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Recurrent and Dynamic Models for Predicting
Streaming Video Quality of Experience

Christos G. Bampis

Abstract— Streaming video services represent a very large
fraction of global bandwidth consumption. Due to the exploding
demands of mobile video streaming services, coupled with lim-
ited bandwidth availability, video streams are often transmitted
through unreliable, low-bandwidth networks. This unavoidably
leads to two types of major streaming-related impairments:
compression artifacts and/or rebuffering events. In streaming
video applications, the end-user is a human observer; hence
being able to predict the subjective Quality of Experience (QoE)
associated with streamed videos could lead to the creation
of perceptually optimized resource allocation strategies driving
higher quality video streaming services. We propose a variety
of recurrent dynamic neural networks that conduct continuous-
time subjective QoE prediction. By formulating the problem as
one of time-series forecasting, we train a variety of recurrent
neural networks and non-linear autoregressive models to predict
QoE using several recently developed subjective QoE databases.
These models combine multiple, diverse neural network inputs,
such as predicted video quality scores, rebuffering measure-
ments, and data related to memory and its effects on human
behavioral responses, using them to predict QoE on video
streams impaired by both compression artifacts and rebuffering
events. Instead of finding a single time-series prediction model,
we propose and evaluate ways of aggregating different mod-
els into a forecasting ensemble that delivers improved results
with reduced forecasting variance. We also deploy appropriate
new evaluation metrics for comparing time-series predictions in
streaming applications. Our experimental results demonstrate
improved prediction performance that approaches human per-
formance. An implementation of this work can be found at
https://github.com/christosbampis/NARX_QoE_release.

Index Terms—Subjective and objective video quality
assessment, Quality of Experience, streaming video, rebuffering
event.

I. INTRODUCTION
IDEO data and mobile video streaming demands have
skyrocketed in recent years [1]. Streaming content
providers such as Netflix, Hulu and YouTube strive to
offer high quality video content that is viewed by millions
of subscribers under very diverse circumstances, using a
plethora of devices (smartphones, tablets and larger screens),
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under varying viewing resolutions and network conditions.
This enormous volume of video data is transmitted over
wired or wireless networks that are inherently throughput
limited. On the client side, the available bandwidth may be
volatile, leading to video playback interruptions (rebuffering
events) and/or dynamic rate changes.

These network-related video impairments adversely affect
end-user quality of experience (QoE) ubiquitously; hence
studying QoE has become a major priority of streaming video
companies, network providers and video QoE researchers.
For example, to better account for fluctuating bandwidth
conditions, industry standard HTTP-based adaptive streaming
protocols have been developed [2]-[8] that divide streaming
video content into chunks, represented at various quality lev-
els; whereby the quality level (or representation) to be played
at any given time is selected based on the estimated network
condition and/or buffer capacity. These adaptation algorithms
seek to reduce the frequency and number of rebuffering events,
while minimizing occurrences of low video quality and/or
frequent quality switches, all of which can significantly and
adversely affect viewer QoE [9]-[11]. Note that HTTP-based
adaptive video streaming relies on TCP and hence frame
drops [12] or packet loss [13] distortions are not an issue.

In streaming video applications, the opinion of the human
viewer is the gold standard; hence integrating models of
perceptual video quality and other “QoE-aware” features into
resource allocation protocols is highly relevant. This requires
injecting principles of visual neuroscience and human behavior
modeling into the video data resource allocation strategies.
Systems that can make accurate real-time predictions of sub-
jective QoE could be used to create perceptually optimized
network allocation strategies that can mediate between volatile
network conditions and user satisfaction.

Here, we present a family of continuous-time streaming
video QoE prediction models that process inputs derived from
perceptual video quality algorithms, rebuffering-aware video
measurements and memory-related temporal data. Our major
contribution is to re-cast the continuous-time QoE prediction
problem as a time-series forecasting problem. In the time-
series literature, a wide variety of tools have been devised
ranging from linear autoregressive-moving-average (ARMA)
models [14], [15] to non-linear approaches, including artifi-
cial neural networks (ANNs). ARMA models are easier to
analyze; however they are based on stationarity assumptions.
However, subjective QoE is decidedly non-stationary and is
affected by dynamic QoE-related inputs, such as sudden qual-
ity changes or playback interruptions. This suggests that non-
stationary models implemented as ANNs are more suitable for
performing QoE predictions.
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We specifically focus on the most practical and pressing
problem: predicting continuous-time QoE by developing QoE
system models driven by a mixture of quality, rebuffering
and memory inputs to ANN-based dynamic models. Building
on preliminary work in [16] and [17], we advance progress
towards this goal by devising efficient QoE prediction engines
employing dynamic neural networks including recurrent neural
networks, NARX [16], [17] and Hammerstein Wiener mod-
els [18], [19]. We thoroughly test these models on a set of
challenging new subjective QoE datasets, and we conduct an
in-depth experimental analysis of model and variable selection.
We also study a variety of new ways of aggregating the time-
series responses produced in parallel by different QoE models
and initializations into a single robust continuous-time QoE
estimate, and we provide demonstrations and guidance on the
advantages and shortcomings of evaluation metrics that might
be used to assess continuous time QoE prediction performance.
We also compare the abilities of our proposed models against
upper bounds on performance, i.e, human predictions.

The rest of this paper is organized as follows. Section II
studies previous work on video quality assessment and QoE,
while Section III discusses the design of our general QoE
predictor. Next, Section IV describes the proposed predictor
that we have deployed and experimented with, and the comple-
mentary continuous-time inputs that feed it. In Section V we
introduce the forecasting ensemble approaches that are used
to augment performance, and in Section VI a general class
of QoE predictors that we designed are described. Section VII
explains the experimental setup and Section VIII describes and
analyzes our experimental results. Section IX concludes and
discusses possible future improvements.

II. RELATED WORK

Ultimately, video QoE research aims to create QoE predic-
tion models that can efficiently address the resource alloca-
tion problem while ensuring the visual satisfaction of users.
As such, QoE prediction models are designed and evaluated
on databases of QoE-impaired videos and associated human
subjective scores [13], [20]-[25]. Recently developed QoE pre-
diction models can be conveniently divided into retrospective
and continuous-time QoE predictors.

Retrospective QoE prediction models output a single num-
ber which summarizes the overall QoE of an entire viewed
video. Many video quality assessment (VQA) models that
only measure visual distortions from, for example, compres-
sion or packet loss fall into this category. VQA models are
further classified as full-reference (FR) [26]-[32], reduced-
reference (RR) [33] or no-reference (NR) [34]-[39], depending
on whether all or part of a pristine reference video is used in
the assessment process. Towards a similar goal, the MOAVI
VQEG project [40] studies no-reference assessment of audio-
visual quality, but these methods seek to detect the presence
of an artifact and do not measure overall quality.

Besides video quality degradations, retrospective QoE is
also affected by playback interruptions [41], [42]; hence retro-
spective predictive models have been proposed that compute
global rebuffering-related features, such as the number or dura-
tions of rebuffering events [43], [44]. Hybrid approaches that
model video quality degradations and rebuffering events have
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very recently been studied, resulting in models like SQI [45]
and the learning-based Video ATLAS [46]. Other works [47]
integrate video fidelity measurements with rebuffering infor-
mation, but these approaches simply ascribe bitrate or QP
values with perceptual video quality rather than deploying
high-performing perceptual VQA models.

Similar efforts have been recently initiated as part of the
AVHD-AS/P.NATS Phase 2 project [48], a joint collaboration
between VQEG and ITU Study Group 12 Question 14, which
includes numerous industry and university proponents. These
research efforts have the same broad goal as our work, which
is to design objective QoE prediction models for HTTP-based
adaptive streaming [49], [50]. The PNATS models combine
information descriptive of rebuffering and video quality as
determined by bitstream or pixel-based measurements. These
approaches operate on a temporal block basis (e.g. on GOPs).
Our work has two fundamental differences. First, we deploy
continuous-time predictors that measure QoE with finer, per-
frame granularity and these QoE responses can be further
aggregated over any desired time interval when designing
adaptive rate allocation strategies. Furthermore, we train neural
network models that exploit long-term memory properties of
subjective QoE, which is a distinctive feature of our work.

Continuous-time QoE prediction using perceptual VQA
models has received much less attention and is a more
challenging problem. In [18], a Hammerstein-Wiener dynamic
model was used to make continuous-time QoE predictions
on videos afflicted only by dynamic rate changes. In [17],
it was shown that combining video quality scores from sev-
eral VQA models as inputs to a non-linear autoregressive
model, or simply averaging the individual forecasts derived
from each can deliver improved results. In [51], a simple
model called DQS was developed using cosine functions of
rebuffering-aware inputs, which was later improved using a
learned Hammerstein-Wiener system in [19]. The system only
processed rebuffering-related inputs, using a simple model
selection strategy. Furthermore, only the final values of the
predicted time-series were used to assess performance. As we
will explain later, time-series evaluation metrics need to take
into account the temporal structure of the data. To the best of
our knowledge, the only approach to date that combines per-
ceptual VQA model responses with rebuffering measurements
is described in [16], where a simple non-linear autoregressive
with exogenous variables (NARX) model was deployed to
predict continuous QoE.

A limitation of previous QoE prediction studies has been
that experimental analysis was carried out only on a single
dynamic model and on a single subjective database. Since
predictive models designed or learned and tested on a specific
dataset run the risk of inadvertent “tailoring” or overtraining,
deploying more general frameworks and evaluating them on
a variety of different datasets is a difficult, but much more
valuable proposition. We also believe that insufficient attention
has been directed towards how to properly apply evaluation
metrics to time-series QoE prediction models. Optimal model
parameters can significantly vary across different test videos;
hence carefully designed cross-validation strategies for model
selection are advisable. In addition, it is possible to better
generalize and improve QoE prediction performance by using
forecast ensembles that filter out spurious forecasts. Finally,
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previous studies of continuous QoE have not investigated the
limits of QoE prediction performance against human perfor-
mance; calculating the upper bounds of QoE model execution
is an exciting and deep question for QoE researchers.

To sum up, previous research studies on the QoE problem
have suffered from at least one, and usually several, of the
following limitations:

1) including either quality or rebuffering aware inputs

2) relying on a single type of dynamic model

3) limited justification of model selection

4) using evaluation metrics poorly suited for time-series

comparisons

5) limited evaluation on a single video QoE database

6) do not exploit time-series ensemble forecasts

7) do not consider continuous-time human performance

Our goal here is to surmount 1-7 and to further advance
efforts to create efficient, accurate and real-time QoE pre-
diction models that can be readily deployed to perceptually
optimize streaming video network parameters.

III. DESIGNING GENERAL CONTINUOUS-TIME
QOE PREDICTORS

In our search for a general and accurate continuous-time
QoE predictor, we realized that subjective QoE is affected by
the following:

1) Visual quality: low video quality (e.g. at low bitrates) or
bandwidth-induced fluctuations in quality [11], [21] may
cause annoying visual artifacts [13], [20] thereby affect-
ing QoE.

2) Playback interruption: frequent or long rebuffering
events adversely affect subjective QoE [41], [43]. Com-
pared to degradations on visual quality, rebuffering
events have remarkably different effects on subjective
QoE [10], [21].

3) Memory (or hysteresis) effects: Recency [11], [21], [52]
is a phenomenon whereby current QoE is more affected
by recent events. Primacy occurs when QOE events
that happen early in a viewing session are retained
in memory, thereby also affecting the current sense of
QoE [53].

Broadly, subjective QoE ““is a non-linear aggregate of video
quality, rebuffering information and memory” [9]-[11], [16].
Recently, the learning-driven Video ATLAS model [46] pro-
posed to combine these different sources of information
to predict QoE in general streaming environments where
rebuffering events and video quality changes are commingled.
Nevertheless, that model is only able to deliver overall (end)
QoE scores. Towards solving the more difficult continuous-
time QoE prediction problem, the following points should be
considered:

1) At least three types of “QoE-aware inputs” must be
fused: VQA model responses, rebuffering measurements
and memory effects.

2) These inputs should have high descriptive power.
For example, high-performance, perceptually-motivated
VQA models should be preferred over less accurate
indicators such as QP values [47] or PSNR. QoE-rich
information can reduce the number of necessary inputs
and boost the general capabilities of the QoE predictor.
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3) Dynamic models with memory are able to capture
recency (or memory) which is an inherent property of
QoE.

4) These dynamic models should have an adaptive structure
allowing for variable numbers of inputs. For example,
applications where videos are afflicted by rebuffering
events are not always relevant.

5) Multiple forecasts may be combined to obtain robust
forecasts when monitoring QoE in difficult, dynamically
changing real-world video streaming environments.

An outcome of our work is a promising tool we call the
General NARX (GN) QoE predictor. Table I summarizes
the notation that we will be using throughout the paper.
In the following sections, we motivate and explain the unique
features of this new method.

IV. THE GN-QOE PREDICTOR

Our proposed GN-QoE prediction model is characterized by
two main properties: the number and type of continuous-time
features used as input and the prediction engine that it relies
on. In this section, we discuss in greater detail the QoE-aware
inputs of our system and the neural network engine that we
have deployed for continuous-time QoE prediction.

A. QoE-Aware Inputs

The proposed GN-QoE Predictor relies on a non-linear
dynamic approach which integrates the following continuous-
time QoE-aware inputs:

1) The high-performing ST-RRED metric as the VQA
model. Previous studies [16], [21], [46], [54], have
shown that ST-RRED is an exceptionally robust predic-
tor of subjective video quality. As was done in [17],
it is straightforward to augment the GN-QoE Predictor
by introducing additional QoE-aware inputs, if they ver-
ifiably contribute QoE prediction power. For example,
the MOAVI key indicators [40] of bluriness or blur loss
distortion could be applied in order to complement the
current VQA input. At the same time, we recognize that
simple and efficient models are desireable in practical
settings, especially ones that can be adapted to different
types of available video side-information.

Quality switching [11], [55] also has a distinct effect
on subjective video QoE. While we do not explicitly
model quality switching, the memory component of the
NARX engine allows it to exploit ST-RRED values over
longer periods of time as a proxy for video segments
having different qualities.

2) We define a boolean continuous-time variable R; which
describes the playback status at time ¢ which takes
value Ry = 1 during a rebuffering event and R; = 0
at all other times. This input captures playback-related
information. We also define the integer measure Ry to
be the number of rebuffering events that have occurred
until time 7.

3) M: the time elapsed since the latest network-induced
impairment such as a rebuffering event or a bitrate
change occurred. M is normalized to (divided by)
the overall video duration. This input targets recency/
memory effects on QoE. Figure 1 shows a few examples
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TABLE I
DESCRIPTION OF THE ACRONYMS AND VARIABLES USED THROUGHOUT THE PAPER

Acronym Description Acronym Description
VQA video quality assessment r # training data splits for cross-validation
QoE quality of experience Np # training QoE time-series
QP quantization parameter S # shuffles for performance bounds
NARX non-linear autoregressive neural network Ny # frames for a given video
RNN recurrent neural network OL open-loop configuration
HW Hammerstein-Wiener CL closed-loop configuration
V-N/R/H VQA-driven QoE with NARX/RNN/HW ANN artificial neural network
R-N/R/H | rebuffering-driven QoE with NARX/RNN/HW FR full-reference
G-N/R/H general QoE-aware with NARX/RNN/HW RR reduced-reference
Ry playback status indicator at time ¢ NR no-reference
Ry # rebuffering events until time ¢ RMSE root-mean-squared error
M time elapsed since last distortion (memory) OR outage ratio
Dy LIVE HTTP Streaming Video Database [18] DTW dynamic time warping
D LIVE Mobile Stall Video Database-II [19] D pairwise DTW distance matrix
Ds LIVE-Netflix Video QoE Database [21] Cl confidence interval
dy # external variable lags SROCC | Spearman’s rank order correlation coefficient
d, # input lags PLCC Pearson’s linear correlation coefficient
H # hidden nodes LD number of layer delays in RNN
N # videos in a subjective QoE database o significance level for hypothesis testing
T # training initializations m # comparisons in Bonferroni correction
Video #72, Ds Video #109, D, Video #109, D,

300

250

200

ST-RRED
R

M

&0 800

Frame #

100 1200 1400 1600 10 20 30

Fig. 1.
(D3), and Ry and M on the LIVE Mobile Stall Video Database-II (D).

of these continuous-time inputs measured on videos
from various subjective databases.

B. NARX Component

The GN-QoE Predictor relies on the non-linear autoregres-
sive with exogenous variables (NARX) model [16], [56], [57].
The NARX model explicitly produces an output y; that is
the result of a non-linear operation on multiple past inputs
(¥t—1, Yt—2, .. .) and external variables (u;):

(1

where f(-) is a non-linear function of previous inputs
{yi—1, y1—2, ..., yi—a,}, and previous (and current) external
variables {u;,w,—1,u,2,...,u_g,}, where d, is the number
of lags in the input and d,, is the number of lags in the external
variables. To capture the recency effects of subjective QoE,
the memory lags dy and d, need to be large enough. In prac-
tice, we determine these parameters using cross-validation
(see Section VII-B). In Appendix II-D we show that GN-QoE
is able to capture recency effects when predicting QoE.

In a NARX model, there are two types of inputs: past
outputs that are fed back as future inputs to the dynamic
model, and external (or “exogenous”) variables (see Fig. 1).
The former are scalar past outputs of the NARX model,

Yt = f(yl‘fla Vt—2,..4, yffdyaul‘aufflauffza e 7ul‘7du)

a0

Time (sec.)

50 60 ] 80 10 20 30 W E) 60 K 8

Time (sec.)

Examples of the proposed continuous time QoE variables. Left to right: ST-RRED computed on video #72 of the LIVE-NFLX Video QoE Database

while the latter are past and current values of QoE-related
information, e.g. the video quality model responses, and can
be vector valued. To illustrate this, Fig. 2 shows an example
of the NARX architecture: there are three exogenous inputs
u(t), each containing a zero lag component and five past
values. By contrast, past outputs cannot contain the zero lag
component.

The function f(-) is often approximated by a feed-forward
multi-layer neural network [58] possibly having variable num-
ber of nodes per hidden layer. Here we focus on single-hidden
layer architectures having H hidden nodes. There are two
approaches to training a NARX model. The first approach is
to train the NARX without the feedback loop, also known as
an open-loop (OL) configuration, by using the ground truth
values of y, when computing the right hand side of (1).
An example of the ground truth scores is shown in Fig. 3.
The second approach uses previous estimates of y;, also known
as a closed-loop (CL) configuration [17]. Both approaches can
be used while training; however, application of the NARX
must be carried out in CL mode, since ground truth subjective
data is not available to define a new time-series. The advan-
tages of the OL approach are two-fold: the actual subjective
scores are used when training, and the neural network to be
trained is feed-forward; hence static backpropagation can be
used [59].
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Fig. 2. The dynamic CL NARX system with 3 inputs, 8 neurons in the
hidden layer and 5 feedback delays. The recurrency of the NARX occurs in
the output layer [59].

Video #10, Dy

Subjective QoE

50 100 150 200 250 300

Time (sec.)

Fig. 3. Exemplar subjective QoE scores on video #10 from the LIVE HTTP
Streaming Video Database (denoted by D).

It has been shown [17] that, in practice, the CL configuration
requires longer training times and yields worse predictive
performance; hence we use the OL configuration when training
and the CL configuration only when testing. An example of
the CL configuration of the NARX model is shown in Fig. 2.
For simplicity, we used a tangent sigmoid activation function
and a linear function in the output layer. The role of the linear
function is to scale the outputs in the range of the subjective
scores, while the sigmoid activation function combines past
inputs and external variables in a non-linear fashion. Given
that the problem is of medium size, we chose the Levenberg-
Marquardt [60], [61] algorithm to train the model [62].
To reduce the chances of overfitting in the OL training step,
we used an early stopping approach [63]: the first 80% of the
samples were used to train the OL NARX, while the remaining
20% were used to validate it. In Appendix I, we discuss these
implementation details of the NARX predictor, including the
choice of the training algorithm, the activation function and
data imputation strategies.

The GN-QoE Predictor follows a learning-driven approach
which requires careful cross-validation and design. Still, pre-
liminary experiments led us to the conclusion that a single
time-series prediction may be insufficient for the challenging
problem of continuous-time QoE prediction. Next, we describe
another unique feature of the GN-QoE Predictor: the use of
forecasting ensembles.

V. FORECASTING ENSEMBLES
A. Motivation

Ensemble learning is a long-standing concept that has been
widely applied in such diverse research fields as forecast-
ing [64], [65] and neural network ensembles [66], [67]. We are
specifically interested in time-series forecasting ensembles,
where two or more continuous QoE predictions are aggregated.
In our application, we utilize a variety of dynamic approaches
that have various parameters, such as the number of input
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delays. The results of these models may also depend on the
neural network initialization. Generally, relying on a single
model may lead to drawbacks such as:

1) Uncertain model selection. For example, in the sta-
tionary time-series and ARMA literature [14], [15],
model order selection typically relies on measurements
of sample autocorrelations or on the Akaike Information
Criterion. However, in neural network approaches, this
problem is not as well-defined.

2) Using cross-validation for model selection may not
always be the best choice. Different choices of the
evaluation metric against which the QOE predictor
is optimized may yield different results. Furthermore,
an optimal model for a particular data split may not be
suitable for a different test set. While much larger QoE
databases could contribute towards ameliorating this
issue, the barriers to creating these are quite formidable,
suggesting multi-modal approaches as an alternative way
to devise effective and practical solutions.

3) The QoE dynamics within a given test video may vary
widely, reducing the effectiveness of a single model
order.

Since a single time-series predictor might yield subpar predic-
tion results, we have developed ensemble prediction models
that deliver more robust prediction performance by deempha-
sizing unreliable forecasts. These ensemble techniques were
applied to each of the forecasts generated. For example, testing
GN-QoE using x different combinations of model orders
dy, and dy, 4 different neural network initializations and
possible values for the neurons in the hidden layer, produces
xAu forecasts which are then combined together yielding a
single forecast. In the next section, we discuss these ensemble
methods in greater detail.

B. Proposed Ensemble Methods

We have developed two methods of combining different
QoE predictors. The first determines the best performer from
a set of candidate solutions. We relied on the dynamic time
warping (DTW) distance [68] which measures the similar-
ity between two time-series that have been time-warped to
optimally match structure over time: a larger DTW distance
between two time-series signifies they are not very similar.
The benefit of DTW is that it accounts for the temporal
structure of each time-series and that it makes it possible to
compare signals that are similar but for rebuffering-induced
delays. We computed pairwise DTW distances between all
predictors, thereby producing a symmetric matrix of distances
D = [d;;], where d;; = dj; is the DTW distance between the
ith and jth time-series predictions. Similar to the subject rejec-
tion method proposed in [21], we hypothesize that v; = > D,

J

i.e., the sum across rows (or columns) of D is an effective
measure of the reliability of the ith predictor. A natural choice
is
i, = argmin v;, 2)
i
where i, denotes the single best predictor. Note that i,

may not necessarily coincide with the time-series prediction
resulting from the best model parameters (as derived in the
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TABLE II

SUMMARY OF THE VARIOUS COMPARED QOE PREDICTORS. X DENOTES
THAT THE PREDICTOR IN THE ROW POSSESSES THE PROPERTY
DESCRIBED IN THE COLUMN. WE HAVE FOUND THAT INCLUDING
Ry IN THE G-PREDICTORS PRODUCES NO ADDITIONAL
BENEFIT (SEE APPENDIX II)

QoE Predictor | Learner | VQA | Ry | Ry | M | ensemble
VN NARX X X
RN NARX X X X

RMN NARX X X X X
GN NARX X X X X
VR RNN X X
RR RNN X X X

RMR RNN X | X | X X
GR RNN X X X X
VH HW X X
RH HW X | X X

RMH HW X | X | X X
GH HW X X X X

cross-validation step). The second approach is to assign a
probabilistic weight to each of the C candidate predictors:

_ 1/ve
DRV

where w. € [0, 1] determines (weights) the contribution of
the cth predictor to the ensemble estimate y,. Along with
these two ensemble methods, we also evaluated several other
commonly used ensemble methods, including mean, median
and mode ensembles. Mean ensembles have proven useful in
many forecasting applications [69], while median and mode
ensembles are more robust against outliers [70].

C
Vo= weders we 3)
c=1

VI. THE G-FAMILY OF QOE PREDICTORS

The GN-QoE Predictor is versatile and can exploit other
VQA inputs than the high performance ST-RRED model [54].
Indeed, it allows the use of any VQA model (FR, RR or NR),
depending on the available reference information. As in [16]
and [46], this enables the deployment of these models in a
wide range of QoE predictions applications.

Taking this a step forward, we have developed a wider
family of predictors based on the ST-RRED, R; and M
inputs, that also deploy other dynamic model approaches.
For example, Layer-Recurrent Neural Networks (denoted here
as RNNs) [71] or the Hammerstein-Wiener (HW) dynamic
model [18], [19] can be used instead of NARX, yielding
models called GR-QoE and GH-QoE, respectively. This gen-
eral formulation also allows us to consider model subsets that
relate and generalize previous work. For example, the GH-QoE
model, when using only ST-RRED as input (denoted by VH
in Table II) may be considered as a special case of [18].
We summarize the proposed family of G-predictors and other
predictors that use subset of these inputs, and their charac-
teristics in Table II. Since the same QoE features are shared
across GN-, GR- and GH-QoE, we next discuss the learning
models underlying GR-QoE and GH-QoE.

A. GR-QoE Models

Recurrent Neural Networks (RNNs) [71] have recently
gained popularity due to their successful applications to var-
ious tasks such as handwriting recognition [72] and speech
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Fig. 4. The dynamic RNN approach with 1 input, 8 neurons in the hidden
layer and 5 layer delays: the recurrency occurs in the hidden layer rather than
in the output layer [59].

U . YVt
linear output
non-linearity

block

input _
non-linearity

v

Fig. 5. The HW dynamic approach.

recognition [73]. The main difference between the NARX and
RNN architectures, is that while the former uses a feedback
connection from the output to the input, RNNs are feedfor-
ward neural networks that have recurrent connections in the
hidden layer. Therefore, the structure of an RNN allows it to
dynamically respond to time-series input data. The recurrency
property of RNNs allows them to model the recency properties
of subjective QoE. An example of such a neural network is
shown in Fig. 4.

Given that the amount of available subjective data is insuf-
ficient to train a deep neural network, we decided to train
relatively simple RNN models, i.e., neural networks having
only one hidden layer and up to 5 layer delays. As in NARX,
we used a tangent sigmoid activation function and a linear
function at the output layer.

B. GH-QoE Models

Unlike the NARX and RNN models, the HW model, which
is block-based (see Fig. 5), has only been deployed for QoE
prediction on videos afflicted by rate drops [18] or rebuffering
events [19]. The HW structure is relatively simple: a dynamic
linear block having a transfer function with n s poles and ny
zeros, preceded and followed by two non-linearities. The poles
and zeros in the transfer function allow the HW model to
capture the recency effects in subjective QoE, while the non-
linear blocks account for the non-linear relationship between
the input features and QoE.

The family of G-QoE predictors (see Table II) can be
applied to any subjective database containing videos afflicted
by quality changes, rebuffering events or both, by simply
choosing the model (QoE feature) subset that is applicable to
each case. Following our G-notation, we also define predictors
V- (which use only VQA model responses), R- (only rebuffer-
ing features) and RM- (rebuffering and memory). We next
describe the various subjective datasets we used to evaluate
the various approaches.

VII. SUBJECTIVE DATA AND EXPERIMENTAL SETUP

We now discuss the experimental aspects behind our QoE
prediction systems. We first describe the three different sub-
jective QoE databases that we used and our parameter selec-
tion strategy. Next, we discuss the advantages and caveats
of various continuous-time performance metrics and their
differences. We conclude this section with a discussion on
performance bounds of continuous-time QoE predictors.
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A. Subjective Video QoE Databases

In [18], a subjective video QoE database (denoted by D;
for brevity) was created containing 15 long video sequences
afflicted by quality fluctuations relevant to HTTP rate-
adaptive video streaming. This database consists of 8 different
video contents of 720p spatial resolution encoded at various
H.264 bitrate levels, with associated time-varying subjective
scores. Rebuffering events were studied in [74] using a dif-
ferent database (denoted by Dj), where diverse rebuffering
patterns were inserted into 24 different video contents of
various spatial resolutions. Unlike [18], this subjective QoE
database allows the study of rebuffering-related characteristics
(such as the number, locations and durations of the rebuffering
events) and their effects on time-varying and overall QoE.
A total of 174 distorted videos are part of this database.

A deficiency of these early studies is that they were not
driven by any bandwidth usage models and did not con-
tain videos containing both rebuffering events and quality
variations. In realistic streaming applications, dynamic rate
adaptations and rebuffering events occur, often in temporal
proximity depending on the client device’s resource allocation
strategy [5]-[7]. Towards bridging this gap, we built the new
LIVE-NFLX Video QoE Database [21] (D3). This database
contains about 5000 continuous and retrospective subjective
QOE scores, collected from 56 subjects on a mobile device.
It was designed based on a bandwidth usage model, by apply-
ing 8 distortion patterns on 14 spatio-temporally diverse
video contents from the Netflix catalog and other publicly
available video sources. These impairments consist of con-
stant and/or dynamic rate drops commingled with rebuffering
events.

We used these three subjective databases to extensively
study the performance of the continuous-time GN-, GR- and
GH-QoE predictors. Next, we describe the cross-validation
strategy that we used to determine the best parameter setting
for each of these prediction engines.

B. Cross-Validation Framework for Parameter Selection

We now introduce our cross-validation scheme for
continuous-time QoE prediction. Notably, the proposed recur-
rent models are highly non-linear; hence the traditional
time-series model estimation techniques used in ARMA mod-
els [14] are not possible. Further, subjective QoE prediction
is highly non-stationary; therefore the most suitable model
order may vary within a given QoE time-series or across
different test time-series. As a result, determining the best
model parameters, e.g., the input and feedback delays in the
GN-QoE model (d, and dy), the number of poles (ny) and
zeros (np) in the transfer function of a GH model, or the
number of layer delays (LD) in a GR model, must be carefully
validated (see Table III).

Here we propose a novel cross-validation framework that is
suitable for streaming video QoE predictors. This idea builds
on a simpler approach that was introduced in [17]. In data-
driven quality assessment applications, the available data is
first split into content-independent training and testing subsets,
then the training data is further split into smaller “validation”
subsets for determining the best parameters. Content indepen-
dence ensures that subjective biases towards different contents
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TABLE III

PARAMETERS USED IN OUR EXPERIMENTS. ON ALL THREE DATABASES
WE FIXEDr = 3 AND T = 5. K CAN BE ANY OF THE FOLLOWING
THREE: G, V OR RM DEPENDING ON THE SUBJECTIVE DATABASE
THAT THE PREDICTORS WERE APPLIED

Model KN KR KH
parameter dy dy H LD H np ny H
D, [10,12,14] | [10,12,14] | [5.8] | [3.4.5] | [5.8] | [10,12,14] | [10,12,14] | 10
D, [4,5,6] [4,5,6] [5.8] | [3.4.5] | [5.8] 4 4 10
Dy [8.10,15] | [8,10,15] | [5.8] | [3.4.5] | [5.8] | [8.,10,15] | [8,10,15] [ 10

is alleviated when training and testing. In the case of data-
driven continuous-time QoE predictors, it is more realistic to
split the data in terms of their distortion patterns, since the
testing network conditions (which have a direct effect on the
playout patterns) are not known a priori.

The non-deterministic nature of these time-series predic-
tions adds another layer of complexity. As an example, given
a set of QoE time-series used for training, we have found
that different initial weights produce different results for
GN- and GR-QoE Predictors; hence their performance should
be estimated across initializations. By comparison, previous
continuous-time QoE prediction models [16], [18], [19] have
used a single model order. To sum up, training a successful
continuous-time QoE predictor requires:

1) Determining the best set of parameters using cross-
validation on the available continuous-time subjective
data.

2) Ensuring content-independent train and test splits.

3) Distorted videos corresponding to the same network or
playout pattern should belong only in the train or the
test set.

4) To account for different neural network initializa-
tions, multiple iterations need to be performed on per
training set.

Based on these properties, we now discuss our cross-
validation strategy in detail. Let i = 1... N index the video
in a database containing N videos. First, randomly select the
ith video as the test time-series. To avoid content and other
learning biases, remove from the training set all videos having
similar properties as the test video, such as segments that
belong to the same video content. Depending on which subjec-
tive database is used, we applied the following steps. For D3,
we removed all videos having either the same content or the
same distortion pattern [16]. For D; and D, we removed all
videos having the same content. This process yielded a set
of N7 training QoE time-series for each test video, where
Nr =10, 129 and 91 for Dy, D> and D3 respectively.

Next, we divided the training set further into a training
subset and a validation subset. This step was repeated r times
to ensure sufficient coverage of the data splitting. We also
found that the HW component of the GH-QoE model was
sensitive to the order of the training data in a given training
set. To account for this variation, we also randomized the
order of the time-series in this second training set. Then,
we evaluated each model configuration on every validation
set in terms of root-mean-square error (RMSE), and averaged
the RMSE scores, yielding a single number per model con-
figuration. The model parameters that yielded the minimum
RMSE were selected to be the ones used during the testing
stage. When testing, we used all of the training data and the
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optimized model parameters that were selected in the cross-
validation step. To account for different weight initializations,
we repeated the training process 7 times; then averaged the
performances across initializations.

During cross-validation, we used the RMSE evaluation
metric to select the best performing model configuration.
Nevertheless, other evaluation metrics may also contribute
important information when comparing continuous-time QoE
prediction engines. In the following section, we investigate
these metrics in greater detail.

C. Evaluation Metrics

After performing the time-series predictions, it is necessary
to select suitable evaluation metrics to compare the output
p with the ground truth time g. In traditional VQA, e.g,
in [27] and in hybrid models of retrospective QoE [45], [46],
the Spearman rank order correlation coefficient (SROCC) is
used to measure monotonicity, while Pearson’s Linear Correla-
tion Coefficient (PLCC) is used to evaluate the linear accuracy
between the ground truth subjective scores and the VQA/QoE
predicted scores. These evaluation metrics have also been used
in studies of continuous-time QoE prediction [17]-[19].

Yet, it is worth asking the question: “Is there a single eval-
uation metric suitable for comparing subjective continuous-
time QoE scores?” We have found that each evaluation met-
ric has its own merits; hence they have to be considered
collectively.

We now discuss the advantages and shortcomings of the var-
ious evaluation metrics that can be used to compare a ground
truth QoE time-series ¢ = [g;] and a predicted QoE waveform
w = [w;] where i denotes the frame index. Continuous-time
subjective QOE is inherently a dynamic system with memory;
hence we have developed continuous-time autoregressive QoE
models. However, SROCC and PLCC are only valid under the
assumption that the samples from each set of measurements
were independently drawn from within each set; whereas
subjective QoE contains strong time dependencies and inherent
non-stationarities.

There are other evaluation metrics that are more suitable for
time-series comparisons, i.e.,

1) The root-mean-squared error (RMSE), which captures

the overall signal fidelity: \/(ZlN:/] (wi — g)?)/Ny,
where N is the number of frames.

2) The outage rate (OR) [18], which measures
the frequency of times when the prediction w);
falls outside twice the confidence interval of g;:

N%ZN" 1|w; — gi| > 2CI,,, where CI, is the 95%

i=1
confidence interval of the ground truth g at frame i
across all subjects.

3) The dynamic time warping (DTW) distance can also
be employed [16], [21], [68] to capture the temporal
misalignment between w and g.

Each of these metrics has shortcomings:

1) The RMSE is able to capture the scale of the predicted
output, but cannot account for the temporal structure.

2) The OR is intuitive and suitable for continuous-time
QoE monitoring, but does not give information on how
the predicted time-series behaves within the confidence
bounds.
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Fig. 6.  Vertical axis: QoE; horizontal axis: time (in samples). OR does

not describe the prediction’s behavior within the CIL. (a) OR = 5.90.
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Fig. 7. Vertical axis: QoE; horizontal axis: time (in samples). DTW better
reflects the temporal trends of the prediction error although it is harder to
interpret. (a) DTW = 2.96. (b) DTW = 19.56.
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Fig. 8. Vertical axis: QoE; horizontal axis: time (in samples). RMSE does
not effectively account for the local temporal structure of the prediction error.
(a) RMSE = 0.36. (b) RMSE = 0.33.
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3) DTW captures temporal trends, but the DTW distance is
hard to interpret, e.g., a smaller distance is always better
but a specific value is hard to interpret.

We demonstrate these deficiencies in Figs. 6, 7 and 8. Figure 6
shows that the outage rate on the left is lower; however the
predicted QoE is noisy. By contrast, while the predicted QoE
on the right has a larger OR, it is more stable and it appears
to track the subjective QoE more accurately. Figure 7 shows
that, while the DTW distance between the two time-series
predictions is very different, both predictions nicely capture
the QoE trend. Lastly, while RMSE captures the correct QoE
range, an artificially generated time-series containing a zero
value performs better than the temporal prediction but misses
all of the trends (see Fig. 8). Clearly, any single evaluation
metric is likely to be insufficiently descriptive of performance;
hence we report all three of these metrics, along with the
SROCC, to draw a clearer picture of relative performance.
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D. Continuous-Time Performance Bounds

While the previously discussed evaluation metrics can be
used to compare QoE predictors, they do not yield an absolute
ranking against the putative upper bound of human perfor-
mance. As stated in [13]: “The performance of an objective
model can be, and is expected to be, only as good as the
performance of humans in evaluating the quality of a given
video.” We measured the “null” (human) level of performance
as follows. We divided the subjective scores of each test video
into two groups of the same size, one considered as the training
set and the other as the test set. Let A; and B; be the two
sets, i.e., A; is the train set for the ith test video and B;
the corresponding test set. For a given evaluation metric,
we averaged the subjective scores in A; and B; and compared
them. To account for variations across different splits, this
process was repeated S times per test video, yielding subsets
Ajs and Bj; at each iteration s. We fixed S = 10. Then,
we computed the median value over s, yielding the median
prediction performance of the ith test video. Finally, to obtain
a single performance measure on a given database, we calcu-
lated the median value over all test videos.

VIII. EXPERIMENTAL RESULTS

In this section, we thoroughly evaluate and compare the
different approaches in terms of their qualitative and quan-
titative performance. Recall that only database D3 contains
both quality changes and playback interruptions; hence we
applied the V-predictors on Dj, the RM-predictors on D; and
the G-predictors on Dj3.

To examine statistical significance, we used the non-
parametric Wilcoxon significance test [75] using a significance
level of & = 0.05. To account for multiple comparisons,
we applied Bonferroni correction which adjusts a to -, where
m is the number of comparisons. In all of the reported
statistical test results, a value of ‘1’ indicates that the row
is statistically better than the column, while a value of ‘0’
indicates that the row is statistically worse than the column; a
value of ‘-’ indicates that the row and column are statistically
equivalent.

A. Qualitative Experiments

We begin by visually evaluating the different models on a
few videos from all three QoE databases. Figure 9 shows the
performance of the VN-QoE Predictor on video #8 of database
Dy ; the continuous time predictions of the best cross-validated
model closely follow the subjective QoE, and all individual
models yielded similar outputs. In such cases, it may be that
forecasting ensembles yield little benefit.

By contrast, Fig. 10 shows QoE prediction on video #16
of database D,. All three dynamic approaches suffered either
from under- or over-shoot. The RMR-QoE Predictor produced
some spurious forecasts. In this instance, an ensemble method
could increase the prediction reliability, but, in this example,
the RMH-QoE Predictor performed well.

The example in Fig. 11 proved challenging for both the GN-
and GR-QoE Predictors: the best cross-validated GN model
was unable to capture the subjective QoE trend, while the
GR model produced an output that did not capture the first
part of the QoE drop. These examples highlight some of the
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Fig. 9. The VN-QoE Predictor on video #8 of database Dj. Top: prediction
using the best cross-validated model; bottom: predictions from all the models.

TABLE IV

OR SIGNIFICANCE TESTING (m = 3) ON THE CLASS OF V-PREDICTORS
(WITHOUT ENSEMBLES) ON Dj USING ST-RRED

Model Type | VN | VR | VH
VN - 1 1
VR 0 - -
VH 0 - -

challenges of the problem at hand: finding the best neural
network model can be difficult. By contrast, the GH model
was able to produce a much better result. Notably, all three
dynamic approaches suffered from spurious forecasts, again
suggesting that forecasting ensembles could be of great use.

B. Quantitative Experiments - Dj

We begin our quantitative analysis by discussing the pre-
diction performances of the compared QoE prediction models
(class V-) on the LIVE HTTP Streaming Video Database (D).
We first statistically compared the VN, VR and VH predictors
in terms of OR when using ST-RRED (see Table IV). Among
the three compared dynamic approaches, the VN-QoE Predic-
tor consistently outperformed the VR and VH models. It has
been previously demonstrated [56] that the NARX architecture
is less sensitive than RNN models when learning long-term
dependencies.

In Dj, there is no rebuffering in the distorted videos
and hence it is straightforward to study the performance
between various leading VQA models: PSNR, NIQE [35],
VMAF (version 0.3.1) [32], MS-SSIM [76], SSIM [77] and
ST-RRED [33] (see Table V).

Unsurprisingly, NIQE performed the worst across all
dynamic approaches; after all, it is a no-reference frame-
based video quality metric. PSNR delivered the second worst
performance, but it does not capture any perceptual quality
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Fig. 10. Columns 1 to 3: The RMN-, RMR- and RMH-QoE Predictors applied to video #16 of database D,. First row: prediction using the best cross-validated
model; second row: predictions from all models.
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Columns 1 to 3: The GN-, GR- and GH-QoE Predictors applied on pattern #4 of database D3. First row: prediction using the best cross-validated

model; second row: predictions from all models.

MEDIAN OR PERFORMANCE FOR THE CLASS OF V-QOE PREDICTORS ON
DATABASE D (SEE ALSO TABLE XVI)

TABLE V

Model Type VN VR VH
NIQE [35] 3479 | 42.84 | 42.78
PSNR 25.07 | 36.16 | 29.51
VMAF [32] 12.38 | 24.05 | 23.04
MS-SSIM [76] | 5.73 | 17.64 | 31.82
SSIM [77] 5.46 | 17.43 | 30.69
ST-RRED [33] | 5.90 | 20.81 | 15.31

50
Sample #

information. MS-SSIM, SSIM and ST-RRED all performed
well when deployed in the VN-QOoE Predictor; but when it was
inserted into the HW model, ST-RRED delivered the best per-
formance. As shown in Table VI, the OR performance differ-
ences between VMAF 0.3.1, MS-SSIM, SSIM and ST-RRED
were not statistically significant for the VN model; but all
three of them performed significantly better than PSNR and
NIQE. It should be noted that these statistical comparisons
were performed at a very strict confidence level of = = %
(due to Bonferroni correction with m = 15), hence these
comparisons are conservative.

=0 an o F) 100 20 250 E

)
Sample #

Our results show that perceptual VQA models, when com-
bined with dynamic models that learn to conduct continuous-
time QoE prediction, do not perform equally well; hence
deploying high performance VQA models can contribute to
improved QoE prediction. Deciding upon the choice of the
VQA feature is application-dependent; yet we believe injecting
perceptual VQA models into these models is much more
beneficial than using QP or bitrate information.

We now study the efficacy of ensemble forecasting
approaches. The naming convention of the ensemble methods
is as follows: “best”: pick best (from cross-validation) model
parameters when testing, “avg”: averaging of all forecasts,
“med”: taking the median of all forecasts, “mod”: estimating
the mode, “DTW-single”: determining i, in (2), “DTW-prob”:
probabilistic weighting of forecasts in (3).

Table VII shows that NARX again performed better than
the other models across all ensemble methods. Using an
ensemble method different than the mean yielded results sim-
ilar to the mean. This suggests that the VN-QoE predictions
were stable across different initializations and configurations
(see also Fig. 9), given that more robust estimators such
as the non-parametric mode produced results similar to the
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TABLE VI

OR SIGNIFICANCE TESTING (m = 15) WHEN THE VN-QOE PREDICTOR
WAS APPLIED ON Dj ACROSS VARIOUS VQA MODELS. SIMILAR
RESULTS WERE PRODUCED BY THE OTHER EVALUATION METRICS

Model NIQE | PSNR | VMAF | MS-SSIM | SSIM | ST-RRED
NIQE - 0 0 0 0 0
PSNR 1 - 0 0 0 0
VMAF 1 1 - -
MS-SSIM 1 1 - - - -
SSIM 1 1 - - - -
ST-RRED 1 1 - - - -
TABLE VII

MEDIAN OR PERFORMANCE FOR VARIOUS TIME-SERIES ENSEMBLE
METHODS APPLIED ON THE CLASS OF V-PREDICTORS ON DATABASE
D1 USING ST-RRED (SEE ALSO TABLE X VII)

Model Type | VN VR VH
best 5.90 | 20.81 | 15.31
avg 5.25 | 15.59 | 14.69
med 525 | 9.15 | 13.99
mod 455 | 848 | 13.99

DTW-single | 5.59 | 8.81 | 15.04

DTW-prob | 5.25 | 10.51 | 14.69

mean ensemble which can be sensitive to outliers. Unlike
VN and VH, using better ensemble estimators improved the
OR performance of VR predictions by 5-10%. This may be
explained by the larger uncertainty involved in the VR pre-
dictions, which is alleviated by our forecasting ensembles.
Notably, determining the single best predictor using DTW
in (2) performed better than the predictions based on the “best”
model parameters during cross-validation. This verifies our
earlier observation: the optimal model may vary over different
data splits. The probabilistic weighting scheme in (3) deliv-
ered performance that was competitive with other ensemble
methods, such as the median. Given that this scheme is also
non-parametric and data-driven, these results are encouraging.

C. Quantitative Experiments - D>

Next, we discuss our results on LIVE Mobile Stall Video
Database-II (D;) (see Table VIII). Overall, the RMN-QoE
Predictor outperformed both the RMR and RMH-QoE Predic-
tors, by achieving an excellent outage rate. We found these
improvements to be statistically significant. Notably, using
ensemble methods greatly improved OR (by more than 10%
for both the RMR and RMH models) across all dynamic
models. Using an ensemble method other than the mean led
to a drop of OR by almost 15% in the case of the RMR-
QoE Predictor. This again demonstrates the merits of using a
forecasting ensemble for QoE prediction. Note that an outage
rate of 0 does not mean that the prediction is perfect; it only
indicates that the ensemble predictions were within two times
the confidence interval.

We also compared the performance of the proposed
continuous-time QoE predictors with a subset of the subjective
predictions as an upper bound, as described in Section VII-D.
We found that ensemble forecasts can improve on the predic-
tion performance, but that there is still room for performance
improvements (see Appendix II).

When tested on databases D; and D;, the prediction
performance of the proposed dynamic approaches was
promising; especially when the predictions were combined in
an ensemble. However, neither of these databases models both
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TABLE VIII

MEDIAN OR PERFORMANCE FOR VARIOUS TIME-SERIES ENSEMBLE
METHODS APPLIED ON THE CLASS OF RM-PREDICTORS ON DATABASE
D> (SEE ALSO TABLE XVIII)

Model Type | RMN | RMR | RMH
best 6.84 | 21.08 | 16.22
avg 0.00 | 1148 | 3.71
med 0.00 | 6.62 | 4.29
mod 0.00 | 7.60 | 4.03

DTW-single | 0.00 | 7.25 | 3.88

DTW-prob | 0.00 | 7.25 | 3.38

TABLE IX

RMSE SIGNIFICANCE TESTING (m = 3) ON THE CLASS OF G-PREDICTORS
(WITHOUT ENSEMBLES) ON D3 USING ST-RRED

Model Type | GN | GR | GH
GN - 1 0
GR 0 - 0
GH 1 1 -
TABLE X

MEDIAN RMSE PERFORMANCE FOR VARIOUS TIME-SERIES ENSEMBLE
METHODS APPLIED ON THE CLASS OF G-PREDICTORS ON DATABASE
D3 USING ST-RRED (SEE ALSO TABLE XIX)

Model Type | GN | GR | GH
best 0.28 | 0.37 | 0.22
avg 0.24 | 0.29 | 0.16
med 029 | 0.29 | 0.11
mod 0.24 | 0.28 | 0.10

DTW-single | 0.25 | 0.30 | 0.13

DTW-prob | 0.24 | 0.29 | 0.12

rebuffering events and video quality changes. In the next sub-
section, we explore the prediction performance of the studied
QoE prediction models on the more challenging database Ds.

D. Quantitative Experiments - D3

We investigated the performance of the class of G-predictors
applied to the more complex problem of QoE prediction when
both rate drops and rebuffering occur by using database Ds.
Due to rebuffering, computing VQA models is not possible
without first removing the stalled frames from each distorted
video. Using the publicly available metadata [78], we iden-
tified stalled frames and removed them from the distorted
YUYV video, then calculated the VQA feature, e.g. ST-RRED,
on the luminance channels of the distorted and reference
videos. As shown in see Table IX, the GH-QoE Predictor
performed statistically better than the GN-QoE Predictor,
while the GR-QoE Predictor lagged in performance. It is
likely that more hidden neurons would enable the GN and
GR models to perform better.

We also investigated the performance improvements of
forecasting ensembles (see Table X). Overall, all forecasting
ensembles greatly improved the performance of all dynamic
models.

As with D;, we also compared the performance of these
QoE predictors with their upper bound (see Appendix II).
Interestingly, we found that the ensemble predictions some-
times delivered better performance than the subjective upper
bound; an observation that we revisit in Appendix II.
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TABLE XI

OR COMPARISON BETWEEN DIFFERENT ACTIVATION FUNCTIONS WHEN
TRAINING THE NARX COMPONENT ON D1 (VN) AND ON D> (RMN).
RowSs AND COLUMNS CORRESPOND TO THE ACTIVATION
FUNCTION USED IN THE HIDDEN AND THE OUTPUT
LAYER RESPECTIVELY

Database Dy (VN) D> (RMN)
Activation | tansig | logsig | purelin | tansig | logsig | purelin
tansig 10.38 | 20.28 5.90 10.59 | 31.38 7.68
logsig 8.97 | 22.55 5.10 10.34 | 33.26 7.92
purelin 9.28 | 31.28 | 11.10 | 26.04 | 50.55 5.48
TABLE XII

COMPARISON BETWEEN DIFFERENT TRAINING ALGORITHMS USING THE
NARX COMPONENT ON DATABASES D (VN) AND D; (RMN).
THE NUMBER OF ITERATIONS WAS SET TO 1000

Database Dy Dy

Metric RMSE | OR | DTW | SROCC | RMSE | OR | DTW | SROCC
trainlm 4.00 5.72 | 15.39 091 4.43 7.47 4.15 0.93
trainbfg 3.90 4.86 | 14.73 0.90 6.33 17.53 | 6.65 0.81
trainrp 4.26 7.79 | 17.59 0.89 9.21 29.25 | 9.96 0.71
trainscg 4.20 6.04 | 16.53 0.89 6.59 | 21.09 | 7.21 0.79
traincgb 4.01 535 | 1593 0.89 6.14 18.36 | 6.34 0.82
traincgf 4.27 6.86 | 16.54 0.88 6.11 18.57 | 6.59 0.82
traincgp 4.07 5.83 | 1559 0.89 6.46 | 21.09 | 6.57 0.80
trainoss 4.49 6.97 | 18.14 0.87 7.19 | 2427 | 7.30 0.80
traingdx 6.33 17.72 | 22.26 0.80 11.87 | 38.49 | 10.04 0.66

IX. CONCLUSIONS AND FUTURE WORK

In this work, we designed simple, yet efficient continuous-
time streaming video QoE predictors by feeding QoE-aware
inputs such as VQA measurements, rebuffering and memory
information into dynamic neural networks. We explored three
different dynamic model approaches: non-linear autoregres-
sive models, recurrent neural networks and a block-based
Hammerstein-Wiener model. To reduce forecasting errors,
we also proposed ensemble forecasting approaches and evalu-
ated our algorithms on three subjective video QoE databases.
‘We hope that this work will be useful to video QoE researchers
as they address the challenging aspects of continuous-time
video QoE monitoring.

We now ask a more fundamental question: moving forward,
which design aspect of these predictors is most important? Is it
the choice of the dynamic model e.g. HW vs. NARX or select-
ing more sophisticated continuous-time features? The results
in Tables VI and XIII, X VI (see Appendix II) demonstrate that
a better VQA model (e.g. ST-RRED vs. MS-SSIM) or adding
more rebuffering-related continuous-time inputs may not
always yield statistically significant performance improve-
ments. Tables V, VII, VIII, IX (and Tables XVII, XVIII
and XIX in Appendix II) demonstrate that, among the three
dynamic models, the RNN were consistently poorly perform-
ing while the performance differences between the NARX
and HW components were not conclusive: on Dy and D;
the NARX-based predictors were better than HW, while for
D3 the HW component improved upon NARX. Meanwhile,
using ensemble prediction methods yielded performance
improvements in most cases by producing reliable and more
robust forecasts. However, these improvements may not be
significant if the individual forecasts are similar to each other.

In our preliminary experiments, we also discovered that
when our proposed QoE prediction engines were trained on
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TABLE XIII

MEDIAN PERFORMANCE FOR VARIOUS CONTINUOUS-TIME FEATURE
SETS ON Dy WHEN USING THE NARX LEARNER. NOTE THAT USING
FEATURES R; + R, DEFINES THE RN-QOE PREDICTOR WHILE
R1 + Ry + M GIVES THE RMN-QOE PREDICTOR

Model NARX
Features/Metric | RMSE | OR | DTW | SROCC

Ry 4.65 9.03 4.00 0.94
Ry 838 | 31.15| 7.29 0.82
M 6.74 | 23.12 | 6.39 0.82
Ri1+Ry 441 8.14 | 4.02 0.95
Ri+M 4.86 12.12 | 4.26 0.92
Ro+M 6.41 21.53 | 6.17 0.84
Ryi+Ro+M 4.49 6.84 | 4.08 0.93

one publicly available database, then tested on another, they
delivered poor performance likely due to their different design,
e.g., only D3 studies both rebuffering events and quality
changes. This highlights an issue that is at the core of data-
driven, continuous-time QoE prediction: lack of publicly-
available and diverse subjective data. Existing databases,
including D3, are limited in that they do not sufficiently cover
the large space of adaptation strategies, where time-varying
quality, network conditions and buffer capacity are all tied
together. Therefore, without large and more diverse subjec-
tive databases, introducing more sophisticated continuous-time
inputs or deploying more complex neural networks will yield
relatively small performance gains. We have recently launched
a large subjective experiment to collect an adequate amount
of such data, which will allow us to leverage even more
sophisticated learning techniques as in [79] and potentially
incorporate other inputs, such as quality switching. In the
future, we envision building predictive models that exploit
realistic network information extracted from the client side,
i.e., developing databases and prediction models based on
realistic network traces and bandwidth availability patterns.
Ultimately, we seek to deploy methods that can perceptually
optimize bitrate allocation and/or network and bandwidth
usage, and that can be readily deployed in large streaming
architectures.

APPENDIX I
IMPLEMENTATION DETAILS
The design of continuous-time QOoE predictors often
involves deciding upon a number of architecture-specific
settings, including an imputation strategy, the activation func-
tion and the training algorithm. Next, we discuss these aspects
and conclude with a note on computational complexity.

A. Inputs of Different Length

An important consideration when implementing the pro-
posed model is accounting for different input durations. For
example, while video quality predictions are computed on all
frames of normal playback [16], the R; input (in the presence
of rebuffering events) will have longer durations. While it is
possible to train and evaluate the GN and GR QoE Prediction
models without imputing missing VQA response values during
rebuffering events, we found it useful to develop an imputation
scheme that defines same-sized inputs for each test video.
In previous studies, playback interruption has been found to
be at least as annoying as very low bitrate distortions [21];
hence we selected imputed VQA values corresponding to very
low video quality. Imputing with zeros is not a good idea;
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TABLE XIV

MEDIAN PERFORMANCE FOR VARIOUS TIME-SERIES ENSEMBLE METHODS APPLIED ON THE CLASS OF RM-PREDICTORS ON DATABASE Dj - DIRECT
COMPARISON WITH HUMAN PERFORMANCE (“REF” ROW)

Model Type RMN RMR RMH
Model/Metric | RMSE | OR | DTW | SROCC | RMSE | OR | DTW | SROCC | RMSE | OR | DTW | SROCC
best 490 | 2.14 | 475 0.91 6.46 | 7.10 | 6.38 0.87 6.03 | 7.76 | 9.76 0.75
avg 434 | 0.00 | 3.85 0.95 574 | 2.13 | 455 0.93 4.61 133 | 5.85 0.87
med 446 | 0.00 | 3.71 0.94 5.56 | 1.08 | 3.86 0.95 439 | 1.35| 6.23 0.86
mod 433 | 000 | 3.79 0.94 5.48 1.05 | 3.94 0.94 4.41 1.33 | 6.37 0.85
DTW-single 4.55 | 0.00 | 4.02 0.94 5.62 | 1.33 | 4.00 0.94 452 | 1.13 | 17.61 0.84
DTW-prob 440 | 0.00 | 3.78 0.95 562 | 1.18 | 3.96 0.95 4.57 1.16 | 5.72 0.87
ref 391 | 0.00 | 4.60 0.93 391 | 0.00 | 4.60 0.93 391 | 0.00 | 4.60 0.93
TABLE XV

MEDIAN PERFORMANCE FOR VARIOUS TIME-SERIES ENSEMBLE METHODS APPLIED ON THE CLASS OF G-PREDICTORS ON D3 USING ST-RRED -
DIRECT COMPARISON WITH HUMAN SCORES (“REF” ROW)

Model Type GN GR GH
Model/Metric | RMSE | OR | DTW | SROCC | RMSE | OR | DTW | SROCC | RMSE | OR | DTW | SROCC
best 029 | 548 | 28.39 0.78 0.38 | 9.65 | 29.52 0.69 0.24 | 2.37 | 25.56 0.76
avg 0.26 | 0.00 | 23.08 0.86 0.39 | 3.30 | 21.63 0.79 0.19 | 0.00 | 10.19 0.87
med 0.25 | 0.00 | 22.52 0.86 030 | 2.21 | 19.35 0.80 0.15 | 0.00 | 9.16 0.88
mod 0.25 | 0.00 | 22.03 0.85 030 | 2.17 | 19.94 0.80 0.14 ] 0.00 | 9.28 0.89
DTW-single 0.26 | 0.00 | 19.99 0.86 0.31 | 3.10 | 21.09 0.80 0.16 | 0.00 | 13.82 0.85
DTW-prob 0.25 | 0.00 | 21.48 0.86 030 | 2.32 | 19.17 0.81 0.16 | 0.00 | 9.46 0.89
ref 0.20 | 0.00 | 10.71 0.90 0.20 | 0.00 | 10.71 0.90 0.20 | 0.00 | 10.71 0.90

some video quality models never approach such low values
while others (such as ST-RRED) correspond lower values to
better video quality. For simplicity, we picked the min (or the
max) value of the video quality prediction corresponding to
the worst quality level encountered over the entire video as
the nominal VQA input value during playback interruptions.
To recognize causality, we could also pick the min (or max)
VQA values up until the rebuffering event occurs; we found
that this did not greatly affect the final results. This imputing
step is required only on the LIVE-NFLX dataset.

B. Activation Function

We experimented with various activation functions: logistic
sigmoid (logsig), hyperbolic tangent sigmoid (tansig) and
linear (purelin) and we also tried various combinations of them
in the hidden and output layers. We carried out ten experiments
and computed the median OR on Dj and D». For D1, we used
d, = 10, dy = 10, a single hidden layer with 8 neurons
and ST-RRED as the VQA model. For D>, we used d, = 6,
dy = 6, a single hidden layer with 8 neurons and the features
R, Ry and M. As shown in Table XI, using tansig for the
hidden layer and purelin for the output layer proved to be good
choices (in terms of OR) for this task on both databases. Other
evaluation metrics produced similar results.

C. Training Algorithm

We compared the default Levenberg-Marquardt algorithm
against other training algorithms [62]. Table XII shows that
using the Levenberg-Marquardt (trainlm) performed very close
to the best performing method on D; (trainbfg) and was
significantly better on D,. This suggests that the use of a
general training algorithm such as Levenberg-Marquardt is
sufficient for QoE prediction.

D. Computational Complexity

The proposed continuous-time QoE predictors require cal-
culating perceptual VQA models, training and testing the
neural network. Therefore, besides calculating the VQA fea-
ture, these neural networks can be trained offline and take

up only a small computational overhead. To demonstrate this,
we fixed the NARX architecture to d, = 10 and d, =
10 lags, H = 8 hidden nodes and a single hidden layer,
then calculated the compute time for SSIM, for training and
for testing the GN-QoE predictor on all 112 videos in D3
(see Table XIV). All of the timing experiments were carried
out on a 16.04 Ubuntu LTS Intel i7-4790@3.60 GHz system.
Both the NARX and SSIM implementations used unoptimized
Matlab code.

We found that calculating SSIM and training the neural
network take up considerably more time (291 sec. and 5 sec.
respectively) than testing it (0.04 sec.). Notably, calculating
SSIM takes much more time than training, since we deployed
relatively simple neural networks. For adaptive streaming
applications, where the reference video and its compressed
versions are readily available, the VQA measurements and
the neural network training can be carried out in an offline
fashion. Trained model values and associated VQA values
can be sent to the client as part of the metadata and then
the client side can perform such QoE predictions in real-time.
Compared to simply calculating the VQA values, the only
(online) computational overhead of the proposed predictors
is the testing step, which is relatively fast. If the client side
has low computational power, these operations could also be
carried out by proxy “QoE-aware” servers.

The GN-QoE predictor uses ST-RRED as its VQA feature
which, compared to SSIM, is a significantly better-performing
VQA model [54], but its computational overhead may limit
its potential in some practical applications. However, efficient
approximations to ST-RRED that are implemented in the
spatial domain are available [80].

APPENDIX II
ADDITIONAL EXPERIMENTAL ANALYSIS

In this section, we study in greater detail continuous-time
performance bounds, the effects of using different rebuffering-
related inputs for Dy and provide more detailed results
in Tables XVI, XVII and XIX.



BAMPIS et al.:

Subjective scores, D;, SROCC: 0.80

NARKX predictions, Dy, SROCC: 0.77

Current chunk average

Current chunk average

RECURRENT AND DYNAMIC MODELS FOR PREDICTING STREAMING VIDEO QoE

3329

Subjective scores, D3, SROCC: 0.90

NARX predictions, D3, SROCC: 0.91

2 oo
o
00D
@

Current chunk average
Current chunk average

40 50 60
Previous chunk average

70 as 40 45 50 55

Previous chunk average

60

45 1 05 0o 05 1

Previous chunk average

2 o 1 2 3

K
Previous chunk average

Fig. 12. Relationship between current and previous subjective and objective scores on Dy and D3. The objective predictions are able to capture the effects

of recency.

TABLE XVI
MEDIAN PERFORMANCE FOR THE CLASS OF V-QOE PREDICTORS ON D1

Model Type

VN

VR

VH

TABLE XVIII

MEDIAN PERFORMANCE FOR VARIOUS ENSEMBLE METHODS APPLIED ON
THE CLASS OF RM-PREDICTORS ON D>

c Model Type RMN RMR RMH
Model/Metric | RMSE OR DTW | SROCC | RMSE OR DTW | SROCC | RMSE OR DTW | SROCC - — — =
NIQE (351 | 861 | 3479 | 972 | 034 | 071 | 4284 | 943 055 | 895 | 4278 | 5586 | 027 Model/Mewic | RMSE | OR | DTW | SROCC | RMSE | OR | DTW | SROCC | RMSE | OR | DTW | SROCC
PSNR 676 | 2507 | 2437 | 072 | 810 | 36.16 | 3555 | 056 | 7.19 | 2951 | 3749 | 067 best 449 | 6841 408 | 093 | 633 | 2108 | 574 | 089 | 566 |1622] 904 | 075
VMAF [32] | 4.95 | 1238 | 17.80 | 089 | 642 | 2405 | 2786 | 073 | 644 | 2305 | 2742 | 03I avg 401 1000 299 | 097 [ 559 | 1148 383 | 095 | 420 | 371 | 543 | 088
MS-SSIM [76] | 407 | 5.73 | 1589 | 091 | 579 | 1764 | 2367 | 073 | 750 | 3182 | 4486 | 059 med 388 1000 293 | 097 | 538 | 662 [ 319 | 0% | 379 | 429 | 573 | 087
SSIM [77] | 402 | 545 | 1422 | 090 | 607 | 1743 | 24.13 | 074 | 732 | 3069 | 4178 | 0.7 mod 393 1000 ] 303 | 096 | 534 | 760 | 323 | 096 | 388 | 403 | 565 | 0.86
ST-RRED [33] | 425 | 590 | 1521 | 090 | 698 | 2081 | 2702 | 071 | 540 | 1531 | 2709 | 087 DIWesingle | 415 | 0.00 ] 303 | 097 | 539 | 7.25 | 336 | 095 | 399 | 388 | 684 | 086
DTW-prob | 391 [ 000 | 296 | 097 | 5335 | 725 | 331 | 096 | 405 | 338 | 5.10 | 088
TABLE XVII TABLE XIX

MEDIAN PERFORMANCE FOR VARIOUS ENSEMBLE METHODS APPLIED ON

THE CLASS OF V-PREDICTORS ON D USING ST-RRED

Model Type VN VR VH
Model/Metric | RMSE | OR | DTW | SROCC | RMSE | OR | DTW | SROCC | RMSE | OR | DTW | SROCC
best 425 [5.90 | 1521 | 090 | 698 | 2081 | 2722 | 041 540 | 1531 [ 27.09 | 0.87
avg 364 | 5.24 [ 1411 ] 091 299 | 1559 | 17.64 | 085 | 486 | 14.69 | 1672 | 0.90
med 369 |5.24 | 1401 | 091 423 | 905 [ 1631 | 090 | 485 | 13.99 | 1646 | 0.90
mod 376 | 4.55 | 1426 | 091 217 | 847 | 1622 | 090 | 482 | 13.99 | 2092 | 090
DTW-single | 392 | 559 | 1401 | 090 | 424 | 881 | 17.06 | 090 | 5.02 | 1504 | 1852 | 0.89
DTW-prob_| 3.67 | 5.25 | 1411 | 091 220 | 1051 | 1635 | 089 | 484 | 14.69 | 1672 | 0.90

A. Details on Continuous-Time Performance Bounds

Following the steps described in Section VII-D, we com-
pared the best performing combination (RMN-QoE Predic-
tor) against an upper bound, i.e., human performance, using
S = 10 shuffles. Table XIII shows that the RMN-QoE Predic-
tor outperformed both the RMR- and RMH-QoE Predictors,
and its performance in terms of RMSE came close to the
reference human performance. We found this difference to
be statistically significant; hence there is some room for
improvement. However, the performance in terms of OR was
very good when any of the ensemble methods was considered.
Surprisingly, the DTW and SROCC performances were not
always inferior to human scores, and sometimes these differ-
ences were statistically significant.

Comparing the objective prediction scores between
Tables XVIII and XIII, we discovered that, when using only
a subset of the subjective scores as ground truth, the perfor-
mance of the objective prediction models was reduced. This
may be explained by the fact that subjects do not always
agree with each other; hence using all of the subjective scores
reduces both the objective and subjective uncertainty.

As in Dy, we also report the results compared against human
performance in Table XIV for D3. We drew similar observa-
tions as in Table XIII: the objective predictions tend to get
worse while human performance usually upper bounds model
performance. It is intriguing that combining the different
GH-QoE forecasts delivered RMSE scores better than human
performance - a difference which we found to be statistically
significant. When objective prediction models are trained
on subjective data, human performance should generally be
superior to or at least statistically equivalent to objective

MEDIAN PERFORMANCE FOR VARIOUS ENSEMBLE METHODS APPLIED ON

THE CLASS OF G-PREDICTORS ON D3 USING ST-RRED

Model Type GN GR GH
Model/Metric | RMSE | OR | DTW | SROCC | RMSE [ OR | DTW [ SROCC | RMSE [ OR | DTW | SROCC
best 028 | 1631 | 26.53 | 081 037 | 2255 2858 | 072 | 022 | 619 | 2545 | 0.7
avg 024 | 831 | 1982 | 088 | 029 | 1487 | 20.11 | 081 0.15 | 033 | 808 | 090
med 024 | 6.66 | 21.65 | 089 | 029 | 1390 | 1847 | 0.82 | 0.1 | 000 | 743 | 091
mod 024 | 392 [ 2060 | 0.88 | 028 | 1390 | 1923 | 08I 0.10 | 0.00 | 698 | 091
DTW-single | 025 | 6.02 | 1975 | 089 | 030 | 1477 | 21.28 | 082 | 0.3 | 0.00 | 1225 | 087
DTW-prob | 024 | 654 | 2000 | 089 | 029 | 1431 | 1890 | 082 | 0.12 | 0.00 | 745 | 091

predictions. However, this upper bound may be violated when
we consider post-processed forecasting ensembles: human
performance is the upper bound only on time-series predictions
generated by an individual model. Our observation may be
explained by the design of these two QoE databases. Database
D»> includes only rebuffering events, while D3 involves a
mixture of rebuffering and compression; a task that is even
more challenging for human subjects. Therefore, the difficulty
of the tasks may increase subjective uncertainty per test video;
an uncertainty for which simple averaging of the continuous
scores across subjects may not always be the best method
of aggregating them. This reinforces our growing belief that
simply averaging continuous QoE responses disregards the
inherent non-linearities in these responses [21].

B. Rebuffering-Related Inputs

It has been shown [17] that combinations of VQA inputs
(e.g. ST-RRED combined with SSIM) can deliver improved
results. Here we investigate the effects of using different
combinations of rebuffering-related inputs. We selected NARX
as the dynamic model, and performed QoE predictions using
a number of inputs ranging from one to three, as shown
in Table XV. We also used the parameters from Table III.
Notably, we found that only using the R; input contributed
significantly greater prediction power than R, and M; it is
capable of effectively capturing rebuffering effects and is
suitable for being used alone in the GN-, GR- and GH-
prediction models. Combining all three inputs improved the
OR by only 2%. This suggests that R; is an efficient descriptor
of the effects of rebuffering events on QoE.
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C. Additional Tables

In this section we include the earlier described Tables X VI,
XVII, XVIII and XIX.

D. Modeling Recency

To conclude this Appendix, we now show that the NARX-
driven GN-QoE predictor is indeed able to capture recency
effects in subjective QoE. To do so, we collected the GN-QoE
predictions from D, and D3, then performed a moving
average operation, i.e., we averaged the predictions (and the
subjective ground truths) at evenly-spaced moments sepa-
rated by 10 and 5 seconds on Dy and D3 respectively, using
corresponding sliding window sizes of 5 and 2.5 seconds
respectively. Figure 12 shows that both the subjective and
objective scores are very strongly correlated with preceding
time averages, indicating that the objective GN-QoE predic-
tions are indeed able to capture the effects of recency in
subjective QoE.
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