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Automatic quality prediction of
authentically distorted pictures
Deepti Ghadiyaram and Alan Bovik

Biologically inspired computational models automatically predict the
quality of any given image, as perceived by a human observer.

Social media and rapid advances in camera and mobile device
technology have led to the creation and consumption of a seem-
ingly limitless supply of visual content. However, the vast ma-
jority of these digital images are captured by casual amateur
photographers whose unsure hands and eyes often introduce
annoying artifacts during acquisition. In addition, subsequent
storage and transmission of visual media can further degrade
their visual quality.

Recent developments in visual modeling have elucidated the
impact of visual distortions on perception of such pictures
and videos. They have laid the foundation for automatic and
accurate metrics that can identify and predict the quality of
visual media as perceived by human observers.1 To address
this problem, several objective blind or no-reference (NR) im-
age quality assessment (IQA) algorithms have been developed
to predict the perceptual quality of a given (possibly distorted)
image without additional information.2–7 Such quality metrics
could be used to monitor and control multimedia services on
networks and devices or to prioritize quality of transmission
over speed, for example.

Real-world images are usually afflicted by mixtures of dis-
tortions that differ significantly from the single, unmixed dis-
tortions contained in restrictive and unrepresentative legacy
databases.9–12 We recently designed a unique and challenging
image data set with associated human opinion scores called
the Laboratory for Image and Video Engineering (LIVE) au-
thentic image quality challenge database8 (see Figure 1). Using
this LIVE challenge database, we have been developing a
robust blind IQA model for images suffering from real-world,
authentic distortions. We call our model the ‘feature maps driven
referenceless image quality evaluation engine’ (FRIQUEE) in-
dex. FRIQUEE outperforms other state-of-the-art blind IQA
algorithms on both the LIVE legacy IQA9 and the LIVE
challenge database8 (see Table 1).

Figure 1. Sample images from the Laboratory for Image and Video En-
gineering (LIVE) authentic image quality challenge database.8 This
collection comprises 1163 images afflicted with complex mixtures of
unknown distortions, of different types and severities, from diverse
camera devices, and under varied illumination conditions. The con-
tent includes pictures of faces, people, animals, close-up shots, wide-
angle shots, nature scenes, man-made objects, images with distinct
foreground/background configurations, and images without any no-
table object of interest.

We have empirically observed that the presence of differ-
ent mixtures of authentic distortions affects the scene statistics1

of an image differently from when these distortions occur in
isolation.13 FRIQUEE follows a feature-maps-driven statistical
approach, avoiding any latent assumption about the type of dis-
tortion(s) contained in an image, focusing instead on the re-
markable regularities of the scene statistics of real-world images
in the absence of distortions. We capture a large and compre-
hensive collection of perceptually relevant and reliable ‘quality-
sensitive’ statistical image features from these feature maps
that supply us with greater discriminative power on authentic
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image distortion ensembles than the most successful NR IQA
models. We also leverage the capability of a powerful deep be-
lief network14 (DBN) to learn a model that maps the image fea-
tures to complex feature representations that in turn predicts the
subjective quality scores more accurately than the state-of-the-
art models.

We process every image by first transforming it into color
spaces known as RGB, LMS, and CIE LAB, then deriving a
set of feature maps by applying operations (including steerable
pyramid decomposition in the complex domain,7 difference of
Gaussians,16 and Laplacian decomposition17) on the luminance
component and on the four chroma components, i.e., A and B
from LAB space, and M and S from the LMS color space (see
Figure 2). The definition of each feature map is driven by es-
tablished perceptual models of the transformations that occur at
various stages of visual processing.

We then perform perceptually significant debiasing and divi-
sive normalization operations15 on each feature map and model
the statistical regularities and irregularities exhibited by their
histograms using a generalized Gaussian distribution (in real
or complex domains)19 or an asymmetric generalized Gaussian
distribution.20 We compute model parameters, such as shape
and variance of these fits, and sample statistics, such as kurtosis
and skewness, and use them as image features. A DBN, when

Figure 2. Given (a) any input image, our feature maps driven refer-
enceless image quality evaluation engine (FRIQUEE) first constructs
several feature maps in multiple transform domains—some are shown
here (b–i)—then extracts scene statistics from these maps after per-
forming perceptually significant divisive normalization15 on them.

Figure 3. Configuration of our deep belief network (DBN) model. It
has four hidden layers formed by stacking multiple restricted Boltz-
mann machines (RBMs). Each RBM is trained in a greedy layer-by-
layer manner, with the hidden activities of one RBM as the visible in-
put data for training a higher-level RBM. The number of visible units
equals the number of features computed on each image. The features
from the top three layers serve as ‘deep features’ to train a support vec-
tor regressor (SVR). The unit in the topmost layer of the DBN that is
activated determines the quality class.

trained with these image features as input, generates deep fea-
ture representations. These deep features are later used to train
a support vector regressor (SVR) such that, given a test image’s
deep features, its quality is predicted (see Figure 3).

We evaluate the performance of several NR IQA algorithms by
computing the correlation between the scores predicted by the
algorithm and the ground truth subjective scores (see Table 1,
which shows that our proposed model combining robust fea-
tures and a DBN outperforms several other IQA models on
unseen test data).

By identifying and addressing the challenges in perceptual
quality prediction of images containing mixtures of authentic
distortions using FRIQUEE, we have shown that novel tech-
niques push the boundaries of quality prediction powers of
state-of-the-art IQA models. To further improve the prediction
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Table 1. The median Pearson correlation coefficient (PLCC) and the
median Spearman’s rank-ordered cross correlation (SROCC) across 50
train-test combinations on the LIVE challenge database.8 A higher cor-
relation value indicates good performance both in terms of correlation
with human opinion as well as the performance of the image quality
assessment (IQA) models named in the left column.

PLCC SROCC
FRIQUEE 0.7062 0.6824

BRISQUE 4 0.6104 0.6018
DIIVINE 3 0.5577 0.5094

BLIINDS-II 2 0.4496 0.4049
NIQE 5 0.4776 0.4210

S3 index 18 0.3243 0.3054
C-DIIVINE 7 0.6632 0.6350

power of blind IQA models on real-world distortions, we plan
to combine techniques to consider high-level cognitive factors
such as semantic content, attention, and aesthetic quality, in ad-
dition to accommodating skewness in the real-world distribu-
tion of distortions by machine learning.21–23
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