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Abstract— HTTP adaptive streaming is being increasingly
deployed by network content providers, such as Netflix and
YouTube. By dividing video content into data chunks encoded
at different bitrates, a client is able to request the appropriate
bitrate for the segment to be played next based on the estimated
network conditions. However, this can introduce a number of
impairments, including compression artifacts and rebuffering
events, which can severely impact an end-user’s quality of
experience (QoE). We have recently created a new video quality
database, which simulates a typical video streaming application,
using long video sequences and interesting Netflix content.
Going beyond previous efforts, the new database contains highly
diverse and contemporary content, and it includes the subjective
opinions of a sizable number of human subjects regarding the
effects on QoE of both rebuffering and compression distortions.
We observed that rebuffering is always obvious and unpleasant
to subjects, while bitrate changes may be less obvious due
to content-related dependencies. Transient bitrate drops were
preferable over rebuffering only on low complexity video
content, while consistently low bitrates were poorly tolerated.
We evaluated different objective video quality assessment
algorithms on our database and found that objective video
quality models are unreliable for QoE prediction on videos
suffering from both rebuffering events and bitrate changes. This
implies the need for more general QoE models that take into
account objective quality models, rebuffering-aware information,
and memory. The publicly available video content as well as
metadata for all of the videos in the new database can be found at
http://live.ece.utexas.edu/research/LIVE_NFLXStudy/nflx_index.
html.

Index Terms— Subjective quality of experience, video quality
assessment, video streaming.

I. INTRODUCTION

GLOBAL mobile data traffic grew 74% and mobile video
traffic accounted for 55 percent of total mobile data

traffic in 2015 [1]. According to the Cisco Visual Networking
Index and global mobile data traffic forecast, mobile data
traffic will grow 8-fold from 2015 to 2020, which constitutes
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a compound annual growth rate of 53%. Adding to the
delivery over fixed networks, this large and growing volume of
mobile video data, video streaming providers such as Netflix,
Youtube and Hulu are processing, storing and delivering vast
amounts of video data on a daily basis. Given the exploding
use of mobile video devices and the tremendous network
bandwidth demands of streaming users, the biggest challenge
in video content delivery is to create better network-aware
strategies to improve end-users’ quality of experience (QoE).
In this direction, HTTP Adaptive Streaming (HAS) is being
used by content providers as a way of dealing with network
fluctuations.

The core idea of HAS is that every video content is divided
into chunks that are each encoded using a different set of
parameters. The client side then decides which bitrate to
use for the chunk to be played next, given a set of critical
parameters, such as the estimated network conditions over
the next few seconds, buffer size [2], etc. Given that HAS
uses TCP as the transfer protocol, video impairments such
as missing frames or portions of frames, due to error-prone
wireless networks and packet loss are eliminated. However,
when the available bandwidth is low and the client buffer
is empty, start-up delays and rebuffering events may occur.
This approach leads to impairments including frozen video
frames - the result of a rebuffering event - and/or highly
visible compression artifacts. Given that the end goal of every
content provider is to maximize the end-user’s QoE while
mediating parameters to accommodate network changes and
changing bandwidth, subjective modelling of streaming video
QoE becomes an important objective.

Subjective testing is an established way of measuring
QoE under different scenarios and settings. Many successful
studies have been developed using short video sequences
of 10-15 seconds (or even less) as in [3]–[6]. However, these
studies do not reflect typical video streaming situations, where
subjects view videos that could be minutes long. Hence, it is
not possible to analyze long-term memory effects as they relate
to critical factors affecting subjective QoE such as the recency
effect [7].

Longer video sequences were considered in [8], where
video delivery over HAS was simulated on tablet devices. The
authors studied combinations of bitrate changes and rebuffer-
ing events, but their analysis was limited to 6 sequences,
3 playout scenarios and 26 subjects. Longer video sequences
were also used in [9], using video contents ranging from
30 to 60 sec. The authors studied the effect of rebuffering
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events as a function of location and density in a video
sequence. However, temporal ratings were not collected, hence
their analysis was based only on a final summary rating
(retrospective score). As we will show later, retrospective
ratings tend to be affected by recency biases. The study
of temporal pooling techniques in [10] also included longer
video sequences, and concluded that current temporal pooling
strategies are mostly effective on short videos. On the long
videos they used, simple mean pooling was found to be
superior to all other methods. However, they only used two
video contents in their analysis.

In all previous studies, playout patterns were chosen without
considering the role of bandwidth usage. Generally, subject
rejection strategies have been based only on retrospective
scores or conducted on a per frame basis. We argue that
such methodologies are inappropriate when gathering tempo-
ral scores, particularly when studying the complex temporal
effects that affect subjective QoE.

To sum up, previous efforts suffer from at least one of the
following:

1) a small number of contents, playout patterns or number
of subjects

2) a lack of practical network or buffer constraints on the
subjective test design

3) use of short video sequences that do not capture long
term temporal effects

4) not including both temporal and retrospective QoE
scores

5) not deploying temporal subject rejection methods
Here, we describe a set of experiments that we conducted

to gather data that will help us develop tools to create
perceptually optimized network allocation protocols. We con-
ducted experiments to measure subjective QoE in a typical
mobile video streaming setting, where the human subjects
were exposed to diverse real-world content, realistic network
conditions and client-based strategies, while viewing video
sequences of durations of at least one minute, displayed on
a small mobile screen at low bitrates.

The outcome of these experiments is the new LIVE-Netflix
mobile VQA database, which consists of 112 distorted videos
evaluated by over 55 human subjects on a mobile device. The
distorted videos were generated from 14 video contents of
spatial resolution 1080p at 24, 25 and 30 fps by imposing
a set of 8 different playout patterns including: dynamically
changing H.264 compression rates, rebuffering events and
mixtures of both. While more recent compression standards
such as H.265/HEVC and VP9 are currently being developed,
H.264 is currently the most widely used format. Further,
while H.265 achieves higher efficiency than H.264 does,
it is not conceptually different from H.264: it uses the same
motion-compensated/transform/lossless entropy coding hybrid
model and essentially the same coding tools. Therefore,
coding artifacts are perceptually similar among these two
codecs; we thus expect the results of this study to apply to
H.265-based streaming, with appropriately lowered encoding
bitrates.

The database contains 11 different types of content provided
by Netflix (drama, action, comedy, anime etc.) and 3 publicly

Fig. 1. Network impairment simulation using H.264 compression (left) and
rebuffering events (right). The red box indicates a compression artifact.

available video contents from the Consumer Digital Video
Library (CDVL) [11]. To provide a more realistic viewing
experience, the audio track was included and played without
distortion when the subjects viewed each sequence. Figure 1
shows an example of the type of impairments introduced on
the videos in the LIVE-Netflix Dataset.

Given the lack of available subjective datasets driven by
practical network constraints or streaming client strategies,
our goal was to design a dataset of significant practical
value. Hence, we designed the LIVE-Netflix dataset based
on playout scenarios that are common when streaming under
practical bandwidth constraints and buffer size limitations.
We also gathered both continuous and retrospective QoE
scores towards achieving a more complete understanding of
how humans combine different aspects of temporal perception
into a single, overall impression of QoE. We believe that
this work offers the possibility to bring human behavior
modeling in this context closer to traditional video quality
assessment (VQA) research. To both demonstrate the value of
the database, as well to provide an engineering comparison
of practical worth, we evaluated various state-of-the-art VQA
algorithms and temporal pooling strategies on the new data-
base. We also extensively studied temporal effects on subject
QoE by analyzing the collective and per video impairment
behavior of the subjects.

Our analysis led us to draw various observations. First,
we observed that rebuffering severely affected subject QoE
regardless of the content. Therefore, subjects tended to prefer
transient bitrate drops over rebuffering on low complexity
contents, even when the selected bitrate was low. However,
a constant low bitrate - to avoid rebuffering - was not tolerated
by subjects. Finally, the gathered subjective data strongly
manifested known QoE phenomena such as the recency
effect (more recent video segments have a disproportionate
effect on perceived visual quality) and the non-linearity of
human responses, but it also challenges the use of retrospective
scores or global subject rejection methodologies for QoE
assessment on long videos.

The rest of this paper is organized as follows. Section II
describes the dataset design, the encoding pipeline and the
source contents used. Section III presents the subjective testing
methodology, and Section IV discusses the processing of
subjective scores and the proposed subject rejection method.
Sections V and VI analyze the collected retrospective and
continuous QoE scores, while Section VII explores the cogni-
tive aspects of subjective QoE in light of the collected human
data. Section VIII analyzes the performance of various VQA
algorithms and Section IX gives conclusions.
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Fig. 2. Available bandwidth model used in the LIVE-Netflix dataset. All of
the test sequences were designed to consume the same amount of network
resources (bandwidth).

II. SUBJECTIVE ASSESSMENT OF

MOBILE VIDEO QUALITY

A. Network Assumptions and Buffer Limitations

When designing resource allocation strategies, content
providers seek to answer the question: given a fixed amount
of network resources, which strategy delivers the highest
possible QoE? We consider here the tradeoffs that occur on
end-users’ QoE when mediating between rebuffering events
and bitrate reduction under a mobile low bitrate regime. To do
so, we designed a set of realistic playout patterns, assuming the
same network resources and same buffer limitations. To simu-
late realistic network conditions, we used a channel with time-
varying capacity, shown in Fig. 2. The available bandwidth
starts at 250 kbps, followed by a temporary bandwidth drop to
100 kbps of duration d = 22.2167 seconds until the bandwidth
recovers to its previous 250 kbps value. This simple example
of a bandwidth drop can be used as a building block to
simulate models of more complex network conditions. Using
this available bandwidth model, we derived eight test patterns
based on the premise that the average playout rate of the client
side cannot exceed that of the average bandwidth. The only
exception to this rule is when the client uses some of the
available buffer. Next, we discuss the buffer usage aspects of
the designed patterns.

To ensure the practical worth of the derived sequences,
it is necessary to take into account the available buffer size.
As shown in [2], a buffer-based strategy can be a simple and
useful way to reduce the number of rebuffering events and
bitrate switches that occur. Clearly, there are three possibilities:
1. The (instantaneous) playout rate is smaller than the (instan-
taneous) available bandwidth; the buffer is being filled with
more data.
2. The playout rate is larger than the available bandwidth; the
buffer is being emptied.
3. The playout rate is equal to the available bandwidth; the
buffer state does not change over time.

Given our network assumption, we also considered a
specific initial buffer state for streaming, where the buffer
of size B0 was filled with video chunks encoded at
250 kbps. We further assumed two possible initial buffer states:
B0 = 1333 kbits or B0 = 0 kbit. The former scenario

corresponds to “steady state” streaming where the initial buffer
is filled, while the latter assumes that there is no initial buffer
available. All patterns were designed so that the buffer is
emptied at the end of the bandwidth drop shown in Fig. 2.

B. Playout Patterns

Based on the aforementioned network scenario and pos-
sible values for B0, we simulated the following client
approaches (see also Fig. 3 for an overview):

0) A constant encoding bitrate of 500 kbps. This playout
pattern assumes an impairment-free network condition
where the bandwidth is sufficient to allow such a playout
rate by the client. In this case, the buffer is not used at
all. This pattern is the only one that does not satisfy the
bandwidth and buffer constraints. Although we included
this pattern among the viewed playout patterns, it did not
serve as a “hidden reference” [3].

1) One video chunk encoded at 250 kbps followed by
an 8 sec. stall, followed by another 250 kbps chunk
(see Fig. 4). The client drains the buffer completely
before the rebuffering event occurs. Before the avail-
able bandwidth recovers, the client decides to resume
playback after the 8 second rebuffer. By the end of the
pattern, the buffer is emptied.

2) A single video chunk of R2 = 160 kbps. The client side
is very conservative throughout the video playback by
always picking a playout rate of R2, so that there is no
rebuffering and the available buffer is depleted.

3) One video chunk encoded at 195 kbps, followed by
a 4 sec. stall, followed by another 195 kbps chunk.
Here, the client strategy is to reduce the rebuffering
duration by half (4 sec.), by using a lower encod-
ing bitrate. As before, during the rebuffering event,
the client has a zero playout rate but an encoding
bitrate of 100 kbps (equal to the available bandwidth)
which allows the buffer level to partially recover and
then be used to stream at 195 kbps before bandwidth
recovers (see also Fig. 4).

4) One video chunk encoded at 250 kbps followed by a
66 kbps chunk, followed by another 250 kbps chunk.
This playout pattern is an alternative to pattern #1,
where the client tries to avoid any rebuffering events
by switching to a lower playout rate (66 kbps) than the
available bandwidth (100 kbps) during the bandwidth
drop.

By removing the assumption on the availability of the buffer
on the client side (B0 = 0), a second set of playout patterns
can also be simulated. This set of patterns is likely to deliver
lower QoE scores to subjects since more severe impairments
have to be introduced to deal with the bandwidth drop.

5) One video chunk at 250 kbps, followed by a 6.66 sec.
rebuffering event, followed by a chunk at 250 kbps, fol-
lowed by another 6.66 sec. rebuffering event, followed
by the last 250 kbps chunk. In pattern #5, the unavail-
ability of the buffer leads to rebuffering. By filling some
of the buffer, the client is able to play out for a small
interval of time at 250 kbps until the buffer is depleted.
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Fig. 3. Playout patterns used in the subjective study. First row: patterns #0 until #3, second row: patterns #4 until #7. The horizontal axis corresponds to
frame indices while the vertical corresponds to the instantaneous playout bitrate in kbps.

Fig. 4. Left: Blue denotes the playout pattern #3 while red denotes
the available bandwidth. The green areas correspond to buffer consumption
while the yellow area indicates the buffer build-up. B0 corresponds to the
available buffer at the beginning of the bandwidth drop, while B’ corresponds
to the amount of buffered data being filled, then consumed by the client.
Right: Available buffer level over time for playout pattern #3, [t1 t2]: buffer
drainage, [t2 t3]: buffer build-up, [t3 t4]: buffer drainage.

This leads to the rebuffering event, which is followed
by a recovery at 250 kbps playout over a small time
interval until the bandwidth also recovers.

6) One video chunk at 250 kbps, followed by a 8.33 sec.
rebuffering event, followed by a chunk at 160 kbps, then
a final video chunk at 250 kbps. Here, the client seeks
to avoid a second rebuffering event by a gradual bitrate
recovery.

7) One video chunk at 250 kbps is followed by a chunk at
100 kbps and then another chunk encoded at 250 kbps.
Here it is assumed that the client is immediately able to
adjust to the network conditions by using a playout rate
that is always equal to the available bandwidth/encoding
bitrate. This pattern may be the least practical among all
the considered playout patterns. However, it is of interest
to be able to study the subjective data resulting from
such an “ideal” client reaction.

In the Appendix, we give an example of how some of the
previous parameters were specified. Note that the original
video sequences were of different durations, and that the
playout patterns (of a given content) may also be of different
durations because of delays introduced by rebuffering events.

C. Encoding Pipeline

We developed an encoding pipeline that generates the dif-
ferent parts of the final video and appropriately concatenates
them based on an encoding map that indicates the time
intervals of every quality level, the location and the duration
of each rebuffering event. First, the source video stream
(in H.264 format) was decoded, yielding an uncompressed
raw .yuv file. The encoding map was then used to split the
.yuv file in a frame-accurate manner, yielding .yuv chunks.
A two pass encoding step using FFMPEG [12] was then used
to encode the .yuv files into .mp4 format. Meanwhile, the final
frame of a video chunk immediately before a rebuffering event
was used to generate a rebuffering video chunk. A customized
“loading”, or spinning wheel, icon was overlaid on that frame
and appropriately animated to simulate the desired video
rebuffering effect. For playback purposes, and in order to
match the rendering device resolution, all YUV frames were
first upsampled to 1920 × 1080. An MP4 file was then created
by lightly compressing these frames at CRF [13] (constant-
rate-factor) value of 10. A more detailed description of the
encoding pipeline that we used can be found in the Appendix.

D. Source Contents

A set of 14 video test contents were used containing a wide
variety of spatiotemporal characteristics. Of the 14 contents,
11 belong to the Netflix catalog of titles including action
scenes, drama, adventure, anime and cartoons. The remaining
3 contents were obtained from the publicly available Consumer
Digital Video Library (CDVL) [11]. A few frames from
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Fig. 5. Some frames from the LIVE-Netflix dataset. From left to right:
ElFuente and Chimera sequences from the dataset.

Fig. 6. Spatial Information (SI) plotted against Temporal Information (TI)
for the 14 video test contents in the LIVE-Netflix dataset.

the video sequences are shown in Fig. 5. The test contents
have a variety of frame rates and resolutions. For example,
the ElFuente sequence has 4K resolution (4096 × 2160) and
a frame rate of 60 fps, whereas most of the videos from the
Netflix catalog have 1080p (1920 × 1080) resolution and
frame rates of either 24, 25 or 30 fps. To deal with this
difference, the ElFuente sequence was downscaled to 1080p
and the frame rate was converted from 60 fps to 30 fps.

Measurements of spatial and temporal complexity give a
rough idea of the content variety in a subjective database [14].
Let Fn denote the luminance channel of a video frame at
time n and (i , j ) the spatial coordinates of this frame. Next,
consider the following simple Spatial Information (SI) and
Temporal Information (TI) metrics [15]:

SI = max
n

{
stdi, j [Sobel(Fn)]}, TI = max

n

{
stdi, j [Mn(i, j)]}

where Mn(i, j) = Fn(i, j) − Fn−1(i, j), stdi, j (.) denotes the
standard deviation over all pixels (i, j) and max

n
denotes the

maximum over all frames. As shown in Fig. 6, the video
content we use widely spans the SI-TI space [15].

III. SUBJECTIVE TESTING

A. Subjective Study Design

A single-stimulus continuous quality evaluation study [16]
was conducted over a period of three weeks at The University
of Texas at Austin’s LIVE subjective testing lab. We collected
subjective data from 56 subjects and a total of 4928 continuous
scores together with the corresponding retrospective scores.
Visual fatigue is an important consideration when designing
subjective studies, so we split the study into three sessions,
spaced by at least 24 hours to minimize subject fatigue [16].
Each session contained video content at most 35 minutes long,
and the overall duration of each session was about 45 minutes.

Due to necessary limitations on the duration of a subjective
study, video QoE studies invariably must limit the number of
different contents that are shown. When using longer video

sequences, this is even more challenging. Driven by a desire
to deploy as diverse and large set of contents as possible,
we employed the following strategy. Each subject was assigned
11 contents (of the 14) in a circular fashion e.g. if subject i
as assigned contents 1 through 11, then subject i + 1 watched
contents 2 through 12. This could result in a slightly different
number of temporal and retrospective scores per content, but
given the large number of subjects, we deemed this to be a
statistically insignificant difference. All 8 playout patterns for
these 11 contents were displayed to the subject only once.
In order to remove any memory effects, we randomly shuffled
the contents and the corresponding playout patterns while
ensuring that the same content was not consecutively displayed
to a subject in any session.

Android Studio was used to modify an earlier version of
the human subject interface used in [4], which was made
available to us by the authors. Using the previously described
encoding pipeline, the generated .mp4 files were displayed
on a Samsung S5 mobile device with a 1080p resolution and
5.1” screen size. This device had no problems playing the
videos which were stored locally on an external SD card. The
use of an external SD card did not introduce any latency when
displaying the videos. The mobile device was not calibrated,
but the brightness level was held constant at approximately
75% of maximum throughout the study. The sampling rate
on the continuous scores was such that one score was mea-
sured per frame. Given the different frame rates of the input
sequences, we parameterized the number of samples per video
content depending on each video’s frame rate.

B. Subjective Testing Walkthrough

Here we describe subjective testing procedure as it occurred
during the first (training) session of each subject. Once seated,
each subject was briefly instructed regarding the subjective
testing process. They were asked to rate both their continuous
and their overall QoE based on everything that they viewed on
the screen. They were also asked not to make QoE judgments
based on the level of interestingness of the video content or the
audio quality. To remove any rating biases, the subjects were
informed that there were no right or wrong answers in the
experiment. No formal visual acuity test was performed, but
the subjects verbally verified that they had normal or corrected-
to-normal acuity. If a subject normally used corrective lenses
when watching videos, they were asked to use them during
the study.

Then, the subjects were introduced to the interface and
the different video impairments they would be exposed to.
Three different video contents, each with a different playout
pattern were displayed as each subject became familiar with
the testing interface. These contents were the same for all
subjects but were not among the test contents used to gather
the subjective data. After the first session, no training videos
were shown, since subjects were assumed to be adequately
familiar with the testing procedure and interface.

The video sequences were displayed one after the other and
a continuous scale rating bar was displayed at the bottom of the
mobile device screen. The ratings on the continuous (Likert)
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Fig. 7. Subjective testing interfaces. Left: continuous QoE scoring;
Right: retrospective scoring.

scale ranged from 0 (Bad) to 5 (Excellent). After each video
finished, the subjects were asked to give an overall rating of
their QoE using the same rating bar. Then, a screen prompt
allowed the subjects to take a short break before they could
initiate the playout of the next video. Examples of these steps
can be seen in Fig. 7.

IV. POST PROCESSING OF SUBJECTIVE SCORES

A. Normalization of Subjective Scores

Following the subjective data collection, z-score normal-
ization [3] was applied on a per session and per subject
basis to account for differences in the use of the rating
scale by each subject, for each of the 3 viewing sessions.
Let si j k (t) and fi j k denote the continuous scores and the
retrospective score assigned by subject i to video j during
session k and let t denote the frame number. Note that the
set of all j videos viewed by subject i may not have been
exactly the same for another subject i ′. Consider the following
operations:

ŝi j k(t) = si j k(t) − μs,ik

σs,ik
, f̂i j k(t) = fi j k − μ f,ik

σ f,ik
(1)

where μs,ik , μ f,ik are the mean continuous and retrospective
scores assigned to all videos at session k of subject i and
σs,ik , σ f,ik are the corresponding standard deviations. Since
the generated video patterns are of different duration because
of the introduction of rebuffering events, computing temporal
Differential Mean Opinion Scores (DMOS) was not possible.

B. Subject Rejection Using Continuous Scores

Using the subjective data in the form of z-scores, the next
step was to apply subject rejection strategies to identify
potential outliers in the rating process. In video quality studies
with longer videos, it is possible that subjects demonstrate less
motivation and/or attention on some videos than on others.
While subject rejection is not a sophisticated model of human
attention, we think that it is sufficient to filter out inattentive
subjective responses. In a recent work, a model of subjective
consistency and bias was proposed for recovering improved
subjective scores in the retrospective QoE setting [17].

We believe that subject rejection methodologies based only
on retrospective scores are questionable for the following two
reasons. First, if some subject is rejected based on only a
single score per video but then is also discarded from all
other video sequences he or she viewed (as is typically done),
such a strict rejection criterion may needlessly reduce the

Fig. 8. Temporal ratings with the highest (blue) and the lowest (purple)
degree of consistency for two playout patterns in a given video content.
Left: pattern #5; Right: pattern #7. The red dots denote the start of a video
impairment (rebuffer or compression) while the green dots the end of the
impairment. The dashed lines mark the time interval (in frames) used in
the DTW.

amount of data. In our case, applying subject rejection only
on the retrospective scores as suggested in [16], [3] led to
7 subjects being marked as outliers. Since we focused on the
temporal effects of subjective QoE, we considered it sensible
to enrich the subject rejection strategy by taking into account
the temporal dimension of subjective QoE.

In our preliminary design of temporal subject rejection
schemes, we experimented with simple heuristics. First,
we applied the frame-to-frame equivalent of retrospective
score rejection [3], [16], [18] which yielded inconsistent
results. We believe this was due to the fact that introducing
both dynamic bitrate changes and rebuffering events led to
more complex subject reactions with different response and lag
times. An alternative approach is to apply a simple threshold-
ing method: discard subjects that are un-responsive during any
rebuffering event. However, we encountered instances where
subjects did not react to a rebuffering event but were very
unforgiving of a second rebuffering. This observation led us
to avoid using such simple ad hoc methods.

We instead deployed a more sophisticated dynamic time
warping (DTW) [19] strategy on the subjective ratings to
identify similarities in aligned temporal subject responses.
Subjects that were completely un-responsive during a time
period where most of the other subjects reacted were noted.
To demonstrate the usefulness of the DTW approach to study
and identify inconsistent temporal behavior among subjects,
consider the examples shown in Fig. 8. Both examples depict
the most and the least consistent human raters of a given
video sequence, one with two rebuffers and one with a bitrate
drop to 100 kbps. In the first case, it is clear that the least
consistent subject did not react to any of the rebuffering events,
whereas the most consistent subject had a more predictable
QoE reaction. Similar behavior occurs in the second case:
the subject marked with blue lowered the QoE during the
bitrate drop, while the least consistent subject had a highly
unreliable QoE reaction: during the bitrate drop, the recorded
QoE increased.

We now define the input to the DTW. Consider subject i
and the temporal rating waveform si j , where j denotes a
video content using one of the 8 playout patterns. Our main
focus was occurrences of rebuffering or compression events
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Fig. 9. Distribution of accumulated DTW distances computed on one test
video. The rightmost subjects have a higher chance of being outliers.

since those are the key aspects that determine subjective QoE.
Therefore, we trimmed the si j waveforms by selecting the time
interval between the first video impairment (rebuffer or bitrate
change) that took place until the last one occured. To capture
the temporal behavior when normal playback (playout rate
of 250 kbps) resumed, we lengthened this time interval by
4 seconds. An example of a considered time interval can be
seen in Fig. 8. We set the DTW window size to be 10%
of si j . Similar values of the window size ranging between
5% and 10% yielded similar results.

We collected all warped distances between subjects i and
k, i.e., dik = DTW(si j , skj ), where dik denotes the temporal
misalignment between subjects i and k. This is a measure of
dis-similarity: a large dik could mean that subject i reacted
very rapidly to some stimuli whereas subject k reacted more
slowly. Subject ratings having large distances from most of the
others can be thought of as unreliable. As we have already
explained, however, only per video rejection decisions were
made, i.e., if subject i had unreliable ratings on some video
j it did not imply rejection of all the other subject’s ratings.
To eliminate biases introduced by the individuality of subject
scoring strategies, each subject’s continuous rating waveform
was linearly scaled independently to cover the range [0, 1].

Computing the DTW warped distances, dik yielded a matrix
D = [dik ] describing the temporal misalignments between
all subjects that viewed video j . Since the DTW distance
is symmetric, we computed only the upper triangular part of
the matrix and set the diagonal entries to 0. Then, the sum
of the DTW distances across the rows (or columns) of D
may be considered to be a measure of how unreliable a
subject is: a large accumulated distance implies a subject
whose responses were consistently mis-aligned with respect
to other subjects when rating the same video.

In Fig. 9, the distribution of accumulated DTW distances
is shown for one of the test videos. The horizontal axis
corresponds to the sum of the rows in D, while the vertical
axis indicates the number of subjects having the corresponding
DTW distance. The distribution of accumulated distances is
skewed to the right, making outlier identification more chal-
lenging. A standard technique is to apply Tukey’s boxplot [20]
rule, i.e., mark all observations that are smaller than or that
exceed 1.5IQR as outliers, where IQR is the interquartile
range Q3-Q1 where Q1 is the 25th percentile and Q3 the
75th percentile. However, this rule assumes an underlying

Fig. 10. a) Raw MOS for all 8 patterns. Only pattern #0 is significantly
different from the other 7. b) Scatter plot of the frame-averaged continuous
scores (horizontal axis) against the retrospective MOS (vertical axis) for all
test videos.

normal distribution. To address the skewness of the data distri-
bution, we can either transform the data using an appropriate
transformation (e.g. a Box-Cox [21] transformation) or use an
adjusted boxplot technique like the one in [22]. We used the
adjusted boxplot method. Then, an observation is considered
to be an outlier if it lies outside the interval:

[Q1 − hl(MC)IQR Q3 − hu(MC)IQR] (2)

where hl and hu are functions of the medcouple (MC), which
is a skewness measure [22]. We used the exponential model
proposed in [22] i.e. hl = 1.5 exp αMC and hu = 1.5 exp βMC,
where α and β are weighting factors. We picked α = −4
(default value) and β = −1 since the DTW distributions are
right skewed, and a small value of β produced a more robust
estimator. Using this skewness-driven boxplot, we identified
potential outliers on each test video and removed them from
the collected data.

V. ANALYSIS OF RETROSPECTIVE SCORES

We next discuss how we analyzed the subject scores using
retrospective scores. First, we considered the overall distrib-
ution of the retrospective MOS before z-scoring. Figure 10a
shows the distribution of raw retrospective MOS. It can be
observed that the scores varied over the interval [1.5, 4.5],
hence the entire scale [0, 5] was not used. However, the sub-
jects were not prompted to use the entire scale, since this could
introduce bias. Instead they were allowed to give their natural
responses. Also, note that patterns #1 to #7 were given similar
MOS scores, while pattern #0 was consistently rated higher
by subjects (over all contents). This not surprising since this
pattern assumes a rebuffering-free scenario where the encoding
bitrate is a constant 500 kbps.

In typical streaming applications, subjects are exposed to
long video sequences, and events that occur early on may
have less effect on the overall rating given by a subject. This
is known as the “recency effect” [7] where recent events
more heavily influence the current perception of one’s viewing
experiences.

To examine these biases further, we conducted a preliminary
statistical analysis to determine whether the playout patterns
were actually (retrospective) scored differently by the subjects.
We verified that the score distributions were not very skewed,
then applied the Wilcoxon ranksum test [23] (using signif-
icance level α = 0.05). We observed that, in many cases,
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the statistical comparisons between the retrospective scores
assigned to playout patterns yielded statistically insignificant
differences. This could be explained by recency (latest expe-
riences matter for retrospective evaluations) and the duration
neglect effect [7]: subjects may lower their temporal scores
if a long lasting video impairment occurs. However, even if
they did recall the duration of an impairment, they tended to
be insensitive to its duration when making retrospective QoE
evaluations. Also, note that, by the time the subjects were
asked to give an overall evaluation of each test video, more
than 15 or 20 seconds of the 250 kbps playout had occurred.
Given the tendency of subjects to evaluate videos based on
more recent experiences, the test videos were possibly rated
in response to the most recent video behavior.

If one is seeking a simple and direct QoE analysis, then
it would seem desirable to obtain a single QoE value for
each test video. Since the retrospective scores are affected by
recency and duration neglect, we used simple frame averaging
on the temporal scores to obtain a summary rating of each test
video. Unfortunately, averaging continuous subjective scores
without first applying temporal alignment does not account for
the temporal QoE behavior of each subject (such as subject
response delays). However, the DTW is appropriate only for
pairwise time-series alignment, and may not produce an output
having the same duration as the original waveforms. In our
search for a recency-insensitive summary rating, we found
that simple averaging correlated well with the retrospective
scores, as seen in Fig. 10b. This observation aligns with two
previous subjective studies: one where the test videos lasted
only 10 seconds [3] and one with longer videos [10]. Apart
from frame averaging, we were also interested in explicitly
capturing the subjective responses due to the impairments
caused by the available bandwidth drop. In order to study
those time intervals where the only visual impairments were
due to the available bandwidth drop, we applied the following
protocols: on patterns #1, #4, #5, #6 and #7, we applied
averaging on all frames after the available bandwidth drop
occurs. By contrast, on patterns #2 and #3, where there was
heavier compression even prior to the bandwidth drop, all
the frames were used. Since pattern #0 was impairment-free,
we did not include it in the comparisons.

Using the averaged scores as the summary ratings, we com-
pared the playout patterns of each content as shown in Fig. 11.
Clearly, the ratings given to patterns #5 and #6, which belong
to the second category, where no buffer was utilized, were
statistically inferior to those of the patterns from the first cat-
egory (#1 to #4), since the available buffer was zero and fewer
bits were spent; hence there were more frozen frames due to
rebuffering events and/or lower bitrate values. By comparing
pattern #4 with #2 we observed that a consistently low bitrate
value (to avoid rebuffering), as in the “conservative” client
strategy #2, was not tolerated by subjects. Further, subjects
preferred a long rebuffering (#1) if it meant better quality
elsewhere rather than the combination of a short rebuffering
event combined with an intermediate recovery bitrate (#3).

An important aspect of the interactions between rebuffer-
ing and compression is whether there exists a “compression
threshold”, i.e., a bitrate level below which rebuffering will

Fig. 11. Wilcoxon ranksum test using α = 0.05 on the averaged temporal
scores for all patterns, represented as a 7 × 7 matrix. Each entry shows the
winning percentage of the row compared to the column for all 14 video
contents. Green shows the number of contents that the pattern in the row is
QoE superior to the column, red shows the contents where the row is inferior
to the column and orange shows that the row and column are indistinguishable.
The purple box shows the comparisons only between patterns #1 to #4
(B0 = 1333 kbits) and the blue box shows the comparisons only between
patterns #5 to #7 (B0 = 0 kbits).

be preferred over a highly compressed stream. Clearly, this
“threshold” may be different across contents depending on the
content’s spatio-temporal complexity. Here, we can perform
such a comparison directly, since both playback states (normal
playback at a much lower bitrate as in #4 and playback
interruption as in #1) are equalized in terms of bandwidth
usage.

By comparing rebuffering with transient bitrate drops
(see first row and fourth column of Fig. 11) we found that
the outcome of the statistical comparison depended on the
level of content complexity. Out of the 14 contents, sub-
jects preferred a very low bitrate in 4 of them, rebuffering
in 3 and for the remaining 7, the statistical test yielded
a statistical equivalence betwen #1 and #4. Notably, all
4 contents where subjects preferred #4 were slow motion
scenes (e.g. a dialogue between actors) and/or low spatial
complexity scenes, while the 3 contents where rebuffering was
preferred were contents of either high spatial complexity (as in
the ElFuente fountain scene) or high temporal complexity
(e.g. a fight scene rich in motion); hence they required more
bits to be encoded. This observation strongly highlights the
trade-off between rebuffering and compression artifacts in
perceived QoE.

Notably, pattern #7 had the best performance among pat-
terns in the second category (B0 = 0) and was comparable to
#2 and #3. Again, this shows that subjects preferred transient
bitrate drops. Surprisingly, #7 used fewer bits than #2 and #3
but yielded similar QoE. While #7 assumed an ideal client
that could immediately adapt to the network conditions, this
comparison demonstrates the merits of QoE-aware network
policies: using fewer bits does not always mean that per-
ceived quality is lower. However, we also observed that
patterns #5 and #6 were statistically indistinguishable over all
contents. This brings up another aspect of the subjective test’s
design: apart from recency, allocating the same number of bits
under these circumstances could signify a similar retrospective
QoE or summary rating. This underlines the need to exploit
the temporal aspects of QoE, since retrospective ratings reveal
only some aspects of subject QoE.
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Fig. 12. Temporal ratings across all contents for all playout patterns after subject rejection. First row: patterns 0 to 3; second row: patterns 4 to 7.

VI. ANALYSIS OF TEMPORAL SCORES

Temporal scores are a rich source of subjective QoE. Similar
to the frame averaging used earlier, we performed frame
averaging on the continuous subjective scores and show the
result for several patterns in Fig. 12. We now focus on a
comparison between patterns #1 and #7. Clearly, rebuffer-
ing (#1) severely and sharply damages subjective QoE for all
contents. Further, the QoE recovers at a slower pace than it
originally dropped, suggestive of the hysteresis phenomenon:
there is a lag between subjective QoE scores and current video
quality or playback status. We earlier observed that subjects
were not forgiving of rebuffering events. By contrast, when
the bitrate dropped from 250 to 100 kbps, the subjective QoE
reactions varied depending on each content. On scenes having
higher spatiotemporal complexities, compression artifacts may
be more visible and affect the QoE heavily and sharply,
while others may not be affected to the same extent. Similar
observations may be made for all patterns that contain at
least one rebuffering event (where the video freezes and the
rebuffering icon appears), which are obvious and unpleasant
to viewers, whereas bitrate drops have a different impact on
subjective QoE depending on each content’s complexity.

Notably, the constant encoding bitrate employed in #2 had
a temporally varying effect on the perceived QoE. Given the
long duration of the video contents and the different video
characteristics present in each content (such as scene changes),
it is clear that the subjects’ QoE also changed over time
even when the encoding scheme was static. This observation
strongly supports a “per chunk” encoding strategy [24], where
each video content is first split into short video chunks
and then, based on the video complexity during this chunk,
an appropriate encoding scheme can be chosen.

To investigate the interplay between rebuffering and com-
pression artifacts under a different light, we split the test
contents into two sets based on their complexity: Set 1 includes
source contents of low complexity and Set 2 those of higher
complexity. To determine the two sets we considered the
following: contents with high motion and/or spatial complexity

Fig. 13. ST-RRED values between pattern #2 and the original source video
for all 14 contents. Blue points correspond to low complexity contents while
red points correspond to high complexity contents.

require more encoding bits, hence subjective scores would
likely be lower on such sequences. To determine content
complexity, the authors of [25] defined a criticality measure
as the logarithm of the sum of the SI and TI indices.

Given that the quality impairments of the otherwise
very high quality videos being viewed are dominated by
H.264 compression, an excellent measure of the content com-
plexity to a fixed bitrate are the scores of a high performance
objective quality engine such as ST-RRED [26]. ST-RRED
is an information-theoretic approach to VQA that builds on
the innovations in [27] and [28]. It achieves quality predic-
tion efficiency without the need to compute motion vectors
unlike [29] and [30].

To avoid any subjective biases due to content, we com-
puted ST-RRED [26] between the original pristine video and
#2 - constant encoding bitrate under the same total bit budget
constraint. The computed ST-RRED value (on the constant
bitrate encodes) was a way of describing the content com-
plexity: the higher the ST-RRED value, the less “complex” the
content was assumed to be. As we will show later, ST-RRED
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Fig. 14. Averaged temporal ratings and standard errors for content Sets 1 and 2 for all playout patterns after subject rejection. First row: patterns 0 to 3;
second row: patterns 4 to 7. Due to the different video lengths, we trimmed the axis of the plot to the duration of the shortest video sequence. The black
arrows show the effect of rebuffering for the high vs. low complexity sets. The green arrow shows the different rates of QoE recovery for these sets.

performed the best among the VQA models studied across
the subset of video sequences without any rebuffering, hence
it was deemed suitable for this purpose. Finally, as shown
in Fig. 13, there are 5 contents (shown in red color) that have a
relatively higher encoding complexity than the rest. Therefore,
we considered those 5 as Set 2 while the rest were assigned
to Set 1.

Next, we found the average (per frame) MOS score over
all contents for each of the 8 different patterns, as shown
in Fig. 14. The effects of content complexity were evident:
after a rebuffering event occurred, the QoE recovered more
slowly for contents in Set 2 (high complexity) as shown by
the green arrow in #6. Meanwhile, the videos in Set 2 tended
to have larger standard errors against the videos in Set 1,
since the increased encoding complexity may have led to a
larger variance in the subjective QoE reactions. Overall, during
normal playback, the contents in Set 2 have a lower QoE than
the contents in Set 1.

We also observed the following interaction: a relatively long
rebuffer event (as in playout patterns #1 and #6) led to larger
drops in the reported subjective QoE on Set 1, as compared
to Set 2 (see the black arrows in the plots for playout patterns
#1 and #6). It is likely that the subjects were more annoyed by
rebuffering events when they occurred during the playback of
higher quality video content. A similar observation was also
made in [6] using retrospective QoE ratings on short video
sequences. However, for shorter rebuffering events (playout
patterns #3 and #5) quality drops due to rebuffering between
the two sets was similar. Notably, the second rebuffering in
pattern #5 led to the opposite effect: given that one rebuffering
event had already occurred, the quality drop on Set 2 was
larger than the one for Set 1. This may be attributed to the
effects of memory of a recent rebuffering event on currently
perceived QoE.

By comparing patterns #1, #3 and #5, it is also evident
that when the number or the durations of the rebuffering
events increases, there is a larger drop in the temporal

Fig. 15. SROCC between the averaged temporal scores (over a 10 sec.
window) and the retrospective MOS.

QoE scores. Again, these effects of rebuffering on the sub-
jective QoE were harder to capture when we used the
retrospective QoE ratings.

VII. COGNITIVE ASPECTS IN SUBJECTIVE QoE

A. Recency Effects

As already discussed, subject QoE might depend heavily
on more recent experiences. To further investigate this claim,
we performed local averaging on the temporal scores using
a sliding window, then measured the correlations of those
averages against the retrospective scores. Let κ denote the size
of the sliding window in seconds, τ be the total duration of a
video and μ (a, b) be the average of the temporal scores from
frame a to frame b and f be the retrospective score assigned
to that video. Figure 15 shows the SROCC between μ (a, b)
and f using κ = 10 seconds. It is clear that local temporal
averaging produced stronger correlations over the more recent
time intervals. This agrees strongly with the recency effect
observed on the subjects’ QoE.

B. Non-Linearities in Subjective QoE

Non-linearities in human responses to video quality are
usually not considered in depth. Here, we are able to examine
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Fig. 16. Spearman’s rank correlation coefficient for different pattern sets.
From left to right: patterns 0 and 2, patterns 1, 3, 4, 6, 7 and pattern 5.

these effects given the richness of the collected temporal data.
Fig. 15 shows that, as the observation window is increased
further into the past, the rank correlation decreases until
approximately 45 seconds, at which point it increases. This
could be due to the fact that after the first 15 seconds most of
the video impairments begin to occur, hence a local temporal
window of “high disagreement” between subjects occurs as
the impairments take place. By high disagreement, we refer
to different response times between subjects, different recovery
times and different use of the rating scale. Note that even after
z-scoring normalization, the subject ratings are still dependent
on the rating behavior over time. We refer to both bitrate
changes and rebuffering events during those time intervals
as “events” where non-linearities in the human responses are
activated and intensified. As a result, linearly combining the
scores still produces non-linear measurements that do not
correlate as well as when such events are not taking place.

To examine our hypothesis, we considered three different
cases in Fig. 16: when the encoding bitrate is constant
(patterns #0 and #2), when there is a single event (or two
consecutive events) such as a lone rebuffering event or one
followed by a bitrate drop (patterns #1, #3, #4, #6 and #7)
and when there are two distinct events (pattern #5). The first
case demonstrates the recency effect: more recent scores cor-
relate more highly with the retrospective score. In the second
case, a combination of recency and human non-linearities is
demonstrated: past experiences correlate less with the retro-
spective score, especially when there is a bitrate drop or a
rebuffering event. However, recency by itself is not enough to
explain subject QoE when a very negative QoE experience has
occurred in the past. As shown in the third case, the correlation
is much lower even over very recent time intervals due to the
two rebuffering events that have happened earlier.

C. Recency Versus Primacy

The previous analysis gives rise to the following contradic-
tion: if subjects tend to bias their ratings based on the recency
effect, why would a rebuffering event (or a bitrate drop)
that happened much earlier matter? In the cognitive science
literature, the primacy effect refers to the human tendency
to recall events that occurred at the beginning of a series
of events [31]. We can apply this concept to the various
events to which subjects are exposed when viewing streaming
videos, such as bitrate changes. It is likely that, when giving
a retrospective evaluation, both primacy and recency effects
affect the subjects’ responses. If the perceived video quality is
relatively stable, subjects tend to internally rely more heavily

TABLE I

SPEARMAN’S RANK CORRELATION COEFFICIENT (SROCC) FOR
VARIOUS IMAGE/VIDEO QUALITY ASSESSMENT ALGORITHMS

(IQA/VQA) AGAINST THE RETROSPECTIVE SCORES AFTER

PERFORMING MEAN POOLING ON THE NO-REBUFFERING

SUBSET (Sq ) AND ON THE WHOLE DATASET (Sall ).
THE BEST RESULT PER SUBSET IS IN BOLDFACE

on their latest experiences to make a retrospective decision,
yet negative QoE events that occur early on can also activate
longer term reactions.

Given our previous analysis of both retrospective and tem-
poral scores, it is important to summarize the different aspects
of each. For long video sequences in streaming applications,
retrospective scores are simple and efficient QoE descriptors
but do not capture all aspects of QoE. When integrating their
temporal experiences into a single QoE score, subjects may be
biased towards recent experiences (recency) or much earlier
but memorable - typically unpleasant - ones (primacy), but
they may also be insensitive to how long these unpleasant
viewing experiences were (duration neglect). By contrast,
temporal scores are rich and descriptive QoE indicators.
However, the different response times between subjects and
other temporally varying QoE aspects make temporal scores
harder to analyze.

VIII. OBJECTIVE VIDEO QUALITY ASSESSMENT

A. Is Objective VQA Enough?

Most VQA algorithms are not applicable to frame freezes;
hence video sequences with playback interruptions are usually
not considered in objective quality analysis studies [4]. As a
way of understanding how well these “standard” VQA models
predict subjective QoE, we ask the question: “How well do
VQA algorithms perform on video sequences when excluding
frame freezes?” To answer this question, we considered the set
Sq of videos without any rebuffering, the set Sr of videos hav-
ing at least one rebuffering event and the whole dataset (Sall =
Sq

⋃
Sr ). Clearly, Sr and Sq are disjoint. Then, we applied

various quality metrics on Sq and Sall . We compared sev-
eral leading full reference (FR), reduced reference (RR)
and no reference (NR) image (IQA) or video (VQA) qual-
ity assessment algorithms [32], [33]: PSNR, PSNRhvs [34],
SSIM [35], MS-SSIM [36], NIQE [37], VMAF [38],
ST-RRED [26] and GMSD [39]. We refer the interested reader
to [30], [40], and [41] for other perceptual VQA models that
have been developed. When applying them on the videos in Sq ,
we calculated the quality scores only on normal playback
frames and measured the correlation with the retrospective
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TABLE II

a) SROCC AGAINST THE RETROSPECTIVE SCORES ACHIEVED WHEN USING TEMPORAL POOLING STRATEGIES ON THE LIVE-NETFLIX DATASET,
SETS Sq AND Sall . FOR EACH QUALITY METRIC AND SUBSET (Sq /Sall ), THE BEST POOLING METHOD IS IN BOLDFACE. THE BEST

COMBINATION (QUALITY MODEL AND POOLING) PER SUBSET IS IN BOLDFACE AND ITALIC FONT. b) MEDIAN SROCC AND

LCC AGAINST THE RETROSPECTIVE SCORES ON Sall FOR DIFFERENT QoE MODELS AFTER PERFORMING

1000 TRAIN AND TEST TRIALS. THE BEST RESULT IS DENOTED BY BOLDFACE

Fig. 17. Performance of ST-RRED on videos with and without rebuffering.

scores after subject rejection. For PSNRhvs we used the
publicly available Daala [42] implementation and for the other
methods we used the available implementations. All models
were applied on the luminance channel of the test videos and
the black borders around the videos were removed. The results
are presented in Table I.

As shown in the first column, NIQE unsurprisingly per-
formed the worst since it is a frame-based NR model, while
PSNR and PSNRhvs performed the worst across all FR
algorithms, followed by GMSD. The results on Sall were
much lower than on Sq ; indicating that the tested IQA/VQA
systems were unable to predict QoE as well when rebuffering
events were present. Note that SSIM performed better than
MS-SSIM and close to the best predictor (ST-RRED) on Sall .
This suggests that the subjects were internally responding
strongly to rebuffering events rather than evaluating quality
only. To investigate the performance of VQA models on videos
afflicted by rebuffering, Fig. 17 shows the performance of
ST-RRED on videos with rebuffering and on videos without
rebuffering coded by color and symbol shape. It is important to
observe that the predictive power of ST-RRED decreases when
rebuffering events are introduced, which is not surprising:
almost all perceptual IQA/VQA models only consider the
effects of visual quality on the perceived QoE. Therefore, in

the presence of rebuffering, objective video quality models
become less reliable predictors of subjective QoE. This implies
the need to develop more general QoE-aware methods.

B. Temporal Pooling Strategies for Objective VQA

Simple averaging of frame quality scores is broadly used to
pool quality scores computed on short videos, but more sophis-
ticated perception-driven temporal pooling strategies have
been proposed, including hysteresis [43], VQ pooling [44]
and temporal percentile pooling [45]. For percentile pooling,
we sorted the frame-based values, then averaged the 5% of
them which corresponded to lowest quality. We next investi-
gated whether adopting these approaches could produce better
correlations against human subjective scores on Sq and Sall .
The results of this experiment are presented in Table IIa.

On Sq , most methods benefited from a temporal pooling
strategy, except ST-RRED (where performance was improved
only slightly by percentile pooling). Otherwise, these improve-
ments were not significant for Sall . This suggests that deploy-
ing temporal strategies designed for short sequences may
not significantly improve QoE prediction on long sequences
suffering from both rebuffering and bitrate changes: temporal
pooling strategies operate on the numerical scores produced by
objective video quality models. Again, ST-RRED performed
the best on Sq in terms of SROCC. On Sall , SSIM (with
hysteresis pooling) was able to reach the maximum predictive
performance of ST-RRED. Notably, percentile pooling was
beneficial to FR methods such as SSIM and MS-SSIM on Sq ,
but in the case of NIQE, the prediction performance dropped
considerably. This is likely because NIQE is frame-based, does
not capture temporal information critical to QoE prediction,
does not capture artifact fluctuations nor does it benefit from
reference information. Therefore, NIQE scores may unreliably
reach extreme values.

C. VQA, Rebuffering-Aware and General
QoE-Aware Models

Predicting subject QoE in the presence of both rebuffer-
ing and bitrate excursions is a hard problem. One limiting
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factor is that most databases do not contain both compression
and rebuffering events, hence are not adequate for modeling
streaming applications where both frequently occur together.
The LIVE-Netflix dataset allowed us to consider these two
effects together and to compare different QoE prediction
models: VQA models, rebuffering-aware models such as the
VsQM model proposed in [46], FTW [47], SQI [6] and Video
ATLAS [48]. Thus unlike [49] and [50], we compared methods
that combine perceptual VQA models with rebuffering-aware
information. In the objective evaluations, we only considered
the retrospective scores.

Since Video ATLAS is a learning-based approach, we per-
formed 1000 trials using 80% train and 20% test content splits
to avoid content biases. We evaluated Video ATLAS using
different regression models and reported the best performing
regressor. For SQI, we determined the best parameters using
the training contents for each trial. We report the median
SROCC and LCC values over all 1000 trials in Table IIb.
To compute LCC, we first applied a non-linear (logistic)
regression on the output QoE scores as suggested in [16].
It may be observed that embedding rebuffering-aware infor-
mation into the IQA/VQA models produced significantly
improved performance.

IX. DISCUSSION AND CONCLUSION

We described a subjective study that focused on the tem-
poral aspects of subjective video QoE under various network,
buffer and low bitrate constraints. The study gathered both
continuous time and retrospective data that we processed to
extract useful information regarding those factors that affect
QoE, such as the network condition, the encoding bitrate and
the spatio-temporal complexities of the video contents being
viewed. Overall, we hope that QoE researchers find the new
database to be a useful tool for studying the temporal aspects
of subjective quality of experience. This remains a relatively
unexplored area of research that poses many challenges.

We plan to continue studying the various aspects of human
responses when viewing videos streamed under realistic net-
work conditions since better models of these responses could
greatly benefit future efforts to improve network streaming and
encoding strategies adopted by content providers. Objective
prediction models that incorporate spatio-temporal aspects of
videos and that predict human reactions to both bitrate dynam-
ics and rebuffering events could ultimately help streaming
video companies address resource allocation problems more
efficiently and in a user-adaptive way. Recent efforts on the
overall (endpoint) QoE prediction problem [6], [48], as well
as on continuous-time QoE prediction [18], [51]–[53] are
important early steps towards this research goal. In the future,
we plan to extend our work by focusing on continuous time
QoE monitoring.

APPENDIX

A. Explaining the Playout Pattern Parameters

We provide an example of how some of the playout pattern
parameters were determined. We fixed the rebuffer duration
for pattern #1 (see Fig. 3) to 8 sec. and the average bitrate for

Fig. 18. Encoding pipeline used to create the playout patterns.

the client in pattern #2 to be R2 = 160 kbps. Since there is
no rebuffering event in pattern #2 but the available bandwidth
is 100 kbps for d seconds, the client in #2 expends all of the
available buffer B0 in d seconds hence (R2 − 100)d = B0
yielding B0 = 1333 kbits. Let tb be the time interval after
the available bandwidth drops until a rebuffering event occurs
in #1. Clearly, tb(250 − 100) = B0 since the client depletes
all of the buffer before the playback interruption. During
the rebuffering event, the buffer fills to B1 = 800 kbits
in 8 seconds, given the available bandwidth of 100 kbps.
The client chooses to start the playback ta seconds before
the available bandwidth recovers hence ta(250 − 100) = B1,
since we assume that all playout patterns eventually deplete the
entire buffer. Therefore, ta = 5.3333 sec. and d = te +8+ta ≈
22.2167 seconds.

B. Implementation Details of the Encoding Pipeline

Each high quality video source sequence is first encoded
into H.264 format, combined with a corresponding, synchro-
nized audio stream and placed in an mp4 container without
further re-encoding. Then, following the application of a
specific network-simulated pattern, the .mp4 file is divided
into a number of different chunks, each at a different encoding
bitrate. For example, pattern #6, which contains both bitrate
changes and a rebuffering event would have three chunks: one
for the rebuffering event and two corresponding to the encoded
video before and after the rebuffering event.

The encoding pipeline then assembles the segments of the
final video, by concatenating them using an encoding profile
demarking the interval of time spent at each quality level. The
location and duration of each rebuffering event is specified
as: enc < start > < stop > < bitrate > stall < start >
< duration >, with time measured in seconds and bitrate in
kbps. The encoding resolution was based on the used bitrate
and the encoding profile was set to high.

Using this encoding profile, the encoding process was
carried out as follows (see Fig. 18). First, the source video and
audio streams were transferred from Google Drive and stored
locally for further encoding. Next, the source video stream
(in H.264 format) was decoded, yielding an uncompressed
raw .yuv file. The encoding map was then used to split the
.yuv file in a frame-accurate manner, yielding .yuv chunks,
e.g. three chunks for pattern #6. A two pass encoding step
using FFMPEG was then applied to encode the .yuv files into
.mp4 format. For pattern #6, this corresponds to two chunks
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encoded at 250 kbps, and one encoded at 160 kbps. The
final frame of every video chunk that occurs immediately
before a rebuffering event was used to generate a “rebuffering
video chunk”. A familiar “loading icon”, (a spinning wheel)
was overlaid on that frame during the rebuffering event and
animated to simulate the desired video rebuffering effect. After
encoding each of the yuv chunks into .mp4 format, all of the
.mp4 segments were upscaled to the device resolution (1080p),
then concatenated into a single .mp4 file. For playback pur-
poses, each concatenated .mp4 file was lightly compressed
using CRF 10, since raw playback on mobile devices is not
supported.
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