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Single-Scale Fusion: An Effective Approach
to Merging Images
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Abstract—Due to its robustness and effectiveness, multi-scale
fusion (MSF) based on the Laplacian pyramid decomposition has
emerged as a popular technique that has shown utility in many
applications. Guided by several intuitive measures (weight maps)
the MSF process is versatile and straightforward to be imple-
mented. However, the number of pyramid levels increases with
the image size, which implies sophisticated data management
and memory accesses, as well as additional computations. Here,
we introduce a simplified formulation that reduces MSF to only
a single level process. Starting from the MSF decomposition,
we explain both mathematically and intuitively (visually) a way
to simplify the classical MSF approach with minimal loss of
information. The resulting single-scale fusion (SSF) solution is a
close approximation of the MSF process that eliminates impor-
tant redundant computations. It also provides insights regarding
why MSF is so effective. While our simplified expression is
derived in the context of high dynamic range imaging, we show its
generality on several well-known fusion-based applications, such
as image compositing, extended depth of field, medical imaging,
and blending thermal (infrared) images with visible light. Besides
visual validation, quantitative evaluations demonstrate that our
SSF strategy is able to yield results that are highly competitive
with traditional MSF approaches.

Index Terms— Multi-scale image fusion, Laplacian pyramid,
image enhancement.

I. INTRODUCTION

HE advent of advanced image sensors has empowered
effective and affordable applications such as digital
photography, industrial vision, surveillance, medical applica-
tions, automotive, remote sensing, etc. However, in many
cases the optical sensor is not able to accurately capture
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the scene content richness in a single shot. For example,
the dynamic range of a real world scene is usually much
higher than can be recorded with common digital imaging
sensors, since the luminances of bright or highlighted regions
can be 10,000 times greater than dark or shadowed regions.
Therefore, such high dynamic range scenes captured by digital
images are often degraded by under or over-exposed regions
where details are completely lost. One solution to obtain
a complete dynamic range depiction of scene content is to
capture a sequence of LDR (low dynamic range) images
captured with different exposure settings. The bracketed expo-
sure sequence is then fused by preserving only well-exposed
features from the different exposures. Similarly, night-time
images are difficult to be processed due to poor illumina-
tion, making it difficult to capture a successful image even
using the HDR (high dynamic range) method. However, by
also capturing with a co-located infrared (IR) image sen-
sor, it is possible to enrich the visual appearance of night-
time by fusing complementary features from the optical and
IR images.

Challenging problems like these require effective fusion
strategies to blend information obtained from multiple-input
imaging sources into visually agreeable images. Image fusion
is a well-known concept that seeks to optimize information
drawn from multiple images taken of the same sensor or
different sensors. The aim of the fusion process is that the
fused result yields a better depiction of the original scene,
than any of the original source images.

Image fusion methods have been applied to a wide range
of tasks including extended depth-of-field [1], texture syn-
thesis [2], image editing [3], image compression [4], multi-
sensor photography [5], context enhancement and surrealist
video processing [6], image compositing [7], enhancing under-
exposed videos [8], multi-spectral remote sensing [9], medical
imaging [10].

Many different strategies to fuse a set of images have been
introduced in the literature [11]. The simplest methods, includ-
ing averaging and principal component analysis (PCA) [12],
straightforwardly fuse the input images’ intensity values.
Multi-resolution analysis has also been extensively considered
to match processing the human visual system. The discrete
wavelet transform (DWT) was deployed by Li et al. [13]
to accomplish multi-sensor image fusion. The DWT fusion
method computes a composite multi-scale edge representa-
tion by selecting the most salient wavelet coefficients from
among the inputs. To overcome the shift dependency of the
DWT fusion approach, Rockinger [14] proposed using a shift
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Fig. 1. Comparative results of different fusion techniques for merging multi-exposure images. Top row (from left to right), are shown the original two inputs,
the result of averaging the inputs and the fusion results of [12]-[14] and [26]. Bottom row (from left to right), are shown the results of the fusion approaches
of [4], [15], [17], [21], [23], and [24], and our single-scale fusion result . As can be seen, most of the fusion techniques yield results very similar to the

simple average value of the two inputs. While most of the traditional fusion approaches yield results similar to the result obtained by simply averaging the
inputs, the Laplacian multi-scale fusion [4], [27] is more robust and delivers results comparable to those of more recent fusion techniques such as GRWF

fusion method of Shen et al. [23].

invariant wavelet decomposition. Tessens et al. [15] used the
directional curvelet transform (CVT) to separate high and low
frequency image components while capturing image structures
as a sparse set of coefficients. Another alternative is the con-
tourlet transform [16], which combines the Laplacian pyramid
with a directional filter bank. Zhang and Guo [17] deployed
an undecimated, shift-invariant contourlet transform for image
fusion. In another category of methods, Tang [18] introduced a
discrete cosine transform (DCT)-based algorithm to enhance
the contrast of the input images to be fused. Image fusion
based on MRF models for remote sensing applications was
described by Xu et al. [19]. Neural networks were employed
by Fay et al. [20] to fuse night-vision images from multiple
infra-red bands. A gradient-based method was introduced by
Petrovic and Xydeas [21]. In their method, input images
were represented at each resolution level using gradient map
signals rather than absolute grey-level values. Liang et al. [22]
formulated a tensor decomposition technique and used SVD
to fuse multiple images. More recently, in the context of
multi-exposure fusion, Shen et al. [23] introduced generalized
random walks to achieve an optimal balance between two
quality measures, i.e., local contrast and color consistency,
while capturing scene details from different exposures. The
problem of balancing color consistency and local contrast has
been approached by estimating the probabilities of each output
pixel belonging to one of the input images. Li et al. [24]
proposed an effective framework built on guided filters [25]
to improve the spatial consistency of fusion between the base
and detail layers.

One of the most successful image fusion strategies is
based on the Laplacian pyramid decomposition (see Fig. 1).
Introduced by Burt and Adelson [4] in the context of extended
depth of field, the Laplacian pyramid has been employed for
applications ranging from image compression to image denois-
ing. In the context of multi-scale fusion, the Laplacian pyramid
decomposition has recently been demonstrated to be effective
for several interesting tasks such as HDR imaging [27],
image filtering [28], [29], single image dehazing [30], [31],
image and video decolorization [32] and underwater image
enhancement [33].

Multi-scale fusion (MSF) based on the Laplacian pyramid
became rapidly popular due to its effectiveness, but also
to its intuitive method of deployment. The MSF process is
guided by a set of measures (weights maps) that indicate the
contribution of each pixel (of each input) to the final result.
The weight maps capture the degree to which each input fits
some desirable qualities (e.g. contrast, saliency) that are to be
preserved in the fused result. Due to their inherent capacity
to handle information at multiple scales, MSF based methods
have been demonstrated to avoid the introduction of visual
artifacts in image blending process.

However, despite of its popularity, MSF methods are gen-
erally computationally expensive and difficult to implement,
especially in terms of data storage and transfer manage-
ment [34], [35]. These limitations are particularly observable
when processing large images since the number of levels of
the multi-scale decomposition increases with the input image
resolution. Decreasing the number of levels is not a solution,
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since it generally introduces unpleasing artifacts in the fused
result (e.g. Fig. 9).

With these problems in mind, we have developed an easy-
to-implement and computationally efficient alternative to the
MSF strategy that fuses the multiple inputs in their native res-
olution, using weight maps defined on a single scale. We first
show how the MSF decomposition can be approximated using
a single-scale decomposition in a way that eliminates redun-
dant computations. Interestingly, the single-scale expression
obtained from the MSF approximation also provides insightful
cues regarding how the MSF process manipulates weights
and image features to compute a visually pleasant outcome.
It also helps explaining why MSF works, as compared to a
simple weighted average of the inputs using low-pass weight
maps.

We then demonstrate the generality and effectiveness of our
proposed single scale fusion (SSF) in a variety of well-known
fusion applications such as HDR imaging, image compositing,
extended depth of field, medical imaging and blending IR with
visible images. We also supply a quantitative evaluation that
demonstrates that our single-scale fusion (SSF) strategy is able
to yield results that are competitive with traditional multi-scale
fusion (MSF) methods.

In summary, our paper provides, as original contributions:

- the first single scale strategy for fusing multiple images
that yields results that are highly competitive with clas-
sical multi-scale approaches;

- a mathematical derivation that identifies those compo-
nents of the conventional MSF that are most critical
to the blended image quality, which helps explain why
MSF works;

- an extensive demonstration of the effectiveness of the
single-scale fusion concept over a wide palette of
applications;

The rest of the paper is organized as follows. Section II
briefly reviews the process of multi-scale fusion (MSF) based
on the Laplacian pyramid decomposition and also discusses
limitations of the naive fusion process. Section III introduces
approximations that are performed to derive a single-scale
fusion (SSF) algorithm from the MSF formulation. Section IV
presents both the qualitative and quantitative performance of
our SSF operator for a large range of applications, while
Section V concludes the paper.

II. IMAGE FUSION: BACKGROUND AND NOTATIONS

Generally, image fusion can be defined as a process of effec-
tively blending several input images (e.g. [4], [27]) or versions
of the same original image (e.g. [30], [33]) into a single
output image that retains the most naturalistic, high-quality
elements from among all the source inputs. It is desirable
that the fused results be free of any unpleasant artifacts not
present in the scene. In order to generate a desired output, the
fusion process is guided by several quality measures or weight
maps. These quality measures are generally defined dependent
on the application, and aim to retain only those input fea-
tures that transfer seamlessly to a visually satisfactory output
result.
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Fig. 2. Naive, multi-scale fusion and our single-scale result. Both involve,
a similar degree of complexity, while our single-scale fusion method is able
to deliver results competitive with the multi-scale approach.

Before developing our single-scale fusion solution,
we review the basic steps that define the classical image
fusion process. We begin by briefly discussing the naive
fusion solution, then we elaborate the multi-scale image
fusion (MSF) approach based on the Laplacian decomposition.

A. Naive Image Fusion

Image fusion typically relies on set of weight maps that
are used to transfer the most relevant features to the output.
In its simplest form, the inputs Z; are directly weighted
by some specific measures (weight maps) W, that indicate
the amount that each image’s pixels contribute to the final
result.! This approach, called naive image fusion (NF), is quite
straightforward and computationally efficient. The naive fusion
result R yr can be expressed as:

K

Rvr(x) = D W) Ti(x)
k

ey

where K is the number of inputs. The weights W; are
normalized to ensure that the intensity range of the result is
similar to the dynamic range of the inputs: >, Wi(x) = 1,
for each coordinate x.

The naive fusion implementation involves a minimum num-
ber of operations, and has the additional advantage of preserv-
ing most of the available high frequencies in the final result.
Unfortunately, the output of the naive fusion strategy contains
distracting halos artifacts (see Fig. 2), especially in the regions
containing strong transitions in the weight maps that have no
correspondence with the input content. As pointed out in [27]
and further discussed in Section III (and depicted in Fig. 4),

ISee the experimental section for a description of the weight map is
computed in practice.



68

Original

Li{l} La{I}

Fig. 3.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 1, JANUARY 2017

L4{I} G4{I}

La{I}

plwpIAd [pajdwpsdn

Last level of Laplacian

PIWDIAd [PUIBLO

The final level of a Laplacian pyramid includes a Gaussian blurred version of the original image. The top row depicts the upsampled versions of

the five downsampled Laplacian and Gaussian signals shown in the bottom row. Note also that for better visualization the absolute value of each Laplacian
image pixel is presented. This is to render the small Laplacian intensities in black and their large values in white, whatever their sign.
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Ilustration of the influence of the number of levels in the

Fig. 4.
multi-scale fusion approach. As can be observed, the number of levels affects
the degree to which the higher image frequencies are revealed. Reducing the
number of levels causes high frequency artifacts similarly to the naive fusion
approach.

simple low-pass filtering of the weight maps is insufficient to
remove those artifacts.

B. Multi-Scale Fusion

To overcome the limitations of the naive approach, the
blending process can be performed in a multi-scale fashion.
In order to explain our simplification we begin with the
multi-scale image decomposition based on Laplacian pyramid
originally described in Burt and Adelson [4]. The pyramid
representation decomposes an image into a sum of bandpass
images. In practice, each level of the pyramid does filter
the input image using a low-pass Gaussian kernel G, and
decimates the filtered image by a factor of 2 in both directions.
It then subtracts from the input an up-sampled version of
the low-pass image (thereby approximating a Laplacian), and
uses the decimated low-pass image as the input for the
subsequent level of the pyramid. Formally, using G; to denote
a sequence of [ low-pass filtering and decimation, followed
by [ up-sampling operations, we define the N levels of the

pyramid as follows:

I(x) =I(x) — G {Z(x)} + G1 {Z(x)}
£ Li{Z(x)}+ G {Z(x)}
= Li{Z(x)} + G {Z(0)} — G2 {Z (%)} + G2 {Z(x)}
= L1 {Z(0)} + L2 {Z ()} + G2 {Z (%)}

N
D LI} + G {Z(x)) (©)

I=1

As a result, the last component of the decomposition in (2),
is a Gaussian blurred version of the input image with a large
kernel (see Fig. 5). This is quite different from the other
levels, which contain middle-to high frequencies. L; and Gy
represent the [ level of the Laplacian and Gaussian pyramid,
respectively. In the rest of the paper all those images have
been up-sampled to the original image dimension.

In the traditional multi-scale fusion (MSF) strategy [27],
each source input Z;, is decomposed into a Laplacian
pyramid [4] while the normalized weight maps W, are
decomposed using a Gaussian pyramid. Assuming that both
the Gaussian and Laplacian pyramids have the same num-
ber of levels, the mixing of the Laplacian inputs with the
Gaussian normalized weights is performed independently at
each level /%

K
Ri(x) =D G (W)} Li (Tu(x) 3)
k=1

where 0 < [ < N denotes the pyramid levels and & refers to the
number of input images. The last component in (2) induces a
last contribution Ry4+1 = Zk Gn Wi} G {Zi}). For a single
level decomposition N = 0, Go {W} equals to Wy and MSF
reduces to naive fusion defined by equation (1). In practice,
the number of levels N depends on the image size, and has
a direct impact on the visual quality of the blended image

(see Fig. 4).
This blending step is performed successively at each pyra-
mid layer, in a bottom-up manner. The final multi-scale

2An efficient multi-scale fusion (MSF) implementation manipulates down-
sampled signals at each level of resolution to save memory and computation,
and upsamples the outcome of each level only before the aggregation
procedure
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fused result Ry sr is obtained by simply summing up the
contribution from each level:
N+1

Rusr(x) = D Rix) “)
1

III. SINGLE SCALE FUSION

This section derives our proposed single scale fusion strat-
egy as an approximation of the conventional multiscale fusion
approach. All along the section, to illustrate and justify our
approximations, we present image samples corresponding to
HDR imaging, using the well-known exposure fusion tech-
nique [27]. However, as will be illustrated in the Section IV,
our approach is general, being suited to other scenarios and
applications that are built on the multi-scale fusion process.

As discussed in Section II, the MSF builds on the Laplacian
pyramid, and the contribution associated with the k" input
image Z; may be expressed (for simplicity, omitting index k
and coordinate x):

N
R=> G {(W}Li{T}+ Gy W} Gy IT} )

=1
To derive a single scale approximation of (5), we first
observe that the empirical distribution of Laplacian of an
image is heavily concentrated near zero, except near edges
(black pixels are associated values near zero in Fig. 5).

‘ Li{l} Go{W} + La{I} Gi{W} + L3{I} G2{W} +...+ LN{I} GN-1{W} =
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Fusion pipeline. The Laplacian and Gaussian versions have been upsampled to the original size of the image.

Hence, the lower levels of the pyramid only impact those
regions that are characterized by significant gradient values.
As a consequence, sharp transitions in the weight maps have
little impact on the fusion process, unless they are aligned
with similar events in the input. Based on this observation
we could consider replacing G;—; {W} by Gy {W} in (5).
Then (5) becomes:

N
R =D Gn{W} LT} + Gy (W} Gy {T)
=1

(6)

In this equation, Gy {W} can be put in evidence and the
sum of Gy {Z} with the N Laplacians equals the image 7.
Hence, this approximation reduces the fusion process to a sin-
gle scale process, that is equivalent to the naive fusion strategy,
but with Gaussian-filtered weights. Figures 7 and 9 reveal
that, even if some image details are lost, the resulting outcome
is free of any dramatic and visually disturbing artifacts.

This is an interesting finding, since until now it was com-
monly believed that smoothing the weight maps was inducing
severe artifacts in the fused output (see, for example, the
explanation and Figure 4 in Mertens et al. [27]). As may be
seen in Fig. 7 , this observation from [27] is only partly valid
since using a Gaussian filter with sufficiently large kernel size
results in relatively artifact-free outcomes.

The reasonably good visual quality resulting from the
simplification adopted in (6) also indirectly explains why
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Fig. 6. As a first order MSF approximation, we had envisioned approximating the expression L1 {Z} Go {W}+ L2 {Z}G1 W} +---+ Ly {Z}Gy—1 (W}
by L1 {Z} Gy (W} + Lo {Z}G N (W} + -+ Ly {Z} G {W)}, thereby turning the MSF into a SSF. However, as illustrated in Fig.7, this approximation is
not satisfying, thereby motivating our refined approximation derived from (7) to (15).

Multi-scale fusion

Structure similarity map and index between MSF (above) and approximation (below)
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\ N T
| sSM-0965 ; $5M-0958

Fusion resulfs usion using approximation Y Li{I} Gk1{W} = Y Li{I} GN{W}

Fig. 7. Limits of straightforward single scale approximation derived
from Li{Z}Go W} + Lo{Z} G {W} + ... + LN{T}GN_1 WV} =
Li{Z}YGNy WY+ Lo {ZY Gy W} + ... + Ly—1 {Z} G § {(W)}. The top row
shows the multi-scale fusion (MSF) results while the results obtained by the
above approximation are shown in the third row. The second row shows
structure similarity (SSIM) maps and index values computed between the
MSF and the fusion results yielded by the mentioned approximation. The
approximated MSF results are artifacts-free but important details are missing.
In contrast, our SSF results (bottom row) preserve the details, as the MSF
technique.

MSF performs so well compared to the naive fusion strategy:
abrupt transitions in the weight maps, which often introduce
unpleasing artifacts into results produced by the naive method,
tend to be canceled in the multi-scale fusion output, since
discontinuities in the weight map tend to co-locate with abrupt
changes in the inputs. Thus the MSF method also benefits
by the contrast masking phenomenon [36], inherent in visual
perception, which reduces the visibility of the artifacts in
high contrast regions, especially when the artifact has similar
orientation and location as the masking signal.

Histogram of |L:i{T}| Histogram of |L2{T}| Histogram of |Ls{T}| Histogram of |L+T}|

oL L

Fig. 8. Histograms of L1 {Z}, Ly {Z}, L3 {Z} and L4 {Z}. As expected, the
histograms reveal that the largest values of L {Z} are bigger than the largest
values of Ly {Z}, with k > 1. This supports the approximation made to go
from (8) to (9).

The importance of reducing or removing high-frequencies
in the weight maps in regions that correspond to smooth
inputs signals is confirmed when considering the number of
levels involved in the MSF. In Fig. 4, we indeed observe that
decreasing the number of levels makes high frequencies in the
weight maps much more disturbing, with unpleasant artifacts,
similar to the naive strategy. This reveals that, to obtain a
visually pleasant result, the multi-scale fusion strategy requires
a sufficient number of pyramid levels which is computationally
expensive and memory demanding on large images.

From the above discussion and observations, it should be
clear that reducing high-frequencies in the weight maps is
an important step towards obtaining visually pleasing blended
output images. However, even in the absence of any disturbing
artifacts, the images resulting from (6) lack of details as
compared to the MSF results (see Fig. 9 and Fig. 7). Therefore,
we propose a second order approximation of (5), which aims
to preserve details in the inputs, while remaining single scale.
Formally, given that by definition of the Laplacian pyramid
(Section IN) Gy {W} = Gy (W} + 30_, L, W}, then
(5) becomes:

R = i[iLP {W}Ll{z}]+GN{W}§:L1{I}

=1 p=l
+ Gy {V_V} Gy {T} @)

By grouping the two last terms, the previous expression
becomes:
N
R=> XL,V L@m]+enWz  ®

I=1  p=l
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Fig. 9. The impact of the number of scales when approximating in (5) L1 {Z} Go{W}+ Lo {Z} G (W} + ... + LN {Z}Gn—1 (W} by L1 {Z} Gy (W} +
Lo {Z}Y Gy IW}+...4+ Ly {Z} Gy {W}. We observe in this figure that (i) it is important to consider a sufficient number of scales in MSF to achieve artifact-free
reconstruction, and (ii) the difference between MSF and the straightforward single scale approximation increases with the number of scale. We conclude that

we should derive a more accurate SSF than the one simply replacing all Gaussian weights by Gy {W}.

Lifl} LW} LifT} LifW}

Lifl} LifT}

SSF using Lz{ﬁ/}

SSF using Li{T}

Fig. 10.
L1 {Z}.L{{Z} of two inputs shown in Fig.2. L {W} has a shape that is
similar to that of L1 {Z}, in locations where L1 {Z} is large, and therefore
we can simplify (9) to (10). Spurious edges could be transferred to the output

if L1{Z} was approximated with L {V_V} in (9) (see red boxes). In the
bottom row are shown the results based on our SSF expression if using
L {W} and L1 {Z}, respectively.

Top two rows show Li({Z}, L {W}, L {Z}.Ly {V_V} and

We can assume that the first term of the sum (/=1) dominates
the others since the largest values, in L {Z} tend to be much
larger than the largest values in Ly {Z}, with k > 1 (see their
histograms in Fig. 8). Here, we focus only on the largest values
of Ly {Z} because they are the only ones that matter when the
products L {Z} L, {WV} are added to Gy {W}Z.

We adopt a similar approximation for the Laplacian of
the weight maps, (e.g Zg;ll L,{W} ~ Li{W}). These
approximations lead to the following expression:

R~ Gy (W} T+ L (W) L, (Z) ©)

Fig. 11. The influence of the parameter o used in our single-scale fusion
method (15). If we increase the impact (¢ = 2) of L {Z}, some small artifacts
appear around edges. Experimentally, we found that a default value of a = 0.2
is well suited to all investigated scenarios.

By observing that L; {V} has a reasonably similar shape
with L {Z}, in locations where L;{Z} is large (positive
or negative), we obtain a preliminary version of our SSF
simplification (see also Fig.10):

R~ Gy {W}TI+ BLiI{T} L, {T} (10)

In this expression, L {Z} is only significant at pixels that
are close to an edge. Hence, we investigate how to approximate
L {Z} at a location x that lies close to an edge inflexion
point xg. For this purpose, we assume that the edge profile
approximates a logistic function along the gradient orientation,
in a small neighborhood around its inflexion point.’> The
relevance of approximation is confirmed through extensive

3 This assumption is certainly not strictly valid. It does however, support the
developments (9) to (15), and leads to the approximation proposed in (15)
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Multi-scale fusion

Fig. 12.
yield very similar results as the traditional MSF approach. Since both single-scale fusion (9) and (15) produce almost identical results, all the results have
been generated using the last derivation described in (15) using the default parameter o = 0.2.

simulations in Section IV, thereby experimentally validating
our approach. Using a first order approximation, and the fact
that at the inflexion point Z(xg) ~ G| {Z(x0)}, we have:

Li{Z(x)} =1(x) - G1{Z(x)}

~ (x = x0) [VZ(x0) — VG 1 {Z(x0)}] (11)
and
Z(x) = I(x0) + (x — x0) VZ(x0) (12)
By merging (11) and (12), we have:
\WA - VG {T
Ly (T} ~ [T() — T(agy) SEEW = YOLECON g5

VZ(x0)

where the factor [VZ(xg) — VG {Z(x0)}]/VZ(xp) is smaller
than one, and tends to zero when the width of the edge
increases, i.e., when the steepness of the logistic curve
decreases. To simplify notation, we denote this factor y (xp),
and write the second term in (10) as:

Z(x0)
Z(x)

LTI L1 Z@) ~ By (o) L1 T} 1 -
~ o |L1 (T} Z(x)

]I(x)
(14)

The first approximation is obtained by replacing L {Z} in
(10) using the approximation derived in (13). The second
approximation results from the fact that (1 — %1) is a
small value having the same sign as L;{Z(x)}. Parameter
o is introduced to reflect a reasonable average value for

By (x0) [1 - II((X;’)) ] around the inflexion point of different

kinds of edges. In practice, it is set empirically, as discussed
in Section IV.

Replacing the second term in (10) with the approxi-
mation (14), and coming back to the detailed notation
(i.e., replacing Z by Zy (x) and W by Wi (x)), the contribution
of the k' input to our final simplified SSF formulation
becomes:

Rssra) =[Gy Y@} +a L Z@H [T@) (5)

Since the convolution of two Gaussian kernels is a wider
Gaussian kernel, Gy {W} can be directly computed with
a kernel whose variance is N times the variance of the
initial Gaussian kernel. Hence, no need to apply N times
the Gaussian filter to derive Gy {W}. By aggregating the
contributions of all inputs, our SSF expression becomes
Rssr(x) =D, Rssrr(x).

Single-scale fusion (Eq. 9)
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Single-scale fusion (Eq. 15)

Single-scale fusion results generated using (9) and (15). As may be observed, visually and also based on the SSIM evaluation [37] our approach

Inputs a ILifT}| GV} + o |Li{T}|

Fig. 13. T
the inputs, the corresponding two weights (G {W} and a |L; {Z}]) of (15)
and their sum.

The weights of our final SSF expression (15). From left to right:

Fig. 12 depicts differences between results obtained using
our single-scale fusion (9) and (15) and the MSF expres-
sion. As can be observed visually and also based on the
SSIM evaluation [37], both (9) and (15) yields very similar
results compared as traditional MSF. While both SSF equa-
tions (9) and (15) produce almost identical outputs, all the
results presented in the remaining of the paper have been
generated using the last derivation described in (15) using
the default parameter a = 0.2. Interestingly, (15) increases
the magnitude of the weights in the image regions with large
Laplacian values, thereby reinforcing edges in the blended
outcome. This is similar sharpening an image by subtracting
from it a fraction of its Laplacian. This observation offers a
novel perspective with respect to understanding the success
of MSF: MSF promotes the regions of the images with high
Laplacian magnitude, thereby reinforcing the contrast of the
blended image.

IV. RESULTS AND DISCUSSION

Since the primary contribution of our paper lies in the
simplification of multi-scale fusion algorithm, our validation
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primarily aims at demonstrating that our proposed single scale
simplification is valid in a large variety of use cases. We begin
by introducing a set of weights commonly used in multiscale
fusion, then validate our single scale fusion strategy on a
variety of application problems.

As previously mentioned, due to its robustness and simplic-
ity, multi-scale fusion (MSF) based on the Laplacian pyramid
decomposition is employed in a wide variety of image process-
ing tasks. However, although the concept remains the same,
the solution may vary based on the inputs that are processed
and on the criteria (quality measures) that are used to derive
their associated weight maps. Here we employ four of the
most general quality measures used in previous fusion-based
approaches [27], [30], [31], [33]: local contrast, saturation,
exposedness and saliency.

Local contrast weight map measures the amount of local
variation of each input and is computed by applying a
Laplacian filter to the luminance of each processed image.
As shown in [27] and [30] this assigns high values to sharp
transitions in images such as edges and texture by computing
the absolute value of the Laplacian response.

Saturation weight map enables algorithms to adapt to
chromatic information by boosting the luminance of highly
saturated regions. This measure is usually computed [27], [33]
as the standard deviation within color channels around each
pixel location. This is motivated by the observation that
saturated color pixels take large values on at least one or two
color channels. This weight map is simply computed (for each
input Z;) as the deviation (for every pixel location) between
the R,G and B color channels and the luminance L of the
input Zy:

Wi,c = \/1/3 [(Re — L)% + (Gx — Li)? + (Bx — Lp)?]
(16)

Exposedness weight map estimates the degree to which a
pixel is exposed. This weight promotes a constant appearance
of local contrast, neither exaggerated nor understated. Pixel
values are generally better exposed when they have normalized
values, closer to the average value, as in [27] and [31]. This
measure for input 7 is expressed as a Gaussian-modeled
distance to the average normalized value (0.5):

(Zx — 0.5)?
202 )

where the standard deviation is set to o = 0.25.

Saliency weight map identifies the degree of local
visual conspicuity, by highlighting visually attractive
regions of an image. As in the recent fusion techniques
of [30] and [31] we employ the well-known saliency
technique of Achanta et al. [45]. Its computation is inspired
by the biological concept of center-surround contrast being
computed as a difference between a Gaussian smoothed
version of the input and its mean value. The saliency weight
is defined as:

Wi,k = exp ( (17)

Wis = | Tk.one — Tiou |

where Z , is the arithmetic mean of the input Z; while
Tk, 18 @ Gaussian filtered version of the same input.

(18)
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Fig. 14. HDR imaging. Comparison of single-scale fusion (SSF) with multi-
scale fusion (MSF) for HDR imaging. Also shown are comparative results
with several well known tone mapping techniques [38]-[44].

To derive the WV, maps, those four weight maps are first
summed up for each input image k. The K resulting maps
are then normalized on a pixel-per-pixel basis, by dividing the
weight of each pixel in each map by the sum of the weights
of the same pixel over all maps.

In the following sections we will briefly discuss sev-
eral well-known fusion-based applications and show that our
single-scale fusion (SSF) method produces highly competi-
tive results compared to traditional multi-scale fusion (MSF).
We will then discus the advantages of SSF in terms of
computational complexity and ease of implementation.

A. High Dynamic Range Imaging

Various tone mapping techniques [38]-[44] aim to create a
LDR depiction from an HDR image by compressing the wide
dynamic range to a narrower range. Conversely, a well-known
HDR imaging approach, exposure fusion [27] skips the step of
computing a HDR image, and immediately fuses the multiple
exposures into a high-quality, low dynamic range image that
is ready for display.

We compare our single-scale fusion approach with the well-
known exposure fusion technique of Mertens et al. [27], which
extends the original MSF approach of Burt and Adelson [4].
For a fair evaluation we use the same weight maps in the
process of fusing the multiple exposure images.

Figure 14 shows comparative results between SSF and MSF
(the exposure fusion approach of [27]) and also the results
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TABLE I
QUALITATIVE COMPARISON BETWEEN MSF AND OUR SSF APPROACH
BASED ON THE TONE MAPPING METRIC QUALITY INDEX TMQI [46].
ALL THREE CONSTITUENT SUB-INDICES (S-STRUCTURAL
FIDELITY, N-STATISTICAL NATURALNESS, O-TMQI
SCORE) OF TMQI ARE SHOWN, WHILE THE
LAST COLUMN SHOWS THE VALUES OF
THE STRUCTURE SIMILARITY
INDEX (SSIM) BETWEEN THE
MSF AND SSF RESULTS

S score N score Q score
Image Name MSF |SSF |MSF |SSF |MSF |SSF SSIM
arno 0.8305(0.7745]0.7535[0.8311{0.9197[0.9156 | 0.9640
belgium house 0.84220.8274|0.9817{0.9853|0.9566|0.9530 | 0.9649
cave 0.745310.7265|0.7545{0.7730{0.8954 [ 0.8925 | 0.9571
chairs 0.73130.7540(0.8353{0.8412{0.9034[0.9110] 0.9854
chateau 0.79710.8110]0.8134{0.8518{0.9195{0.9291 ] 0.9793
chinese garden 0.85540.8480(0.8137{0.8342{0.9358{0.9368 | 0.9869
foyer 0.83450.8262(0.8861{0.9021{0.9407|0.9407 | 0.9862
grandcanal 0.83470.8273]0.7850{0.7868(0.9257{0.9240 | 0.9483
kluki 0.86580.848410.7805{0.8885(0.9336(0.94491 0.9770
laurentian library | 0.8431(0.8419{0.8184[0.8275[0.9331(0.9341] 0.9684
mask 0.83510.8087(0.9535{0.9461{0.9506{0.9421 ] 0.9853
memorial 0.87460.8756(0.7882{0.7813{0.9371{0.9363 | 0.9636
ostrow 0.86960.8302(0.7310{0.7683{0.9270{0.9220] 0.9131
Average 0.827610.8154{0.8227(0.8475(0.92910.9294 ] 0.9677

generated by several tone mapping techniques [38]-[44] that
have been generated by using the publicly available software
Luminance HDR.*

Qualitative visual evaluation of Fig. 14 and Fig. 15 reveals
minor differences between our strategy and the multi-scale
fusion approach. We have also performed a detailed quanti-
tative evaluation, by employing a recent specialized model of
the quality of images produced by tone mapping operators
TMQI [46].

TMQI uses the well known structural similarity (SSIM)
index [37], [47], [48] along with a natural scene statis-
tics (NSS) model [49]. TMQI evaluates the quality of the
resulted LDR images using the HDR image as a reference.
It combines the multi-scale SSIM [47] with a statistical
naturalness measure to generate a general TMQI index.

For the quantitative evaluation we tested 13 sets of images
(results on ten of them are shown in Fig. 15 while the other
three are included in Fig. 14 ). Table I contains the values
of all three TMQI indexes (S-structural fidelity, N-statistical
naturalness, Q-TMQI overall score) that comprise the TMQI
quality assessment model (the values of the TMQI indexes are
in the range [0,1]). Besides the TMQI indexes, the last column
of the Table shows the SSIM values between MSF and SSF
results.

As a general remark, it may be observed that our
single-scale fusion strategy delivers similar TMQI results as
MSF. However, some structure information may be lost (the
index S is slightly lower on SSF as compared with MSF) the
naturalness appearance of the SSF results are slightly improved
compared with the MSF results (index N). Indeed, a close
inspection of the level of similarity between the SSF and MSF
results reveals very little difference. These observations are

4http://qtpfsgui.sourceforge.net/
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also supported by the SSIM index values shown in the last
column of the Table I.

B. General Evaluation

To evaluate the applications described in the following
series of sections, we compare the results of multi-scale
fusion (MSF) with the output of our single-scale fusion (SSF)
approach. Since PSNR has been proven to be an ineffective
way of predicting human visual responses to image qual-
ity [50], we also compute the well-known structural similar-
ity (SSIM) index [37], [47], [48] on the results. Analyzing the
resulting PSNR and SSIM values reveals that both indicate
that SSF delivers a good approximation (e.g. the SSIM values
were greater than 0.95 for all examples in our experiments) to
the MSF technique.

C. Image Compositing

Image compositing is an important image/video editing
task that deals with the problem of combining component
images in order to generate an integrated composite image.
Known also as photomontage, this artistic technique has been
considered since the advent of photography [51]. Overlayed
or superimposed images are combined with the aim of trans-
mitting artistic thoughts or expressions to the viewer. Image
compositing challenges consist of preserving the contrast, the
sharpness and creating seamless transitions in the composed
output.

Multi-scale fusion has been successfully applied for this
task [7]. As shown in the examples in Fig. 16, our technique
performs on a par with the specialized multi-scale fusion
approach of [7] and also with the classical MSF approach
using the same weight maps as the ones described in the
beginning of this section. Moreover, it may be observed that
our algorithm preserves the degree of apparent local contrast
as well as salient regions, while seamlessly blending multiple
inputs (see Fig. 17 for another example).

D. Extended Depth-of-Field

This task seeks to blend several images that were obtained
by focusing at different depths to create an output image
having an extended focal range. Extended depth-of-field
methods have utility in fields such macro photography and
microscopy [1], where the depth of field may be extremely
limited. This task was performed automatically over the entire
image for the first time in [4] using a multi-scale fusion
strategy based on Laplacian pyramids. Figure 18 demonstrates
that SSF is able to produce comparable results as traditional
MSF techniques (using the same weight maps).

E. Medical Imaging

In the medical field, image fusion is important for inte-
grating multi-modal images into a single output result that
may contain more details and a more complete depiction.
For instance, combining MRI with CT images [10], [52] is
a common strategy that yields a more accurate description
of the scanned body, since information provided by these
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Multi-scale fusion Single--scale fusion Multi-scale fusion Single--scale fusion

Fig. 15. HDR imaging. Comparison of the MSF with SSF for several set of images used in the TMQI evaluation shown in Table I. From left to right and
top to bottom (arno, belgium house, cave, chairs, chinese garden, kluki, mask, ostrow, memorial, laurentian library).

different scanning techniques may provide complementary that can be important for planning surgical procedures. Using
information. Such MRI/CT fused output images have been two well-known MRI/CT image pairs [52], Fig. 19 demon-
shown to provide both anatomical and functional information strates that our simplified approach is able to yield results that
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TABLE I
COMPARATIVE COMPUTATION TIMES (EXPRESSED IN SECONDS OF MATLAB CODE) OF NF, MSF AND SSF STRATEGIES FOR DIFFERENT INPUT

SIZES. AS SHOWN IN SECTION III, OUR APPROACH HAS SIMILAR COMPLEXITY (THE SAME NUMBER OF LEVELS) AS

THE NAIVE FUSION APPROACH, BUT ABLE TO DELIVER COMPARABLE OR BETTER

RESULTS THAN THE MULTI-SCALE FUSION APPROACH

256 x 256 512 x 512 1024 x 1024 2048 x 2048

Comp. times | No. of levels | Comp. times | No. of levels | Comp. times | No. of levels | Comp. times | No. of levels
Naive fusion (NF) 0.11 1 0.21 1 0.59 1 2.11 1
Multi-scale fusion (MSF) 0.41 6 0.79 7 2.57 8 8.61 9
Single-scale fusion (SSF) 0.13 1 0.27 1 0.85 1 3.19 1

Source 1 Weight 1

Grundland et al. [2006]

Source 2

Weight 2

Fig. 16. Image Compositing.

Source 1

Linear Blending

Source 2 Grundland et al. [2006]

Fig. 17. Image Compositing.

Source 1 Source 2 Mulfi-scale fusion

Fig. 18.

Extended Depth of Field.

preserve the contrast and finest details in a manner similar to
the classical MSF approach (observe also the overlaid SSIM
index values).

Source 1 Source 2 Multi-scale fusion Single-scale fusion

Fig. 19. Medical imaging: fusing MRI/CT images.

Source 1 Multi-scale fusion Single-scale fusion

Source 2

Fig. 20. Fusing visible and infra-red information.

F. Multi-Band Image Fusion

Multi-band image fusion considers the composition of
images from different light frequency bands, such as visible
light and IR images. For instance, fusing radar data and
IR images can considerably enhance accuracy when estimat-
ing the positions of different objects [5], [11]. Additionally,
in the context of nighttime surveillance, existing techniques
combine the IR image information with visible image data
in order to better detect and localize persons in an analyzed
scene. Figure 20 presents two examples that fuse the vis-
ible with IR information. Both close visual inspection and
structure similarity (SSIM index) validation, strongly indicates
that the SSF technique produces very similar results as the
MSF approach.

While the computation complexity of our SSF technique
is similar to that of the naive fusion implementation (please
refer to the Table II), our single scale fusion technique it is
able to produce high quality results. Unlike naive fusion (NF),
the multi-scale fusion (MSF) approach has the advantage
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that it can preserve both relevant high and low frequencies
into the final result, while strongly mitigating most visual
artifacts (see Fig. 2). In contrast, the main disadvantage of
MSF is a higher computation complexity and more com-
plex memory management procedures. As described in the
literature dealing with the resource efficient implementation
of multiresolution processes [34], [35], data transfer and
cache memory management is non-trivial in systems that
process signals at distinct resolution levels, simply because
manipulating multiple resolutions penalizes memory access
bandwidth (more data are manipulated) and/or memory access
locality (when subband coefficients associated to the same
image location are stored in distinct parts of the memory).
The problem is especially critical for embedded systems with
highly constrained resources. On general purpose platforms,
the memory access platform is less prominent. In this case
however, the computational complexity is still larger for MSF
than for SSE.To compare the SSF and MSF computational
complexity, Table II presents the running time of differ-
ent fusion algorithms for different image sizes. Codes have
been written in Matlab, and run on [CPU i7, 8GB RAM].
As expected, our single-scale fusion (SSF) approach has the
same running time as naive fusion (NF) strategy , which is
significantly faster than MSF. This reflects the advantage of
implementing the fusion as a single scale procedure.

V. CONCLUSIONS

In this paper we have introduced a simplified single-scale
approximation to the well-known multi-scale fusion based on
the Laplacian decomposition. Before introducing our single
scale strategy for fusing multiple images, we first identify the
most critical components of the traditional MSF that helps to
explain why MSF performs so well. Our SSF method has a
complexity comparable to the naive fusion solution. However,
our extensive qualitative and quantitative evaluations demon-
strate that our simplified fusion approach has the advantage to
produce similar high quality results as the multi-scale fusion
approach.

In the future work, we plan to explore the use of per-
ceptually relevant natural scene statistics [53] to perceptually
optimize the fusion process [54].
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