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Predicting the Quality of Compressed Videos with
Pre-Existing Distortions

Xiangxu Yu, Neil Birkbeck, Yilin Wang, Christos G. Bampis, Balu Adsumilli and Alan C. Bovik

Abstract—Over the past decade, the online video industry has
greatly expanded the volume of visual data that is streamed and
shared over the Internet. Moreover, because of the increasing
ease of video capture, many millions of consumers create and
upload large volumes of User-Generated-Content (UGC) videos.
Unlike streaming television or cinematic content produced by
professional videographers and cinemagraphers, UGC videos
are most commonly captured by naive users having limited
skills and imperfect technique, and often are afflicted by highly
diverse and mixed in-capture distortions. These UGC videos are
then often uploaded for sharing onto cloud servers, where they
further compressed for storage and transmission. Our paper
tackles the highly practical problem of predicting the quality of
compressed videos (perhaps during the process of compression,
to help guide it), with only (possibly severely) distorted UGC
videos as references. To address this problem, we have developed
a novel Video Quality Assessment (VQA) framework that we
call 1stepVQA (to distinguish it from two-step methods that
we discuss). 1stepVQA overcomes limitations of Full-Reference,
Reduced-Reference and No-Reference VQA models by exploiting
the statistical regularities of both natural videos and distorted
videos. We show that 1stepVQA is able to more accurately predict
the quality of compressed videos, given imperfect reference
videos. We also describe a new dedicated video database which
includes (typically distorted) UGC reference videos, and a large
number of compressed versions of them. We show that the
1stepVQA model outperforms other VQA models in this scenario.
We are providing the dedicated new database free of charge at
https://live.ece.utexas.edu/research/onestep/index.html

Index Terms—Video quality assessment, natural scene statis-
tics, video compression, user-generated-content

I. INTRODUCTION

N recent years, digital images and videos have become

remarkably ubiquitous and now constitute the majority of
Internet traffic. According to [1]], video streaming continues
to occupy a growing share of Internet bandwidth, and by
2022, it is expected that 82% of global “moving bits” will
be picture and video content. A substantial portion of this
data is generated by streaming providers like Netflix, Hulu,
and Amazon Prime Video. The content they provide, with
some exceptions, has been created by expert photographers
using professional capture devices. These pristine videos are
generally (but not always) of high quality, and can usually be
used as references in subsequent Video Quality Assessment
(VQA)/compression processes. However, another category of
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videos are also uploaded and downloaded in gigantic volumes
by casual users, called User-Generated-Content (UGC) videos.
These imperfect videos are very often uploaded onto social
platforms like YouTube, Snapchat, Facebook, Instagram, and
TikTok. UGC content is commonly captured by inexpert using
having uncertain technique and often unsteady hands, resulting
in numerous, often commingled impairments of perceived
quality. These UGC videos have often undergone a series of
processing steps, such as editing, aesthetic modification, and
compression, before the user uploads them to an online server,
where they inevitably undergo another round of compression.
The highly diverse mixtures and severities of distortion that
these UGC videos contain are very difficult to model. Since
high quality pristine reference videos cannot be counted on
to guide compression, it is highly desirable to find ways of
assisting compression decisions by accounting for the qualities
of the source videos. This challenging problem presents unique
difficulties in perceptual distortion modeling.

We remind the reader that VQA models can be conveniently
placed into two categories. Those that require a reference
signal, which includes Full-Reference (FR) and Reduced-
Reference (RR) models, and those that do not: No-Reference
(NR) models. Current mainstream reference VQA models
include the FR VMAF [2], VQM [3]], SSIM [4] and VIF
[5], and the RR model ST-RRED [6]. The second main
category is that of NR models, which aim to accurately predict
picture quality without the aid of any reference videos. In
applications involving UGC videos, reference models (FR or
RR) are problematic, since comparing a possibly distorted
test video against a reference that is also distorted must lead
to errors, and possibly severe losses of quality prediction
accuracy. While NR models are intended to be able to predict
the quality of distorted-then-compressed videos, NR VQA
remains a challenging research topic and the most competitive
models still have difficulty in predicting the quality of complex
distorted UGC videos [7]].

Here we seek to advance progress on solving the problem
of predicting the quality of distorted-then-compressed videos.
For example, in a cloud server, many distorted and already-
compressed videos will be uploaded by users, only to be
further compressed without the benefit of a guiding pristine
reference. Instead, the source video may already contain
any of many kinds of possibly mixed distortions, including
almost-inevitable prior compression. Thus, standard reference
VQA models cannot be expected to produce optimal quality
predictions. To address this issue, we propose a method called
IstepVQA, which learns to predict compressed UGC video
quality, including relationships between native distorted UGC



video quality and that of further video compression. 1stepVQA
accomplishes this by monitoring losses of expected statistical
regularity in videos being analyzed. Since distortions can
cause the statistical properties of videos to deviate from well-
modeled natural regularities, it is possible to learn relationships
between distortions and “natural video statistics” and use them
to predict perceptual quality. In the approach taken here, we
seek to avoid the drawbacks of reference VQA models by
also making measurements of quality-aware features on the
typically flawed reference videos.

The essential tools needed to solve VQA problems are
databases of appropriate diverse video contents and distortions,
labeled with adequate amounts of subjective data. There are
a number of legacy VQA databases, including LIVE VQA
[8], LIVE Mobile [9], CDVL [10] and MCL-V [11]], MCL-
JCV [12] and VideoSet [13], each containing about 10-20
pristine video contents, and many distorted versions of them.
The distortions in all of these databases were synthetically
generated in isolation. While these databases have successfully
driven the development of early reference VQA models, they
are of limited value with respect to the UGC video quality
assessment problem. More recently, a few novel databases
have been developed, including LIVE VQC [7], KoNViD-1k
[14] and YouTube UGC [[15]], which contain many UGC videos
of very diverse contents and distortions. These databases were
originally designed for the development of NR VQA models,
but we will also find them useful here. The source videos were
collected from diverse users and online repositories. These
databases are not of direct value, and so it was necessary for
us to generate a new and dedicated subject VQA database,
containing UGC videos of highly diverse real-world content
and distortions as source ‘reference,” as well as additionally
compressed versions of them, to help us develop and evaluate
our model.

The rest of the paper is organized as follows: we introduce
related work in Section |lIl We present our newly built database
in Section We describe our proposed model in Section
We examine our model performance in Section [V| Finally we
summarize the paper in Section

II. RELATED WORK

Early work on VQA models largely focused on reference-
based models, beginning with the simple PSNR and advancing
to more sophisticated FR frame-based models that better
account for visual perception, including SSIM, MPQM [16]],
MS-SSIM [17]], VIF, VSNR [18], FSIM [19]], IW-SSIM [20],
and DOG-SSIM [21]], and spatial-temporal models like VMAF,
VQM, MOVIE [22], ST-MAD [23]], TetraVQM [24]], and an
optical flow-based method [25]]. There are also successful RR
models, such as ST-RRED and SpEED-QA [26].

The development of NR models which do not require any
reference videos has been a hot topic in recent years, driven
by the need to evaluate UGC videos and older, lower-quality
content. Early models were often distortion-specific, targeting
only one or more specific distortions. Later, more general
models have involved training quality prediction models to
learn mappings from features to subjective judgments, e.g.,

BRISQUE [27], V-BLIINDS [28] and BIQME [29], which
make use of natural scene statistics (NSS) models; BPRI [30]],
[31], which utilizes a pseudo reference image, TLVQM [32],
which deploys a simplified motion estimator, and more recent
deep learning models, like NIMA [33], PaQ-2-PiQ [34], PQR
[35], DLIQA [36], and more [37]]. There are also completely
blind (unsupervised) models, like NIQE [38]] and IL-NIQE
[39].

The approach that we take to the problem of assessing the
quality of distorted videos undergoing compression relies on
spatial-temporal NSS models. NSS models are the foundation
of many FR, RR and NR models. In particular, “distorted
NSS” models seek to quantify losses of statistical regularity
in visual signals.

In these approaches, bandpass picture or video coefficients
are modeled by Gaussian Scale Mixture (GSM) distributions.
These models typically operate in a bandpass (wavelet, DCT
scale-space, etc.) domain. In the absence of distortion, percep-
tually relevant conditioning or divisive normalization nonlin-
earities tend to Gaussianize and further reduce the redundancy
of these coefficients. Departures from uncorrelated Gaussianity
of the coefficients arising from distortion are measured or
learned by Image Quality Assessment (IQA)/VQA models,
and mapped to perception.

One of the most commonly used spatial-NSS models, which
is closely related to methods used here, is BRISQUE. When
applied on videos, BRISQUE operates by computing Mean
Subtracted Contrast Normalized (MSCN) coefficients on a
frame basis. The statistics of MSCN of high quality video
frames tend to follow a Gaussian distribution, but this char-
acteristic is generally disturbed by the presence of distortions.
The MSCN of distorted video frames are commonly modeled
as following a parametric Generalized Gaussian Distribution
(GGD), the parameters of which tend to vary with distor-
tion type and severity. During training, MSCN features are
computed on a set of distorted videos, from which model
parameters are extracted and then fed into a machine learning
tool along with human quality labels, to learn mappings from
model space to perceived quality. The trained model can then
be used to blindly predict the quality of videos.

In [40], the authors devised a spatial-temporal VQA model,
which utilizes the statistics of directional frame differences.
These are defined as differences between adjacent frames
that have been spatially displaced (by £ 1 pixel) relative to
one another, thereby capturing directional space-time bandpass
behavior that exhibits high statistical regularity. We build
on this model in defining the quality-aware feature set in
1stepVQA.

The new model we introduce here, called 1stepVQA, uti-
lizes similar underlying models as BRISQUE, but also em-
ploys temporal features. Moreover, we created a new, special-
purpose subjective database to enable a unique training pro-
cess, whereby two types of human subjective labels are trained
on: (i) pre-compressed quality, and (ii) post-compressed qual-
ity. In this way, the 1stepVQA model is able to learn to predict
post-compression video quality, while also accounting for pre-
compressed quality.

Previously, we proposed an IQA model [41] to solve the



same problem (predicting the quality of still pictures with pre-
existing distortions that are then JPEG compressed). Unlike
IstepVQA, this prior approach, called 2stepQA, operates in
two distinct, sequential, quality assessment stages [42]. The
first stage conducts traditional NR IQA (e.g., using NIQE [38]))
on the source picture, to form a prediction of the pre-existing
picture quality. In the second stage of 2stepQA, a standard
reference IQA model (e.g., SSIM [4]) is used to predict the
post-compressed quality relative to the source picture. These
quality predictions are then combined, using, for example, a
simple weighted product of FR/RR and NR stages. Instead,
IstepVQA attempts to predict the output compressed quality
by simultaneously processing NR quality-aware features on
the source and reference VQA features from the input-output
video pair.

The contributions that we make are summarized as follows:

o We combine traditional spatial NSS models with novel
models of the statistics of displaced temporal frame
differences. We are able to show that both modes of
statistical data boost performance. We also show that us-
ing displaced frame differences rather than non-displaced
differences boosts prediction accuracy.

o We created a major new first-of-a-kind subjective VQA
database containing 55 unique UGC video contents, along
with human quality opinions of them, and many com-
pressed versions of these, on which we also collected a
large number of human subjective opinions.

e We used this new psychometric resource to learn a
new space-time NSS feature-based VQA model, called
IstepVQA, which utilizes both traditional spatial NSS
features, as well as new displaced space-time difference
based-NSS features. This new model does not require
the overhead of motion estimation, or transformation to
another domain. It is relatively fast, uses fewer features
than most other VQA models, yet it generates highly
competitive results against other top performing models
on this important practical problem.

III. NEW DATABASE

In recent years, the number of UGC videos that are up-
loaded daily has increased to an incredible degree. Most of
these contributors are amateur videographers having limited
skills and uncertain hands, hence, the qualities of these video
uploads varies significantly over a very wide range. These
UGC videos are then uploaded onto Internet servers, and pass
through multiple processing stages, before being streamed to
potentially millions of clients. These uploaded UGC videos
will often be corrupted by any of many possible distortions
(exposure, shake, multiple types of noise or blur and many
more). The stages of processing may introduce further defects,
including any additional video coding. For example, when a
video is recorded, it may be compressed within a device before
being uploaded. After being uploaded to a server, the video
may be further compressed for storage and transmission.

Under this scenario, the uploaded video may already suf-
fer from mixed in-capture distortions, against which there
are no reference videos of ‘pristine’ quality, hence FR/RR
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Fig. 1. (a) MOS distribution of the 110 source videos in the LIVE Video
Quality Challenge Database. (b) MOS distribution of the 55 selected reference
videos in the new LIVE Wild Compressed Video Database.

Fig. 2. Example reference videos from the new LIVE Wild Compressed
Video Database.

VQA models may fail if used to predict the quality of the
pre-distorted/multiply-compressed video. While it would be
desirable to directly apply an NR VQA model, to the ultimate
compressed output, current NR algorithms are insufficiently
general to effectively conduct this very complex task. There
is also a lack of dedicated databases designed to model this
scenario. There appears to be a database that may relate to this
problem [43]], but it is not publicly available. Towards filling
this gap, we created a new database, called the LIVE Wild
Compressed Video Quality Database, which contains hundreds
of compressed UGC videos, including the source (reference)
videos.

A. Database Content

We randomly selected 55 different reference videos (con-
tents) from among the 110 1080p videos contained in the
LIVE VQC Database, each of duration 10 seconds. These are
all UGC videos captured with highly diverse mobile cameras,
covering a wide range of contents and qualities. Most of these
videos are corrupted by diverse authentic, mixed in-capture
distortions.

Since the LIVE VQC database provides subjective scores,
specifically Mean Opinion Score (MOS), we randomly sam-
pled the 55 reference videos to match the MOS distribution
of the 110 source videos. Fig. [T] shows that the 55 selected
reference videos have a very similar MOS distribution as the
entire collection of 110 videos LIVE VQC videos. Fig. [2]
shows a few example reference videos from the new database.
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Fig. 3. (a) NIQE score distribution of the 110 source videos in the LIVE
Video Quality Challenge Database. The SROCC between the NIQE scores
and MOS of the 110 source videos is 0.4989. (b) NIQE score distribution of
the 55 selected reference videos in the new LIVE Wild Compressed Video
Database. The SROCC between the NIQE scores and MOS of the 55 selected
reference videos is 0.5047.
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Fig. 4. (a) SI against TI of the 110 source videos in the LIVE Video Quality
Challenge Database. (b) SI against TI of the 55 selected reference videos in
the new LIVE Wild Compressed Video Database.

Fig. |3| shows the NIQE score distribution of the 110 source
videos from the LIVE VQC database as well as the 55 selected
reference videos. The Spearmans Rank Ordered Correlation
Coefficient (SROCC) between the NIQE scores and MOS of
the 55 selected reference videos is also very similar to that of
the SROCC correlation between the NIQE scores and MOS
of the 110 source videos.

As a further measure of similarity, we also computed the
Spatial Information (SI) and Temporal Information (TI) [44]
on all of the videos. These quantities roughly measure the
spatial and temporal richness and variety of the video contents.
SI and TT are defined as follows:

ST = maxXyime {stdspace [Sobel(Fy,(i,7))]}, (D

T1 = maxXime {Stdspace [Mn (17])]} ) 2)

where F, denotes the luminance component of a video frame
at instant n, (i,7) denotes spatial coordinates within this
frame, and M,, = F,,— F), 4, is the frame difference operation.
A Sobel filter is denoted as Sobel(F,). Fig. 4| shows that the
video contents we selected widely span the SI-TI space, and
have a similar SI-TI distribution as the source videos in the
LIVE VQC database.

B. Compressed Video Generation

Each reference video was subjected to two processing steps
to simulate stages that may occur when, for example, a video

TABLE I
DISTRIBUTION OF VIDEO RESOLUTIONS AT EACH COMPRESSION LEVEL

‘ Compression level | 5 3 4
Resolution

1080p 11 0 0 0

720p 33 | 17 1 0

540p 11 [ 33 | 26 | 6

360p 0 5 28 | 49

is uploaded to a social media site. First, each video was
spatially down-scaled (if needed) to four resolutions: 1080p,
720p, 540p, and 360p. Second, we generated these compressed
videos at each down-scaled resolution using H.264 at 17
compression levels using CRF: 1, 4, 7, ..., 49. Thus, for each
video content, there is one 1080p reference video and 68
altered versions of it (four resolutions) x (17 compression
levels). This yielded a total of 3740 videos with downsam-
ple/compression distortions, which is far too many to all
be viewed by the limited number of subjects that typically
subscribe to a psychometric quality study in a laboratory.
Therefore, we adopted a strategy similar to that used by video
service providers to determine bitrate allocation vs. predicted
quality. To do this, we calculated the VMAF scores of all the
videos along with their bitrates, and used these to plot the
convex hull curve of each video content. Based on this curve,
we selected four videos on the curve and included them in the
database. An example of the convex hull curve of one video
content is shown in Fig.[5] We chose VMAF scores to draw the
convex hull curve because it is a state-of-art FR VQA model
that is already used in this way in the streaming industry [45],
and its scores map approximately linearly against perceptual
quality, which is convenient for video selection and distinction.
To create downscaled/compressed versions of each content
that are perceptually separable from each other, we selected
four compressed videos on the curve having VMAF adjacent
score differences approximately between 10 and 20. The
compressed videos at the four compression levels have VMAF
scores within the ranges [80,90], [60,70], [40,50], and [20,30],
respectively. We applied the same process on all contents,
yielding four perceptually different downscaled/compressed
versions of each, or 220 intentionally impaired UGC videos
overall, in addition to the original 55 (275 total). A summary of
the distributions of video resolutions at each compression level
is listed in Table[ll Since the convex hull curve of each content
is unique, likewise the parameter combinations selected for
each content are as well.

We note that using VMATF to create the compressed content
must be regarded as introducing a database bias that VMAF
(or models using the same features, like VIF [5] or ST-RRED
[6]) would unfairly benefit from, and indeed, this bias has
been observed. Hence these models are excluded from the
later comparisons.

C. Human Study

In order to obtain subjective quality labels on each video
(for model training, testing, and comparison), we conducted
a human study in the LIVE subjective study laboratory. The
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Fig. 5. Convex hull curve used to select compressed videos of an example
content.

participating subjects were mostly UT-Austin students without
a background in video quality. Each subject completed two
test sessions of duration about 45 mins, separated by at least
24 hours. The database of 275 videos was divided randomly
into two parts in each session, one containing 27 contents
and another containing 28 contents, including both reference
videos and their respective four downscaled/compressed ver-
sions, hence each subject viewed 135 and 140 videos in
consecutive sessions on different days. The videos were played
in a randomized order with each video shown only once
during each session, and where different distorted versions of
each unique content were separated by at least 5 videos. The
source videos were included as references. The total number
of subjects that took part in the study was 40, and all of them
successfully finished both sessions.

At the start of the first session, each subject participated in
a visual acuity (Snellen) test, and were asked whether they
had any uncorrected visual deficiency. A viewing distance of
approximately two feet was maintained during the test. The
video sequences were displayed on an HP VH240a 23.8-inch
1080p monitor at their native 1920 x 1080 resolution, and
the subjects were asked to adjust the height and angle of
the monitor to find their best position. Before starting the
experiment, each subject was required to read and sign a
consent form including general information about the human
study, then the procedures and requirements of the test were
explained. A short training session was also presented at
the beginning of the first session, using a different set of
videos than in the test experiment, to help the subjects become
familiar with the procedures. After watching each video, each
subject was asked to provide an overall opinion score of the
video’s quality by dragging a slider along a continuous rating
bar. As shown in Fig. [6(a)l the quality range was labeled
from low to high with two adjectives: Bad and Excellent. The
subjective scores obtained from the subjects were converted
to numerical quality scores in [1, 100]. A screenshot of the
subjective study instruction interface is shown in Fig.[6(b)} The
interface was developed on a Windows PC using the PsychoPy

(a) (®)

Fig. 6. (a) Screenshot of the rating bar shown to the subjects. (b) Screenshot
of the instruction interface shown to the subjects.

software [46].

D. Data Processing

The subjective MOS were then computed following the
procedures described below. The collected raw scores were
first converted into Z-scores. Let s;;; denote the score rated
by the i-th subject on the j-th video in the session k = {1, 2}.
The Z-scores were computed as follows:

Zijk = M, 3)
Oik
where §;; is the mean of the collected raw scores over all
videos assessed by subject i in session k, and o5 is the
standard deviation.

E. Analysis

We first conducted a consistency test. We randomly split
the subjective ratings gathered on each video into two disjoint
equal groups, and computed and compared the MOS on each
video. We repeated the random splits 1000 times and the
median SROCC between the two groups was 0.9849, which
is excellent. Since the inter-subject agreement was so high,
we elected not to apply a subject rejection process. We also
compared the correlation of the MOS of the 55 reference
videos used in our new study, against the previously obtained
(crowdsourced) MOS on the same 55 videos from the LIVE
VQC database, and found SROCC = 0.8390. The SROCC
results show that our data are reliable.

The overall MOS distribution and a scatter plot of the
MOS of the LIVE Wild Compressed Video Quality Database
are plotted in Fig. [7] Fig. [§] is a box plot of the MOS of
the reference videos and the four compression levels (but
across downscaling). The MOS decreases as the compression
is increased. Fig. [0 plots the MOS across all contents, each
color coded at a different compression level. While the curves
are nicely separated by content, it is important to observe the
mixing of MOS across contents, which is largely caused by
the reference distortions, rather than the applied downscal-
ing/compression.

IV. 1STEPVQA MODEL

Research on the relationship between visual perception and
the statistics of natural images has aroused widespread atten-
tion [47]. These models become well-behaved when expressed
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Fig. 7. (a) MOS distribution across the entire LIVE Wild Compressed Video
Quality Database. (b) Scatter plot of the MOS obtained on all the videos in
the database.
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Fig. 10. (a) 1stepVQA overview. (b) Natural Frame Statistic (NFS) processing
flow. (c) Natural Video Statistic (NVS) processing flow.

in bandpass domain, e.g., wavelets, DCT and Gabor trans-
forms, etc [48]]. The 1stepVQA model utilizes an extended set
of video NSS models, that capture directional bandpass space-
time attributes and uses them to predict quality. An overview
of the 1stepVQA model is shown in Fig. We discuss the
spatial features and spatial-temporal features next.

A. Natural Frame Statistics

Here forward to distinguish them from more general spatial-
temporal NSS models, we shall refer to spatial (frame) NSS
as Natural Frame Statistics (NFS). The application of NFS
models in 1stepVQA is quite similar to BRISQUE [27].
To capture quality-aware NFS features, apply a local non-
linear bandpass operation on the luminance component of
each video frame, in the form of local mean subtraction
followed by divisive normalization. Given a video having T’
luminance frames I, Is..., I;..., I, define spatial coordinates
(4,7), where i € 1,2..M,j € 1,2..N are spatial indices of
I, then the mean subtracted contrast normalized coefficients
(MSCN) I, are:
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where C' = 1 is a stability constant, and w = {wy |k =
-K,..,K,l=—L,...,L} is a 2D circularly-symmetric Gaus-
sian weighting function with K = L = 3.

If there are spatial distortions present, then the statistical
distribution of frame MSCN coefficients tend to become pre-
dictably altered [27]. For example, Fig. [TT]plots the histograms
of the MSCN coefficients of a frame of an undistorted video
and various compressed versions of it.

Following [27]], [38]], we use a Generalized Gaussian Distri-
bution (GGD) model of the MSCN coefficients. A GGD with
zero mean is given by:

f o 0?) = m;j‘wem—(';')a) ™
where
T /a)
f=o [(3/a) ®)

and T'(-) is the gamma function:

o) :/ t*te7tdt a>0. )
0

There are two GGD parameters: a shape parameter o,
and a spread parameter o. These are estimated using the
popular moment-matching approach in [49]. Since we have
found that the spread parameter o of the GGD does not
contribute to better quality prediction performance, only the
shape parameters « is included as part of the feature set.

B. Natural Video Statistics

Here we refer to the spatial-temporal NSS of videos as
Natural Video Statistics (NVS), which are also significantly
affected by distortions, such as jitter, ghosting, and motion
compensation mismatches, as well as compression and trans-
mission artifacts. Moreover, UGC videos are often afflicted
by mixed in-capture distortions, such as camera shake, under-
or over-exposure, sensor noise, and color distortions, which
cannot be easily modeled.

While it is difficult to find regularities in the statistics of
motion, there are strong regularities of temporal bandpass
videos, such as frame difference signals [6]. However, our
model goes further, and also utilizes models of the statistics
of displaced frame differences. Given two adjacent frames,
perform a spatial translation of one of them, then compute the
displaced frame difference between the two frames. By doing
s0, we seek to capture space-time statistics of videos without
computing motion. As it turns out, bandpass processing of dis-
placed frame differences are also very regular, and predictive
of quality. For simplicity, we used four diagonal directions
to compute displaced frame differences. Given a video with
T luminance frames Iy, I5..., I;..., IT and spatial coordinates
(i,5), i € 1,2..M,j € 1,2...N, the four diagonal displaced
frame differences between each pair of adjacent shifted frames
are defined and depicted in Fig. The four displaced frame
differences are:

Du(i,7) = 1i(i,j) = Liya (i — 1,5 — 1) (10)
Dis (i, j) = L4, §) = Lega (i + 1,5 — 1) (1n
D3 (i,7) = 1i(i, j) = Leya (i — 1,5 + 1) (12)
Dys(i,5) = Li(4,5) — Lipa(i+ 1,5+ 1) (13)

The reason that we capture NVS in opposite directions
is because they provide complementary, and not redundant
distortion information relative to the direction of any motion
field. One of two opposite directions will generally be more in
the direction of local motion, and the other less so, presenting
different (more vs. less) statistical regularity in the correspond-
ing frame differences, which can be affected by distortion.
Then compute the MSCN coefficients of each of the four
diagonal displaced frame differences, ﬁtk(i, i), k=1,..4,
using (4). The corresponding values of p (i, j) and o4k (4, 5)
are computed in the same way as in (§) and (6).
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Fig. 12. Depiction of a pixel in frame ¢ and the four displaced pixels in frame
t 4 1 it is differenced with.

Fig.|13|shows an examplar high-quality video which we use
to illustrate MSCN processing of displaced frame differences,
and to compare with the MSCN of non-displaced frame
differences. Figs. [[3(b)| and show the MSCN coeffi-
cients of a non-displaced frame difference, and a displaced
frame difference Dy (i, j), respectively. As compared with
the non-distorted frame difference, which contains no motion
information (only change), each displaced frame difference
signal reflects directional space-time motion and temporal
statistical regularities. Figs. [I3(d)] and [I3(e)| plot the his-
tograms of MSCN coefficients of non-displaced and displaced
frame differences of the same video, and also of several
compressed versions of it. While the MSCN histogram of the
high-quality source video follows a Gaussian distribution, the
histograms of the compressed ones deviate towards a heavy-
tailed distribution shape, especially at heavier compressions.
It is interesting to observe that the histograms of the displaced
frame differences are less peaked than the non-displaced frame
difference histograms.

As with NFS, the GGD model - () is a good fit to the
spatial-temporal MSCN histograms. Thus the histograms of
each directional difference Dtk(L j) are all also well fit with
a GGD model, each yielding two GGD parameters.

However, there are significant differences between the his-
tograms of the non-displaced MSCN frame-difference signals,
which are much more peaked than those of the displaced
MSCN frame-difference coefficients. In other words, the dis-
placed MSCN frame differences tend to retain Gaussianity as
the compression parameter is varied. Although they remain
monotonic and well separated, they are also more regular (and
as well we shall see, more predictable). One reason for this is
that in motion regions where the motion direction is similar to
the frame-level displacement, redundancy is better exploited,
as around the central subjects’ left lapel. In directions opposite
to motion, displaced MSCN frame differences will produce
very marked localized changes, which tend to broaden the
MSCN histograms. Even on low-motion or static videos,
the displaced frame differences become similar to spatial
directional gradient operators, which have been previously
observed to enhance bandpass statistical regularity and to
enhance quality prediction [S0], [51].

C. Feature Summary and Training

Table |[I| summarizes the features that comprise 1stepVQA.
Images and videos are naturally multiscale, and it has been
observed and demonstrated that incorporating multiscale in-
formation in both space and time (and space-time) enhances
quality prediction performance [27]], [17], [6]. We extract all
of the listed features in Table |LI} at two scales. Scale 1 is the
original video resolution, while scale 2 is the downscaled (by a
factor of 2) resolution. This is accomplished by Gaussian pre-
filtering before down-sampling, as with BRISQUE. 1stepVQA
extracts features from both the source videos and compressed
videos. While 1stepVQA is strictly a reference VQA model,
our feature selection process is highly directed, with bifurcated
feature sets designed to capture both NR aspects (of the source
videos) and FR aspects (of both). A total of 40 1stepVQA
features are used, none of which require motion estimation.

The pooling of features is also simple: 1stepVQA uses
average pooling: All features are computed on a per frame
basis, then averaged across all frames. In our implementation,
a Support Vector Machine Regressor (SVR) is used to learn a
regression model from the extracted feature space to quality
scores. Similar approaches are implemented in [27], [28]], [32].

In Section[V-C| we study the performance of 1stepVQA, and
compare it against other models and feature combinations.

V. PERFORMANCE AND ANALYSIS

We used the newly built LIVE Wild Compressed Video
Quality Database to evaluate and compare the performance
of the 1stepVQA model against other FR, RR and NR VQA
models. It is first worth noting that while Difference Mean
Opinion Score (DMOS) labels are typically supplied with ex-
isting quality research databases, those have available pristine
undistorted videos as references.

However, as discussed in [41]], given imperfect references,
DMOS is unable to capture the absolute quality of videos, e.g.
in the instances of UGC videos with pre-existing distortions
as reference videos. Hence we use the original MOS as
the subjective standards, since MOS represents the absolute
perceived quality of each.

We evaluated the relationships between predicted quality
scores and MOS using SROCC, Pearsons (linear) correlation
coefficient (LCC) and the Root Mean Squared Error (RMSE).
To compute LCC and RMSE, the predicted scores are passed
through a logistic non-linearity before computing performance.
SROCC measures the ranked correlation of the given samples,
and does not require any remapping. Larger values of SROCC
and LCC indicate better performance, while larger values of
RMSE imply worse performance.

The best way to evaluate the generality of training based
algorithms is to conduct cross-database training and testing.
However, in our situation, there is no similar database that is
publicly available. Hence we were only able to test on the
new database. To do this, we randomly divided the database
into non-overlapping 80% training and 20% test sets, with no
overlap of original content between sets. The same randomized
splits were repeated over 1000 iterations to avoid biased
results, and we report the median values of the results. When
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Fig. 13. (a) A luminance frame of an undistorted source video. (b) MSCN coefficients of the non-displaced frame difference. (c) MSCN coefficients of the
displaced frame difference Dy1 (4, 7). (d) Histogram of MSCN coefficients of the non-displaced frame difference and several compressed versions of it. (e)
Histogram of MSCN coefficients of the displaced frame difference Dy1 (4, j) and compressed versions of it.

TABLE 1T
SUMMARY OF 1STEPVQA FEATURES

Scale Type Source
Feature Index 1 2 | NFS | NVS | Reference | Compressed | Feature Description Computation Procedure
f1— fa V|V v v v Shape Fit GGD to spatial MSCN coefficients
Is — fi2 v |V v v v Shape, variance Fit GGD to D1 displaced difference MSCN coefficients
f13 — fa0 v |V v v v Shape, variance Fit GGD to D2 displaced difference MSCN coefficients
fo1 — fos V|V v v v Shape, variance Fit GGD to D3 displaced difference MSCN coefficients
fo9 — f36 vV v v v Shape, variance Fit GGD to D4 displaced difference MSCN coefficients




testing the models that do not need training, we only report
the median values of each such model’s results on the 1000
test sets, as with the training based models.

For comparison, we tested against prominent FR and
RR models: PSNR, MS-SSIM, FSIM, ST-MAD, VSI, and
our previously developed 2stepQA, and NR models: NIQE,
BRISQUE, V-BLIINDS, and TLVQM. We did not include
any deep learning models because of the lack of enough
training samples, although this remains an open and interesting
research direction.

Since we found that the 70th feature of TLVQM was the
same on all of the videos, we excluded it when training the
model.

A. Comparisons Against Mainstream VQA Methods

We first computed and compared the performance of
IstepVQA against several reference and NR VQA models,
with the results shown in Table To determine whether
there exists significant differences between the performances
of the compared models, we conducted a statistical signifi-
cance test. We used the distributions of the obtained SROCC
scores computed over the 1000 random train-test iterations.
The non-parametric Wilcoxon Rank Sum Test [52], which
compares the rank of two lists of samples, was used to
conduct hypothesis testing. The null hypothesis was that the
median for the row model was equal to the median of the
column model at the 95% significance level. The alternate
hypothesis was that the median of the row was different
from the median of the column. A value of ‘1’ in the table
represents that the row algorithm was statically superior to the
column algorithm, while a value of ‘-1’ means the counter
result. A value of ‘0’ indicates that the row and column
algorithms were statistically indistinguishable (or equivalent).
The statistical significance results comparing the performances
of the compared VQA algorithms using SROCC and LCC are
tabulated in Tables and [V] respectively. The significance
tests show that 1stepVQA significantly outperformed most of
the other models. One exception was FSIM, which did nearly
as well using an expensive phase measurement model. It may
be useful to consider similar phase coherency features tooled
towards better efficiency.

B. Limits of Reference Models

As mentioned earlier, reference models can only measure
the perceptual fidelity of a compressed video relative to a
possibly distorted reference video, but do not take into account
the pre-existing quality of the reference.

From Table it may be generally observed that for
reference VQA models, as the compression becomes heavier,
SROCC also increases. The likely reason for this is that
the quality of the compressed videos is dominated by the
pre-existing distortions of the source video, on which the
MOS varies more widely. When the compression is heavier,
the qualities of the tested videos becomes dominated by
compression artifacts, which are more predictable than the
panoply of possible pre-existing distortions.

It is interesting that the training based models follow an
opposite performance trend against the amount of compres-
sion. They are better able to distinguish the quality of lightly
compressed videos from each other (within each each range
of light compression) more accurately. When the compression
is heavy, very poor quality videos from each other becomes
more difficult for the trained models.

C. Feature Combination Performance Evaluation

We also conducted a series of feature studies to evaluate
other possible feature group combinations. First, we studied
the role of multiscale, since it generally improves prediction
performance [27] (videos and distortions are multiscale), but
it comes with some additional expense. Hence we compared
against the results of using NVS features computed only at
the original scale. Second, we tested the efficacy of using
displaced frame differences in other directions than the four
diagonal orientations. Specifically, we tested performance us-
ing frame differences in the cardinal directions: vertical and
horizontal instead of diagonal, along with the non-displaced
frame difference. We also studied the efficacy of using all eight
displacement directions. Overall, we analyzed three extended
versions of 1stepVQA:

o IstepVQA-I: NVS features only at original scale.

o IstepVQA-II: NVS features computed on displaced dif-
ferences in cardinal directions only, along with non-
displaced frame differences.

o IstepVQA-III: NVS features computed on displaced
frame differences in all eight adjacent directions, as well
as the non-displaced frame difference.

We tested the three models and report the obtained results in
Table [VII] Table [VIII] shows the obtained statistical signifi-
cance test comparing the performance of 1stepVQA against
the three extended versions of 1stepVQA. It is evident that
including or modifying the feature groups does not enhance
performance, and not using multiscale reduces it. Indeed,
IstepVQA was statistically superior to all the other feature
combinations.

D. Computational Complexity

As compared with other VQA models, 1stepVQA is rela-
tively fast and computes fewer features than most, and hence
is very efficient. We also compared the overall computational
complexity of 1stepVQA with the FR VQA model ST-MAD
and the NR VQA models V-BLIINDS and TLVQM. In Table
[X] we list the time required (in sec.) to compute each quality
measure on a video from the LIVE Wild Compressed Video
Quality Database. In Table [X] we list the number of features
used by each of the training-based VQA models. As Tables
and [X] show, 1stepVQA is quite efficient.

VI. CONCLUSION

We have presented a new VQA model, called 1stepVQA,
that is designed to tackle the problem of assessing the quality
of compressed videos given reference videos afflicted by pre-
existing, authentic distortions. 1stepVQA is computed using



TABLE III
PERFORMANCES OF THE 1STEPVQA MODEL AGAINST VARIOUS FR, RR AND NR VQA MODELS ON THE LIVE WILD COMPRESSED VIDEO QUALITY
DATABASE. ITALICS INDICATE NR ALGORITHMS.

PSNR MS-SSIM FSIM ST-MAD VSI 2stepQA NIQE BRISQUE V-BLIINDS | TLVOM 1stepVQA
SROCC 0.5084 0.7856 0.8778 0.8197 0.7813 0.8493 0.7150 0.7877 0.8276 0.8381 0.8839
LCC 0.5074 0.7744 0.8776 0.8141 0.7806 0.8455 0.7149 0.7887 0.8228 0.8303 0.8809
RMSE 11.2782 8.3797 6.3419 7.7239 8.1939 7.1600 9.1012 8.0702 7.8482 7.5766 6.3032
TABLE VIII
TABLE IV RESULTS OF ONE-SIDED WILCOXON RANK SUM TEST PERFORMED

RESULTS OF ONE-SIDED WILCOXON RANK SUM TEST PERFORMED
BETWEEN SROCC VALUES OF THE VQA ALGORITHMS COMPARED IN
TABLE[IIIl A VALUE OF ”1” INDICATES THAT THE ROW ALGORITHM
WAS STATISTICALLY SUPERIOR TO THE COLUMN ALGORITHM; ” — 17
INDICATES THAT THE ROW WAS WORSE THAN THE COLUMN; A VALUE
OF ”0” INDICATES THAT THE TWO ALGORITHMS WERE STATISTICALLY
INDISTINGUISHABLE. ITALICS INDICATE NR ALGORITHMS.

BETWEEN SROCC VALUES OF THE VQA ALGORITHMS COMPARED IN

TABLE[VIIl A VALUE OF ”1” INDICATES THAT THE ROW ALGORITHM

WAS STATISTICALLY SUPERIOR TO THE COLUMN ALGORITHM; ” — 1”7

INDICATES THAT THE ROW WAS WORSE THAN THE COLUMN; A VALUE

OF ”0” INDICATES THAT THE TWO ALGORITHMS WERE STATISTICALLY
INDISTINGUISHABLE.

1stepVQA | IstepVQA-I | 1stepVQA-II | IstepVQA-III
_ PSNR | MS-SSIM | FSIM | ST-MAD | VSI | 2stepQA | NIQE | BRISQUE | V-BLIINDS | TLVOM IstepVQA 1 gtePVQA 0 1 1 1
N I e A A g 8 3 LstepVQA-T -1 0 -1 -1
FSIM T T 0 T T T T T T T 1 lstepVQA-H -1 1 0 0
ST-MAD 1 1 -1 0 1 1 1 1 0 1 -1
VST T 0 T T ] T T 0 T T Bl IstepVQA-III -1 1 0 0
2stepQA 1 1 -1 ] 1 0 ] 1 1 1 -1
NIQE 1 1 -1 1 -1 1 0 -1 -1 -1 -1
BRISQUE 1 0 -1 1 0 1 ] 0 1 -1 -1
V-BLIINDS 1 1 -1 0 1 1 1 1 0 -1 -1
TLVQM 1 1 -1 ] 1 1 ] 1 1 0 -1
TstepVQA 1 T T T T T 1 T T T 0 . . .
information from both the reference and compressed videos,
but does not require pristine reference videos. It uses features
that capture the deviations of spatial and spatial-temporal
. statistical regularities caused by the presence of pre-existing

RESULTS OF ONE-SIDED WILCOXON RANK SUM TEST PERFORMED
BETWEEN LCC VALUES OF THE VQA ALGORITHMS COMPARED IN
TABLE[IIIl A VALUE OF ”1” INDICATES THAT THE ROW ALGORITHM
‘WAS STATISTICALLY SUPERIOR TO THE COLUMN ALGORITHM; ” — 1”7
INDICATES THAT THE ROW WAS WORSE THAN THE COLUMN; A VALUE
OF ”0” INDICATES THAT THE TWO ALGORITHMS WERE STATISTICALLY
INDISTINGUISHABLE. ITALICS INDICATE NR ALGORITHMS.
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TABLE VI
SROCC BETWEEN SEVERAL VQA MODEL SCORES AND MOS FOR EACH
COMPRESSION LEVEL. ITALICS INDICATE NR ALGORITHMS.

Compression level 1 2 3 4 All
PSNR -0.2818 | -0.1818 | 0.0364 | 0.1000 | 0.5084
MS-SSIM -0.0091 0.0818 | 0.2273 | 0.3636 | 0.7856
FSIM -0.0545 | 0.2455 | 0.3636 | 0.5091 | 0.8778
BRISQUE 0.6727 0.5364 | 0.1909 | 0.1091 | 0.7877
IstepVQA 0.5909 0.5636 | 0.3727 | 0.1364 | 0.8839
TABLE VII

PERFORMANCES OF THE 1STEPVQA MODEL AND THREE EXTENDED
1STEPVQA MODEL, WITH DIFFERENT FEATURE GROUPS.

IstepVQA | IstepVQA-I | IstepVQA-II | 1stepVQA-III
SROCC 0.8791 0.8468 0.8584 0.8619
LCC 0.8760 0.8472 0.8538 0.8575
RMSE 6.4595 7.0470 6.9029 6.8583

in-capture distortions as well as post-capture compression
artifacts. Our method utilizes both NFS features, as well as
NVS features extracted from displaced frame differences. We
find that 1stepVQA is able to outperform mainstream VQA
models, while requiring relatively fewer features, making it
more efficient and easy to implement. We also developed a
significant new database for this problem, called the LIVE
Wild Compressed Video Quality Database, which contains
both UGC reference videos and many compressed versions
of them, along with subjective quality labels assigned to them
as the outcome of a human study.
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