
the PUP model is not seriously affected by the tuning of the Gabor filter.

In addition, to demonstrate that PUP is not highly dependent on the
size of the training set, we also obtained the mean values of the LCC and
SROCC as a function of the percentage of the overall database used,
over 1000 iterations, as shown in Fig. 8. The LCC and SROCC slightly
decreased with a reduction of the proportion of training data, but this
was insignificant above 10% of the database.

We obtained the mean, median, and standard deviations of LCC,
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Fig. 7. Mean SROCC and LCC against MOS as a function of the frequency tuning of Gabor filter.
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Fig. 8. Mean SROCC and LCC of PUP features against MOS as a function of the percentage of the training set used.

SROCC, and RMSE of the PUP features against MOS over all 1000 train-
test trials, as tabulated in Tables 3, 4 and 5, respectively. Values of LCC
and SROCC close to 1 mean superior linear and rank correlation with
MOS, respectively. Obviously, the higher the mean and median, the
better the LCC and SROCC performance. Conversely, a higher standard
deviation implies more unstable performance. In order to examine the
contribution of features from each PUP map, we also obtained correla-
tion results for the constituent predictive features from PUP-L, PUP-A
and PUP-S. For comparison, we also tested the models contributed by
Park et al. [15], Nojiri et al. [17], Yano et al. [18], Choi et al. [19] and
Kim and Sohn [20]; the same types of features extracted from the Flow
algorithm [21], dynamic programming [22] and the DSAD and DSSIM
based stereo algorithms [50], with all results tabulated in Tables 3-5.

The SROCC, LCC and RMSE results in the tables indicate that PUP
has a high correlation with experienced visual discomfort. PUP ranks
2nd in the comparison and performed better than all of the disparity
based algorithms. The predictive power drops dramatically when using
simple, low complexity disparity calculations (DSAD and DSSIM).

To test the statistical efficacy of the model against other models, a F-
tests was conducted to assess the statistical significance of the errors
between the MOS scores and the model predictions on the IEEE-SA
database. Table 6 shows the results of F-tests. The residual error
between the predicted score of a model and the corresponding MOS
value in the IEEE-SA database can be used to test the statistical efficacy
of the model against other models. The residual errors between the

model predictions and the MOS values are:
R={0;,-MOS,i=1,2, ..., Ny} (16)

where Q; is the ith objective visual discomfort score and MOS; is the

Table 3
Mean SROCC over 1000 trials of randomly chosen train and test sets on the IEEE-SA
database.

corresponding ith MOS score. The F-test was used to compare one
objective model against another objective model at the 95% signifi-
cance level. (The F-value is 1.6378 and the degrees of freedom are 159
for both numerator and denominator.) A symbol value of 1 indicates
that the statistical performance of the model in the row is better to that
of the model in the column, while 0 indicates the performance in the
row is worse to that in the column, and - indicates equivalent
performance. The results indicate that the PUP map achieves a
performance quite comparable to that of Park, and better than that of
the other compared models.

Table 4
Mean LCC over 1000 trials of randomly chosen train and test sets on the IEEE-SA
database.

LCC Mean Median Standard deviation
Nojiri et al. [17] 0.69 0.69 0.079
Yano et al. [18] 0.40 0.40 0.075
Choi et al. [19] 0.65 0.66 0.070
Kim and Sohn [20] 0.70 0.71 0.077
Richardt et al. [44] 0.70 0.71 0.079
Park et al. [15] 0.86 0.87 0.048
Flow [21] 0.83 0.84 0.051
Dynamic [22] 0.79 0.79 0.062
DSAD 0.61 0.61 0.049
DSSIM [50] 0.70 0.70 0.042
PUP-L 0.78 0.78 0.033
PUP-A 0.80 0.80 0.029
PUP-S 0.83 0.83 0.028
PUP 0.86 0.86 0.022
Table 5

Mean RMSE over 1000 trials of randomly chosen train and test sets on the IEEE-SA

database.

SROCC Mean Median Standard deviation RMSE Mean Median Standard deviation
Nojiri et al. [17] 0.61 0.62 0.073 Nojiri et al. [17] 0.61 0.61 0.085
Yano et al. [18] 0.34 0.34 0.073 Yano et al. [18] 0.76 0.76 0.071
Choi et al. [19] 0.59 0.59 0.080 Choi et al. [19] 0.71 0.71 0.085
Kim and Sohn [20] 0.62 0.62 0.070 Kim and Sohn [20] 0.58 0.58 0.061
Richardt et al. [44] 0.62 0.63 0.073 Richardt et al. [44] 0.58 0.58 0.067
Park et al. [15] 0.78 0.79 0.045 Park et al. [15] 0.39 0.40 0.025
Flow [21] 0.76 0.76 0.046 Flow [21] 0.44 0.45 0.034
Dynamic [22] 0.71 0.72 0.069 Dynamic [22] 0.52 0.52 0.036
DSAD 0.59 0.59 0.049 DSAD 0.62 0.62 0.039
DSSIM [50] 0.66 0.66 0.042 DSSIM [50] 0.58 0.57 0.039
PUP-L 0.70 0.70 0.039 PUP-L 0.50 0.51 0.031
PUP-A 0.72 0.73 0.037 PUP-A 0.47 0.47 0.029
PUP-S 0.75 0.75 0.037 PUP-S 0.45 0.45 0.030
PUP 0.78 0.78 0.033 PUP 0.42 0.42 0.028
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Table 6

Results of the F-test preformed on the residuals between objective visual discomfort
predictions and MOS values at a significance level of 95%.

Table 8

Signal Processing: Image Communication 51 (2017) 50-60

Pearson's linear correlation coefficient between features from the four models (PUP-A,
Dynamic, DSSIM, and DSAD) and the ground-truth model flow [21].

Nojiri Yano Choi Kim Richardt Park PUP Features TL TS MP MN
Nojiri - 1 1 = - 0 0 PUP-A 0.80 0.79 0.79 0.62
Yano 0 - 0 0 0 0 0 Dynamic 0.75 0.76 0.66 0.64
Choi 0 1 - 0 0 0 0 DSSIM 0.41 0.10 0.12 0.46
Kim - 1 1 - - 0 0 DSAD 0.35 0.12 0.10 0.30
Richardt - 1 1 - - 0 0
Park 1 1 1 1 1 - -
PUP 1 1 1 1 1 - - Features extracted using all three block widths (PUP-L, PUP-A, and
PUP-S) correlated well with MOS (PUP-S delivered the best results) and
Table 7 delivered better results than features extracted by using DSAD or DSSIM
Mean outlier ratio over 1000 trials of randomly chosen train and test sets on the IEEE-SA [50]’ but worse than features extracted by Flow [21]. That is because
database. Flow [21] delivers highly competitive predictions of disparity as
compared to the state of the art on the Middlebury Stereo Evaluation
Outlier ratio Mean Median Standard deviation [54], viz., disparities extracted by Flow [21] may be assumed to be
Nojiri et al. [17] 0.32 0.32 0.033 close to accurate disparities.
Yano et al. [18] 0.42 0.43 0.047 As IEEE-SA does not provide ground truth depth maps, it is difficult
Choi et al. [19] 0.33 0.33 0.033 to compute how well a PUP map is correlated to a depth map. Instead,
Kim and Sohn [20] 0.32 0.32 0.037 we calculated Pearson's linear correlation coefficient between the four
S;Cr}ll(are(:t;f ?1'5544] g?i g?l’i g:((;;i features (TL, TS, MP and MN) extracted from PUP-A and Flow [21],
Flow [21] 0.18 0.18 0.025 which we used as a proxy for ground truth. The correlation coefficients
Dynamic [22] 0.23 0.23 0.029 between DSAD, DSSIM [50] and Flow [21] results were also computed
DSAD 0.34 0.34 0.033 and tabulated for comparison. As may be observed from Table 8, the
PDISJ?)I_T (501 g'ig g'zg 8'82; PUP-A features were significantly more correlated with features from
PUP.A 0:22 0:23 0:031 Flow [21] than with DSSIM [50] and DSAD features.
PUP-S 0.19 0.19 0.030 The combination of PUP maps with three different block sizes
PUP 0.17 0.18 0.027 performed much better than prediction using only one PUP map, and

Further, we compared the outlier ratio yielded by our model and the
other models. The outlier ratio (OR) is defined as the number of points
that fall outside of the 95% confidence intervals:

_ Total no outliers
N

OR an

outlier: [MOS; — MOS,| > z X o(MOS)INM (18)
where N is the total number of points, MOS), is predicted MOS; and
6(MOS)) is the standard deviation of MOS;. M is the number of subjects
and z is the z-value corresponding to a two-tailed normal distribution
with a significance level 0.05, z=1.96. We obtained the mean, median,
and standard deviations of outlier ratio of the PUP features against MOS
over all 1000 train-test trials, as tabulated in Table 7. The outlier ratio
was similar to that of Park et al. [15] and lower than the other methods.
Fig. 9 shows the scatter plot of the predicted results of the PUP model of
Park et al. [15] and of Yano et al. [18]. From the result we can see that
the outlier ratio plots of PUP and Park models are small and that the
plots are very similar. The outlier ratio plots of Yano is big.

also better than prediction using Flow [21]. The low correlations
obtained using DSSIM and DSAD, especially for TS and MP, occurred
since the errors in their disparity calculation were distributed through-
out the entire disparity range. The relationship between the block
widths when creating a PUP map and predictive power is illustrated in
Fig. 10, where the mean values of SROCC and LCC are plotted as a
function of block width over 1000 iterations. The features were
extracted from a single PUP map using a fixed patch width.

We also performed additional experiments on the EPFL stereo image
database [39] which was designed to test quality of experience models,
which is influenced by visual discomfort among other influencing
parameters. This database has been used in the development of a few
visual discomfort prediction models, in particular [15,14,55,56]. In this
database the test subjects were asked to rate quality and not discomfort,
so the results are only an indirect indication of model applicability to
predict visual discomfort. We did this to address questions regarding
possible database dependence. The entire IEEE-SA database was used to
train the PUP features, then the model was tested on the EPFL database.
Table 9 shows the performance results as well as comparison with the
prior work and four disparity algorithms in Tables 4 and 5. The PUP
map set delivered very good performance in regards to cross database

5 3 45
45 45 .
., . 4 4 gt 4 M
+ tast C aegiagse 30 * - L
a & R 822 ;‘& s o * ,‘x.n!';“ L Hd + + K e *
s [t 252381 3¢ I s 309004 24 s |4 % < '+
z . L0860 Al c D¢ R § * e W
> 35 E Wy e et geued e T > 3.5 PR et S 35 PR L
@ ;~ + M ) o S5, 30 . e ., *n g
= s ae = R +
e 4 “. + . 3 + + ¥ * o+
T 3 SRR s . | S i + vt e *I* .
3 * . 3 b H + ¥ by
< 25 . LIRS 2 . £ 95 . 4 !z £ ¥y &3 N :t* o o
8 ® % 8 - g i + ” +
= + = = . . # *
2 b 3 . +  Outliers | - 2 3 * *
* "
150 + ] 15t + Mosp * +  MOSp
4 .t
+ +
1 \ A : 2 . , . A . R L
115 2 25 3 35 4 45 5 W15 2z 25 3 35 4 45 s 1 s 2 23 3 a3 4 43 3
MOS MOS MOS

Fig. 9. Scatter plot of predicted results of PUP model, Park et al. [15] and Yano et al. [18].
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Fig. 10. Mean SROCC and LCC as a function of block width.

Table 9
LCC, SROCC and RMSE on the EPFL database.

EPFL SROCC LCC RMSE
Nojiri et al. [17] 0.87 0.85 0.48
Yano et al. [18] 0.86 0.84 0.69
Choi et al. [19] 0.82 0.77 0.74
Kim and Sohn [20] 0.88 0.87 0.47
Richard et al. [44] 0.86 0.85 0.69
Park et al. [15] 0.91 0.90 0.43
Flow [21] 0.88 0.87 0.48
Dynamic [22] 0.85 0.85 0.67
DSAD 0.43 0.43 0.78
DSSIM [50] 0.70 0.72 0.75
PUP 0.92 0.91 0.44

prediction and better results than the other models, even though the
stereo image capture system, the disparity distributions, the image
contents and the display apparatus of the EPFL database are different
from those of the IEEE-SA database.

From all the performance evaluation test results, it is concluded that
PUP map is efficient in predicting the degree of visual discomfort
experienced when viewing S3D images and the computing speed of PUP
map extraction is more competitive.

5. Conclusion and future work

We have described a first of a kind visual discomfort model that
predicts the degree of visual discomfort experienced when viewing S3D
images without computing disparity maps. The model is built based on
a new concept that we call the percentage of un-linked pixels map (PUP
map). Computation of the PUP map is much faster than most disparity
calculation algorithms and the predictive power of PUP outperforms
other visual discomfort models that are based on disparity features. The
model was tested on both the IEEE-SA database and the EPFL database
which used different average viewing distances of 170 cm and 200 cm.
The prediction accuracy of the PUP map (or any other model, for that
matter) at shorter or longer viewing distances remains an interesting
open question. We plan to explore combinations of PUP maps with
other image features, such as measurements of defocus-blur and of the
detection of disparities along the vertical dimension. We also plan to
investigate the temporal dimension of the stereoscopic signal in the
future, where time-varying PUP maps would be used to predict the
degree of visual discomfort experienced over time when watching S3D
television, cinema, or other videos [3,18,26,9]. We also plan to explore
using PUP maps to accomplish training-free discomfort prediction,
following recent trends in image and video quality assessment [57-59].
As more generally QoE are still not known enough particular indicators
to be used robustly for predicting the subjective experience (whether it
is comfort, fatigue or any other QoE feature), further tests of PUP map
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on predicting generally QoE will be conducted.
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