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Abstract— One of the most challenging ongoing issues in the
field of 3D visual research is how to perceptually quantify object
and surface visualizations that are displayed within a virtual 3D
space between a human eye and 3D display. To seek an effective
method of quantification, it is necessary to measure various
elements related to the perception of 3D objects at different
depths. We propose a new framework for quantifying 3D visual
information that we call 3D visual activity (3DVA), which utilizes
natural scene statistics measured over 3D visual coordinates. We
account for important aspects of 3D perception by carrying out
a 3D coordinate transform reflecting the nonuniform sampling
resolution of the eye and the process of stereoscopic fusion. The
3DVA utilizes the empirical distortions of wavelet coefficients
to a parametric generalized Gaussian probability distribution
model and a set of 3D perceptual weights. We conducted a
series of simulations that demonstrate the effectiveness of the
3DVA for quantifying the statistical dynamics of visual 3D space
with respect to disparity, motion, texture, and color. A successful
example application is also provided, whereby 3DVA is applied
to the problem of predicting visual fatigue experienced when
viewing 3D displays.

Index Terms— 3D visual activity (3DVA), visual natural scene
statistic (visual NSS), human visual system (HVS), 3D coordinate
transform, stereoscopic video.

I. INTRODUCTION

THERE has been a recent growing demand for stereo-
scopic/3D content across a wide range of consumer-

oriented applications, including digital cinema, gaming, home
theatre and mobile video devices [1], [2]. The statistics of
2D content have been intensively studied and the distributions
of the essential elements of natural images including lumi-
nance, color, contrast, power spectra and motion have been
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extensively analyzed and modeled [3]–[6]. However, a similar
understanding of the statistical properties of perceived 3D
content is currently lacking. Further, while many aspects of 2D
visual perception have been extensively analyzed and utilized
for the quantitative analysis of 2D image content, in many
cases, similar studies have not been conducted in the realm
of stereoscopic 3D content. For example, while researchers
have studied foveation in the 2D spatial domain [7]–[12], the
contrast sensitivity function (CSF) in the frequency domain
[13]–[15] and motion perception in the temporal domain
[16]– [18] for 2D content, similar studies on 3D content are
quite sparse [19].

There lately has been significant effort directed towards ana-
lyzing and understanding 2D image content based on natural
scenes statistics (NSS) [20]– [26]. Analyzing the statistical
properties of natural scenes is often viewed as dual to model-
ing neural responses in visual cortex, which has adapted to nat-
ural image statistics over evolutionary (and shorter) time scales
[27], and these properties have proved quite useful in advanc-
ing methods of automatic image analysis [22]. This duality
has been confirmed by strong observed correlations between
the statistics of natural scenes and the responses of cortical
neurons [28]. 3D NSS have also been recently studied with
an eye towards advancing both 3D vision science and image
engineering. For example, the proportion of disparity distribu-
tions in natural stereoscopic content qualitatively agrees with
the distribution of disparity tuning neurons in V1 [29]– [31].
Moreover, according to a study on disparity tuned neurons in
area MT [32], the coding area of MT neurons is about 4.7
degrees, which agrees well with natural disparity distributions
in stereoscopic content (about 5 degrees). Deeper statistical
models of 3D image data have great potential for advancing
our understanding of the role of these neural architectures as
well as for deepening the design of automatic, perceptually
optimized 3D visual analysis and processing systems.

Towards furthering our knowledge in this direction we have
developed a new framework for quantitatively analyzing 3D
video content. We derive a model of visual activity over
space, time and disparity called “3D visual activity (3DVA)”,
which extracts statistical information from stereoscopic videos.
3DVA has potential usefulness in a multitude of applications
such as visual fatigue prediction, visual attention prediction,
visual quality assessment etc.

Prior studies have shown that the properties of attention,
comfort, fatigue and other factors influencing stereoscopic
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perception are correlated with the depth and visual angle
subtended by the objects in the scene, as well as by the statisti-
cal properties of the scene in space, time, frequency and color-
space [33]– [40]. While these properties have been studied
in isolation, they have not yet been studied jointly. Here we
analyze 3D visual activity using a combination of statistical
features extracted from stereoscopic scenes, weighted using
perceptual characteristics related to foveation and fusion.

3DVA analyzes a stereoscopic scene by evaluating the
structural geometry of the 3D space after aligning objects in
accordance with their depths between the human eye and the
display. Once objects are aligned in the 3D volume, statistical
distributions of the objects are measured with respect to object
disparity over the spatial and temporal domains in 3D space.
In addition, statistics related to texture and color are also
measured over the spatial domain. A visual weight is then
defined using models of foveation and stereoscopic fusion.

Foveation refers to the non-uniform sensitivity of the human
eye in space, where the resolution decreases as one moves
away from the fovea1. Fusion refers to the process by which
the human visual system (HVS) combines the left and right
views of the scene from the two eyes to create a single “fused”
stereoscopic image. The region perceived with the highest
resolution on the 2D plane along the X and Y axes is called
the foveated area, and that on the 3D depth along the Z axis
is called Panum’s fusional area. As one moves away from
the foveated area, a sparser distribution of neurons leads to
lowered resolution, and hence to perceived ‘blurriness’. As
one moves away from the Panum’s fusional area along the
Z-axis, the brain is unable to fuse the two views and this
results in the phenomenon of double vision (diplopia).

In this article, we utilize models of foveation and fusion
to weight the local statistics of stereoscopic content to bet-
ter match visual perception. Specifically, a 3D coordinate
transform based on visual resolution expressed in terms
of foveation and fusion is performed. We have previously
demonstrated that a nonuniformly sampled foveated image
mapped onto the retina can be analyzed in the uniform domain
via a resolution change over virtual curvilinear coordinates
(a coordinate transformation) [7]. In the same fashion, we deal
with the nonuniform 3D images projected onto the retinas
of the two eyes by sequentially mapping it over virtual
curvilinear coordinates to a uniform version on the XY plane to
account for foveation then on the Z axis to account for fusion.
Computed statistical features of color, motion and texture are
then weighted according to the computed foveal, fused 3D
‘percept.’ Combining these statistics produces the proposed 3D
visual activity measure. In order to demonstrate the usefulness
of 3DVA, we use it to predict the degree of visual fatigue felt
when humans view a stereoscopic video.

II. 3D VISUAL ACTIVITY

This section describes the steps involved in the extraction
of pertinent 3D visual activity in formation. The algorithm

1The fovea centralis is the part of the eye that is located in the center of
the retinal macula. The fovea is responsible for sharp central vision, which is
necessary for reading, watching television or movies, driving, and any activity
where visual detail is of primary importance [41].

Fig. 1. Block diagram for measuring the 3DVA utilizing the NSS for 3D
video.

Fig. 2. 3D perceptual properties: foveation and fusion. (a) Geomet-
ric representation of objects projected onto a foveated coordinate system.
(b) Geometric representation of objects relative to Panum’s fusional area.

broadly proceeds as follows. First, salient regions in the image
are detected and saliency maps are constructed. Once such
maps are obtained, a 3D coordinate transform is performed
to account for foveation and fusion. A 3D weighting function
is then obtained from the computed coordinate transformation
based on known perceptual mechanisms. The 3D video is then
analyzed and statistical features related to disparity, motion,
texture and color are extracted. The obtained feature maps are
evaluated in the wavelet domain, and the activities (labelled
MD, MM, MT and MC respectively) are then perceptually
weighted. Combining the features produces the 3D visual
activity measure. The overall process is outlined in Fig. 1.

A. Saliency and 3D Coordinate Transformation

Figure 2 illustrates the two properties of stereoscopic per-
ception that we model – foveation and fusion. In this section
we detail the steps involved in extracting salient regions from
a stereoscopic image and the foveation and fusion processes
that are modeled.

1) Saliency: Visual attention and 3D saliency were studied
in [42] and [43]. However, it is generally quite difficult to
automatically identify visually salient regions in natural 3D
images and videos in a manner that agrees with visual attention
or gaze patterns. The authors of [42] proposed a strategy
to reduce fixation prediction errors, whereby a scene to be
analyzed is first classified, then salient regions are predicted
adaptively. This approach to video scene classification also
relies on analyzing camera and object motion.

The authors of [42] observed that most subjects directed
their attention to foreground objects having large crossed
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Fig. 3. 3D test sequences and computed salient regions. (a) “Car1” (135th

frame). (b) “Car2” (128th frame). (c) “Metro1” (211th frame). (d) Salient
regions of “Car1”. (e) Salient regions of “Car2”. (f) Salient regions of
“Metro1”. (g) “University1” (78th frame). (h) “University2” (134th frame)
(i) “Walking-person8” (155th frame). (j) Salient regions of “University1”.
(k) Salient regions of “University2”. (l) Salient regions of “Walking-person8”.

disparities when viewing stereoscopic videos. Moreover, they
tended to fixate on moving objects. Further, most subjects
also fixated on tracked objects having near zero motion.
Therefore, spatial, temporal and disparity data were used to
define predictors of visual attention. In their model 3D spatial
saliency reflects attributes of luminance, size, density and
the presence of depth discontinuities. Temporal and disparity
saliencies are predicted using measurements of object motion
speed and angular disparity, respectively. We deploy this 3D
saliency model in 3DVA to detect candidate salient regions in
stereoscopic videos being analyzed.

Figure 3 plots example outputs from the saliency detection
algorithm in [42]. These are frames from videos described
in [44]. Figures 3 (a)-(c) and (g)-(i) plot the original frames
and Figs. 3 (d)-(f) and (j)-(l) plot the predicted salient regions
on these frames. In Figs. 3 (a), (b) and (c) the camera
is fixed, and moving vehicles and people are identified as
salient regions (Figs. 3 (d), (e) and (f)). Figures 3 (g) and
(h) illustrate cases where both camera and object motion
occur. The most salient regions detected were those where the
objects had a motion trajectory opposite to that of the camera
motion trajectory (Figs. 3 (j) and (k)). In the case where
the camera pans, with the object stationary (Fig. 3 (i)), the
object (here, a walking person) is detected as the most salient
region (Fig. 3 (l)).

2) Foveation: Visible light from the natural world passes
through the optics of the eyes onto photoreceptors which
transduce it into neural responses. The distribution of the pho-
toreceptors in the eye is not uniform, and decreases away from
the center of the fovea. Since visual acuity is a function of local

photoreceptor density, the part of the image that is sampled
at the fovea has the highest resolution and hence the highest
sensitivity to detail. In the following, we assume that the region
with the highest saliency (obtained as described above) falls
on the fovea and hence has the highest sensitivity/resolution.

There exist several models that describe 2D visual acuity as
a function of the spatial location of the stimulus on the fovea
[7], [8], [45]– [47]. In the case of 3D stimuli, the expression
for 2D foveation needs to be modified in order to account for
the stereoscopic viewing condition.

As depicted in Fig. 2 (a), an object x on the viewing screen
is generally projected onto different regions of the retinas of
the two eyes. When a viewer fixates on an object on the screen,
so that it falls within the foveation regions, then the distances
between the positions of the two eyes causes the foveation
regions to differ from each other. Therefore, it is necessary
to capture this difference and use it to correctly model the
nonuniform resolution in 3D.

Suppose a viewer fixates on a ‘foveation region’ in the XY
plane as shown in Fig. 2 (a). For a given object x = (x1, x2, x3)
(voxels), the local foveated image bandwidth can be calculated
as follows. Let xL and xR be the crossing points on the XY
plane from the left and right eyes to x, respectively. The
eccentricity eL(u, xL) (or eR(u, xR)) can be then found from
the distance between the fixation point and the object, and the
viewing distance u from the eyes to the XY plane.

Let w represent the local cut-off frequency of the eye. As
shown in [13] and [14], w for the left eye (similar for the right
eye) is given by

w (eL (u, xL)) =
e2 ln

(
1

CT0

)

α (eL (u, xL) + e2)
, (1)

where CT0 is a minimum contrast threshold, e2 is the half-
resolution eccentricity constant and α is a spatial frequency
decay constant. The fitting parameters that were found by
fitting to experimental data [47] are α = 0.106, e2 = 2.3
and CT0 = 1/64. The frequency w in (1) for the two eyes can
be calculated by averaging the two cutoff frequencies:

w (eL (u, xL) , eR (u, xR))

=
2e2

2 ln
(

1
CT0

)
+ e2 (eL (u, xL) + eR (u, xR))

2α (eL (u, xL) + e2) (eR (u, xR) + e2)
. (2)

Figure 4 illustrates stereoscopic foveation. Figures 4 (a)
and (b) are the left view of the “Cones” stereoscopic image
from [48] and the ground truth depth map, respectively.
Figure 4 (e) plots a 3D reconstruction using the computed
depth information from Fig. 4 (b). Under the assumption that
the salient region (and hence the foveation region) of the
“Cones” image is the face mask in Fig. 4 (c), the observer
perceives the original image in (a) as the foveated image in
(c) with a resolution that varies with spatial location.

3) Fusion: The human visual system perceives 3D partly
by fusing the two views from the two eyes using computed
local disparity. Although the foveated region may have a high
spatial resolution, the region where the two eyes are focused
in 3D will have the highest perceived resolution, which drops
off as a function of the distance from the point of focus along
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Fig. 4. Original and foveated “Cones” images and spaces. (a) Original image.
(b) Ground truth. (c) Foveated image. (d) Foveated coordinate transformation
in 2D. (e) Original space. (f) Foveated coordinate transformation in 3D.

the Z-axis. What this implies is that a non-uniform mapping of
the Z-axis similar to that performed for the spatial XY plane
is necessary to recreate the perceived 3D stimulus.

The region in which the points in the 3D volume have the
same angular disparity as the point of fixation is termed the
horopter (Fig. 2 (b)). The visual resolution is highest along
the horopter and decreases with changes in angular disparity.
In general, even if an object strays slightly out of the horopter,
an observer can fuse it clearly. The area over which a human
can easily fuse the image is called Panum’s fusional area.
Objects in Panum’s fusional area have the same perceived
resolution as those that lie along the horopter. Panum’s fusional
area extends approximately ±600 arc second (10 arc minutes)
on either side of the horopter. It does not have a fixed
size, but varies depending on the stimulus conditions [49].
Objects that lie outside Panum’s fusional area result in the
perception of double images, where the left and right views
overlap due to the mismatch in convergence between the two
eyes. This phenomenon is termed diplopia. In regions where
diplopia occurs, an observer cannot fuse objects completely
and hence objects in these regions may be regarded as having
significantly lower visual importance than those in Panum’s
fusional area.

Fig. 5. Fused “Cones” images and space. (a) Fused diplopic image
from Fig. 4 (c). (b) Fused diplopic image from on Fig. 4 (d). (c) Fused image
following 2D coordinate transformation. (d) Fused 3D percept following 3D
coordinate transformation.

Panum’s fusional area is frequently referred to in relevant
studies, where a model is introduced to define the bound-
aries of binocular fusion by investigating the greatest amount
of horizontal disparity. Similar to foveation, we can model
nonuniform resolution along the depth axis. Here, we employ
the model from [50]:

w′ (�ϕ) =
{

k ′, 0 ≤ �ϕ ≤ δ

k ′ · exp
(
−�ϕ−δ

ε

)
, δ < �ϕ

, (3)

�ϕ = |ϕ − ϕ0|
where ϕ0 and ϕ are the angles of convergence at fixation and
at another neighboring region, respectively (Fig. 2 (b)). δ is the
threshold that decides the width of the fusional area (δ = 0◦
in general), ε is a fixed coefficient which has been determined
from physiological experiments to be approximately equal to
0.62◦ [50]. k ′ is a scaling parameter used for “fusion filtering”
as described in Section II-B.1.

Figure 5 (a), which corresponds to Fig. 4 (c) illustrates the
experience of diplopia. The left and right images of objects at
different depths than at fixation are overlapped.

B. 3D Coordinate Transformation

In this section, we describe the 3D Coordinate Transform
module of Fig. 1 that is applied post- foveation and fusion
filtering in our model of stereoscopic perception. Figure 6
illustrates the process. Suppose that there exist coordinate
transformations v = (v1, v2, v3)

T and v′ = (v ′
1, v

′
2, v

′
3)

T for
x = (x1, x2, x3)

T where the subscript T denotes transpose. If
a one-to-one correspondence exists among x, v and v′, where
v1, v2, v3, v ′

1, v ′
2 and v ′

3 are continuous and uniquely invertible,
then v and v′ are called 3D curvilinear coordinates.

We use the following notation (Fig. 6). x represents Carte-
sian coordinates and v and v′ are curvilinear coordinates based
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Fig. 6. 3D coordinate transformation for foveation and fusion.

on foveation and fusion filtering, respectively. The 3D space
between the observer and the display is called the original
space, o(x), and Fig. 4 (e) is an example of o(x). Because of
foveation, a human perceives Fig. 4 (a) similar to Fig. 4 (c).
In other words, foveation filtering transforms o(x) to the
foveated space o f (x) (Fig. 4 (a) → (c)). Then, o f (v) is
the space of o f (x) in curvilinear coordinates generated by
foveation filtering, as shown in Fig. 4 (d) (in 2D) and Fig. 4
(f) (in 3D), respectively. Figure 4 (d) represents the 2D visual
information that the visual system receives from the stimulus
in Fig. 4 (a). Figure 4 (e) is transformed to Fig. 4 (f) using a
3D coordinate transformation along with foveated weighting.
The image retains its original resolution in the vicinity of the
facial mask; however, away from fixation there is a loss of 3D
resolution. The relationship between the original and foveated
spaces is given by o f (x) = F f (o(x)) and o f (x) = o f (v)
where F f denotes the process of foveation filtering.

Figure 5 (b), which corresponds to Fig. 4 (d) illustrates
diplopia. Fusion filtering transforms o f (v) to the fused space
o f 2(v) (Fig. 4 (d) → Fig. 5 (b)). Then, o f 2(v′) becomes
o f 2(v) over the curvilinear coordinates as a result of fusion
filtering, as shown in Fig. 5 (c) (in 2D) and Fig. 5 (d) (in 3D),
respectively. Objects at different depths than at fixation are
aligned to the reference disparity using a procedure similar
to that for the curvilinear coordinate transform used in the
foveation model. Figure 5 (c) plots an example. It is worth
noting that the sizes of objects placed at negative and positive
parallax are reduced due to depth compensation. Further, the
double vision effect apparent in Fig. 4 (a) disappears after
the coordinate transformation in Fig. 5 (c). Figure 5 (d)
plots Fig. 5 (c) onto a 3D volume, where the object sizes
outside the foveation region shrink as a function of their visual
importance. The relationship between these spaces is given
by o f 2(v) = F f 2(o f (v)) and o f 2(v) = o f 2(v′) where F f 2

denotes fusion filtering.
To model the perceptual process more precisely, we trans-

form the 3D coordinate twice: (1) The transformation of o f (x)
to o f (v); (2) The transformation of o f 2(v) to o f 2(v′).

1) FrequencyDomainAnalysis of CoordinateTransform: Let
� = (�1,�2,�3)

T be continuous 3D frequencies. For x,

� ∈ R3, let b(x) and B(�) be a 3D signal and its Fourier
transform, respectively. When B(�) is band-limited within a
circle of radius �o, B(�) = 0 for |�| ≥ �o. Then b(x) is
an �o-band-limited signal, i.e., b(x) ∈ B�o , where B�o is the
space of �o-band-limited signals. Through the operation of F f

and F f 2 , o f (x) ∈ B�(x) and o f 2(v) ∈ B�(v) become locally
band-limited signals with respect to the coordinate systems v
and v′, where B�(x) and B�(v) are the space of locally band-
limited signals.

Due to foveation filtering, the original space o(x) in
Fig. 4 (a) can be transformed into a locally band-limited
signal o f (x) ∈ B�(x) as shown in Fig. 4 (c). The region
is transformed from the original space as a function of the
local bandwidth. Thus, the region centered at the foveation
point expands more than does the periphery. Then, the foveated
image over the new coordinates is given by

o f (x) = F f (o (x) ,� (x)) , (4)

where �(x) = w(x). As shown in Fig. 4 (c), the local band-
width corresponds to nonuniform sampling of o f (x). However,
the local bandwidth corresponds to uniform sampling of o f (v)
as shown in Fig. 4 (d) (in 2D) and (f) (in 3D).

The procedure of fusion filtering is similar to that of
foveation filtering. The foveated space o(v) in Fig. 4 (d) is
transformed into a locally band-limited signal o f 2(v) ∈ B�(v)

as shown in Fig. 5 (b). The fused space is given by

o f 2 (v) = F f 2 (o (v) ,� (v)) , (5)

where �(v) = w′(v). As shown in Fig. 5 (b), the local
bandwidth corresponds to nonuniform sampling of o f 2(v), but
to uniform sampling of o f 2(v′) as shown in Fig. 5 (c) (in 2D)
and (d) (in 3D).

Therefore, the final 3D perceptual weighting is

f = w′(w (x)
)
. (6)

C. 3D Visual Activity (3DVA)

This section details the extraction of measures of disparity
activity MD, motion activity MM, texture activity MT, and
color activity MC. Once these features maps are extracted,
a wavelet transform of the feature maps is computed and
the 3D visual weights, whose computation was detailed
in the previous section, are applied to the computed maps
in the wavelet domain. A statistical feature extraction process
follows, resulting in the final measure of 3D visual activity
(3DVA).

1) Activity Measures:
a) Disparity: Research on the accommodation and ver-

gence feedback system of the HVS has shown that the
HVS is capable of stereoscopically fusing all of the clearly
perceived regions in a scene [33]. When it is difficult to
fuse these regions, humans experience visual fatigue [34].
However, while clear 3D content is perceived in the Panum’s
fusional area, no fusion occurs outside of it. Furthermore large
variations in disparity result in increased neural metabolic
rates, which can lead to visual fatigue. The features used to
define 3DVA are sensitive to these 3D attributes and hence
3DVA can be adapted to capture this phenomenon.
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Fig. 7. Activity maps of “University1” at the 78th frame. (a) Disparity map
by (7). (b) X-motion map by (9). (c) Y-motion map by (9). (d) Z-motion
map by (9). (e) Texture map by (10). (f) Cb-color map by (11). (g) Cr-color
map by (11).

Let MD denote the disparity map of the stereoscopic scene
so that each point of MD corresponds to the depth projection
of each voxel. Then

MD (t) = {MD (x1, x2, t) |1 ≤ x1 ≤ ow, 1 ≤ x2 ≤ oh} (7)

where

MD (x1, x2, t) = arg min
d

∣∣∣oL (x1, x2, t) − oR (x1 + d, x2, t)
∣∣∣.

(8)

Here MD(t) and MD(x1, x2, t) denote MD at time t and
its pixel value at (x1, x2), respectively. oL(x1, x2, t) and
oR(x1, x2, t) denote pixel values at (x1, x2) at time t on the
original left and right image, respectively; and ow and oh

denote the width and height, of the original left (or right)
image. In (8), d is the disparity at pixel coordinate (x1, x2),
which can be estimated using a suitable stereo matching
algorithm. Here the disparity map was obtained from left
and right frame using the depth estimation reference software
(DERS)2. Figure 7 (a) is an example disparity map computed
from the 78th frame of the “University1” sequence.

b) Motion: The HVS is hypothesized to be self-
calibrating in its mapping of environmental stimuli onto
patterns of neural activity [35]. If vergence fluctuates with
variations in depth motion, the eyes may struggle to find a
new stable state, leading to visual fatigue. In other words,
motion along the depth axis (or the Z-axis) may cause visual
fatigue and discomfort [35], [36]. Large motions lead to an
increase in the response of 3DVA.

Let MM denote the motion map of the voxels on the X , Y
and Z axes. For each direction X , Y or Z , the mean value of
the square of the position changes over a period of time is

MM (t) =
t∑

τ=t−TM+1

(
∂o (x (τ ))

∂ t

)2 /
TM, (9)

where MM(t) and TM denote MM as a function of time t
and the time interval over which the motion map is extracted,
respectively. MM(t) is the square of the partial derivative
of 3D position (motion) in the original space between times

2The DERS is the reference software for depth estimation released by the
ISO-MPEG 3DV group [51]. The original DERS has been adapted to fit
the requirements of the multi-view context. Therefore, we use the modified
version of the DERS to fit the two views by using a hole filling algorithm [52].

t − TM + 1 and t . Figures 7 (b)-(d) are examples of the X , Y
and Z motion maps, for the 78th frame of the “University1”
sequence.

c) Texture: The unpleasantness experienced when view-
ing some patterns can be characterized by their spatial fre-
quency attributes [37]. Unpleasant patterns may even cause
an excess of neural excitation, thereby producing anomalous
visual effects or in the rare extreme case, clinical seizures. A
large concentration of high frequency components can lead to a
decrease in visual sensitivity and an increase in visual fatigue
and discomfort [37], [38]. 3DVA captures the proportion of
spectral energy distributed at high frequency bands and is
measured locally in the wavelet domain.

Gabor filters have been widely used as an effective tool to
fulfill the feature extraction tasks in many biometric and image
processing systems. The frequency and orientation responses
of Gabor filters are similar to those of human cortical neu-
rons, and they have been found to be particularly appropri-
ate for achieving perceptually efficient texture representation
[53], [54]. Therefore, we use responses of a bank of Gabor
filters to construct a texture map, MT, as a function of time t
as

MT (t) = Gabor
(

oL (x (t))
)

(10)

where Gabor(oL(·)) are the responses of Gabor filter bank
applied to the left image. The design of the Gabor filter bank
is based on [55]. Figure 7 (e) is an example of a computed
texture map, on the 78th frame of the “University1” sequence.

d) Color: There has been observed a consistent positive
correlation between ratings of visual discomfort and perceptual
differences in color [39], [40]. The largest chromatic sep-
arations produced the largest haemodynamic responses and
the greatest degrees of visual discomfort. The experience of
visual discomfort is homeostatic, signifying a large metabolic
demand towards reducing the sustained metabolic load on the
visual neurons. Again, 3DVA embodies features sensitive to
this chromatic behavior.

To obtain a coherent color map, low pass and median
filtering operations are applied to decrease textural variations
allowing the color components to be observed more clearly.
The color map for each color component of Cb and Cr in
YCbCr space is obtained by:

MC (t) = FM

(
FL

(
oL (x (t))

∣∣
C

))
, C ∈ {Cb, Cr} (11)

where MC(t) denotes MC as a function of time t , and FM and
FL denote median filtering and low pass filtering, and oL(·)|C
is the color component (Cb and Cr) of the left image. Figures
7 (f)-(g) demonstrate examples of the Cb and Cr color maps,
for the 78th frame of the “University1” sequence.

2) Wavelet Transform and 3D HVS Weighting: Once the
maps above are computed, a wavelet transform is applied to
each of them. We use the steerable pyramid [56] over 3 scales
and 3 orientations.

The next step is divisive normalization, which accounts for
the non-linear adaptive gain control process over certain popu-
lations of cortical neurons [57], [58]. Such normalization could
also reduce statistical dependencies between subbands thereby
decoupling subband responses to a certain degree [59], [60].
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Here, divisive normalization is implemented as described
in [59]. Once each map is normalized, the maps are weighted
and then statistically analyzed.

Let pk,i (t) be the probability mass function (PMF) of the
i th subband of factor k as a function of time t . Factor k is one
of the maps disparity, motion, texture or color. Let B be the
set of bins of the histogram w.r.t. the wavelet coefficients and
pk,i ( j, t) be the PMF of the j th bin. Then,

pk,i (t) = {
pk,i ( j, t) |∀ j ∈ B

}
. (12)

If Wi (·) denotes the wavelet coefficient matrix of the i th

subband, Mk is the map of factor k (k = D, M, T and C),
and B̄ is the interval between bins, then the values of the
wavelet coefficients Wi (·) belonging to the j th bin fall in the
range j − B̄/2 ≤ Wi (Mk (t)) (w, h) ≤ j + B̄/2. Then

pk,i ( j, t) =

ih∑
h=1

iw∑
w=1


 j (w, h, t)

ih∑
h′=1

iw∑
w′=1

(
f(iw,ih )

(
w′, h′, t

))2

, (13)

where


 j (w, h, t)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
f(iw,ih ) (w, h, t)

)2
,

if j − B̄/2 ≤ Wi (Mk (t)) (w, h) ≤ j + B̄/2

0,

otherwise

(14)

and where iw and ih are the width and height of the i th

subband, f(iw,ih )(t) is the visual weight f applied to the
i th subband and f(iw,ih )(w, h, t) is the (w, h)th element of
f(iw,ih )(t).

The weights f(iw,ih )(w, h, t) in salient regions take higher
values than those in non-salient regions. Thus, statistics com-
puted from salient regions are given greater weight in the
curvilinear coordinate system.

Applying (12)-(14) results in a situation where the num-
ber of binned samples in the salient region becomes rela-
tively large. We have observed that the distribution of these
coefficients can be well-modeled as following a generalized
Gaussian distribution (GGD). In the Appendix, we provide
experimental validation for this choice.

3) Generalized Gaussian Fits for Wavelet Data: The com-
puted empirical distributions are modeled as GGD. The GGD
has been used in numerous studies of image wavelet coeffi-
cients [61], [62]. We use the reliable method of [63] to extract
the parameters of the GGD. The GGD is defined as

GGD
(

x : μ, σ 2, γ
)

= ae−((x−μ)/s)γ , (15)

where μ, σ 2 and γ are the mean, variance, and shape para-
meter of the distribution, respectively. The positive constants
a and s are given by

a = sγ /2
 (1/γ ) (16)

Fig. 8. Example generalized Gaussian distributions (GGD).

and

s = 1

σ

√

 (3/γ )


 (1/γ )
. (17)

Figure 8 plots various GGDs with varying γ . Small values
of γ result in peakier distributions with heavier tails, and larger
values result in more uniform distributions. The value γ = 2
results in a Gaussian distribution, while γ = 1 results in a
Laplacian distribution. Thus, the shape parameter is indicative
of the distribution of the energy in the computed map in
the wavelet-frequency domain, and this parameter is used to
characterize the 3D visual activity.

We denote the GGD fit to pk,i (t) as

GGD
(

pk,i (t) : μk,i (t) , σk,i (t)2 , γk,i (t)
)

, (18)

where μk,i (t), σk,i (t)2 and γk,i (t) are the estimated mean,
variance and shape parameter of pk,i (t).

Given these parameters, 3DVA is computed as follows:
First, the “visual activity” occurring within the i th subband
of factor k at time t is obtained using double sigmoid normal-
ization [64], [65]:

Ak,i (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1

1 + exp
(−2

((
γ̄k,i (t) − ck

)
/ck,D

)) ,

if γ̄k,i (t) < ck

1 − 1

1 + exp
(−2

((
γ̄k,i (t) − ck

)
/ck,U

)) ,

otherwise
(19)

where

γ̄k,i (t) =
{

γk,i (t) · δ̄ (t) , k = D

γk,i (t) , k ∈ {M,T,C}. (20)

In (19), ck is the reference operating point for each factor k,
and ck,D and ck,U are the trailing and leading edges of the
region over which (19) is approximately linear, respectively,
as experimentally determined as explained in Section III-B.
γk,i (t) is the shape parameter of the i th subband of factor k
at time t . δ̄(t) is a value that depends on the average disparity
at time t , as explained next.

In order to account for conflicts between convergence
and the accommodation, the disparity computed is expressed
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Fig. 9. Angles between the eyes and the farthest point, the disparity plane
and the nearest point, respectively. The gradation in gray-scale indicates the
available region to form images of 3D objects. The darker the region, the
greater the presumed visual comfort.

as angular disparity. For small absolute angular disparities,
δ̄(t) tends towards 1 (at 0 angular disparity, we define
δ̄(t) = 1). For larger absolute angular disparities, δ̄(t) tends
towards 0.

As shown in Fig. 9, if the average angular disparity δ(t)
is θd − θn (at the nearest point) or is θd (assume that θ f has
converged to 0), then δ̄(t) = 0, where θn , θd and θ f are the
angles between the eyes and the nearest point, the display
plane and the farthest point, respectively. δ̄(t) is given by

δ̄(t) =
{

(θn − θd + δ (t)) /(θn − θd), Negative parallax

(θd − δ (t)) /θd , Positive parallax

(21)

Finally, the overall (summed, or pooled) 3DVA index is

A =
∑

t

A (t)
/

T (22)

where

A (t) =
∑

k

ωk

(∑
i

Ak,i (t)
/

I

)
, k ∈ {D,M,T,C}. (23)

In (22) and (23), T is the overall temporal duration of the 3D
content, A(t) is the temporal 3DVA at time t , I is the number
of subbands, and ωk is a parameter that is used to adjust the
relative importance of the four factors. For simplicity, we shall
take ωk = 1 (∀k ∈ {D,M,T and C}).

III. SIMULATION RESULTS

A. Dataset

To evaluate the performance of 3DVA, the 3D test sequences
in [44] were employed. These 3D sequences were captured
using Panasonic AG-3DA1, Sony HDR-TD20/S and Sony
HDCP1 stereoscopic cameras, and include content containing
a highly diverse distribution disparities, motions, textures and
colors as well as camera motion.

Figures 10 plots exemplar frames from the 3D test
sequences that were used for validation. The lengths of
the sequences “Library5”, “Library6”, “Market1”, “Metro1”,
“Metro2”, “Metro3”, “Statue1”, and “Street2” are 30 seconds,
and those of the sequences “Library2” and “Library7” are
60 seconds while the rests are 10 seconds. The frame-rate and
the resolution of all sequences are 30 f ps and 1920 × 1080,
respectively.

B. Fitting and Normalization

1) Fitting to GGD: We list the shape parameter γ computed
by the GGD fit to the weighted wavelet responses of the
activity maps of disparity, motion, texture and color for each
subband in Tables I-II for the “Car1” and “University2”
sequences. To conserve space, we tabulate these results for
only two sequences. In these tables, γ is the mean shape
parameter over the sequence duration T .

2) Normalization of 3DVA: As mentioned before, it
is necessary to normalize the measured values of visual
activity by the range of values that the shape parameter
can take: ck , ck,U and ck,D (k ∈ {D,M,T,C}) in (19).
We have a large testset that is composed of around
13,800 images (the total number of frames in the
test set). Using [65], the normalization parameters thus
obtained are: (cD, cD,U , cD,D) = (1.0068, 0.9670,0.2094),
(cM, cM,U , cM,D) = (1.1288, 0.4527, 0.3306), (cT, cT,U ,
cT,D) = (1.1322, 0.1338, 0.2904), and (cC, cC,U , cC,D) =
(0.9535, 0.1697, 0.1492).

C. Measuring 3DVA

Figure 11 plots temporal 3DVA for the videos in Fig. 10. We
show the results obtained for eight representative sequences.
Figures 11 (a)-(h) plot the temporal activities of disparity
and motion while those of texture and color are shown in
Figs. 11 (i)-(p) for “Car1”, “Car2”, “Library5”, “Library6”,
“Metro3”, “Street2”, “Restaurant1”, and “University2”. The
temporal 3DVAs are shown in Figs. 11 (q)-(t).

When a stereopair exhibits a wide variety of disparities
as in “Library5”, “Metro3”, and “University2”, the average
measured disparity activity was, in each case: (Library5: 0.76,
Metro3: 0.76, University2: 0.92). By contrast, when there was
narrow disparity distribution as in “Library6” and “Street2”
(500th−899th frames), the average measured disparity activity
was: (Library6: 0.16, Street2: 0.01).

Regarding activity in foveated regions, in the sequences
“Car1”, “Car2”, “Library6” (135th − 899th frames), and
“Restaurant1”, the measured motion activity was distinctly
modified by the appearance of salient objects. When objects
labelled as ‘salient’ approached the camera, the measured
motion activity was found to remain high (Car1: 0.66, Car2:
0.71, Library6: 0.67, Restaurant1: 0.72).

When there was camera motion or random motions of
people or other salient objects as in “Library5”, “Metro3”,
“Street2” (1st − 320th frames), and “University2”, then the
measured motion activity was found to fluctuate a great deal.

For the indoor and static camera scenes; “Library6” and
“Restaurant1”, the distances between the objects in the scene
and camera is less than in the outdoor scenes. Further, when
the camera is static, texture and color properties in the images
are less distributed. Since the textures and colors of objects
are captured with greater detail, the measured texture and color
activities remain high. The average measured texture and color
activities were: (Library6: 0.65 and 0.66, Restaurant1: 0.62
and 0.76).

Figures 12 and 13 plot the measured visual activities as well
as the frames that correspond to the lowest and highest points
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Fig. 10. Example frames of the test sequences. (a) 112th frame of “Car1”. (b) 129th frame of “Car2”. (c) 86th frame of “Crosswalk2”. (d) 201st

frame of “Library2”. (e) 64th frame of “Library4”. (f) 117th frame of “Library5”. (g) 560th frame of “Library6”. (h) 494th frame of “Library7”.
(i) 6th frame of “Marathon1”. (j) 1st frame of “Market1”. (k) 211th frame of “Metro1”. (l) 307th frame of “Metro2”. (m) 292nd frame of “Metro3”. (n) 66th

frame of “Restaurant1”. (o) 142nd frame of “Sidewalk-lateral1”. (p) 317th frame of “Statue1”. (q) 255th frame of “Street2”. (r) 76th frame of “University1”.
(s) 131st frame of “University2”. (t) 204th frame of “Walking-person8”.

TABLE I

SHAPE PARAMETER γ FOR THE “CAR1” SEQUENCE

on the graphs in Fig. 11. Figures 12 (a)-(d) show the frames
that correspond to the lowest and highest measured disparity
activities in sequences “Street2” and “University2”. The 727th

frame of “Street2” has a low disparity activity (0.01), while
the 46th frame of “University2” has a high disparity activity
(0.96).

Figures 12 (e)-(h) show the frames containing the low-
est and highest measured motion activities in “Library6”
and “Metro3”. The 442nd frame of “Library6” has a
low motion activity (0.19), while the 287th frame of
“Metro3” has a motion activity of 0.81 because of large
camera motion.
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Fig. 11. 3DVA plotted against time. (a) Disparity and motion activities of “Car1”, (b) “Car2”, (c) “Library5”, (d) “Library6”, (e) “Metro3”,(f) “Street2”
(g) “Restaurant1”, and (h) “University2”. (i) Texture and color activities of “Car1”, (j) “Car2”, (k) “Library5”, (l) “Library6”, (m) “Metro3”, (n) “Street2”
(o) “Restaurant1”, and (p) “University2”. (q) 3DVA of “Car1”, “Car2”, (r) “Library5”, “Library6”, (s) “Metro3”, “Street2” (t) “Restaurant1”, and “University2”.

Figures 13 (a)-(d) show the frames having the lowest and
highest texture activities in “Car1” and “Car2”. The 50th

frame of “Car1” and the 228th frame of “Car2” have a low
texture activity of 0.17 and a relatively high texture activity of

0.66, respectively. Figures 13 (e)-(h) show the 876th frame of
“Library5” and the 233rd frame of “Restaurant1”, which have
a low color activity of 0.10 and a high color activity of 0.97,
respectively.
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TABLE II

SHAPE PARAMETER γ FOR THE “UNIVERSITY2” SEQUENCE

Fig. 12. Sample frames corresponding to the results in Fig. 11. (a) 727th

frame of “Street2”. (b) 3D reconstruction of (a) showing low disparity activity.
(c) 46th frame of “University2”. (d) 3D reconstruction of (c) showing high
disparity activity. (e) 442nd frame of “Library6”. (f) Magnitude of motion in
(e) showing low motion activity. (g) 287th frame of “Metro3”. (h) Magnitude
of motion of (g) showing high motion activity.

D. Application of 3DVA

As an example application of 3DVA, we use 3DVA to
measure visual fatigue. When viewing 3D content, a viewer
receives two images corresponding to the left and right views
of the scene, and the convergence of the human visual system
allows for the creation of a fused image. As we have seen,
there exists a conflict between convergence and the accom-
modation, which causes visual fatigue [34]. Visual fatigue
manifests in a wide range of visual symptoms, including
tiredness, headaches, ocular pain and so on [66]. Highly

Fig. 13. Sample frames corresponding to the results in Fig. 11. (a) 50th frame
of “Car1”. (b) Texture map of (a) showing low texture activity. (c) 228th

frame of “Car2”. (d) Texture map of (c) showing high texture activity. (e)
876th frame of “Library5”. (f) Average of color components of (e) showing
low color activity. (g) 233rd frame of “Restaurant1”. (h) Average of color
components of (g) showing high color activity.

‘active’ 3D content often leads to increased visual fatigue
[33]– [40], and hence, the use of a perceptual activity measure
could be used to predict fatigue.

We conducted a subjective study to evaluate the relation
between the human perception of visual fatigue and the pro-
posed 3DVA measure. Forty subjects (14 females, 26 males)
between the ages of 20 and 50 years old participated in
the study. Fifteen of the subjects were researchers in video
processing, while the rest were naive observers. Five of the
researchers and ten of the non-researchers fell in the age
group 31 − 50, while the remaining twenty-five fell in the
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TABLE III

CORRELATION RESULTS BETWEEN 3DVA

AND SUBJECTIVE VISUAL FATIGUE

age group 20 − 30. All subjects were found to have corrected
visual acuity of better than 1.25 (the Landolt C-test) and good
stereoscopic acuity of less than 60 arc (on the RANDOT stereo
test). The video sequences used in the subjective test were
drawn from [44] and are shown in Fig. 10. The experiment
was conducted using a Miracube 46” polarized Stereoscopic
display. The viewing distance was set at 2.29m, which is four
times the screen height.

We performed the subjective assessment by using a mul-
timodal interactive continuous scoring of quality (MICSQ)
technique [67] which helps engage and focus the subject on
his/her task. For studies which attempt to ferret out relatively
subtle measures such as fatigue, it is necessary to be able to
deploy reliable methodologies that measure viewer’s subjec-
tive experience. MICSQ is composed of a device interaction
process between the 3D display and a separate device (PC,
tablet, etc.) used as an assessment tool; and a human interac-
tion process between the subject and the device. The scoring
process is multimodal and uses aural and tactile cues. The
authors in [67] found that assessment using MICSQ yields
consistent, highly-reliable human responses and allows for
a wide range of visual content to be graded, as compared
to conventional single stimulus continuous quality evaluation
(SSCQE).

Subjects were required to rate the amount of visual fatigue
they experienced when they viewed the stereoscopic content.
Subjects rated the videos continuously (i.e., as a function of
time/on every frame) on a scale of 0-1, where a score of
0 corresponds to “most comfortable” and 1 corresponds to
“most fatigued”. The subject rejection procedure described in
the ITU-R BT.500 [68] was applied to the scores obtained
which rejected 5 of the 40 subjects. The remaining scores
were then averaged to produce a mean visual fatigue score. We
evaluated 3DVA as an indicator of visual fatigue by comparing
the algorithm output to the visual fatigue scores.

To combine the four factors with appropriate weights ωk

(k ∈ {D,M,T,C}) in (23), we applied a support vector regres-
sion (SVR). Specifically, we used the SVR to estimate the
relative importance of the four quantities being weighted.
The weights so computed turned out to be ωD = 0.3557,
ωM = 0.4471, ωT = 0.1159, and ωC = 0.1961.

To better understand the factors that affect the relationship
between visual fatigue and predictions of it using 3DVA,
we also separately analyzed performance by age category
(20 to 30 vs. 31 to 50) and profession (researcher vs. non-
researcher). Figure 14 plots recorded subjective visual fatigue
scores against computed 3DVA index values. Figures 14 (a)
to (e) are scatter plots for researchers, for non-researchers, for

Fig. 14. Scatter plots between 3DVA prediction scores and subjective visual
fatigue scores (a) over researchers, (b) of non-researchers, (c) of age group
20-30, (d) of age group 31-50, and (e) of all subjects. (f) Bland-Altman plots
over all subjects.

age group 20−30, for age group 31−50, and for all subjects,
respectively, while Fig. 14 (f) is a Bland-Altman plot over
all subjects. The figures demonstrate qualitatively the degree
and nature of the correlation between 3DVA predictions and
subjective visual fatigue scores. The 3DVA predictions were
compared with subjective fatigue scores at a rate of 2H z
(2 samples/s) following [68]. Thus, the 3DVA predictions
were averaged over each set of 15 frames. In order to measure
quantitative correlation between 3DVA and subjective fatigue,
we employed two commonly used performance measures:
the Pearson linear correlation coefficient (PLCC) and the
Spearman rank-order correlation coefficient (SROCC) between
the subjective visual fatigue results and the fitted 3DVA scores,
obtained by the regression method in [69]. A four-parameter,
monotonic logistic function was used to fit the predicted
fatigue predictions to the subjective fatigue scores

Q′
j = β2 + β1 − β2

1 + e−(Q j−β3/|β4|) (24)

using nonlinear least squares optimization. The correlation
results are given in Table III. The computed PLCC and
SROCC all subjects indicates that 3DVA functions quite
reasonably well as a predictor of visual fatigue. There are
differences in the results for the different subject age ranges.
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Fig. 15. Examples of GGD fitting for the wavelet data of “University 1” at
the 78th frame (Fig. 7). All graphs correspond to the 3rd scale and vertical
orientation. (a) Disparity map (Fig. 7 (a)). (b) Y-motion map (Fig. 7 (c)).
(c) Texture map (Fig. 7 (e)). (d) Cr-color map (Fig. 7 (g)). (e) Weighted
disparity map by (12)-(14). (f) Weighted Y-motion map. (g) Weighted texture
map. (h) Weighted Cr-color map.

First, the correlation between 3DVA and subjects is higher in
the younger age group. There was also a tendency among
the older viewers to experience a greater degree of visual
fatigue (0.7138 and 0.6011 were the average subjective visual
fatigue scores recorded by the older and younger age groups,
respectively). One possible explanation for this could be
decreased visual sensitivity with age which is not accounted
for in 3DVA. Moreover, the 3DVA correlated higher with the
researcher scores than with the non-researcher scores, possibly
indicating a bias derived from prior experience.

A Bland-Altman plot can provide useful information with
regards to the ranges of values over which the two results are
most concordant or discordant [70]. It is common to com-
pute 95% limits of agreement for each comparison (average

TABLE IV

FITTING ERRORS (RMSE) OF PMF AND WEIGHTED PMF

difference ±1.96 standard deviation of the difference), which
indicates how far apart the two results were likely to be for
most individuals. As shown in Fig. 14 (f), the region in which
the differences were mostly located was (−0.17 ∼ 0.21).

The analysis in this section serves as a demonstration of
the application power of 3DVA. In the future we plan to
adopt more sophisticated machine-learning based approaches
[71], [72] using 3DVA features (disparity, motion, texture and
color) that mirror our recent design philosophy in the field of
no-reference image quality assessment [73], [74].

IV. CONCLUSION

When analyzing 3D content, it is essential to be able to
quantify visual importance over the perceived 3D visual space.
The human visual response is highly reliant on the size,
position and motion of objects aligned along the depth axis.
Along these lines, we proposed a new framework for analyzing
3D content termed 3D visual activity (3DVA). 3DVA measures
the statistical dynamics of objects in 3D space. To achieve this,
we accounted for the nonuniform sampling resolution of the
eye (foveation) and for 3D stereoscopic fusion by casting the
problem in a coordinate-transformed space. Over nonuniform
transformed coordinates, we fitted wavelet coefficients to a
generalized Gaussian distribution model on disparity, motion,
texture and color data. The new 3D visual activity index
called 3DVA was formulated by quantifying the statistical
variance and randomness of the 3D content. Randomness,
activity and complexity are important for understanding 3D
content, e.g., when analyzing and predicting visual fatigue
experienced when viewing 3D visual content.

APPENDIX

In this appendix, we experimentally verify that the GGD
model supplies good experimental fits to each PMF, pk,i . This
is importance since, while the GGD model is well-established
for luminance data, it has not been applied to the other forms
of visual data studied here.

As an example, Fig. 15 plots the results of GGD fitting
to the empirical histograms of the disparity, motion, texture
and color maps of “University 1” at the 78th frame as shown
in Fig. 7. Figures 15 (a)-(d) are the PMF and GGD fits of
the un-weighted wavelet data and (e)-(h) are those of the
weighted wavelet data. As the Figure demonstrates, applying
the 3D HVS weight changes (narrows) the shape (spread)
of the distribution, however, the modified shape is still well
modeled using a GGD.

In Table IV, we tabulate the root mean-square-error (RMSE)
between actual histogram values and the best GGD fit for both
the weighted and un-weighted PMFs. As the table illustrates,
the fitting errors for both these cases are comparable and
extremely small, thus verifying that the GGD is a good model
in both cases.
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