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Abstract

We consider the problem of estimating a dense depth map from a single monoc-

ular natural image. Inspired by psychophysical evidence of visual signal processing in

human vision systems (HVS), we propose a Bayesian framework to recover detailed

3D scene structures by exploiting reliable and robust natural scene statistics (NSS)

models of natural images and depth maps. Specifically, we utilize the statistical

relationships between local image features and depth variations inherent in natural

images. By observing that similar depth structures may exist in different types of

luminance textured regions in natural scenes, we build a dictionary of canonical depth

patterns as the prior, and fit a multivariate Gaussian mixture (MGM) model to associate

local image features to different depth patterns as the likelihood. Compared with the

state-of-the-art depth estimation method, we achieve superior performance in terms

of pixel-wise estimated depth error, but better capability of recovering relative distant

relationships between different objects and regions in natural images.

Index Terms

Depth estimation, Bayesian, human vision systems (HVS), natural scene statis-

tics (NSS)
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1 INTRODUCTION

With the rapid growth and wide spread popularity of 3D films and enter-

tainment devices, understanding how depth information and 2D image data

interact in natural images and videos has become of more importance in the

past several years. In particular, recovering the three-dimensional structure of

a scene from a single monocular image has been regarded as a fundamental

problem in image/video processing and computer vision disciplines. More

accurate depth estimation results in better understanding of the geometric re-

lationships between objects in natural images, which would be beneficial to

various image/video and vision applications, e.g., robotics, surveillance, scene

understanding, perception quality, etc.

By seamlessly combining both binocular and monocular cues, humans are

able to perceive depth and reconstruct the geometry of the 3D visual space

so quickly and effortlessly that an individual rarely feels how difficult and ill-

posed this problem can be. Even either given a single color image or with one

eye closed, the human vision system can still acquire accurate depth structures

of natural environments and relative distant relationships between different

objects. However, for computer programs and robotics, estimating range (ego-

centric distance) from a single monocular image has been known as a very

difficult problem generally approached by using a combination of well-known

depth cues, e.g., color, texture, perspective, etc.

Much work on 3D scene reconstruction has focused on binocular vision, i.e.,

stereopsis. In [1], Scharstein and Szeliski provided a thorough review and sum-

mary of dense two-frame stereo algorithms. Many other depth recovering algo-

rithms require multiple images, including structure from motion [2] and depth

from defocus [3]. These algorithms consider only the geometric/triangulation
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differences, while there is also a variety of monocular cues that contain useful

and depth information.

Recently, there have been many different methods and algorithms developed

to tackle the problem of depth estimation from a single monocular image.

Examples include shape from shading [4], [5] and shape from texture [6], [7];

however, it is difficult to apply these algorithms to surfaces without fairly

uniform texture and luminance variations. Nagai et al. [8] used Hidden Markov

Models (HMM) to reconstruct surfaces of known, fixed objects such as hands

and faces from single images. In [9], an example-based approach was proposed

by Hassner et al. to estimate the depth of an object given some known classified

category.

One of the first methods that utilizes monocular image features, proposed

by Hoiem et al. [10], reconstructs a simple 3D model of outdoor scenes by

making the assumption that an image could be divided into a few planar

surfaces, and pixels could be classified into limited labels, e.g., ground, sky,

and vertical walls. Delage et al. [11] developed a dynamic Bayesian network

to reconstruct the locations of walls, ceilings, and floors by finding the most

likely floor-wall boundaries in indoor scenes. In [12], [13], a supervised learning

strategy was devised by Saxena et al. to infer absolute depth of each pixel

in the monocular image. They assumed that most 3D scenes are made up of

many small, approximately planar surfaces, and use a Markov Random Field

(MRF) to model both the monocular depth cues, e.g., texture variations and

gradients, as well as the relationships between different parts of the image. In

[14], Torralba and Oliva studied the relationship between the Fourier spectrum

of an image and its mean depth. Specifically, they proposed a probability model

to estimate absolute mean depth of a scene using both the global and local

spectral signatures of an natural image. In [15], Liu et al. incorporated semantic

labels to guide the 3D reconstruction process, and achieve better depth estimates

of each pixel in a scene. By conditioning on different semantic labels, they were

able to better model the absolute depth as a function of local pixel appearance.
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Recently, Karsch et al. [16] presented an optimization framework to generate

the most likely depth map by first matching high-level image features to find

candidates from the database, and then warping those candidate depth maps

with spatial regularization constraints.

Natural scene statistics (NSS) have proven to provide abundant and useful

resources towards both understanding the evolution of human vision systems

(HVS) [17], [18] and solving diverse image/video and vision problems [19]–

[22]. There has also been work conducted on exploring 3D NSS and their

applications. For example, Potetz et al. [23] examined the relationships between

luminance and range over multiple scales and applied their results to shape-

from-shading problems. Yang et al. [24] explored the statistical relationships

between luminance and disparity in the wavelet domain, and applied the de-

rived models to a Bayesian stereo algorithm. In [25], Su et al. proposed reli-

able statistical models for both marginal and conditional distributions of lumi-

nance/chrominance and disparity in natural images, and used these models

to significantly improve a chromatic Bayesian stereo algorithm. Recently, Su et

al. developed new bivariate and correlation NSS models that well capture the

higher-order dependencies between spatially adjacent bandpass responses in

both natural images and depth maps [26], [27]. In [28], the authors further

utilized these robust models to propose a generic quality evaluation frame-

work on stereoscopic image pairs with superior performance to state-of-the-art

algorithms.

In this work, inspired by psychophysical evidence of visual signal processing

in HVS, we propose a Bayesian framework for estimating depth from single

monocular images by exploiting reliable and robust NSS models of natural

images and depth maps [26], [27]. The proposed Bayesian framework is trained

and tested on an accurately co-registered database of natural image and range

data, the LIVE 3D+Color Database - Release 2 [29], which consists of 99 pairs

of natural images and ground-truth depth maps in high-definition resolution

of 1920× 1080.
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Fig. 1. Block diagram of the proposed Bayesian framework for depth estimation.

The rest of this paper is organized as follows. Section 2 describes details of

the proposed Bayesian framework, including the prior and likelihood models.

The experimental results are presented in Section 3, followed by the conclusions

in Section 4.

2 PROPOSED BAYESIAN FRAMEWORK

Figure 1 shows a block diagram of the proposed Bayesian framework for depth

estimation from monocular natural images. The framework is divided into two

parts, training and testing. For the training part, we first collect patches of size

32x32 from both natural images and corresponding ground-truth depth maps,

and then extract natural scene statistical features for each patch pair. Next,

to explore the embedded depth information in natural images, we learn the

priors and likelihoods from these perceptual image and depth features. For the

testing part, an input image is divided into overlapping 32x32 patches, and

the same set of features is extracted from each image patch. The corresponding

depth patch is estimated for each image patch using a Bayesian model with

the learned priors and likelihoods. Finally, all the depth patches are stitched
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together to form the estimated depth map. The details of each component of

the proposed Bayesian framework are explained in the following subsections.

2.1 Perceptual Decomposition

Human vision systems (HVS) extract abundant information from natural en-

vironments by processing visual stimuli through different levels of decom-

position and interpretation. By emulating how HVS process natural image

and depth information, a variety of statistical models have been proposed

to fit the bandpass responses of luminance/chrominance and depth/disparity

in natural scenes [24], [25], [30]. In this work, since we want to learn and

exploit the statistics relating depth perception to natural images, we apply

certain perceptually relevant pre-processing steps on natural image luminance,

and extract depth-aware features from both univariate and bivariate empirical

response distributions.

We acquire luminance by transforming pristine color images into the percep-

tually relevant CIELAB color space, which is optimized to quantify perceptual

color differences and better corresponds to human color perception than does

the perceptually nonuniform RGB space [31]. Each luminance image (L*) is

then transformed by the steerable pyramid decomposition, which is an over-

complete wavelet transform that allows for increased orientation selectivity [32].

The use of the wavelet transform is motivated by the fact that its space-scale-

orientation decomposition is similar to the bandpass filtering that occurs in area

V1 of primary visual cortex [33], [34]. Specifically, in the implementation of the

proposed Bayesian framework, we utilize the steerable pyramid decomposition

with five scales, indexed from 1 (finest) to 5 (coarsest), and twelve frequency-

tuning orientations: 0, 1
12
π, . . . , 11

12
π.

After applying the multi-scale, multi-orientation decomposition, we perform

the perceptually significant process of divisive normalization on the luminance

wavelet coefficients of all of the sub-bands [35]. Divisive normalization, i.e.,

sensory gain control, was proposed in the psychophysical literature to account
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for the nonlinear behavior of human perceptual neurons [36]. The divisive

normalization transform (DNT) used in our work is implemented as follows

[37]:

u(xi, yi) =
w(xi, yi)√
s+ w>g wg

=
w(xi, yi)√

s+
∑

j g(xj, yj)w(xj, yj)2
(1)

where (xi, yi) are spatial coordinates, w are the wavelet coefficients, u are the

coefficients after DNT, s is a semi-saturation constant, the weighted sum oc-

curs over neighborhood pixels indexed by j, and {g(xj, yj)} is a finite-extent

Gaussian weighting function.

In the following subsections, we explain the details of extracting both image

and depth features from these divisively normalized sub-band responses to

learn the prior and likelihood for depth estimation.

2.2 Image Feature Extraction

It has been known that there exist statistical relationships between luminance

intensity and depth information in natural scenes [30], and a variety of uni-

variate statistical models have been proposed to fit the bandpass responses of

luminance/chrominance and disparity [24], [25]. Recently, new bivariate and

correlation statistical models have been developed to capture spatial depen-

dencies between neighboring sub-band responses in natural images [27]. In

the proposed Bayesian framework, we exploit these natural scene statistical

features to learn the relationships between the projected image luminance and

the embedded depth information in natural environments.

2.2.1 Univariate NSS Feature

Considerable work has been conducted on modeling the statistics of natu-

ral images using multi-scale, multi-orientation transforms, e.g., Gabor filters,
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wavelets, etc [18], [38]. Here we use the univariate generalized Gaussian distri-

bution (GGD) to fit the empirical histograms of luminance sub-band responses,

i.e., u in Eq. (1), of each image patch. The probability density function of a

univariate GGD with zero mean is:

p(x;αu, βu) =
βu

2αuΓ( 1
βu

)
e−(

|x|
αu

)βu (2)

where Γ(·) is the ordinary gamma function and αu and βu are scale and shape

parameters, respectively. The two resulting GGD parameters from each sub-

band, scale and shape, are included in the feature set of each image patch.

2.2.2 Bivariate NSS Feature

In addition to univariate statistics in natural luminance, we further exploit

higher-order dependencies that exist between spatially neighboring bandpass

image responses. Specifically, we examine the bivariate distributions of hori-

zontally adjacent sub-band responses, which are sampled from locations (x, y)

and (x+ 1, y) in an image patch. To model these empirical joint histograms, we

utilize a multivariate generalized Gaussian distribution (MGGD), which include

both the multivariate Gaussian and Laplace distributions as special cases. The

probability density function of a multivariate generalized Gaussian distribution

is defined as:

p(x; M, αb, βb) =
1

|M| 12
gαb,βb(x

>M−1x) (3)

where x ∈ RN , M is an N ×N symmetric scatter matrix, αb and βb are the scale

and shape parameters, respectively, and gαb,βb(·) is a density generator:

gαb,βb(y) =
βbΓ(N

2
)

(2
1
βb παb)

N
2 Γ( N

2βb
)
e
− 1

2
( y
αb

)βb (4)

where y ∈ R+. Note that when βb = 0.5, Eq. (3) becomes the multivariate

Laplacian distribution, and when βb = 1, Eq. (3) corresponds to the multivariate

Gaussian distribution. Moreover, when βb → ∞, the MGGD converges to a
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multivariate uniform distribution. In our implementation, we model the bivari-

ate empirical histograms of horizontally adjacent sub-band coefficients of each

image patch using a bivariate generalized Gaussian distribution (BGGD) with

N = 2 in Eq. (3). The parameters of the BGGD can be obtained on the bandpass

coefficients of image patches using the maximum likelihood estimator (MLE)

algorithm described in [26]. We include both the scale and shape parameters,

αb and βb, in the image patch feature set.

2.2.3 Correlation NSS Feature

In addition to the univariate and bivariate GGD models fitting empirical dis-

tributions of sub-band coefficients in natural images, there exist higher-order

dependencies that have not been utilized between spatially neighboring band-

pass luminance responses. In particular, we have found that the correlation

coefficients between spatially adjacent bandpass responses posses strong ori-

entation dependencies [27]. For example, the horizontally adjacent bandpass

responses are most correlated when the sub-band tuning orientation aligns at
1
2
π, and become nearly uncorrelated at orientation 0 (rad) and π, indicating its

periodicity with relative orientation of spatial and sub-band tuning orientation.

This relative orientation regularity on correlation coefficients between spatial

neighboring sub-band responses provides useful cues on distinguishing areas in

the image with different geometric structure, e.g., depth discontinuities, smooth

surfaces, etc.

We have found that the periodic relative orientation dependency of the cor-

relation coefficients between spatially adjacent sub-band responses can be well

modeled as an exponentiated sine function given by:

y = f(x1, x2) = A

1 + sin
(

2π(x2−x1)
T

+ θ
)

2

γ + c (5)

where y is the correlation coefficients between spatially adjacent bandpass re-

sponses, x1 and x2 represent spatial and sub-band tuning orientations, respec-

tively, A is the amplitude, T is the period, θ is the phase, γ is the exponent, and c
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is the offset. The correlation coefficient is periodic with π of relative orientation

and reaches maximum when |x2−x1| = k · π
2
, k ∈ N, yielding a three-parameter

exponentiated sine model with amplitude A, exponent γ, and offset c, by fixing

T = π and θ = π
2
:

y = f(x1, x2) = A

[
1 + cos (2(x2 − x1))

2

]γ
+ c

= A [cos (x2 − x1)]2γ + c (6)

In our implementation, we compute the correlation coefficients between hori-

zontally adjacent sub-band responses on each image patch at different scales,

fit the exponentiated sine model, and include all three parameters, A, γ, and c,

into the feature set.

As a result, the depth-aware feature vector f that we use to characterize each

image patch is formed as:

f = [{αu,k}, {βu,k}, {αb,k}, {βb,k}, {As}, {γs}, {cs}]> (7)

where k ∈ {1, . . . , K}, K is the number of sub-bands, and s ∈ {1, . . . , S}, S is

the number of scales.

2.3 Depth Feature Extraction

Unlike luminance intensity in natural images, range/depth maps captured from

natural environments tend to possess smooth surfaces with relatively few tex-

tures. Based on this observation, we use the histogram of gradient magnitudes

as depth features to characterize different types of depth patches extracted from

ground-truth depth maps [39]. As shown in Fig. 1, we first subtract the mean

from each depth patch, and divide the difference by its standard deviation

to obtain a normalized depth patch. Then, we compute the depth gradient

magnitudes at each pixel location, and obtain the corresponding histogram

on the entire patch. Note that the histogram of depth gradient magnitudes is

computed along eight canonical orientations, i.e., 0 (rad), 1
8
π, . . . , 7

8
π, resulting

in an eight-bin histogram for each depth patch.
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(a) Pattern-1 (b) Pattern-2

(c) Pattern-3 (d) Pattern-4

(e) Pattern-5

Fig. 2. Examples of different canonical depth patterns.

In addition to the gradient histogram, we also compute the histogram of

bandpass response magnitudes on the perceptually decomposed depth patches.

Specifically, we compute the divisively normalized wavelet responses u using

Eq. (1) at each pixel location, and obtain a histogram by binning the responses

along different sub-band tuning orientations. The same eight canonical ori-

entations as in the gradient magnitude histogram are used for the bandpass

response histogram. Therefore, we end up with a 16-dimension feature vector

to characterize each depth patch for learning the prior and likelihood in the

proposed Bayesian framework.

2.4 Prior

It may be observed that in natural images, discontinuities in depth maps usually

implies that there are luminance edges at the same location in the corresponding
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color images. In other words, patches of different luminance appearance and

texture may have similar depth patterns, due to the common geometric struc-

tures [24]. Moreover, without effects of ambient light and textured surfaces,

depth maps tend to posses simpler, more regular patterns than natural lumi-

nance images. Therefore, inspired by these observations, we build a dictionary

of canonical depth patterns by clustering the features extracted from depth

patches with the k-means algorithm.

Figure 2 shows some examples of different canonical depth patterns extracted

by the k-means algorithm with five clusters. For each canonical depth pattern,

the top row shows the clustered depth patches using the extracted features,

and the bottom row the corresponding image patches. We can see that these

canonical depth patterns contain different types of geometric structures, in-

cluding depth discontinuity along the horizontal direction (pattern-1), depth

discontinuity along the vertical direction (pattern-2), smooth variation of depth

along the horizontal direction (pattern-3), smooth variation of depth along the

vertical direction (pattern-4), and a busy, complicated pattern of depth changes

(pattern-5). In fact, we can easily find these canonical range patterns in natural

scenes, e.g., most of the busy, complicated range patterns appear in areas filled

with tree leaves and grass. In addition, as the number of clusters used in the k-

means algorithm increases, these five canonical depth patterns still exist, while

different clusters of range patches may share similar structures. As a result, the

depth prior of the proposed Bayesian framework consists of the normalized

residual depth patches of each canonical depth pattern, as well as the portion

of depth patches belonging to each pattern among all depth patches, i.e., p(n),

where n ∈ {1, . . . , N} and N is the number of canonical depth patterns, i.e., the

number of clusters used in the k-means algorithm.

2.5 Likelihood

As we can observe from the canonical depth patterns shown in Fig. 2, the depth

discontinuities in range maps consistently match the luminance edges in natural



13

images, while some textured areas with variations in luminance/chrominance

may not necessarily correspond to depth changes, resulting in smooth surfaces

with low gradients in range maps. In other words, there exist high correla-

tions between image edges and depth discontinuities. For example, if there

are strong variations in a natural image, i.e., large bandpass responses, there

is a high likelihood of co-located variations, i.e. large depth gradients, in the

corresponding range map. To better utilize these relationships between image

and depth variations in natural environments, we derive a likelihood model

which aims to associate image patches to different canonical depth patterns.

First, assume we obtain N canonical depth patterns from the prior using

the k-means clustering algorithm. Then, we assign each image patch a label

indicating the canonical depth pattern of its corresponding depth patch. Based

on these labeling results, we use the depth-aware feature set, i.e., f in Eq. 7,

extracted from each image patch to train a classifier using a multivariate Gaus-

sian mixture (MGM) model. The reason that the MGM model fits well to this

classification task is that, as observed in Fig. 2, image patches with different

appearances and/or textured surfaces may possess the same canonical depth

pattern due to the similar underlying geometric structures. Therefore, we can

take advantage of the Gaussian mixture model trained for each canonical depth

pattern to handle the heterogeneity of its image patches. The MGM model for

the n-th canonical range pattern is given by

p(x; θn) =
M∑
m=1

wmN (x;µm,Σm) (8)

where n ∈ {1, . . . , N} , θn is the model parameter, x is a multi-dimensional

data vector, e.g., some measurement or a feature, N (x|µm,Σm) is the m-th

Gaussian component, and wm is the m-th mixture weight with the constraint

that
∑M

m=1wm = 1. Note that the complete MGM model is parametrized by θn =

{wm,µm,Σm},m ∈ {1, . . . ,M}, which includes the mean vectors, covariance

matrices, and mixture weights from all Gaussian components. Finally, the m-th
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Gaussian component density function is given by

N (x;µm,Σm) =

1

(2π)D/2|Σm|1/2
e[−

1
2
(x−µm)>Σ−1

m (x−µm)] (9)

where D is the dimensionality of x. Here we use the depth-aware feature set

f as x ∈ RD. Therefore, the likelihood probability of seeing an image patch

with the extracted feature f given a particular canonical depth pattern n can

be expressed as p(f ; θn).

2.6 Regression on Mean Depth

As discussed in Sec. 2.3 and 2.4, before we extract features from depth patches

to learn the prior, we normalize each depth patch by removing the mean and

standard deviation to better characterize the depth patterns. To add the mean

back to each depth patch when estimating true range values of the test image

patches, we need to learn a mapping from the image feature space using a

regression model. In other words, given an input image patch, we can utilize

the trained regressor to estimate the mean range of the corresponding depth

patch using the extracted depth-aware image feature set f . In addition to f , we

exploit another important monocular depth cues in natural environments to

recover the true range. In [30], it has been demonstrated that there is general

correlation between the brightness and the distance in natural scenes. Here we

utilize this ”the brighter the nearer” correlation to estimate the mean range

value from the average luminance intensity of the image patch. Moreover, it

can be observed that in natural images, the distance from the nodal point to

any point in the scene generally increases as its height increases. Specifically, if

we assume that the y-coordinate of a pixel increases from the bottom to the top

of an image, the range values of pixels with larger y-coordinates are generally

larger than those with smaller y-coordinates. Therefore, we introduce one more

feature into the regressor on mean depth values, the normalized y-coordinate
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of each patch in the image, given by

fy =
py
Ih

(10)

where py is the y-coordinate of the image patch, and Ih is the height of the

image. As a result, the feature of the image patch used in the regression model to

learn the mean depth value includes the depth-aware feature set f , the average

luminance intensity, as well as the normalized y-coordinate fy. In the proposed

Bayesian framework, we adopt the support vector regression (SVR) model

to serve as the regressor. The proposed Bayesian framework is generically

amenable to the application of any kind of regressor. Our implementation

utilizes a support vector machine (SVM) regressor (SVR) [40] using multiple

train-test sets as described in Sec. 3. SVR is generally noted for being able to

handle high dimensional data [41]. We implement the SVR model with a radial

basis function (RBF) kernel using the LIBSVM package [42].

2.7 Bayesian Model

The primary component of the proposed framework is the Bayesian model that

incorporates the prior of canonical depth patterns, the likelihood associating

image patches to different canonical depth patterns, and the regression model

recovering the mean range values for each image patch. Given a test image, we

first divide it into overlapped patches of size 32x32 as in the training phase,

where a 1
4

overlap is used, i.e., patches overlap each other by 8 pixels along

both dimensions. Next, the depth-aware feature vector f is extracted from each

image patch, as well as the average luminance intensity and the normalized y-

coordinate for mean depth regression. Then, the extracted feature f is fed into

the trained prior, likelihood, and regression models to form a Bayesian inference

of the corresponding estimated depth patch. In particular, the estimated depth

patch D of an image patch is formed as follows:

D = Dr,n + µn (11)
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where Dr,n is the normalized residual depth patch of the estimated canonical

depth pattern n, µn is the corresponding mean depth value obtained from

the regression model, and n represents the estimated canonical depth pattern

derived from the prior and likelihood, which is given by:

n = argmax
n′

{p(n′|f)} = argmax
n′

{p(f |n′)p(n′)}

= argmax
n′

{p(f ; θn′)p(n
′)} (12)

where p(f |n′) = p(f ; θn′) is the likelihood probability (Eq. (8)) of seeing an image

patch with the extracted feature f given a canonical depth pattern n′ as derived

in Sec. 2.5, and p(n′) is the corresponding prior probability of n′ as obtained in

Sec. 2.4.

2.8 Stitching

Finally, the last stage of the proposed Bayesian framework is to stitch all depth

patches together to form the final estimated depth map of the input test image.

Note that the stitching operation used here is simply averaging the estimated

range values of the overlapped pixels between depth patches.

3 EXPERIMENTAL RESULTS

To evaluate the performance of the proposed depth estimation framework, we

trained and tested the Bayesian model on the LIVE Color+3D Database - Release

2 [29], which consists of 99 pairs of color images and ground-truth range maps

in high-definition resolution of 1920× 1080. The dense, accurately co-registered

depth maps in this database provide rich information regarding natural depth

statistics, and is also an excellent resource for evaluating depth estimation al-

gorithms. To avoid overlap between training and testing image/depth content,

we split the whole database into 80% training and 20% testing subsets at each

train-test iteration. This train-test procedure was repeated 50 times to ensure

that there was no bias introduced due to the image/depth content used for
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TABLE 1

Performance Comparison of Different Depth Estimation Algorithms (Median

across Train-Test Splits)

Algorithm
Metric

ρp ρs Rel. RMS

Depth Transfer 0.4196 0.5197 0.6399 13.0671

Proposed Bayesian 0.4404 0.5654 0.5969 12.8417

training. We compared the proposed Bayesian framework with a state-of-the-

art depth estimation method, Depth Transfer [16].

Table 1 and 2 show the comparison results in terms of four different error

metrics. First, we report the two common metrics, the relative error (Rel.):

I∑
i=1

|D(xi, yi)−D∗(xi, yi)|/D∗(xi, yi)
I

(13)

and the root mean squared error (RMS):√√√√ I∑
i=1

[D(xi, yi)−D∗(xi, yi)]
2

I
(14)

where D(xi, yi) and D∗(xi, yi) represent the estimated and ground-truth depth

map at pixel location (xi, yi), respectively, and I is the number of pixels. In

addition, to examine how well a depth estimation method is able to recover

the relative distance in natural scenes, we report two different correlation co-

efficients between the estimated and ground-truth depth values, the Pearson’s

linear correlation coefficient ρp and the Spearman’s rank order correlation co-

efficient ρs. Specifically, ρp and ρs measure the accuracy and monotonicity,

respectively, of the estimated range values by a depth estimation algorithm

against the ground-truth range values, where a value of 1 indicates perfect

correlation.

As we can see from Table 1, which shows the median metric performance

across train-test splits, the proposed Bayesian framework outperforms Depth
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TABLE 2

Performance Comparison of Different Depth Estimation Algorithms (Standard

Deviation across Train-Test Splits)

Algorithm
Metric

ρp ρs Rel. RMS

Depth Transfer 0.2205 0.2461 0.3891 8.3052

Proposed Bayesian 0.1987 0.2253 0.3858 8.3921

TABLE 3

Computational Complexity of Different Depth Estimation Algorithms

Algorithm Runtime per Estimated Depth Map (s)

Depth Transfer 1490.53

Proposed Bayesian 161.05

Transfer in terms of all four error metrics. The higher correlation performance

of the proposed Bayesian framework indicates that it is capable of recovering

more accurate relative distances between different objects and regions in natural

scenes. In addition, the proposed Bayesian framework achieves both lower

relative and RMS errors than Depth Transfer, meaning that the depth maps

estimated by the proposed Bayesian framework are closer to the ground-truth

values. Table 2 shows the standard deviation of different error metrics across

train-test splits, which signifies the performance consistency of the examined

depth estimation algorithms. It can be seen that the proposed Bayesian frame-

work delivers more consistent performance in terms of both linear and rank

order correlation coefficients, while providing similar performance consistency

on estimating absolute depth as Depth Transfer.

In addition to the quantitative comparison, we also give a visual comparison

by showing examples of the estimated depth maps from the two examined

depth estimation algorithms along with the corresponding ground-truth range

maps, as demonstrated in Figures 3 to 6. We also draw the scatter plots between
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the estimated and the ground-truth range values to gain a broader perspective

of performance. In general, we can see that Depth Transfer tends to over-smooth

the estimated range maps due to its smoothness constraint, while the proposed

Bayesian framework is able to discover more detailed structures in the scene.

For example, in Fig. 4, Depth Transfer is not able to capture the tree trunks in the

foreground, and it incorrectly mix the tree trunks with the background. On the

other hand, the proposed Bayesian framework better outlines the tree trunks,

achieving both higher linear and rank order correlations against the ground-

truth depth map. In Fig. 5, Scene-3 contains a mixture of human objects and a

tree branch, posing more challenging content for depth estimation algorithms.

The proposed Bayesian framework successfully captures the intersection of the

human hand and the tree branch, while Depth Transfer fails to recover this

complicated structure by smoothing out the tree branch into the background.

Moreover, it can be clearly seen in Fig. 6 that the proposed Bayesian framework

reconstructs the main tree structures, while Depth Transfer incorrectly combines

two separate tree trunks into one. Finally, the correlation coefficients shown

in all figures also match the numerical results, confirming that the proposed

Bayesian framework achieves superior performance at recovering relative dis-

tances in natural scenes. Note that there is no smoothness constraint in the

proposed Bayesian framework, where only simple averaging operation is per-

formed on overlapped pixels between patches. This implies some improvement

can be readily made for the proposed Bayesian framework.

Another advantage of the proposed Bayesian framework is no use of iteration,

resulting in much less computational complexity. Table 3 shows the runtime

per estimated depth map for the two examined algorithms. Since the proposed

Bayesian framework utilizes the trained prior and likelihood models, we can see

that it runs almost 10 times faster than Depth Transfer, which uses an iterative

procedure on solving an optimization function.
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Fig. 3. Example result of the estimated depth maps along with the ground-truth

depth map (Scene-1).

4 CONCLUSIONS

By exploiting reliable and robust statistical models of luminance and depth in

natural scenes, we have proposed a Bayesian framework to address the problem

of recovering the depth information from monocular natural images. In partic-

ular, two important components are learned from ground-truth range maps: a

prior model, including a dictionary of canonical depth patterns, and a likelihood

model, which embeds the co-occurrence of image and range characteristics

in natural scenes. Note that there is no use of any conventional depth cues

in the proposed Bayesian framework, and both the image and depth feature

extraction components are fairly flexible to accommodate different methods

and techniques. Compared to the state-of-the-art method, it performs better at

estimating both the absolute and relative depth from natural images.
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posed Bayesian framework

(d) Natural image (e) Scatter plot of Depth Transfer (f) Scatter plot of the proposed

Bayesian framework

Fig. 4. Example result of the estimated depth maps along with the ground-truth

depth map (Scene-2).

Moreover, the superior performance in terms of recovering relative distances

implies that a biological visual system might be able to make a coarse depth

estimate of the environment using the retinal image at hand and the associations

between image textures and true geometric structures. We believe that the prior

and likelihood models developed in the proposed Bayesian framework not only

yield insight into how 3D structures in the environment might be recovered

from image data, but are able to benefit various 3D image/video and vision

algorithms. Future work involves exploiting more psychophysical knowledge

of human vision systems and introducing higher-level statistical models relating

image and range data to recover more accurate and detailed depth information.
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(d) Natural image (e) Scatter plot of Depth Transfer (f) Scatter plot of the proposed
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Fig. 5. Example result of the estimated depth maps along with the ground-truth

depth map (Scene-3).
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