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The reciprocal singular value curves of natural images resemble inverse power functions.
The bending degree of the reciprocal singular value curve varies with distortion type and
severity. We describe two new general blind image quality assessment (IQA) indices that
respectively use the area and curvature of image reciprocal singular value curves. These
two methods almost require very little prior knowledge of any image or distortion nor any
process of training, and they can handle multiple unknown distortions, hence they are no-
training methods. Experimental results on five simulated databases show that the
proposed algorithms deliver quality predictions that have high correlation with human
subjective judgments, and that are competitive with other blind IQA models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An increasingly large number of digital images are
being produced by professional and casual users as digital
cameras have become ubiquitous in smartphones, tablets,
and stand-alone units. Since in nearly every instance it is
desirable to produce clear, crisp images free of excessive
noise, annoying blur or other artifacts, the development of
methods for automatically assessing the perceptual quality
of digitally acquired images has become an important goal
of model and algorithm developers [1]. Such tools would
greatly facilitate the sorting and culling of the large
volumes of images that are so easily obtained. Current
objective image quality assessment (IQA) methods fall into
three general categories: Full Reference (FR), Reduced
Reference (RR) and No Reference (NR) or Blind [2]. FR
and RR models require that all or part of the information
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about the reference image be available. However, in most
application scenarios information regarding a reference
image is inaccessible. Hence effective NR models may
ultimately prove to be more viable.

Existing NR IQA models can be roughly divided into
two categories: distortion-specific and general purpose.
Distortion-specific models are specialized for a single type
of distortion, for example, [3-6] are designed to assess blur
distortion, while [7,8] are dedicated to measuring the per-
ceptual severity of JP2K distortions. These models are
effective in specific settings. By contrast, general purpose
models are intended to handle multiple, possibly unk-
nown distortions.

In recent years, several general purpose NR IQA algo-
rithms have been proposed. These models can further be
subdivided into two categories. State-of-the-art learning-
based general purpose NR IQA algorithms include GRNN
[9], DIIVINE [10], CORNIA [11], BLINDS-II [12] and BRISQUE
[13]. Using a neural network, the authors of [9] proposed a
novel NR IQA algorithm that was trained on the local mean,
entropy and gradient extracted from the distorted image as
well as its phase congruency (PC) map. Based on perceptually
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relevant natural scene statistics (NSS) models, the authors of
[10] first proposed a new two-step framework named blind
image quality index (BIQI) [14], then later refined these to
create the Distortion Identification-based Image Verity and
Integrity Evaluation (DIIVINE) index. The authors of [11]
present an efficient unsupervised NR IQA framework. They
use raw image patches extracted from a set of unlabeled
images to learn a dictionary in an unsupervised manner.
BLIINDS-II [12] introduces a generalized parametric model of
the natural statistics of local image discrete cosine transform
(DCT) coefficients to predict image quality scores. The
BRISQUE model [13] deploys a space-domain NSS model
from

which quality-predictive features are derived. The above-
mentioned NR IQA algorithms are generally based on
machine learning principles, and hence require conducting
training on and testing against human opinion scores of
distorted images. Of course, learning-based models can only
reliably assess quality degradations arising from the distor-
tion types that they have been trained on, potentially limit-
ing their utility. In many practical situations there is no
available information of new or varying distortions, hence it
is highly desirable to create algorithms that reduce or
eliminate this dependence.

In order to overcome the disadvantages of learning
based IQA methods, a number of unsupervised, training
free NR IQA models have been proposed. In [15], the
authors proposed an NR IQA model that operates by
seeking latent quality factors. A newer IQA model, called
the natural image quality evaluator (NIQE) [16] is based on
the construction of a “quality aware” collection of percep-
tually relevant statistical gradient and phase congruency
features based on a simple and successful space domain
NSS model. This model does require a corpus of pristine
images from which to estimate the model parameters. In
[17] the authors proposed a quality-aware clustering (QAC)
method which learns a set of centroids at each quality
level. This method does not require human Mean Opinion
Scores (MOS), but it does require distorted images to learn
from. In [18], the authors proposed a no-training method
which using a simple functional relationship of percep-
tually relevant image features to predict image quality. The
limitation of the algorithm is that a classification algorithm
is needed to distinguish noise distortion from other dis-
tortion categories. Here we develop an alternative general
purpose NR IQA algorithm that also is able to predict the
perceptual severities of multiple kinds of distortions with-
out any training on human scores. This new ‘completely
blind’ IQA model uses very simple features derived from a
‘reciprocal singular value curve’ computed from the image.
The new model is tested on five IQA databases and is
shown to deliver highly competitive performance against
other NR IQA models and even against widely-used FR IQA
algorithms.

The rest of the paper is organized as follows. Section II
analyzes the relationship between image quality and the
reciprocal singular value curve. Section Il presents the
framework of the new image quality model. Experiments
conducted on five public IQA databases are presented and
analyzed in Section IV. Section V concludes the paper.

2. Relationship between image quality and singular
values

2.1. A. Brief review of singular value decomposition

Every gray scale image can be considered to be a
matrix. Any m x n real matrix A can be decomposed into

a product of three matrices, i.e., A= USVT, where U and V

S 0
0 0]
where S, =diag(s1, 03, ...,06r),S1 = (61,02, ...,0r), Where 1 is
the rank of A. The diagonal entries of S are the singular
values of A, the columns of U are the left singular vectors of
A, and the columns of V are called the right singular
vectors of A. This decomposition is the Singular Value
Decomposition (SVD) of A. This useful tool of linear algebra
has been applied to numerous image processing pro-
blems including image denoising, compression, water-
marking, etc.

The singular value decomposition (SVD) has previously
been successfully applied to the FR IQA problem. Existing
FR IQA methods that use SVD can be divided into two
categories. The first uses only the first singular value to
assess image quality. For example, the MSVD algorithm
proposed in [19] uses the degree of change of the singular
value of the distorted image relative to the singular value
of the reference image as the image quality evaluation
criteria. The second category also uses the left and right
singular vectors to assess image quality [20]. Here we
conduct a more detailed study of the behavior of singular
values on distorted images and use this to develop an NR
IQA model. We find that a simple ‘reciprocal singular value
curve’ supplies adequate ‘distortion aware’ information to
construct a blind image quality assessment model.

are orthogonal matrices,UTU=VTV=I and S= {

2.2. B. Image quality analysis using a reciprocal singular
value curve

In order to demonstrate the relationship between
image distortion and singular values, we arbitrarily
selected a source image and four blurred versions of it
from the CSIQ database [21], as shown in Fig. 1. The images
are displayed by order of blur degree. The singular value
decomposition was applied to each of the blurred images
yielding singular vectors from each. The singular values
are plotted against the index of the singular vector for each
image, as depicted in Fig. 2. Similarly, we selected another
source image and for each of four different distortion
types, produced four distorted images suffering from
different degrees of distortion. The four distortions are
JPEG, JP2K, additive white Gaussian noise and a contrast
artifact. We applied the singular value decomposition for
each, producing the corresponding singular curves shown
in Fig. 3.

From Figs. 2 and 3, it may be observed that the slope of
the curve becomes increasingly gentle with larger degrees
of distortion with the exception of additive noise. We have
observed this behavior over all of the images we have
tested. The shape of the curve can be accurately fitted by
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Fig. 1. Source image s and four blurred versions of it. Degree of blur increases from a to d.
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Fig. 2. Reciprocal singular value curves of the images in Fig. 1.

an inverse power function y=(r—x)~ 9, where y is the
reciprocal singular value, x is the corresponding subscript
of y in the singular value vector and r is the number of the
singular values. Since the rate of fall-off of the reciprocal
singular value curve characterizes the degree of disto-
rtion, it has the potential to serve as a reliable indicator of
image quality.

3. A blind image quality index using the singular value

The simulated reciprocal singular value curves of two
different hypothetical distorted images are shown in Fig. 4,
where S1 and S2 are the areas enclosed by their respective
reciprocal singular value curves, and q1 and g2 are the
exponents of the two curves. In the following, we will



1152
a
S
s 2 . T
2 source image s ¥
S 157 image a ‘
2 P image b |
@n image ¢ |
§ 05— imaged /
a
(5] 0 L
(3]
14 0 100 200 300 400 500

Singular Value Vector Subscript

Cc
[
2 03 :
> source image s
5 )
3 02t image a
2 ——image b
1 image ¢
8§ 01| ——imaged
o
h=3
(53 0 — L
(5]
x 0 100 200 300 400 500

Singular Value Vector Subscript

Q. Sang et al. / Signal Processing: Image Communication 29 (2014) 1149-1157

S

2 2

2 source image s

8 157 image a

2 P image b

€» image ¢

§ 05 L ———imaged

Q.

£ :
0 L

& 0 100 200 300 400 500

Singular Value Vector Subscript

S

s 2 i

> source image s

g 157 image a

_E’ M image b

1 image ¢

§ 05— imaged

Q

8 0 -

x 0 100 200 300

Singular Value Vector Subscript

Fig. 3. Reciprocal Singular Values Curves of an image impaired by different types of artifacts. (a) JPEG, (b) JP2K, (c) noise, and (d) contrast.
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Fig. 4. Reciprocal singular value curves of two hypothetical distorted images.

design and construct two blind image quality indices using
measurements of area and curvature of best-fit curves to
distorted image singular value vectors.

3.1. A. Quality prediction using the area of the reciprocal
singular value curve
The reciprocal singular value curve is a function

y =1/S51(i), where S; is the singular value vector. The area
of S may be estimated by the following formula (1).

S— /O'rf(i)di: /0'1f(i)di+ /12f(i)di+---+/ri]f(i)di

r 1
™~ — 1
i; (51 (1)> M

where r is the number of singular values, and S; is the
singular value vector.

In order to eliminate the influence of the image size, we
use the average area to represent image quality, and then
define a blind image quality index:

3 (/S

i=1
Qareu =

where « is a threshold value. Since the shapes of reciprocal
singular value curves are different for different distorted

,S51(0) > a )
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categories as, shown in Fig. 3, a threshold value is needed
when measuring different distortion types.

3.2. B. Quality prediction using the exponent of reciprocal
singular value curve

As mentioned before, the shape of the singular value
curve resembles an inverse power function, which can be
modeled as y=(r—i) 9. In the approximation function,
q dictates the exponential fall-off of the reciprocal singular
value curve, which corresponds to the severity of image
distortion. Hence we use measured values of g to predict
image quality. Taking logarithms yields

In(y"H=qIn(r—i (3
Let Y= In(y~1),X = In(r—i)
then Y=g¢gX 4)

which is linear in g. Linear regression can be used to find q.
We use least squares to minimize the residual sum of
squares:

r r
min Z= ¥ ef= ¥ (Y;—qX)’ (5)
i=1 i=1
Equating the derivative of (5) to zero gives

2 32— aXo(-X) =0 ©)
q =

with solution

== 7
PG
i=1

or

S In(r—Hn(S1())
i=1

Then define the second image quality index as

3 In(r—Hln(S1())
Qexponem = i::—, where Sl(l) > ﬁ (9)
> In(r—i)In(r—1i)
i=1

where S; is the singular value vector, and r is the number
of singular values. The parameter g is a threshold, whose
value will be discussed in the following section.

4. Performance evaluation
4.1. A. Databases and metrics for comparison

We used five publicly available image quality databases to
test the models Queq and Qexponens including CSIQ [21],
LIVE2 [22], TID2008 [23], TOYAMA [24], and IVC [25]. The
characteristics of these five databases are summarized in
Table 1.

There are two commonly used performance metrics
that are employed to evaluate the competing IQA models.
The first is the Spearman Rank-Order Correlation Coeffi-
cient (SROCC), which can measure the prediction mono-
tonicity of an IQA model. This metric operates on the
ranked data points and ignores the relative distances
between data points. The second metric is the Pearson
Linear Correlation Coefficient (CC), which is a numerical
measure of the strength of a linear association between
MOS and the objective scores following nonlinear regres-
sion. For the nonlinear regression, we used the following
mapping function [26]:

Quality(x) = $1(0.5—1/(1+exp(fo(X — $3)) +fax+ps (10)

4.2. B. Image blocking

It is well-known that the computational complexity of
SVD is O(N"3). If the image size is large, it could be too time-

Table 1

9="= i . @) Benchmark test databases for IQA.
> In(r—i)ln(r—i)
i=1 Database Source Distortion Distorted Observers
. . . images types images
From Fig. 4, it may be observed that when the singular ¢ P ¢
value is very small, the reciprocal singular value curves of LIVE2 29 5 779 161
different images do not differ much, which leads to a loss TID2008 25 17 1700 838
of discrimination power, so only larger singular values are %‘&MA ?2 g ?gg ?g
used to distinguish differences in image quality. We Ve 10 4 185 15
impose a threshold g to remove small singular values.
Table 2
Performance (SROCC) and runtimes (s) of Qqreq using different block size and different values of « on the CSIQ blur database.
Size Time (s) a=0.5 a=3 a=7 a=11 a=15 a=19
16 x 16 48.6 0.8724 0.9204 0.8898 0.8502 0.8284 0.8086
32 %32 24.2 0.8998 0.8827 0.9205 0.8937 0.8643 0.8452
64 x 64 18.0 0.9100 03159 0.9312 0.9205 0.9015 0.8853
128 x 128 17.3 0.9070 0.8063 0.9222 0.9341 0.9253 0.9120
256 x 256 214 0.9045 0.8820 0.4061 0.9279 0.9331 0.9277
512 x 512 25.5 0.9033 0.9061 0.7923 0.7688 0.9251 0.9314
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consuming. In order to improve the efficiency of the algo-
rithm, in our implementation the image is partitioned into
blocks, then the mean value of the obtained quality indices
extracted from each block is taken as the overall image
quality. The smaller the block size, the less the time involved
in each calculating SVD, but more blocks implies more
transforms. Hence the size of the blocks must be considered
with respect to both SVD complexity as a function of block
size and with respect to block cardinality. At the same time,
the performance of the algorithm is also affected by block
size. We performed a simulation using 150 images from the
CSIQ database to obtain runtimes and performance for
different block sizes and values of «, as shown in Table 2.
Since the shortest time incurred was on 128 x 128 blocks,
the performance of the exemplar algorithm was the best;
thus we fixed the block size to be 128 x 128 in the next
experiment.

4.3. C. Determination of Parameters « and

The values of parameters « and g must be determined
in (2) and (9). We applied the parameter values 0.5, 3, 7, 11,
15, 19 and tested Qgreq and Qexponens ON the LIVE IQA
database. The results are shown in Tables 3 and 4.

From Tables 3 and 4, it can be seen that for JPEG, JP2K,
Blur and FF distorted categories, the performance of Qgeq
is best when the value of « equals 15; when p=7, the best
results of Qexponenr are achieved. But white noise type is an
exception, when the values of « and g are 0.5, both Qgeq
and Qexponent reach the optimal performance. So in the

Table 3
Performance of Qureq using different values of « on the LIVE databse.

Q. Sang et al. / Signal Processing: Image Communication 29 (2014) 1149-1157

following experiment, for white noise distortion alone, the
values of « and g are set to 0.5; for the other single and all
distortion, « is set to 15 for calculating Qgeq, and g is set to
7 for calculating Qexponent-

4.4. D. Distortion identification

Since the values of « and g for white noise and other
distortions are different, then to make the Q.. and
Qexponent indices applicable to diverse distorted images,
we must classify a given image into noise or non-noise
distortion categories. In [27] the authors propose a new
noise variance estimation method based on principal
component analysis of image blocks. We use a threshold
of noise variance for classifying noise and non-noise
images. The results of classification on five databases are
shown in Table 5, it can be seen that the noise and non-
noise distortion are classified completely when we set the
threshold to 1.6. Thus, we use the first stage (“distortion
identification”) of the Qureq and Qexponen: algorithms. This
stage does not utilize human opinion scores.

4.5. E. Test on the LIVE database

Firstly, we tested the Qgreq and Qexponen indices on the
LIVE2 IQA database, which consists of 779 distorted images
from 29 different reference images. There are five distortions
—JPEG2000 (JP2K), JPEG (JPEG), Gaussian Blur (Blur), White
Noise (WN) and Fast fading noise (FF)—along with the
associated DMOS, which represent human judgments of
image quality. Their performance was tested and compared
with two state-of-the-arts representative NR IQA metrics,
NIQE [16] and NRQI [17], and two classical FR IQA metrics,
SSIM [28] and PSNR. For NIQE [16] and SSIM, we used the

Measure a=05 a=3 a=7 a=11 a=15 a=19
SROCC WN 09723 0.9661 0.9450 0.9165 0.8819 0.8407 Table 6
JPEG 02640 0.8194 0.9061 0.9376 0.9514 0.9548 Performance of Qgreq ON the LIVE database.
JP2K 0.8612 0.7061 0.9000 0.9236 0.9232 0.9192
Blur 0.9413 0.8477 0.9323 0.9441 0.9412 0.9379 Measure Qarea Qexponene NIQE ~ NRQI  SSIM  PSNR
FF  0.8616 0.7812 0.8139 0.8540 0.8587 0.8551
SROCC WN 0.9723 09537 0.9718 0.9357 0.9635 0.9410
JPEG 0.9514 0.9424 0.9422 0.8715 0.9466 0.8831
JP2K 0.9232 0.9255 0.9187 0.8074 0.9389 0.8646
Blur 0.9412 09077 0.9329 0.8562 0.9046 0.7515
Table 4 FF  0.8587 0.8047 0.8639 0.8181 0.9393 0.8736
Performance Oerxponent using different values of g on the LIVE database. ALL 09006 0.8362 0.8756 0.8263 0.9129 0.8636
Measure p=0.5 p=3 p=7 p=11 p=15 p=19
cC WN 09717 0.9579 0.9773 0.9482 0.9824 0.9173
SROCC WN 09537 0.9428 0.9208 0.8977 0.8579 0.8094 JPEG 0.9506 0.9429 0.9526 0.8911 0.9462 0.9029
JPEG 0.4820 0.9168 0.9424 0.9224 0.9043 0.8860 JP2K 0.9310 0.9359 0.9264 0.8126 0.9405 0.8762
JP2K 0.7923 0.5060 0.9255 0.8780 0.8447 0.8163 Blur 0.9371 09176 0.9447 0.8765 0.9004 0.7801
Blur 0.9195 0.8240 0.9077 0.8919 0.8554 0.8395 FF  0.8574 0.8101 0.8804 0.8435 0.9514 0.8795
FF  0.8251 0.7190 0.8047 0.8277 0.8272 0.8176 ALL 0.8953 0.8523 0.8815 0.8350 0.9066 0.8592
Table 5
The range of noise variance values on the five databases.
Database JPEG JP2K Blur FF White noise Hi-noise Col-noise
LIVE2 0-0.62 0-1.50 0-1.44 0-0.98 1.82-73.15 - -
TID2008 0-0.48 0-0.66 0-0.49 - 2.89-15.50 2.09-24.14 1.90-7.88
CsIQ 0-1.48 0-1.08 0-1.11 - 1.68-17.02 - -
TOYAMA 0-1.58 0-1.52 - - - - -
IVC 0 0 0-0.41 - - - -
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implementation provided by the author, which is avail-
able online at http://live.ece.utexas.edu/research/Quality/
index.htm. For NRQI and PSNR, we implemented them by
ourselves. The experimental results are shown in Table 6.
From Table 6, it can be seen that the indices Que, and
Qexponent correlate well with human DMOS, and that the
performance of the index Qg is a little better than that of
Qexponent- On the Blur, JP2K, JPEG and WN distortion categories,
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the Qqreq index delivers better performance than NIQE, NRQI
and PSNR. But on the FF and ALL categories its results are a
little inferior to that of NIQE and SSIM.

We also created scatter plots of the scores of the Queq
index against DMOS on the five individual and all distorted
categories of LIVE databases, as shown in Fig. 5(a)-(f),
which further suggests that Q. index is consistent with
human subjective judgments.

b c
150 150
100
n o 100
S s S
a A 5
0
-50 0
3 2 3 3
JPEG
e f
150 150
100 % 100
wn ' wn
% 50 % 50
a a
0 0
-50 -50 -50
1 2 3 2 3 3
Blur FF ALL

Fig. 5. Qqrq index against difference mean opinion scores (DMOS) on LIVE individual distortion databases. (a) JP2K; (b) JPEG; (c) WN; (d) Blur; (e) FF and (f) all.

Table 7
SROCC comparison of several IQA metrics.

Database Qurea Qexponent NIQE NRQI SSIM PSNR
TID2008 WN 0.8040 0.7532 0.7797 0.6082 0.7965 0.9148
WN-color 0.7458 0.6029 0.6012 0.5869 0.8075 0.9028
high-fre-noise 0.9278 0.9234 0.8539 0.8234 0.8451 0.9273
Blur 0.8261 0.8560 0.9092 0.7812 0.9386 0.8684
JPEG 0.8929 0.8664 0.8609 0.7490 0.8989 0.8717
JP2K 0.9364 0.7715 0.8934 0.8765 0.8875 0.8132
csiQ WN 0.8888 0.8043 0.8098 0.8034 0.9255 0.9363
JPEG 0.9378 0.9382 0.8826 0.8568 0.9222 0.8882
JP2K 0.9120 0.8995 0.9065 0.8976 0.9207 0.9362
Blur 0.9253 0.8891 0.8944 0.8743 0.9245 0.9291
TOYAMA JPEG 0.8806 0.8443 0.8007 0.8035 0.7388 0.8523
JP2K 0.7772 0.8179 0.8676 0.7865 0.9221 0.8346
ve JPEG 0.8813 0.8523 0.8271 0.8342 0.7975 0.6637
JP2K 0.9226 0.9225 0.8507 0.8721 0.8488 0.8500
Blur 0.8871 0.8577 0.8638 0.8756 0.8691 0.8051
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Table 8
CC comparison of several IQA metrics.

Database Qarea Qexponent NIQE NRQI SSIM PSNR
TID2008 WN 0.7838 0.7356 0.7797 0.6134 0.7913 0.9378
WN-color 0.7115 0.6268 0.6134 0.6291 0.8162 0.9273
High-fre-noise 0.9428 0.9385 0.8539 0.8342 0.8574 0.9718
Blur 0.8444 0.8573 0.9092 0.8046 0.9342 0.8736
JPEG 0.9193 0.8766 0.8609 0.7634 0.9143 0.8703
JP2K 0.9370 0.7695 0.8934 0.8653 0.8841 0.8759
csIQ WN 0.8951 0.8107 0.8098 0.8012 0.9256 0.9532
JPEG 0.9550 0.9382 0.8826 0.8512 0.9420 0.8906
JP2K 0.9283 0.8995 0.9065 0.9065 0.9236 0.9468
Blur 0.9424 0.9151 0.8944 0.8882 0.8504 0.9252
TOYAMA JPEG 0.8846 0.8384 0.8007 0.8131 0.7566 0.8643
JP2K 0.8019 0.8351 0.8676 0.7735 0.9357 0.8267
IvVC JPEG 0.8718 0.8526 0.8271 0.8547 0.8252 0.6678
JP2K 0.9186 0.9175 0.85073 0.8846 0.8630 0.8476
Blur 0.8674 0.9302 0.8638 0.8775 0.9177 0.8959
4.6. E Test on other IQA database Acknowledgments

We also examined the performance of the Q.. and
Qexponen: ON the other four open databases, including
TID2008, CSIQ, TOYAMA and IVC. The experimental results
are summarized in Tables 7 and 8.

From Tables 7 and 8, it can be concluded the Qg e, index
is a little better than the Qexponen: index for most distortion
categories. In most cases, both Qureq and Qexponen: OULpPET-
form the up-to-date blind IQA index NIQE, which is the
best completely blind index in the current reported
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“high-fre-noise” artifacts from the TID2008 database; our
proposed Qur.q index also delivers quality pridictions that
are highly consistent with human subjective judgments.

5. Conclusion

In this paper, the reciprocal singular value curves of
natural images, and their relationships with image quality
are analyzed, resulting in two blind image quality assess-
ment metrics based on the area and exponent of reciprocal
singular value curves. The comparison of both proposed
indices with blind IQA metrics on five open database show
they have an impressive consistency with human subjective
perception and are competitive with state-of-the-art blind
IQA metrics. They even outperform standard full reference
algorithms for some distortions. The proposed Q. and
Qexponent indices have the following advantages. (1) Simple
mathematical expression leads to low computational com-
plexity; (2) they can be applied to more distorted categories,
such as “High frequency noise,” and “WN-color.” How to
extend these indices to evaluate the quality of an image with
mixed multi-distortions will be future work.
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