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Abstract

We consider the problem of estimating a dense depth map from a single monoc-
ular natural image. Inspired by psychophysical evidence of visual signal processing in
human vision systems (HVS), we propose a Bayesian framework to recover detailed
3D scene structures by exploiting reliable and robust natural scene statistics (NSS)
models of natural images and depth maps. Specifically, we utilize the statistical
relationships between local image features and depth variations inherent in natural
images. By observing that similar depth structures may exist in different types of
luminance textured regions in natural scenes, we build a dictionary of canonical depth
patterns as the prior, and fit a multivariate Gaussian mixture (MGM) model to associate
local image features to different depth patterns as the likelihood. Compared with the
state-of-the-art depth estimation method, we achieve superior performance in terms
of pixel-wise estimated depth error, but better capability of recovering relative distant

relationships between different objects and regions in natural images.

Index Terms

Depth estimation, Bayesian, human vision systems (HVS), natural scene statis-
tics (NSS)

<+

o Che-Chun Su and Alan C. Bovik are with the Department of Electrical and Computer Engineering, The
University of Texas at Austin, Austin, TX 78712, USA.

E-mail: ccsu@utexas.edu; bovik@ece.utexas.edu



1 INTRODUCTION

With the rapid growth and wide spread popularity of 3D films and enter-
tainment devices, understanding how depth information and 2D image data
interact in natural images and videos has become of more importance in the
past several years. In particular, recovering the three-dimensional structure of
a scene from a single monocular image has been regarded as a fundamental
problem in image/video processing and computer vision disciplines. More
accurate depth estimation results in better understanding of the geometric re-
lationships between objects in natural images, which would be beneficial to
various image/video and vision applications, e.g., robotics, surveillance, scene
understanding, perception quality, etc.

By seamlessly combining both binocular and monocular cues, humans are
able to perceive depth and reconstruct the geometry of the 3D visual space
so quickly and effortlessly that an individual rarely feels how difficult and ill-
posed this problem can be. Even either given a single color image or with one
eye closed, the human vision system can still acquire accurate depth structures
of natural environments and relative distant relationships between different
objects. However, for computer programs and robotics, estimating range (ego-
centric distance) from a single monocular image has been known as a very
difficult problem generally approached by using a combination of well-known
depth cues, e.g., color, texture, perspective, etc.

Much work on 3D scene reconstruction has focused on binocular vision, i.e.,
stereopsis. In [1], Scharstein and Szeliski provided a thorough review and sum-
mary of dense two-frame stereo algorithms. Many other depth recovering algo-
rithms require multiple images, including structure from motion [2] and depth

from defocus [3]. These algorithms consider only the geometric/triangulation
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differences, while there is also a variety of monocular cues that contain useful
and depth information.

Recently, there have been many different methods and algorithms developed
to tackle the problem of depth estimation from a single monocular image.
Examples include shape from shading [4], [5] and shape from texture [6], [7];
however, it is difficult to apply these algorithms to surfaces without fairly
uniform texture and luminance variations. Nagai et al. [8] used Hidden Markov
Models (HMM) to reconstruct surfaces of known, fixed objects such as hands
and faces from single images. In [9], an example-based approach was proposed
by Hassner et al. to estimate the depth of an object given some known classified
category.

One of the first methods that utilizes monocular image features, proposed
by Hoiem et al. [10], reconstructs a simple 3D model of outdoor scenes by
making the assumption that an image could be divided into a few planar
surfaces, and pixels could be classified into limited labels, e.g., ground, sky,
and vertical walls. Delage et al. [11] developed a dynamic Bayesian network
to reconstruct the locations of walls, ceilings, and floors by finding the most
likely floor-wall boundaries in indoor scenes. In [12], [13], a supervised learning
strategy was devised by Saxena et al. to infer absolute depth of each pixel
in the monocular image. They assumed that most 3D scenes are made up of
many small, approximately planar surfaces, and use a Markov Random Field
(MRF) to model both the monocular depth cues, e.g., texture variations and
gradients, as well as the relationships between different parts of the image. In
[14], Torralba and Oliva studied the relationship between the Fourier spectrum
of an image and its mean depth. Specifically, they proposed a probability model
to estimate absolute mean depth of a scene using both the global and local
spectral signatures of an natural image. In [15], Liu et al. incorporated semantic
labels to guide the 3D reconstruction process, and achieve better depth estimates
of each pixel in a scene. By conditioning on different semantic labels, they were

able to better model the absolute depth as a function of local pixel appearance.



Recently, Karsch et al. [16] presented an optimization framework to generate
the most likely depth map by first matching high-level image features to find
candidates from the database, and then warping those candidate depth maps
with spatial regularization constraints.

Natural scene statistics (NSS) have proven to provide abundant and useful
resources towards both understanding the evolution of human vision systems
(HVS) [17], [18] and solving diverse image/video and vision problems [19]-
[22]. There has also been work conducted on exploring 3D NSS and their
applications. For example, Potetz et al. [23] examined the relationships between
luminance and range over multiple scales and applied their results to shape-
from-shading problems. Yang et al. [24] explored the statistical relationships
between luminance and disparity in the wavelet domain, and applied the de-
rived models to a Bayesian stereo algorithm. In [25], Su et al. proposed reli-
able statistical models for both marginal and conditional distributions of lumi-
nance/chrominance and disparity in natural images, and used these models
to significantly improve a chromatic Bayesian stereo algorithm. Recently, Su et
al. developed new bivariate and correlation NSS models that well capture the
higher-order dependencies between spatially adjacent bandpass responses in
both natural images and depth maps [26], [27]. In [28], the authors further
utilized these robust models to propose a generic quality evaluation frame-
work on stereoscopic image pairs with superior performance to state-of-the-art
algorithms.

In this work, inspired by psychophysical evidence of visual signal processing
in HVS, we propose a Bayesian framework for estimating depth from single
monocular images by exploiting reliable and robust NSS models of natural
images and depth maps [26], [27]. The proposed Bayesian framework is trained
and tested on an accurately co-registered database of natural image and range
data, the LIVE 3D+Color Database - Release 2 [29], which consists of 99 pairs
of natural images and ground-truth depth maps in high-definition resolution

of 1920 x 1080.



Testimage —p 'Mage Patch p| 'mage Feature Bayesian » Stiching [ EsStimated
Formation Extraction Range Map
A %4
Training
Range Patches
Range Fgature K-means »/  Prior
Extraction

b

Regressor ]

Mean

Standard
Deviation

Training Image Feature Classifier # Likelihood

Image Patches " Extraction

Fig. 1. Block diagram of the proposed Bayesian framework for depth estimation.

The rest of this paper is organized as follows. Section 2 describes details of
the proposed Bayesian framework, including the prior and likelihood models.
The experimental results are presented in Section 3, followed by the conclusions

in Section 4.

2 PROPOSED BAYESIAN FRAMEWORK

Figure 1 shows a block diagram of the proposed Bayesian framework for depth
estimation from monocular natural images. The framework is divided into two
parts, training and testing. For the training part, we first collect patches of size
32x32 from both natural images and corresponding ground-truth depth maps,
and then extract natural scene statistical features for each patch pair. Next,
to explore the embedded depth information in natural images, we learn the
priors and likelihoods from these perceptual image and depth features. For the
testing part, an input image is divided into overlapping 32x32 patches, and
the same set of features is extracted from each image patch. The corresponding
depth patch is estimated for each image patch using a Bayesian model with

the learned priors and likelihoods. Finally, all the depth patches are stitched



together to form the estimated depth map. The details of each component of

the proposed Bayesian framework are explained in the following subsections.

2.1 Perceptual Decomposition

Human vision systems (HVS) extract abundant information from natural en-
vironments by processing visual stimuli through different levels of decom-
position and interpretation. By emulating how HVS process natural image
and depth information, a variety of statistical models have been proposed
to fit the bandpass responses of luminance/chrominance and depth/disparity
in natural scenes [24], [25], [30]. In this work, since we want to learn and
exploit the statistics relating depth perception to natural images, we apply
certain perceptually relevant pre-processing steps on natural image luminance,
and extract depth-aware features from both univariate and bivariate empirical
response distributions.

We acquire luminance by transforming pristine color images into the percep-
tually relevant CIELAB color space, which is optimized to quantify perceptual
color differences and better corresponds to human color perception than does
the perceptually nonuniform RGB space [31]. Each luminance image (L*) is
then transformed by the steerable pyramid decomposition, which is an over-
complete wavelet transform that allows for increased orientation selectivity [32].
The use of the wavelet transform is motivated by the fact that its space-scale-
orientation decomposition is similar to the bandpass filtering that occurs in area
V1 of primary visual cortex [33], [34]. Specifically, in the implementation of the
proposed Bayesian framework, we utilize the steerable pyramid decomposition
with five scales, indexed from 1 (finest) to 5 (coarsest), and twelve frequency-
tuning orientations: 0, 557, ..., 7.

After applying the multi-scale, multi-orientation decomposition, we perform
the perceptually significant process of divisive normalization on the luminance

wavelet coefficients of all of the sub-bands [35]. Divisive normalization, i.e.,

sensory gain control, was proposed in the psychophysical literature to account



for the nonlinear behavior of human perceptual neurons [36]. The divisive
normalization transform (DNT) used in our work is implemented as follows
[37]:
W\ L5, Yi
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where (z;,y;) are spatial coordinates, w are the wavelet coefficients, u are the

coefficients after DNT, s is a semi-saturation constant, the weighted sum oc-
curs over neighborhood pixels indexed by j, and {g(x;,y;)} is a finite-extent
Gaussian weighting function.

In the following subsections, we explain the details of extracting both image
and depth features from these divisively normalized sub-band responses to

learn the prior and likelihood for depth estimation.

2.2 Image Feature Extraction

It has been known that there exist statistical relationships between luminance
intensity and depth information in natural scenes [30], and a variety of uni-
variate statistical models have been proposed to fit the bandpass responses of
luminance/chrominance and disparity [24], [25]. Recently, new bivariate and
correlation statistical models have been developed to capture spatial depen-
dencies between neighboring sub-band responses in natural images [27]. In
the proposed Bayesian framework, we exploit these natural scene statistical
features to learn the relationships between the projected image luminance and

the embedded depth information in natural environments.

2.2.1 Univariate NSS Feature

Considerable work has been conducted on modeling the statistics of natu-

ral images using multi-scale, multi-orientation transforms, e.g., Gabor filters,



wavelets, etc [18], [38]. Here we use the univariate generalized Gaussian distri-
bution (GGD) to fit the empirical histograms of luminance sub-band responses,
i.e., v in Eq. (1), of each image patch. The probability density function of a
univariate GGD with zero mean is:

/Bu _(m)ﬁu

) = e 2
where I'(-) is the ordinary gamma function and «, and /3, are scale and shape
parameters, respectively. The two resulting GGD parameters from each sub-

band, scale and shape, are included in the feature set of each image patch.

2.2.2 Bivariate NSS Feature

In addition to univariate statistics in natural luminance, we further exploit
higher-order dependencies that exist between spatially neighboring bandpass
image responses. Specifically, we examine the bivariate distributions of hori-
zontally adjacent sub-band responses, which are sampled from locations (z,y)
and (z +1,y) in an image patch. To model these empirical joint histograms, we
utilize a multivariate generalized Gaussian distribution (MGGD), which include
both the multivariate Gaussian and Laplace distributions as special cases. The
probability density function of a multivariate generalized Gaussian distribution
is defined as:
P06 ML 1) = (M) ®
Nk
where x € RY, M is an N x N symmetric scatter matrix, a; and 3, are the scale
and shape parameters, respectively, and g,, ,(-) is a density generator:
N
Pt e ?
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where y € R". Note that when 3, = 0.5, Eq. (3) becomes the multivariate
Laplacian distribution, and when 3, = 1, Eq. (3) corresponds to the multivariate

Gaussian distribution. Moreover, when 3, — oo, the MGGD converges to a



multivariate uniform distribution. In our implementation, we model the bivari-
ate empirical histograms of horizontally adjacent sub-band coefficients of each
image patch using a bivariate generalized Gaussian distribution (BGGD) with
N =2in Eq. (3). The parameters of the BGGD can be obtained on the bandpass
coefficients of image patches using the maximum likelihood estimator (MLE)
algorithm described in [26]. We include both the scale and shape parameters,

a, and [, in the image patch feature set.

2.2.3 Correlation NSS Feature

In addition to the univariate and bivariate GGD models fitting empirical dis-
tributions of sub-band coefficients in natural images, there exist higher-order
dependencies that have not been utilized between spatially neighboring band-
pass luminance responses. In particular, we have found that the correlation
coefficients between spatially adjacent bandpass responses posses strong ori-
entation dependencies [27]. For example, the horizontally adjacent bandpass
responses are most correlated when the sub-band tuning orientation aligns at
7, and become nearly uncorrelated at orientation 0 (rad) and =, indicating its
periodicity with relative orientation of spatial and sub-band tuning orientation.
This relative orientation regularity on correlation coefficients between spatial
neighboring sub-band responses provides useful cues on distinguishing areas in
the image with different geometric structure, e.g., depth discontinuities, smooth
surfaces, etc.

We have found that the periodic relative orientation dependency of the cor-
relation coefficients between spatially adjacent sub-band responses can be well
modeled as an exponentiated sine function given by:

1 sin (2522 4 )

y:f(xhx?):A 9

+c (5)

where y is the correlation coefficients between spatially adjacent bandpass re-
sponses, r; and x, represent spatial and sub-band tuning orientations, respec-

tively, A is the amplitude, T is the period, 0 is the phase, v is the exponent, and ¢
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is the offset. The correlation coefficient is periodic with 7 of relative orientation
and reaches maximum when |z, — 21| = k- 5,k € N, yielding a three-parameter
exponentiated sine model with amplitude A, exponent +, and offset ¢, by fixing
T=mand 0= 3:

- ¥
y= far,m) = A 1—|—cos(22(x2 r1)) e

= Alcos (x5 — 1) + ¢ (6)

In our implementation, we compute the correlation coefficients between hori-
zontally adjacent sub-band responses on each image patch at different scales,
tit the exponentiated sine model, and include all three parameters, 4, v, and ¢,
into the feature set.

As a result, the depth-aware feature vector f that we use to characterize each

image patch is formed as:

f = [{awk}v {5u,k}a {O‘b,k}7 {Bb,k}a {A9}7 {78}’ {CSHT (7)

where k € {1,..., K}, K is the number of sub-bands, and s € {1,...,S}, S is

the number of scales.

2.3 Depth Feature Extraction

Unlike luminance intensity in natural images, range/depth maps captured from
natural environments tend to possess smooth surfaces with relatively few tex-
tures. Based on this observation, we use the histogram of gradient magnitudes
as depth features to characterize different types of depth patches extracted from
ground-truth depth maps [39]. As shown in Fig. 1, we first subtract the mean
from each depth patch, and divide the difference by its standard deviation
to obtain a normalized depth patch. Then, we compute the depth gradient
magnitudes at each pixel location, and obtain the corresponding histogram
on the entire patch. Note that the histogram of depth gradient magnitudes is
computed along eight canonical orientations, i.e., 0 (rad), %77, e, %7?, resulting

in an eight-bin histogram for each depth patch.
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Fig. 2. Examples of different canonical depth patterns.
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In addition to the gradient histogram, we also compute the histogram of
bandpass response magnitudes on the perceptually decomposed depth patches.
Specifically, we compute the divisively normalized wavelet responses « using
Eq. (1) at each pixel location, and obtain a histogram by binning the responses
along different sub-band tuning orientations. The same eight canonical ori-
entations as in the gradient magnitude histogram are used for the bandpass
response histogram. Therefore, we end up with a 16-dimension feature vector
to characterize each depth patch for learning the prior and likelihood in the

proposed Bayesian framework.

2.4 Prior

It may be observed that in natural images, discontinuities in depth maps usually

implies that there are luminance edges at the same location in the corresponding
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color images. In other words, patches of different luminance appearance and
texture may have similar depth patterns, due to the common geometric struc-
tures [24]. Moreover, without effects of ambient light and textured surfaces,
depth maps tend to posses simpler, more regular patterns than natural lumi-
nance images. Therefore, inspired by these observations, we build a dictionary
of canonical depth patterns by clustering the features extracted from depth
patches with the k-means algorithm.

Figure 2 shows some examples of different canonical depth patterns extracted
by the k-means algorithm with five clusters. For each canonical depth pattern,
the top row shows the clustered depth patches using the extracted features,
and the bottom row the corresponding image patches. We can see that these
canonical depth patterns contain different types of geometric structures, in-
cluding depth discontinuity along the horizontal direction (pattern-1), depth
discontinuity along the vertical direction (pattern-2), smooth variation of depth
along the horizontal direction (pattern-3), smooth variation of depth along the
vertical direction (pattern-4), and a busy, complicated pattern of depth changes
(pattern-5). In fact, we can easily find these canonical range patterns in natural
scenes, e.g., most of the busy, complicated range patterns appear in areas filled
with tree leaves and grass. In addition, as the number of clusters used in the k-
means algorithm increases, these five canonical depth patterns still exist, while
different clusters of range patches may share similar structures. As a result, the
depth prior of the proposed Bayesian framework consists of the normalized
residual depth patches of each canonical depth pattern, as well as the portion
of depth patches belonging to each pattern among all depth patches, i.e., p(n),
where n € {1,..., N} and N is the number of canonical depth patterns, i.e., the

number of clusters used in the k-means algorithm.

2.5 Likelihood

As we can observe from the canonical depth patterns shown in Fig. 2, the depth

discontinuities in range maps consistently match the luminance edges in natural
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images, while some textured areas with variations in luminance/chrominance
may not necessarily correspond to depth changes, resulting in smooth surfaces
with low gradients in range maps. In other words, there exist high correla-
tions between image edges and depth discontinuities. For example, if there
are strong variations in a natural image, i.e., large bandpass responses, there
is a high likelihood of co-located variations, i.e. large depth gradients, in the
corresponding range map. To better utilize these relationships between image
and depth variations in natural environments, we derive a likelihood model
which aims to associate image patches to different canonical depth patterns.
First, assume we obtain N canonical depth patterns from the prior using
the k-means clustering algorithm. Then, we assign each image patch a label
indicating the canonical depth pattern of its corresponding depth patch. Based
on these labeling results, we use the depth-aware feature set, i.e., f in Eq. 7,
extracted from each image patch to train a classifier using a multivariate Gaus-
sian mixture (MGM) model. The reason that the MGM model fits well to this
classification task is that, as observed in Fig. 2, image patches with different
appearances and/or textured surfaces may possess the same canonical depth
pattern due to the similar underlying geometric structures. Therefore, we can
take advantage of the Gaussian mixture model trained for each canonical depth
pattern to handle the heterogeneity of its image patches. The MGM model for

the n-th canonical range pattern is given by

M
p(x;6,) = Z Wy N (X5 s X)) (8)

m=1
where n € {1,...,N} , 6, is the model parameter, x is a multi-dimensional

data vector, e.g., some measurement or a feature, N (x|u,,,X,,) is the m-th
Gaussian component, and w,, is the m-th mixture weight with the constraint
that 3> w,, = 1. Note that the complete MGM model is parametrized by 6, =
{Wy P, 2}, m € {1,..., M}, which includes the mean vectors, covariance

matrices, and mixture weights from all Gaussian components. Finally, the m-th
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Gaussian component density function is given by

1
(27T)D/2‘Em’1/2

e[—%(x—u,n)TZ:nl (x_/‘l”r”)] (9)

where D is the dimensionality of x. Here we use the depth-aware feature set
f as x € RP. Therefore, the likelihood probability of seeing an image patch
with the extracted feature f given a particular canonical depth pattern n can

be expressed as p(f;0,).

2.6 Regression on Mean Depth

As discussed in Sec. 2.3 and 2.4, before we extract features from depth patches
to learn the prior, we normalize each depth patch by removing the mean and
standard deviation to better characterize the depth patterns. To add the mean
back to each depth patch when estimating true range values of the test image
patches, we need to learn a mapping from the image feature space using a
regression model. In other words, given an input image patch, we can utilize
the trained regressor to estimate the mean range of the corresponding depth
patch using the extracted depth-aware image feature set f. In addition to f, we
exploit another important monocular depth cues in natural environments to
recover the true range. In [30], it has been demonstrated that there is general
correlation between the brightness and the distance in natural scenes. Here we
utilize this “the brighter the nearer” correlation to estimate the mean range
value from the average luminance intensity of the image patch. Moreover, it
can be observed that in natural images, the distance from the nodal point to
any point in the scene generally increases as its height increases. Specifically, if
we assume that the y-coordinate of a pixel increases from the bottom to the top
of an image, the range values of pixels with larger y-coordinates are generally
larger than those with smaller y-coordinates. Therefore, we introduce one more

feature into the regressor on mean depth values, the normalized y-coordinate
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of each patch in the image, given by
f =2 (10)

where p, is the y-coordinate of the image patch, and I, is the height of the
image. As a result, the feature of the image patch used in the regression model to
learn the mean depth value includes the depth-aware feature set f, the average
luminance intensity, as well as the normalized y-coordinate f,. In the proposed
Bayesian framework, we adopt the support vector regression (SVR) model
to serve as the regressor. The proposed Bayesian framework is generically
amenable to the application of any kind of regressor. Our implementation
utilizes a support vector machine (SVM) regressor (SVR) [40] using multiple
train-test sets as described in Sec. 3. SVR is generally noted for being able to
handle high dimensional data [41]. We implement the SVR model with a radial
basis function (RBF) kernel using the LIBSVM package [42].

2.7 Bayesian Model

The primary component of the proposed framework is the Bayesian model that
incorporates the prior of canonical depth patterns, the likelihood associating
image patches to different canonical depth patterns, and the regression model
recovering the mean range values for each image patch. Given a test image, we
tirst divide it into overlapped patches of size 32x32 as in the training phase,
where a 1 overlap is used, i.e., patches overlap each other by 8 pixels along
both dimensions. Next, the depth-aware feature vector f is extracted from each
image patch, as well as the average luminance intensity and the normalized y-
coordinate for mean depth regression. Then, the extracted feature f is fed into
the trained prior, likelihood, and regression models to form a Bayesian inference
of the corresponding estimated depth patch. In particular, the estimated depth

patch D of an image patch is formed as follows:
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where D,.,, is the normalized residual depth patch of the estimated canonical
depth pattern n, p, is the corresponding mean depth value obtained from
the regression model, and n represents the estimated canonical depth pattern
derived from the prior and likelihood, which is given by:

n = argmax {p(n'[f)} = argmax {p(f|n)p(n')}

n n

= argmax {p(f; 0, )p(n)} (12)

where p(f|n’) = p(f; 0,/) is the likelihood probability (Eq. (8)) of seeing an image
patch with the extracted feature f given a canonical depth pattern »n’ as derived
in Sec. 2.5, and p(n') is the corresponding prior probability of n’ as obtained in

Sec. 2.4.

2.8 Stitching

Finally, the last stage of the proposed Bayesian framework is to stitch all depth
patches together to form the final estimated depth map of the input test image.
Note that the stitching operation used here is simply averaging the estimated

range values of the overlapped pixels between depth patches.

3 EXPERIMENTAL RESULTS

To evaluate the performance of the proposed depth estimation framework, we
trained and tested the Bayesian model on the LIVE Color+3D Database - Release
2 [29], which consists of 99 pairs of color images and ground-truth range maps
in high-definition resolution of 1920 x 1080. The dense, accurately co-registered
depth maps in this database provide rich information regarding natural depth
statistics, and is also an excellent resource for evaluating depth estimation al-
gorithms. To avoid overlap between training and testing image/depth content,
we split the whole database into 80% training and 20% testing subsets at each
train-test iteration. This train-test procedure was repeated 50 times to ensure

that there was no bias introduced due to the image/depth content used for
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TABLE 1
Performance Comparison of Different Depth Estimation Algorithms (Median
across Train-Test Splits)

Metric
pp | ps | Rel | RMS

Algorithm

Depth Transfer 0.4196 | 0.5197 | 0.6399 | 13.0671
Proposed Bayesian | 0.4404 | 0.5654 | 0.5969 | 12.8417

training. We compared the proposed Bayesian framework with a state-of-the-
art depth estimation method, Depth Transfer [16].
Table 1 and 2 show the comparison results in terms of four different error

metrics. First, we report the two common metrics, the relative error (Rel.):

I * *
Z 1D (i, yi) — D* (i, yi)|/D* (i, vi) (13)

I

i=1

and the root mean squared error (RMS):

ZI: [D(zi,y:) —ID*(IMJ@)]Q (14)
=1
where D(z;,y;) and D*(x;,y;) represent the estimated and ground-truth depth
map at pixel location (z;,y;), respectively, and I is the number of pixels. In
addition, to examine how well a depth estimation method is able to recover
the relative distance in natural scenes, we report two different correlation co-
efficients between the estimated and ground-truth depth values, the Pearson’s
linear correlation coefficient p, and the Spearman’s rank order correlation co-
efficient p,. Specifically, p, and p, measure the accuracy and monotonicity,
respectively, of the estimated range values by a depth estimation algorithm
against the ground-truth range values, where a value of 1 indicates perfect
correlation.
As we can see from Table 1, which shows the median metric performance

across train-test splits, the proposed Bayesian framework outperforms Depth
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TABLE 2
Performance Comparison of Different Depth Estimation Algorithms (Standard

Deviation across Train-Test Splits)

Metric

Algorithm P ‘ 0s ‘ Rel. ‘ RMS

Depth Transfer 0.2205 | 0.2461 | 0.3891 | 8.3052
Proposed Bayesian | 0.1987 | 0.2253 | 0.3858 | 8.3921

TABLE 3

Computational Complexity of Different Depth Estimation Algorithms

’ Algorithm ‘ Runtime per Estimated Depth Map (s) ‘
Depth Transfer 1490.53
Proposed Bayesian 161.05

Transfer in terms of all four error metrics. The higher correlation performance
of the proposed Bayesian framework indicates that it is capable of recovering
more accurate relative distances between different objects and regions in natural
scenes. In addition, the proposed Bayesian framework achieves both lower
relative and RMS errors than Depth Transfer, meaning that the depth maps
estimated by the proposed Bayesian framework are closer to the ground-truth
values. Table 2 shows the standard deviation of different error metrics across
train-test splits, which signifies the performance consistency of the examined
depth estimation algorithms. It can be seen that the proposed Bayesian frame-
work delivers more consistent performance in terms of both linear and rank
order correlation coefficients, while providing similar performance consistency
on estimating absolute depth as Depth Transfer.

In addition to the quantitative comparison, we also give a visual comparison
by showing examples of the estimated depth maps from the two examined
depth estimation algorithms along with the corresponding ground-truth range

maps, as demonstrated in Figures 3 to 6. We also draw the scatter plots between
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the estimated and the ground-truth range values to gain a broader perspective
of performance. In general, we can see that Depth Transfer tends to over-smooth
the estimated range maps due to its smoothness constraint, while the proposed
Bayesian framework is able to discover more detailed structures in the scene.
For example, in Fig. 4, Depth Transfer is not able to capture the tree trunks in the
foreground, and it incorrectly mix the tree trunks with the background. On the
other hand, the proposed Bayesian framework better outlines the tree trunks,
achieving both higher linear and rank order correlations against the ground-
truth depth map. In Fig. 5, Scene-3 contains a mixture of human objects and a
tree branch, posing more challenging content for depth estimation algorithms.
The proposed Bayesian framework successfully captures the intersection of the
human hand and the tree branch, while Depth Transfer fails to recover this
complicated structure by smoothing out the tree branch into the background.
Moreover, it can be clearly seen in Fig. 6 that the proposed Bayesian framework
reconstructs the main tree structures, while Depth Transfer incorrectly combines
two separate tree trunks into one. Finally, the correlation coefficients shown
in all figures also match the numerical results, confirming that the proposed
Bayesian framework achieves superior performance at recovering relative dis-
tances in natural scenes. Note that there is no smoothness constraint in the
proposed Bayesian framework, where only simple averaging operation is per-
formed on overlapped pixels between patches. This implies some improvement
can be readily made for the proposed Bayesian framework.

Another advantage of the proposed Bayesian framework is no use of iteration,
resulting in much less computational complexity. Table 3 shows the runtime
per estimated depth map for the two examined algorithms. Since the proposed
Bayesian framework utilizes the trained prior and likelihood models, we can see
that it runs almost 10 times faster than Depth Transfer, which uses an iterative

procedure on solving an optimization function.
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Fig. 3. Example result of the estimated depth maps along with the ground-truth
depth map (Scene-1).

4 CONCLUSIONS

By exploiting reliable and robust statistical models of luminance and depth in
natural scenes, we have proposed a Bayesian framework to address the problem
of recovering the depth information from monocular natural images. In partic-
ular, two important components are learned from ground-truth range maps: a
prior model, including a dictionary of canonical depth patterns, and a likelihood
model, which embeds the co-occurrence of image and range characteristics
in natural scenes. Note that there is no use of any conventional depth cues
in the proposed Bayesian framework, and both the image and depth feature
extraction components are fairly flexible to accommodate different methods
and techniques. Compared to the state-of-the-art method, it performs better at

estimating both the absolute and relative depth from natural images.
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Fig. 4. Example result of the estimated depth maps along with the ground-truth
depth map (Scene-2).

Moreover, the superior performance in terms of recovering relative distances
implies that a biological visual system might be able to make a coarse depth
estimate of the environment using the retinal image at hand and the associations
between image textures and true geometric structures. We believe that the prior
and likelihood models developed in the proposed Bayesian framework not only
yield insight into how 3D structures in the environment might be recovered
from image data, but are able to benefit various 3D image/video and vision
algorithms. Future work involves exploiting more psychophysical knowledge
of human vision systems and introducing higher-level statistical models relating

image and range data to recover more accurate and detailed depth information.
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Fig. 5. Example result of the estimated depth maps along with the ground-truth

depth map (Scene-3).
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